1
|
Tsilioni I. Unraveling the role of amphisomes in mast cell secretory granule fusion and exosome release. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2025; 6:176-179. [PMID: 40206800 PMCID: PMC11977352 DOI: 10.20517/evcna.2024.96] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/07/2025] [Accepted: 03/18/2025] [Indexed: 04/11/2025]
Abstract
Mast cells (MCs) play a crucial role in immune responses by storing and releasing inflammatory mediators from secretory granules (SGs). The biogenesis, maturation, and fusion of these granules with the plasma membrane regulate inflammation, immune cell recruitment, and tissue homeostasis. However, the exact mechanism underlying this process remains unclear. Recent studies have identified a novel mechanism of SG fusion involving amphisomes, hybrid organelles formed by the fusion of late endosomes and autophagosomes. This process not only facilitates SG enlargement but also promotes the release of exosomes, small vesicles crucial for intercellular communication and immune modulation. In particular, Omari et al. delve into the molecular machinery governing amphisome formation and SG fusion, focusing on key players such as Rab5, PTPN9, CD63, and phosphoinositides (PIs). They propose a dynamic model wherein amphisomes act as intermediates in SG maturation, promoting homotypic fusion events that regulate SG content and size. A critical aspect of this process is the lipid signaling cascade, particularly involving PI4K and CD63, which coordinates SG fusion and exosome release. These findings challenge the conventional view of SGs as static storage compartments, positioning them as dynamic hubs of vesicle trafficking and secretion. By elucidating the role of amphisomes and lipid signaling in SG biology, this study offers a significant shift in understanding and introduces new concepts that could drive future research. This commentary, while endorsing the authors' key conclusions, also highlights important questions regarding the functional implications of these novel mechanisms and their potential therapeutic applications.
Collapse
Affiliation(s)
- Irene Tsilioni
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| |
Collapse
|
2
|
Chang X, Wang WX. Differential cellular uptake and trafficking of nanoplastics in two hemocyte subpopulations of mussels Perna viridis. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134388. [PMID: 38669925 DOI: 10.1016/j.jhazmat.2024.134388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/27/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Affiliation(s)
- Xinyi Chang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China.
| |
Collapse
|
3
|
Liu W, Gao T, Li N, Shao S, Liu B. Vesicle fusion and release in neurons under dynamic mechanical equilibrium. iScience 2024; 27:109793. [PMID: 38736547 PMCID: PMC11088343 DOI: 10.1016/j.isci.2024.109793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024] Open
Abstract
Vesicular fusion plays a pivotal role in cellular processes, involving stages like vesicle trafficking, fusion pore formation, content release, and membrane integration or separation. This dynamic process is regulated by a complex interplay of protein assemblies, osmotic forces, and membrane tension, which together maintain a mechanical equilibrium within the cell. Changes in cellular mechanics or external pressures prompt adjustments in this equilibrium, highlighting the system's adaptability. This review delves into the synergy between intracellular proteins, structural components, and external forces in facilitating vesicular fusion and release. It also explores how cells respond to mechanical stress, maintaining equilibrium and offering insights into vesicle fusion mechanisms and the development of neurological disorders.
Collapse
Affiliation(s)
- Wenhao Liu
- Cancer Hospital of Dalian University of Technology, Shenyang 110042, China
| | - Tianyu Gao
- Cancer Hospital of Dalian University of Technology, Shenyang 110042, China
| | - Na Li
- Cancer Hospital of Dalian University of Technology, Shenyang 110042, China
- Faculty of Medicine, Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian 116024, China
| | - Shuai Shao
- Cancer Hospital of Dalian University of Technology, Shenyang 110042, China
- Faculty of Medicine, Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian 116024, China
| | - Bo Liu
- Cancer Hospital of Dalian University of Technology, Shenyang 110042, China
- Faculty of Medicine, Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
4
|
Hinsch CL, Venkata JK, Hsu T, Dammai V. Controlled Plasma Membrane Delivery of FGFR1 and Modulation of Signaling by a Novel Regulated Anterograde RTK Transport Pathway. Cancers (Basel) 2023; 15:5837. [PMID: 38136383 PMCID: PMC10741464 DOI: 10.3390/cancers15245837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
How human FGFR1 localizes to the PM is unknown. Currently, it is assumed that newly synthesized FGFR1 is continuously delivered to the PM. However, evidence indicates that FGFR1 is mostly sequestered in intracellular post-Golgi vesicles (PGVs) under normal conditions. In this report, live-cell imaging and total internal reflection fluorescence microscopy (TIRFM) were employed to study the dynamics of these FGFR1-positive vesicles. We designed recombinant proteins to target different transport components to and from the FGFR1 vesicles. Mouse embryoid bodies (mEBs) were used as a 3D model system to confirm major findings. Briefly, we found that Rab2a, Rab6a, Rab8a, RalA and caveolins are integral components of FGFR1-positive vesicles, representing a novel compartment. While intracellular sequestration prevented FGFR1 activation, serum starvation and hypoxia stimulated PM localization of FGFR1. Under these conditions, FGFR1 C-terminus acts as a scaffold to assemble proteins to (i) inactivate Rab2a and release sequestration, and (ii) assemble Rab6a for localized activation of Rab8a and RalA-exocyst to deliver the receptor to the PM. This novel pathway is named Regulated Anterograde RTK Transport (RART). This is the first instance of RTK regulated through control of PM delivery.
Collapse
Affiliation(s)
- Claire Leist Hinsch
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29401, USA (J.K.V.)
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29401, USA
| | - Jagadish Kummetha Venkata
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29401, USA (J.K.V.)
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29401, USA
| | - Tien Hsu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40433, Taiwan
| | - Vincent Dammai
- Aldevron LLC (Danaher Corporation), Fargo, ND 58104, USA
| |
Collapse
|
5
|
Rocha SM, Santos FM, Socorro S, Passarinha LA, Maia CJ. Proteomic analysis of STEAP1 knockdown in human LNCaP prostate cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119522. [PMID: 37315586 DOI: 10.1016/j.bbamcr.2023.119522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/16/2023]
Abstract
Prostate cancer (PCa) continues to be one of the most common cancers in men worldwide. The six transmembrane epithelial antigen of the prostate 1 (STEAP1) protein is overexpressed in several types of human tumors, particularly in PCa. Our research group has demonstrated that STEAP1 overexpression is associated with PCa progression and aggressiveness. Therefore, understanding the cellular and molecular mechanisms triggered by STEAP1 overexpression will provide important insights to delineate new strategies for PCa treatment. In the present work, a proteomic strategy was used to characterize the intracellular signaling pathways and the molecular targets downstream of STEAP1 in PCa cells. A label-free approach was applied using an Orbitrap LC-MS/MS system to characterize the proteome of STEAP1-knockdown PCa cells. More than 6700 proteins were identified, of which a total of 526 proteins were found differentially expressed in scramble siRNA versus STEAP1 siRNA (234 proteins up-regulated and 292 proteins down-regulated). Bioinformatics analysis allowed us to explore the mechanism through which STEAP1 exerts influence on PCa, revealing that endocytosis, RNA transport, apoptosis, aminoacyl-tRNA biosynthesis, and metabolic pathways are the main biological processes where STEAP1 is involved. By immunoblotting, it was confirmed that STEAP1 silencing induced the up-regulation of cathepsin B, intersectin-1, and syntaxin 4, and the down-regulation of HRas, PIK3C2A, and DIS3. These findings suggested that blocking STEAP1 might be a suitable strategy to activate apoptosis and endocytosis, and diminish cellular metabolism and intercellular communication, leading to inhibition of PCa progression.
Collapse
Affiliation(s)
- Sandra M Rocha
- CICS-UBI-Health Sciences Research Center, Universidade da Beira Interior, 6201-506 Covilhã, Portugal
| | - Fátima M Santos
- CICS-UBI-Health Sciences Research Center, Universidade da Beira Interior, 6201-506 Covilhã, Portugal; Functional Proteomics Laboratory, Centro Nacional de Biotecnología (CNB-CSIC), Calle Darwin 3, Campus de Cantoblanco, 28029 Madrid, Spain
| | - Sílvia Socorro
- CICS-UBI-Health Sciences Research Center, Universidade da Beira Interior, 6201-506 Covilhã, Portugal
| | - Luís A Passarinha
- CICS-UBI-Health Sciences Research Center, Universidade da Beira Interior, 6201-506 Covilhã, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal; UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal; Laboratório de Fármaco-Toxicologia-UBIMedical, Universidade da Beira Interior, 6201-284 Covilhã, Portugal
| | - Cláudio J Maia
- CICS-UBI-Health Sciences Research Center, Universidade da Beira Interior, 6201-506 Covilhã, Portugal.
| |
Collapse
|
6
|
Iinuma T, Yonekura S, Hirahara K, Kurita J, Yoneda R, Arai T, Sonobe Y, Shinmi R, Okamoto Y, Hanazawa T. Differences in the expression of multidrug resistance proteins in chronic rhinosinusitis according to endotype. Allergol Int 2023; 72:564-572. [PMID: 37147165 DOI: 10.1016/j.alit.2023.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/03/2023] [Accepted: 03/19/2023] [Indexed: 05/07/2023] Open
Abstract
BACKGROUND Chronic rhinosinusitis is a common disease of the nasal cavity and is classified into two major endotypes, which are neutrophilic and eosinophilic. Some patients with neutrophilic and eosinophilic chronic rhinosinusitis are refractory to treatment, and the mechanism of drug resistance is not completely understood. METHODS Nasal polyp samples were collected from patients with non-eosinophilic chronic rhinosinusitis (nECRS) and eosinophilic chronic rhinosinusitis (ECRS). Transcriptomic and proteomic analyses were performed simultaneously. Gene Ontology (GO) analysis was conducted to extract genes involved in drug resistance. Then, GO analysis results were validated via real-time polymerase chain reaction and immunohistochemistry analysis. RESULTS The nasal polyps of patients with ECRS were enriched with 110 factors in the genes and 112 in the proteins, unlike in those of patients with nECRS. GO analysis on the combined results of both showed that the factors involved in extracellular transportation were enriched. Our analysis focused on multidrug resistance protein 1-5 (MRP1-5). Real-time polymerase chain reaction revealed that the MRP4 expression was significantly upregulated in ECRS polyps. Immunohistochemical staining showed that the MRP3 and MRP4 expressions significantly increased in nECRS and ECRS, respectively. MRP3 and MRP4 expressions were positively correlated with the number of neutrophil and eosinophil infiltrates in polyps and associated with the tendency to relapse in patients with ECRS. CONCLUSIONS MRP is associated with treatment resistance and is expressed in nasal polyps. The expression pattern had different features based on chronic rhinosinusitis endotype. Therefore, drug resistance factors can be associated with therapeutic outcomes.
Collapse
Affiliation(s)
- Tomohisa Iinuma
- Department of Otorhinolaryngology, Head and Neck Surgery, Chiba University Graduate School of Medicine, Chiba, Japan.
| | - Syuji Yonekura
- Department of Otorhinolaryngology, Head and Neck Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Kiyoshi Hirahara
- Department of Immunology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Junya Kurita
- Department of Otorhinolaryngology, Head and Neck Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Riyo Yoneda
- Department of Otorhinolaryngology, Head and Neck Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Tomoyuki Arai
- Department of Otorhinolaryngology, Head and Neck Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yuri Sonobe
- Department of Otorhinolaryngology, Head and Neck Surgery, Chiba University Graduate School of Medicine, Chiba, Japan; Department of Immunology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Rie Shinmi
- Department of Otorhinolaryngology, Head and Neck Surgery, Chiba University Graduate School of Medicine, Chiba, Japan; Department of Immunology, Chiba University Graduate School of Medicine, Chiba, Japan
| | | | - Toyoyuki Hanazawa
- Department of Otorhinolaryngology, Head and Neck Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| |
Collapse
|
7
|
Štepihar D, Florke Gee RR, Hoyos Sanchez MC, Fon Tacer K. Cell-specific secretory granule sorting mechanisms: the role of MAGEL2 and retromer in hypothalamic regulated secretion. Front Cell Dev Biol 2023; 11:1243038. [PMID: 37799273 PMCID: PMC10548473 DOI: 10.3389/fcell.2023.1243038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/31/2023] [Indexed: 10/07/2023] Open
Abstract
Intracellular protein trafficking and sorting are extremely arduous in endocrine and neuroendocrine cells, which synthesize and secrete on-demand substantial quantities of proteins. To ensure that neuroendocrine secretion operates correctly, each step in the secretion pathways is tightly regulated and coordinated both spatially and temporally. At the trans-Golgi network (TGN), intrinsic structural features of proteins and several sorting mechanisms and distinct signals direct newly synthesized proteins into proper membrane vesicles that enter either constitutive or regulated secretion pathways. Furthermore, this anterograde transport is counterbalanced by retrograde transport, which not only maintains membrane homeostasis but also recycles various proteins that function in the sorting of secretory cargo, formation of transport intermediates, or retrieval of resident proteins of secretory organelles. The retromer complex recycles proteins from the endocytic pathway back to the plasma membrane or TGN and was recently identified as a critical player in regulated secretion in the hypothalamus. Furthermore, melanoma antigen protein L2 (MAGEL2) was discovered to act as a tissue-specific regulator of the retromer-dependent endosomal protein recycling pathway and, by doing so, ensures proper secretory granule formation and maturation. MAGEL2 is a mammalian-specific and maternally imprinted gene implicated in Prader-Willi and Schaaf-Yang neurodevelopmental syndromes. In this review, we will briefly discuss the current understanding of the regulated secretion pathway, encompassing anterograde and retrograde traffic. Although our understanding of the retrograde trafficking and sorting in regulated secretion is not yet complete, we will review recent insights into the molecular role of MAGEL2 in hypothalamic neuroendocrine secretion and how its dysregulation contributes to the symptoms of Prader-Willi and Schaaf-Yang patients. Given that the activation of many secreted proteins occurs after they enter secretory granules, modulation of the sorting efficiency in a tissue-specific manner may represent an evolutionary adaptation to environmental cues.
Collapse
Affiliation(s)
- Denis Štepihar
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX, United States
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Rebecca R. Florke Gee
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX, United States
| | - Maria Camila Hoyos Sanchez
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX, United States
| | - Klementina Fon Tacer
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX, United States
| |
Collapse
|
8
|
Small but Mighty-Exosomes, Novel Intercellular Messengers in Neurodegeneration. BIOLOGY 2022; 11:biology11030413. [PMID: 35336787 PMCID: PMC8945199 DOI: 10.3390/biology11030413] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/27/2022] [Accepted: 03/04/2022] [Indexed: 01/27/2023]
Abstract
Simple Summary Exosomes are biological nanoparticles recently recognized as intercellular messengers. They contain a cargo of lipids, proteins, and RNA. They can transfer their content to not only cells in the vicinity but also to cells at a distance. This unique ability empowers them to modulate the physiology of recipient cells. In brain, exosomes play a role in neurodegenerative diseases such as Alzheimer’s disease and Parkinson’s disease and amyotrophic lateral sclerosis. Abstract Exosomes of endosomal origin are one class of extracellular vesicles that are important in intercellular communication. Exosomes are released by all cells in our body and their cargo consisting of lipids, proteins and nucleic acids has a footprint reflective of their parental origin. The exosomal cargo has the power to modulate the physiology of recipient cells in the vicinity of the releasing cells or cells at a distance. Harnessing the potential of exosomes relies upon the purity of exosome preparation. Hence, many methods for isolation have been developed and we provide a succinct summary of several methods. In spite of the seclusion imposed by the blood–brain barrier, cells in the CNS are not immune from exosomal intrusive influences. Both neurons and glia release exosomes, often in an activity-dependent manner. A brief description of exosomes released by different cells in the brain and their role in maintaining CNS homeostasis is provided. The hallmark of several neurodegenerative diseases is the accumulation of protein aggregates. Recent studies implicate exosomes’ intercellular communicator role in the spread of misfolded proteins aiding the propagation of pathology. In this review, we discuss the potential contributions made by exosomes in progression of Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis. Understanding contributions made by exosomes in pathogenesis of neurodegeneration opens the field for employing exosomes as therapeutic agents for drug delivery to brain since exosomes do cross the blood–brain barrier.
Collapse
|
9
|
Szabo MP, Mishra S, Knupp A, Young JE. The role of Alzheimer's disease risk genes in endolysosomal pathways. Neurobiol Dis 2022; 162:105576. [PMID: 34871734 PMCID: PMC9071255 DOI: 10.1016/j.nbd.2021.105576] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 11/23/2021] [Accepted: 12/02/2021] [Indexed: 12/25/2022] Open
Abstract
There is ample pathological and biological evidence for endo-lysosomal dysfunction in Alzheimer's disease (AD) and emerging genetic studies repeatedly implicate endo-lysosomal genes as associated with increased AD risk. The endo-lysosomal network (ELN) is essential for all cell types of the central nervous system (CNS), yet each unique cell type utilizes cellular trafficking differently (see Fig. 1). Challenges ahead involve defining the role of AD associated genes in the functionality of the endo-lysosomal network (ELN) and understanding how this impacts the cellular dysfunction that occurs in AD. This is critical to the development of new therapeutics that will impact, and potentially reverse, early disease phenotypes. Here we review some early evidence of ELN dysfunction in AD pathogenesis and discuss the role of selected AD-associated risk genes in this pathway. In particular, we review genes that have been replicated in multiple genome-wide association studies(Andrews et al., 2020; Jansen et al., 2019; Kunkle et al., 2019; Lambert et al., 2013; Marioni et al., 2018) and reviewed in(Andrews et al., 2020) that have defined roles in the endo-lysosomal network. These genes include SORL1, an AD risk gene harboring both rare and common variants associated with AD risk and a role in trafficking cargo, including APP, through the ELN; BIN1, a regulator of clathrin-mediated endocytosis whose expression correlates with Tau pathology; CD2AP, an AD risk gene with roles in endosome morphology and recycling; PICALM, a clathrin-binding protein that mediates trafficking between the trans-Golgi network and endosomes; and Ephrin Receptors, a family of receptor tyrosine kinases with AD associations and interactions with other AD risk genes. Finally, we will discuss how human cellular models can elucidate cell-type specific differences in ELN dysfunction in AD and aid in therapeutic development.
Collapse
Affiliation(s)
- Marcell P Szabo
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98109, United States of America; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, United States of America
| | - Swati Mishra
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98109, United States of America; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, United States of America
| | - Allison Knupp
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98109, United States of America; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, United States of America
| | - Jessica E Young
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98109, United States of America; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, United States of America.
| |
Collapse
|
10
|
Ermini L, Farrell A, Alahari S, Ausman J, Park C, Sallais J, Melland-Smith M, Porter T, Edson M, Nevo O, Litvack M, Post M, Caniggia I. Ceramide-Induced Lysosomal Biogenesis and Exocytosis in Early-Onset Preeclampsia Promotes Exosomal Release of SMPD1 Causing Endothelial Dysfunction. Front Cell Dev Biol 2021; 9:652651. [PMID: 34017832 PMCID: PMC8130675 DOI: 10.3389/fcell.2021.652651] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
Aberrant ceramide build-up in preeclampsia, a serious disorder of pregnancy, causes exuberant autophagy-mediated trophoblast cell death. The significance of ceramide accumulation for lysosomal biogenesis in preeclampsia is unknown. Here we report that lysosome formation is markedly increased in trophoblast cells of early-onset preeclamptic placentae, in particular in syncytiotrophoblasts. This is accompanied by augmented levels of transcription factor EB (TFEB). In vitro and in vivo experiments demonstrate that ceramide increases TFEB expression and nuclear translocation and induces lysosomal formation and exocytosis. Further, we show that TFEB directly regulates the expression of lysosomal sphingomyelin phosphodiesterase (L-SMPD1) that degrades sphingomyelin to ceramide. In early-onset preeclampsia, ceramide-induced lysosomal exocytosis carries L-SMPD1 to the apical membrane of the syncytial epithelium, resulting in ceramide accumulation in lipid rafts and release of active L-SMPD1 via ceramide-enriched exosomes into the maternal circulation. The SMPD1-containing exosomes promote endothelial activation and impair endothelial tubule formation in vitro. Both exosome-induced processes are attenuated by SMPD1 inhibitors. These findings suggest that ceramide-induced lysosomal biogenesis and exocytosis in preeclamptic placentae contributes to maternal endothelial dysfunction, characteristic of this pathology.
Collapse
Affiliation(s)
- Leonardo Ermini
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Abby Farrell
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Sruthi Alahari
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Jonathan Ausman
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Chanho Park
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Julien Sallais
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Megan Melland-Smith
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Tyler Porter
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Michael Edson
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Ori Nevo
- Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Michael Litvack
- Translational Medicine Program, Peter Gilgan Center, The Hospital for Sick Children, Toronto, ON, Canada
| | - Martin Post
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada.,Translational Medicine Program, Peter Gilgan Center, The Hospital for Sick Children, Toronto, ON, Canada
| | - Isabella Caniggia
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada.,Department of Obstetrics and Gynecology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
11
|
Meehan SD, Abdelrahman L, Arcuri J, Park KK, Samarah M, Bhattacharya SK. Proteomics and systems biology in optic nerve regeneration. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 127:249-270. [PMID: 34340769 DOI: 10.1016/bs.apcsb.2021.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We present an overview of current state of proteomic approaches as applied to optic nerve regeneration in the historical context of nerve regeneration particularly central nervous system neuronal regeneration. We present outlook pertaining to the optic nerve regeneration proteomics that the latter can extrapolate information from multi-systems level investigations. We present an account of the current need of systems level standardization for comparison of proteome from various models and across different pharmacological or biophysical treatments that promote adult neuron regeneration. We briefly overview the need for deriving knowledge from proteomics and integrating with other omics to obtain greater biological insight into process of adult neuron regeneration in the optic nerve and its potential applicability to other central nervous system neuron regeneration.
Collapse
Affiliation(s)
- Sean D Meehan
- Molecular and Cellular Pharmacology Graduate Program, University of Miami, Miami, FL, United States; Miami Integrative Metabolomics Research Center, University of Miami, Miami, FL, United States
| | - Leila Abdelrahman
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States; Department of Electrical and Computer Engineering, University of Miami, Miami, FL, United States
| | - Jennifer Arcuri
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States; Molecular and Cellular Pharmacology Graduate Program, University of Miami, Miami, FL, United States; Miami Integrative Metabolomics Research Center, University of Miami, Miami, FL, United States
| | - Kevin K Park
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States; Miami Integrative Metabolomics Research Center, University of Miami, Miami, FL, United States; Miami Project to Cure Paralysis, University of Miami, Miami, FL, United States
| | | | - Sanjoy K Bhattacharya
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States; Molecular and Cellular Pharmacology Graduate Program, University of Miami, Miami, FL, United States; Miami Integrative Metabolomics Research Center, University of Miami, Miami, FL, United States.
| |
Collapse
|
12
|
Pei J, Wang G, Feng L, Zhang J, Jiang T, Sun Q, Ouyang L. Targeting Lysosomal Degradation Pathways: New Strategies and Techniques for Drug Discovery. J Med Chem 2021; 64:3493-3507. [PMID: 33764774 DOI: 10.1021/acs.jmedchem.0c01689] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A series of tools for targeted protein degradation are inspiring scientists to develop new drugs with advantages over traditional small-molecule drugs. Among these tools, proteolysis-targeting chimeras (PROTACs) are most representative of the technology based on proteasomes. However, the proteasome has little degradation effect on certain macromolecular proteins or aggregates, extracellular proteins, and organelles, which limits the application of PROTACs. Additionally, lysosomes play an important role in protein degradation. Therefore, lysosome-induced protein degradation drugs can directly regulate protein levels in vivo, achieve the goal of treating diseases, and provide new strategies for drug discovery. Lysosome-based degradation technology has the potential for clinical translation. In this review, strategies targeting lysosomal pathways and lysosome-based degradation techniques are summarized. In addition, lysosome-based degrading drugs are described, and the advantages and challenges are listed. Our efforts will certainly promote the design, discovery, and clinical application of drugs associated with this technology.
Collapse
Affiliation(s)
- Junping Pei
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Guan Wang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Lu Feng
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Jifa Zhang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Tingting Jiang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Qiu Sun
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
13
|
Novel and Converging Ways of NOX2 and SOD3 in Trafficking and Redox Signaling in Macrophages. Antioxidants (Basel) 2021; 10:antiox10020172. [PMID: 33503855 PMCID: PMC7911390 DOI: 10.3390/antiox10020172] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 12/16/2022] Open
Abstract
Macrophages and related tissue macrophage populations use the classical NADPH oxidase (NOX2) for the regulated production of superoxide and derived oxidants for pathogen combat and redox signaling. With an emphasis on macrophages, we discuss how sorting into secretory storage vesicles, agonist-responsive membrane trafficking, and segregation into sphingolipid and cholesterol-enriched microdomains (lipid rafts) determine the subcellular distribution and spatial organization of NOX2 and superoxide dismutase-3 (SOD3). We discuss how inflammatory activation of macrophages, in part through small GTPase Rab27A/B regulation of the secretory compartments, mediates the coalescence of these two proteins on the cell surface to deliver a focalized hydrogen peroxide output. In interplay with membrane-embedded oxidant transporters and redox sensitive target proteins, this arrangement allows for the autocrine and paracrine signaling, which govern macrophage activation states and transcriptional programs. By discussing examples of autocrine and paracrine redox signaling, we highlight why formation of spatiotemporal microenvironments where produced superoxide is rapidly converted to hydrogen peroxide and conveyed immediately to reach redox targets in proximal vicinity is required for efficient redox signaling. Finally, we discuss the recent discovery of macrophage-derived exosomes as vehicles of NOX2 holoenzyme export to other cells.
Collapse
|
14
|
D'Alessandro R, Meldolesi J. News about non-secretory exocytosis: mechanisms, properties, and functions. J Mol Cell Biol 2020; 11:736-746. [PMID: 30605539 PMCID: PMC6821209 DOI: 10.1093/jmcb/mjy084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 11/14/2018] [Accepted: 01/02/2019] [Indexed: 12/22/2022] Open
Abstract
The fusion by exocytosis of many vesicles to the plasma membrane induces the discharge to the extracellular space of their abundant luminal cargoes. Other exocytic vesicles, however, do not contain cargoes, and thus, their fusion is not followed by secretion. Therefore, two distinct processes of exocytosis exist, one secretory and the other non-secretory. The present review deals with the knowledge of non-secretory exocytosis developed during recent years. Among such developments are the dual generation of the exocytic vesicles, initially released either from the trans-Golgi network or by endocytosis; their traffic with activation of receptors, channels, pumps, and transporters; the identification of their tethering and soluble N-ethylmaleimide-sensitive factor attachment protein receptor complexes that govern membrane fusions; the growth of axons and the membrane repair. Examples of potential relevance of these processes for pathology and medicine are also reported. The developments presented here offer interesting chances for future progress in the field.
Collapse
Affiliation(s)
| | - Jacopo Meldolesi
- Scientific Institute San Raffaele and Vita Salute San Raffaele University, Via Olgettina 58, Milan, Italy
| |
Collapse
|
15
|
Zhao Q, Gao SM, Wang MC. Molecular Mechanisms of Lysosome and Nucleus Communication. Trends Biochem Sci 2020; 45:978-991. [PMID: 32624271 DOI: 10.1016/j.tibs.2020.06.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/11/2020] [Accepted: 06/04/2020] [Indexed: 12/14/2022]
Abstract
Lysosomes transcend the role of degradation stations, acting as key nodes for interorganelle crosstalk and signal transduction. Lysosomes communicate with the nucleus through physical proximity and functional interaction. In response to external and internal stimuli, lysosomes actively adjust their distribution between peripheral and perinuclear regions and modulate lysosome-nucleus signaling pathways; in turn, the nucleus fine-tunes lysosomal biogenesis and functions through transcriptional controls. Changes in coordination between these two essential organelles are associated with metabolic disorders, neurodegenerative diseases, and aging. In this review, we address recent advances in lysosome-nucleus communication by multi-tiered regulatory mechanisms and discuss how these regulations couple metabolic inputs with organellar motility, cellular signaling, and transcriptional network.
Collapse
Affiliation(s)
- Qian Zhao
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shihong Max Gao
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Meng C Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
16
|
Lam HY, Arumugam S, Bae HG, Wang CC, Jung S, St John AL, Hong W, Han W, Tergaonkar V. ELKS1 controls mast cell degranulation by regulating the transcription of Stxbp2 and Syntaxin 4 via Kdm2b stabilization. SCIENCE ADVANCES 2020; 6:6/31/eabb2497. [PMID: 32937583 PMCID: PMC7531903 DOI: 10.1126/sciadv.abb2497] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 06/09/2020] [Indexed: 05/06/2023]
Abstract
ELKS1 is a protein with proposed roles in regulated exocytosis in neurons and nuclear factor κB (NF-κB) signaling in cancer cells. However, how these two potential roles come together under physiological settings remain unknown. Since both regulated exocytosis and NF-κB signaling are determinants of mast cell (MC) functions, we generated mice lacking ELKS1 in connective tissue MCs (Elks1f/f Mcpt5-Cre) and found that while ELKS1 is dispensable for NF-κB-mediated cytokine production, it is essential for MC degranulation both in vivo and in vitro. Impaired degranulation was caused by reduced transcription of Syntaxin 4 (STX4) and Syntaxin binding protein 2 (Stxpb2), resulting from a lack of ELKS1-mediated stabilization of lysine-specific demethylase 2B (Kdm2b), which is an essential regulator of STX4 and Stxbp2 transcription. These results suggest a transcriptional role for active-zone proteins like ELKS1 and suggest that they may regulate exocytosis through a novel mechanism involving transcription of key exocytosis proteins.
Collapse
Affiliation(s)
- Hiu Yan Lam
- Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology (IMCB), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore 117596, Singapore
| | - Surendar Arumugam
- Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology (IMCB), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Han Gyu Bae
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research, #02-02 Helios, 11 Biopolis Way, Singapore 138667, Singapore
| | - Cheng Chun Wang
- Institute of Molecular and Cell Biology (IMCB), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Sangyong Jung
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research, #02-02 Helios, 11 Biopolis Way, Singapore 138667, Singapore
| | - Ashley Lauren St John
- Program in Emerging Infectious Diseases, Duke-NUS, Singapore 169857, Singapore
- Department of Microbiology and Immunology, NUS, Singapore 119077, Singapore
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Wanjin Hong
- Institute of Molecular and Cell Biology (IMCB), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Weiping Han
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research, #02-02 Helios, 11 Biopolis Way, Singapore 138667, Singapore
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology (IMCB), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore.
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore 119074, Singapore
| |
Collapse
|
17
|
Gao J, Su G, Liu J, Zhang J, Zhou J, Liu X, Tian Y, Zhang Z. Mechanisms of Inhibition of Excessive Microglial Activation by Melatonin. J Mol Neurosci 2020; 70:1229-1236. [PMID: 32222896 DOI: 10.1007/s12031-020-01531-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 03/12/2020] [Indexed: 12/22/2022]
Abstract
As the innate immune cells that permanently reside in the central nervous system (CNS), microglia play an increasingly important role in maintaining brain function. Normally, microglia act as resting phenotype, which can be activated by various types of stimuli and release a variety of inflammatory mediators. Melatonin is an endogenous rhythmic hormone secreted principally by the pineal gland. Increasing evidence suggests that melatonin can detoxify reactive oxygen species (ROS) and prevent microglia from over-activation. This review summarizes the mechanisms of melatonin in inhibiting excessive activation of microglia and demonstrates the feasibility of melatonin in the treatment of diseases related to microglial over-activation.
Collapse
Affiliation(s)
- Juan Gao
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Gang Su
- Institute of Genetics, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Jifei Liu
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Jiajia Zhang
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Juanping Zhou
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Xiaoyan Liu
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Ye Tian
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Zhenchang Zhang
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China.
| |
Collapse
|
18
|
Inhibition of Uncoupling Protein 2 Enhances the Radiosensitivity of Cervical Cancer Cells by Promoting the Production of Reactive Oxygen Species. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5135893. [PMID: 32190174 PMCID: PMC7073473 DOI: 10.1155/2020/5135893] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/14/2019] [Accepted: 02/14/2020] [Indexed: 12/17/2022]
Abstract
Objective The mechanism of enhanced radiosensitivity induced by mitochondrial uncoupling protein UCP2 was investigated in HeLa cells to provide a theoretical basis as a novel target for cervical cancer treatment. Methods HeLa cells were irradiated with 4 Gy X-radiation at 1.0 Gy/min. The expression of UCP2 mRNA and protein was assayed by real-time quantitative polymerase chain reaction and western blotting. UCP2 siRNA and negative control siRNA fragments were constructed and transfected into HeLa cells 24 h after irradiation. The effect of UCP2 silencing and irradiation on HeLa cells was determined by colony formation, CCK-8 cell viability, γH2AX immunofluorescence assay of DNA damage, Annexin V-FITC/PI apoptosis assay, and propidium iodide cell cycle assay. The effects on mitochondrial structure and function were investigated with fluorescent probes including dichlorodihydrofluorescein diacetate (DCFH-DA) assay of reactive oxygen species (ROS), rhodamine 123, and MitoTracker Green assay of mitochondrial structure and function. Results Irradiation upregulated UCP2 expression, and UCP2 knockdown decreased the survival of irradiated HeLa cells. UCP2 silencing sensitized HeLa cells to irradiation-induced DNA damage and led to increased apoptosis, cell cycle arrest in G2/M, and increased mitochondrial ROS. Increased radiosensitivity was associated with an activation of P53, decreased Bcl-2, Bcl-xl, cyclin B, CDC2, Ku70, and Rad51 expression, and increased Apaf-1, cytochrome c, caspase-3, and caspase-9 expression. Conclusions UCP2 inhibition augmented the radiosensitivity of cervical cancer cells, and it may be a potential target of radiotherapy of advanced cervical cancer.
Collapse
|
19
|
Yan X, Noël F, Marcotte I, DeWolf CE, Warschawski DE, Boisselier E. AHNAK C-Terminal Peptide Membrane Binding-Interactions between the Residues 5654-5673 of AHNAK and Phospholipid Monolayers and Bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:362-369. [PMID: 31825630 DOI: 10.1021/acs.langmuir.9b02973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The dysferlin membrane repair complex contains a small complex, S100A10-annexin A2, which initiates membrane repair by recruiting the protein AHNAK to the membrane, where it interacts via binding sites in the C-terminal region. However, no molecular data are available for the membrane binding of the various proteins involved in this complex. Therefore, the present study investigated the membrane binding of AHNAK to elucidate its role in the cell membrane repair process. A chemically synthesized peptide (pAHNAK), comprising the 20 amino acids in the C-terminal domain of AHNAK, was applied to Langmuir monolayer models, and the binding parameters and insertion angles were measured with surface tensiometry and ellipsometry. The interaction of pAHNAK with lipid bilayers was studied using 31P solid-state nuclear magnetic resonance. pAHNAK preferentially and strongly interacted with phospholipids that comprised negatively charged polar head groups with unsaturated lipids. This finding provides a better understanding of AHNAK membrane behavior and the parameters that influence its function in membrane repair.
Collapse
Affiliation(s)
- Xiaolin Yan
- Department of Ophthalmology, Faculty of Medicine , Université Laval , Quebec City , QC G1V 0A6 , Canada
- CUO-Recherche, Centre de Recherche du CHU de Québec, Hôpital du Saint-Sacrement , CHU de Québec , Quebec City , G1S 4L8 , Canada
| | - Francis Noël
- Department of Ophthalmology, Faculty of Medicine , Université Laval , Quebec City , QC G1V 0A6 , Canada
- CUO-Recherche, Centre de Recherche du CHU de Québec, Hôpital du Saint-Sacrement , CHU de Québec , Quebec City , G1S 4L8 , Canada
| | - Isabelle Marcotte
- Department of Chemistry, Faculty of Sciences , Université du Québec à Montréal , Montreal , H2X 2J6 , Canada
| | - Christine E DeWolf
- Department of Chemistry and Biochemistry and Centre for NanoScience Research , Concordia University , Montreal , H4B 1R6 , Canada
| | - Dror E Warschawski
- Department of Chemistry, Faculty of Sciences , Université du Québec à Montréal , Montreal , H2X 2J6 , Canada
- UMR 7099, CNRS-Université Paris Diderot, Institut de Biologie Physico-Chimique , Paris 75005 , France
| | - Elodie Boisselier
- Department of Ophthalmology, Faculty of Medicine , Université Laval , Quebec City , QC G1V 0A6 , Canada
- CUO-Recherche, Centre de Recherche du CHU de Québec, Hôpital du Saint-Sacrement , CHU de Québec , Quebec City , G1S 4L8 , Canada
| |
Collapse
|
20
|
Kudriaeva AA, Sokolov AV, Belogurov AAJ. Stochastics of Degradation: The Autophagic-Lysosomal System of the Cell. Acta Naturae 2020; 12:18-32. [PMID: 32477595 PMCID: PMC7245954 DOI: 10.32607/actanaturae.10936] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Autophagy is a conservative and evolutionarily ancient process that enables the
transfer of various cellular compounds, organelles, and potentially dangerous
cellular components to the lysosome for their degradation. This process is
crucial for the recycling of energy and substrates, which are required for
cellular biosynthesis. Autophagy not only plays a major role in the survival of
cells under stress conditions, but is also actively involved in maintaining
cellular homeostasis. It has multiple effects on the immune system and cellular
remodeling during organism development. The effectiveness of autophagy is
ensured by a controlled interaction between two organelles – the
autophagosome and the lysosome. Despite significant progress in the description
of the molecular mechanisms underlying autophagic-lysosomal system (ALS)
functioning, many fundamental questions remain. Namely, the specialized
functions of lysosomes and the role of ALS in the pathogenesis of human
diseases are still enigmatic. Understanding of the mechanisms that are
triggered at all stages of autophagic- lysosomal degradation, from the
initiation of autophagy to the terminal stage of substrate destruction in the
lysosome, may result in new approaches that could help better uderstand ALS
and, therefore, selectively control cellular proteostasis.
Collapse
Affiliation(s)
- A. A. Kudriaeva
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997 Russia
| | - A. V. Sokolov
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997 Russia
| | - A. A. Jr. Belogurov
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997 Russia
- Lomonosov Moscow State University, Moscow, 119991 Russia
| |
Collapse
|
21
|
Li DT, Habtemichael EN, Julca O, Sales CI, Westergaard XO, DeVries SG, Ruiz D, Sayal B, Bogan JS. GLUT4 Storage Vesicles: Specialized Organelles for Regulated Trafficking. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2019; 92:453-470. [PMID: 31543708 PMCID: PMC6747935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Fat and muscle cells contain a specialized, intracellular organelle known as the GLUT4 storage vesicle (GSV). Insulin stimulation mobilizes GSVs, so that these vesicles fuse at the cell surface and insert GLUT4 glucose transporters into the plasma membrane. This example is likely one instance of a broader paradigm for regulated, non-secretory exocytosis, in which intracellular vesicles are translocated in response to diverse extracellular stimuli. GSVs have been studied extensively, yet these vesicles remain enigmatic. Data support the view that in unstimulated cells, GSVs are present as a pool of preformed small vesicles, which are distinct from endosomes and other membrane-bound organelles. In adipocytes, GSVs contain specific cargoes including GLUT4, IRAP, LRP1, and sortilin. They are formed by membrane budding, involving sortilin and probably CHC22 clathrin in humans, but the donor compartment from which these vesicles form remains uncertain. In unstimulated cells, GSVs are trapped by TUG proteins near the endoplasmic reticulum - Golgi intermediate compartment (ERGIC). Insulin signals through two main pathways to mobilize these vesicles. Signaling by the Akt kinase modulates Rab GTPases to target the GSVs to the cell surface. Signaling by the Rho-family GTPase TC10α stimulates Usp25m-mediated TUG cleavage to liberate the vesicles from the Golgi. Cleavage produces a ubiquitin-like protein modifier, TUGUL, that links the GSVs to KIF5B kinesin motors to promote their movement to the cell surface. In obesity, attenuation of these processes results in insulin resistance and contributes to type 2 diabetes and may simultaneously contribute to hypertension and dyslipidemia in the metabolic syndrome.
Collapse
Affiliation(s)
- Don T. Li
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, Yale University, New Haven, CT,Department of Cell Biology, Yale University School of Medicine, Yale University, New Haven, CT
| | - Estifanos N. Habtemichael
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, Yale University, New Haven, CT
| | - Omar Julca
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, Yale University, New Haven, CT
| | - Chloe I. Sales
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, Yale University, New Haven, CT
| | - Xavier O. Westergaard
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, Yale University, New Haven, CT
| | - Stephen G. DeVries
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, Yale University, New Haven, CT
| | - Diana Ruiz
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, Yale University, New Haven, CT
| | - Bhavesh Sayal
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, Yale University, New Haven, CT
| | - Jonathan S. Bogan
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, Yale University, New Haven, CT,Department of Cell Biology, Yale University School of Medicine, Yale University, New Haven, CT,To whom all correspondence should be addressed: Jonathan S. Bogan, Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, P.O. Box 208020, New Haven, CT 06520-8020; Tel: 203-785-6319; Fax: 203-785-6462;
| |
Collapse
|
22
|
Koerdt SN, Ashraf APK, Gerke V. Annexins and plasma membrane repair. CURRENT TOPICS IN MEMBRANES 2019; 84:43-65. [PMID: 31610865 DOI: 10.1016/bs.ctm.2019.07.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Plasma membrane wound repair is a cell-autonomous process that is triggered by Ca2+ entering through the site of injury and involves membrane resealing, i.e., re-establishment of a continuous plasma membrane, as well as remodeling of the cortical actin cytoskeleton. Among other things, the injury-induced Ca2+ elevation initiates the wound site recruitment of Ca2+-regulated proteins that function in the course of repair. Annexins are a class of such Ca2+-regulated proteins. They associate with acidic phospholipids of cellular membranes in their Ca2+ bound conformation with Ca2+ sensitivities ranging from the low to high micromolar range depending on the respective annexin protein. Annexins accumulate at sites of plasma membrane injury in a temporally controlled manner and are thought to function by controlling membrane rearrangements at the wound site, most likely in conjunction with other repair proteins such as dysferlin. Their role in membrane repair, which has been evidenced in several model systems, will be discussed in this chapter.
Collapse
Affiliation(s)
- Sophia N Koerdt
- Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation, University of Münster, Münster, Germany
| | - Arsila P K Ashraf
- Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation, University of Münster, Münster, Germany
| | - Volker Gerke
- Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation, University of Münster, Münster, Germany.
| |
Collapse
|
23
|
Imanikia S, Özbey NP, Krueger C, Casanueva MO, Taylor RC. Neuronal XBP-1 Activates Intestinal Lysosomes to Improve Proteostasis in C. elegans. Curr Biol 2019; 29:2322-2338.e7. [PMID: 31303493 PMCID: PMC6658570 DOI: 10.1016/j.cub.2019.06.031] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 05/02/2019] [Accepted: 06/10/2019] [Indexed: 12/22/2022]
Abstract
The unfolded protein response of the endoplasmic reticulum (UPRER) is a crucial mediator of secretory pathway homeostasis. Expression of the spliced and active form of the UPRER transcription factor XBP-1, XBP-1s, in the nervous system triggers activation of the UPRER in the intestine of Caenorhabditis elegans (C. elegans) through release of a secreted signal, leading to increased longevity. We find that expression of XBP-1s in the neurons or intestine of the worm strikingly improves proteostasis in multiple tissues, through increased clearance of toxic proteins. To identify the mechanisms behind this enhanced proteostasis, we conducted intestine-specific RNA-seq analysis to identify genes upregulated in the intestine when XBP-1s is expressed in neurons. This revealed that neuronal XBP-1s increases the expression of genes involved in lysosome function. Lysosomes in the intestine of animals expressing neuronal XBP-1s are more acidic, and lysosomal protease activity is higher. Moreover, intestinal lysosome function is necessary for enhanced lifespan and proteostasis. These findings suggest that activation of the UPRER in the intestine through neuronal signaling can increase the activity of lysosomes, leading to extended longevity and improved proteostasis across tissues. Xbp-1s expressed in the neurons or intestine of C. elegans improves proteostasis Neuronal xbp-1s drives expression of lysosomal genes in the intestine Intestinal lysosomes show enhanced acidity and activity upon xbp-1s expression Lysosome function is required for xbp-1s to increase proteostasis and longevity
Collapse
Affiliation(s)
- Soudabeh Imanikia
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Neşem P Özbey
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Christel Krueger
- Epigenetics Programme, The Babraham Institute, Babraham CB22 3AT, UK
| | | | - Rebecca C Taylor
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK.
| |
Collapse
|
24
|
Kunzelmann K, Ousingsawat J, Benedetto R, Cabrita I, Schreiber R. Contribution of Anoctamins to Cell Survival and Cell Death. Cancers (Basel) 2019; 11:E382. [PMID: 30893776 PMCID: PMC6468699 DOI: 10.3390/cancers11030382] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/13/2019] [Accepted: 03/16/2019] [Indexed: 02/07/2023] Open
Abstract
Before anoctamins (TMEM16 proteins) were identified as a family of Ca2+-activated chloride channels and phospholipid scramblases, the founding member anoctamin 1 (ANO1, TMEM16A) was known as DOG1, a marker protein for gastrointestinal stromal tumors (GIST). Meanwhile, ANO1 has been examined in more detail, and the role of ANO1 in cell proliferation and the development of different types of malignomas is now well established. While ANO5, ANO7, and ANO9 may also be relevant for growth of cancers, evidence has been provided for a role of ANO6 (TMEM16F) in regulated cell death. The cellular mechanisms by which anoctamins control cell proliferation and cell death, respectively, are just emerging; however, the pronounced effects of anoctamins on intracellular Ca2+ levels are likely to play a significant role. Recent results suggest that some anoctamins control membrane exocytosis by setting Ca2+i levels near the plasma membrane, and/or by controlling the intracellular Cl- concentration. Exocytosis and increased membrane trafficking induced by ANO1 and ANO6 may enhance membrane expression of other chloride channels, such as CFTR and volume activated chloride channels (VRAC). Notably, ANO6-induced phospholipid scrambling with exposure of phosphatidylserine is pivotal for the sheddase function of disintegrin and metalloproteinase (ADAM). This may support cell death and tumorigenic activity of IL-6 by inducing IL-6 trans-signaling. The reported anticancer effects of the anthelminthic drug niclosamide are probably related to the potent inhibitory effect on ANO1, apart from inducing cell cycle arrest through the Let-7d/CDC34 axis. On the contrary, pronounced activation of ANO6 due to a large increase in intracellular calcium, activation of phospholipase A2 or lipid peroxidation, can lead to ferroptotic death of cancer cells. It therefore appears reasonable to search for both inhibitors and potent activators of TMEM16 in order to interfere with cancer growth and metastasis.
Collapse
Affiliation(s)
- Karl Kunzelmann
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany.
| | - Jiraporn Ousingsawat
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany.
| | - Roberta Benedetto
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany.
| | - Ines Cabrita
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany.
| | - Rainer Schreiber
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany.
| |
Collapse
|
25
|
Avila R, Tamariz E, Medina-Villalobos N, Andilla J, Marsal M, Loza-Alvarez P. Effects of near infrared focused laser on the fluorescence of labelled cell membrane. Sci Rep 2018; 8:17674. [PMID: 30518772 PMCID: PMC6281678 DOI: 10.1038/s41598-018-36010-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 11/09/2018] [Indexed: 11/12/2022] Open
Abstract
Near infrared (NIR) laser light can have important reactions on live cells. For example, in a macroscopic scale, it is used therapeutically to reduce inflammation and in a single-cell scale, NIR lasers have been experimentally used to guide neuronal growth. However, little is known about how NIR lasers produce such behaviours on cells. In this paper we report effects of focussing a continuous wave 810-nm wavelength laser on in vivo 3T3 cells plasma membrane. Cell membranes were labelled with FM 4-64, a dye that fluoresces when associated to membrane lipids. Confocal microscopy was used to image cell membranes and perform fluorescence recovery after photobleaching (FRAP) experiments. We found that the NIR laser produces an increase of the fluorescence intensity at the location of laser spot. This intensity boost vanishes once the laser is turned off. The mean fluorescence increase, calculated over 75 independent measurements, equals 19%. The experiments reveal that the fluorescence rise is a growing function of the laser power. This dependence is well fitted with a square root function. The FRAP, when the NIR laser is acting on the cell, is twice as large as when the NIR laser is off, and the recovery time is 5 times longer. Based on the experimental evidence and a linear fluorescence model, it is shown that the NIR laser provokes a rise in the number of molecular associations dye-lipid. The results reported here may be a consequence of a combination of induced increments in membrane fluidity and exocytosis.
Collapse
Affiliation(s)
- Remy Avila
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México (UNAM), A. P. 1-1010, Juriquilla, 76000, Querétaro, Mexico. .,ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860, Castelldefels, Barcelona, Spain.
| | - Elisa Tamariz
- Instituto de Ciencias de la Salud, Universidad Veracruzana, Avenicda Luis Castelazo Ayala s/n, Xalapa, 91190, Veracruz, Mexico
| | - Norma Medina-Villalobos
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860, Castelldefels, Barcelona, Spain.,Instituto de Ciencias de la Salud, Universidad Veracruzana, Avenicda Luis Castelazo Ayala s/n, Xalapa, 91190, Veracruz, Mexico
| | - Jordi Andilla
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860, Castelldefels, Barcelona, Spain
| | - María Marsal
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860, Castelldefels, Barcelona, Spain
| | - Pablo Loza-Alvarez
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860, Castelldefels, Barcelona, Spain
| |
Collapse
|
26
|
Wang G, Galli T. Reciprocal link between cell biomechanics and exocytosis. Traffic 2018; 19:741-749. [PMID: 29943478 DOI: 10.1111/tra.12584] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 06/03/2018] [Accepted: 06/03/2018] [Indexed: 12/16/2022]
Abstract
A cell is able to sense the biomechanical properties of the environment such as the rigidity of the extracellular matrix and adapt its tension via regulation of plasma membrane and underlying actomyosin meshwork properties. The cell's ability to adapt to the changing biomechanical environment is important for cellular homeostasis and also cell dynamics such as cell growth and motility. Membrane trafficking has emerged as an important mechanism to regulate cell biomechanics. In this review, we summarize the current understanding of the role of cell mechanics in exocytosis, and reciprocally, the role of exocytosis in regulating cell mechanics. We also discuss how cell mechanics and membrane trafficking, particularly exocytosis, can work together to regulate cell polarity and motility.
Collapse
Affiliation(s)
- Guan Wang
- Membrane Traffic in Healthy & Diseased Brain, Center of Psychiatry and Neurosciences, INSERM U894, Sorbonne Paris-Cité, Université Paris Descartes, Paris, France
| | - Thierry Galli
- Membrane Traffic in Healthy & Diseased Brain, Center of Psychiatry and Neurosciences, INSERM U894, Sorbonne Paris-Cité, Université Paris Descartes, Paris, France
| |
Collapse
|
27
|
Sterea AM, Almasi S, El Hiani Y. The hidden potential of lysosomal ion channels: A new era of oncogenes. Cell Calcium 2018; 72:91-103. [PMID: 29748137 DOI: 10.1016/j.ceca.2018.02.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 02/28/2018] [Accepted: 02/28/2018] [Indexed: 01/14/2023]
Abstract
Lysosomes serve as the control centre for cellular clearance. These membrane-bound organelles receive biomolecules destined for degradation from intracellular and extracellular pathways; thus, facilitating the production of energy and shaping the fate of the cell. At the base of their functionality are the lysosomal ion channels which mediate the function of the lysosome through the modulation of ion influx and efflux. Ion channels form pores in the membrane of lysosomes and allow the passage of ions, a seemingly simple task which harbours the potential of overthrowing the cell's stability. Considered the master regulators of ion homeostasis, these integral membrane proteins enable the proper operation of the lysosome. Defects in the structure or function of these ion channels lead to the development of lysosomal storage diseases, neurodegenerative diseases and cancer. Although more than 50 years have passed since their discovery, lysosomes are not yet fully understood, with their ion channels being even less well characterized. However, significant improvements have been made in the development of drugs targeted against these ion channels as a means of combating diseases. In this review, we will examine how Ca2+, K+, Na+ and Cl- ion channels affect the function of the lysosome, their involvement in hereditary and spontaneous diseases, and current ion channel-based therapies.
Collapse
Affiliation(s)
- Andra M Sterea
- Departments of Physiology & Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Shekoufeh Almasi
- Departments of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Yassine El Hiani
- Departments of Physiology & Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
28
|
Marques D, Ferreira-Costa LR, Ferreira-Costa LL, Correa RDS, Borges AMP, Ito FR, Ramos CCDO, Bortolin RH, Luchessi AD, Ribeiro-dos-Santos Â, Santos S, Silbiger VN. Association of insertion-deletions polymorphisms with colorectal cancer risk and clinical features. World J Gastroenterol 2017; 23:6854-6867. [PMID: 29085228 PMCID: PMC5645618 DOI: 10.3748/wjg.v23.i37.6854] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 06/24/2017] [Accepted: 08/15/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the association between 16 insertion-deletions (INDEL) polymorphisms, colorectal cancer (CRC) risk and clinical features in an admixed population.
METHODS One hundred and forty patients with CRC and 140 cancer-free subjects were examined. Genomic DNA was extracted from peripheral blood samples. Polymorphisms and genomic ancestry distribution were assayed by Multiplex-PCR reaction, separated by capillary electrophoresis on the ABI 3130 Genetic Analyzer instrument and analyzed on GeneMapper ID v3.2. Clinicopathological data were obtained by consulting the patients’ clinical charts, intra-operative documentation, and pathology scoring.
RESULTS Logistic regression analysis showed that polymorphism variations in IL4 gene was associated with increased CRC risk, while TYMS and UCP2 genes were associated with decreased risk. Reference to anatomical localization of tumor Del allele of NFKB1 and CASP8 were associated with more colon related incidents than rectosigmoid. In relation to the INDEL association with tumor node metastasis (TNM) stage risk, the Ins alleles of ACE, HLAG and TP53 (6 bp INDEL) were associated with higher TNM stage. Furthermore, regarding INDEL association with relapse risk, the Ins alleles of ACE, HLAG, and UGT1A1 were associated with early relapse risk, as well as the Del allele of TYMS. Regarding INDEL association with death risk before 10 years, the Ins allele of SGSM3 and UGT1A1 were associated with death risk.
CONCLUSION The INDEL variations in ACE, UCP2, TYMS, IL4, NFKB1, CASP8, TP53, HLAG, UGT1A1, and SGSM3 were associated with CRC risk and clinical features in an admixed population. These data suggest that this cancer panel might be useful as a complementary tool for better clinical management, and more studies need to be conducted to confirm these findings.
Collapse
Affiliation(s)
- Diego Marques
- Laboratório de Bioanálise e Biotecnologia Molecular, Universidade Federal do Rio Grande do Norte, Natal 59012-570, Rio Grande do Norte, Brazil
- Programa de Pós-graduação em Ciências Farmacêutica, Universidade Federal do Rio Grande do Norte, Natal 59012-570, Rio Grande do Norte, Brazil
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, Belém 66055-080, Pará, Brazil
| | - Layse Raynara Ferreira-Costa
- Laboratório de Bioanálise e Biotecnologia Molecular, Universidade Federal do Rio Grande do Norte, Natal 59012-570, Rio Grande do Norte, Brazil
| | - Lorenna Larissa Ferreira-Costa
- Laboratório de Bioanálise e Biotecnologia Molecular, Universidade Federal do Rio Grande do Norte, Natal 59012-570, Rio Grande do Norte, Brazil
| | - Romualdo da Silva Correa
- Departamento de Cirurgia Oncológica, Liga Norte Riograndense Contra o Câncer, Natal 59040-000, Rio Grande do Norte, Brazil
| | - Aline Maciel Pinheiro Borges
- Departamento de Cirurgia Oncológica, Liga Norte Riograndense Contra o Câncer, Natal 59040-000, Rio Grande do Norte, Brazil
| | - Fernanda Ribeiro Ito
- Departamento de Cirurgia Oncológica, Liga Norte Riograndense Contra o Câncer, Natal 59040-000, Rio Grande do Norte, Brazil
| | - Carlos Cesar de Oliveira Ramos
- Laboratório de Patologia e Citopatologia, Liga Norte Riograndense Contra o Câncer, Natal 59040-000, Rio Grande do Norte, Brazil
| | - Raul Hernandes Bortolin
- Laboratório de Bioanálise e Biotecnologia Molecular, Universidade Federal do Rio Grande do Norte, Natal 59012-570, Rio Grande do Norte, Brazil
- Programa de Pós-graduação em Ciências Farmacêutica, Universidade Federal do Rio Grande do Norte, Natal 59012-570, Rio Grande do Norte, Brazil
| | - André Ducati Luchessi
- Laboratório de Bioanálise e Biotecnologia Molecular, Universidade Federal do Rio Grande do Norte, Natal 59012-570, Rio Grande do Norte, Brazil
- Departamento de Análises Clínicas e Toxicológicas, Universidade Federal do Rio Grande do Norte, Natal 59012-570, Rio Grande do Norte, Brazil
- Programa de Pós-graduação em Ciências Farmacêutica, Universidade Federal do Rio Grande do Norte, Natal 59012-570, Rio Grande do Norte, Brazil
| | - Ândrea Ribeiro-dos-Santos
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, Belém 66055-080, Pará, Brazil
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém 66073-005, Pará, Brazil
| | - Sidney Santos
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, Belém 66055-080, Pará, Brazil
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém 66073-005, Pará, Brazil
| | - Vivian Nogueira Silbiger
- Laboratório de Bioanálise e Biotecnologia Molecular, Universidade Federal do Rio Grande do Norte, Natal 59012-570, Rio Grande do Norte, Brazil
- Departamento de Análises Clínicas e Toxicológicas, Universidade Federal do Rio Grande do Norte, Natal 59012-570, Rio Grande do Norte, Brazil
- Programa de Pós-graduação em Ciências Farmacêutica, Universidade Federal do Rio Grande do Norte, Natal 59012-570, Rio Grande do Norte, Brazil
| |
Collapse
|
29
|
Functional effects of proinflammatory factors present in Sjögren's syndrome salivary microenvironment in an in vitro model of human salivary gland. Sci Rep 2017; 7:11897. [PMID: 28928382 PMCID: PMC5605687 DOI: 10.1038/s41598-017-12282-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 09/05/2017] [Indexed: 01/09/2023] Open
Abstract
Primary Sjögren’s syndrome (pSS) is an autoimmune exocrinopathy in which the role that the immune response plays in reducing exocrine gland function, including the glandular microenvironment of cytokines, has not been fully understood. Epithelial cells from biopsies of human parotid gland (HPG) were used to establish a model of human salivary gland in vitro. In this model, the functional consequences of several proinflammatory soluble factors present in the pSS glandular microenvironment were assessed. Stimulation with isoproterenol and calcium produced a significant increase in the basal activity of amylase in the HPG cell supernatants. Under these conditions, the presence of TNF-α and CXCL12 increased amylase mRNA cellular abundance, but reduced the amylase activity in the cell-free supernatant in a dose-dependent manner. IL-1β and IFN-γ, but not TGF-β, also diminished amylase secretion by HPG cells. These results suggest that the glandular microenvironment of cytokine, by acting post-transcriptionally, may be responsible, at least in part, for the reduced exocrine function observed in pSS patients. These data may help to a better understanding of the pathogenesis of SS, which in turn would facilitate the identification of new therapeutic targets for this disorder.
Collapse
|
30
|
Uncoupling Protein 2 Inhibition Exacerbates Glucose Fluctuation-Mediated Neuronal Effects. Neurotox Res 2017; 33:388-401. [PMID: 28875237 DOI: 10.1007/s12640-017-9805-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 08/04/2017] [Accepted: 08/23/2017] [Indexed: 01/10/2023]
Abstract
Though glucose fluctuations have been considered as an adverse factor for the development of several diabetes-related complications, their impact in the central nervous system is still not fully elucidated. This study was conducted to evaluate the responses of neuronal cells to different glycemic exposures alongside to elucidate the role of uncoupling protein 2 (UCP2) in regulating such responses. To achieve our goals, primary cortical neurons were submitted to constant high (HG)/low (LG) or glucose level variations (GVs), and the pharmacological inhibition of UCP2 activity was performed using genipin. Results obtained show that GV decreased neuronal cells' viability, mitochondrial membrane potential, and manganese superoxide dismutase activity and increased reactive oxygen species (ROS) production. GV also caused an increase in the glutathione/glutathione disulfide ratio and in the protein expression levels of nuclear factor E2-related factor 2 (NRF2), UCP2, NADH-ubiquinone oxidoreductase chain 1 (ND1), and mitochondrially encoded cytochrome c oxidase I (MTCO1), both mitochondrial DNA encoded subunits of the electron transport chain. Contrariwise, genipin abrogated all those compensations and increased the levels of caspase 3-like activity, potentiated mitochondrial ROS levels, and the loss of neuronal synaptic integrity, decreased the protein expression levels of NRF1, and increased the protein expression levels of UCP5. Further, in the control and LG conditions, genipin increased mitochondrial ROS and the protein expression levels of UCP4, postsynaptic density protein 95 (PSD95), ND1, and MTCO1. Overall, these observations suggest that UCP2 is in the core of neuronal cell protection and/or adaptation against GV-mediated effects and that other isoforms of neuronal UCPs can be upregulated to compensate the inhibition of UCP2 activity.
Collapse
|
31
|
Pemafibrate, a novel selective peroxisome proliferator-activated receptor alpha modulator, improves the pathogenesis in a rodent model of nonalcoholic steatohepatitis. Sci Rep 2017; 7:42477. [PMID: 28195199 PMCID: PMC5307366 DOI: 10.1038/srep42477] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 01/11/2017] [Indexed: 02/07/2023] Open
Abstract
The efficacy of peroxisome proliferator-activated receptor α-agonists (e.g., fibrates) against nonalcoholic fatty liver disease (NAFLD)/nonalcoholic steatohepatitis (NASH) in humans is not known. Pemafibrate is a novel selective peroxisome proliferator-activated receptor α modulator that can maximize the beneficial effects and minimize the adverse effects of fibrates used currently. In a phase-2 study, pemafibrate was shown to improve liver dysfunction in patients with dyslipidaemia. In the present study, we first investigated the effect of pemafibrate on rodent models of NASH. Pemafibrate efficacy was assessed in a diet-induced rodent model of NASH compared with fenofibrate. Pemafibrate and fenofibrate improved obesity, dyslipidaemia, liver dysfunction, and the pathological condition of NASH. Pemafibrate improved insulin resistance and increased energy expenditure significantly. To investigate the effects of pemafibrate, we analysed the gene expressions and protein levels involved in lipid metabolism. We also analysed uncoupling protein 3 (UCP3) expression. Pemafibrate stimulated lipid turnover and upregulated UCP3 expression in the liver. Levels of acyl-CoA oxidase 1 and UCP3 protein were increased by pemafibrate significantly. Pemafibrate can improve the pathogenesis of NASH by modulation of lipid turnover and energy metabolism in the liver. Pemafibrate is a promising therapeutic agent for NAFLD/NASH.
Collapse
|
32
|
Cocucci E, Kim JY, Bai Y, Pabla N. Role of Passive Diffusion, Transporters, and Membrane Trafficking-Mediated Processes in Cellular Drug Transport. Clin Pharmacol Ther 2016; 101:121-129. [PMID: 27804130 DOI: 10.1002/cpt.545] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/27/2016] [Accepted: 10/27/2016] [Indexed: 12/11/2022]
Abstract
Intracellular drug accumulation is thought to be dictated by two major processes, passive diffusion through the lipid membrane or membrane transporters. The relative role played by these distinct processes remains actively debated. Moreover, the role of membrane-trafficking in drug transport remains underappreciated and unexplored. Here we discuss the distinct processes involved in cellular drug distribution and propose that better experimental models are required to elucidate the differential contributions of various processes in intracellular drug accumulation.
Collapse
Affiliation(s)
- E Cocucci
- Division of Hematology, Department of Internal Medicine and Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, USA
| | - J Y Kim
- Division of Pharmaceutics, School of Pharmacy and Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, USA
| | - Y Bai
- Division of Pharmaceutics, School of Pharmacy and Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, USA
| | - N Pabla
- Division of Pharmaceutics, School of Pharmacy and Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
33
|
Juks C, Lorents A, Arukuusk P, Langel Ü, Pooga M. Cell‐penetrating peptides recruit type A scavenger receptors to the plasma membrane for cellular delivery of nucleic acids. FASEB J 2016; 31:975-988. [DOI: 10.1096/fj.201600811r] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 11/14/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Carmen Juks
- Institute of Molecular and Cell BiologyUniversity of Tartu Tartu Estonia
| | - Annely Lorents
- Institute of Molecular and Cell BiologyUniversity of Tartu Tartu Estonia
| | - Piret Arukuusk
- Laboratory of Molecular BiotechnologyInstitute of TechnologyUniversity of Tartu Tartu Estonia
| | - Ülo Langel
- Laboratory of Molecular BiotechnologyInstitute of TechnologyUniversity of Tartu Tartu Estonia
- Department of NeurochemistryStockholm University Stockholm Sweden
| | - Margus Pooga
- Institute of Molecular and Cell BiologyUniversity of Tartu Tartu Estonia
| |
Collapse
|
34
|
Requejo-Aguilar R, Bolaños JP. Mitochondrial control of cell bioenergetics in Parkinson's disease. Free Radic Biol Med 2016; 100:123-137. [PMID: 27091692 PMCID: PMC5065935 DOI: 10.1016/j.freeradbiomed.2016.04.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/13/2016] [Accepted: 04/14/2016] [Indexed: 12/15/2022]
Abstract
Parkinson disease (PD) is a neurodegenerative disorder characterized by a selective loss of dopaminergic neurons in the substantia nigra. The earliest biochemical signs of the disease involve failure in mitochondrial-endoplasmic reticulum cross talk and lysosomal function, mitochondrial electron chain impairment, mitochondrial dynamics alterations, and calcium and iron homeostasis abnormalities. These changes are associated with increased mitochondrial reactive oxygen species (mROS) and energy deficiency. Recently, it has been reported that, as an attempt to compensate for the mitochondrial dysfunction, neurons invoke glycolysis as a low-efficient mode of energy production in models of PD. Here, we review how mitochondria orchestrate the maintenance of cellular energetic status in PD, with special focus on the switch from oxidative phosphorylation to glycolysis, as well as the implication of endoplasmic reticulum and lysosomes in the control of bioenergetics.
Collapse
Affiliation(s)
- Raquel Requejo-Aguilar
- Department of Biochemistry and Molecular Biology, University of Cordoba, Institute Maimonides of Biomedical Investigation of Cordoba (IMIBIC), Cordoba, Spain
| | - Juan P Bolaños
- Institute of Functional Biology and Genomics (IBFG), University of Salamanca-CSIC, Zacarias Gonzalez, 2, 37007 Salamanca, Spain.
| |
Collapse
|
35
|
Di Venanzio G, Lazzaro M, Morales ES, Krapf D, García Véscovi E. A pore-forming toxin enables Serratia a nonlytic egress from host cells. Cell Microbiol 2016; 19. [PMID: 27532510 DOI: 10.1111/cmi.12656] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/28/2016] [Accepted: 08/12/2016] [Indexed: 01/01/2023]
Abstract
Several pathogens co-opt host intracellular compartments to survive and replicate, and they thereafter disperse progeny to prosper in a new niche. Little is known about strategies displayed by Serratia marcescens to defeat immune responses and disseminate afterwards. Upon invasion of nonphagocytic cells, Serratia multiplies within autophagosome-like vacuoles. These Serratia-containing vacuoles (SeCV) circumvent progression into acidic/degradative compartments, avoiding elimination. In this work, we show that ShlA pore-forming toxin (PFT) commands Serratia escape from invaded cells. While ShlA-dependent, Ca2+ local increase was shown in SeCVs tight proximity, intracellular Ca2+ sequestration prevented Serratia exit. Accordingly, a Ca2+ surge rescued a ShlA-deficient strain exit capacity, demonstrating that Ca2+ mobilization is essential for egress. As opposed to wild-type-SeCV, the mutant strain-vacuole was wrapped by actin filaments, showing that ShlA expression rearranges host actin. Moreover, alteration of actin polymerization hindered wild-type Serratia escape, while increased intracellular Ca2+ reorganized the mutant strain-SeCV actin distribution, restoring wild-type-SeCV phenotype. Our results demonstrate that, by ShlA expression, Serratia triggers a Ca2+ signal that reshapes cytoskeleton dynamics and ends up pushing the SeCV load out of the cell, in an exocytic-like process. These results disclose that PFTs can be engaged in allowing bacteria to exit without compromising host cell integrity.
Collapse
Affiliation(s)
| | | | - Enrique S Morales
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Darío Krapf
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Eleonora García Véscovi
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
36
|
Rab11 and phosphoinositides: A synergy of signal transducers in the control of vesicular trafficking. Adv Biol Regul 2016; 63:132-139. [PMID: 27658318 DOI: 10.1016/j.jbior.2016.09.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 09/13/2016] [Indexed: 12/11/2022]
Abstract
Rab11 and phosphoinositides are signal transducers able to direct the delivery of membrane components to the cell surface. Rab11 is a small GTPase that, by cycling from an active to an inactive state, controls key events of vesicular transport, while phosphoinositides are major determinants of membrane identity, modulating compartmentalized small GTPase function. By sharing common effectors, these two signal transducers synergistically direct vesicular traffic to specific intracellular membranes. This review focuses on the latest advances regarding the mechanisms that ensure the compartmentalized regulation of Rab11 function through its interaction with phosphoinositides.
Collapse
|
37
|
Contreras L, Rial E, Cerdan S, Satrustegui J. Uncoupling Protein 2 (UCP2) Function in the Brain as Revealed by the Cerebral Metabolism of (1–13C)-Glucose. Neurochem Res 2016; 42:108-114. [DOI: 10.1007/s11064-016-1999-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 06/30/2016] [Accepted: 07/02/2016] [Indexed: 12/15/2022]
|
38
|
Wojnacki J, Galli T. Membrane traffic during axon development. Dev Neurobiol 2016; 76:1185-1200. [PMID: 26945675 DOI: 10.1002/dneu.22390] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 03/01/2016] [Accepted: 03/01/2016] [Indexed: 12/21/2022]
Abstract
Brain formation requires the establishment of complex neural circuits between a diverse array of neuronal subtypes in an intricate and ever changing microenvironment and yet with a large degree of specificity and reproducibility. In the last three decades, mounting evidence has established that neuronal development relies on the coordinated regulation of gene expression, cytoskeletal dynamics, and membrane trafficking. Membrane trafficking has been considered important in that it brings new membrane and proteins to the plasma membrane of developing neurons and because it also generates and maintains the polarized distribution of proteins into neuronal subdomains. More recently, accumulating evidence suggests that membrane trafficking may have an even more active role during development by regulating the distribution and degree of activation of a wide variety of proteins located in plasma membrane subdomains and endosomes. In this article the evidence supporting the different roles of membrane trafficking during axonal development, particularly focusing on the role of SNAREs and Rabs was reviewed. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1185-1200, 2016.
Collapse
Affiliation(s)
- José Wojnacki
- Institut Jacques Monod, Université Paris Diderot, Sorbonne Paris Cité, CNRS UMR 7592, Membrane Traffic in Health & Disease, INSERM ERL U950, Paris, F-75013, France
| | - Thierry Galli
- Institut Jacques Monod, Université Paris Diderot, Sorbonne Paris Cité, CNRS UMR 7592, Membrane Traffic in Health & Disease, INSERM ERL U950, Paris, F-75013, France.
| |
Collapse
|
39
|
Shih AM, Varghese L, Bittar A, Park SH, Chung JM, Shin OH. Dysregulation of Norepinephrine Release in the Absence of Functional Synaptotagmin 7. J Cell Biochem 2015; 117:1446-53. [PMID: 27043247 DOI: 10.1002/jcb.25436] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 11/10/2015] [Indexed: 01/28/2023]
Abstract
Synaptotagmin 7 (Syt7) is expressed in cardiac sympathetic nerve terminals where norepinephrine (NE) is released in both Ca(2+)-dependent exocytosis and Ca(2+)-independent norepinephrine transporter (NET)-mediated overflow. The role of Syt7 in the regulation of NE release from cardiac sympathetic nerve terminals is tested by employing a Syt7 knock-in mouse line that expresses a non-functional mutant form of Syt7. In cardiac sympathetic nerve terminals prepared from these Syt7 knock-in mice, the Ca(2+)-dependent component of NE release was diminished. However, these terminals displayed upregulated function of NET (∼130% of controls) and a significant increase in Ca(2+)-independent NE overflow (∼140% of controls), which is greater than the Ca(2+)-dependent component of NE exocytosis occurring in wild-type controls. Consistent with a significant increase in NE overflow, the Syt7 knock-in mice showed significantly higher blood pressures compared to those of littermate wild-type and heterozygous mice. Our results indicate that the lack of functional Syt7 dysregulates NE release from cardiac sympathetic nerve terminals.
Collapse
Affiliation(s)
- Alvin M Shih
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, 77555
| | - Lincy Varghese
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, 77555
| | - Alice Bittar
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, 77555
| | - Sung-Hoon Park
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, 77555
| | - Jin Mo Chung
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, 77555
| | - Ok-Ho Shin
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, 77555
| |
Collapse
|
40
|
Donadelli M, Dando I, Dalla Pozza E, Palmieri M. Mitochondrial uncoupling protein 2 and pancreatic cancer: A new potential target therapy. World J Gastroenterol 2015; 21:3232-3238. [PMID: 25805929 PMCID: PMC4363752 DOI: 10.3748/wjg.v21.i11.3232] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 12/18/2014] [Accepted: 02/05/2015] [Indexed: 02/06/2023] Open
Abstract
Overall 5-years survival of pancreatic cancer patients is nearly 5%, making this cancer type one of the most lethal neoplasia. Furthermore, the incidence rate of pancreatic cancer has a growing trend that determines a constant increase in the number of deceases caused by this pathology. The poor prognosis of pancreatic cancer is mainly caused by delayed diagnosis, early metastasis of tumor, and resistance to almost all tested cytotoxic drugs. In this respect, the identification of novel potential targets for new and efficient therapies should be strongly encouraged in order to improve the clinical management of pancreatic cancer. Some studies have shown that the mitochondrial uncoupling protein 2 (UCP2) is over-expressed in pancreatic cancer as compared to adjacent normal tissues. In addition, recent discoveries established a key role of UCP2 in protecting cancer cells from an excessive production of mitochondrial superoxide ions and in the promotion of cancer cell metabolic reprogramming, including aerobic glycolysis stimulation, promotion of cancer progression. These observations together with the demonstration that UCP2 repression can synergize with standard chemotherapy to inhibit pancreatic cancer cell growth provide the molecular rationale to consider UCP2 as a potential therapeutic target for pancreatic cancer. In this editorial, recent advances describing the relationship between cancer development and mitochondrial UCP2 activity are critically provided.
Collapse
|
41
|
Sarma T, Koutsouris A, Yu JZ, Krbanjevic A, Hope TJ, Rasenick MM. Activation of microtubule dynamics increases neuronal growth via the nerve growth factor (NGF)- and Gαs-mediated signaling pathways. J Biol Chem 2015; 290:10045-56. [PMID: 25691569 DOI: 10.1074/jbc.m114.630632] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Indexed: 01/19/2023] Open
Abstract
Signals that activate the G protein Gαs and promote neuronal differentiation evoke Gαs internalization in rat pheochromocytoma (PC12) cells. These agents also significantly increase Gαs association with microtubules, resulting in an increase in microtubule dynamics because of the activation of tubulin GTPase by Gαs. To determine the function of Gαs/microtubule association in neuronal development, we used real-time trafficking of a GFP-Gαs fusion protein. GFP-Gαs concentrates at the distal end of the neurites in differentiated living PC12 cells as well as in cultured hippocampal neurons. Gαs translocates to specialized membrane compartments at tips of growing neurites. A dominant-negative Gα chimera that interferes with Gαs binding to tubulin and activation of tubulin GTPase attenuates neurite elongation and neurite number both in PC12 cells and primary hippocampal neurons. This effect is greatest on differentiation induced by activated Gαs. Together, these data suggest that activated Gαs translocates from the plasma membrane and, through interaction with tubulin/microtubules in the cytosol, is important for neurite formation, development, and outgrowth. Characterization of neuronal G protein dynamics and their contribution to microtubule dynamics is important for understanding the molecular mechanisms by which G protein-coupled receptor signaling orchestrates neuronal growth and differentiation.
Collapse
Affiliation(s)
- Tulika Sarma
- From the Department of Physiology and Biophysics and
| | | | - Jiang Zhu Yu
- From the Department of Physiology and Biophysics and
| | - Aleksandar Krbanjevic
- From the Department of Physiology and Biophysics and Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612
| | - Thomas J Hope
- the Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, and
| | - Mark M Rasenick
- From the Department of Physiology and Biophysics and Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, the Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois 60612
| |
Collapse
|
42
|
Osellame LD, Duchen MR. Quality control gone wrong: mitochondria, lysosomal storage disorders and neurodegeneration. Br J Pharmacol 2014; 171:1958-72. [PMID: 24116849 PMCID: PMC3976615 DOI: 10.1111/bph.12453] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 09/04/2013] [Accepted: 09/23/2013] [Indexed: 12/18/2022] Open
Abstract
The eukaryotic cell possesses specialized pathways to turn over and degrade redundant proteins and organelles. Each pathway is unique and responsible for degradation of distinctive cytosolic material. The ubiquitin-proteasome system and autophagy (chaperone-mediated, macro, micro and organelle specific) act synergistically to maintain proteostasis. Defects in this equilibrium can be deleterious at cellular and organism level, giving rise to various disease states. Dysfunction of quality control pathways are implicated in neurodegenerative diseases and appear particularly important in Parkinson's disease and the lysosomal storage disorders. Neurodegeneration resulting from impaired degradation of ubiquitinated proteins and α-synuclein is often accompanied by mitochondrial dysfunction. Mitochondria have evolved to control a diverse number of processes, including cellular energy production, calcium signalling and apoptosis, and like every other organelle within the cell, they must be ‘recycled.’ Failure to do so is potentially lethal as these once indispensible organelles become destructive, leaking reactive oxygen species and activating the intrinsic cell death pathway. This process is paramount in neurons which have an absolute dependence on mitochondrial oxidative phosphorylation as they cannot up-regulate glycolysis. As such, mitochondrial bioenergetic failure can underpin neural death and neurodegenerative disease. In this review, we discuss the links between cellular quality control and neurodegenerative diseases associated with mitochondrial dysfunction, with particular attention to the emerging links between Parkinson's and Gaucher diseases in which defective quality control is a defining factor. LINKED ARTICLES This article is part of a themed issue on Mitochondrial Pharmacology: Energy, Injury & Beyond. To view the other articles in this issue visit http://dx.doi.org/10.1111/bph.2014.171.issue-8
Collapse
Affiliation(s)
- L D Osellame
- Department of Cell and Developmental Biology and UCL Consortium for Mitochondrial Research, University College London, London, UK
| | | |
Collapse
|
43
|
Neurite outgrowth induced by NGF or L1CAM via activation of the TrkA receptor is sustained also by the exocytosis of enlargeosomes. Proc Natl Acad Sci U S A 2014; 111:16943-8. [PMID: 25385598 DOI: 10.1073/pnas.1406097111] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
NGF binding to its protein kinase receptor TrkA is known to induce neurite outgrowth and neural cell differentiation. The plasma membrane expansion, necessary for the process, was shown to be contributed by the VAMP7-dependent exocytosis of endocytic vesicles. Working with wild-type PC12 (wtPC12), a cell model widely used to investigate NGF-induced neurite outgrowth, we found that a few hours of treatment with the neurotrophin (and to a lower extent with basic FGF and EGF) induces the appearance of enlargeosome vesicles competent for VAMP4-dependent exocytosis abundant in high REST-PC12 clones. Both the neurite length assay and the immunocytochemistry of enlargeosomes exocytosis revealed that activation of TrkA is induced not only by NGF, but also by the L1 adhesion protein, L1CAM, whose soluble construct binds the receptor with submicromolar affinity. In the intact wtPC12, the L1CAM construct induced autophosphorylation and internalization of TrkA followed by the activation of the PI3K, MEK, and PKCγ signaling cascades, analogous to the responses induced by NGF. Down-regulation of either VAMP7 or VAMP4 revealed the coparticipation of the two corresponding vesicles to the outgrowth responses induced by NGF and L1CAM. Finally, mixing experiments of wtPC12 cells rich in TrkA with high REST PC12 cells transfected with L1CAM documented the transactivation of the receptor by the adhesion protein surface-exposed in adjacent cells. In view of the known inhomogeneous surface distribution of both L1CAM and TrkA in various neural cells including neurons, their transcellular binding could be restricted to discrete sites, governing local signaling events distinct from those induced by soluble messengers.
Collapse
|
44
|
Davis TA, Loos B, Engelbrecht AM. AHNAK: the giant jack of all trades. Cell Signal 2014; 26:2683-93. [PMID: 25172424 DOI: 10.1016/j.cellsig.2014.08.017] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 08/08/2014] [Accepted: 08/18/2014] [Indexed: 12/19/2022]
Abstract
The nucleoprotein AHNAK is an unusual and somewhat mysterious scaffolding protein characterised by its large size of approximately 700 kDa. Several aspects of this protein remain uncertain, including its exact molecular function and regulation on both the gene and protein levels. Various studies have attempted to annotate AHNAK and, notably, protein interaction and expression analyses have contributed greatly to our current understanding of the protein. The implicated biological processes are, however, very diverse, ranging from a role in the formation of the blood-brain barrier, cell architecture and migration, to the regulation of cardiac calcium channels and muscle membrane repair. In addition, recent evidence suggests that AHNAK might be yet another accomplice in the development of tumour metastasis. This review will discuss the different functional roles of AHNAK, highlighting recent advancements that have added foundation to the proposed roles while identifying ties between them. Implications for related fields of research are noted and suggestions for future research that will assist in unravelling the function of AHNAK are offered.
Collapse
Affiliation(s)
- T A Davis
- Department of Physiological Sciences, University of Stellenbosch, Mike de Vries Building, c/o Merriman Avenue and Bosman Street, Stellenbosch 7600, South Africa.
| | - B Loos
- Department of Physiological Sciences, University of Stellenbosch, Mike de Vries Building, c/o Merriman Avenue and Bosman Street, Stellenbosch 7600, South Africa
| | - A-M Engelbrecht
- Department of Physiological Sciences, University of Stellenbosch, Mike de Vries Building, c/o Merriman Avenue and Bosman Street, Stellenbosch 7600, South Africa
| |
Collapse
|
45
|
Settembre C, Ballabio A. Lysosomal adaptation: how the lysosome responds to external cues. Cold Spring Harb Perspect Biol 2014; 6:cshperspect.a016907. [PMID: 24799353 DOI: 10.1101/cshperspect.a016907] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Recent evidence indicates that the importance of the lysosome in cell metabolism and organism physiology goes far beyond the simple disposal of cellular garbage. This dynamic organelle is situated at the crossroad of the most important cellular pathways and is involved in sensing, signaling, and transcriptional mechanisms that respond to environmental cues, such as nutrients. Two main mediators of these lysosomal adaptation mechanisms are the mTORC1 kinase complex and the transcription factor EB (TFEB). These two factors are linked in a lysosome-to-nucleus signaling pathway that provides the lysosome with the ability to adapt to extracellular cues and control its own biogenesis. Modulation of lysosomal function by acting on TFEB has a profound impact on cellular clearance and energy metabolism and is a promising therapeutic target for a large variety of disease conditions.
Collapse
Affiliation(s)
- Carmine Settembre
- Telethon Institute of Genetics and Medicine, 80131 Naples, Italy Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030 Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030 Medical Genetics, Department of Translational Medicine, Federico II University, 80131 Naples, Italy
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine, 80131 Naples, Italy Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030 Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030 Medical Genetics, Department of Translational Medicine, Federico II University, 80131 Naples, Italy
| |
Collapse
|
46
|
Farkaš R, Ďatková Z, Mentelová L, Löw P, Beňová-Liszeková D, Beňo M, Sass M, Řehulka P, Řehulková H, Raška O, Kováčik L, Šmigová J, Raška I, Mechler BM. Apocrine secretion in Drosophila salivary glands: subcellular origin, dynamics, and identification of secretory proteins. PLoS One 2014; 9:e94383. [PMID: 24732043 PMCID: PMC3986406 DOI: 10.1371/journal.pone.0094383] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 03/14/2014] [Indexed: 01/29/2023] Open
Abstract
In contrast to the well defined mechanism of merocrine exocytosis, the mechanism of apocrine secretion, which was first described over 180 years ago, remains relatively uncharacterized. We identified apocrine secretory activity in the late prepupal salivary glands of Drosophila melanogaster just prior to the execution of programmed cell death (PCD). The excellent genetic tools available in Drosophila provide an opportunity to dissect for the first time the molecular and mechanistic aspects of this process. A prerequisite for such an analysis is to have pivotal immunohistochemical, ultrastructural, biochemical and proteomic data that fully characterize the process. Here we present data showing that the Drosophila salivary glands release all kinds of cellular proteins by an apocrine mechanism including cytoskeletal, cytosolic, mitochondrial, nuclear and nucleolar components. Surprisingly, the apocrine release of these proteins displays a temporal pattern with the sequential release of some proteins (e.g. transcription factor BR-C, tumor suppressor p127, cytoskeletal β-tubulin, non-muscle myosin) earlier than others (e.g. filamentous actin, nuclear lamin, mitochondrial pyruvate dehydrogenase). Although the apocrine release of proteins takes place just prior to the execution of an apoptotic program, the nuclear DNA is never released. Western blotting indicates that the secreted proteins remain undegraded in the lumen. Following apocrine secretion, the salivary gland cells remain quite vital, as they retain highly active transcriptional and protein synthetic activity.
Collapse
Affiliation(s)
- Robert Farkaš
- Laboratory of Developmental Genetics, Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia,
| | - Zuzana Ďatková
- Laboratory of Developmental Genetics, Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia,
- Department of Genetics, Comenius University, Bratislava, Slovakia
| | - Lucia Mentelová
- Laboratory of Developmental Genetics, Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia,
- Department of Genetics, Comenius University, Bratislava, Slovakia
| | - Péter Löw
- Department of Anatomy and Cell Biology, Lorand Eötvös University, Budapest, Hungary
| | - Denisa Beňová-Liszeková
- Laboratory of Developmental Genetics, Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia,
| | - Milan Beňo
- Laboratory of Developmental Genetics, Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia,
| | - Miklós Sass
- Department of Anatomy and Cell Biology, Lorand Eötvös University, Budapest, Hungary
| | - Pavel Řehulka
- Institute of Molecular Pathology, Faculty of Military Health Sciences, University of Defence, Hradec Králové, Czech Republic
| | - Helena Řehulková
- 1st Department of Internal Medicine - Cardioangiology, Faculty of Medicine in Hradec Králové, Charles University in Prague, Hradec Králové, Czech Republic
| | - Otakar Raška
- Institute of Cellular Biology and Pathology, 1st Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Lubomír Kováčik
- Institute of Cellular Biology and Pathology, 1st Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Jana Šmigová
- Institute of Cellular Biology and Pathology, 1st Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Ivan Raška
- Institute of Cellular Biology and Pathology, 1st Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Bernard M. Mechler
- Institute of Cellular Biology and Pathology, 1st Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
- Deutsches Krebsforschungszentrum, Heidelberg, Germany
| |
Collapse
|
47
|
Abstract
Insulin regulates glucose uptake by controlling the subcellular location of GLUT4 glucose transporters. GLUT4 is sequestered within fat and muscle cells during low-insulin states, and is translocated to the cell surface upon insulin stimulation. The TUG protein is a functional tether that sequesters GLUT4 at the Golgi matrix. To stimulate glucose uptake, insulin triggers TUG endoproteolytic cleavage. Cleavage accounts for a large proportion of the acute effect of insulin to mobilize GLUT4 to the cell surface. During ongoing insulin exposure, endocytosed GLUT4 recycles to the plasma membrane directly from endosomes, and bypasses a TUG-regulated trafficking step. Insulin acts through the TC10α GTPase and its effector protein, PIST, to stimulate TUG cleavage. This action is coordinated with insulin signals through AS160/Tbc1D4 and Tbc1D1 to modulate Rab GTPases, and with other signals to direct overall GLUT4 targeting. Data support the idea that the N-terminal TUG cleavage product, TUGUL, functions as a novel ubiquitin-like protein modifier to facilitate GLUT4 movement to the cell surface. The C-terminal TUG cleavage product is extracted from the Golgi matrix, which vacates an "anchoring" site to permit subsequent cycles of GLUT4 retention and release. Together, GLUT4 vesicle translocation and TUG cleavage may coordinate glucose uptake with physiologic effects of other proteins present in the GLUT4-containing vesicles, and with potential additional effects of the TUG C-terminal product. Understanding this TUG pathway for GLUT4 retention and release will shed light on the regulation of glucose uptake and the pathogenesis of type 2 diabetes.
Collapse
Affiliation(s)
- Jonathan P Belman
- Section of Endocrinology and Metabolism, Department of Internal Medicine, and Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, Box 208020, New Haven, CT, 06520-8020, USA
| | | | | |
Collapse
|
48
|
Exocytosis of nanoparticles from cells: role in cellular retention and toxicity. Adv Colloid Interface Sci 2013; 201-202:18-29. [PMID: 24200091 DOI: 10.1016/j.cis.2013.10.013] [Citation(s) in RCA: 191] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 10/11/2013] [Accepted: 10/13/2013] [Indexed: 01/06/2023]
Abstract
Over the past decade, nanoparticles (NPs) have been increasingly developed in various biomedical applications such as cell tracking, biosensing, contrast imaging, targeted drug delivery, and tissue engineering. Their versatility in design and function has made them an attractive, alternative choice in many biological and biomedical applications. Cellular responses to NPs, their uptake, and adverse biological effects caused by NPs are rapidly-growing research niches. However, NP excretion and its underlying mechanisms and cell signaling pathways are yet elusive. In this review, we present an overview of how NPs are handled intracellularly and how they are excreted from cells following the uptake. We also discuss how exocytosis of nanomaterials impacts both the therapeutic delivery of nanoscale objects and their nanotoxicology.
Collapse
|
49
|
Signals from the lysosome: a control centre for cellular clearance and energy metabolism. Nat Rev Mol Cell Biol 2013; 14:283-96. [PMID: 23609508 DOI: 10.1038/nrm3565] [Citation(s) in RCA: 1229] [Impact Index Per Article: 102.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
For a long time, lysosomes were considered merely to be cellular 'incinerators' involved in the degradation and recycling of cellular waste. However, now there is compelling evidence indicating that lysosomes have a much broader function and that they are involved in fundamental processes such as secretion, plasma membrane repair, signalling and energy metabolism. Furthermore, the essential role of lysosomes in autophagic pathways puts these organelles at the crossroads of several cellular processes, with significant implications for health and disease. The identification of a master regulator, transcription factor EB (TFEB), that regulates lysosomal biogenesis and autophagy has revealed how the lysosome adapts to environmental cues, such as starvation, and targeting TFEB may provide a novel therapeutic strategy for modulating lysosomal function in human disease.
Collapse
|
50
|
Xu F, Teitelbaum SL. Osteoclasts: New Insights. Bone Res 2013; 1:11-26. [PMID: 26273491 PMCID: PMC4472093 DOI: 10.4248/br201301003] [Citation(s) in RCA: 358] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 01/19/2013] [Indexed: 11/10/2022] Open
Abstract
Osteoclasts, the bone-resorbing cells, play a pivotal role in skeletal development and adult bone remodeling. They also participate in the pathogenesis of various bone disorders. Osteoclasts differentiate from cells of the monocyte/macrophage lineage upon stimulation of two essential factors, the monocyte/macrophage colony stimulating factor (M-CSF) and receptor activation of NF-κB ligand (RANKL). M-CSF binds to its receptor c-Fms to activate distinct signaling pathways to stimulate the proliferation and survival of osteoclast precursors and the mature cell. RANKL, however, is the primary osteoclast differentiation factor, and promotes osteoclast differentiation mainly through controlling gene expression by activating its receptor, RANK. Osteoclast function depends on polarization of the cell, induced by integrin αvβ3, to form the resorptive machinery characterized by the attachment to the bone matrix and the formation of the bone-apposed ruffled border. Recent studies have provided new insights into the mechanism of osteoclast differentiation and bone resorption. In particular, c-Fms and RANK signaling have been shown to regulate bone resorption by cross-talking with those activated by integrin αvβ3. This review discusses new advances in the understanding of the mechanisms of osteoclast differentiation and function.
Collapse
Affiliation(s)
- Feng Xu
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Steven L. Teitelbaum
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| |
Collapse
|