1
|
Fujiki Y, Ishikawa A, Katsuya N, Shiwa Y, Fukui T, Kuraoka K, Sudo T, Tazuma S, Ishii Y, Oka S, Yasui W, Mii S. Minichromosome maintenance 4 is associated with poor survival and stemness of patients with pancreatic cancer. Med Mol Morphol 2025:10.1007/s00795-025-00438-y. [PMID: 40293517 DOI: 10.1007/s00795-025-00438-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 04/16/2025] [Indexed: 04/30/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most well-known cancer types, with a persistently poor 5-year survival rate. We previously reported MCM4 as a molecule associated with cancer stem cells; however, its role in PDAC has not been reported. Therefore, in this study, we aimed to fill this gap in the literature. We analyzed MCM4 expression in 81 PDAC samples using immunohistochemistry (IHC). The functional role of MCM4 in PDAC was investigated using RNA interference in PDAC cell lines. Additionally, a single-cell analysis was conducted by downloading data from six PDAC cases. On IHC, high MCM4 expression was observed in 42 out of 81 (51.9%) PDAC cases. MCM4-positive PDAC was significantly associated with a higher pN grade. Furthermore, high MCM4 expression was linked to a significantly poorer prognosis and was identified as an independent prognostic factor in multivariate analysis. In PDAC cell lines, MCM4 knockdown impairs cell growth and spheroid formation. Single-cell analysis also revealed that MCM4-expressing cells were located upstream of the trajectory, with a cluster showing a correlation with KIFC1, which has been reported to be associated with cancer stemness. These results indicated the significance of MCM4 expression in PDAC and its association with cancer stemness.
Collapse
Affiliation(s)
- Yuto Fujiki
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Akira Ishikawa
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| | - Narutaka Katsuya
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Yuki Shiwa
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Takafumi Fukui
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Kazuya Kuraoka
- Department of Diagnostic Pathology, National Hospital Organization (NHO), Kure Medical Center, and Chugoku Cancer Center, 3-1 Aoyama, Kure, 737-0023, Japan
| | - Takeshi Sudo
- Department of Surgery, National Hospital Organization (NHO), Kure Medical Center, and Chugoku Cancer Center, 3-1 Aoyama, Kure, 737-0023, Japan
| | - Sho Tazuma
- Department of Surgery, National Hospital Organization (NHO), Kure Medical Center, and Chugoku Cancer Center, 3-1 Aoyama, Kure, 737-0023, Japan
| | - Yasutaka Ishii
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Shiro Oka
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Wataru Yasui
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
- Division of Pathology, Hiroshima City Medical Association Clinical Laboratory, 3 Chome-8-6 Sendamachi, Naka-ku, Hiroshima, 730-8611, Japan
| | - Shinji Mii
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| |
Collapse
|
2
|
Ivanova A, Korchivaia E, Semenova M, Lebedev I, Mazunin I, Volodyaev I. The chromosomal challenge of human embryos: Mechanisms and fundamentals. HGG ADVANCES 2025; 6:100437. [PMID: 40211536 PMCID: PMC12050003 DOI: 10.1016/j.xhgg.2025.100437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 04/08/2025] [Accepted: 04/08/2025] [Indexed: 04/24/2025] Open
Abstract
Chromosomal abnormalities in human pre-implantation embryos, originating from either meiotic or mitotic errors, present a significant challenge in reproductive biology. Complete aneuploidy is primarily linked to errors during the resumption of meiosis in oocyte maturation, which increase with maternal age, while mosaic aneuploidies result from mitotic errors after fertilization. The biological causes of these abnormalities are increasingly becoming a topic of interest for research groups and clinical specialists. This review explores the intricate processes of meiotic and early mitotic divisions in embryos, shedding light on the mechanisms that lead to changes in chromosome number in daughter cells. Key factors in meiotic division include difficulties in spindle assembly without centrosomes, kinetochore (KT) orientation disturbances, and inefficient cell-cycle checkpoints. The weakening of cohesion molecules that bind chromosomes, exacerbated by maternal aging, further complicates chromosomal segregation. Mitotic errors in early development are influenced by defects in sperm centrosomes, KT misalignment, and the gradual depletion of maternal regulatory factors. Coupled with the inactive or partially active embryonic genome, this depletion increases the likelihood of chromosomal aberrations. While various theoretical mechanisms for these abnormalities exist, current data remain insufficient to determine their exact contributions. Continued research is essential to unravel these complex processes and improve outcomes in assisted reproductive technologies.
Collapse
Affiliation(s)
- Anna Ivanova
- Faculty of Biology, Moscow State University, Moscow, Russia.
| | | | - Maria Semenova
- Faculty of Biology, Moscow State University, Moscow, Russia
| | - Igor Lebedev
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - Ilya Mazunin
- Department of Biology and Genetics, Petrovsky Medical University, Moscow, Russia; ICARM (Interdisciplinary Clinical Association for Reproductive Medicine), Moscow, Russia
| | - Ilya Volodyaev
- Faculty of Biology, Moscow State University, Moscow, Russia; ICARM (Interdisciplinary Clinical Association for Reproductive Medicine), Moscow, Russia; European Medical Center, Moscow, Russia.
| |
Collapse
|
3
|
Liu C, Liu X, Cao P, Xin H, Li X, Zhu S. Circadian rhythm related genes identified through tumorigenesis and immune infiltration-guided strategies as predictors of prognosis, immunotherapy response, and candidate drugs in skin cutaneous malignant melanoma. Front Immunol 2025; 16:1513750. [PMID: 40191195 PMCID: PMC11968383 DOI: 10.3389/fimmu.2025.1513750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 02/20/2025] [Indexed: 04/09/2025] Open
Abstract
Background Skin cutaneous malignant melanoma (SKCM) is among the most aggressive forms of skin cancer, notorious for its rapid progression and poor prognosis under late diagnosis. This study investigates the role of circadian rhythm-related genes (CRGs) in SKCM addressing a gap in understanding how CRGs affect tumor progression and patient outcomes. Methods An analysis of CRGs expression was conducted on SKCM samples derived from The Cancer Genome Atlas datasets(TCGA). Moreover, a correlation between various subtypes and their clinical features was identified. The study employed various bioinformatics methods, including differential expression analysis, consensus clustering, and survival analysis, to investigate the role of CRGs. The functional consequences of various CRG expression patterns were further investigated using immune infiltration analysis and gene set variation analysis (GSVA). A scoring system based on CRGs was developed to predict overall survival (OS) and treatment responses in SKCM patients. The predictive accuracy of this score system was then tested, and a nomogram was used to improve its clinical usefulness. Results Key findings from this study include significant genetic alterations in circadian rhythm-related genes (CRGs) in skin cutaneous melanoma (SKCM), such as mutations and CNVs. Two molecular subtypes with distinct clinical outcomes and immune profiles were identified. A prognostic model based on six CRGs (CMTM, TNPO1, CTBS, UTRN, HK2, and LIF) was developed and validated with TCGA and GEO datasets, showing high predictive accuracy for overall survival (OS). A high CRGs score correlated with poor OS, immune checkpoint expression, and reduced sensitivity to several chemotherapeutics, including AKT inhibitor VIII and Camptothecin. Conclusions This work provides valuable insights into the circadian regulation of SKCM and underscores the potential of CRGs as biomarkers for prognosis and targets for therapeutic interventions. The novel molecular subtypes and CRGs prognostic scoring model introduced in this study offer significant contributions to the understanding and management of SKCM.
Collapse
Affiliation(s)
- Chengling Liu
- Center of Burns and Plastic Surgery and Dermatology, The 924th Hospital of Joint Logistics Support Force of the Chinese People's Liberation Army (PLA), Guilin, China
| | - Xingchen Liu
- Department of Pathology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Pengjuan Cao
- Department of Endocrinology and Traditional Chinese Medicine, The 924th Hospital of Joint Logistics Support Force of the Chinese People's Liberation Army (PLA), Guilin, China
| | - Haiming Xin
- Center of Burns and Plastic Surgery and Dermatology, The 924th Hospital of Joint Logistics Support Force of the Chinese People's Liberation Army (PLA), Guilin, China
| | - Xin Li
- Center of Burns and Plastic Surgery and Dermatology, The 924th Hospital of Joint Logistics Support Force of the Chinese People's Liberation Army (PLA), Guilin, China
| | - Sailing Zhu
- Center of Burns and Plastic Surgery and Dermatology, The 924th Hospital of Joint Logistics Support Force of the Chinese People's Liberation Army (PLA), Guilin, China
| |
Collapse
|
4
|
Scully R, Glodzik D, Menghi F, Liu ET, Zhang CZ. Mechanisms of tandem duplication in the cancer genome. DNA Repair (Amst) 2025; 145:103802. [PMID: 39742573 PMCID: PMC11843477 DOI: 10.1016/j.dnarep.2024.103802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 01/03/2025]
Abstract
Tandem duplications (TD) are among the most frequent type of structural variant (SV) in the cancer genome. They are characterized by a single breakpoint junction that defines the boundaries and the size of the duplicated segment. Cancer-associated TDs often increase oncogene copy number or disrupt tumor suppressor gene function, and thus have important roles in tumor evolution. TDs in cancer genomes fall into three classes, defined by the size of duplications, and are associated with distinct genetic drivers. In this review, we survey key features of cancer-related TDs and consider possible underlying mechanisms in relation to stressed DNA replication and the 3D organization of the S phase genome.
Collapse
Affiliation(s)
- Ralph Scully
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA.
| | - Dominik Glodzik
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Francesca Menghi
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Edison T Liu
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Cheng-Zhong Zhang
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Pathology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
5
|
Tóth Š, Fagová Z, Holodová M, Čurgali K, Mechírová E, Kunová A, Maretta M, Nemcová R, Gancarčíková S, Danková M. Intestinal mucosal turnover in germ-free piglets infected with E. coli. J Mol Histol 2024; 56:24. [PMID: 39627566 PMCID: PMC11615106 DOI: 10.1007/s10735-024-10278-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/05/2024] [Indexed: 12/06/2024]
Abstract
We focused on investigation of E. coli infection influence on the turnover and apoptosis of intestinal mucosa. We have verified changes in proliferation and apoptosis in epithelial lining as well as in lamina propria of jejunum and colon of germ-free (GF) piglets as healthy control group and GF piglets in which at 5th day their gut was colonized with E. coli bacteria (ECK group). According to our results we detected significant increase in proliferation of the epithelial cells only in the jejunum of the ECK group, indicating a higher sensitivity to colonization with E. coli. Significant changes in the TUNEL assay and immunohistochemistry of other studied markers (TNF-α, Caspase-3 and HSP-70) were noted only in the lamina propria mucosae of both intestinal segments in the ECK group. In conclusion, we found that the commensal gut microbiota plays a role in regulation of the turnover rate in the epithelial lining, but also in the cells in the lamina propria mucosae in both intestinal segments, and that the host response is dependent on the colonising bacteria.
Collapse
Affiliation(s)
- Štefan Tóth
- Department of Histology and Embryology, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 041 80, Košice, Slovak Republic
| | - Zuzana Fagová
- Department of Histology and Embryology, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 041 80, Košice, Slovak Republic.
| | - Monika Holodová
- Department of Histology and Embryology, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 041 80, Košice, Slovak Republic
| | - Kristína Čurgali
- Department of Histology and Embryology, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 041 80, Košice, Slovak Republic
| | - Eva Mechírová
- Department of Histology and Embryology, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 041 80, Košice, Slovak Republic
| | - Alexandra Kunová
- Department of Histology and Embryology, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 041 80, Košice, Slovak Republic
| | - Milan Maretta
- Faculty of Medicine, Department of Neurology and L, Pasteur University Hospital, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 01, Košice, Slovak Republic
| | - Radomíra Nemcová
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 70, Košice, Slovak Republic
| | - Soňa Gancarčíková
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 70, Košice, Slovak Republic
| | - Marianna Danková
- Faculty of Medicine, Institute of Histology and Embryology, Comenius University in Bratislava, Sasinkova 4, 811 04, Bratislava, Slovak Republic
| |
Collapse
|
6
|
Mashayekhi F, Zeinali E, Ganje C, Fanta M, Li L, Godbout R, Weinfeld M, Ismail IH. CDK-dependent phosphorylation regulates PNKP function in DNA replication. J Biol Chem 2024; 300:107880. [PMID: 39395804 DOI: 10.1016/j.jbc.2024.107880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/14/2024] Open
Abstract
Okazaki fragment maturation (OFM) stands as a pivotal DNA metabolic process, crucial for genome integrity and cell viability. Dysregulation of OFM leads to DNA single-strand breaks-accumulation, which is linked to various human diseases such as cancer and neurodegenerative disorders. Recent studies have implicated LIG3-XRCC1 acting in an alternative OFM pathway to the canonical FEN1-LIG1 pathway. Here, we reveal that polynucleotide kinase-phosphatase (PNKP) is another key participant in DNA replication, akin to LIG3-XRCC1. Through functional experiments, we demonstrate PNKP's enrichment at DNA replication forks and its association with PCNA, indicating its involvement in DNA replication processes. Cellular depletion of PNKP mirrors defects observed in OFM-related proteins, highlighting its significance in replication fork dynamics. Additionally, we identify PNKP as a substrate for cyclin-dependent kinase 1 and 2 (CDK1/2), which phosphorylates PNKP at multiple residues. Mutation analysis of these phosphorylation sites underscores the importance of CDK-mediated PNKP phosphorylation in DNA replication. Our findings collectively indicate a novel role for PNKP in facilitating Okazaki fragments joining, thus shedding light on its contribution to genome stability maintenance.
Collapse
Affiliation(s)
- Fatemeh Mashayekhi
- Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Elham Zeinali
- Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Cassandra Ganje
- Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Mesfin Fanta
- Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Lei Li
- Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Roseline Godbout
- Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Michael Weinfeld
- Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada.
| | - Ismail Hassan Ismail
- Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada; Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt.
| |
Collapse
|
7
|
Ecker A, Lázár B, Tóth RI, Urbán M, Hoffmann OI, Fekete Z, Barta E, Uher F, Matula Z, Várkonyi E, Gócza E. Creating a novel method for chicken primordial germ cell health monitoring using the fluorescent ubiquitination-based cell cycle indicator reporter system. Poult Sci 2024; 103:104144. [PMID: 39173570 PMCID: PMC11382113 DOI: 10.1016/j.psj.2024.104144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 07/25/2024] [Indexed: 08/24/2024] Open
Abstract
The most current in vitro genetic methods, including gene preservation, gene editing and developmental modelling, require a significant number of healthy cells. In poultry species, primordial germ cells (PGCs) are great candidates for all the above-mentioned purposes, given their easy culturing and well-established freezing method for chicken. However, the constant monitoring of cultures can be financially challenging and consumes large amounts of solutions and accessories. This study aimed to introduce the Fluorescent Ubiquitination-based Cell Cycle Indicator (FUCCI) complex into the chicken PGCs. FUCCI is a powerful transgenic tool based on the periodic protein expression changes during the cell cycle. It includes chromatin licensing and DNA replication factor 1 attached monomeric Kusabira-Orange and Geminin-attached monomeric Azami-Green fluorescent proteins, that cause the cells to express a red signal in the G1 phase and a green signal in S and G2 phases. Modification of the chicken PGCs was done via electroporation and deemed to be successful according to confocal microscopy, DNA sequencing and timelapse video analysis. Stable clone cell lines were established, cryopreserved, and injected into recipient embryos to prove the integrational competency. The cell health monitoring was tested with medium change experiments, that proved the intended reactions of the FUCCI transgene. These results established the future for FUCCI experiments in chicken, including heat treatment and toxin treatment.
Collapse
Affiliation(s)
- András Ecker
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, 2100 Hungary; Agribiotechnology and Precision Breeding for Food Security National Laboratory, Gödöllő, 2100 Hungary
| | - Bence Lázár
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, 2100 Hungary; Agribiotechnology and Precision Breeding for Food Security National Laboratory, Gödöllő, 2100 Hungary; National Centre for Biodiversity and Gene Conservation, Gödöllő, 2100 Hungary
| | - Roland I Tóth
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, 2100 Hungary; Agribiotechnology and Precision Breeding for Food Security National Laboratory, Gödöllő, 2100 Hungary
| | - Martin Urbán
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, 2100 Hungary; Agribiotechnology and Precision Breeding for Food Security National Laboratory, Gödöllő, 2100 Hungary
| | - Orsolya I Hoffmann
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, 2100 Hungary; Agribiotechnology and Precision Breeding for Food Security National Laboratory, Gödöllő, 2100 Hungary
| | - Zsófia Fekete
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, 2100 Hungary; Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, 80101 Finland
| | - Endre Barta
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, 2100 Hungary; Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, 4032 Hungary
| | - Ferenc Uher
- National Institute of Hematology and Infectology, Budapest, 1097 Hungary
| | - Zsolt Matula
- National Institute of Hematology and Infectology, Budapest, 1097 Hungary
| | - Eszter Várkonyi
- National Centre for Biodiversity and Gene Conservation, Gödöllő, 2100 Hungary
| | - Elen Gócza
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, 2100 Hungary; Agribiotechnology and Precision Breeding for Food Security National Laboratory, Gödöllő, 2100 Hungary.
| |
Collapse
|
8
|
de Moura A, Karschau J. Mathematical model for the distribution of DNA replication origins. Phys Rev E 2024; 110:034408. [PMID: 39425392 DOI: 10.1103/physreve.110.034408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/03/2024] [Indexed: 10/21/2024]
Abstract
DNA replication in yeast and in many other organisms starts from well-defined locations on the DNA known as replication origins. The spatial distribution of these origins in the genome is particularly important in ensuring that replication is completed quickly. Cells are more vulnerable to DNA damage and other forms of stress while they are replicating their genome. This raises the possibility that the spatial distribution of origins is under selection pressure. In this paper we investigate the hypothesis that natural selection favors origin distributions leading to shorter replication times. Using a simple mathematical model, we show that this hypothesis leads to two main predictions about the origin distributions: that neighboring origins that are inefficient (less likely to fire) are more likely to be close to each other than efficient origins; and that neighboring origins with larger differences in firing times are more likely to be close to each other than origins with similar firing times. We test these predictions using next-generation sequencing data, and show that they are both supported by the data.
Collapse
|
9
|
Zhang CZ, Pellman D. Chromosome breakage-replication/fusion enables rapid DNA amplification. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.17.608415. [PMID: 39229211 PMCID: PMC11370323 DOI: 10.1101/2024.08.17.608415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
DNA rearrangements are thought to arise from two classes of processes. The first class involves DNA breakage and fusion ("cut-and-paste") without net DNA gain or loss. The second class involves aberrant DNA replication ("copy-and-paste") and can produce either net DNA gain or loss. We previously demonstrated that the partitioning of chromosomes into aberrant structures of the nucleus, micronuclei or chromosome bridges, can generate cut-and-paste rearrangements by chromosome fragmentation and ligation. Surprisingly, in the progeny clones of single cells that have undergone chromosome bridge breakage, we identified large segmental duplications and short sequence insertions that are commonly attributed to copy-and-paste processes. Here, we demonstrate that both large duplications and short insertions are inherent outcomes of the replication and fusion of unligated DNA ends, a process we term breakage-replication/fusion (B-R/F). We propose that B-R/F provides a unifying explanation for complex rearrangement patterns including chromothripsis and chromoanasynthesis and enables rapid DNA amplification after chromosome fragmentation.
Collapse
|
10
|
Jiang Y, Xue Y, Yuan X, Ye S, Liu M, Shi Y, Zhou H. MCM6 Inhibits Decidualization via Cross-Talking with ERK Pathway in Human Endometrial Stromal Cells. Reprod Sci 2024; 31:1915-1923. [PMID: 38347378 DOI: 10.1007/s43032-024-01463-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/12/2024] [Indexed: 07/03/2024]
Abstract
Decidualization plays an important role in the implantation of the embryo, but the molecular action implicated in this process is not completely known. Herein, we found that, compared with the proliferative endometrial tissues, the expression of minichromosome maintenance complex component 6 (MCM6) was markedly decreased in the secretory endometrial tissues. To verify the function of MCM6 in decidualization, in vitro decidualization model was constructed by treating human endometrial stromal cells (HESCs) with estrogen (E2) and progesterone (P4). Consistently, MCM6 level was downregulated in E2P4-treated HESCs. Administration of E2P4 accumulated HESCs in G1 cell cycle phase, leading to cell growth suppression. Ectopic expression of MCM6 promoted the transition of G1/S and restored the proliferation of HESCs that were inhibited by E2P4. MCM6 overexpression led to aberrant activation of extracellular signal-regulated kinase (ERK) and treatment with ERK agonist Ro 67-7476 restored MCM6 expression and cell proliferation inhibited by E2P4. Our data suggested that MCM6/ERK feedback loop plays a negative role in E2P4-induced decidualization and implies that MCM6 may be a promising target for meliorating uterine receptivity.
Collapse
Affiliation(s)
- Yaling Jiang
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Yuan Xue
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xinhua Yuan
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shengqin Ye
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mingxing Liu
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yu Shi
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hua Zhou
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
11
|
Nasheuer HP, Meaney AM. Starting DNA Synthesis: Initiation Processes during the Replication of Chromosomal DNA in Humans. Genes (Basel) 2024; 15:360. [PMID: 38540419 PMCID: PMC10969946 DOI: 10.3390/genes15030360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 06/14/2024] Open
Abstract
The initiation reactions of DNA synthesis are central processes during human chromosomal DNA replication. They are separated into two main processes: the initiation events at replication origins, the start of the leading strand synthesis for each replicon, and the numerous initiation events taking place during lagging strand DNA synthesis. In addition, a third mechanism is the re-initiation of DNA synthesis after replication fork stalling, which takes place when DNA lesions hinder the progression of DNA synthesis. The initiation of leading strand synthesis at replication origins is regulated at multiple levels, from the origin recognition to the assembly and activation of replicative helicase, the Cdc45-MCM2-7-GINS (CMG) complex. In addition, the multiple interactions of the CMG complex with the eukaryotic replicative DNA polymerases, DNA polymerase α-primase, DNA polymerase δ and ε, at replication forks play pivotal roles in the mechanism of the initiation reactions of leading and lagging strand DNA synthesis. These interactions are also important for the initiation of signalling at unperturbed and stalled replication forks, "replication stress" events, via ATR (ATM-Rad 3-related protein kinase). These processes are essential for the accurate transfer of the cells' genetic information to their daughters. Thus, failures and dysfunctions in these processes give rise to genome instability causing genetic diseases, including cancer. In their influential review "Hallmarks of Cancer: New Dimensions", Hanahan and Weinberg (2022) therefore call genome instability a fundamental function in the development process of cancer cells. In recent years, the understanding of the initiation processes and mechanisms of human DNA replication has made substantial progress at all levels, which will be discussed in the review.
Collapse
Affiliation(s)
- Heinz Peter Nasheuer
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, Biochemistry, University of Galway, H91 TK33 Galway, Ireland;
| | | |
Collapse
|
12
|
Nickoloff JA, Jaiswal AS, Sharma N, Williamson EA, Tran MT, Arris D, Yang M, Hromas R. Cellular Responses to Widespread DNA Replication Stress. Int J Mol Sci 2023; 24:16903. [PMID: 38069223 PMCID: PMC10707325 DOI: 10.3390/ijms242316903] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Replicative DNA polymerases are blocked by nearly all types of DNA damage. The resulting DNA replication stress threatens genome stability. DNA replication stress is also caused by depletion of nucleotide pools, DNA polymerase inhibitors, and DNA sequences or structures that are difficult to replicate. Replication stress triggers complex cellular responses that include cell cycle arrest, replication fork collapse to one-ended DNA double-strand breaks, induction of DNA repair, and programmed cell death after excessive damage. Replication stress caused by specific structures (e.g., G-rich sequences that form G-quadruplexes) is localized but occurs during the S phase of every cell division. This review focuses on cellular responses to widespread stress such as that caused by random DNA damage, DNA polymerase inhibition/nucleotide pool depletion, and R-loops. Another form of global replication stress is seen in cancer cells and is termed oncogenic stress, reflecting dysregulated replication origin firing and/or replication fork progression. Replication stress responses are often dysregulated in cancer cells, and this too contributes to ongoing genome instability that can drive cancer progression. Nucleases play critical roles in replication stress responses, including MUS81, EEPD1, Metnase, CtIP, MRE11, EXO1, DNA2-BLM, SLX1-SLX4, XPF-ERCC1-SLX4, Artemis, XPG, FEN1, and TATDN2. Several of these nucleases cleave branched DNA structures at stressed replication forks to promote repair and restart of these forks. We recently defined roles for EEPD1 in restarting stressed replication forks after oxidative DNA damage, and for TATDN2 in mitigating replication stress caused by R-loop accumulation in BRCA1-defective cells. We also discuss how insights into biological responses to genome-wide replication stress can inform novel cancer treatment strategies that exploit synthetic lethal relationships among replication stress response factors.
Collapse
Affiliation(s)
- Jac A. Nickoloff
- Department of Environmental and Radiological Health Sciences, Colorado State University, Ft. Collins, CO 80523, USA
| | - Aruna S. Jaiswal
- Department of Medicine and the Mays Cancer Center, The University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA; (A.S.J.); (M.T.T.); (R.H.)
| | - Neelam Sharma
- Department of Environmental and Radiological Health Sciences, Colorado State University, Ft. Collins, CO 80523, USA
| | - Elizabeth A. Williamson
- Department of Medicine and the Mays Cancer Center, The University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA; (A.S.J.); (M.T.T.); (R.H.)
| | - Manh T. Tran
- Department of Medicine and the Mays Cancer Center, The University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA; (A.S.J.); (M.T.T.); (R.H.)
| | - Dominic Arris
- Department of Medicine and the Mays Cancer Center, The University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA; (A.S.J.); (M.T.T.); (R.H.)
| | - Ming Yang
- Department of Medicine and the Mays Cancer Center, The University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA; (A.S.J.); (M.T.T.); (R.H.)
| | - Robert Hromas
- Department of Medicine and the Mays Cancer Center, The University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA; (A.S.J.); (M.T.T.); (R.H.)
| |
Collapse
|
13
|
Thakur BL, Kusi NA, Mosavarpour S, Zhu R, Redon CE, Fu H, Dhall A, Pongor LS, Sebastian R, Indig FE, Aladjem MI. SIRT1 Prevents R-Loops during Chronological Aging by Modulating DNA Replication at rDNA Loci. Cells 2023; 12:2630. [PMID: 37998365 PMCID: PMC10669956 DOI: 10.3390/cells12222630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
In metazoans, the largest sirtuin, SIRT1, is a nuclear protein implicated in epigenetic modifications, circadian signaling, DNA recombination, replication, and repair. Our previous studies have demonstrated that SIRT1 binds replication origins and inhibits replication initiation from a group of potential initiation sites (dormant origins). We studied the effects of aging and SIRT1 activity on replication origin usage and the incidence of transcription-replication collisions (creating R-loop structures) in adult human cells obtained at different time points during chronological aging and in cancer cells. In primary, untransformed cells, SIRT1 activity declined and the prevalence of R-loops rose with chronological aging. Both the reduction in SIRT1 activity and the increased abundance of R-loops were also observed during the passage of primary cells in culture. All cells, regardless of donor age or transformation status, reacted to the short-term, acute chemical inhibition of SIRT1 with the activation of excessive replication initiation events coincident with an increased prevalence of R-loops. However, cancer cells activated dormant replication origins, genome-wide, during long-term proliferation with mutated or depleted SIRT1, whereas, in primary cells, the aging-associated SIRT1-mediated activation of dormant origins was restricted to rDNA loci. These observations suggest that chronological aging and the associated decline in SIRT1 activity relax the regulatory networks that protect cells against excess replication and that the mechanisms protecting from replication-transcription collisions at the rDNA loci manifest as differentially enhanced sensitivities to SIRT1 decline and chronological aging.
Collapse
Affiliation(s)
- Bhushan L. Thakur
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (B.L.T.); (N.A.K.); (S.M.); (R.Z.); (C.E.R.); (H.F.); (A.D.); (L.S.P.); (R.S.)
| | - Nana A. Kusi
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (B.L.T.); (N.A.K.); (S.M.); (R.Z.); (C.E.R.); (H.F.); (A.D.); (L.S.P.); (R.S.)
| | - Sara Mosavarpour
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (B.L.T.); (N.A.K.); (S.M.); (R.Z.); (C.E.R.); (H.F.); (A.D.); (L.S.P.); (R.S.)
| | - Roger Zhu
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (B.L.T.); (N.A.K.); (S.M.); (R.Z.); (C.E.R.); (H.F.); (A.D.); (L.S.P.); (R.S.)
| | - Christophe E. Redon
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (B.L.T.); (N.A.K.); (S.M.); (R.Z.); (C.E.R.); (H.F.); (A.D.); (L.S.P.); (R.S.)
| | - Haiqing Fu
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (B.L.T.); (N.A.K.); (S.M.); (R.Z.); (C.E.R.); (H.F.); (A.D.); (L.S.P.); (R.S.)
| | - Anjali Dhall
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (B.L.T.); (N.A.K.); (S.M.); (R.Z.); (C.E.R.); (H.F.); (A.D.); (L.S.P.); (R.S.)
| | - Lorinc S. Pongor
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (B.L.T.); (N.A.K.); (S.M.); (R.Z.); (C.E.R.); (H.F.); (A.D.); (L.S.P.); (R.S.)
| | - Robin Sebastian
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (B.L.T.); (N.A.K.); (S.M.); (R.Z.); (C.E.R.); (H.F.); (A.D.); (L.S.P.); (R.S.)
| | - Fred E. Indig
- Confocal Imaging Facility, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA;
| | - Mirit I. Aladjem
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (B.L.T.); (N.A.K.); (S.M.); (R.Z.); (C.E.R.); (H.F.); (A.D.); (L.S.P.); (R.S.)
| |
Collapse
|
14
|
Yuzon JD, Schultzhaus Z, Wang Z. Transcriptomic and genomic effects of gamma-radiation exposure on strains of the black yeast Exophiala dermatitidis evolved to display increased ionizing radiation resistance. Microbiol Spectr 2023; 11:e0221923. [PMID: 37676019 PMCID: PMC10581076 DOI: 10.1128/spectrum.02219-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/15/2023] [Indexed: 09/08/2023] Open
Abstract
IMPORTANCE Ionizing radiation poses a significant threat to living organisms and human health, given its destructive nature and widespread use in fields such as medicine and the potential for nuclear disasters. Melanized fungi exhibit remarkable survival capabilities, enduring doses up to 1,000-fold higher than mammals. Through adaptive laboratory evolution, we validated the protective role of constitutive upregulation of DNA repair genes in the black yeast Exophiala dermatitidis, enhancing survival after radiation exposure. Surprisingly, we found that evolved strains lacking melanin still achieved high levels of radioresistance. Our study unveiled the significance of robust activation and enhancement of redox homeostasis, as evidenced by the profound transcriptional changes and increased accumulation of mutations, in substantially improving ionizing radiation resistance in the absence of melanin. These findings underscore the delicate balance between DNA repair and redox homeostasis for an organism's ability to endure and recover from radiation exposure.
Collapse
Affiliation(s)
- Jennifer D. Yuzon
- National Research Council Postdoctoral Research Associate, US Naval Research Laboratory, Washington, USA
| | - Zachary Schultzhaus
- Center for Bio/Molecular Science and Engineering, US Naval Research Laboratory, Washington, USA
| | - Zheng Wang
- Center for Bio/Molecular Science and Engineering, US Naval Research Laboratory, Washington, USA
| |
Collapse
|
15
|
Kobayashi G, Hayashi T, Sentani K, Uraoka N, Fukui T, Kido A, Katsuya N, Ishikawa A, Babasaki T, Sekino Y, Nose H, Arihiro K, Hinata N, Oue N. MCM4 expression is associated with high-grade histology, tumor progression and poor prognosis in urothelial carcinoma. Diagn Pathol 2023; 18:106. [PMID: 37737200 PMCID: PMC10515259 DOI: 10.1186/s13000-023-01392-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND We previously reported Minichromosome maintenance 4 (MCM4) overexpression in gastric cancer. However, the clinicopathological significance of MCM4 in urothelial carcinoma (UC) has not been investigated. To clarify the clinicopathological significance of MCM4 in UC, we investigated MCM4 expression with immunohistochemistry (IHC). METHODS We analyzed the expression and distribution of MCM4 in 124 upper tract urothelial carcinoma (UTUC) samples by IHC. Additionally, using 108 urine samples, we analyzed MCM4 Immunocytochemistry (ICC) expression in urine cytology. RESULTS In normal urothelium, MCM4 expression was weak or absent. Meanwhile, the strong nuclear expression of MCM4 was observed in UTUC tissues, and it was detected in 77 (62%) of a total of 124 UTUC cases. MCM4-positive UTUC cases were associated with nodular/flat morphology, high grade, high T stage, and poor prognosis. Moreover, MCM4 expression was significantly higher in the invasive front than in the tumor surface. Similar results were also obtained in TCGA bladder cancer cohort. Additionally, MCM4 expression was associated with high expression of Ki-67, HER2, EGFR, and p53 in UTUC. Among representative cancer-related molecules, MCM4 had an independent predictive value for progression-free survival and high-grade UC. ICC for MCM4 was also performed on urine cytology slides and showed that the nuclear expression of MCM4 was more frequently found in UC cells than in non-neoplastic cells. The diagnostic accuracy of urine cytology was improved by combining MCM4 immunostaining with cytology. CONCLUSION These results suggest that MCM4 might be a useful predictive biomarker for high-grade histology, tumor progression and poor prognosis in UC. Moreover, ICC for MCM4 might be helpful for UC detection as additional markers in the cytomorphology-based diagnosis.
Collapse
Affiliation(s)
- Go Kobayashi
- Department of Pathology, Kure-Kyosai Hospital, Federation of National Public Service Personnel Mutual Aid Associations, Hiroshima, Japan
| | - Tetsutaro Hayashi
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, -2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Kazuhiro Sentani
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
| | - Naohiro Uraoka
- Department of Pathology, Kure-Kyosai Hospital, Federation of National Public Service Personnel Mutual Aid Associations, Hiroshima, Japan
| | - Takafumi Fukui
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Aya Kido
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Narutaka Katsuya
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Akira Ishikawa
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takashi Babasaki
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, -2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Yohei Sekino
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, -2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Hiroyuki Nose
- Department of Urology, Kure-Kyosai Hospital, Federation of National Public Service Personnel Mutual Aid Associations, Hiroshima, Japan
| | - Koji Arihiro
- Department of Anatomical Pathology, Hiroshima University Hospital, Hiroshima, Japan
| | - Nobuyuki Hinata
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, -2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Naohide Oue
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
16
|
Williams KS, Secomb TW, El-Kareh AW. An autonomous mathematical model for the mammalian cell cycle. J Theor Biol 2023; 569:111533. [PMID: 37196820 DOI: 10.1016/j.jtbi.2023.111533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 04/04/2023] [Accepted: 05/10/2023] [Indexed: 05/19/2023]
Abstract
A mathematical model for the mammalian cell cycle is developed as a system of 13 coupled nonlinear ordinary differential equations. The variables and interactions included in the model are based on detailed consideration of available experimental data. A novel feature of the model is inclusion of cycle tasks such as origin licensing and initiation, nuclear envelope breakdown and kinetochore attachment, and their interactions with controllers (molecular complexes involved in cycle control). Other key features are that the model is autonomous, except for a dependence on external growth factors; the variables are continuous in time, without instantaneous resets at phase boundaries; mechanisms to prevent rereplication are included; and cycle progression is independent of cell size. Eight variables represent cell cycle controllers: the Cyclin D1-Cdk4/6 complex, APCCdh1, SCFβTrCP, Cdc25A, MPF, NuMA, the securin-separase complex, and separase. Five variables represent task completion, with four for the status of origins and one for kinetochore attachment. The model predicts distinct behaviors corresponding to the main phases of the cell cycle, showing that the principal features of the mammalian cell cycle, including restriction point behavior, can be accounted for in a quantitative mechanistic way based on known interactions among cycle controllers and their coupling to tasks. The model is robust to parameter changes, in that cycling is maintained over at least a five-fold range of each parameter when varied individually. The model is suitable for exploring how extracellular factors affect cell cycle progression, including responses to metabolic conditions and to anti-cancer therapies.
Collapse
Affiliation(s)
| | - Timothy W Secomb
- BIO5 Institute, University of Arizona, Tucson, AZ, USA; Department of Physiology, University of Arizona, Tucson, AZ, USA
| | | |
Collapse
|
17
|
A review on regulation of cell cycle by extracellular matrix. Int J Biol Macromol 2023; 232:123426. [PMID: 36708893 DOI: 10.1016/j.ijbiomac.2023.123426] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/12/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023]
Abstract
The extracellular matrix (ECM) is a network of structural proteins, glycoproteins and proteoglycans that assists independent cells in aggregating and forming highly organized functional structures. ECM serves numerous purposes and is an essential component of tissue structure and functions. Initially, the role of ECM was considered to be confined to passive functions like providing mechanical strength and structural identity to tissues, serving as barriers and platforms for cells. The doors to understanding ECM's proper role in tissue functioning opened with the discovery of cellular receptors, integrins to which ECM components binds and influences cellular activities. Understanding and utilizing ECM's potential to control cellular function has become a topic of much interest in recent decades, providing different outlooks to study processes involved in developmental programs, wound healing and tumour progression. On another front, the regulatory mechanisms operating to prevent errors in the cell cycle have been topics of a titanic amount of studies. This is expected as many diseases, most infamously cancer, are associated with defects in their functioning. This review focuses on how ECM, through different methods, influences the progression of the somatic cell cycle and provides deeper insights into molecular mechanisms of functional communication between adhesion complex, signalling pathways and cell cycle machinery.
Collapse
|
18
|
Ahire MS, Nagar SR, D’souza ZI, Tupkari JV, Dalvi SM. Expression of Minichromosome Maintenance Protein 2 (MCM2) in Oral Epithelial Dysplasia and Oral Squamous Cell Carcinoma: A Systematic Review. Indian J Otolaryngol Head Neck Surg 2023; 75:183-192. [PMID: 37007886 PMCID: PMC10050670 DOI: 10.1007/s12070-022-03296-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 11/21/2022] [Indexed: 12/31/2022] Open
Abstract
The histopathological investigations of oral lesions are a basic approach for diagnosing ongoing cancer or pre-cancer associated pathological attributes in the dissected biopsy. The early detection and management of potentially malignant disorders of the lip and oral cavity that require intervention may reduce malignant transformations, or in case any malignancy is detected during surveillance, the appropriate treatment may improve survival rates. This would guide the clinicians to decide the appropriate treatment modality or lesion to achieve a more favorable prognosis. MCM2 protein is involved in DNA replication providing additional information about the prognosis of neoplasms. Some authors have pointed out that MCM proteins have been inversely correlated with salivary tumour differentiation and therefore could be an indicator of proliferation potential. Therefore, it is essential to find the expression of the MCM2 gene in oral leukoplakia and oral squamous cell carcinoma. Electronic databases like Ebscohost, Livivo, Google Scholar and PubMed were searched. Based on the inclusion and exclusion criteria, 2 reviewers (MS and SN) independently selected the relevant articles. Any disagreement was discussed until a consensus was reached. We used the QUADAS-2 tool to assess the quality of the included studies over four key domains: patient selection, index test, reference standard and flow and timing of participants through the study. 10 out of 57 titles were found to meet the eligibility criteria. Biopsied tissue with immunohistochemical staining or advanced diagnostic studies were included. A total of 901 samples were included in the study and different groups were normal oral mucosa (NOM), oral epithelial dysplasia (OED) and oral squamous cell carcinoma (OSCC). MCM2 proteins are useful diagnostic markers for distinguishing malignant from benign epithelial dysplasia and for early detection and diagnosis of OSCC as an adjunct to clinicopathological parameters. Supplementary Information The online version contains supplementary material available at 10.1007/s12070-022-03296-7.
Collapse
Affiliation(s)
- Manisha S. Ahire
- Department of Oral Pathology & Microbiology, Government Dental College & Hospital, PD’Mello Road, St.George Hospital Campus, Near Chatrapati Shivaji Terminus, Mumbai, Maharashtra 400001 India
| | - Saurabh R. Nagar
- Department of Pathology, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, 400012 India
| | - Zaneta Ivy D’souza
- Department of Oral Pathology & Microbiology, Nair Hospital Dental College, Dr. A.L.Nair Road, Mumbai Central, Mumbai, 400008 India
| | - J. V. Tupkari
- Department of Oral Pathology & Microbiology, Government Dental College & Hospital, PD’Mello Road, St.George Hospital Campus, Near Chatrapati Shivaji Terminus, Mumbai, Maharashtra 400001 India
| | - Shubhangi M. Dalvi
- Department of Biochemistry, Grant Government Dental College & Hospital, JJ Marg, Nagpada, Byculla, Mumbai, Maharashtra 400008 India
| |
Collapse
|
19
|
Alvarez V, Bandau S, Jiang H, Rios-Szwed D, Hukelmann J, Garcia-Wilson E, Wiechens N, Griesser E, Ten Have S, Owen-Hughes T, Lamond A, Alabert C. Proteomic profiling reveals distinct phases to the restoration of chromatin following DNA replication. Cell Rep 2023; 42:111996. [PMID: 36680776 DOI: 10.1016/j.celrep.2023.111996] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/12/2022] [Accepted: 01/03/2023] [Indexed: 01/21/2023] Open
Abstract
Chromatin organization must be maintained during cell proliferation to preserve cellular identity and genome integrity. However, DNA replication results in transient displacement of DNA-bound proteins, and it is unclear how they regain access to newly replicated DNA. Using quantitative proteomics coupled to Nascent Chromatin Capture or isolation of Proteins on Nascent DNA, we provide time-resolved binding kinetics for thousands of proteins behind replisomes within euchromatin and heterochromatin in human cells. This shows that most proteins regain access within minutes to newly replicated DNA. In contrast, 25% of the identified proteins do not, and this delay cannot be inferred from their known function or nuclear abundance. Instead, chromatin organization and G1 phase entry affect their reassociation. Finally, DNA replication not only disrupts but also promotes recruitment of transcription factors and chromatin remodelers, providing a significant advance in understanding how DNA replication could contribute to programmed changes of cell memory.
Collapse
Affiliation(s)
- Vanesa Alvarez
- Division of Molecular, Cell, and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Susanne Bandau
- Division of Molecular, Cell, and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Hao Jiang
- Laboratory of Quantitative Proteomics, Division of Molecular, Cell, and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Diana Rios-Szwed
- Division of Molecular, Cell, and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Jens Hukelmann
- Laboratory of Quantitative Proteomics, Division of Molecular, Cell, and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Elisa Garcia-Wilson
- Division of Molecular, Cell, and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Nicola Wiechens
- Laboratory of Chromatin Remodelling and Cancer Epigenetics, Division of Molecular, Cell & Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Eva Griesser
- Laboratory of Quantitative Proteomics, Division of Molecular, Cell, and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Sara Ten Have
- Laboratory of Quantitative Proteomics, Division of Molecular, Cell, and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Tom Owen-Hughes
- Laboratory of Chromatin Remodelling and Cancer Epigenetics, Division of Molecular, Cell & Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Angus Lamond
- Laboratory of Quantitative Proteomics, Division of Molecular, Cell, and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Constance Alabert
- Division of Molecular, Cell, and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK.
| |
Collapse
|
20
|
Wu W, Yu S, Yu X. Transcription-associated cyclin-dependent kinase 12 (CDK12) as a potential target for cancer therapy. Biochim Biophys Acta Rev Cancer 2023; 1878:188842. [PMID: 36460141 DOI: 10.1016/j.bbcan.2022.188842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022]
Abstract
Cyclin-dependent kinase 12 (CDK12), a transcription-related cyclin dependent kinase (CDK), plays a momentous part in multitudinous biological functions, such as replication, transcription initiation to elongation and termination, precursor mRNA (pre-mRNA) splicing, intron polyadenylation (IPA), and translation. CDK12 can act as a tumour suppressor or oncogene in disparate cellular environments, and its dysregulation likely provokes tumorigenesis. A comprehensive understanding of CDK12 will tremendously facilitate the exploitation of novel tactics for the treatment and precaution of cancer. Currently, CDK12 inhibitors are nonspecific and nonselective, which profoundly hinders the pharmacological target validation and drug exploitation process. Herein, we summarize the newly comprehension of the biological functions of CDK12 with a focus on recently emerged advancements of CDK12-associated therapeutic approaches in cancers.
Collapse
Affiliation(s)
- Wence Wu
- Departments of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shengji Yu
- Departments of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Xiying Yu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
21
|
Patra D, Bhavya K, Ramprasad P, Kalia M, Pal D. Anti-cancer drug molecules targeting cancer cell cycle and proliferation. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 135:343-395. [PMID: 37061337 DOI: 10.1016/bs.apcsb.2022.11.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Cancer, a vicious clinical burden that potentiates maximum fatality for humankind, arises due to unregulated excessive cell division and proliferation through an eccentric expression of cell cycle regulator proteins. A set of evolutionarily conserved machinery controls the cell cycle in an extremely precise manner so that a cell that went through the cycle can produce a genetically identical copy. To achieve perfection, several checkpoints were placed in the cycle for surveillance; so, errors during the division were rectified by the repair strategies. However, irreparable damage leads to exit from the cell cycle and induces programmed cell death. In comparison to a normal cell, cancer cells facilitate the constitutive activation of many dormant proteins and impede negative regulators of the checkpoint. Extensive studies in the last few decades on cell division and proliferation of cancer cells elucidate the molecular mechanism of the cell-cycle regulators that are often targeted for the development of anti-cancer therapy. Each phase of the cell cycle has been regulated by a unique set of proteins including master regulators Cyclins, and CDKs, along with the accessory proteins such as CKI, Cdc25, error-responsive proteins, and various kinase proteins mainly WEE1 kinases, Polo-like kinases, and Aurora kinases that control cell division. Here in this chapter, we have analytically discussed the role of cell cycle regulators and proliferation factors in cancer progression and the rationale of using various cell cycle-targeting drug molecules as anti-cancer therapy.
Collapse
Affiliation(s)
- Debarun Patra
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| | - Kumari Bhavya
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| | - Palla Ramprasad
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| | - Moyna Kalia
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| | - Durba Pal
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India.
| |
Collapse
|
22
|
Li C, Tan Y, Ma X, Wang Z, Meng T, Sun Q. CDT1 is the major functional regulatory subunit of the pre-replication complex in zygotes. Cell Prolif 2022; 56:e13377. [PMID: 36479743 PMCID: PMC9977660 DOI: 10.1111/cpr.13377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/08/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Abstract
Pre-replication complex (pre-RC) is critical for DNA replication initiation. CDT1 and MCM2 are the subunits of pre-RC, and proper regulation of CDT1 and MCM2 are necessary for DNA replication and cell proliferation. The present study aimed to explore the role of CDT1 and MCM2 in oocyte meiotic maturation and early embryonic development. The depletion and overexpression of Cdt1 and Mcm2 in oocyte and zygote were achieved by microinjecting specific siRNA and mRNA to explored their functions in oocyte meiotic maturation and embryonic development. Then, we examined the effect of CDT1 and MCM2 on other signal pathways by immunostaining the expression of related maker genes. We showed that neither depletion nor overexpression of Cdt1 affected oocyte meiotic progressions. The CDT1 was degraded in S phase and remained at a low level in G2 phase of zygote. Exogenous expression of Cdt1 in G2 phase led to embryo attest at zygote stage. Mechanistically, CDT1 overexpression induced DNA re-replication and thus DNA damage check-point activation. Protein abundance of MCM2 was stable throughout the cell cycle, and embryos with overexpressed MCM2 could develop to blastocysts normally. Overexpression or depletion of Mcm2 also had no effect on oocyte meiotic maturation. Our results indicate that pre-RC subunits CDT1 and MCM2 are not involved in oocyte meiotic maturation. In zygote, CDT1 but not MCM2 is the major regulator of DNA replication in a cell cycle dependent manner. Furthermore, its' degradation is essential for zygotes to prevent from DNA re-replication in G2 stage.
Collapse
Affiliation(s)
- Chao Li
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina,University of Chinese Academy of SciencesBeijingChina
| | - Yong‐Peng Tan
- Fertility Preservation Lab, Guangdong‐Hong Kong Metabolism & Reproduction Joint LaboratoryReproductive Medicine Center, Guangdong Second Provincial General HospitalGuangzhouChina
| | - Xue‐Shan Ma
- Reproductive Genetics DepartmentThe Affiliated Tai'an City Central Hospital of Qingdao UniversityTaianChina
| | - Zhen‐Bo Wang
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina,University of Chinese Academy of SciencesBeijingChina
| | - Tie‐Gang Meng
- Fertility Preservation Lab, Guangdong‐Hong Kong Metabolism & Reproduction Joint LaboratoryReproductive Medicine Center, Guangdong Second Provincial General HospitalGuangzhouChina
| | - Qing‐Yuan Sun
- Fertility Preservation Lab, Guangdong‐Hong Kong Metabolism & Reproduction Joint LaboratoryReproductive Medicine Center, Guangdong Second Provincial General HospitalGuangzhouChina
| |
Collapse
|
23
|
MCM2 in human cancer: functions, mechanisms, and clinical significance. Mol Med 2022; 28:128. [PMID: 36303105 PMCID: PMC9615236 DOI: 10.1186/s10020-022-00555-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 10/10/2022] [Indexed: 11/18/2022] Open
Abstract
Background Aberrant DNA replication is the main source of genomic instability that leads to tumorigenesis and progression. MCM2, a core subunit of eukaryotic helicase, plays a vital role in DNA replication. The dysfunction of MCM2 results in the occurrence and progression of multiple cancers through impairing DNA replication and cell proliferation. Conclusions MCM2 is a vital regulator in DNA replication. The overexpression of MCM2 was detected in multiple types of cancers, and the dysfunction of MCM2 was correlated with the progression and poor prognoses of malignant tumors. According to the altered expression of MCM2 and its correlation with clinicopathological features of cancer patients, MCM2 was thought to be a sensitive biomarker for cancer diagnosis, prognosis, and chemotherapy response. The anti-tumor effect induced by MCM2 inhibition implies the potential of MCM2 to be a novel therapeutic target for cancer treatment. Since DNA replication stress, which may stimulate anti-tumor immunity, frequently occurs in MCM2 deficient cells, it also proposes the possibility that MCM2 targeting improves the effect of tumor immunotherapy.
Collapse
|
24
|
Guan F, Gao Q, Dai X, Li L, Bao R, Gu J. LncRNA RP11-59J16.2 aggravates apoptosis and increases tau phosphorylation by targeting MCM2 in AD. Front Genet 2022; 13:824495. [PMID: 36092938 PMCID: PMC9459667 DOI: 10.3389/fgene.2022.824495] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 07/13/2022] [Indexed: 12/03/2022] Open
Abstract
Alzheimer’s disease (AD) is a degenerative disease of central nervous system with unclear pathogenesis, accounting for 60%–70% of dementia cases. Long noncoding RNAs (LncRNAs) play an important function in the development of AD. This study aims to explore the role of differentially expressed lncRNAs in AD patients’ serum in the pathogenesis of AD. Microarray analysis was performed in the serum of AD patients and healthy controls to establish lncRNAs and mRNAs expression profiles. GO analysis and KEGG pathway analysis revealed that G1/S transition of mitotic cell cycle might be involved in the development of AD. The result showed that RP11-59J16.2 was up-regulated and MCM2 was down-regulated in serum of AD patients. SH-SY5Y cells were treated with Aβ 1–42 to establish AD cell model. Dual luciferase reporter gene analysis verified that RP11-59J16.2 could directly interact with 3′UTR of MCM2 and further regulate the expression of MCM2. Inhibition of RP11-59J16.2 or overexpression of MCM2, CCK-8 assay and Annexin V FITC/PI apoptosis assay kit results showed that RP11-59J16.2 could reduce cell viability, aggravate apoptosis and increase Tau phosphorylation in AD cell model by inhibiting MCM2. In short, our study revealed a novel lncRNA RP11-59J16.2 that could promote neuronal apoptosis and increase Tau phosphorylation by regulating MCM2 in AD model, and indicated that lncRNA RP11-59J16.2 might be a potential target molecule for AD development.
Collapse
Affiliation(s)
- Fulin Guan
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qichang Gao
- The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinghua Dai
- Haiyuan Hospital of Heilongjiang, Harbin, China
| | - Lei Li
- Integrated Chinese and Western Medicine Department, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Rui Bao
- Heilongjiang University of Chinese Medicine, Harbin, China
- *Correspondence: Jiaao Gu, ; Rui Bao,
| | - Jiaao Gu
- The First Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Jiaao Gu, ; Rui Bao,
| |
Collapse
|
25
|
Yun HJ, Jeoung DJ, Jin S, Park JH, Lee EW, Lee HT, Choi YH, Kim BW, Kwon HJ. Induction of Cell Cycle Arrest, Apoptosis, and Reducing the Expression of MCM Proteins in Human Lung Carcinoma A549 Cells by Cedrol, Isolated from Juniperus chinensis. J Microbiol Biotechnol 2022; 32:918-926. [PMID: 35880481 PMCID: PMC9628924 DOI: 10.4014/jmb.2205.05012] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/22/2022] [Accepted: 06/29/2022] [Indexed: 12/15/2022]
Abstract
Proteins related to DNA replication have been proposed as cancer biomarkers and targets for anticancer agents. Among them, minichromosome maintenance (MCM) proteins, often overexpressed in various cancer cells, are recognized both as notable biomarkers for cancer diagnosis and as targets for cancer treatment. Here, we investigated the activity of cedrol, a single compound isolated from Juniperus chinensis, in reducing the expression of MCM proteins in human lung carcinoma A549 cells. Remarkably, cedrol also strongly inhibited the expression of all other MCM protein family members in A549 cells. Moreover, cedrol treatment reduced cell viability in A549 cells, accompanied by cell cycle arrest at the G1 phase, and enhanced apoptosis. Taken together, this study broadens our understanding of how cedrol executes its anticancer activity while demonstrating that cedrol has potential application in the treatment of human lung cancer as an inhibitor of MCM proteins.
Collapse
Affiliation(s)
- Hee Jung Yun
- Biopharmaceutical Engineering Major, Division of Applied Bioengineering, College of Engineering, Dong-eui University, Busan 47340, Republic of Korea,Department of Biopharmaceutics, Dong-eui University Graduate School, Busan 47340, Republic of Korea
| | - Da Jeoung Jeoung
- Department of Biopharmaceutics, Dong-eui University Graduate School, Busan 47340, Republic of Korea
| | - Soojung Jin
- Core-Facility Center for Tissue Regeneration, Dong-eui University, Busan 47340, Republic of Korea
| | - Jung-ha Park
- Biopharmaceutical Engineering Major, Division of Applied Bioengineering, College of Engineering, Dong-eui University, Busan 47340, Republic of Korea,Department of Biopharmaceutics, Dong-eui University Graduate School, Busan 47340, Republic of Korea,Core-Facility Center for Tissue Regeneration, Dong-eui University, Busan 47340, Republic of Korea
| | - Eun-Woo Lee
- Biopharmaceutical Engineering Major, Division of Applied Bioengineering, College of Engineering, Dong-eui University, Busan 47340, Republic of Korea,Department of Biopharmaceutics, Dong-eui University Graduate School, Busan 47340, Republic of Korea,Core-Facility Center for Tissue Regeneration, Dong-eui University, Busan 47340, Republic of Korea
| | - Hyun-Tai Lee
- Biopharmaceutical Engineering Major, Division of Applied Bioengineering, College of Engineering, Dong-eui University, Busan 47340, Republic of Korea,Department of Biopharmaceutics, Dong-eui University Graduate School, Busan 47340, Republic of Korea,Core-Facility Center for Tissue Regeneration, Dong-eui University, Busan 47340, Republic of Korea
| | - Yung Hyun Choi
- Core-Facility Center for Tissue Regeneration, Dong-eui University, Busan 47340, Republic of Korea,Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan 47227, Republic of Korea
| | - Byung Woo Kim
- Biopharmaceutical Engineering Major, Division of Applied Bioengineering, College of Engineering, Dong-eui University, Busan 47340, Republic of Korea,Department of Biopharmaceutics, Dong-eui University Graduate School, Busan 47340, Republic of Korea,Blue-Bio Industry Regional Innovation Center, Dong-eui University, Busan 47340, Republic of Korea,Corresponding authors B.W. Kim Phone: +82-51-890-2900 E-mail:
| | - Hyun Ju Kwon
- Biopharmaceutical Engineering Major, Division of Applied Bioengineering, College of Engineering, Dong-eui University, Busan 47340, Republic of Korea,Department of Biopharmaceutics, Dong-eui University Graduate School, Busan 47340, Republic of Korea,Core-Facility Center for Tissue Regeneration, Dong-eui University, Busan 47340, Republic of Korea,
H.J. Kwon Phone: +82-51-890-1519 Fax: +82-505-182-6871 E-mail:
| |
Collapse
|
26
|
PTEN Dual Lipid- and Protein-Phosphatase Function in Tumor Progression. Cancers (Basel) 2022; 14:cancers14153666. [PMID: 35954330 PMCID: PMC9367293 DOI: 10.3390/cancers14153666] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/17/2022] [Accepted: 07/22/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Phosphatase and tensin homolog deleted on chromosome ten (PTEN) is a multifunctional tumor suppressor with protein- and lipid-phosphatase activities. The inactivation of PTEN is commonly found in all human cancers and is correlated with tumor progression. PTEN-lipid-phosphatase activity has been well documented to dephosphorylate phosphatidylinositol-3, 4, 5-phosphate (PIP3), which hinders cell growth and survival by dampening the PI3K and AKT signaling activity. PTEN-protein-phosphatase activity is less well studied and understood. Recent studies have reported that PTEN-protein-phosphatase activity dephosphorylates the different proteins and acts in various cell functions. We here review the PTEN mutations and protein-phosphatase substrates in tumor progression. We aim to address the gap in our understanding as to how PTEN protein phosphatase contributes to its tumor-suppression functions. Abstract PTEN is the second most highly mutated tumor suppressor in cancer, following only p53. The PTEN protein functions as a phosphatase with lipid- and protein-phosphatase activity. PTEN-lipid-phosphatase activity dephosphorylates PIP3 to form PIP2, and it then antagonizes PI3K and blocks the activation of AKT, while its protein-phosphatase activity dephosphorylates different protein substrates and plays various roles in tumorigenesis. Here, we review the PTEN mutations and protein-phosphatase substrates in tumorigenesis and metastasis. Our purpose is to clarify how PTEN protein phosphatase contributes to its tumor-suppressive functions through PI3K-independent activities.
Collapse
|
27
|
Saxena S, Zou L. Hallmarks of DNA replication stress. Mol Cell 2022; 82:2298-2314. [PMID: 35714587 DOI: 10.1016/j.molcel.2022.05.004] [Citation(s) in RCA: 190] [Impact Index Per Article: 63.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/15/2022] [Accepted: 05/04/2022] [Indexed: 12/12/2022]
Abstract
Faithful DNA replication is critical for the maintenance of genomic integrity. Although DNA replication machinery is highly accurate, the process of DNA replication is constantly challenged by DNA damage and other intrinsic and extrinsic stresses throughout the genome. A variety of cellular stresses interfering with DNA replication, which are collectively termed replication stress, pose a threat to genomic stability in both normal and cancer cells. To cope with replication stress and maintain genomic stability, cells have evolved a complex network of cellular responses to alleviate and tolerate replication problems. This review will focus on the major sources of replication stress, the impacts of replication stress in cells, and the assays to detect replication stress, offering an overview of the hallmarks of DNA replication stress.
Collapse
Affiliation(s)
- Sneha Saxena
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Lee Zou
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA; Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
28
|
Gao X, Cai T, Lin Y, Zhu R, Hao W, Guo S, Hu G. The function of glucose metabolism in embryonic diapause of annual killifish. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 42:100965. [PMID: 35149343 DOI: 10.1016/j.cbd.2022.100965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/18/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Annual killifish could survive as diapaused embryos buried in soil during dry seasons. When the embryos in diapause III were incubated in water, the larvae could be hatched quickly. However, the mechanism of diapause and hatching of annual killifish was ambiguous. In the present study, Nothobranchius guentheri were used as the model to clarify the physiological mechanism of diapause and hatching of annual killifish. The results indicated that incubation with water could significantly enhance the heart rate and blood circulation of embryos. To clarify the molecular mechanism, the transcriptomic analysis was used to compare the embryos in diapause I, diapause III, and hatching period. The results showed that DNA replication-related genes, cell division cycle 45 and proliferating cell nuclear antigen were more highly expressed in diapause I compared to diapause III. In addition, the transcript levels of glucagon, glucokinase and phosphofructokinase were more abundantly detected in hatching period compared to diapause III, but insulin receptor and insulin-like growth factor-binding protein were lower. These results indicated glucose metabolism might play an important role in diapause and hatching of killifish. To further confirm this result, several reagents involved in glucose metabolism were used to incubate embryos in diapause III. The results displayed that glucose and glucagon could both shorten the hatching time of embryos. In contrast, 2-deoxy-d-glucose, metformin, and insulin could prolong the hatching time and reduce the hatching rate. The results further confirmed that glucose metabolism played an important role in the diapause and hatching of annual killifish.
Collapse
Affiliation(s)
- Xiaowen Gao
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Tianyi Cai
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongtong Lin
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Rui Zhu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenxin Hao
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuming Guo
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Guangfu Hu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
29
|
Thakur BL, Ray A, Redon CE, Aladjem MI. Preventing excess replication origin activation to ensure genome stability. Trends Genet 2022; 38:169-181. [PMID: 34625299 PMCID: PMC8752500 DOI: 10.1016/j.tig.2021.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 02/03/2023]
Abstract
Cells activate distinctive regulatory pathways that prevent excessive initiation of DNA replication to achieve timely and accurate genome duplication. Excess DNA synthesis is constrained by protein-DNA interactions that inhibit initiation at dormant origins. In parallel, specific modifications of pre-replication complexes prohibit post-replicative origin relicensing. Replication stress ensues when the controls that prevent excess replication are missing in cancer cells, which often harbor extrachromosomal DNA that can be further amplified by recombination-mediated processes to generate chromosomal translocations. The genomic instability that accompanies excess replication origin activation can provide a promising target for therapeutic intervention. Here we review molecular pathways that modulate replication origin dormancy, prevent excess origin activation, and detect, encapsulate, and eliminate persistent excess DNA.
Collapse
Affiliation(s)
- Bhushan L Thakur
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Anagh Ray
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Christophe E Redon
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Mirit I Aladjem
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
30
|
Huang Y, Guo X, Zhang J, Li J, Xu M, Wang Q, Liu Z, Ma Y, Qi Y, Ruan Q. Human cytomegalovirus RNA2.7 inhibits RNA polymerase II (Pol II) Serine-2 phosphorylation by reducing the interaction between Pol II and phosphorylated cyclin-dependent kinase 9 (pCDK9). Virol Sin 2022; 37:358-369. [PMID: 35537980 PMCID: PMC9243627 DOI: 10.1016/j.virs.2022.02.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 02/24/2022] [Indexed: 11/18/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous pathogen belongs to betaherpesvirus subfamily. RNA2.7 is a highly conserved long non-coding RNA accounting for more than 20% of total viral transcripts. In our study, functions of HCMV RNA2.7 were investigated by comparison of host cellular transcriptomes between cells infected with HCMV clinical strain and RNA2.7 deleted mutant. It was demonstrated that RNA polymerase II (Pol II)-dependent host gene transcriptions were significantly activated when RNA2.7 was removed during infection. A 145 nt-in-length motif within RNA2.7 was identified to inhibit the phosphorylation of Pol II Serine-2 (Pol II S2) by reducing the interaction between Pol II and phosphorylated cyclin-dependent kinase 9 (pCDK9). Due to the loss of Pol II S2 phosphorylation, cellular DNA pre-replication complex (pre-RC) factors, including Cdt1 and Cdc6, were significantly decreased, which prevented more cells from entering into S phase and facilitated viral DNA replication. Our results provide new insights of HCMV RNA2.7 functions in regulation of host cellular transcription. HCMV RNA2.7 inhibits the phosphorylation of Pol II Serine-2. RNA2.7 reduces the interactions between Pol II and pCDK9. RNA2.7 regulates cell cycle by preventing cells from entering into S phase.
Collapse
Affiliation(s)
- Yujing Huang
- Virology Laboratory, Shengjing Hospital of China Medical University, Shenyang, 110004, China; Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, China; Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xin Guo
- Department of Pediatrics, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110033, China
| | - Jing Zhang
- Virology Laboratory, Shengjing Hospital of China Medical University, Shenyang, 110004, China; Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Jianming Li
- Virology Laboratory, Shengjing Hospital of China Medical University, Shenyang, 110004, China; Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, China; Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Mingyi Xu
- Virology Laboratory, Shengjing Hospital of China Medical University, Shenyang, 110004, China; Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, China; Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Qing Wang
- Virology Laboratory, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Zhongyang Liu
- Virology Laboratory, Shengjing Hospital of China Medical University, Shenyang, 110004, China; Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, China; Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Yanping Ma
- Virology Laboratory, Shengjing Hospital of China Medical University, Shenyang, 110004, China; Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, China; Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Ying Qi
- Virology Laboratory, Shengjing Hospital of China Medical University, Shenyang, 110004, China; Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, China; Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Qiang Ruan
- Virology Laboratory, Shengjing Hospital of China Medical University, Shenyang, 110004, China; Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, China; Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
31
|
Takeuchi S, Matsuda T, Tsujimoto M, Fukumoto T, Ono R, Nishigori C. Replication-related genes are upregulated in XP-A cells after UV-C irradiation. J Dermatol Sci 2022; 105:152-158. [DOI: 10.1016/j.jdermsci.2022.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/24/2022] [Accepted: 01/29/2022] [Indexed: 10/19/2022]
|
32
|
Mei L, Kedziora KM, Song EA, Purvis JE, Cook J. The consequences of differential origin licensing dynamics in distinct chromatin environments. Nucleic Acids Res 2022; 50:9601-9620. [PMID: 35079814 PMCID: PMC9508807 DOI: 10.1093/nar/gkac003] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/17/2021] [Accepted: 01/05/2022] [Indexed: 02/01/2023] Open
Abstract
Eukaryotic chromosomes contain regions of varying accessibility, yet DNA replication factors must access all regions. The first replication step is loading MCM complexes to license replication origins during the G1 cell cycle phase. It is not yet known how mammalian MCM complexes are adequately distributed to both accessible euchromatin regions and less accessible heterochromatin regions. To address this question, we combined time-lapse live-cell imaging with immunofluorescence imaging of single human cells to quantify the relative rates of MCM loading in euchromatin and heterochromatin throughout G1. We report here that MCM loading in euchromatin is faster than that in heterochromatin in early G1, but surprisingly, heterochromatin loading accelerates relative to euchromatin loading in middle and late G1. This differential acceleration allows both chromatin types to begin S phase with similar concentrations of loaded MCM. The different loading dynamics require ORCA-dependent differences in origin recognition complex distribution. A consequence of heterochromatin licensing dynamics is that cells experiencing a truncated G1 phase from premature cyclin E expression enter S phase with underlicensed heterochromatin, and DNA damage accumulates preferentially in heterochromatin in the subsequent S/G2 phase. Thus, G1 length is critical for sufficient MCM loading, particularly in heterochromatin, to ensure complete genome duplication and to maintain genome stability.
Collapse
Affiliation(s)
- Liu Mei
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Katarzyna M Kedziora
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Bioinformatics and Analytics Research Collaborative (BARC), University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Eun-Ah Song
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jeremy E Purvis
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jeanette Gowen Cook
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
33
|
Cell and Molecular Biology of Centrosome Structure and Function. THE CENTROSOME AND ITS FUNCTIONS AND DYSFUNCTIONS 2022; 235:1-16. [DOI: 10.1007/978-3-031-20848-5_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
34
|
Shim YR, Kim A, Gu MJ. Prognostic significance of MCM6 expression in gastrointestinal stromal tumor. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2021; 14:1119-1127. [PMID: 35027992 PMCID: PMC8748012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Minichromosome maintenance (MCM) proteins are essential for the initiation of DNA replication and they are prognostic markers in various human cancers. The aim of this study was to investigate the role of the MCM6 protein in gastrointestinal stromal tumor (GIST) and its clinical and prognostic significance. We evaluated MCM6 expression in 211 GIST samples using immunohistochemistry. We used the receiver operating characteristic curve (ROC) to identify optimal cut-off values. High MCM6 expression was associated with tumor size, mitosis, tumor necrosis, presence of recurrence/metastasis, and the National Institute of Health (NIH) and Armed Forces Institute of Pathology (AFIP) malignant risk criteria. Patients with high MCM6 expression had significantly shorter overall survival (OS) and disease-free survival (DFS) than those with low MCM6 expression. Univariate analysis indicated that tumor size, mitosis, AFIP and NIH malignant risk criteria, and high MCM6 expression were significantly associated with poor OS and DFS. High MCM6 expression and high-risk group categorization based on the NIH criteria were independent prognostic factors for OS and DFS. High MCM6 expression is significantly associated with tumor progression and aggressiveness and is an independent factor for shorter survival in GIST patients. MCM6 expression could be a predictive biomarker for tumor aggressiveness as well as a treatment target.
Collapse
Affiliation(s)
- Young-Ran Shim
- Department of Pathology, Yeungnam University Yeongcheon HospitalYeongcheon, South Korea
| | - Aeri Kim
- Department of Pathology, Daegu Fatima HospitalDaegu, South Korea
| | - Mi-Jin Gu
- Department of Pathology, Yeungnam University College of MedicineDaegu, South Korea
| |
Collapse
|
35
|
Sahay O, Barik GK, Sharma T, Pillai AD, Rapole S, Santra MK. Damsel in distress calling on her knights: Illuminating the pioneering role of E3 ubiquitin ligases in guarding the genome integrity. DNA Repair (Amst) 2021; 109:103261. [PMID: 34920250 DOI: 10.1016/j.dnarep.2021.103261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/30/2021] [Accepted: 12/07/2021] [Indexed: 11/03/2022]
Abstract
The maintenance of genomic integrity is of utmost importance for the organisms to survive and to accurately inherit traits to their progenies. Any kind of DNA damage either due to defect in DNA duplication and/ or uncontrolled cell division or intracellular insults or environment radiation can result in gene mutation, chromosomal aberration and ultimately genomic instability, which may cause several diseases including cancers. Therefore, cells have evolved machineries for the surveillance of genomic integrity. Enormous exciting studies in the past indicate that ubiquitination (a posttranslational modification of proteins) plays a crucial role in maintaining the genomic integrity by diverse ways. In fact, various E3 ubiquitin ligases catalyse ubiquitination of key proteins to control their central role during cell cycle, DNA damage response (DDR) and DNA repair. Some E3 ligases promote genomic instability while others prevent it, deregulation of both of which leads to several malignancies. In this review, we consolidate the recent findings wherein the role of ubiquitination in conferring genome integrity is highlighted. We also discuss the latest discoveries on the mechanisms utilized by various E3 ligases to preserve genomic stability, with a focus on their actions during cell cycle progression and different types of DNA damage response as well as repair pathways.
Collapse
Affiliation(s)
- Osheen Sahay
- National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India; Department of Biotechnology, S.P. Pune University, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Ganesh Kumar Barik
- National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India; Department of Biotechnology, S.P. Pune University, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Tanisha Sharma
- National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India; Department of Biotechnology, S.P. Pune University, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Ajay D Pillai
- National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Srikanth Rapole
- National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Manas Kumar Santra
- National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India.
| |
Collapse
|
36
|
Efficiency and equity in origin licensing to ensure complete DNA replication. Biochem Soc Trans 2021; 49:2133-2141. [PMID: 34545932 DOI: 10.1042/bst20210161] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/19/2021] [Accepted: 08/31/2021] [Indexed: 12/21/2022]
Abstract
The cell division cycle must be strictly regulated during both development and adult maintenance, and efficient and well-controlled DNA replication is a key event in the cell cycle. DNA replication origins are prepared in G1 phase of the cell cycle in a process known as origin licensing which is essential for DNA replication initiation in the subsequent S phase. Appropriate origin licensing includes: (1) Licensing enough origins at adequate origin licensing speed to complete licensing before G1 phase ends; (2) Licensing origins such that they are well-distributed on all chromosomes. Both aspects of licensing are critical for replication efficiency and accuracy. In this minireview, we will discuss recent advances in defining how origin licensing speed and distribution are critical to ensure DNA replication completion and genome stability.
Collapse
|
37
|
Bočkaj I, Martini TEI, de Camargo Magalhães ES, Bakker PL, Meeuwsen-de Boer TGJ, Armandari I, Meuleman SL, Mondria MT, Stok C, Kok YP, Bakker B, Wardenaar R, Seiler J, Broekhuis MJC, van den Bos H, Spierings DCJ, Ringnalda FCA, Clevers H, Schüller U, van Vugt MATM, Foijer F, Bruggeman SWM. The H3.3K27M oncohistone affects replication stress outcome and provokes genomic instability in pediatric glioma. PLoS Genet 2021; 17:e1009868. [PMID: 34752469 PMCID: PMC8604337 DOI: 10.1371/journal.pgen.1009868] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 11/19/2021] [Accepted: 10/07/2021] [Indexed: 12/25/2022] Open
Abstract
While comprehensive molecular profiling of histone H3.3 mutant pediatric high-grade glioma has revealed extensive dysregulation of the chromatin landscape, the exact mechanisms driving tumor formation remain poorly understood. Since H3.3 mutant gliomas also exhibit high levels of copy number alterations, we set out to address if the H3.3K27M oncohistone leads to destabilization of the genome. Hereto, we established a cell culture model allowing inducible H3.3K27M expression and observed an increase in mitotic abnormalities. We also found enhanced interaction of DNA replication factors with H3.3K27M during mitosis, indicating replication defects. Further functional analyses revealed increased genomic instability upon replication stress, as represented by mitotic bulky and ultrafine DNA bridges. This co-occurred with suboptimal 53BP1 nuclear body formation after mitosis in vitro, and in human glioma. Finally, we observed a decrease in ultrafine DNA bridges following deletion of the K27M mutant H3F3A allele in primary high-grade glioma cells. Together, our data uncover a role for H3.3 in DNA replication under stress conditions that is altered by the K27M mutation, promoting genomic instability and potentially glioma development.
Collapse
Affiliation(s)
- Irena Bočkaj
- Department of Ageing Biology/ERIBA, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Tosca E. I. Martini
- Department of Ageing Biology/ERIBA, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Eduardo S. de Camargo Magalhães
- Department of Ageing Biology/ERIBA, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Petra L. Bakker
- Department of Ageing Biology/ERIBA, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Tiny G. J. Meeuwsen-de Boer
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Inna Armandari
- Department of Ageing Biology/ERIBA, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Histology and Cell Biology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Saskia L. Meuleman
- Department of Ageing Biology/ERIBA, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Marin T. Mondria
- Department of Ageing Biology/ERIBA, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Colin Stok
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Yannick P. Kok
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Bjorn Bakker
- Department of Ageing Biology/ERIBA, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - René Wardenaar
- Department of Ageing Biology/ERIBA, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Jonas Seiler
- Department of Ageing Biology/ERIBA, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- iPSC/CRISPR facility, Department of Ageing Biology/ERIBA, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Mathilde J. C. Broekhuis
- Department of Ageing Biology/ERIBA, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- iPSC/CRISPR facility, Department of Ageing Biology/ERIBA, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Hilda van den Bos
- Department of Ageing Biology/ERIBA, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Diana C. J. Spierings
- Department of Ageing Biology/ERIBA, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Femke C. A. Ringnalda
- Princess Máxima Center for Pediatric Oncology, Oncode Institute, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Hans Clevers
- Princess Máxima Center for Pediatric Oncology, Oncode Institute, University Medical Center Utrecht, Utrecht, the Netherlands
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), Oncode Institute, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Ulrich Schüller
- Research Institute Children’s Cancer Center Hamburg, Hamburg, Germany
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marcel A. T. M. van Vugt
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Floris Foijer
- Department of Ageing Biology/ERIBA, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- iPSC/CRISPR facility, Department of Ageing Biology/ERIBA, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Sophia W. M. Bruggeman
- Department of Ageing Biology/ERIBA, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
38
|
Brooks RF. Cell Cycle Commitment and the Origins of Cell Cycle Variability. Front Cell Dev Biol 2021; 9:698066. [PMID: 34368148 PMCID: PMC8343065 DOI: 10.3389/fcell.2021.698066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/22/2021] [Indexed: 11/13/2022] Open
Abstract
Exit of cells from quiescence following mitogenic stimulation is highly asynchronous, and there is a great deal of heterogeneity in the response. Even in a single, clonal population, some cells re-enter the cell cycle after a sub-optimal mitogenic signal while other, seemingly identical cells, do not, though they remain capable of responding to a higher level of stimulus. This review will consider the origins of this variability and heterogeneity, both in cells re-entering the cycle from quiescence and in the context of commitment decisions in continuously cycling populations. Particular attention will be paid to the role of two interacting molecular networks, namely the RB-E2F and APC/CCDH1 "switches." These networks have the property of bistability and it seems likely that they are responsible for dynamic behavior previously described kinetically by Transition Probability models of the cell cycle. The relationship between these switches and the so-called Restriction Point of the cell cycle will also be considered.
Collapse
Affiliation(s)
- Robert F Brooks
- Molecular and Clinical Sciences Research Institute, St George's, University of London, London, United Kingdom.,Department of Anatomy, King's College London, London, United Kingdom
| |
Collapse
|
39
|
Tian J, Lu Z, Niu S, Zhang S, Ying P, Wang L, Zhang M, Cai Y, Dong T, Zhu Y, Zhong R, Wang Z, Chang J, Miao X. Aberrant MCM10 SUMOylation induces genomic instability mediated by a genetic variant associated with survival of esophageal squamous cell carcinoma. Clin Transl Med 2021; 11:e485. [PMID: 34185429 PMCID: PMC8236122 DOI: 10.1002/ctm2.485] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/13/2021] [Accepted: 06/16/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is one of the common gastrointestinal malignancy with an inferior prognosis outcome. DNA replication licensing aberration induced by dysregulation of minichromosome maintenance proteins (MCMs) causes genomic instability and cancer metastasis. SUMOylation modification plays a pivotal role in regulation of genomic integrity, while its dysregulation fueled by preexisting germline variants in cancers remains poorly understood. METHODS Firstly, we conducted two-stage survival analysis consisting of an exome-wide association study in 904 ESCC samples and another independent 503 ESCC samples. Then, multipronged functional experiments were performed to illuminate the potential biological mechanisms underlying the promising variants, and MCM10 influences the ESCC progression. Finally, we tested the effects of MCM10 inhibitors on ESCC cells. RESULTS A germline variant rs2274110 located at the exon 15 of MCM10 was identified to be significantly associated with the prognosis of ESCC patients. Individuals carrying rs2274110-AA genotypes confer a poor survival (hazard ratio = 1.61, 95% confidence interval = 1.35-1.93, p = 1.35 × 10-7 ), compared with subjects carrying rs2274110-AG/GG genotypes. Furthermore, we interestingly found that the variant can increase SUMOylation levels at K669 site (Lys[K]699Arg[R]) of MCM10 protein mediated by SUMO2/3 enzymes, which resulted in an aberrant overexpression of MCM10. Mechanistically, aberrant overexpression of MCM10 facilitated the proliferation and metastasis abilities of ESCC cells in vitro and in vivo by inducing DNA over-replication and genomic instability, providing functional evidence to support our population finding that high expression of MCM10 is extensively presented in tumor tissues of ESCC and correlated with inferior survival outcomes of multiple cancer types, including ESCC. Finally, MCM10 inhibitors Suramin and its analogues were revealed to effectively block the metastasis of ESCC cells. CONCLUSIONS These findings not only demonstrate a potential biological mechanism between aberrant SUMOylation, genomic instability and cancer metastasis, but also provide a promising biomarker aiding in stratifying ESCC individuals with different prognosis, as well as a potential therapeutic target MCM10.
Collapse
Affiliation(s)
- Jianbo Tian
- Department of Epidemiology and BiostatisticsKey Laboratory for Environment and HealthSchool of Public HealthTongji Medical CollegeHuazhong University of Sciences and TechnologyWuhanChina
| | - Zequn Lu
- Department of Epidemiology and BiostatisticsKey Laboratory for Environment and HealthSchool of Public HealthTongji Medical CollegeHuazhong University of Sciences and TechnologyWuhanChina
| | - Siyuan Niu
- Department of Epidemiology and BiostatisticsKey Laboratory for Environment and HealthSchool of Public HealthTongji Medical CollegeHuazhong University of Sciences and TechnologyWuhanChina
| | - Shanshan Zhang
- Department of Epidemiology and BiostatisticsKey Laboratory for Environment and HealthSchool of Public HealthTongji Medical CollegeHuazhong University of Sciences and TechnologyWuhanChina
| | - Pingting Ying
- Department of Epidemiology and BiostatisticsKey Laboratory for Environment and HealthSchool of Public HealthTongji Medical CollegeHuazhong University of Sciences and TechnologyWuhanChina
| | - Lu Wang
- Department of Epidemiology and BiostatisticsKey Laboratory for Environment and HealthSchool of Public HealthTongji Medical CollegeHuazhong University of Sciences and TechnologyWuhanChina
| | - Ming Zhang
- Department of Epidemiology and BiostatisticsKey Laboratory for Environment and HealthSchool of Public HealthTongji Medical CollegeHuazhong University of Sciences and TechnologyWuhanChina
| | - Yimin Cai
- Department of Epidemiology and BiostatisticsKey Laboratory for Environment and HealthSchool of Public HealthTongji Medical CollegeHuazhong University of Sciences and TechnologyWuhanChina
| | - Tianyi Dong
- Department of Epidemiology and BiostatisticsKey Laboratory for Environment and HealthSchool of Public HealthTongji Medical CollegeHuazhong University of Sciences and TechnologyWuhanChina
| | - Ying Zhu
- Department of Epidemiology and BiostatisticsKey Laboratory for Environment and HealthSchool of Public HealthTongji Medical CollegeHuazhong University of Sciences and TechnologyWuhanChina
| | - Rong Zhong
- Department of Epidemiology and BiostatisticsKey Laboratory for Environment and HealthSchool of Public HealthTongji Medical CollegeHuazhong University of Sciences and TechnologyWuhanChina
| | - Zhihua Wang
- Department of UrologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jiang Chang
- Department of Epidemiology and BiostatisticsKey Laboratory for Environment and HealthSchool of Public HealthTongji Medical CollegeHuazhong University of Sciences and TechnologyWuhanChina
| | - Xiaoping Miao
- Department of Epidemiology and BiostatisticsKey Laboratory for Environment and HealthSchool of Public HealthTongji Medical CollegeHuazhong University of Sciences and TechnologyWuhanChina
| |
Collapse
|
40
|
Ravindran E, Gutierrez de Velazco C, Ghazanfar A, Kraemer N, Zaqout S, Waheed A, Hanif M, Mughal S, Prigione A, Li N, Fang X, Hu H, Kaindl AM. Homozygous mutation in MCM7 causes autosomal recessive primary microcephaly and intellectual disability. J Med Genet 2021; 59:453-461. [PMID: 34059554 PMCID: PMC9046757 DOI: 10.1136/jmedgenet-2020-107518] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/15/2021] [Accepted: 03/02/2021] [Indexed: 11/19/2022]
Abstract
Background Minichromosomal maintenance (MCM) complex components 2, 4, 5 and 6 have been linked to human disease with phenotypes including microcephaly and intellectual disability. The MCM complex has DNA helicase activity and is thereby important for the initiation and elongation of the replication fork and highly expressed in proliferating neural stem cells. Methods Whole-exome sequencing was applied to identify the genetic cause underlying the neurodevelopmental disease of the index family. The expression pattern of Mcm7 was characterised by performing quantitative real-time PCR, in situ hybridisation and immunostaining. To prove the disease-causative nature of identified MCM7, a proof-of-principle experiment was performed. Results We reported that the homozygous missense variant c.793G>A/p.A265T (g.7:99695841C>T, NM_005916.4) in MCM7 was associated with autosomal recessive primary microcephaly (MCPH), severe intellectual disability and behavioural abnormalities in a consanguineous pedigree with three affected individuals. We found concordance between the spatiotemporal expression pattern of Mcm7 in mice and a proliferative state: Mcm7 expression was higher in early mouse developmental stages and in proliferative zones of the brain. Accordingly, Mcm7/MCM7 levels were detectable particularly in undifferentiated mouse embryonal stem cells and human induced pluripotent stem cells compared with differentiated neurons. We further demonstrate that the downregulation of Mcm7 in mouse neuroblastoma cells reduces cell viability and proliferation, and, as a proof-of-concept, that this is counterbalanced by the overexpression of wild-type but not mutant MCM7. Conclusion We report mutations of MCM7 as a novel cause of autosomal recessive MCPH and intellectual disability and highlight the crucial function of MCM7 in nervous system development.
Collapse
Affiliation(s)
- Ethiraj Ravindran
- Institute of Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, Berlin, Germany.,Department of Pediatric Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany.,Center for Chronically Sick Children (Sozialpädiatrisches Zentrum, SPZ), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Cynthia Gutierrez de Velazco
- Institute of Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, Berlin, Germany.,Department of Pediatric Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany.,Center for Chronically Sick Children (Sozialpädiatrisches Zentrum, SPZ), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ali Ghazanfar
- Department of Biotechnology, University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
| | - Nadine Kraemer
- Institute of Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, Berlin, Germany.,Department of Pediatric Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany.,Center for Chronically Sick Children (Sozialpädiatrisches Zentrum, SPZ), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sami Zaqout
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar.,Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| | - Abdul Waheed
- Department of Biotechnology, University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
| | - Mohsan Hanif
- Department of Biotechnology, University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
| | - Sadia Mughal
- Department of Biotechnology, University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
| | - Alessandro Prigione
- University Children's Hospital, Department of General Pediatrics, Heinrich-Heine-Universitat Dusseldorf, Düsseldorf, Germany
| | - Na Li
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xiang Fang
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Hao Hu
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,School of Medicine, South China University of Technology, Guangzhou, China
| | - Angela M Kaindl
- Institute of Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, Berlin, Germany .,Department of Pediatric Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany.,Center for Chronically Sick Children (Sozialpädiatrisches Zentrum, SPZ), Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
41
|
Cabral D, Forero Ballesteros H, de Melo BP, Lourenço-Tessutti IT, Simões de Siqueira KM, Obicci L, Grossi-de-Sa MF, Hemerly AS, de Almeida Engler J. The Armadillo BTB Protein ABAP1 Is a Crucial Player in DNA Replication and Transcription of Nematode-Induced Galls. FRONTIERS IN PLANT SCIENCE 2021; 12:636663. [PMID: 33995437 PMCID: PMC8121025 DOI: 10.3389/fpls.2021.636663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/16/2021] [Indexed: 06/12/2023]
Abstract
The biogenesis of root-knot nematode (Meloidogyne spp.)-induced galls requires the hyperactivation of the cell cycle with controlled balance of mitotic and endocycle programs to keep its homeostasis. To better understand gall functioning and to develop new control strategies for this pest, it is essential to find out how the plant host cell cycle programs are responding and integrated during the nematode-induced gall formation. This work investigated the spatial localization of a number of gene transcripts involved in the pre-replication complex during DNA replication in galls and report their akin colocation with the cell cycle S-phase regulator Armadillo BTB Arabidopsis Protein 1 (ABAP1). ABAP1 is a negative regulator of pre-replication complex controlling DNA replication of genes involved in control of cell division and proliferation; therefore, its function has been investigated during gall ontogenesis. Functional analysis was performed upon ABAP1 knockdown and overexpression in Arabidopsis thaliana. We detected ABAP1 promoter activity and localized ABAP1 protein in galls during development, and its overexpression displayed significantly reduced gall sizes containing atypical giant cells. Profuse ABAP1 expression also impaired gall induction and hindered nematode reproduction. Remarkably, ABAP1 knockdown likewise negatively affected gall and nematode development, suggesting its involvement in the feeding site homeostasis. Microscopy analysis of cleared and nuclei-stained whole galls revealed that ABAP1 accumulation resulted in aberrant giant cells displaying interconnected nuclei filled with enlarged heterochromatic regions. Also, imbalanced ABAP1 expression caused changes in expression patterns of genes involved in the cell division control as demonstrated by qRT-PCR. CDT1a, CDT1b, CDKA;1, and CYCB1;1 mRNA levels were significantly increased in galls upon ABAP1 overexpression, possibly contributing to the structural changes in galls during nematode infection. Overall, data obtained in galls reinforced the role of ABAP1 controlling DNA replication and mitosis and, consequently, cell proliferation. ABAP1 expression might likely take part of a highly ordered mechanism balancing of cell cycle control to prevent gall expansion. ABAP1 expression might prevent galls to further expand, limiting excessive mitotic activity. Our data strongly suggest that ABAP1 as a unique plant gene is an essential component for cell cycle regulation throughout gall development during nematode infection and is required for feeding site homeostasis.
Collapse
Affiliation(s)
- Danila Cabral
- INRAE, Université Côte d’Azur, CNRS, ISA, Sophia Antipolis, France
| | - Helkin Forero Ballesteros
- INRAE, Université Côte d’Azur, CNRS, ISA, Sophia Antipolis, France
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruno Paes de Melo
- INRAE, Université Côte d’Azur, CNRS, ISA, Sophia Antipolis, France
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Isabela Tristan Lourenço-Tessutti
- INRAE, Université Côte d’Azur, CNRS, ISA, Sophia Antipolis, France
- Laboratório de Interação Molecular Planta-Praga, Embrapa Recursos Genéticos e Biotecnologia, Brasília, Brazil
| | | | - Luciana Obicci
- INRAE, Université Côte d’Azur, CNRS, ISA, Sophia Antipolis, France
| | - Maria Fatima Grossi-de-Sa
- Laboratório de Interação Molecular Planta-Praga, Embrapa Recursos Genéticos e Biotecnologia, Brasília, Brazil
| | - Adriana S. Hemerly
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | |
Collapse
|
42
|
Enhanced Myc Expression in Silkworm Silk Gland Promotes DNA Replication and Silk Production. INSECTS 2021; 12:insects12040361. [PMID: 33919579 PMCID: PMC8073660 DOI: 10.3390/insects12040361] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/16/2021] [Accepted: 04/16/2021] [Indexed: 11/29/2022]
Abstract
Simple Summary Based on a transgenic approach, enhancing Myc expression in the silkworm posterior silk gland (PSG), which was driven by the promoter of the fibroin heavy chain (FibH) gene, was performed for investigating the biological functions of Myc in silk gland. Enhanced Myc expression elevated the cocoon size. This elevation might be resulted from the increasing of FibH expression and DNA content in the PSG cells by promoting the transcription of the genes that are involved in DNA replication. Abstract Silkworm is an economically important insect that synthetizes silk proteins for silk production in silk gland, and silk gland cells undergo endoreplication during larval period. Transcription factor Myc is essential for cell growth and proliferation. Although silkworm Myc gene has been identified previously, its biological functions in silkworm silk gland are still largely unknown. In this study, we examined whether enhanced Myc expression in silk gland could facilitate cell growth and silk production. Based on a transgenic approach, Myc was driven by the promoter of the fibroin heavy chain (FibH) gene to be successfully overexpressed in posterior silk gland. Enhanced Myc expression in the PSG elevated FibH expression by about 20% compared to the control, and also increased the weight and shell rate of the cocoon shell. Further investigation confirmed that Myc overexpression increased nucleus size and DNA content of the PSG cells by promoting the transcription of the genes involved in DNA replication. Therefore, we conclude that enhanced Myc expression promotes DNA replication and silk protein expression in endoreplicating silk gland cells, which subsequently raises silk yield.
Collapse
|
43
|
Zeng T, Guan Y, Li YK, Wu Q, Tang XJ, Zeng X, Ling H, Zou J. The DNA replication regulator MCM6: An emerging cancer biomarker and target. Clin Chim Acta 2021; 517:92-98. [PMID: 33609557 DOI: 10.1016/j.cca.2021.02.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/01/2021] [Accepted: 02/05/2021] [Indexed: 01/07/2023]
Abstract
MCM6 is a significant DNA replication regulator that plays a crucial role in sustaining the cell cycle. In many cancer cells, MCM6 expression is enhanced. For example, persistently increased expression of MCM6 promotes the formation, development and progression of hepatocellular carcinoma (HCC). Up- and down-regulation studies have indicated that MCM6 regulates cell cycle, proliferation, metastasis, immune response and the maintenance of the DNA replication system. MCM6 can also regulate downstream signaling such as MEK/ERK thus promoting carcinogenesis. Accordingly, MCM6 may represent a sensitive and specific biomarker to predict adverse progression and poor outcome. Furthermore, inhibition of MCM6 may be an effective cancer treatment. The present review summarizes the latest results on the inactivating and activating functions of MCM6, underlining its function in carcinogenesis. Further studies of the carcinogenic functions of MCM6 may provide novel insight into cancer biology and shed light on new approaches for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Tian Zeng
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, PR China
| | - Yang Guan
- Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330000, PR China
| | - Yu-Kun Li
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, PR China
| | - Qing Wu
- Department of Digestive Medical, The Affiliated Nanhua Hospital, University of South China, Hengyang 421002, PR China
| | - Xiao-Jun Tang
- Department of Spinal Surgery, The Second Affiliated Hospital of University of South China, Hengyang, Hunan 421001, PR China
| | - Xin Zeng
- Department of Histology and Embryology, Chongqing Three Gorges Medical College, Wanzhou, Chongqing 404000, PR China
| | - Hui Ling
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, PR China.
| | - Juan Zou
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, PR China.
| |
Collapse
|
44
|
Lee KJ, Li Z. The CRK2-CYC13 complex functions as an S-phase cyclin-dependent kinase to promote DNA replication in Trypanosoma brucei. BMC Biol 2021; 19:29. [PMID: 33568178 PMCID: PMC7876812 DOI: 10.1186/s12915-021-00961-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 01/15/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Faithful DNA replication is essential to maintain genomic stability in all living organisms, and the regulatory pathway for DNA replication initiation is conserved from yeast to humans. The evolutionarily ancient human parasite Trypanosoma brucei, however, lacks many of the conserved DNA replication factors and may employ unusual mechanisms for DNA replication. Neither the S-phase cyclin-dependent kinase (CDK) nor the regulatory pathway governing DNA replication has been previously identified in T. brucei. RESULTS Here we report that CRK2 (Cdc2-related kinase 2) complexes with CYC13 (Cyclin13) and functions as an S-phase CDK to promote DNA replication in T. brucei. We further show that CRK2 phosphorylates Mcm3, a subunit of the Mcm2-7 sub-complex of the Cdc45-Mcm2-7-GINS complex, and demonstrate that Mcm3 phosphorylation by CRK2 facilitates interaction with Sld5, a subunit of the GINS sub-complex of the Cdc45-Mcm2-7-GINS complex. CONCLUSIONS These results identify the CRK2-CYC13 complex as an S-phase regulator in T. brucei and reveal its role in regulating DNA replication through promoting the assembly of the Cdc45-Mcm2-7-GINS complex.
Collapse
Affiliation(s)
- Kyu Joon Lee
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Ziyin Li
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| |
Collapse
|
45
|
Naiman K, Campillo-Funollet E, Watson AT, Budden A, Miyabe I, Carr AM. Replication dynamics of recombination-dependent replication forks. Nat Commun 2021; 12:923. [PMID: 33568651 PMCID: PMC7876095 DOI: 10.1038/s41467-021-21198-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 01/16/2021] [Indexed: 12/30/2022] Open
Abstract
Replication forks restarted by homologous recombination are error prone and replicate both strands semi-conservatively using Pol δ. Here, we use polymerase usage sequencing to visualize in vivo replication dynamics of HR-restarted forks at an S. pombe replication barrier, RTS1, and model replication by Monte Carlo simulation. We show that HR-restarted forks synthesise both strands with Pol δ for up to 30 kb without maturing to a δ/ε configuration and that Pol α is not used significantly on either strand, suggesting the lagging strand template remains as a gap that is filled in by Pol δ later. We further demonstrate that HR-restarted forks progress uninterrupted through a fork barrier that arrests canonical forks. Finally, by manipulating lagging strand resection during HR-restart by deleting pku70, we show that the leading strand initiates replication at the same position, signifying the stability of the 3' single strand in the context of increased resection.
Collapse
Affiliation(s)
- Karel Naiman
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, UK.
| | | | - Adam T Watson
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, UK
| | - Alice Budden
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, UK
| | - Izumi Miyabe
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, UK
| | - Antony M Carr
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, UK.
| |
Collapse
|
46
|
Rapsomaniki MA, Maxouri S, Nathanailidou P, Garrastacho MR, Giakoumakis NN, Taraviras S, Lygeros J, Lygerou Z. In silico analysis of DNA re-replication across a complete genome reveals cell-to-cell heterogeneity and genome plasticity. NAR Genom Bioinform 2021; 3:lqaa112. [PMID: 33554116 PMCID: PMC7846089 DOI: 10.1093/nargab/lqaa112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/15/2020] [Accepted: 01/20/2021] [Indexed: 01/06/2023] Open
Abstract
DNA replication is a complex and remarkably robust process: despite its inherent uncertainty, manifested through stochastic replication timing at a single-cell level, multiple control mechanisms ensure its accurate and timely completion across a population. Disruptions in these mechanisms lead to DNA re-replication, closely connected to genomic instability and oncogenesis. Here, we present a stochastic hybrid model of DNA re-replication that accurately portrays the interplay between discrete dynamics, continuous dynamics and uncertainty. Using experimental data on the fission yeast genome, model simulations show how different regions respond to re-replication and permit insight into the key mechanisms affecting re-replication dynamics. Simulated and experimental population-level profiles exhibit a good correlation along the genome, robust to model parameters, validating our approach. At a single-cell level, copy numbers of individual loci are affected by intrinsic properties of each locus, in cis effects from adjoining loci and in trans effects from distant loci. In silico analysis and single-cell imaging reveal that cell-to-cell heterogeneity is inherent in re-replication and can lead to genome plasticity and a plethora of genotypic variations.
Collapse
Affiliation(s)
- Maria Anna Rapsomaniki
- Department of Biology, School of Medicine, University of Patras, 26500 Rio Patras, Greece
| | - Stella Maxouri
- Department of Biology, School of Medicine, University of Patras, 26500 Rio Patras, Greece
| | - Patroula Nathanailidou
- Department of Biology, School of Medicine, University of Patras, 26500 Rio Patras, Greece
| | | | | | - Stavros Taraviras
- Department of Physiology, School of Medicine, University of Patras, 26500 Rio Patras, Greece
| | - John Lygeros
- Automatic Control Laboratory, ETH Zurich, 8092 Zurich, Switzerland
| | - Zoi Lygerou
- Department of Biology, School of Medicine, University of Patras, 26500 Rio Patras, Greece
| |
Collapse
|
47
|
Wu X, Yu M, Zhang Z, Leng F, Ma Y, Xie N, Lu F. DDB2 regulates DNA replication through PCNA-independent degradation of CDT2. Cell Biosci 2021; 11:34. [PMID: 33557942 PMCID: PMC7869461 DOI: 10.1186/s13578-021-00540-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 01/15/2021] [Indexed: 01/28/2023] Open
Abstract
Background Targeting ubiquitin-dependent proteolysis is one of the strategies in cancer therapy. CRLCDT2 and CRLDDB2 are two key E3 ubiquitin ligases involved in DNA replication and DNA damage repair. But CDT2 and DDB2 are opposite prognostic factors in kinds of cancers, and the underlining mechanism needs to be elucidated. Methods Small interfering RNAs were used to determine the function of target genes. Co-immunoprecipitation (Co-IP) was performed to detect the interaction between DDB2 and CDT2. Immunofluorescence assays and fluorescence activating cell sorting (FACS) were used to measure the change of DNA content. In vivo ubiquitination assay was carried out to clarify the ubiquitination of CDT2 mediated by DDB2. Cell synchronization was performed to arrest cells at G1/S and S phase. The mechanism involved in DDB2-mediated CDT2 degradation was investigated by constructing plasmids with mutant variants and measured by Western blot. Immunohistochemistry was performed to determine the relationship between DDB2 and CDT2. Paired two-side Student’s t-test was used to measure the significance of the difference between control group and experimental group. Results Knockdown of DDB2 stabilized CDT2, while over-expression of DDB2 enhanced ubiquitination of CDT2, and subsequentially degradation of CDT2. Although both DDB2 and CDT2 contain PIP (PCNA-interacting protein) box, PIP box is dispensable for DDB2-mediated CDT2 degradation. Knockdown of PCNA had negligible effects on the stability of CDT2, but promoted accumulation of CDT1, p21 and SET8. Silencing of DDB2 arrested cell cycle in G1 phase, destabilized CDT1 and reduced the chromatin loading of MCMs, thereby blocked the formation of polyploidy induced by ablation of CDT2. In breast cancer and ovarian teratoma tissues, high level of DDB2 was along with lower level of CDT2. Conclusions We found that CRL4DDB2 is the novel E3 ubiquitin ligases of CDT2, and DDB2 regulates DNA replication through indirectly regulates CDT1 protein stability by degrading CDT2 and promotes the assembly of pre-replication complex. Our results broaden the horizon for understanding the opposite function of CDT2 and DDB2 in tumorigenesis, and may provide clues for drug discovery in cancer therapy.
Collapse
Affiliation(s)
- Xiaojun Wu
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, 518055, Shenzhen, China
| | - Min Yu
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, 518055, Shenzhen, China.,Research Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Zhuxia Zhang
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, 518055, Shenzhen, China
| | - Feng Leng
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, 518055, Shenzhen, China
| | - Yue Ma
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, 518055, Shenzhen, China
| | - Ni Xie
- Biobank, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, 518035, Shenzhen, China.
| | - Fei Lu
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, 518055, Shenzhen, China.
| |
Collapse
|
48
|
Xie T, Song XL, Wang C, Yu YZ, Wang JQ, Chen ZS, Zhao SC. The role of androgen therapy in prostate cancer: from testosterone replacement therapy to bipolar androgen therapy. Drug Discov Today 2021; 26:1293-1301. [PMID: 33561465 DOI: 10.1016/j.drudis.2021.01.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/14/2020] [Accepted: 01/30/2021] [Indexed: 01/01/2023]
Abstract
Testosterone replacement therapy (TRT) is the primary treatment for male testosterone deficiency. This therapy raises concerns over the risk of prostate cancer (PC), because testosterone has historically been considered the fuel for PC. We discuss the re-evaluation of the relationship between androgen and PC, and highlight the safety of TRT in the treatment of symptomatic men with testosterone deficiency who have low-risk disease after treatment for localized PC with surgery or radiation. Furthermore, we review the clinical application and potential mechanisms of bipolar androgen therapy (BAT) in the treatment of castration-resistant PC, emphasizing that much remains to be done before BAT can be broadly applied.
Collapse
Affiliation(s)
- Tao Xie
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Urology, the Third Affiliated Hospital of Southern Medical University, Guangzhou, 510500, China
| | - Xian-Lu Song
- Department of Radiotherapy, Affliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 510095, China
| | - Chong Wang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yu-Zhong Yu
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jing-Quan Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| | - Shan-Chao Zhao
- Department of Urology, the Third Affiliated Hospital of Southern Medical University, Guangzhou, 510500, China; Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
49
|
Prospect of reprogramming replication licensing for cancer drug development. Biomed Pharmacother 2021; 136:111190. [PMID: 33497909 DOI: 10.1016/j.biopha.2020.111190] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/15/2020] [Accepted: 12/26/2020] [Indexed: 12/15/2022] Open
Abstract
Eukaryotic chromosomal DNA replication is preceded by replication licensing which involves the identification of the origin of replication by origin recognition complex (ORC). The ORC loads pre-replication complexes (pre-RCs) through a series of tightly regulated mechanisms where the ORC interacts with Cdc6 to recruit cdt1-MCM2-7 complexes to the origin of replication. In eukaryotes, adherence to regulatory mechanisms of the replication program is required to ensure that all daughter cells carry the exact copy of genetic material as the parent cell. Failure of which leads to the development of genome instability syndromes like cancer, diabetes, etc. In an event of such occurrence, preventing cells from carrying the defaulted genetic material and passing it to other cells hinges on the regulation of chromosomal DNA replication. Thus, understanding the mechanisms underpinning chromosomal DNA replication and particularly replication licensing can expose druggable enzymes, effector molecules, and secondary messengers that can be targeted for diagnosis and therapeutic purposes. Effectively drugging these molecular markers to reprogram pre-replication events can be used to control the fate of chromosomal DNA replication for the treatment of genome instability disorders and in this case, cancer. This review discusses available knowledge of replication licensing in the contest of molecular drug discovery for the treatment of cancer.
Collapse
|
50
|
Johnson MC, Can G, Santos MM, Alexander D, Zegerman P. Checkpoint inhibition of origin firing prevents inappropriate replication outside of S-phase. eLife 2021; 10:e63589. [PMID: 33399537 PMCID: PMC7806266 DOI: 10.7554/elife.63589] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/04/2021] [Indexed: 01/02/2023] Open
Abstract
Checkpoints maintain the order of cell cycle events during DNA damage or incomplete replication. How the checkpoint response is tailored to different phases of the cell cycle remains poorly understood. The S-phase checkpoint for example results in the slowing of replication, which in budding yeast occurs by Rad53-dependent inhibition of the initiation factors Sld3 and Dbf4. Despite this, we show here that Rad53 phosphorylates both of these substrates throughout the cell cycle at the same sites as in S-phase, suggesting roles for this pathway beyond S-phase. Indeed, we show that Rad53-dependent inhibition of Sld3 and Dbf4 limits re-replication in G2/M, preventing gene amplification. In addition, we show that inhibition of Sld3 and Dbf4 in G1 prevents premature initiation at all origins at the G1/S transition. This study redefines the scope of the 'S-phase checkpoint' with implications for understanding checkpoint function in cancers that lack cell cycle controls.
Collapse
Affiliation(s)
- Mark C Johnson
- Wellcome Trust/Cancer Research United Kingdom Gurdon Institute and Department of Biochemistry, University of CambridgeCambridgeUnited Kingdom
| | - Geylani Can
- Wellcome Trust/Cancer Research United Kingdom Gurdon Institute and Department of Biochemistry, University of CambridgeCambridgeUnited Kingdom
| | - Miguel Monteiro Santos
- Wellcome Trust/Cancer Research United Kingdom Gurdon Institute and Department of Biochemistry, University of CambridgeCambridgeUnited Kingdom
| | - Diana Alexander
- Wellcome Trust/Cancer Research United Kingdom Gurdon Institute and Department of Biochemistry, University of CambridgeCambridgeUnited Kingdom
| | - Philip Zegerman
- Wellcome Trust/Cancer Research United Kingdom Gurdon Institute and Department of Biochemistry, University of CambridgeCambridgeUnited Kingdom
| |
Collapse
|