1
|
Walker ME, Zhu W, Peterson JH, Wang H, Patteson J, Soriano A, Zhang H, Mayhood T, Hou Y, Mesbahi-Vasey S, Gu M, Frost J, Lu J, Johnston J, Hipolito C, Lin S, Painter RE, Klein D, Walji A, Weinglass A, Kelly TM, Saldanha A, Schubert J, Bernstein HD, Walker SS. Antibacterial macrocyclic peptides reveal a distinct mode of BamA inhibition. Nat Commun 2025; 16:3395. [PMID: 40210867 PMCID: PMC11986105 DOI: 10.1038/s41467-025-58086-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 03/06/2025] [Indexed: 04/12/2025] Open
Abstract
Outer membrane proteins (OMPs) produced by Gram-negative bacteria contain a cylindrical amphipathic β-sheet ("β-barrel") that functions as a membrane spanning domain. The assembly (folding and membrane insertion) of OMPs is mediated by the heterooligomeric β-barrel assembly machine (BAM). The central BAM subunit (BamA) is an attractive antibacterial target because its structure and cell surface localization are conserved, it catalyzes an essential reaction, and potent bactericidal compounds that inhibit its activity have been described. Here we utilize mRNA display to discover cyclic peptides that bind to Escherichia coli BamA with high affinity. We describe three peptides that arrest the growth of BAM deficient E. coli strains, inhibit OMP assembly in live cells and in vitro, and bind to unique sites within the BamA β-barrel lumen. Remarkably, we find that if the peptides are added to cultures after a slowly assembling OMP mutant binds to BamA, they accelerate its biogenesis. The data strongly suggest that the peptides trap BamA in conformations that block the initiation of OMP assembly but favor a later assembly step. Molecular dynamics simulations provide further evidence that the peptides bind stably to BamA and function by a previously undescribed mechanism.
Collapse
Affiliation(s)
| | - Wei Zhu
- Merck & Co., Inc., Rahway, NJ, USA
| | - Janine H Peterson
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Hao Wang
- Merck & Co., Inc., West Point, PA, USA
| | | | | | - Han Zhang
- Merck & Co., Inc., West Point, PA, USA
| | | | - Yan Hou
- Merck & Co., Inc., Rahway, NJ, USA
| | | | - Meigang Gu
- Evotec Ltd., Abingdon, Oxfordshire, OX14 4RZ, UK
| | | | - Jun Lu
- Merck & Co., Inc., West Point, PA, USA
| | | | | | | | | | | | | | | | | | | | | | - Harris D Bernstein
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| | | |
Collapse
|
2
|
Yarava J, Orwick-Rydmark M, Ryoo D, Hofstetter A, Gumbart JC, Habeck M, van Rossum BJ, Linke D, Oschkinat H. Probing the Dynamics of Yersinia Adhesin A (YadA) in Outer Membranes Hints at Requirements for β-Barrel Membrane Insertion. J Am Chem Soc 2025; 147:8618-8628. [PMID: 40014811 PMCID: PMC11912334 DOI: 10.1021/jacs.4c17726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/01/2025]
Abstract
The vast majority of cells are protected and functionalized by a dense surface layer of glycans, proteoglycans, and glycolipids. This surface represents an underexplored space in structural biology that is exceedingly challenging to recreate in vitro. Here, we investigate β-barrel protein dynamics within an asymmetric outer membrane environment, with the trimeric autotransporter Yersinia adhesin A (YadA) as an example. Magic-angle spinning NMR relaxation data and a model-free approach reveal increased mobility in the second half of strand β2 after the conserved G72, which is responsible for membrane insertion and autotransport, and in the subsequent loop toward β3. In contrast, the protomer-protomer interaction sites (β1i-β4i-1) are rigid. Intriguingly, the mobility in the β-strand section following G72 is substantially elevated in the outer membrane and less so in the detergent environment of microcrystals. A possible source is revealed by molecular dynamics simulations that show the formation of a salt bridge involving E79 and R76 in competition with a dynamic interplay of calcium binding by E79 and the phosphate groups of the lipids. An estimation of overall barrel motion in the outer membrane and detergent-containing crystals yields values of around 41 ns for both. The global motion of YadA in the outer membrane has a stronger rotational component orthogonal to the symmetry axis of the trimeric porin than in the detergent-containing crystal. In summary, our investigation shows that the mobility in the second half of β2 and the loop to β3 required for membrane insertion and autotransport is maintained in the final folded form of YadA.
Collapse
Affiliation(s)
- Jayasubba
Reddy Yarava
- Leibniz-Forschungsinstitut
für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | | | - David Ryoo
- Interdisciplinary
Bioengineering Graduate Program, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Albert Hofstetter
- Department
of Chemistry and Applied Biosciences, ETH
Zurich, Vladimir-Prelog-Weg
2, 8093 Zurich, Switzerland
| | - James C. Gumbart
- School of
Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Michael Habeck
- Microscopic
Image Analysis Group, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Barth-Jan van Rossum
- Leibniz-Forschungsinstitut
für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Dirk Linke
- Department
of Biosciences, University of Oslo, P.O.Box 1066 Blindern, 0316 Oslo, Norway
| | - Hartmut Oschkinat
- Leibniz-Forschungsinstitut
für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany
- Freie
Universität Berlin, Takustraße 3, 14195 Berlin, Germany
| |
Collapse
|
3
|
Pang YT, Kuo KM, Yang L, Gumbart JC. DeepPath: Overcoming data scarcity for protein transition pathway prediction using physics-based deep learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.27.640693. [PMID: 40060558 PMCID: PMC11888466 DOI: 10.1101/2025.02.27.640693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
The structural dynamics of proteins play a crucial role in their function, yet most experimental and deep learning methods produce only static models. While molecular dynamics (MD) simulations provide atomistic insight into conformational transitions, they remain computationally prohibitive, particularly for large-scale motions. Here, we introduce DeepPath, a deep-learning-based framework that rapidly generates physically realistic transition pathways between known protein states. Unlike conventional supervised learning approaches, DeepPath employs active learning to iteratively refine its predictions, leveraging molecular mechanical force fields as an oracle to guide pathway generation. We validated DeepPath on three biologically relevant test cases: SHP2 activation, CdiB H1 secretion, and the BAM complex lateral gate opening. DeepPath accurately predicted the transition pathways for all test cases, reproducing key intermediate structures and transient interactions observed in previous studies. Notably, DeepPath also predicted an intermediate between the BAM inward- and outward-open states that closely aligns with an experimentally observed hybrid-barrel structure (TMscore = 0.91). Across all cases, DeepPath achieved accurate pathway predictions within hours, showcasing an efficient alternative to MD simulations for exploring protein conformational transitions.
Collapse
Affiliation(s)
- Yui Tik Pang
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Katie M Kuo
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Lixinhao Yang
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - James C Gumbart
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
4
|
Li W, Ji B, Li B, Du M, Wang L, Tuo J, Zhou H, Gong J, Zhao Y. Nitazoxanide inhibits pili assembly by targeting BamB to synergize with polymyxin B against drug-resistant Escherichia coli. Biochimie 2025; 233:47-59. [PMID: 39984113 DOI: 10.1016/j.biochi.2025.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/18/2025] [Accepted: 02/18/2025] [Indexed: 02/23/2025]
Abstract
Gram-negative bacteria rely on pili assembly for pathogenicity, with the chaperone-usher (CU) pathway regulating pilus biogenesis. Nitazoxanide (NTZ) inhibits CU pathway-mediated P pilus biogenesis by specifically interfering with the proper folding of the outer membrane protein (OMP) usher, primarily mediated by the β-barrel assembly machinery (BAM) complex. In this study, we identified the BAM complex components BamB and the BamA POTRA2 domain as key binding targets for NTZ. Molecular dynamics simulations and Bio-Layer Interferometry revealed that BamB residues S61 and R195 are critical for NTZ binding. NTZ activated the Cpx two-component system and induced inner membrane perturbations, which resulted from the accumulation of misfolded P pilus subunits. Upregulation of the ibpAB gene, which protects the bacteria against NTZ-induced oxidative stress, was also observed. Importantly, NTZ combined with polymyxin B enhanced the latter's antibacterial activity against both susceptible and MCR-positive E. coli strains. This enhancement was achieved through NTZ-induced increases in inner membrane permeability, oxidative stress, and inhibition of efflux pump activity and biofilm formation. This study provides new insights into the antimicrobial mechanism of NTZ and highlights its potential as an antibiotic adjuvant by targeting BamB to inhibit the CU pathway, restoring the efficacy of polymyxin B against multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Wenwen Li
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, 110016, China
| | - Bingjie Ji
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, 110016, China
| | - Boyu Li
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, 110016, China
| | - Minghui Du
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, 110016, China
| | - Linwei Wang
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, 110016, China
| | - Jiale Tuo
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, 110016, China
| | - Hongmei Zhou
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, 110016, China
| | - Jian Gong
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, 110016, China.
| | - Yongshan Zhao
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, 110016, China.
| |
Collapse
|
5
|
Sun S, Chen J. Unveiling the role of BON domain-containing proteins in antibiotic resistance. Front Microbiol 2025; 15:1518045. [PMID: 39839116 PMCID: PMC11747388 DOI: 10.3389/fmicb.2024.1518045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 12/16/2024] [Indexed: 01/23/2025] Open
Abstract
The alarming rise of antibiotic-resistant Gram-negative bacteria poses a global health crisis. Their unique outer membrane restricts antibiotic access. While diffusion porins are well-studied, the role of BON domain-containing proteins (BDCPs) in resistance remains unexplored. We analyze protein databases, revealing widespread BDCP distribution across environmental bacteria. We further describe their conserved core domain structure, a key for understanding antibiotic transport. Elucidating the genetic and biochemical basis of BDCPs offers a novel target to combat antibiotic resistance and restore bacterial susceptibility to antibiotics.
Collapse
Affiliation(s)
- Shengwei Sun
- Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Jinju Chen
- Department of Materials, Loughborough University, Loughborough, United Kingdom
| |
Collapse
|
6
|
Little JI, Singh PK, Zhao J, Dunn S, Matz H, Donnenberg MS. Type IV pili of Enterobacteriaceae species. EcoSal Plus 2024; 12:eesp00032023. [PMID: 38294234 PMCID: PMC11636386 DOI: 10.1128/ecosalplus.esp-0003-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 12/01/2023] [Indexed: 02/01/2024]
Abstract
Type IV pili (T4Ps) are surface filaments widely distributed among bacteria and archaea. T4Ps are involved in many cellular functions and contribute to virulence in some species of bacteria. Due to the diversity of T4Ps, different properties have been observed for homologous proteins that make up T4Ps in various organisms. In this review, we highlight the essential components of T4Ps, their functions, and similarities to related systems. We emphasize the unique T4Ps of enteric pathogens within the Enterobacteriaceae family, which includes pathogenic strains of Escherichia coli and Salmonella. These include the bundle-forming pilus (BFP) of enteropathogenic E. coli (EPEC), longus (Lng) and colonization factor III (CFA/III) of enterotoxigenic E. coli (ETEC), T4P of Salmonella enterica serovar Typhi, Colonization Factor Citrobacter (CFC) of Citrobacter rodentium, T4P of Yersinia pseudotuberculosis, a ubiquitous T4P that was characterized in enterohemorrhagic E. coli (EHEC), and the R64 plasmid thin pilus. Finally, we highlight areas for further study.
Collapse
Affiliation(s)
- Janay I. Little
- School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Pradip K. Singh
- School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Jinlei Zhao
- School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Shakeera Dunn
- Internal Medicine Residency, Bayhealth Medical Center, Dover, Delaware, USA
| | - Hanover Matz
- Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | | |
Collapse
|
7
|
Delgado KN, Caimano MJ, Orbe IC, Vicente CF, La Vake CJ, Grassmann AA, Moody MA, Radolf JD, Hawley KL. Immunodominant extracellular loops of Treponema pallidum FadL outer membrane proteins elicit antibodies with opsonic and growth-inhibitory activities. PLoS Pathog 2024; 20:e1012443. [PMID: 39715273 PMCID: PMC11761103 DOI: 10.1371/journal.ppat.1012443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 01/24/2025] [Accepted: 11/21/2024] [Indexed: 12/25/2024] Open
Abstract
The global resurgence of syphilis has created a potent stimulus for vaccine development. To identify potentially protective antibodies against Treponema pallidum (TPA), we used Pyrococcus furiosus thioredoxin (PfTrx) to display extracellular loops (ECLs) from three TPA outer membrane protein families (outer membrane factors for efflux pumps, eight-stranded β-barrels, and FadLs) to assess their reactivity with immune rabbit serum (IRS). We identified five immunodominant loops from the FadL orthologs TP0856, TP0858 and TP0865 by immunoblotting and ELISA. Rabbits and mice immunized with these five PfTrx constructs produced loop-specific antibodies that promoted opsonophagocytosis of TPA by rabbit peritoneal and murine bone marrow-derived macrophages at levels comparable to IRS and mouse syphilitic serum. Heat-inactivated IRS and loop-specific rabbit and mouse antisera also impaired viability, motility, and cellular attachment of spirochetes during in vitro cultivation. The results support the use of ECL-based vaccines and suggest that loop-specific antibodies promote spirochete clearance via Fc receptor-independent as well as Fc receptor-dependent mechanisms.
Collapse
Affiliation(s)
- Kristina N. Delgado
- Department of Medicine, UConn Health, Farmington, Connecticut, United States of America
| | - Melissa J. Caimano
- Department of Medicine, UConn Health, Farmington, Connecticut, United States of America
- Department of Pediatrics, UConn Health, Farmington, Connecticut, United States of America
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, United States of America
- Department of Research, Connecticut Children’s Research Institute, Hartford, Connecticut, United States of America
| | - Isabel C. Orbe
- Department of Pediatrics, UConn Health, Farmington, Connecticut, United States of America
| | - Crystal F. Vicente
- Department of Pediatrics, UConn Health, Farmington, Connecticut, United States of America
| | - Carson J. La Vake
- Department of Pediatrics, UConn Health, Farmington, Connecticut, United States of America
| | - André A. Grassmann
- Department of Medicine, UConn Health, Farmington, Connecticut, United States of America
| | - M. Anthony Moody
- Duke Human Vaccine Institute, Durham, North Carolina, United States of America
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Justin D. Radolf
- Department of Medicine, UConn Health, Farmington, Connecticut, United States of America
- Department of Pediatrics, UConn Health, Farmington, Connecticut, United States of America
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, United States of America
- Department of Research, Connecticut Children’s Research Institute, Hartford, Connecticut, United States of America
- Department of Immunology, UConn Health, Farmington, Connecticut, United States of America
- Department of Genetics and Genome Sciences, UConn Health, Farmington, Connecticut, United States of America
| | - Kelly L. Hawley
- Department of Medicine, UConn Health, Farmington, Connecticut, United States of America
- Department of Pediatrics, UConn Health, Farmington, Connecticut, United States of America
- Department of Research, Connecticut Children’s Research Institute, Hartford, Connecticut, United States of America
- Department of Immunology, UConn Health, Farmington, Connecticut, United States of America
- Division of Infectious Diseases and Immunology, Connecticut Children’s, Hartford, Connecticut, United States of America
| |
Collapse
|
8
|
Cottom CO, Stephenson R, Ricci D, Yang L, Gumbart JC, Noinaj N. Structural characterization of the POTRA domains from A. baumannii reveals new conformations in BamA. Structure 2024; 32:2038-2048.e3. [PMID: 39293443 PMCID: PMC11560574 DOI: 10.1016/j.str.2024.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 07/17/2024] [Accepted: 08/22/2024] [Indexed: 09/20/2024]
Abstract
Recent studies have demonstrated BamA, the central component of the β-barrel assembly machinery (BAM), as an important therapeutic target to combat infections caused by Acinetobacter baumannii and other Gram-negative pathogens. Homology modeling indicates BamA in A. baumannii consists of five polypeptide transport-associated (POTRA) domains and a β-barrel membrane domain. We characterized the POTRA domains of BamA from A. baumannii in solution using size-exclusion chromatography small angle X-ray scattering (SEC-SAXS) analysis and determined crystal structures in two conformational states that are drastically different than those previously observed in BamA from other bacteria, indicating that the POTRA domains are even more conformationally dynamic than has been observed previously. Molecular dynamics simulations of the POTRA domains from A. baumannii and Escherichia coli allowed us to identify key structural features that contribute to the observed novel states. Together, these studies expand on our current understanding of the conformational plasticity within BamA across differing bacterial species.
Collapse
Affiliation(s)
| | - Robert Stephenson
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Dante Ricci
- Achaogen, Inc., South San Francisco, CA, USA
| | - Lixinhao Yang
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - James C Gumbart
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA; School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Nicholas Noinaj
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA; Markey Center for Structural Biology, Purdue University, West Lafayette, IN, USA; Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
9
|
Bettin EB, Grassmann AA, Dellagostin OA, Gogarten JP, Caimano MJ. Leptospira interrogans encodes a canonical BamA and three novel noNterm Omp85 outer membrane protein paralogs. Sci Rep 2024; 14:19958. [PMID: 39198480 PMCID: PMC11358297 DOI: 10.1038/s41598-024-67772-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 07/15/2024] [Indexed: 09/01/2024] Open
Abstract
The Omp85 family of outer membrane proteins are ubiquitously distributed among diderm bacteria and play essential roles in outer membrane (OM) biogenesis. The majority of Omp85 orthologs are bipartite and consist of a conserved OM-embedded 16-stranded beta-barrel and variable periplasmic functional domains. Here, we demonstrate that Leptospira interrogans encodes four distinct Omp85 proteins. The presumptive leptospiral BamA, LIC11623, contains a noncanonical POTRA4 periplasmic domain that is conserved across Leptospiraceae. The remaining three leptospiral Omp85 proteins, LIC12252, LIC12254 and LIC12258, contain conserved beta-barrels but lack periplasmic domains. Two of the three 'noNterm' Omp85-like proteins were upregulated by leptospires in urine from infected mice compared to in vitro and/or following cultivation within rat peritoneal cavities. Mice infected with a L. interrogans lic11254 transposon mutant shed tenfold fewer leptospires in their urine compared to mice infected with the wild-type parent. Analyses of pathogenic and saprophytic Leptospira spp. identified five groups of noNterm Omp85 paralogs, including one pathogen- and two saprophyte-specific groups. Expanding our analysis beyond Leptospira spp., we identified additional noNterm Omp85 orthologs in bacteria isolated from diverse environments, suggesting a potential role for these previously unrecognized noNterm Omp85 proteins in physiological adaptation to harsh conditions.
Collapse
Affiliation(s)
- Everton B Bettin
- Department of Medicine, University of Connecticut Health, 263 Farmington Avenue, Farmington, CT, 06030-3715, USA
| | - André A Grassmann
- Department of Medicine, University of Connecticut Health, 263 Farmington Avenue, Farmington, CT, 06030-3715, USA
| | - Odir A Dellagostin
- Biotechnology Unit, Technological Development Center, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Johann Peter Gogarten
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
| | - Melissa J Caimano
- Department of Medicine, University of Connecticut Health, 263 Farmington Avenue, Farmington, CT, 06030-3715, USA.
- Department of Pediatrics, University of Connecticut Health, Farmington, CT, USA.
- Department of Molecular Biology and Biophysics, University of Connecticut Health, Farmington, CT, USA.
| |
Collapse
|
10
|
Delgado KN, Caimano MJ, Orbe IC, Vicente CF, La Vake CJ, Grassmann AA, Moody MA, Radolf JD, Hawley KL. Immunodominant extracellular loops of Treponema pallidum FadL outer membrane proteins elicit antibodies with opsonic and growth-inhibitory activities. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.30.605823. [PMID: 39131275 PMCID: PMC11312542 DOI: 10.1101/2024.07.30.605823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The global resurgence of syphilis has created a potent stimulus for vaccine development. To identify potentially protective antibodies (Abs) against Treponema pallidum (TPA), we used Pyrococcus furiosus thioredoxin (PfTrx) to display extracellular loops (ECLs) from three TPA outer membrane protein families (outer membrane factors for efflux pumps, eight-stranded β-barrels, and FadLs) to assess their reactivity with immune rabbit serum (IRS). Five ECLs from the FadL orthologs TP0856, TP0858 and TP0865 were immunodominant. Rabbits and mice immunized with these five PfTrx constructs produced ECL-specific Abs that promoted opsonophagocytosis of TPA by rabbit peritoneal and murine bone marrow-derived macrophages at levels comparable to IRS and mouse syphilitic serum. ECL-specific rabbit and mouse Abs also impaired viability, motility, and cellular attachment of spirochetes during in vitro cultivation. The results support the use of ECL-based vaccines and suggest that ECL-specific Abs promote spirochete clearance via Fc receptor-independent as well as Fc receptor-dependent mechanisms.
Collapse
Affiliation(s)
- Kristina N. Delgado
- Department of Medicine, UConn Health, Farmington, Connecticut, United States
| | - Melissa J. Caimano
- Department of Medicine, UConn Health, Farmington, Connecticut, United States
- Department of Pediatrics, UConn Health, Farmington, CT, United States
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, United States
- Department of Research, Connecticut Children’s Research Institute, Hartford, CT, United States
| | - Isabel C. Orbe
- Department of Pediatrics, UConn Health, Farmington, CT, United States
| | | | - Carson J. La Vake
- Department of Pediatrics, UConn Health, Farmington, CT, United States
| | - André A. Grassmann
- Department of Medicine, UConn Health, Farmington, Connecticut, United States
| | - M. Anthony Moody
- Duke Human Vaccine Institute, Durham, NC, United States
- Department of Pediatrics, Duke University Medical Center, Durham, NC, United States
- Department of Immunology, Duke University Medical Center, Durham, NC, United States
| | - Justin D. Radolf
- Department of Medicine, UConn Health, Farmington, Connecticut, United States
- Department of Pediatrics, UConn Health, Farmington, CT, United States
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, United States
- Department of Research, Connecticut Children’s Research Institute, Hartford, CT, United States
- Department of Immunology, UConn Health, Farmington, CT, United States
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, United States
| | - Kelly L. Hawley
- Department of Medicine, UConn Health, Farmington, Connecticut, United States
- Department of Pediatrics, UConn Health, Farmington, CT, United States
- Department of Research, Connecticut Children’s Research Institute, Hartford, CT, United States
- Department of Immunology, UConn Health, Farmington, CT, United States
- Division of Infectious Diseases and Immunology, Connecticut Children’s, Hartford, CT, United States
| |
Collapse
|
11
|
Goh KJ, Stubenrauch CJ, Lithgow T. The TAM, a Translocation and Assembly Module for protein assembly and potential conduit for phospholipid transfer. EMBO Rep 2024; 25:1711-1720. [PMID: 38467907 PMCID: PMC11014939 DOI: 10.1038/s44319-024-00111-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/08/2024] [Accepted: 02/20/2024] [Indexed: 03/13/2024] Open
Abstract
The assembly of β-barrel proteins into the bacterial outer membrane is an essential process enabling the colonization of new environmental niches. The TAM was discovered as a module of the β-barrel protein assembly machinery; it is a heterodimeric complex composed of an outer membrane protein (TamA) bound to an inner membrane protein (TamB). The TAM spans the periplasm, providing a scaffold through the peptidoglycan layer and catalyzing the translocation and assembly of β-barrel proteins into the outer membrane. Recently, studies on another membrane protein (YhdP) have suggested that TamB might play a role in phospholipid transport to the outer membrane. Here we review and re-evaluate the literature covering the experimental studies on the TAM over the past decade, to reconcile what appear to be conflicting claims on the function of the TAM.
Collapse
Affiliation(s)
- Kwok Jian Goh
- Centre to Impact AMR, Monash University, Melbourne, VIC, 3800, Australia
- Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Christopher J Stubenrauch
- Centre to Impact AMR, Monash University, Melbourne, VIC, 3800, Australia
- Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Trevor Lithgow
- Centre to Impact AMR, Monash University, Melbourne, VIC, 3800, Australia.
- Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia.
| |
Collapse
|
12
|
Pardue EJ, Sartorio MG, Jana B, Scott NE, Beatty WL, Ortiz-Marquez JC, Van Opijnen T, Hsu FF, Potter RF, Feldman MF. Dual membrane-spanning anti-sigma factors regulate vesiculation in Bacteroides thetaiotaomicron. Proc Natl Acad Sci U S A 2024; 121:e2321910121. [PMID: 38422018 PMCID: PMC10927553 DOI: 10.1073/pnas.2321910121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/19/2024] [Indexed: 03/02/2024] Open
Abstract
Bacteroidota are abundant members of the human gut microbiota that shape the enteric landscape by modulating host immunity and degrading dietary- and host-derived glycans. These processes are mediated in part by Outer Membrane Vesicles (OMVs). Here, we developed a high-throughput screen to identify genes required for OMV biogenesis and its regulation in Bacteroides thetaiotaomicron (Bt). We identified a family of Dual membrane-spanning anti-sigma factors (Dma) that control OMV biogenesis. We conducted molecular and multiomic analyses to demonstrate that deletion of Dma1, the founding member of the Dma family, modulates OMV production by controlling the activity of the ECF21 family sigma factor, Das1, and its downstream regulon. Dma1 has a previously uncharacterized domain organization that enables Dma1 to span both the inner and outer membrane of Bt. Phylogenetic analyses reveal that this common feature of the Dma family is restricted to the phylum Bacteroidota. This study provides mechanistic insights into the regulation of OMV biogenesis in human gut bacteria.
Collapse
Affiliation(s)
- Evan J. Pardue
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO63110
| | - Mariana G. Sartorio
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO63110
| | - Biswanath Jana
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO63110
| | - Nichollas E. Scott
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC3000, Australia
| | - Wandy L. Beatty
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO63110
| | | | | | - Fong-Fu Hsu
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, Saint Louis, MO63110
| | - Robert F. Potter
- Department of Pediatrics, Washington University School of Medicine, Saint Louis, MO63110
| | - Mario F. Feldman
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO63110
| |
Collapse
|
13
|
Sposato D, Mercolino J, Torrini L, Sperandeo P, Lucidi M, Alegiani R, Varone I, Molesini G, Leoni L, Rampioni G, Visca P, Imperi F. Redundant essentiality of AsmA-like proteins in Pseudomonas aeruginosa. mSphere 2024; 9:e0067723. [PMID: 38305166 PMCID: PMC10900882 DOI: 10.1128/msphere.00677-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/03/2024] [Indexed: 02/03/2024] Open
Abstract
The outer membrane (OM) is an essential structure of Gram-negative bacteria that provides mechanical strength and protection from large and/or hydrophobic toxic molecules, including many antibiotics. The OM is composed of glycerophospholipids (GPLs) and lipopolysaccharide (LPS) in the inner and outer leaflets, respectively, and hosts integral β-barrel proteins and lipoproteins. While the systems responsible for translocation and insertion of LPS and OM proteins have been elucidated, the mechanism(s) mediating transport of GPLs from the inner membrane to the OM has remained elusive for decades. Very recently, studies performed in Escherichia coli proposed a role in this process for AsmA-like proteins that are predicted to share structural features with eukaryotic lipid transporters. In this study, we provide the first systematic investigation of AsmA-like proteins in a bacterium other than E. coli, the opportunistic human pathogen Pseudomonas aeruginosa. Bioinformatic analyses revealed that P. aeruginosa possesses seven AsmA-like proteins. Deletion of asmA-like genes in many different combinations, coupled with conditional mutagenesis, revealed that four AsmA-like proteins are redundantly essential for growth and OM integrity in P. aeruginosa, including a novel AsmA-like protein (PA4735) that is not present in E. coli. Cells depleted of AsmA-like proteins showed severe defects in the OM permeability barrier that were partially rescued by lowering the synthesis or transport of LPS. Since fine balancing of GPL and LPS levels is crucial for OM integrity, this evidence supports the role of AsmA-like proteins in GPL transport toward the OM. IMPORTANCE Given the importance of the outer membrane (OM) for viability and antibiotic resistance in Gram-negative bacteria, in the last decades, several studies have focused on the characterization of the systems involved in OM biogenesis, which have also been explored as targets for antibacterial drug development. However, the mechanism mediating translocation of glycerophospholipids (GPLs) to the OM remained unknown until recent studies provided evidence that AsmA-like proteins could be responsible for this process. Here, we demonstrate for the first time that AsmA-like proteins are essential and redundant for growth and OM integrity in a Gram-negative bacterium other than the model organism Escherichia coli and demonstrate that the human pathogen Pseudomonas aeruginosa has an additional essential AsmA-like protein that is not present in E. coli, thus expanding the range of AsmA-like proteins that play key functions in Gram-negative bacteria.
Collapse
Affiliation(s)
| | | | - Luisa Torrini
- Department of Science, University Roma Tre, Rome, Italy
| | - Paola Sperandeo
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Milan, Italy
| | - Massimiliano Lucidi
- Department of Science, University Roma Tre, Rome, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | | | - Ilaria Varone
- Department of Science, University Roma Tre, Rome, Italy
| | | | - Livia Leoni
- Department of Science, University Roma Tre, Rome, Italy
| | - Giordano Rampioni
- Department of Science, University Roma Tre, Rome, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Paolo Visca
- Department of Science, University Roma Tre, Rome, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Francesco Imperi
- Department of Science, University Roma Tre, Rome, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
14
|
George A, Patil AG, Mahalakshmi R. ATP-independent assembly machinery of bacterial outer membranes: BAM complex structure and function set the stage for next-generation therapeutics. Protein Sci 2024; 33:e4896. [PMID: 38284489 PMCID: PMC10804688 DOI: 10.1002/pro.4896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/28/2023] [Accepted: 12/31/2023] [Indexed: 01/30/2024]
Abstract
Diderm bacteria employ β-barrel outer membrane proteins (OMPs) as their first line of communication with their environment. These OMPs are assembled efficiently in the asymmetric outer membrane by the β-Barrel Assembly Machinery (BAM). The multi-subunit BAM complex comprises the transmembrane OMP BamA as its functional subunit, with associated lipoproteins (e.g., BamB/C/D/E/F, RmpM) varying across phyla and performing different regulatory roles. The ability of BAM complex to recognize and fold OM β-barrels of diverse sizes, and reproducibly execute their membrane insertion, is independent of electrochemical energy. Recent atomic structures, which captured BAM-substrate complexes, show the assembly function of BamA can be tailored, with different substrate types exhibiting different folding mechanisms. Here, we highlight common and unique features of its interactome. We discuss how this conserved protein complex has evolved the ability to effectively achieve the directed assembly of diverse OMPs of wide-ranging sizes (8-36 β-stranded monomers). Additionally, we discuss how darobactin-the first natural membrane protein inhibitor of Gram-negative bacteria identified in over five decades-selectively targets and specifically inhibits BamA. We conclude by deliberating how a detailed deduction of BAM complex-associated regulation of OMP biogenesis and OM remodeling will open avenues for the identification and development of effective next-generation therapeutics against Gram-negative pathogens.
Collapse
Affiliation(s)
- Anjana George
- Molecular Biophysics Laboratory, Department of Biological SciencesIndian Institute of Science Education and ResearchBhopalIndia
| | - Akanksha Gajanan Patil
- Molecular Biophysics Laboratory, Department of Biological SciencesIndian Institute of Science Education and ResearchBhopalIndia
| | - Radhakrishnan Mahalakshmi
- Molecular Biophysics Laboratory, Department of Biological SciencesIndian Institute of Science Education and ResearchBhopalIndia
| |
Collapse
|
15
|
Storek KM, Sun D, Rutherford ST. Inhibitors targeting BamA in gram-negative bacteria. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119609. [PMID: 37852326 DOI: 10.1016/j.bbamcr.2023.119609] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/08/2023] [Accepted: 09/19/2023] [Indexed: 10/20/2023]
Abstract
Antibiotic resistance has led to an increase in the number of patient hospitalizations and deaths. The situation for gram-negative bacteria is especially dire as the last new class of antibiotics active against these bacteria was introduced to the clinic over 60 years ago, thus there is an immediate unmet need for new antibiotic classes able to overcome resistance. The outer membrane, a unique and essential structure in gram-negative bacteria, contains multiple potential antibacterial targets including BamA, an outer membrane protein that folds and inserts transmembrane β-barrel proteins. BamA is essential and conserved, and its outer membrane location eliminates a barrier that molecules must overcome to access this target. Recently, antibacterial small molecules, natural products, peptides, and antibodies that inhibit BamA activity have been reported, validating the druggability of this target and generating potential leads for antibiotic development. This review will describe these BamA inhibitors, highlight their key attributes, and identify challenges with this potential target.
Collapse
Affiliation(s)
- Kelly M Storek
- Department of Infectious Diseases, Genentech Inc., South San Francisco, CA, USA
| | - Dawei Sun
- Department of Structural Biology, Genentech Inc., South San Francisco, CA, USA
| | - Steven T Rutherford
- Department of Infectious Diseases, Genentech Inc., South San Francisco, CA, USA.
| |
Collapse
|
16
|
Lee Upton S, Tay JW, Schwartz DK, Sousa MC. Similarly slow diffusion of BAM and SecYEG complexes in live E. coli cells observed with 3D spt-PALM. Biophys J 2023; 122:4382-4394. [PMID: 37853695 PMCID: PMC10698321 DOI: 10.1016/j.bpj.2023.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/05/2023] [Accepted: 10/16/2023] [Indexed: 10/20/2023] Open
Abstract
The β-barrel assembly machinery (BAM) complex is responsible for inserting outer membrane proteins (OMPs) into the Escherichia coli outer membrane. The SecYEG translocon inserts inner membrane proteins into the inner membrane and translocates both soluble proteins and nascent OMPs into the periplasm. Recent reports describe Sec possibly playing a direct role in OMP biogenesis through interactions with the soluble polypeptide transport-associated (POTRA) domains of BamA (the central OMP component of BAM). Here we probe the diffusion behavior of these protein complexes using photoactivatable super-resolution localization microscopy and single-particle tracking in live E. coli cells of BAM and SecYEG components BamA and SecE and compare them to other outer and inner membrane proteins. To accurately measure trajectories on the highly curved cell surface, three-dimensional tracking was performed using double-helix point-spread function microscopy. All proteins tested exhibit two diffusive modes characterized by "slow" and "fast" diffusion coefficients. We implement a diffusion coefficient analysis as a function of the measurement lag time to separate positional uncertainty from true mobility. The resulting true diffusion coefficients of the slow and fast modes showed a complete immobility of full-length BamA constructs in the time frame of the experiment, whereas the OMP OmpLA displayed a slow diffusion consistent with the high viscosity of the outer membrane. The periplasmic POTRA domains of BamA were found to anchor BAM to other cellular structures and render it immobile. However, deletion of individual distal POTRA domains resulted in increased mobility, suggesting that these domains are required for the full set of cellular interactions. SecE diffusion was much slower than that of the inner membrane protein PgpB and was more like OMPs and BamA. Strikingly, SecE diffused faster upon POTRA domain deletion. These results are consistent with the existence of a BAM-SecYEG trans-periplasmic assembly in live E. coli cells.
Collapse
Affiliation(s)
- Stephen Lee Upton
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado
| | - Jian Wei Tay
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado
| | - Daniel Keith Schwartz
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado
| | | |
Collapse
|
17
|
Tran SC, McClain MS, Cover TL. Role of the CagY antenna projection in Helicobacter pylori Cag type IV secretion system activity. Infect Immun 2023; 91:e0015023. [PMID: 37638724 PMCID: PMC10501215 DOI: 10.1128/iai.00150-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/07/2023] [Indexed: 08/29/2023] Open
Abstract
Helicobacter pylori strains containing the cag pathogenicity island (PAI) are associated with the development of gastric adenocarcinoma and peptic ulcer disease. The cag PAI encodes a secreted effector protein (CagA) and a type IV secretion system (Cag T4SS). Cag T4SS activity is required for the delivery of CagA and non-protein substrates into host cells. The Cag T4SS outer membrane core complex (OMCC) contains a channel-like domain formed by helix-loop-helix elements (antenna projections, AP) from 14 copies of the CagY protein (a VirB10 ortholog). Similar VirB10 antenna regions are present in T4SS OMCCs from multiple bacterial species and are predicted to span the outer membrane. In this study, we investigated the role of the CagY antenna region in Cag T4SS OMCC assembly and Cag T4SS function. An H. pylori mutant strain with deletion of the entire CagY AP (∆AP) retained the capacity to produce CagY and assemble an OMCC, but it lacked T4SS activity (CagA translocation and IL-8 induction in AGS gastric epithelial cells). In contrast, a mutant strain with Gly-Ser substitutions in the unstructured CagY AP loop retained Cag T4SS activity. Mutants containing CagY AP loops with shortened lengths were defective in CagA translocation and exhibited reduced IL-8-inducing activity compared to control strains. These data indicate that the CagY AP region is required for Cag T4SS activity and that Cag T4SS activity can be modulated by altering the length of the CagY AP unstructured loop.
Collapse
Affiliation(s)
- Sirena C. Tran
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Mark S. McClain
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Timothy L. Cover
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| |
Collapse
|
18
|
Kuo K, Liu J, Pavlova A, Gumbart JC. Drug Binding to BamA Targets Its Lateral Gate. J Phys Chem B 2023; 127:7509-7517. [PMID: 37587651 PMCID: PMC10476194 DOI: 10.1021/acs.jpcb.3c04501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/30/2023] [Indexed: 08/18/2023]
Abstract
BamA, the core component of the β-barrel assembly machinery (BAM) complex, is an outer-membrane protein (OMP) in Gram-negative bacteria. Its function is to insert and fold substrate OMPs into the outer membrane (OM). Evidence suggests that BamA follows the asymmetric hybrid-barrel model where the first and last strands of BamA separate, a process known as lateral gate opening, to allow nascent substrate OMP β-strands to sequentially insert and fold through β-augmentation. Recently, multiple lead compounds that interfere with BamA's function have been identified. We modeled and then docked one of these compounds into either the extracellular loops of BamA or the open lateral gate. With the compound docked in the loops, we found that the lateral gate remains closed during 5 μs molecular dynamics simulations. The same compound when docked in the open lateral gate stays bound to the β16 strand of BamA during the simulation, which would prevent substrate OMP folding. In addition, we simulated mutants of BamA that are resistant to one or more of the identified lead compounds. In these simulations, we observed a differing degree and/or frequency of opening of BamA's lateral gate compared to BamA-apo, suggesting that the mutations grant resistance by altering the dynamics at the gate. We conclude that the compounds act by inhibiting BamA lateral gate opening and/or binding of substrate, thus preventing subsequent OMP folding and insertion.
Collapse
Affiliation(s)
- Katie
M. Kuo
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| | - Jinchan Liu
- Department
of Molecular Biophysics and Biochemistry (MB&B), Yale University, New Haven, Connecticut 06510, United States
| | - Anna Pavlova
- School
of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - James C. Gumbart
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
- School
of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
19
|
Pardue EJ, Sartorio MG, Jana B, Scott NE, Beatty W, Ortiz-Marquez JC, Van Opijnen T, Hsu FF, Potter R, Feldman MF. Dual Membrane-spanning Anti-Sigma Factors Regulate Vesiculation in Gut Bacteroidota. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.13.548920. [PMID: 37503209 PMCID: PMC10369966 DOI: 10.1101/2023.07.13.548920] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Bacteroidota are abundant members of the human gut microbiota that shape the enteric landscape by modulating host immunity and degrading dietary- and host-derived glycans. These processes are at least partially mediated by O uter M embrane V esicles (OMVs). In this work, we developed a high-throughput screen to identify genes required for OMV biogenesis and its regulation in Bacteroides thetaiotaomicron ( Bt ). Our screening led us to the identification of a novel family of D ual M embrane-spanning A nti-sigma factors (Dma), which regulate OMV biogenesis in Bt . We employed molecular and multiomic analyses to demonstrate that deletion of Dma1, the founding member of the Dma family, results in hypervesiculation by modulating the expression of NigD1, which belongs to a family of uncharacterized proteins found throughout Bacteroidota. Dma1 has an unprecedented domain organization: it contains a C-terminal β-barrel embedded in the OM; its N-terminal domain interacts with its cognate sigma factor in the cytoplasm, and both domains are tethered via an intrinsically disordered region that traverses the periplasm. Phylogenetic analyses reveal that the Dma family is a unique feature of Bacteroidota. This study provides the first mechanistic insights into the regulation of OMV biogenesis in human gut bacteria.
Collapse
|
20
|
Shen C, Chang S, Luo Q, Chan KC, Zhang Z, Luo B, Xie T, Lu G, Zhu X, Wei X, Dong C, Zhou R, Zhang X, Tang X, Dong H. Structural basis of BAM-mediated outer membrane β-barrel protein assembly. Nature 2023; 617:185-193. [PMID: 37100902 DOI: 10.1038/s41586-023-05988-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 03/21/2023] [Indexed: 04/28/2023]
Abstract
The outer membrane structure is common in Gram-negative bacteria, mitochondria and chloroplasts, and contains outer membrane β-barrel proteins (OMPs) that are essential interchange portals of materials1-3. All known OMPs share the antiparallel β-strand topology4, implicating a common evolutionary origin and conserved folding mechanism. Models have been proposed for bacterial β-barrel assembly machinery (BAM) to initiate OMP folding5,6; however, mechanisms by which BAM proceeds to complete OMP assembly remain unclear. Here we report intermediate structures of BAM assembling an OMP substrate, EspP, demonstrating sequential conformational dynamics of BAM during the late stages of OMP assembly, which is further supported by molecular dynamics simulations. Mutagenic in vitro and in vivo assembly assays reveal functional residues of BamA and EspP for barrel hybridization, closure and release. Our work provides novel insights into the common mechanism of OMP assembly.
Collapse
Affiliation(s)
- Chongrong Shen
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Shenghai Chang
- Department of Biophysics of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Center of Cryo Electron Microscopy, Zhejiang University, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qinghua Luo
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, West China Hospital, Sichuan University, Chengdu, China
| | - Kevin Chun Chan
- Institute of Quantitative Biology, College of Life Sciences, Cancer Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Shanghai Institute for Advanced Study, Zhejiang University, Shanghai, China
| | - Zhibo Zhang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Bingnan Luo
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Teng Xie
- Institute of Quantitative Biology, College of Life Sciences, Cancer Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Guangwen Lu
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Xiaofeng Zhu
- College of Life Science, Sichuan University, Chengdu, China
| | - Xiawei Wei
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Changjiang Dong
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Ruhong Zhou
- Institute of Quantitative Biology, College of Life Sciences, Cancer Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
- Shanghai Institute for Advanced Study, Zhejiang University, Shanghai, China.
- Department of Chemistry, Columbia University, New York, NY, USA.
| | - Xing Zhang
- Department of Biophysics of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Center of Cryo Electron Microscopy, Zhejiang University, Hangzhou, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China.
- Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Xiaodi Tang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China.
| | - Haohao Dong
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China.
- Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
21
|
Ikujuni AP, Budiardjo SJ, Dhar R, Slusky JSG. Detergent headgroups control TolC folding in vitro. Biophys J 2023; 122:1185-1197. [PMID: 36772796 PMCID: PMC10111266 DOI: 10.1016/j.bpj.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 12/29/2022] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
TolC is the trimeric outer membrane component of the efflux pump system in Escherichia coli that is responsible for antibiotic efflux from bacterial cells. Overexpression of efflux pumps has been reported to decrease susceptibility to antibiotics in a variety of bacterial pathogens. Reliable production of membrane proteins allows for the biophysical and structural characterization needed to better understand efflux and for the development of therapeutics. Preparation of recombinant protein for biochemical/structural studies often involves the production of proteins as inclusion body aggregates from which active proteins are recovered. Here, we find that the in vitro folding of TolC into its functional trimeric state from inclusion bodies is dependent on the headgroup composition of detergent micelles used. Nonionic detergent favors the formation of functional trimeric TolC, whereas zwitterionic detergents induce the formation of a non-native, oligomeric TolC fold. We also find that nonionic detergents with shorter alkyl lengths facilitate TolC folding. It remains to be seen whether the charges in lipid headgroups have similar effects on membrane insertion and folding in biological systems.
Collapse
Affiliation(s)
| | - S Jimmy Budiardjo
- Center for Computational Biology, The University of Kansas, Lawrence, Kansas
| | - Rik Dhar
- Department of Molecular Biosciences, The University of Kansas, Lawrence, Kansas
| | - Joanna S G Slusky
- Department of Molecular Biosciences, The University of Kansas, Lawrence, Kansas; Center for Computational Biology, The University of Kansas, Lawrence, Kansas.
| |
Collapse
|
22
|
Overly Cottom C, Stephenson R, Wilson L, Noinaj N. Targeting BAM for Novel Therapeutics against Pathogenic Gram-Negative Bacteria. Antibiotics (Basel) 2023; 12:679. [PMID: 37107041 PMCID: PMC10135246 DOI: 10.3390/antibiotics12040679] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 04/29/2023] Open
Abstract
The growing emergence of multidrug resistance in bacterial pathogens is an immediate threat to human health worldwide. Unfortunately, there has not been a matching increase in the discovery of new antibiotics to combat this alarming trend. Novel contemporary approaches aimed at antibiotic discovery against Gram-negative bacterial pathogens have expanded focus to also include essential surface-exposed receptors and protein complexes, which have classically been targeted for vaccine development. One surface-exposed protein complex that has gained recent attention is the β-barrel assembly machinery (BAM), which is conserved and essential across all Gram-negative bacteria. BAM is responsible for the biogenesis of β-barrel outer membrane proteins (β-OMPs) into the outer membrane. These β-OMPs serve essential roles for the cell including nutrient uptake, signaling, and adhesion, but can also serve as virulence factors mediating pathogenesis. The mechanism for how BAM mediates β-OMP biogenesis is known to be dynamic and complex, offering multiple modes for inhibition by small molecules and targeting by larger biologics. In this review, we introduce BAM and establish why it is a promising and exciting new therapeutic target and present recent studies reporting novel compounds and vaccines targeting BAM across various bacteria. These reports have fueled ongoing and future research on BAM and have boosted interest in BAM for its therapeutic promise in combatting multidrug resistance in Gram-negative bacterial pathogens.
Collapse
Affiliation(s)
- Claire Overly Cottom
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Robert Stephenson
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Lindsey Wilson
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Nicholas Noinaj
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
- Markey Center for Structural Biology, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
23
|
Cho SH, Dekoninck K, Collet JF. Envelope-Stress Sensing Mechanism of Rcs and Cpx Signaling Pathways in Gram-Negative Bacteria. J Microbiol 2023; 61:317-329. [PMID: 36892778 DOI: 10.1007/s12275-023-00030-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 03/10/2023]
Abstract
The global public health burden of bacterial antimicrobial resistance (AMR) is intensified by Gram-negative bacteria, which have an additional membrane, the outer membrane (OM), outside of the peptidoglycan (PG) cell wall. Bacterial two-component systems (TCSs) aid in maintaining envelope integrity through a phosphorylation cascade by controlling gene expression through sensor kinases and response regulators. In Escherichia coli, the major TCSs defending cells from envelope stress and adaptation are Rcs and Cpx, which are aided by OM lipoproteins RcsF and NlpE as sensors, respectively. In this review, we focus on these two OM sensors. β-Barrel assembly machinery (BAM) inserts transmembrane OM proteins (OMPs) into the OM. BAM co-assembles RcsF, the Rcs sensor, with OMPs, forming the RcsF-OMP complex. Researchers have presented two models for stress sensing in the Rcs pathway. The first model suggests that LPS perturbation stress disassembles the RcsF-OMP complex, freeing RcsF to activate Rcs. The second model proposes that BAM cannot assemble RcsF into OMPs when the OM or PG is under specific stresses, and thus, the unassembled RcsF activates Rcs. These two models may not be mutually exclusive. Here, we evaluate these two models critically in order to elucidate the stress sensing mechanism. NlpE, the Cpx sensor, has an N-terminal (NTD) and a C-terminal domain (CTD). A defect in lipoprotein trafficking results in NlpE retention in the inner membrane, provoking the Cpx response. Signaling requires the NlpE NTD, but not the NlpE CTD; however, OM-anchored NlpE senses adherence to a hydrophobic surface, with the NlpE CTD playing a key role in this function.
Collapse
Affiliation(s)
- Seung-Hyun Cho
- WELBIO-Walloon Excellence in Life Sciences and Biotechnology, 1200, Brussels, Belgium. .,de Duve Institute, Université Catholique de Louvain, 1200, Brussels, Belgium.
| | - Kilian Dekoninck
- WELBIO-Walloon Excellence in Life Sciences and Biotechnology, 1200, Brussels, Belgium.,de Duve Institute, Université Catholique de Louvain, 1200, Brussels, Belgium.,University of California, Berkeley, CA, 94720, USA
| | - Jean-Francois Collet
- WELBIO-Walloon Excellence in Life Sciences and Biotechnology, 1200, Brussels, Belgium.,de Duve Institute, Université Catholique de Louvain, 1200, Brussels, Belgium
| |
Collapse
|
24
|
Surveying membrane landscapes: a new look at the bacterial cell surface. Nat Rev Microbiol 2023:10.1038/s41579-023-00862-w. [PMID: 36828896 DOI: 10.1038/s41579-023-00862-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2023] [Indexed: 02/26/2023]
Abstract
Recent studies applying advanced imaging techniques are changing the way we understand bacterial cell surfaces, bringing new knowledge on everything from single-cell heterogeneity in bacterial populations to their drug sensitivity and mechanisms of antimicrobial resistance. In both Gram-positive and Gram-negative bacteria, the outermost surface of the bacterial cell is being imaged at nanoscale; as a result, topographical maps of bacterial cell surfaces can be constructed, revealing distinct zones and specific features that might uniquely identify each cell in a population. Functionally defined assembly precincts for protein insertion into the membrane have been mapped at nanoscale, and equivalent lipid-assembly precincts are suggested from discrete lipopolysaccharide patches. As we review here, particularly for Gram-negative bacteria, the applications of various modalities of nanoscale imaging are reawakening our curiosity about what is conceptually a 3D cell surface landscape: what it looks like, how it is made and how it provides resilience to respond to environmental impacts.
Collapse
|
25
|
Li F, Wang J, Jiang Y, Guo Y, Liu N, Xiao S, Yao L, Li J, Zhuo C, He N, Liu B, Zhuo C. Adaptive Evolution Compensated for the Plasmid Fitness Costs Brought by Specific Genetic Conflicts. Pathogens 2023; 12:pathogens12010137. [PMID: 36678485 PMCID: PMC9861728 DOI: 10.3390/pathogens12010137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/30/2022] [Accepted: 01/09/2023] [Indexed: 01/19/2023] Open
Abstract
New Delhi metallo-β-lactamase (NDM)-carrying IncX3 plasmids is important in the transmission of carbapenem resistance in Escherichia coli. Fitness costs related to plasmid carriage are expected to limit gene exchange; however, the causes of these fitness costs are poorly understood. Compensatory mutations are believed to ameliorate plasmid fitness costs and enable the plasmid's wide spread, suggesting that such costs are caused by specific plasmid-host genetic conflicts. By combining conjugation tests and experimental evolution with comparative genetic analysis, we showed here that the fitness costs related to ndm/IncX3 plasmids in E. coli C600 are caused by co-mutations of multiple host chromosomal genes related to sugar metabolism and cell membrane function. Adaptive evolution revealed that mutations in genes associated with oxidative stress, nucleotide and short-chain fatty acid metabolism, and cell membranes ameliorated the costs associated with plasmid carriage. Specific genetic conflicts associated with the ndm/IncX3 plasmid in E. coli C600 involve metabolism and cell-membrane-related genes, which could be ameliorated by compensatory mutations. Collectively, our findings could explain the wide spread of IncX3 plasmids in bacterial genomes, despite their potential cost.
Collapse
Affiliation(s)
- Feifeng Li
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510030, China
| | - Jiong Wang
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510030, China
| | - Ying Jiang
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510030, China
| | - Yingyi Guo
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510030, China
| | - Ningjing Liu
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510030, China
| | - Shunian Xiao
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510030, China
| | - Likang Yao
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510030, China
| | - Jiahui Li
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510030, China
| | - Chuyue Zhuo
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510030, China
| | - Nanhao He
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510030, China
| | - Baomo Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen Univesity, Guangzhou 510030, China
- Correspondence: (B.L.); (C.Z.)
| | - Chao Zhuo
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510030, China
- Correspondence: (B.L.); (C.Z.)
| |
Collapse
|
26
|
Jin F, Chang Z. Uncovering the membrane-integrated SecA N protein that plays a key role in translocating nascent outer membrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2023; 1871:140865. [PMID: 36272538 DOI: 10.1016/j.bbapap.2022.140865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/09/2022] [Accepted: 10/14/2022] [Indexed: 11/08/2022]
Abstract
A large number of nascent polypeptides have to get across a membrane in targeting to the proper subcellular locations. The SecYEG protein complex, a homolog of the Sec61 complex in eukaryotic cells, has been viewed as the common translocon at the inner membrane for targeting proteins to three extracytoplasmic locations in Gram-negative bacteria, despite the lack of direct verification in living cells. Here, via unnatural amino acid-mediated protein-protein interaction analyses in living cells, in combination with genetic studies, we unveiled a hitherto unreported SecAN protein that seems to be directly involved in translocationg nascent outer membrane proteins across the plasma membrane; it consists of the N-terminal 375 residues of the SecA protein and exists as a membrane-integrated homooligomer. Our new findings place multiple previous observations related to bacterial protein targeting in proper biochemical and evolutionary contexts.
Collapse
Affiliation(s)
- Feng Jin
- State key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Center for Protein Science, Peking University, Beijing 100871, China
| | - Zengyi Chang
- State key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Center for Protein Science, Peking University, Beijing 100871, China.
| |
Collapse
|
27
|
Li X, Ma S, Zhang Q. Chemical Synthesis and Biosynthesis of Darobactin. Tetrahedron Lett 2023. [DOI: 10.1016/j.tetlet.2023.154337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
28
|
Greenawalt AN, Stoudenmire J, Lundquist K, Noinaj N, Gumbart JC, Cornelissen CN. Point Mutations in TbpA Abrogate Human Transferrin Binding in Neisseria gonorrhoeae. Infect Immun 2022; 90:e0041422. [PMID: 36321833 PMCID: PMC9670983 DOI: 10.1128/iai.00414-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/07/2022] Open
Abstract
TonB-dependent transporters (TDTs) are essential proteins for metal acquisition, an important step in the growth and pathogenesis of many pathogens, including Neisseria gonorrhoeae, the causative agent of gonorrhea. There is currently no available vaccine for gonorrhea; TDTs are being investigated as vaccine candidates because they are highly conserved and expressed in vivo. Transferrin binding protein A (TbpA) is an essential virulence factor in the initiation of experimental infection in human males and functions by acquiring iron upon binding to host transferrin (human transferrin [hTf]). The loop 3 helix (L3H) is a helix finger that inserts into the hTf C-lobe and is required for hTf binding and subsequent iron acquisition. This study identified and characterized the first TbpA single-point substitutions resulting in significantly decreased hTf binding and iron acquisition, suggesting that the helix structure is more important than charge for hTf binding and utilization. The tbpA D355P ΔtbpB and tbpA A356P ΔtbpB mutants demonstrated significantly reduced hTf binding and impaired iron uptake from Fe-loaded hTf; however, only the tbpA A356P ΔtbpB mutant was able to grow when hTf was the sole source of iron. The expression of tbpB was able to restore function in all tbpA mutants. These results implicate both D355 and A356 in the key binding, extraction, and uptake functions of gonococcal TbpA.
Collapse
Affiliation(s)
- Ashley Nicole Greenawalt
- Center for Translational Immunology, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, USA
| | - Julie Stoudenmire
- Center for Translational Immunology, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, USA
| | - Karl Lundquist
- Markey Center for Structural Biology, Department of Biological Science, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, Indiana, USA
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Nicholas Noinaj
- Markey Center for Structural Biology, Department of Biological Science, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, Indiana, USA
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - James C. Gumbart
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Cynthia Nau Cornelissen
- Center for Translational Immunology, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, USA
| |
Collapse
|
29
|
Development of Resistance to Eravacycline by Klebsiella pneumoniae and Collateral Sensitivity-Guided Design of Combination Therapies. Microbiol Spectr 2022; 10:e0139022. [PMID: 35972286 PMCID: PMC9603973 DOI: 10.1128/spectrum.01390-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The evolution of bacterial antibiotic resistance is exhausting the list of currently used antibiotics and endangers those in the pipeline. The combination of antibiotics is a promising strategy that may suppress resistance development and/or achieve synergistic therapeutic effects. Eravacycline is a newly approved antibiotic that is effective against a variety of multidrug-resistant (MDR) pathogens. However, the evolution of resistance to eravacycline and strategies to suppress the evolution remain unexplored. Here, we demonstrated that a carbapenem-resistant Klebsiella pneumoniae clinical isolate quickly developed resistance to eravacycline, which is mainly caused by mutations in the gene encoding the Lon protease. The evolved resistant mutants display collateral sensitivities to β-lactam/β-lactamase inhibitor (BLBLI) combinations aztreonam/avibactam and ceftazidime-avibactam. Proteomic analysis revealed upregulation of the multidrug efflux system AcrA-AcrB-TolC and porin proteins OmpA and OmpU, which contributed to the increased resistance to eravacycline and susceptibility to BLBLIs, respectively. The combination of eravacycline with aztreonam/avibactam or ceftazidime-avibactam suppresses resistance development. We further demonstrated that eravacycline-resistant mutants evolved from an NDM-1-containing K. pneumoniae strain display collateral sensitivity to aztreonam/avibactam, and the combination of eravacycline with aztreonam/avibactam suppresses resistance development. In addition, the combination of eravacycline with aztreonam/avibactam or ceftazidime-avibactam displayed synergistic therapeutic effects in a murine cutaneous abscess model. Overall, our results revealed mechanisms of resistance to eravacycline and collateral sensitivities to BLBLIs and provided promising antibiotic combinations in the treatment of multidrug-resistant K. pneumoniae infections. IMPORTANCE The increasing bacterial antibiotic resistance is a serious threat to global public health, which demands novel antimicrobial medicines and treatment strategies. Eravacycline is a newly approved antibiotic that belongs to the tetracycline antibiotics. Here, we found that a multidrug-resistant Klebsiella pneumoniae clinical isolate rapidly developed resistance to eravacycline and the evolved resistant mutants displayed collateral sensitivity to antibiotics aztreonam/avibactam and ceftazidime-avibactam. We demonstrated that the combination of eravacycline with aztreonam/avibactam or ceftazidime-avibactam repressed resistance development and improved the treatment efficacies. We also elucidated the mechanisms that contribute to the increased resistance to eravacycline and susceptibility to aztreonam/avibactam and ceftazidime-avibactam. This work demonstrated the mechanisms of antibiotic resistance and collateral sensitivity and provided a new therapeutically option for effective antibiotic combinations.
Collapse
|
30
|
Svirina A, Chamachi N, Schlierf M. Single‐molecule approaches reveal outer membrane protein biogenesis dynamics. Bioessays 2022; 44:e2200149. [DOI: 10.1002/bies.202200149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Anna Svirina
- TU Dresden B CUBE – Center for Molecular Bioengineering Dresden Germany
| | - Neharika Chamachi
- TU Dresden B CUBE – Center for Molecular Bioengineering Dresden Germany
| | - Michael Schlierf
- TU Dresden B CUBE – Center for Molecular Bioengineering Dresden Germany
- Cluster of Excellence Physics of Life Technische Universität Dresden Dresden Germany
| |
Collapse
|
31
|
Biological Role of the 3β-Corner Structural Motif in Proteins. Processes (Basel) 2022. [DOI: 10.3390/pr10112159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
In this study, we analyze the occurrence of the unique structural motif, the 3β-corner, belonging to the Structural Classification of Proteins (SCOP) folds, in proteins of various origins. We further assess the structural and functional role of this motif as well as the clustering of the biological functions of proteins in which it occurs. It has been shown previously that the 3β-corner occurs with different probabilities in all beta proteins, alpha and beta proteins (α + β and α/β), and alpha classes occur most often in the composition of β-proteins. The 3β-corner is often found as a building block in protein structures, such as β-barrels, -sandwiches, and -sheets/-layers.
Collapse
|
32
|
Abstract
Several antibacterial compounds have recently been discovered that potentially inhibit the activity of BamA, an essential subunit of a heterooligomer (the barrel assembly machinery or BAM) that assembles outer membrane proteins (OMPs) in Gram-negative bacteria, but their mode of action is unclear. To address this issue, we examined the effect of three inhibitors on the biogenesis of a model E. coli OMP (EspP) in vivo. We found that darobactin potently inhibited the interaction of a conserved C-terminal sequence motif (the “β signal”) with BamA, but had no effect on assembly if added at a postbinding stage. In contrast, Polyphor peptide 7 and MRL-494 inhibited both binding and at least one later step of assembly. Taken together with previous studies that analyzed the binding of darobactin and Polyphor peptide 7 to BamA in vitro, our results strongly suggest that the two compounds inhibit BAM function by distinct competitive and allosteric mechanisms. In addition to providing insights into the properties of the antibacterial compounds, our results also provide direct experimental evidence that supports a model in which the binding of the β signal to BamA initiates the membrane insertion of OMPs.
Collapse
|
33
|
Characterization of Treponema denticola Major Surface Protein (Msp) by Deletion Analysis and Advanced Molecular Modeling. J Bacteriol 2022; 204:e0022822. [PMID: 35913147 PMCID: PMC9487533 DOI: 10.1128/jb.00228-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Treponema denticola, a keystone pathogen in periodontitis, is a model organism for studying Treponema physiology and host-microbe interactions. Its major surface protein Msp forms an oligomeric outer membrane complex that binds fibronectin, has cytotoxic pore-forming activity, and disrupts several intracellular processes in host cells. T. denticola msp is an ortholog of the Treponema pallidum tprA to -K gene family that includes tprK, whose remarkable in vivo hypervariability is proposed to contribute to T. pallidum immune evasion. We recently identified the primary Msp surface-exposed epitope and proposed a model of the Msp protein as a β-barrel protein similar to Gram-negative bacterial porins. Here, we report fine-scale Msp mutagenesis demonstrating that both the N and C termini as well as the centrally located Msp surface epitope are required for native Msp oligomer expression. Removal of as few as three C-terminal amino acids abrogated Msp detection on the T. denticola cell surface, and deletion of four residues resulted in complete loss of detectable Msp. Substitution of a FLAG tag for either residues 6 to 13 of mature Msp or an 8-residue portion of the central Msp surface epitope resulted in expression of full-length Msp but absence of the oligomer, suggesting roles for both domains in oligomer formation. Consistent with previously reported Msp N-glycosylation, proteinase K treatment of intact cells released a 25 kDa polypeptide containing the Msp surface epitope into culture supernatants. Molecular modeling of Msp using novel metagenome-derived multiple sequence alignment (MSA) algorithms supports the hypothesis that Msp is a large-diameter, trimeric outer membrane porin-like protein whose potential transport substrate remains to be identified. IMPORTANCE The Treponema denticola gene encoding its major surface protein (Msp) is an ortholog of the T. pallidum tprA to -K gene family that includes tprK, whose remarkable in vivo hypervariability is proposed to contribute to T. pallidum immune evasion. Using a combined strategy of fine-scale mutagenesis and advanced predictive molecular modeling, we characterized the Msp protein and present a high-confidence model of its structure as an oligomer embedded in the outer membrane. This work adds to knowledge of Msp-like proteins in oral treponemes and may contribute to understanding the evolutionary and potential functional relationships between T. denticola Msp and the orthologous T. pallidum Tpr proteins.
Collapse
|
34
|
Stoudenmire JL, Greenawalt AN, Cornelissen CN. Stealthy microbes: How Neisseria gonorrhoeae hijacks bulwarked iron during infection. Front Cell Infect Microbiol 2022; 12:1017348. [PMID: 36189345 PMCID: PMC9519893 DOI: 10.3389/fcimb.2022.1017348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Transition metals are essential for metalloprotein function among all domains of life. Humans utilize nutritional immunity to limit bacterial infections, employing metalloproteins such as hemoglobin, transferrin, and lactoferrin across a variety of physiological niches to sequester iron from invading bacteria. Consequently, some bacteria have evolved mechanisms to pirate the sequestered metals and thrive in these metal-restricted environments. Neisseria gonorrhoeae, the causative agent of the sexually transmitted infection gonorrhea, causes devastating disease worldwide and is an example of a bacterium capable of circumventing human nutritional immunity. Via production of specific outer-membrane metallotransporters, N. gonorrhoeae is capable of extracting iron directly from human innate immunity metalloproteins. This review focuses on the function and expression of each metalloprotein at gonococcal infection sites, as well as what is known about how the gonococcus accesses bound iron.
Collapse
Affiliation(s)
| | | | - Cynthia Nau Cornelissen
- Center for Translational Immunology, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
35
|
An Unprecedented Tolerance to Deletion of the Periplasmic Chaperones SurA, Skp, and DegP in the Nosocomial Pathogen Acinetobacter baumannii. J Bacteriol 2022; 204:e0005422. [PMID: 36106853 PMCID: PMC9578438 DOI: 10.1128/jb.00054-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The outer membrane (OM) of Gram-negative bacteria efficiently protects from harmful environmental stresses such as antibiotics, disinfectants, or dryness. The main constituents of the OM are integral OM β-barrel proteins (OMPs). In Gram-negative bacteria such as Escherichia coli, Yersinia enterocolitica, and Pseudomonas aeruginosa, the insertion of OMPs depends on a sophisticated biogenesis pathway. This comprises the SecYEG translocon, which enables inner membrane (IM) passage; the chaperones SurA, Skp, and DegP, which facilitate the passage of β-barrel OMPs through the periplasm; and the β-barrel assembly machinery (BAM), which facilitates insertion into the OM. In E. coli, Y. enterocolitica, and P. aeruginosa, the deletion of SurA is particularly detrimental and leads to a loss of OM integrity, sensitization to antibiotic treatment, and reduced virulence. In search of targets that could be exploited to develop compounds that interfere with OM integrity in Acinetobacter baumannii, we employed the multidrug-resistant strain AB5075 to generate single gene knockout strains lacking individual periplasmic chaperones. In contrast to E. coli, Y. enterocolitica, and P. aeruginosa, AB5075 tolerates the lack of SurA, Skp, or DegP with only weak mutant phenotypes. While the double knockout strains ΔsurAΔskp and ΔsurAΔdegP are conditionally lethal in E. coli, all double deletions were well tolerated by AB5075. Strikingly, even a triple-knockout strain of AB5075, lacking surA, skp, and degP, was viable. IMPORTANCEAcinetobacter baumannii is a major threat to human health due to its ability to persist in the hospital environment, resistance to antibiotic treatment, and ability to deploy multiple and redundant virulence factors. In a rising number of cases, infections with multidrug-resistant A. baumannii end up fatally, because all antibiotic treatment options fail. Thus, novel targets have to be identified and alternative therapeutics have to be developed. The knockout of periplasmic chaperones has previously proven to significantly reduce virulence and even break antibiotic resistance in other Gram-negative pathogens. Our study in A. baumannii demonstrates how variable the importance of the periplasmic chaperones SurA, Skp, and DegP can be and suggests the existence of mechanisms allowing A. baumannii to cope with the lack of the three periplasmic chaperones.
Collapse
|
36
|
Kuo KM, Ryoo D, Lundquist K, Gumbart JC. Modeling intermediates of BamA folding an outer membrane protein. Biophys J 2022; 121:3242-3252. [PMID: 35927955 PMCID: PMC9463690 DOI: 10.1016/j.bpj.2022.07.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/03/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022] Open
Abstract
BamA, the core component of the β-barrel assembly machinery complex, is an integral outer-membrane protein (OMP) in Gram-negative bacteria that catalyzes the folding and insertion of OMPs. A key feature of BamA relevant to its function is a lateral gate between its first and last β-strands. Opening of this lateral gate is one of the first steps in the asymmetric-hybrid-barrel model of BamA function. In this study, multiple hybrid-barrel folding intermediates of BamA and a substrate OMP, EspP, were constructed and simulated to better understand the model's physical consequences. The hybrid-barrel intermediates consisted of the BamA β-barrel and its POTRA5 domain and either one, two, three, four, five, or six β-hairpins of EspP. The simulation results support an asymmetric-hybrid-barrel model in which the BamA N-terminal β-strand forms stronger interactions with the substrate OMP than the C-terminal β-strand. A consistent "B"-shaped conformation of the final folding intermediate was observed, and the shape of the substrate β-barrel within the hybrid matched the shape of the fully folded substrate. Upon further investigation, inward-facing glycines were found at sharp bends within the hybrid and fully folded β-barrels. Together, the data suggest an influence of sequence on shape of the substrate barrel throughout the OMP folding process and of the fully folded OMP.
Collapse
Affiliation(s)
- Katie M Kuo
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia
| | - David Ryoo
- Interdisciplinary Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, Georgia
| | - Karl Lundquist
- Department of Biological Sciences, Markey Center for Structural Biology, Purdue University, West Lafayette, Indiana
| | - James C Gumbart
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia; School of Physics, Georgia Institute of Technology, Atlanta, Georgia.
| |
Collapse
|
37
|
Xiang S, Pinto C, Baldus M. Divide and Conquer: A Tailored Solid‐state NMR Approach to Study Large Membrane Protein Complexes. Angew Chem Int Ed Engl 2022; 61:e202203319. [PMID: 35712982 PMCID: PMC9540533 DOI: 10.1002/anie.202203319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Indexed: 11/18/2022]
Abstract
Membrane proteins are known to exert many essential biological functions by forming complexes in cell membranes. An example refers to the β‐barrel assembly machinery (BAM), a 200 kDa pentameric complex containing BAM proteins A–E that catalyzes the essential process of protein insertion into the outer membrane of gram‐negative bacteria. While progress has been made in capturing three‐dimensional structural snapshots of the BAM complex, the role of the lipoprotein BamC in the complex assembly in functional lipid bilayers has remained unclear. We have devised a component‐selective preparation scheme to directly study BamC as part of the entire BAM complex in lipid bilayers. Combination with proton‐detected solid‐state NMR methods allowed us to probe the structure, dynamics, and supramolecular topology of full‐length BamC embedded in the entire complex in lipid bilayers. Our approach may help decipher how individual proteins contribute to the dynamic formation and functioning of membrane protein complexes in membranes.
Collapse
Affiliation(s)
- ShengQi Xiang
- NMR Spectroscopy Bijvoet Center for Biomolecular Research Utrecht University Padualaan 8 3584 CH Utrecht The Netherlands
- MOE Key Lab for Cellular Dynamics School of Life Sciences University of Science and Technology of China 96 Jinzhai Road Hefei 230026 Anhui China
| | - Cecilia Pinto
- NMR Spectroscopy Bijvoet Center for Biomolecular Research Utrecht University Padualaan 8 3584 CH Utrecht The Netherlands
- Current address: Department of Bionanoscience Kavli Institute of Nanoscience Delft University of Technology Van der Maasweg 9 2629 H. Z. Delft The Netherlands
| | - Marc Baldus
- NMR Spectroscopy Bijvoet Center for Biomolecular Research Utrecht University Padualaan 8 3584 CH Utrecht The Netherlands
| |
Collapse
|
38
|
Sicoli G, Konijnenberg A, Guérin J, Hessmann S, Del Nero E, Hernandez-Alba O, Lecher S, Rouaut G, Müggenburg L, Vezin H, Cianférani S, Sobott F, Schneider R, Jacob-Dubuisson F. Large-Scale Conformational Changes of FhaC Provide Insights Into the Two-Partner Secretion Mechanism. Front Mol Biosci 2022; 9:950871. [PMID: 35936790 PMCID: PMC9355242 DOI: 10.3389/fmolb.2022.950871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/24/2022] [Indexed: 11/30/2022] Open
Abstract
The Two-Partner secretion pathway mediates protein transport across the outer membrane of Gram-negative bacteria. TpsB transporters belong to the Omp85 superfamily, whose members catalyze protein insertion into, or translocation across membranes without external energy sources. They are composed of a transmembrane β barrel preceded by two periplasmic POTRA domains that bind the incoming protein substrate. Here we used an integrative approach combining in vivo assays, mass spectrometry, nuclear magnetic resonance and electron paramagnetic resonance techniques suitable to detect minor states in heterogeneous populations, to explore transient conformers of the TpsB transporter FhaC. This revealed substantial, spontaneous conformational changes on a slow time scale, with parts of the POTRA2 domain approaching the lipid bilayer and the protein’s surface loops. Specifically, our data indicate that an amphipathic POTRA2 β hairpin can insert into the β barrel. We propose that these motions enlarge the channel and initiate substrate secretion. Our data propose a solution to the conundrum how TpsB transporters mediate protein secretion without the need for cofactors, by utilizing intrinsic protein dynamics.
Collapse
Affiliation(s)
- Giuseppe Sicoli
- Laboratoire Avancé de Spectroscopie pour les Interactions, la Réactivité et l’Environnement (LASIRE), UMR CNRS 8516, Université de Lille, Lille, France
| | | | - Jérémy Guérin
- CNRS, INSERM, Institut Pasteur de Lille, Université de Lille, U1019-UMR9017-CIIL-Center for Infection and Immunity of Lille, Lille, France
| | - Steve Hessmann
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI – FR 2048, Strasbourg, France
| | - Elise Del Nero
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI – FR 2048, Strasbourg, France
| | - Oscar Hernandez-Alba
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI – FR 2048, Strasbourg, France
| | - Sophie Lecher
- CNRS, INSERM, Institut Pasteur de Lille, Université de Lille, U1019-UMR9017-CIIL-Center for Infection and Immunity of Lille, Lille, France
| | - Guillaume Rouaut
- CNRS EMR9002 Integrative Structural Biology, Lille, France
- INSERM, CHU Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Institut Pasteur de Lille, Université de Lille, Lille, France
| | - Linn Müggenburg
- CNRS EMR9002 Integrative Structural Biology, Lille, France
- INSERM, CHU Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Institut Pasteur de Lille, Université de Lille, Lille, France
| | - Hervé Vezin
- Laboratoire Avancé de Spectroscopie pour les Interactions, la Réactivité et l’Environnement (LASIRE), UMR CNRS 8516, Université de Lille, Lille, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI – FR 2048, Strasbourg, France
| | - Frank Sobott
- BAMS Research Group, University of Antwerp, Antwerp, Belgium
- Astbury Centre for Structural Molecular Biology and the School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Robert Schneider
- CNRS EMR9002 Integrative Structural Biology, Lille, France
- INSERM, CHU Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Institut Pasteur de Lille, Université de Lille, Lille, France
- *Correspondence: Robert Schneider, ; Françoise Jacob-Dubuisson,
| | - Françoise Jacob-Dubuisson
- CNRS, INSERM, Institut Pasteur de Lille, Université de Lille, U1019-UMR9017-CIIL-Center for Infection and Immunity of Lille, Lille, France
- *Correspondence: Robert Schneider, ; Françoise Jacob-Dubuisson,
| |
Collapse
|
39
|
Xiang S, Pinto C, Baldus M. Divide and Conquer: A Tailored Solid‐state NMR Approach to Study Large Membrane Protein Complexes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- ShengQi Xiang
- University of Science and Technology of China, Anhui, MOE Key lab for Cellular Dynamics CHINA
| | - Cecilia Pinto
- Delft University of Technology: Technische Universiteit Delft Department of Bionanoscience NETHERLANDS
| | - Marc Baldus
- Utrecht University Bijvoet Center for Biomolecular Research Padualaan 8 3584 Utrecht NETHERLANDS
| |
Collapse
|
40
|
Filloux A. Bacterial protein secretion systems: Game of types. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35536734 DOI: 10.1099/mic.0.001193] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Protein trafficking across the bacterial envelope is a process that contributes to the organisation and integrity of the cell. It is the foundation for establishing contact and exchange between the environment and the cytosol. It helps cells to communicate with one another, whether they establish symbiotic or competitive behaviours. It is instrumental for pathogenesis and for bacteria to subvert the host immune response. Understanding the formation of envelope conduits and the manifold strategies employed for moving macromolecules across these channels is a fascinating playground. The diversity of the nanomachines involved in this process logically resulted in an attempt to classify them, which is where the protein secretion system types emerged. As our knowledge grew, so did the number of types, and their rightful nomenclature started to be questioned. While this may seem a semantic or philosophical issue, it also reflects scientific rigour when it comes to assimilating findings into textbooks and science history. Here I give an overview on bacterial protein secretion systems, their history, their nomenclature and why it can be misleading for newcomers in the field. Note that I do not try to suggest a new nomenclature. Instead, I explore the reasons why naming could have escaped our control and I try to reiterate basic concepts that underlie protein trafficking cross membranes.
Collapse
Affiliation(s)
- Alain Filloux
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
41
|
Wang X, Bernstein HD. The Escherichia coli outer membrane protein OmpA acquires secondary structure prior to its integration into the membrane. J Biol Chem 2022; 298:101802. [PMID: 35257747 PMCID: PMC8987393 DOI: 10.1016/j.jbc.2022.101802] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 11/25/2022] Open
Abstract
Almost all proteins that reside in the outer membrane (OM) of Gram-negative bacteria contain a membrane-spanning segment that folds into a unique β barrel structure and inserts into the membrane by an unknown mechanism. To obtain further insight into outer membrane protein (OMP) biogenesis, we revisited the surprising observation reported over 20 years ago that the Escherichia coli OmpA β barrel can be assembled into a native structure in vivo when it is expressed as two noncovalently linked fragments. Here, we show that disulfide bonds between β strand 4 in the N-terminal fragment and β strand 5 in the C-terminal fragment can form in the periplasmic space and greatly increase the efficiency of assembly of "split" OmpA, but only if the cysteine residues are engineered in perfect register (i.e., they are aligned in the fully folded β barrel). In contrast, we observed only weak disulfide bonding between β strand 1 in the N-terminal fragment and β strand 8 in the C-terminal fragment that would form a closed or circularly permutated β barrel. Our results not only demonstrate that β barrels begin to fold into a β-sheet-like structure before they are integrated into the OM but also help to discriminate among the different models of OMP biogenesis that have been proposed.
Collapse
Affiliation(s)
- Xu Wang
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Harris D Bernstein
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
42
|
Doyle MT, Jimah JR, Dowdy T, Ohlemacher SI, Larion M, Hinshaw JE, Bernstein HD. Cryo-EM structures reveal multiple stages of bacterial outer membrane protein folding. Cell 2022; 185:1143-1156.e13. [PMID: 35294859 DOI: 10.1016/j.cell.2022.02.016] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/01/2021] [Accepted: 02/13/2022] [Indexed: 02/08/2023]
Abstract
Transmembrane β barrel proteins are folded into the outer membrane (OM) of Gram-negative bacteria by the β barrel assembly machinery (BAM) via a poorly understood process that occurs without known external energy sources. Here, we used single-particle cryo-EM to visualize the folding dynamics of a model β barrel protein (EspP) by BAM. We found that BAM binds the highly conserved "β signal" motif of EspP to correctly orient β strands in the OM during folding. We also found that the folding of EspP proceeds via "hybrid-barrel" intermediates in which membrane integrated β sheets are attached to the essential BAM subunit, BamA. The structures show an unprecedented deflection of the membrane surrounding the EspP intermediates and suggest that β sheets progressively fold toward BamA to form a β barrel. Along with in vivo experiments that tracked β barrel folding while the OM tension was modified, our results support a model in which BAM harnesses OM elasticity to accelerate β barrel folding.
Collapse
Affiliation(s)
- Matthew Thomas Doyle
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - John R Jimah
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tyrone Dowdy
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shannon I Ohlemacher
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mioara Larion
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jenny E Hinshaw
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Harris D Bernstein
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
43
|
Hegde RS, Keenan RJ. The mechanisms of integral membrane protein biogenesis. Nat Rev Mol Cell Biol 2022; 23:107-124. [PMID: 34556847 DOI: 10.1038/s41580-021-00413-2] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2021] [Indexed: 02/08/2023]
Abstract
Roughly one quarter of all genes code for integral membrane proteins that are inserted into the plasma membrane of prokaryotes or the endoplasmic reticulum membrane of eukaryotes. Multiple pathways are used for the targeting and insertion of membrane proteins on the basis of their topological and biophysical characteristics. Multipass membrane proteins span the membrane multiple times and face the additional challenges of intramembrane folding. In many cases, integral membrane proteins require assembly with other proteins to form multi-subunit membrane protein complexes. Recent biochemical and structural analyses have provided considerable clarity regarding the molecular basis of membrane protein targeting and insertion, with tantalizing new insights into the poorly understood processes of multipass membrane protein biogenesis and multi-subunit protein complex assembly.
Collapse
Affiliation(s)
- Ramanujan S Hegde
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge, UK.
| | - Robert J Keenan
- Gordon Center for Integrative Science, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
44
|
George A, Ravi R, Tiwari PB, Srivastava SR, Jain V, Mahalakshmi R. Engineering a Hyperstable Yersinia pestis Outer Membrane Protein Ail Using Thermodynamic Design. J Am Chem Soc 2022; 144:1545-1555. [DOI: 10.1021/jacs.1c05964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Anjana George
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal - 462066, India
| | - Roshika Ravi
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal - 462066, India
| | - Pankaj Bharat Tiwari
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal - 462066, India
| | - Shashank Ranjan Srivastava
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal - 462066, India
| | - Vikas Jain
- Microbiology and Molecular Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal - 462066, India
| | - Radhakrishnan Mahalakshmi
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal - 462066, India
| |
Collapse
|
45
|
Fenner K, Redgate A, Brancaleon L. A 200 nanoseconds all-atom simulation of the pH-dependent EF loop transition in bovine β-lactoglobulin. The role of the orientation of the E89 side chain. J Biomol Struct Dyn 2022; 40:549-564. [PMID: 32909899 PMCID: PMC8853732 DOI: 10.1080/07391102.2020.1817785] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In silico molecular dynamics (MD) using crystallographic and NMR data was used to simulate the effects of the protonation state of E89 on the pH-dependent conformational rearrangement of the EF loop, also known as the Tanford transition, in a series of apo-β-lactoglobulin (BLG) structures. Compared to existing studies these simulations were carried out over a much longer time scale (200 ns where the stability of the transition can be evaluated) and used an explicit water model. We considered eight different entries from the Brookhaven Protein Data Bank (PDB) separated into two groups. We observed that fixing the protonation state of E89 prompts the transition of the EF loop only when its side chain is oriented under the loop and into the entrance of the interior cavity. The motion of the EF loop occurs mostly as a step-function and its timing varies greatly from ∼ 20 ns to ∼170 ns from the beginning of the simulation. Once the transition is completed, the protein appears to reach a stable conformation as in a true two-state transition. We also observed novel findings. When the transition occurs, the hydrogen bond between E89 and S116 is replaced with a salt bridge with Lys residues in the βC-CD loop-βD motif. This electrostatic interaction causes the distortion of this motif as well as the protrusion of the GH loop into the aperture of the cavity with the result of limiting the increase of its contour area despite the rotation of the EF loop.Communicated by Ramaswamy H. Sarma.
Collapse
|
46
|
Gao M, Nakajima An D, Skolnick J. Deep learning-driven insights into super protein complexes for outer membrane protein biogenesis in bacteria. eLife 2022; 11:82885. [PMID: 36576775 PMCID: PMC9797188 DOI: 10.7554/elife.82885] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/28/2022] [Indexed: 12/29/2022] Open
Abstract
To reach their final destinations, outer membrane proteins (OMPs) of gram-negative bacteria undertake an eventful journey beginning in the cytosol. Multiple molecular machines, chaperones, proteases, and other enzymes facilitate the translocation and assembly of OMPs. These helpers usually associate, often transiently, forming large protein assemblies. They are not well understood due to experimental challenges in capturing and characterizing protein-protein interactions (PPIs), especially transient ones. Using AF2Complex, we introduce a high-throughput, deep learning pipeline to identify PPIs within the Escherichia coli cell envelope and apply it to several proteins from an OMP biogenesis pathway. Among the top confident hits obtained from screening ~1500 envelope proteins, we find not only expected interactions but also unexpected ones with profound implications. Subsequently, we predict atomic structures for these protein complexes. These structures, typically of high confidence, explain experimental observations and lead to mechanistic hypotheses for how a chaperone assists a nascent, precursor OMP emerging from a translocon, how another chaperone prevents it from aggregating and docks to a β-barrel assembly port, and how a protease performs quality control. This work presents a general strategy for investigating biological pathways by using structural insights gained from deep learning-based predictions.
Collapse
Affiliation(s)
- Mu Gao
- Center for the Study of Systems Biology, School of Biological Sciences, Georgia Institute of TechnologyAtlantaUnited States
| | - Davi Nakajima An
- School of Computer Science, Georgia Institute of TechnologyAtlantaUnited States
| | - Jeffrey Skolnick
- Center for the Study of Systems Biology, School of Biological Sciences, Georgia Institute of TechnologyAtlantaUnited States
| |
Collapse
|
47
|
ATP disrupts lipid-binding equilibrium to drive retrograde transport critical for bacterial outer membrane asymmetry. Proc Natl Acad Sci U S A 2021; 118:2110055118. [PMID: 34873038 DOI: 10.1073/pnas.2110055118] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2021] [Indexed: 12/15/2022] Open
Abstract
The hallmark of the gram-negative bacterial envelope is the presence of the outer membrane (OM). The OM is asymmetric, comprising lipopolysaccharides (LPS) in the outer leaflet and phospholipids (PLs) in the inner leaflet; this critical feature confers permeability barrier function against external insults, including antibiotics. To maintain OM lipid asymmetry, the OmpC-Mla system is believed to remove aberrantly localized PLs from the OM and transport them to the inner membrane (IM). Key to the system in driving lipid trafficking is the MlaFEDB ATP-binding cassette transporter complex in the IM, but mechanistic details, including transport directionality, remain enigmatic. Here, we develop a sensitive point-to-point in vitro lipid transfer assay that allows direct tracking of [14C]-labeled PLs between the periplasmic chaperone MlaC and MlaFEDB reconstituted into nanodiscs. We reveal that MlaC spontaneously transfers PLs to the IM transporter in an MlaD-dependent manner that can be further enhanced by coupled ATP hydrolysis. In addition, we show that MlaD is important for modulating productive coupling between ATP hydrolysis and such retrograde PL transfer. We further demonstrate that spontaneous PL transfer also occurs from MlaFEDB to MlaC, but such anterograde movement is instead abolished by ATP hydrolysis. Our work uncovers a model where PLs reversibly partition between two lipid-binding sites in MlaC and MlaFEDB, and ATP binding and/or hydrolysis shift this equilibrium to ultimately drive retrograde PL transport by the OmpC-Mla system. These mechanistic insights will inform future efforts toward discovering new antibiotics against gram-negative pathogens.
Collapse
|
48
|
Plasticity within the barrel domain of BamA mediates a hybrid-barrel mechanism by BAM. Nat Commun 2021; 12:7131. [PMID: 34880256 PMCID: PMC8655018 DOI: 10.1038/s41467-021-27449-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 11/22/2021] [Indexed: 12/26/2022] Open
Abstract
In Gram-negative bacteria, the biogenesis of β-barrel outer membrane proteins is mediated by the β-barrel assembly machinery (BAM). The mechanism employed by BAM is complex and so far- incompletely understood. Here, we report the structures of BAM in nanodiscs, prepared using polar lipids and native membranes, where we observe an outward-open state. Mutations in the barrel domain of BamA reveal that plasticity in BAM is essential, particularly along the lateral seam of the barrel domain, which is further supported by molecular dynamics simulations that show conformational dynamics in BAM are modulated by the accessory proteins. We also report the structure of BAM in complex with EspP, which reveals an early folding intermediate where EspP threads from the underside of BAM and incorporates into the barrel domain of BamA, supporting a hybrid-barrel budding mechanism in which the substrate is folded into the membrane sequentially rather than as a single unit.
Collapse
|
49
|
Pajuelo D, Tak U, Zhang L, Danilchanka O, Tischler AD, Niederweis M. Toxin secretion and trafficking by Mycobacterium tuberculosis. Nat Commun 2021; 12:6592. [PMID: 34782620 PMCID: PMC8593097 DOI: 10.1038/s41467-021-26925-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/27/2021] [Indexed: 12/30/2022] Open
Abstract
The tuberculosis necrotizing toxin (TNT) is the major cytotoxicity factor of Mycobacterium tuberculosis (Mtb) in macrophages. TNT is the C-terminal domain of the outer membrane protein CpnT and gains access to the cytosol to kill macrophages infected with Mtb. However, molecular mechanisms of TNT secretion and trafficking are largely unknown. A comprehensive analysis of the five type VII secretion systems of Mtb revealed that the ESX-4 system is required for export of CpnT and surface accessibility of TNT. Furthermore, the ESX-2 and ESX-4 systems are required for permeabilization of the phagosomal membrane in addition to the ESX-1 system. Thus, these three ESX systems need to act in concert to enable trafficking of TNT into the cytosol of Mtb-infected macrophages. These discoveries establish new molecular roles for the two previously uncharacterized type VII secretion systems ESX-2 and ESX-4 and reveal an intricate link between toxin secretion and phagosomal permeabilization by Mtb. The tuberculosis necrotizing toxin (TNT) is the major cytotoxicity factor of M. tuberculosis (Mtb). Mtb possesses five type VII secretion systems (ESX). Pajuelo et al. show that the ESX-4 system is required for TNT secretion and that ESX-2 and ESX-4 systems work in concert with ESX-1 to permeabilize the phagosomal membrane and enable trafficking of TNT into the cytoplasm of macrophages infected with Mtb.
Collapse
Affiliation(s)
- David Pajuelo
- Department of Microbiology, University of Alabama at Birmingham, 609 Bevill Biomedical Research Building, 845 19th Street South, Birmingham, AL, 35294, USA
| | - Uday Tak
- Department of Microbiology, University of Alabama at Birmingham, 609 Bevill Biomedical Research Building, 845 19th Street South, Birmingham, AL, 35294, USA.,University of Colorado Boulder, Jennie Smoly Caruthers Biotechnology Building B255, 3415 Colorado Avenue, Boulder, CO, 80303, USA
| | - Lei Zhang
- Department of Microbiology, University of Alabama at Birmingham, 609 Bevill Biomedical Research Building, 845 19th Street South, Birmingham, AL, 35294, USA
| | - Olga Danilchanka
- Department of Microbiology, University of Alabama at Birmingham, 609 Bevill Biomedical Research Building, 845 19th Street South, Birmingham, AL, 35294, USA.,Merck & Co., Inc., Cambridge, MA, 02141, USA
| | - Anna D Tischler
- Department of Microbiology and Immunology, University of Minnesota Twin Cities, Minneapolis, MN, 55455, USA
| | - Michael Niederweis
- Department of Microbiology, University of Alabama at Birmingham, 609 Bevill Biomedical Research Building, 845 19th Street South, Birmingham, AL, 35294, USA.
| |
Collapse
|
50
|
Low WY, Chng SS. Current mechanistic understanding of intermembrane lipid trafficking important for maintenance of bacterial outer membrane lipid asymmetry. Curr Opin Chem Biol 2021; 65:163-171. [PMID: 34753108 DOI: 10.1016/j.cbpa.2021.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/13/2021] [Accepted: 09/21/2021] [Indexed: 01/01/2023]
Abstract
The outer membrane (OM) of Gram-negative bacteria exhibits unique lipid asymmetry that makes it an effective permeability barrier against toxic molecules, including antibiotics. Central to the maintenance of OM lipid asymmetry is the OmpC-Mla (maintenance of lipid asymmetry) system, which mediates the retrograde transport of phospholipids from the outer leaflet of the OM to the inner membrane. The molecular mechanism(s) of this lipid trafficking process is not fully understood; however, recent advances in structural elucidations and biochemical reconstitutions have provided detailed new insights. Here, we present an integrated understanding of how the OmpC-Mla system transports mislocalized phospholipids across the bacterial cell envelope.
Collapse
Affiliation(s)
- Wen-Yi Low
- Department of Chemistry, National University of Singapore 117543, Singapore.
| | - Shu-Sin Chng
- Department of Chemistry, National University of Singapore 117543, Singapore; Singapore Center for Environmental Life Sciences Engineering, National University of Singapore (SCELSE-NUS) 117456, Singapore.
| |
Collapse
|