1
|
Zhang Y, Liu H, Jing H. Community differences and potential function along the particle size spectrum of microbes in the twilight zone. MICROBIOME 2025; 13:121. [PMID: 40369676 PMCID: PMC12076831 DOI: 10.1186/s40168-025-02116-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 04/15/2025] [Indexed: 05/16/2025]
Abstract
BACKGROUND The twilight zone, which extends from the base of the euphotic zone to a depth of 1000 m, is the major area of particulate organic carbon (POC) remineralization in the ocean. However, little is known about the microbial community and metabolic activity that are directly associated with POC remineralization in this consistently underexplored realm. Here, we utilized a large-volume in situ water transfer system to collect the microbes on different-sized particles from the twilight zone in three regions and analyzed their composition and metabolic function by metagenomic analysis. RESULTS Distinct prokaryotic communities with significantly lower diversity and less endemic species were detected on particles in the South East Asian Time-series Study (SEATS) compared with the other two regions, perhaps due to the in situ physicochemical conditions and low labile nutrient availability in this region. Observable transitions in community composition and function at the upper and lower boundaries of the twilight zone suggest that microbes respond differently to (and potentially drive the transformation of) POC through this zone. Substantial variations among different particle sizes were observed, with smaller particles typically exhibiting lower diversity but harboring a greater abundance of carbon degradation-associated genes than the larger particles. Such a pattern might arise due to the relatively larger surface area of the smaller particles relative to their volume, which likely provides more sites for microbial colonization, increasing their chance of being remineralized. This makes them less likely to be transferred to the deep ocean, and thus, they contribute more to carbon recycling than to long-term sequestration. Both contig-based and metagenome-assembled genome-(MAG-) based analyses revealed a high diversity of the Carbohydrate-Active enZymes (CAZy) family. This indicates the versatile carbohydrate metabolisms of the microbial communities associated with sinking particles that modulate the remineralization and export of POC in the twilight zone. CONCLUSION Our study reveals significant shifts in microbial community composition and function in the twilight zone, with clear differences among the three particle sizes. Microbes with diverse metabolic potential exhibited different responses to the POC entering the twilight zone and also collectively drove the transformation of POC through this zone. These findings provided insights into the diversity of prokaryotes in sinking particles and their roles in POC remineralization and export in marine ecosystems. Video Abstract.
Collapse
Affiliation(s)
- Yue Zhang
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
- HKUST-CAS Sanya Joint Laboratory of Marine Science Research, Chinese Academy of Sciences, Sanya, China
| | - Hongbin Liu
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- HKUST-CAS Sanya Joint Laboratory of Marine Science Research, Chinese Academy of Sciences, Sanya, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, 519000, China
| | - Hongmei Jing
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.
- HKUST-CAS Sanya Joint Laboratory of Marine Science Research, Chinese Academy of Sciences, Sanya, China.
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, 519000, China.
| |
Collapse
|
2
|
Wang Y, Yang L, Wu W, Feng Z, He J, Guo C, He J. Bacillus haimaensis sp. nov.: a novel cold seep-adapted bacterium with unique biosynthetic potential. Appl Environ Microbiol 2025:e0245624. [PMID: 40277363 DOI: 10.1128/aem.02456-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 02/18/2025] [Indexed: 04/26/2025] Open
Abstract
Deep-sea cold seeps harbor unique microbial communities that play crucial roles in biogeochemical cycles and possess potential biotechnological applications. Herein, we report the isolation, characterization, and genomic analysis of a novel Bacillus species, Bacillus haimaensis sp. nov. (type strain CSS-39T, CCTCC M20241382), obtained from sediments collected at a depth of 1,350 m in the Haima cold seep, South China Sea. Phylogenomic analysis, revealing an average nucleotide identity of 87.78% and a digital DNA-DNA hybridization value of 34.0% with its closest relative B. tianshenii DSM 25879T, confirms the taxonomic novelty of the genus Bacillus. The complete 4.54 Mb genome of B. haimaensis reveals adaptations to the cold seep environment, including enhanced nutrient acquisition capabilities and stress response mechanisms. Comparative genomic analysis identifies 27 unique gene clusters related to spore germination and sulfate assimilation, suggesting specialized metabolic strategies for this extreme habitat. Furthermore, six biosynthetic gene clusters, including a novel lassopeptide cluster, indicate a potential for secondary metabolite production. Phenotypic characterization demonstrates the strain's ability to utilize diverse carbon sources and tolerate a wide range of environmental conditions. Our findings provide insights into microbial adaptations to deep-sea cold seeps and highlight the potential of B. haimaensis for biotechnological applications in bioremediation and natural product discovery. This study expands our understanding of microbial diversity in extreme marine environments and offers a new model bacterium for investigating bacterial adaptations to deep-sea ecosystems.IMPORTANCEThe discovery of Bacillus haimaensis sp. nov. in the Haima cold seep of the South China Sea represents a significant advancement in our understanding of microbial adaptations to extreme marine environments. This novel species exhibits remarkable metabolic versatility and unique genomic features, providing insights into bacterial survival strategies in nutrient-variable, high-pressure deep-sea ecosystems. Comprehensive genomic analysis reveals distinctive biosynthetic gene clusters, suggesting untapped potential for discovering novel natural product. Furthermore, B. haimaensis exhibits promising capabilities for aromatic compound degradation, indicating potential applications in marine bioremediation. This work not only expands our knowledge of microbial diversity in understudied deep-sea habitats but also highlights the biotechnological promise of extremophiles. The adaptive mechanisms elucidated in B. haimaensis, particularly those related to sporulation and sulfate assimilation, contribute to our broader understanding of microbial ecology in cold seeps and may inform future research on climate change impacts on deep-sea ecosystems.
Collapse
Affiliation(s)
- Yuanyuan Wang
- School of Marine Sciences, State Key Laboratory for Biocontrol & Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory of Aquatic Economic Animals / Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, Sun Yat-sen University, Guangzhou, China
| | - Luyi Yang
- School of Marine Sciences, State Key Laboratory for Biocontrol & Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory of Aquatic Economic Animals / Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, Sun Yat-sen University, Guangzhou, China
| | - Wenbo Wu
- School of Marine Sciences, State Key Laboratory for Biocontrol & Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory of Aquatic Economic Animals / Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, Sun Yat-sen University, Guangzhou, China
| | - Zhengqi Feng
- School of Marine Sciences, State Key Laboratory for Biocontrol & Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory of Aquatic Economic Animals / Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, Sun Yat-sen University, Guangzhou, China
| | - Jian He
- School of Marine Sciences, State Key Laboratory for Biocontrol & Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory of Aquatic Economic Animals / Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, Sun Yat-sen University, Guangzhou, China
| | - Changjun Guo
- School of Marine Sciences, State Key Laboratory for Biocontrol & Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory of Aquatic Economic Animals / Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, Sun Yat-sen University, Guangzhou, China
| | - Jianguo He
- School of Marine Sciences, State Key Laboratory for Biocontrol & Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory of Aquatic Economic Animals / Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
3
|
Bartak D, Říha J, Dudáš D, Gallus P, Bedrníková E, Kašpar V, Černá K. Bentonite sterilization methods in relation to geological disposal of radioactive waste: comparative efficiency of dry heat and gamma radiation. J Appl Microbiol 2025; 136:lxaf051. [PMID: 40042982 DOI: 10.1093/jambio/lxaf051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 02/25/2025] [Accepted: 03/04/2025] [Indexed: 03/18/2025]
Abstract
AIMS This study evaluates the effectiveness of two standard sterilization methods on microorganisms in bentonite, which is proposed as a buffer around metal canisters containing long-lived radioactive waste. Bentonite, as a natural clay, contains microorganisms with enhanced resistance to harsh conditions and the ability to reactivate upon decompaction. Sterile controls are crucial in experiments estimating the impact of microorganisms on nuclear waste repositories. Yet, the effectiveness of common sterilization methods on bentonite microorganisms has not been fully evaluated. METHODS AND RESULTS Two methods were compared: dry heat (nine cycles at 121°C for 4 h) and gamma irradiation (10-140 kGy at 147 Gy·min-1). Molecular-genetic, microscopic, and cultivation techniques were used to assess sterilization. Heat sterilization did not eliminate heat-resistant microorganisms, such as Bacillus, Paenibacillus, and Terribacillus, from bentonite powder even after nine heat cycles. However, bentonite suspended in deionized water was sterile after four heat cycles. In contrast, gamma irradiation effectively reduced microbial survivability above a dose of 10 kGy, with the highest doses (100-140 kGy) potentially degrading DNA. CONCLUSIONS Gamma irradiation at 30 kGy effectively sterilized bentonite powder. The findings of our experiments emphasize the importance of using appropriate sterilization methods to maintain sterile controls in experiments that evaluate the microbial impacts in nuclear waste repositories. However, further assessment is needed to determine the effects of potential alterations induced by gamma radiation on bentonite properties.
Collapse
Affiliation(s)
- Deepa Bartak
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Bendlova 7, 460 01 Liberec, Czech Republic
| | - Jakub Říha
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Bendlova 7, 460 01 Liberec, Czech Republic
| | - Denis Dudáš
- Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 78/7, 115 19 Prague, Czech Republic
- Research and Development Department, UJP PRAHA a.s., Nad Kamínkou 1345, 156 00 Prague, Czech Republic
| | - Petr Gallus
- Research and Development Department, UJP PRAHA a.s., Nad Kamínkou 1345, 156 00 Prague, Czech Republic
| | - Eva Bedrníková
- Disposal Processes and Safety, ÚJV Řež, a. s., Hlavní 130, 250 68 Husinec, Czech Republic
| | - Vlastislav Kašpar
- Disposal Processes and Safety, ÚJV Řež, a. s., Hlavní 130, 250 68 Husinec, Czech Republic
| | - Kateřina Černá
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Bendlova 7, 460 01 Liberec, Czech Republic
| |
Collapse
|
4
|
Xu J, An L, Nie Y, Wu XL. Diversity and Ecological Relevance of Fumarate-Adding Enzymes in Oil Reservoir Microbial Communities. Environ Microbiol 2025; 27:e70068. [PMID: 40075533 DOI: 10.1111/1462-2920.70068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/27/2024] [Accepted: 01/27/2025] [Indexed: 03/14/2025]
Abstract
Oil reservoirs are important hydrocarbon-rich environments, where the addition of hydrocarbons to fumarate mediated by fumarate-adding enzymes (FAE) is one of the dominant mechanisms for anaerobic degradation of hydrocarbons. However, the currently available information about FaeA, the catalytic subunit of FAE, in in situ petroleum reservoirs is limited. Here, we investigated the diversity of FaeA and FaeA-harbouring microbes in oil reservoirs and compared them with marine sediments. We obtained 67 FaeA clusters and 46 FaeA-harbouring MAGs from oil reservoirs. Most FaeA sequences and all FaeA-containing microbes were endemic and unique. In oil reservoirs, FaeA sequences were affiliated with Archaeoglobus and 13 bacterial phyla. Fermentative metabolism was a common lifestyle amongst these organisms. Genomes assigned to Desulfobacterota, Caldatribacteriota and Firmicutes_B were the most diverse and prevalent, while Desulfobacterota and Chloroflexota were dominant in marine. Microbial community diversity at the phylum level was strongly related to FaeA in oil reservoirs but not in marine. This suggested that the ability of anaerobic hydrocarbon biodegradation may shape community structure in oil reservoirs. Together, this study provided systematic and comprehensive information regarding the high diversity of FaeA and FaeA-containing anaerobic hydrocarbon degraders in oil reservoirs and underlined the difference between hydrocarbon-rich environments of oil reservoirs and marine.
Collapse
Affiliation(s)
- Jinbo Xu
- School of Earth and Space Sciences, Peking University, Beijing, China
- State Key Laboratory of Enhanced Oil & Gas Recovery, Research Institute of Petroleum Exploration & Development, Beijing, China
| | - Liyun An
- College of Architecture and Environment, Sichuan University, Chengdu, China
| | - Yong Nie
- College of Engineering, Peking University, Beijing, China
| | - Xiao-Lei Wu
- College of Engineering, Peking University, Beijing, China
- Institute of Ecology, Peking University, Beijing, China
| |
Collapse
|
5
|
Bao Z, Chen B, Yu K, Wei Y, Liang X, Yao H, Liao X, Xie W, Yin K. Microbiome dynamics and functional profiles in deep-sea wood-fall micro-ecosystem: insights into drive pattern of community assembly, biogeochemical processes, and lignocellulose degradation. Appl Environ Microbiol 2025; 91:e0216524. [PMID: 39641605 PMCID: PMC11784029 DOI: 10.1128/aem.02165-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024] Open
Abstract
Wood-fall micro-ecosystems contribute to biogeochemical processes in the oligotrophic deep ocean. However, the community assembly processes and biogeochemical functions of microbiomes in wood fall remain unclear. This study investigated the diversity, community structure, assembly processes, and functional profiles of bacteria and fungi in a deep-sea wood fall from the South China Sea using physicochemical indices, amplicon sequencing, and metagenomics. The results showed that distinct wood-fall contact surfaces exhibit habitat heterogeneity. The bacterial community of all contact surfaces and the fungal community of seawater contact surface (SWCS) were affected by homogeneous selection. In SWCS and transition region (TR), bacterial communities were influenced by dispersal limitation, whereas fungal communities were affected by homogenizing dispersal. The Venn diagram visualization revealed that the shared fungal community between SWCS and TR was dominated by Aspergillaceae. Additionally, the bacterial community demonstrated a higher genetic potential for sulfur, nitrogen, and methane metabolism than fungi. The sediment contact surface enriched modules were associated with dissimilatory sulfate reduction and methanogenesis, whereas the modules related to nitrate reduction exhibited enrichment characteristics in TR. Moreover, fungi showed a stronger potential for lignocellulase production compared to bacteria, with Microascaceae and Nectriaceae identified as potential contributors to lignocellulose degradation. These results indicate that environmental filtering and organism exchange levels regulated the microbial community assembly of wood fall. The biogeochemical cycling of sulfur, nitrogen, and methane was mainly driven by the bacterial community. Nevertheless, the terrestrial fungi Microascaceae and Nectriaceae might degrade lignocellulose via the combined action of multiple lignocellulases.IMPORTANCEThe presence and activity of microbial communities may play a crucial role in the biogeochemical cycle of deep-sea wood-fall micro-ecosystems. Previous studies on wood falls have focused on the microbiome diversity, community composition, and environmental impact, while few have investigated wood-fall micro-ecosystems by distinguishing among distinct contact surfaces. Our study investigated the microbiome dynamics and functional profiles of bacteria and fungi among distinct wood-fall contact surfaces. We found that the microbiome community assembly was regulated by environmental filtering and organism exchange levels. Bacteria drive the biogeochemical cycling of sulfur, nitrogen, and methane in wood fall through diverse metabolic pathways, whereas fungi are crucial for lignocellulose degradation. Ultimately, this study provides new insights into the driving pattern of community assembly, biogeochemical processes, and lignocellulose degradation in the microbiomes of deep-sea wood-fall micro-ecosystems, enhancing our comprehension of the ecological impacts of organic falls on deep-sea oligotrophic environments.
Collapse
Affiliation(s)
- Zeming Bao
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Biao Chen
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Yuxin Wei
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Xinyue Liang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Huanting Yao
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Xianrun Liao
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Wei Xie
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Kedong Yin
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| |
Collapse
|
6
|
Warkhade Y, Schaerer LG, Bigcraft I, Hazen TC, Techtmann SM. Diversity and Distribution of Hydrocarbon-Degrading Genes in the Cold Seeps from the Mediterranean and Caspian Seas. Microorganisms 2025; 13:222. [PMID: 40005589 PMCID: PMC11857318 DOI: 10.3390/microorganisms13020222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/20/2024] [Accepted: 12/22/2024] [Indexed: 02/27/2025] Open
Abstract
Marine cold seeps are unique ecological niches characterized by the emergence of hydrocarbons, including methane, which fosters diverse microbial communities. This study investigates the diversity and distribution of hydrocarbon-degrading genes and organisms in sediments from the Caspian and Mediterranean Seas, utilizing 16S rRNA and metagenomic sequencing to elucidate microbial community structure and functional potential. Our findings reveal distinct differences in hydrocarbon degrading gene profiles between the two seas, with pathways for aerobic and anaerobic hydrocarbon degradation co-existing in sediments from both basins. Aerobic pathways predominate in the surface sediments of the Mediterranean Sea, while anaerobic pathways are favored in the surface sediments of the anoxic Caspian Sea. Additionally, sediment depths significantly influence microbial diversity, with variations in gene abundance and community composition observed at different depths. Aerobic hydrocarbon-degrading genes decrease in diversity with depth in the Mediterranean Sea, whereas the diversity of aerobic hydrocarbon-degrading genes increases with depth in the Caspian Sea. These results enhance our understanding of microbial ecology in cold seep environments and have implications for bioremediation practices targeting hydrocarbon pollutants in marine ecosystems.
Collapse
Affiliation(s)
- Yogita Warkhade
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA; (Y.W.); (L.G.S.); (I.B.)
| | - Laura G. Schaerer
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA; (Y.W.); (L.G.S.); (I.B.)
| | - Isaac Bigcraft
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA; (Y.W.); (L.G.S.); (I.B.)
| | - Terry C. Hazen
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37996, USA;
| | - Stephen M. Techtmann
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA; (Y.W.); (L.G.S.); (I.B.)
| |
Collapse
|
7
|
Tsuchiya J, Mino S, Fujiwara F, Okuma N, Ichihashi Y, Morris RM, Nunn BL, Timmins-Schiffman E, Sawabe T. Time course transcriptomic profiling suggests Crp/Fnr transcriptional regulation of nosZ gene in a N 2O-reducing thermophile. iScience 2024; 27:111074. [PMID: 39507244 PMCID: PMC11539149 DOI: 10.1016/j.isci.2024.111074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/31/2024] [Accepted: 09/26/2024] [Indexed: 11/08/2024] Open
Abstract
Nitrosophilus labii HRV44T is a thermophilic chemolithoautotroph possessing clade II type nitrous oxide (N2O) reductase (NosZ) that has an outstanding activity in reducing N2O to dinitrogen gas. Here, we attempt to understand molecular responses of HRV44T to N2O. Time course transcriptome and proteomic mass spectrometry analyses under anaerobic conditions revealed that most of transcripts and peptides related to denitrification were constitutively detected, even in the absence of any nitrogen oxides as electron acceptors. Gene expressions involved in electron transport to NosZ were upregulated within 3 h in response to N2O, rather than upregulation of nos genes. Two genes encoding Crp/Fnr transcriptional regulators observed upstream of nap and nor gene clusters had significant negative correlations with nosZ expression. Statistical path analysis further inferred a significant causal relationship between the gene expression of nosZ and that of one Crp/Fnr regulators. Our findings contribute to understanding the transcriptional regulation in clade II type N2O-reducers.
Collapse
Affiliation(s)
- Jiro Tsuchiya
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido, Japan
| | - Sayaka Mino
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido, Japan
| | - Fuki Fujiwara
- RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Nao Okuma
- RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | | | - Robert M. Morris
- School of Oceanography, University of Washington, Seattle, WA, USA
| | - Brook L. Nunn
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | | | - Tomoo Sawabe
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido, Japan
| |
Collapse
|
8
|
Zhu M, Wang Y, Mu H, Han F, Wang Q, Pei Y, Wang X, Dai X. Plasmid-encoded phosphatase RapP enhances cell growth in non-domesticated Bacillus subtilis strains. Nat Commun 2024; 15:9567. [PMID: 39500898 PMCID: PMC11538241 DOI: 10.1038/s41467-024-53992-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024] Open
Abstract
The trade-off between rapid growth and other important physiological traits (e.g., survival and adaptability) poses a fundamental challenge for microbes to achieve fitness maximization. Studies on Bacillus subtilis biology often use strains derived after a process of lab 'domestication' from an ancestral strain known as Marburg strain. The domestication process led to loss of a large plasmid (pBS32) encoding a phosphatase (RapP) that dephosphorylates the Spo0F protein and thus regulates biofilm formation and sporulation. Here, we show that plasmid pBS32, and more specifically rapP, enhance growth rates by preventing premature expression of the Spo0F-Spo0A-mediated adaptive response during exponential phase. This results in reallocation of proteome resources towards biosynthetic, growth-promoting pathways without compromising long-term fitness during stationary phase. Thus, RapP helps B. subtilis to constrain physiological trade-offs and economize cellular resources for fitness improvement.
Collapse
Affiliation(s)
- Manlu Zhu
- State Key Laboratory of Green Pesticide; Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, PR China
| | - Yiheng Wang
- State Key Laboratory of Green Pesticide; Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, PR China
| | - Haoyan Mu
- State Key Laboratory of Green Pesticide; Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, PR China
| | - Fei Han
- State Key Laboratory of Green Pesticide; Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, PR China
| | - Qian Wang
- State Key Laboratory of Green Pesticide; Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, PR China
| | - Yongfu Pei
- State Key Laboratory of Green Pesticide; Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, PR China
| | - Xin Wang
- State Key Laboratory of Green Pesticide; Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, PR China
| | - Xiongfeng Dai
- State Key Laboratory of Green Pesticide; Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, PR China.
| |
Collapse
|
9
|
Li Y, Chen J, Lin Y, Zhong C, Jing H, Liu H. Thaumarchaeota from deep-sea methane seeps provide novel insights into their evolutionary history and ecological implications. MICROBIOME 2024; 12:197. [PMID: 39385283 PMCID: PMC11463064 DOI: 10.1186/s40168-024-01912-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/19/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Ammonia-oxidizing archaea (AOA) of the phylum Thaumarchaeota mediate the rate-limiting step of nitrification and remove the ammonia that inhibits the aerobic metabolism of methanotrophs. However, the AOA that inhabit deep-sea methane-seep surface sediments (DMS) are rarely studied. Here, we used global DMS metagenomics and metagenome-assembled genomes (MAGs) to investigate the metabolic activity, evolutionary history, and ecological contributions of AOA. Expression of AOA-specific ammonia-oxidizing gene (amoA) was examined in the sediments collected from the South China Sea (SCS) to identify their active ammonia metabolism in the DMS. RESULTS Our analysis indicated that AOA contribute > 75% to the composition of ammonia-utilization genes within the surface layers (above 30 cm) of global DMS. The AOA-specific ammonia-oxidizing gene was actively expressed in the DMS collected from the SCS. Phylogenomic analysis of medium-/high-quality MAGs from 18 DMS-AOA indicated that they evolved from ancestors in the barren deep-sea sediment and then expanded from the DMS to shallow water forming an amoA-NP-gamma clade-affiliated lineage. Molecular dating suggests that the DMS-AOA origination coincided with the Neoproterozoic oxidation event (NOE), which occurred ~ 800 million years ago (mya), and their expansion to shallow water coincided with the Sturtian glaciation (~ 713 mya). Comparative genomic analysis suggests that DMS-AOA exhibit higher requirement of carbon source for protein synthesis with enhanced genomic capability for osmotic regulation, motility, chemotaxis, and utilization of exogenous organic compounds, suggesting it could be more heterotrophic compared with other lineages. CONCLUSION Our findings provide new insights into the evolutionary history of AOA within the Thaumarchaeota, highlighting their critical roles in nitrogen cycling in the global DMS ecosystems. Video Abstract.
Collapse
Affiliation(s)
- Yingdong Li
- CAS Key Laboratory for Experimental Study Under Deep-Sea Extreme Conditions, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
- Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Jiawei Chen
- Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Yanxun Lin
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Cheng Zhong
- Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Hongmei Jing
- CAS Key Laboratory for Experimental Study Under Deep-Sea Extreme Conditions, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Hongbin Liu
- Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China.
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.
| |
Collapse
|
10
|
Sen A, Molina EJ, de Freitas TR, Hess S, Reiss H, Bluhm BA, Renaud PE. Benthic remineralization under future Arctic conditions and evaluating the potential for changes in carbon sequestration in warming sediments. Sci Rep 2024; 14:23336. [PMID: 39375411 PMCID: PMC11458818 DOI: 10.1038/s41598-024-73633-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/19/2024] [Indexed: 10/09/2024] Open
Abstract
Benthic (seafloor) remineralization of organic material determines the fate of carbon in the ocean and its sequestration. Bottom water temperature and labile carbon supply to the seafloor are expected to increase in a warming Arctic and correspondingly, benthic remineralization rates. We provide some of the first experimental data on the response of sediment oxygen demand (SOD), an established proxy for benthic remineralization, to increased temperature and/or food supply across a range of Arctic conditions and regimes. Each factor significantly increased SOD rates (with different degrees of variability); however the largest increases were seen with both factors combined (50% to ten-fold increases), consistently across the four seasons and the spatial gradient covering shelf to deep basin included in our study. This ability of the Arctic benthos to process increased pulses of carbon suggests that increased sedimented carbon under warming conditions is likely to be utilized and processed, not accumulated, impacting carbon storage and decreasing the Arctic's role as a global carbon sink.
Collapse
Affiliation(s)
- Arunima Sen
- Department of Arctic Biology, The University Centre in Svalbard (UNIS), Longyearbyen, Norway.
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway.
| | - Eric Jordà Molina
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | | | - Silvia Hess
- Department of Geosciences, University of Oslo, Oslo, Norway
| | - Henning Reiss
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Bodil A Bluhm
- Department of Arctic Marine Biology, UiT The Arctic University in Norway, Tromsø, Norway
| | - Paul E Renaud
- Department of Arctic Biology, The University Centre in Svalbard (UNIS), Longyearbyen, Norway
- Akvaplan-niva, Tromsø, Norway
| |
Collapse
|
11
|
Gutiérrez-Preciado A, Dede B, Baker BA, Eme L, Moreira D, López-García P. Extremely acidic proteomes and metabolic flexibility in bacteria and highly diversified archaea thriving in geothermal chaotropic brines. Nat Ecol Evol 2024; 8:1856-1869. [PMID: 39134651 DOI: 10.1038/s41559-024-02505-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 07/15/2024] [Indexed: 10/10/2024]
Abstract
Few described archaeal, and fewer bacterial, lineages thrive under salt-saturating conditions, such as solar saltern crystallizers (salinity above 30% w/v). They accumulate molar K+ cytoplasmic concentrations to maintain osmotic balance ('salt-in' strategy) and have proteins adaptively enriched in negatively charged acidic amino acids. Here we analysed metagenomes and metagenome-assembled genomes from geothermally influenced hypersaline ecosystems with increasing chaotropicity in the Danakil Depression. Normalized abundances of universal single-copy genes confirmed that haloarchaea and Nanohaloarchaeota encompass 99% of microbial communities in the near-life-limiting conditions of the Western-Canyon Lakes. Danakil metagenome- and metagenome-assembled-genome-inferred proteomes, compared with those of freshwater, seawater and solar saltern ponds up to saturation (6-14-32% salinity), showed that Western-Canyon Lake archaea encode the most acidic proteomes ever observed (median protein isoelectric points ≤4.4). We identified previously undescribed haloarchaeal families as well as an Aenigmatarchaeota family and a bacterial phylum independently adapted to extreme halophily. Despite phylum-level diversity decreasing with increasing salinity-chaotropicity, and unlike in solar salterns, adapted archaea exceedingly diversified in Danakil ecosystems, challenging the notion of decreasing diversity under extreme conditions. Metabolic flexibility to utilize multiple energy and carbon resources generated by local hydrothermalism along feast-and-famine strategies seemingly shapes microbial diversity in these ecosystems near life limits.
Collapse
Affiliation(s)
- Ana Gutiérrez-Preciado
- Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette, France
| | - Bledina Dede
- Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette, France
| | - Brittany A Baker
- Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette, France
| | - Laura Eme
- Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette, France
| | - David Moreira
- Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette, France
| | - Purificación López-García
- Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette, France.
| |
Collapse
|
12
|
Wu R, Li C, Li J, Sjollema J, Geertsema-Doornbusch GI, de Haan-Visser HW, Dijkstra ESC, Ren Y, Zhang Z, Liu J, Flemming HC, Busscher HJ, van der Mei HC. Bacterial killing and the dimensions of bacterial death. NPJ Biofilms Microbiomes 2024; 10:87. [PMID: 39289404 PMCID: PMC11408613 DOI: 10.1038/s41522-024-00559-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 08/26/2024] [Indexed: 09/19/2024] Open
Abstract
Bacteria can be dead, alive, or exhibit slowed or suspended life forms, making bacterial death difficult to establish. Here, agar-plating, microscopic-counting, SYTO9/propidium-iodide staining, MTT-conversion, and bioluminescence-imaging were used to determine bacterial death upon exposure to different conditions. Rank correlations between pairs of assay outcomes were low, indicating different assays measure different aspects of bacterial death. Principal-component analysis yielded two principal components, named "reproductive-ability" (PC1) and "metabolic-activity" (PC2). Plotting of these principal components in two-dimensional space revealed a dead region, with borders defined by the PC1 and PC2 values. Sensu stricto implies an unpractical reality that all assays determining PC1 and PC2 must be carried out in order to establish bacterial death. Considering this unpracticality, it is suggested that at least one assay determining reproductive activity (PC1) and one assay determining metabolic activity (PC2) should be used to establish bacterial death. Minimally, researchers should specifically describe which dimension of bacterial death is assessed, when addressing bacterial death.
Collapse
Affiliation(s)
- Renfei Wu
- University of Groningen and University Medical Center Groningen, Department of Biomaterials & Biomedical Technology, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
- Institute of Functional Nano and Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Rd, Suzhou, 215123, Jiangsu, P. R. China
| | - Cong Li
- University of Groningen and University Medical Center Groningen, Department of Biomaterials & Biomedical Technology, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Rd, Suzhou, 215123, Jiangsu, P. R. China
| | - Jiuyi Li
- School of Environment, Beijing Jiaotong University, Beijing, 100044, China
| | - Jelmer Sjollema
- University of Groningen and University Medical Center Groningen, Department of Biomaterials & Biomedical Technology, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Gésinda I Geertsema-Doornbusch
- University of Groningen and University Medical Center Groningen, Department of Biomaterials & Biomedical Technology, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - H Willy de Haan-Visser
- University of Groningen and University Medical Center Groningen, Department of Biomaterials & Biomedical Technology, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Emma S C Dijkstra
- University of Groningen and University Medical Center Groningen, Department of Biomaterials & Biomedical Technology, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Yijin Ren
- University of Groningen and University Medical Center of Groningen, Department of Orthodontics, Hanzeplein 1, 9700 RB, Groningen, The Netherlands
| | - Zexin Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Rd, Suzhou, 215123, Jiangsu, P. R. China
| | - Jian Liu
- Institute of Functional Nano and Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Rd, Suzhou, 215123, Jiangsu, P. R. China
| | - Hans C Flemming
- University of Duisburg-Essen, Faculty of Chemistry, Biofilm Centre, Universitätsstrasse 5, 45141, Essen, Germany
- Institute of Oceanology, Chinese Academy of Sciences (IOCAS), 7 Nanhai Rd, Qingdao, 266071, China
| | - Henk J Busscher
- University of Groningen and University Medical Center Groningen, Department of Biomaterials & Biomedical Technology, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Henny C van der Mei
- University of Groningen and University Medical Center Groningen, Department of Biomaterials & Biomedical Technology, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands.
| |
Collapse
|
13
|
Yin X, Chen H, Jiang K, Zhang B, Li R, Zhu X, Sun L, Ng ZL, Su M. Distribution Characteristics of Nitrogen-Cycling Microorganisms in Deep-Sea Surface Sediments of Western South China Sea. Microorganisms 2024; 12:1901. [PMID: 39338575 PMCID: PMC11434414 DOI: 10.3390/microorganisms12091901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Nitrogen-cycling processes in the deep sea remain understudied. This study investigates the distribution of nitrogen-cycling microbial communities in the deep-sea surface sediments of the western South China Sea, using metagenomic sequencing and real-time fluorescent quantitative PCR techniques to analyze their composition and abundance, and the effects of 11 environmental parameters, including NH4+-N, NO3--N, NO2--N, PO43--P, total nitrogen (TN), total organic carbon (TOC), C/N ratio, pH, electrical conductivity (EC), SO42-, and Cl-. The phylum- and species-level microbial community compositions show that five sites can be grouped as a major cluster, with sites S1 and S9 forming a sub-cluster, and sites S13, S19, and S26 forming the other; whereas sites S3 and S5 constitute a separate cluster. This is also evident for nitrogen-cycling functional genes, where their abundance is influenced by distinct environmental conditions, including water depths (shallower at sites S1 and S9 against deeper at sites S13, S19, and S26) and unique geological features (sites S3 and S5), whereas the vertical distribution of nitrogen-cycling gene abundance generally shows a decreasing trend against sediment depth. Redundancy analysis (RDA) exploring the correlation between the 11 environmental parameters and microbial communities revealed that the NO2--N, C/N ratio, and TN significantly affect microbial community composition (p < 0.05). This study assesses the survival strategies of microorganisms within deep-sea surface sediments and their role in the marine nitrogen cycle.
Collapse
Affiliation(s)
- Xingjia Yin
- School of Marine Sciences, Sun Yat-Sen University & Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China; (X.Y.); (H.C.); (K.J.); (B.Z.); (Z.L.N.)
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai 519082, China
- College of Life Science and Technology, Hubei Engineering University, Xiaogan 432000, China
| | - Hui Chen
- School of Marine Sciences, Sun Yat-Sen University & Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China; (X.Y.); (H.C.); (K.J.); (B.Z.); (Z.L.N.)
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai 519082, China
| | - Kaixi Jiang
- School of Marine Sciences, Sun Yat-Sen University & Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China; (X.Y.); (H.C.); (K.J.); (B.Z.); (Z.L.N.)
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai 519082, China
- Office of Laboratory Safety and Equipment Management, Beijing Normal University, Zhuhai 519087, China
| | - Boda Zhang
- School of Marine Sciences, Sun Yat-Sen University & Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China; (X.Y.); (H.C.); (K.J.); (B.Z.); (Z.L.N.)
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai 519082, China
- Center for Environmental Monitoring of Geology, Shenzhen 518034, China
| | - Ruohong Li
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; (R.L.); (X.Z.); (L.S.)
| | - Xinzhe Zhu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; (R.L.); (X.Z.); (L.S.)
| | - Lianpeng Sun
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; (R.L.); (X.Z.); (L.S.)
| | - Zhi Lin Ng
- School of Marine Sciences, Sun Yat-Sen University & Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China; (X.Y.); (H.C.); (K.J.); (B.Z.); (Z.L.N.)
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai 519082, China
| | - Ming Su
- School of Marine Sciences, Sun Yat-Sen University & Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China; (X.Y.); (H.C.); (K.J.); (B.Z.); (Z.L.N.)
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai 519082, China
| |
Collapse
|
14
|
Shi M, Li Q, Wang Y, He LS. The somatic genome of Eptatretus okinoseanus reveals the adaptation to deep-sea oligotrophic environment. BMC Genomics 2024; 25:807. [PMID: 39192189 DOI: 10.1186/s12864-024-10727-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 08/20/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND Hagfishes are fascinating creatures that typically inhabit the deep sea. The deep sea is characterized by its lack of sunlight, primary productivity, and diminishing biomass with increasing ocean depth. Therefore, hagfishes living in this environment must develop effective survival strategies to adapt to the limited food supply. Deep-sea hagfishes have been observed to survive without food intake for up to one year. In this study, we have assembled a high-quality somatic genome of the deep-sea hagfish (Eptatretus okinoseanus) captured below 1,000 m. We compared the genome of E. okinoseanus with the genomes of inshore hagfish, lampreys, and other related species to investigate the genetic factors underlying the deep-sea hagfish adaptations to the environment. RESULTS The E. okinoseanus somatic genome was estimated to be 1.89 Gb and assembled into 17 pseudochromosomes. Phylogenetic analysis showed that shallow-sea and deep-sea hagfishes diverged approximately 58.8 million years ago. We found Perilipin gene family was significantly expanded in deep sea E. okinoseanus, which promotes triacylglycerol storage. Furthermore, a series of genes involved in fatty acid synthesis and metabolism, blood glucose regulation, and metabolic rate regulation were also expanded, rapid evolution or positive selection, and these changes contribute to their efficiency in energy utilization. Among these genes, the positively selected gene JNK may play an important role in energy metabolism. In addition, the olfactory receptors of the deep-sea hagfish were significantly expanded to 86, and three conserved motifs present only in hagfishes olfactory receptors were identified, which may facilitate the rapid localization of carrion. CONCLUSIONS This study provides valuable genomic resources for insights into the survival strategies of deep-sea hagfishes in oligotrophic environments.
Collapse
Affiliation(s)
- Mengke Shi
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qi Li
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yong Wang
- Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Li-Sheng He
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, China.
| |
Collapse
|
15
|
Yu Y, Liu NH, Teng ZJ, Chen Y, Wang P, Zhang YZ, Fu HH, Chen XL, Zhang YQ. Evidence for archaeal metabolism of D-amino acids in the deep marine sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174723. [PMID: 39002603 DOI: 10.1016/j.scitotenv.2024.174723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
The deep marine sediments represent a major repository of organic matter whilst hosting a great number of uncultivated microbes. Microbial metabolism plays a key role in the recycling of organic matter in the deep marine sediments. D-amino acids (DAAs) and DAA-containing muropeptides, an important group of organic matter in the deep marine sediments, are primarily derived from bacterial peptidoglycan decomposition. Archaea are abundant in the deep ocean microbiome, yet their role in DAA metabolism remains poorly studied. Here, we report bioinformatic investigation and enzymatic characterization of deep marine sedimentary archaea involved in DAA metabolism. Our analyses suggest that a variety of archaea, particularly the Candidatus Bathyarchaeota and the Candidatus Lokiarchaeaota, can metabolize DAAs. DAAs are converted into L-amino acids via amino acid racemases (Ala racemase, Asp racemase and broad substrate specificity amino acid racemase), and converted into α-keto acid via d-serine ammonia-lyase, whereas DAA-containing di-/tri-muropeptides can be hydrolyzed by peptidases (dipeptidase and D-aminopeptidase). Overall, this study reveals the identity and activity of deep marine sedimentary archaea involved in DAA metabolism, shedding light on the mineralization and biogeochemical cycling of DAAs in the deep marine sediments.
Collapse
Affiliation(s)
- Yang Yu
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China; Joint Research Center for Marine Microbial Science and Technology, Shandong University and Ocean University of China, China
| | - Ning-Hua Liu
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China; Joint Research Center for Marine Microbial Science and Technology, Shandong University and Ocean University of China, China
| | - Zhao-Jie Teng
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China; Joint Research Center for Marine Microbial Science and Technology, Shandong University and Ocean University of China, China
| | - Yin Chen
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao, China; School of Life Sciences, University of Warwick, Coventry, UK; Joint Research Center for Marine Microbial Science and Technology, Shandong University and Ocean University of China, China
| | - Peng Wang
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao 266237, China; Joint Research Center for Marine Microbial Science and Technology, Shandong University and Ocean University of China, China
| | - Yu-Zhong Zhang
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China; MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao 266237, China; Joint Research Center for Marine Microbial Science and Technology, Shandong University and Ocean University of China, China
| | - Hui-Hui Fu
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao 266237, China; Joint Research Center for Marine Microbial Science and Technology, Shandong University and Ocean University of China, China
| | - Xiu-Lan Chen
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao 266237, China; Joint Research Center for Marine Microbial Science and Technology, Shandong University and Ocean University of China, China
| | - Yu-Qiang Zhang
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China; Joint Research Center for Marine Microbial Science and Technology, Shandong University and Ocean University of China, China.
| |
Collapse
|
16
|
He S, Xie Y, Bai H, Peng Y, Jin Y. Numerical computation and experimental assessment of a pressure-retaining gas-tight sediment sampler. Sci Rep 2024; 14:14548. [PMID: 38914696 PMCID: PMC11196725 DOI: 10.1038/s41598-024-65588-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024] Open
Abstract
The pressure of the recovered sample is intricately connected to seawater temperature, the recovery velocity, and the pressure of the pre-charged gas. To better understand the sample pressure dynamics during the sampling recovery process, we focus on a gas-tight sediment sampler, delving into its pressure-compensation and pressure-retaining mechanisms. A comprehensive thermal and thermodynamic analysis is conducted throughout the entire pressure-retaining sampling process, examining the temporal variations in the temperatures of seawater and nitrogen within the sampler at various descending velocities. The heat transfer and thermodynamics are examined throughout the entire pressure-retaining sampling process to determine how changes in the temperatures of seawater and nitrogen, as well as the descent velocity, affect the pressure-retaining performance. The influence of pre-charging pressure and recovery velocities on the pressure-retaining performance of the sampler is examined. Then the proposed numerical model was well verified by the ultra-high-pressure vessel experiments of the sampler under 115 MPa. Finally, the sea trial results further verified the accuracy of the numerical model.
Collapse
Affiliation(s)
- Shudong He
- School of Intelligent Manufacturing and Mechanical Engineering, Hunan Institute of Technology, Hengyang, 421002, China.
| | - Yangbin Xie
- School of Intelligent Manufacturing and Mechanical Engineering, Hunan Institute of Technology, Hengyang, 421002, China
| | - Haocen Bai
- School of Intelligent Manufacturing and Mechanical Engineering, Hunan Institute of Technology, Hengyang, 421002, China
| | - Youduo Peng
- National-Local Joint Engineering Laboratory of Marine Resources Exploration Equipment and Safety Technology, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Yongping Jin
- National-Local Joint Engineering Laboratory of Marine Resources Exploration Equipment and Safety Technology, Hunan University of Science and Technology, Xiangtan, 411201, China
| |
Collapse
|
17
|
Meyer NR, Morono Y, Dekas AE. Single-cell analysis reveals an active and heterotrophic microbiome in the Guaymas Basin deep subsurface with significant inorganic carbon fixation by heterotrophs. Appl Environ Microbiol 2024; 90:e0044624. [PMID: 38709099 PMCID: PMC11334695 DOI: 10.1128/aem.00446-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 04/04/2024] [Indexed: 05/07/2024] Open
Abstract
The marine subsurface is a long-term sink of atmospheric carbon dioxide with significant implications for climate on geologic timescales. Subsurface microbial cells can either enhance or reduce carbon sequestration in the subsurface, depending on their metabolic lifestyle. However, the activity of subsurface microbes is rarely measured. Here, we used nanoscale secondary ion mass spectrometry (nanoSIMS) to quantify anabolic activity in 3,203 individual cells from the thermally altered deep subsurface in the Guaymas Basin, Mexico (3-75 m below the seafloor, 0-14°C). We observed that a large majority of cells were active (83%-100%), although the rates of biomass generation were low, suggesting cellular maintenance rather than doubling. Mean single-cell activity decreased with increasing sediment depth and temperature and was most strongly correlated with porewater sulfate concentrations. Intracommunity heterogeneity in microbial activity decreased with increasing sediment depth and age. Using a dual-isotope labeling approach, we determined that all active cells analyzed were heterotrophic, deriving the majority of their cellular carbon from organic sources. However, we also detected inorganic carbon assimilation in these heterotrophic cells, likely via processes such as anaplerosis, and determined that inorganic carbon contributes at least 5% of the total biomass carbon in heterotrophs in this community. Our results demonstrate that the deep marine biosphere at Guaymas Basin is largely active and contributes to subsurface carbon cycling primarily by not only assimilating organic carbon but also fixing inorganic carbon. Heterotrophic assimilation of inorganic carbon may be a small yet significant and widespread underappreciated source of labile carbon in the global subsurface. IMPORTANCE The global subsurface is the largest reservoir of microbial life on the planet yet remains poorly characterized. The activity of life in this realm has implications for long-term elemental cycling, particularly of carbon, as well as how life survives in extreme environments. Here, we recovered cells from the deep subsurface of the Guaymas Basin and investigated the level and distribution of microbial activity, the physicochemical drivers of activity, and the relative significance of organic versus inorganic carbon to subsurface biomass. Using a sensitive single-cell assay, we found that the majority of cells are active, that activity is likely driven by the availability of energy, and that although heterotrophy is the dominant metabolism, both organic and inorganic carbon are used to generate biomass. Using a new approach, we quantified inorganic carbon assimilation by heterotrophs and highlighted the importance of this often-overlooked mode of carbon assimilation in the subsurface and beyond.
Collapse
Affiliation(s)
- Nicolette R. Meyer
- Department of Earth System Science, Stanford University, Stanford, California, USA
| | - Yuki Morono
- Kochi Institute for Core Sample Research, Institute for Extra-cutting-edge Science and Technology Avantgarde Research (X-STAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Nankoku, Kochi, Japan
| | - Anne E. Dekas
- Department of Earth System Science, Stanford University, Stanford, California, USA
| |
Collapse
|
18
|
Herlemann DPR, Tammert H, Kivistik C, Käiro K, Kisand V. Distinct biogeographical patterns in snail gastrointestinal tract bacterial communities compared with sediment and water. Microbiologyopen 2024; 13:e13. [PMID: 38825966 PMCID: PMC11144953 DOI: 10.1002/mbo3.1413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/16/2024] [Accepted: 04/30/2024] [Indexed: 06/04/2024] Open
Abstract
The factors that influence the distribution of bacterial community composition are not well understood. The role of geographical patterns, which suggest limited dispersal, is still a topic of debate. Bacteria associated with hosts face unique dispersal challenges as they often rely on their hosts, which provide specific environments for their symbionts. In this study, we examined the effect of biogeographic distances on the bacterial diversity and composition of bacterial communities in the gastrointestinal tract of Ampullaceana balthica. We compared the effects on the host-associated bacterial community to those on bacterial communities in water and sediment. This comparison was made using 16S ribosomal RNA gene sequencing. We found that the bacterial communities we sampled in Estonia, Denmark, and Northern Germany varied between water, sediment, and the gastrointestinal tract. They also varied between countries within each substrate. This indicates that the type of substrate is a dominant factor in determining bacterial community composition. We separately analyzed the turnover rates of water, sediment, and gastrointestinal bacterial communities over increasing geographic distances. We observed that the turnover rate was lower for gastrointestinal bacterial communities compared to water bacterial communities. This implies that the composition of gastrointestinal bacteria remains relatively stable over distances, while water bacterial communities exhibit greater variability. However, the gastrointestinal tract had the lowest percentage of country-specific amplicon sequence variants, suggesting bacterial colonization from local bacterial communities. Since the overlap between the water and gastrointestinal tract was highest, it appears that the gastrointestinal bacterial community is colonized by the water bacterial community. Our study confirmed that biogeographical patterns in host-associated communities differ from those in water and sediment bacterial communities. These host-associated communities consist of numerous facultative symbionts derived from the water bacterial community.
Collapse
Affiliation(s)
- Daniel P. R. Herlemann
- Centre for Limnology, Institute of Agricultural and Environmental SciencesEstonian University of Life SciencesTartu CountyEstonia
- Department of Biological OceanographyLeibniz Institute for Baltic Sea Research Warnemünde (IOW)RostockGermany
| | - Helen Tammert
- Centre for Limnology, Institute of Agricultural and Environmental SciencesEstonian University of Life SciencesTartu CountyEstonia
- Institute of TechnologyUniversity of TartuTartuEstonia
| | - Carmen Kivistik
- Centre for Limnology, Institute of Agricultural and Environmental SciencesEstonian University of Life SciencesTartu CountyEstonia
| | - Kairi Käiro
- Centre for Limnology, Institute of Agricultural and Environmental SciencesEstonian University of Life SciencesTartu CountyEstonia
| | - Veljo Kisand
- Centre for Limnology, Institute of Agricultural and Environmental SciencesEstonian University of Life SciencesTartu CountyEstonia
- Institute of TechnologyUniversity of TartuTartuEstonia
| |
Collapse
|
19
|
Zhu M, Dai X. Shaping of microbial phenotypes by trade-offs. Nat Commun 2024; 15:4238. [PMID: 38762599 PMCID: PMC11102524 DOI: 10.1038/s41467-024-48591-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/06/2024] [Indexed: 05/20/2024] Open
Abstract
Growth rate maximization is an important fitness strategy for microbes. However, the wide distribution of slow-growing oligotrophic microbes in ecosystems suggests that rapid growth is often not favored across ecological environments. In many circumstances, there exist trade-offs between growth and other important traits (e.g., adaptability and survival) due to physiological and proteome constraints. Investments on alternative traits could compromise growth rate and microbes need to adopt bet-hedging strategies to improve fitness in fluctuating environments. Here we review the mechanistic role of trade-offs in controlling bacterial growth and further highlight its ecological implications in driving the emergences of many important ecological phenomena such as co-existence, population heterogeneity and oligotrophic/copiotrophic lifestyles.
Collapse
Affiliation(s)
- Manlu Zhu
- State Key Laboratory of Green Pesticide, School of Life Sciences, Central China Normal University, Wuhan, PR China
| | - Xiongfeng Dai
- State Key Laboratory of Green Pesticide, School of Life Sciences, Central China Normal University, Wuhan, PR China.
| |
Collapse
|
20
|
Thweatt JL, Harman CE, Araújo MN, Marlow JJ, Oliver GC, Sabuda MC, Sevgen S, Wilpiszeki RL. Chapter 6: The Breadth and Limits of Life on Earth. ASTROBIOLOGY 2024; 24:S124-S142. [PMID: 38498824 DOI: 10.1089/ast.2021.0131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Scientific ideas about the potential existence of life elsewhere in the universe are predominantly informed by knowledge about life on Earth. Over the past ∼4 billion years, life on Earth has evolved into millions of unique species. Life now inhabits nearly every environmental niche on Earth that has been explored. Despite the wide variety of species and diverse biochemistry of modern life, many features, such as energy production mechanisms and nutrient requirements, are conserved across the Tree of Life. Such conserved features help define the operational parameters required by life and therefore help direct the exploration and evaluation of habitability in extraterrestrial environments. As new diversity in the Tree of Life continues to expand, so do the known limits of life on Earth and the range of environments considered habitable elsewhere. The metabolic processes used by organisms living on the edge of habitability provide insights into the types of environments that would be most suitable to hosting extraterrestrial life, crucial for planning and developing future astrobiology missions. This chapter will introduce readers to the breadth and limits of life on Earth and show how the study of life at the extremes can inform the broader field of astrobiology.
Collapse
Affiliation(s)
- Jennifer L Thweatt
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, Pennsylvania, USA. (Former)
| | - C E Harman
- Planetary Systems Branch, NASA Ames Research Center, Moffett Field, California, USA
| | - M N Araújo
- Biochemistry Department, University of São Paulo, São Carlos, Brazil
| | - Jeffrey J Marlow
- Department of Biology, Boston University, Boston, Massachusetts, USA
| | - Gina C Oliver
- Department of Geology, San Bernardino Valley College, San Bernardino, California, USA
| | - Mary C Sabuda
- Department of Earth and Environmental Sciences, University of Minnesota-Twin Cities, Minneapolis, Minnesota, USA
- Biotechnology Institute, University of Minnesota-Twin Cities, St. Paul, Minnesota, USA
| | - Serhat Sevgen
- Institute of Marine Sciences, Middle East Technical University, Erdemli, Mersin, Turkey
- Blue Marble Space Institute of Science, Seattle, Washington, USA
| | | |
Collapse
|
21
|
Yadav P, Das J, Sundharam SS, Krishnamurthi S. Analysis of Culturable Bacterial Diversity of Pangong Tso Lake via a 16S rRNA Tag Sequencing Approach. Microorganisms 2024; 12:397. [PMID: 38399801 PMCID: PMC10892101 DOI: 10.3390/microorganisms12020397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/01/2024] [Accepted: 01/03/2024] [Indexed: 02/25/2024] Open
Abstract
The Pangong Tso lake is a high-altitude freshwater habitat wherein the resident microbes experience unique selective pressures, i.e., high radiation, low nutrient content, desiccation, and temperature extremes. Our study attempts to analyze the diversity of culturable bacteria by applying a high-throughput amplicon sequencing approach based on long read technology to determine the spectrum of bacterial diversity supported by axenic media. The phyla Pseudomonadota, Bacteriodetes, and Actinomycetota were retrieved as the predominant taxa in both water and sediment samples. The genera Hydrogenophaga and Rheinheimera, Pseudomonas, Loktanella, Marinomonas, and Flavobacterium were abundantly present in the sediment and water samples, respectively. Low nutrient conditions supported the growth of taxa within the phyla Bacteriodetes, Actinomycetota, and Cyanobacteria and were biased towards the selection of Pseudomonas, Hydrogenophaga, Bacillus, and Enterococcus spp. Our study recommends that media formulations can be finalized after analyzing culturable diversity through a high-throughput sequencing effort to retrieve maximum species diversity targeting novel/relevant taxa.
Collapse
Affiliation(s)
- Pooja Yadav
- Microbial Type Culture Collection & Gene Bank (MTCC), CSIR-Institute of Microbial Technology, Sec-39A, Chandigarh 160036, India; (P.Y.); (J.D.); (S.S.S.)
| | - Joyasree Das
- Microbial Type Culture Collection & Gene Bank (MTCC), CSIR-Institute of Microbial Technology, Sec-39A, Chandigarh 160036, India; (P.Y.); (J.D.); (S.S.S.)
| | - Shiva S. Sundharam
- Microbial Type Culture Collection & Gene Bank (MTCC), CSIR-Institute of Microbial Technology, Sec-39A, Chandigarh 160036, India; (P.Y.); (J.D.); (S.S.S.)
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad 201002, India
| | - Srinivasan Krishnamurthi
- Microbial Type Culture Collection & Gene Bank (MTCC), CSIR-Institute of Microbial Technology, Sec-39A, Chandigarh 160036, India; (P.Y.); (J.D.); (S.S.S.)
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad 201002, India
| |
Collapse
|
22
|
Zhu M, Mu H, Dai X. Integrated control of bacterial growth and stress response by (p)ppGpp in Escherichia coli: A seesaw fashion. iScience 2024; 27:108818. [PMID: 38299113 PMCID: PMC10828813 DOI: 10.1016/j.isci.2024.108818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/02/2023] [Accepted: 01/02/2024] [Indexed: 02/02/2024] Open
Abstract
To thrive in nature, bacteria have to reproduce efficiently under favorable conditions and persist during stress. The global strategy that integrates the growth control and stress response remains to be explored. Here, we find that a moderate induction of (p)ppGpp reduces growth rate but significantly enhances the stress tolerance of E. coli, resulting from a global resource re-allocation from ribosome synthesis to the synthesis of stress-responsive proteins. Strikingly, the activation of stress response by (p)ppGpp is still largely retained in the absence of RpoS. In addition, (p)ppGpp induction could activate the catabolism of alanine and arginine, facilitating the adaption of bacteria to nutrient downshift. Our work demonstrates that the activation of stress response by (p)ppGpp could occur in an RpoS-independent manner and (p)ppGpp enables bacteria to integrate the control of growth and stress response in a seesaw fashion, thus acting as an important global regulator of the bacterial fitness landscape.
Collapse
Affiliation(s)
- Manlu Zhu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences & National Key Laboratory of Green Pesticides, Central China Normal University, Wuhan, China
| | - Haoyan Mu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences & National Key Laboratory of Green Pesticides, Central China Normal University, Wuhan, China
| | - Xiongfeng Dai
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences & National Key Laboratory of Green Pesticides, Central China Normal University, Wuhan, China
| |
Collapse
|
23
|
Thorpe CL, Crawford R, Hand RJ, Radford JT, Corkhill CL, Pearce CI, Neeway JJ, Plymale AE, Kruger AA, Morris K, Boothman C, Lloyd JR. Microbial interactions with phosphorus containing glasses representative of vitrified radioactive waste. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132667. [PMID: 37839373 DOI: 10.1016/j.jhazmat.2023.132667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/21/2023] [Accepted: 09/27/2023] [Indexed: 10/17/2023]
Abstract
The presence of phosphorus in borosilicate glass (at 0.1 - 1.3 mol% P2O5) and in iron-phosphate glass (at 53 mol% P2O5) stimulated the growth and metabolic activity of anaerobic bacteria in model systems. Dissolution of these phosphorus containing glasses was either inhibited or accelerated by microbial metabolic activity, depending on the solution chemistry and the glass composition. The breakdown of organic carbon to volatile fatty acids increased glass dissolution. The interaction of microbially reduced Fe(II) with phosphorus-containing glass under anoxic conditions decreased dissolution rates, whereas the interaction of Fe(III) with phosphorus-containing glass under oxic conditions increased glass dissolution. Phosphorus addition to borosilicate glasses did not significantly affect the microbial species present, however, the diversity of the microbial community was enhanced on the surface of the iron phosphate glass. Results demonstrate the potential for microbes to influence the geochemistry of radioactive waste disposal environments with implication for wasteform durability.
Collapse
Affiliation(s)
- C L Thorpe
- Immobilization Science Laboratory, Sir Robert Hadfield Building, University of Sheffield, S1 3JD, UK.
| | - R Crawford
- Immobilization Science Laboratory, Sir Robert Hadfield Building, University of Sheffield, S1 3JD, UK
| | - R J Hand
- Immobilization Science Laboratory, Sir Robert Hadfield Building, University of Sheffield, S1 3JD, UK
| | - J T Radford
- Immobilization Science Laboratory, Sir Robert Hadfield Building, University of Sheffield, S1 3JD, UK
| | - C L Corkhill
- Immobilization Science Laboratory, Sir Robert Hadfield Building, University of Sheffield, S1 3JD, UK; School of Earth Sciences, The University of Bristol, Bristol, UK
| | - C I Pearce
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - J J Neeway
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - A E Plymale
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - A A Kruger
- Office of River Protection, US Department of Energy, Richland, WA, USA
| | - K Morris
- Williamson Research Centre and Research Centre for Radwaste Disposal, Williamson Building, University of Manchester, 176 Oxford Road, M13 9PL, UK
| | - C Boothman
- Williamson Research Centre and Research Centre for Radwaste Disposal, Williamson Building, University of Manchester, 176 Oxford Road, M13 9PL, UK
| | - J R Lloyd
- Williamson Research Centre and Research Centre for Radwaste Disposal, Williamson Building, University of Manchester, 176 Oxford Road, M13 9PL, UK
| |
Collapse
|
24
|
Verrone V, Gupta A, Laloo AE, Dubey RK, Hamid NAA, Swarup S. Organic matter stability and lability in terrestrial and aquatic ecosystems: A chemical and microbial perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167757. [PMID: 37852479 DOI: 10.1016/j.scitotenv.2023.167757] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/20/2023]
Abstract
Terrestrial and aquatic ecosystems have specific carbon fingerprints and sequestration potential, due to the intrinsic properties of the organic matter (OM), mineral content, environmental conditions, and microbial community composition and functions. A small variation in the OM pool can imbalance the carbon dynamics that ultimately affect the climate and functionality of each ecosystem, at regional and global scales. Here, we review the factors that continuously contribute to carbon stability and lability, with particular attention to the OM formation and nature, as well as the microbial activities that drive OM aggregation, degradation and eventually greenhouse gas emissions. We identified that in both aquatic and terrestrial ecosystems, microbial attributes (i.e., carbon metabolism, carbon use efficiency, necromass, enzymatic activities) play a pivotal role in transforming the carbon stock and yet they are far from being completely characterised and not often included in carbon estimations. Therefore, future research must focus on the integration of microbial components into carbon mapping and models, as well as on translating molecular-scaled studies into practical approaches. These strategies will improve carbon management and restoration across ecosystems and contribute to overcome current climate challenges.
Collapse
Affiliation(s)
- Valeria Verrone
- National University of Singapore Environmental Research Institute, National University of Singapore,117411, Singapore
| | - Abhishek Gupta
- Singapore Centre of Environmental Engineering and Life Sciences, National University of Singapore, Singapore.
| | - Andrew Elohim Laloo
- National University of Singapore Environmental Research Institute, National University of Singapore,117411, Singapore; Singapore Centre of Environmental Engineering and Life Sciences, National University of Singapore, Singapore
| | - Rama Kant Dubey
- National University of Singapore Environmental Research Institute, National University of Singapore,117411, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore; Department of Biotechnology, GLA University, Mathura, Uttar Pradesh 281406, India
| | - Nur Ashikin Abdul Hamid
- National University of Singapore Environmental Research Institute, National University of Singapore,117411, Singapore
| | - Sanjay Swarup
- National University of Singapore Environmental Research Institute, National University of Singapore,117411, Singapore; Singapore Centre of Environmental Engineering and Life Sciences, National University of Singapore, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| |
Collapse
|
25
|
Li J, Dong C, Xiang S, Wei H, Lai Q, Wei G, Gong L, Huang Z, Zhou D, Wang G, Shao Z. Key bacteria decomposing animal and plant detritus in deep sea revealed via long-term in situ incubation in different oceanic areas. ISME COMMUNICATIONS 2024; 4:ycae133. [PMID: 39759837 PMCID: PMC11697153 DOI: 10.1093/ismeco/ycae133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/01/2024] [Indexed: 01/07/2025]
Abstract
Transport of organic matter (OM) occurs widely in the form of animal and plant detritus in global oceans, playing a crucial role in global carbon cycling. While wood- and whale-falls have been extensively studied, the in situ process of OM remineralization by microorganisms remains poorly understood particularly in pelagic regions on a global scale. Here, enrichment experiments with animal tissue or plant detritus were carried out in three deep seas for 4-12 months using the deep-sea in situ incubators. We then performed community composition analyses as well as metagenomic and metatranscriptomic analyses. The results revealed strikingly similar microbial assemblages responsible for decomposing animal and plant detritus. Genes encoding peptidases and glucoside hydrolases were highly abundant and actively transcribed in OM enrichments, which confirmed the roles of these enriched microbial assemblages in organic decomposition. Marinifilaceae, Desulfocapsaceae, Spirochaetaceae, and o-Peptostreptococcales were found to potentially contribute to nitrogen fixation. These core bacteria, acting as cosmopolitan anaerobes in decomposing fast-sinking particulate OM, may have been underestimated in terms of their role in deep-sea microbial-mediated biogeochemical cycles during conventional sampling and diversity survey.
Collapse
Affiliation(s)
- Jianyang Li
- Key Laboratory of Marine Genetic Resources, Ministry of Natural Resources of PR China, 178 Daxue Road, Siming District, Xiamen City, Fujian Province 361005, PR China
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Nankai District, Tianjin City 300387, PR China
| | - Chunming Dong
- Key Laboratory of Marine Genetic Resources, Ministry of Natural Resources of PR China, 178 Daxue Road, Siming District, Xiamen City, Fujian Province 361005, PR China
| | - Shizheng Xiang
- Key Laboratory of Marine Genetic Resources, Ministry of Natural Resources of PR China, 178 Daxue Road, Siming District, Xiamen City, Fujian Province 361005, PR China
| | - Huiyang Wei
- The Office of Science and Technology, Xiamen University, 422 Siming South Road, Siming District, Xiamen City, Fujian Province 361005, PR China
| | - Qiliang Lai
- Key Laboratory of Marine Genetic Resources, Ministry of Natural Resources of PR China, 178 Daxue Road, Siming District, Xiamen City, Fujian Province 361005, PR China
| | - Guangshan Wei
- Key Laboratory of Marine Genetic Resources, Ministry of Natural Resources of PR China, 178 Daxue Road, Siming District, Xiamen City, Fujian Province 361005, PR China
| | - Linfeng Gong
- Key Laboratory of Marine Genetic Resources, Ministry of Natural Resources of PR China, 178 Daxue Road, Siming District, Xiamen City, Fujian Province 361005, PR China
| | - Zhaobin Huang
- Key Laboratory of Marine Genetic Resources, Ministry of Natural Resources of PR China, 178 Daxue Road, Siming District, Xiamen City, Fujian Province 361005, PR China
| | - Donghui Zhou
- School of Mechanical Engineering, Hangzhou Dianzi University, 1158 Baiyang Street, Qiantang District, Hangzhou City, Zhejiang Province 310018, PR China
| | - Guangyi Wang
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Nankai District, Tianjin City 300387, PR China
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Ministry of Natural Resources of PR China, 178 Daxue Road, Siming District, Xiamen City, Fujian Province 361005, PR China
| |
Collapse
|
26
|
Metze F, Vollmers J, Lenk F, Kaster AK. First shotgun metagenomics study of Juan de Fuca deep-sea sediments reveals distinct microbial communities above, within, between, and below sulfate methane transition zones. Front Microbiol 2023; 14:1241810. [PMID: 38053553 PMCID: PMC10694467 DOI: 10.3389/fmicb.2023.1241810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 10/03/2023] [Indexed: 12/07/2023] Open
Abstract
The marine deep subsurface is home to a vast microbial ecosystem, affecting biogeochemical cycles on a global scale. One of the better-studied deep biospheres is the Juan de Fuca (JdF) Ridge, where hydrothermal fluid introduces oxidants into the sediment from below, resulting in two sulfate methane transition zones (SMTZs). In this study, we present the first shotgun metagenomics study of unamplified DNA from sediment samples from different depths in this stratified environment. Bioinformatic analyses showed a shift from a heterotrophic, Chloroflexota-dominated community above the upper SMTZ to a chemolithoautotrophic Proteobacteria-dominated community below the secondary SMTZ. The reintroduction of sulfate likely enables respiration and boosts active cells that oxidize acetate, iron, and complex carbohydrates to degrade dead biomass in this low-abundance, low-diversity environment. In addition, analyses showed many proteins of unknown function as well as novel metagenome-assembled genomes (MAGs). The study provides new insights into microbial communities in this habitat, enabled by an improved DNA extraction protocol that allows a less biased view of taxonomic composition and metabolic activities, as well as uncovering novel taxa. Our approach presents the first successful attempt at unamplified shotgun sequencing samples from beyond 50 meters below the seafloor and opens new ways for capturing the true diversity and functional potential of deep-sea sediments.
Collapse
Affiliation(s)
| | | | | | - Anne-Kristin Kaster
- Institute for Biological Interfaces (IBG 5), Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz, Karlsruhe, Germany
| |
Collapse
|
27
|
Hao M, Wang M, Tang T, Zhao D, Yin S, Shi Y, Liu X, Wudong G, Yang Y, Zhang M, Qi L, Zhou D, Liu W, Jin Y, Wang A. Regulation of the Gene for Alanine Racemase Modulates Amino Acid Metabolism with Consequent Alterations in Cell Wall Properties and Adhesive Capability in Brucella spp. Int J Mol Sci 2023; 24:16145. [PMID: 38003334 PMCID: PMC10671322 DOI: 10.3390/ijms242216145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/24/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Brucella, a zoonotic facultative intracellular pathogenic bacterium, poses a significant threat both to human health and to the development of the livestock industry. Alanine racemase (Alr), the enzyme responsible for alanine racemization, plays a pivotal role in regulating virulence in this bacterium. Moreover, Brucella mutants with alr gene deletions (Δalr) exhibit potential as vaccine candidates. However, the mechanisms that underlie the detrimental effects of alr knockouts on Brucella pathogenicity remain elusive. Here, initially, we conducted a bioinformatics analysis of Alr, which demonstrated a high degree of conservation of the protein within Brucella spp. Subsequent metabolomics studies unveiled alterations in amino acid pathways following deletion of the alr gene. Furthermore, alr deletion in Brucella suis S2 induced decreased resistance to stress, antibiotics, and other factors. Transmission electron microscopy of simulated macrophage intracellular infection revealed damage to the cell wall in the Δalr strain, whereas propidium iodide staining and alkaline phosphatase and lactate dehydrogenase assays demonstrated alterations in cell membrane permeability. Changes in cell wall properties were revealed by measurements of cell surface hydrophobicity and zeta potential. Finally, the diminished adhesion capacity of the Δalr strain was shown by immunofluorescence and bacterial enumeration assays. In summary, our findings indicate that the alr gene that regulates amino acid metabolism in Brucella influences the properties of the cell wall, which modulates bacterial adherence capability. This study is the first demonstration that Alr impacts virulence by modulating bacterial metabolism, thereby providing novel insights into the pathogenic mechanisms of Brucella spp.
Collapse
Affiliation(s)
- Mingyue Hao
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang 712100, China; (M.H.); (M.W.); (T.T.); (D.Z.); (S.Y.); (Y.S.); (X.L.); (G.W.); (Y.Y.); (M.Z.); (L.Q.); (D.Z.); (W.L.); (Y.J.)
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling District, Xianyang 712100, China
| | - Minghui Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang 712100, China; (M.H.); (M.W.); (T.T.); (D.Z.); (S.Y.); (Y.S.); (X.L.); (G.W.); (Y.Y.); (M.Z.); (L.Q.); (D.Z.); (W.L.); (Y.J.)
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling District, Xianyang 712100, China
| | - Ting Tang
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang 712100, China; (M.H.); (M.W.); (T.T.); (D.Z.); (S.Y.); (Y.S.); (X.L.); (G.W.); (Y.Y.); (M.Z.); (L.Q.); (D.Z.); (W.L.); (Y.J.)
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling District, Xianyang 712100, China
| | - Danyu Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang 712100, China; (M.H.); (M.W.); (T.T.); (D.Z.); (S.Y.); (Y.S.); (X.L.); (G.W.); (Y.Y.); (M.Z.); (L.Q.); (D.Z.); (W.L.); (Y.J.)
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling District, Xianyang 712100, China
| | - Shurong Yin
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang 712100, China; (M.H.); (M.W.); (T.T.); (D.Z.); (S.Y.); (Y.S.); (X.L.); (G.W.); (Y.Y.); (M.Z.); (L.Q.); (D.Z.); (W.L.); (Y.J.)
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling District, Xianyang 712100, China
| | - Yong Shi
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang 712100, China; (M.H.); (M.W.); (T.T.); (D.Z.); (S.Y.); (Y.S.); (X.L.); (G.W.); (Y.Y.); (M.Z.); (L.Q.); (D.Z.); (W.L.); (Y.J.)
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling District, Xianyang 712100, China
| | - Xiaofang Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang 712100, China; (M.H.); (M.W.); (T.T.); (D.Z.); (S.Y.); (Y.S.); (X.L.); (G.W.); (Y.Y.); (M.Z.); (L.Q.); (D.Z.); (W.L.); (Y.J.)
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling District, Xianyang 712100, China
| | - Gaowa Wudong
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang 712100, China; (M.H.); (M.W.); (T.T.); (D.Z.); (S.Y.); (Y.S.); (X.L.); (G.W.); (Y.Y.); (M.Z.); (L.Q.); (D.Z.); (W.L.); (Y.J.)
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling District, Xianyang 712100, China
| | - Yuanhao Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang 712100, China; (M.H.); (M.W.); (T.T.); (D.Z.); (S.Y.); (Y.S.); (X.L.); (G.W.); (Y.Y.); (M.Z.); (L.Q.); (D.Z.); (W.L.); (Y.J.)
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling District, Xianyang 712100, China
| | - Mengyu Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang 712100, China; (M.H.); (M.W.); (T.T.); (D.Z.); (S.Y.); (Y.S.); (X.L.); (G.W.); (Y.Y.); (M.Z.); (L.Q.); (D.Z.); (W.L.); (Y.J.)
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling District, Xianyang 712100, China
| | - Lin Qi
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang 712100, China; (M.H.); (M.W.); (T.T.); (D.Z.); (S.Y.); (Y.S.); (X.L.); (G.W.); (Y.Y.); (M.Z.); (L.Q.); (D.Z.); (W.L.); (Y.J.)
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling District, Xianyang 712100, China
| | - Dong Zhou
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang 712100, China; (M.H.); (M.W.); (T.T.); (D.Z.); (S.Y.); (Y.S.); (X.L.); (G.W.); (Y.Y.); (M.Z.); (L.Q.); (D.Z.); (W.L.); (Y.J.)
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling District, Xianyang 712100, China
| | - Wei Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang 712100, China; (M.H.); (M.W.); (T.T.); (D.Z.); (S.Y.); (Y.S.); (X.L.); (G.W.); (Y.Y.); (M.Z.); (L.Q.); (D.Z.); (W.L.); (Y.J.)
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling District, Xianyang 712100, China
| | - Yaping Jin
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang 712100, China; (M.H.); (M.W.); (T.T.); (D.Z.); (S.Y.); (Y.S.); (X.L.); (G.W.); (Y.Y.); (M.Z.); (L.Q.); (D.Z.); (W.L.); (Y.J.)
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling District, Xianyang 712100, China
| | - Aihua Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang 712100, China; (M.H.); (M.W.); (T.T.); (D.Z.); (S.Y.); (Y.S.); (X.L.); (G.W.); (Y.Y.); (M.Z.); (L.Q.); (D.Z.); (W.L.); (Y.J.)
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling District, Xianyang 712100, China
| |
Collapse
|
28
|
Gusmão ACB, Peres FV, Paula FS, Pellizari VH, Kolm HE, Signori CN. Microbial communities in the deep-sea sediments of the South São Paulo Plateau, Southwestern Atlantic Ocean. Int Microbiol 2023; 26:1041-1051. [PMID: 37093322 DOI: 10.1007/s10123-023-00358-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/30/2023] [Accepted: 04/06/2023] [Indexed: 04/25/2023]
Abstract
Microbial communities play a key role in the ocean, acting as primary producers, nutrient recyclers, and energy providers. The São Paulo Plateau is a region located on the southeastern coast of Brazil within economic importance, due to its oil and gas reservoirs. With this focus, this study examined the diversity and composition of microbial communities in marine sediments located at three oceanographic stations in the southern region of São Paulo Plateau using the HOV Shinkai 6500 in 2013. The 16S rRNA gene was sequenced using the universal primers (515F and 926R) by the Illumina Miseq platform. The taxonomic compositions of samples recovered from SP3 station were markedly distinct from those obtained from SP1 and SP2. Although all three stations exhibited a high abundance of Gammaproteobacteria (> 15%), this taxon dominated more than 90% of composition of the A and C sediment layers at SP3. The highest abundance of the archaeal class Nitrososphaeria was presented at SP1, mainly at layer C (~ 21%), being absent at SP3 station. The prediction of chemoheterotrophy and fermentation as important microbial functions was supported by the data. Additionally, other metabolic pathways related to the cycles of nitrogen, carbon and sulfur were also predicted. The core microbiome analysis comprised only two ASVs. Our study contributes to a better understanding of microbial communities in an economically important little-explored region. This is the third microbiological survey in plateau sediments and the first focused on the southern region.
Collapse
Affiliation(s)
- Ana Carolina Bercini Gusmão
- Department of Biological Oceanography, Oceanographic Institute, University of São Paulo, Praça Do Oceanográfico, 191. CEP: 05508-120, São Paulo, Brazil.
| | - Francielli Vilela Peres
- Department of Biological Oceanography, Oceanographic Institute, University of São Paulo, Praça Do Oceanográfico, 191. CEP: 05508-120, São Paulo, Brazil
| | - Fabiana S Paula
- Department of Biological Oceanography, Oceanographic Institute, University of São Paulo, Praça Do Oceanográfico, 191. CEP: 05508-120, São Paulo, Brazil
| | - Vivian Helena Pellizari
- Department of Biological Oceanography, Oceanographic Institute, University of São Paulo, Praça Do Oceanográfico, 191. CEP: 05508-120, São Paulo, Brazil
| | - Hedda Elisabeth Kolm
- Department of Oceanography, Center for Marine Studies, Federal University of Paraná, Pontal do Paraná, Brazil
| | - Camila Negrão Signori
- Department of Biological Oceanography, Oceanographic Institute, University of São Paulo, Praça Do Oceanográfico, 191. CEP: 05508-120, São Paulo, Brazil
| |
Collapse
|
29
|
Lu M, Luo X, Jiao JJ, Li H, Kuang X, Wang X, Feng Y, Zheng C. Uncovering the processes of microbial community assembly in the near-surface sediments of a climate-sensitive glacier-fed lake. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118714. [PMID: 37542806 DOI: 10.1016/j.jenvman.2023.118714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/09/2023] [Accepted: 07/26/2023] [Indexed: 08/07/2023]
Abstract
Glacier-fed lakes are characterized by cold temperatures, high altitudes, and nutrient-poor conditions. Despite these challenging conditions, near-surface sediments of glacier-fed lakes harbor rich microbial communities that are critical for ecosystem functioning and serve as a bridge between aquatic ecology and the deep subsurface biosphere. However, there is limited knowledge regarding the microbial communities and their assembly processes in these sediments, which are highly vulnerable to climate change. To fill this knowledge gap, this study systematically analyzed environmental variables, microbial communities, diversity, co-occurrence relationships, and community assembly processes in the near-surface sediments of a glacier-fed lake in the Tibetan Plateau. The results revealed distinct vertical gradients in microbial diversity and subcommunities, highlighting the significant influence of selection processes and adaptive abilities on microbial communities. Specifically, specialists played a crucial role within the overall microbial communities. Microbial assembly was primarily driven by homogeneous selection, but its influence declined with increasing depth. In contrast, homogenizing dispersal showed an opposite pattern, and the bottom layer exhibited heterogeneous selection and undominated processes. These patterns of microbial assembly were primarily driven by environmental gradients, with significant contributions from processes associated to ammonium and organic matter deposition, as well as chemical precipitation in response to a warming climate. This study enhances our understanding of the microbial communities and assembly processes in the near-surface sediments of glacier-fed lakes and sheds light on geo-microbiological processes in climate-sensitive lacustrine sediments.
Collapse
Affiliation(s)
- Meiqing Lu
- Department of Earth Sciences, The University of Hong Kong, Hong Kong, China; School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xin Luo
- Department of Earth Sciences, The University of Hong Kong, Hong Kong, China
| | - Jiu Jimmy Jiao
- Department of Earth Sciences, The University of Hong Kong, Hong Kong, China.
| | - Hailong Li
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xingxing Kuang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xuejing Wang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yuqing Feng
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Chunmiao Zheng
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
30
|
Butterworth SJ, Barton F, Lloyd JR. Extremophilic microbial metabolism and radioactive waste disposal. Extremophiles 2023; 27:27. [PMID: 37839067 PMCID: PMC10577106 DOI: 10.1007/s00792-023-01312-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 09/12/2023] [Indexed: 10/17/2023]
Abstract
Decades of nuclear activities have left a legacy of hazardous radioactive waste, which must be isolated from the biosphere for over 100,000 years. The preferred option for safe waste disposal is a deep subsurface geological disposal facility (GDF). Due to the very long geological timescales required, and the complexity of materials to be disposed of (including a wide range of nutrients and electron donors/acceptors) microbial activity will likely play a pivotal role in the safe operation of these mega-facilities. A GDF environment provides many metabolic challenges to microbes that may inhabit the facility, including high temperature, pressure, radiation, alkalinity, and salinity, depending on the specific disposal concept employed. However, as our understanding of the boundaries of life is continuously challenged and expanded by the discovery of novel extremophiles in Earth's most inhospitable environments, it is becoming clear that microorganisms must be considered in GDF safety cases to ensure accurate predictions of long-term performance. This review explores extremophilic adaptations and how this knowledge can be applied to challenge our current assumptions on microbial activity in GDF environments. We conclude that regardless of concept, a GDF will consist of multiple extremes and it is of high importance to understand the limits of polyextremophiles under realistic environmental conditions.
Collapse
Affiliation(s)
- Sarah Jane Butterworth
- Department of Earth and Environmental Sciences, Research Centre for Radwaste Disposal and Williamson Research Centre, The University of Manchester, Manchester, UK
| | - Franky Barton
- Department of Earth and Environmental Sciences, Research Centre for Radwaste Disposal and Williamson Research Centre, The University of Manchester, Manchester, UK.
| | - Jonathan Richard Lloyd
- Department of Earth and Environmental Sciences, Research Centre for Radwaste Disposal and Williamson Research Centre, The University of Manchester, Manchester, UK.
| |
Collapse
|
31
|
Seto M, Kondoh M. Microbial redox cycling enhances ecosystem thermodynamic efficiency and productivity. Ecol Lett 2023; 26:1714-1725. [PMID: 37458207 DOI: 10.1111/ele.14287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 10/19/2023]
Abstract
Microbial life in low-energy ecosystems relies on individual energy conservation, optimizing energy use in response to interspecific competition and mutualistic interspecific syntrophy. Our study proposes a novel community-level strategy for increasing energy use efficiency. By utilizing an oxidation-reduction (redox) reaction network model that represents microbial redox metabolic interactions, we investigated multiple species-level competition and cooperation within the network. Our results suggest that microbial functional diversity allows for metabolic handoffs, which in turn leads to increased energy use efficiency. Furthermore, the mutualistic division of labour and the resulting complexity of redox pathways actively drive material cycling, further promoting energy exploitation. Our findings reveal the potential of self-organized ecological interactions to develop efficient energy utilization strategies, with important implications for microbial ecosystem functioning and the co-evolution of life and Earth.
Collapse
Affiliation(s)
- Mayumi Seto
- Department of Chemistry, Biology, and Environmental Sciences, Nara Women's University, Nara, Japan
| | - Michio Kondoh
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
32
|
Zhu M, Wang Q, Mu H, Han F, Wang Y, Dai X. A fitness trade-off between growth and survival governed by Spo0A-mediated proteome allocation constraints in Bacillus subtilis. SCIENCE ADVANCES 2023; 9:eadg9733. [PMID: 37756393 PMCID: PMC10530083 DOI: 10.1126/sciadv.adg9733] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023]
Abstract
Growth and survival are key determinants of bacterial fitness. However, how resource allocation of bacteria could reconcile these two traits to maximize fitness remains poorly understood. Here, we find that the resource allocation strategy of Bacillus subtilis does not lead to growth maximization on various carbon sources. Survival-related pathways impose strong proteome constraints on B. subtilis. Knockout of a master regulator gene, spo0A, triggers a global resource reallocation from survival-related pathways to biosynthesis pathways, further strongly stimulating the growth of B. subtilis. However, the fitness of spo0A-null strain is severely compromised because of various disadvantageous phenotypes (e.g., abolished sporulation and enhanced cell lysis). In particular, it also exhibits a strong defect in peptide utilization, being unable to efficiently recycle nutrients from the lysed cell debris to maintain long-term viability. Our work uncovers a fitness trade-off between growth and survival that governed by Spo0A-mediated proteome allocation constraints in B. subtilis, further shedding light on the fundamental design principle of bacteria.
Collapse
Affiliation(s)
| | | | | | - Fei Han
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei province, China
| | - Yanling Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei province, China
| | | |
Collapse
|
33
|
George AB, Wang T, Maslov S. Functional convergence in slow-growing microbial communities arises from thermodynamic constraints. THE ISME JOURNAL 2023; 17:1482-1494. [PMID: 37380829 PMCID: PMC10432562 DOI: 10.1038/s41396-023-01455-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 05/15/2023] [Accepted: 06/12/2023] [Indexed: 06/30/2023]
Abstract
The dynamics of microbial communities is complex, determined by competition for metabolic substrates and cross-feeding of byproducts. Species in the community grow by harvesting energy from chemical reactions that transform substrates to products. In many anoxic environments, these reactions are close to thermodynamic equilibrium and growth is slow. To understand the community structure in these energy-limited environments, we developed a microbial community consumer-resource model incorporating energetic and thermodynamic constraints on an interconnected metabolic network. The central element of the model is product inhibition, meaning that microbial growth may be limited not only by depletion of metabolic substrates but also by accumulation of products. We demonstrate that these additional constraints on microbial growth cause a convergence in the structure and function of the community metabolic network-independent of species composition and biochemical details-providing a possible explanation for convergence of community function despite taxonomic variation observed in many natural and industrial environments. Furthermore, we discovered that the structure of community metabolic network is governed by the thermodynamic principle of maximum free energy dissipation. Our results predict the decrease of functional convergence in faster growing communities, which we validate by analyzing experimental data from anaerobic digesters. Overall, the work demonstrates how universal thermodynamic principles may constrain community metabolism and explain observed functional convergence in microbial communities.
Collapse
Affiliation(s)
- Ashish B George
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Tong Wang
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Sergei Maslov
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
34
|
Kanaan G, Hoehler TM, Iwahana G, Deming JW. Modeled energetics of bacterial communities in ancient subzero brines. Front Microbiol 2023; 14:1206641. [PMID: 37564288 PMCID: PMC10411740 DOI: 10.3389/fmicb.2023.1206641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 07/06/2023] [Indexed: 08/12/2023] Open
Abstract
Cryopeg brines are isolated volumes of hypersaline water in subzero permafrost. The cryopeg system at Utqiaġvik, Alaska, is estimated to date back to 40 ka BP or earlier, a remnant of a late Pleistocene Ocean. Surprisingly, the cryopeg brines contain high concentrations of organic carbon, including extracellular polysaccharides, and high densities of bacteria. How can these physiologically extreme, old, and geologically isolated systems support such an ecosystem? This study addresses this question by examining the energetics of the Utqiaġvik cryopeg brine ecosystem. Using literature-derived assumptions and new measurements on archived borehole materials, we first estimated the quantity of organic carbon when the system formed. We then considered two bacterial growth trajectories to calculate the lower and upper bounds of the cell-specific metabolic rate of these communities. These bounds represent the first community estimates of metabolic rate in a subzero hypersaline environment. To assess the plausibility of the different growth trajectories, we developed a model of the organic carbon cycle and applied it to three borehole scenarios. We also used dissolved inorganic carbon and nitrogen measurements to independently estimate the metabolic rate. The model reconstructs the growth trajectory of the microbial community and predicts the present-day cell density and organic carbon content. Model input included measured rates of the in-situ enzymatic conversion of particulate to dissolved organic carbon under subzero brine conditions. A sensitivity analysis of model parameters was performed, revealing an interplay between growth rate, cell-specific metabolic rate, and extracellular enzyme activity. This approach allowed us to identify plausible growth trajectories consistent with the observed bacterial densities in the cryopeg brines. We found that the cell-specific metabolic rate in this system is relatively high compared to marine sediments. We attribute this finding to the need to invest energy in the production of extracellular enzymes, for generating bioavailable carbon from particulate organic carbon, and the production of extracellular polysaccharides for cryoprotection and osmoprotection. These results may be relevant to other isolated systems in the polar regions of Earth and to possible ice-bound brines on worlds such as Europa, Enceladus, and Mars.
Collapse
Affiliation(s)
- Georges Kanaan
- School of Oceanography and Astrobiology Program, University of Washington, Seattle, WA, United States
| | | | - Go Iwahana
- International Arctic Research Center, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Jody W. Deming
- School of Oceanography and Astrobiology Program, University of Washington, Seattle, WA, United States
| |
Collapse
|
35
|
Li H, Zhou H, Yang S, Dai X. Stochastic and Deterministic Assembly Processes in Seamount Microbial Communities. Appl Environ Microbiol 2023; 89:e0070123. [PMID: 37404136 PMCID: PMC10370332 DOI: 10.1128/aem.00701-23] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/07/2023] [Indexed: 07/06/2023] Open
Abstract
Seamounts are ubiquitous in the ocean. However, little is known about how seamount habitat features influence the local microbial community. In this study, the microbial populations of sediment cores from sampling depths of 0.1 to 35 cm from 10 seamount summit sites with a water depth of 1,850 to 3,827 m across the South China Sea (SCS) Basin were analyzed. Compared with nonseamount ecosystems, isolated seamounts function as oases for microbiomes, with average moderate to high levels of microbial abundance, richness, and diversity, and they harbor distinct microbial communities. The distinct characteristics of different seamounts provide a high level of habitat heterogeneity, resulting in the wide range of microbial community diversity observed across all seamounts. Using dormant thermospores as tracers to study the effect of dispersal by ocean currents, the observed distance-decay biogeography across different seamounts shaped simultaneously by the seamounts' naturally occurring heterogeneous habitat and the limitation of ocean current dispersal was found. We also established a framework that links initial community assembly with successional dynamics in seamounts. Seamounts provide resource-rich and dynamic environments, which leads to a dominance of stochasticity during initial community establishment in surface sediments. However, a progressive increase in deterministic environmental selection, correlated with resource depletion in subsurface sediments, leads to the selective growth of rare species of surface sediment communities in shaping the subsurface community. Overall, the study indicates that seamounts are a previously ignored oasis in the deep sea. This study also provides a case study for understanding the microbial ecology in globally widespread seamounts. IMPORTANCE Although there are approximately 25 million seamounts in the ocean, surprisingly little is known about seamount microbial ecology. We provide evidence that seamounts are island-like habitats harboring microbial communities distinct from those of nonseamount habitats, and they exhibit a distance-decay pattern. Environmental selection and dispersal limitation simultaneously shape the observed biogeography. Coupling empirical data with a null mode revealed a shift in the type and strength, which controls microbial community assembly and succession from the seamount surface to the subsurface sediments as follows: (i) community assembly is initially primarily driven by stochastic processes such as dispersal limitation, and (ii) changes in the subsurface environment progressively increase the importance of environmental selection. This case study contributes to the mechanistic understanding essential for a predictive microbial ecology of seamounts.
Collapse
Affiliation(s)
- Haizhou Li
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Shanghai, China
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, China
| | - Huaiyang Zhou
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, China
| | - Shanshan Yang
- College of Marine Science and Technology, China University of Geosciences, Wuhan, Hubei, China
- Institute for Advanced Marine Research, China University of Geosciences, Guangzhou, China
| | - Xin Dai
- State Key Laboratory of Microbial Resources, Institutes of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
36
|
Schubert F, Kallmeyer J. Liquid scintillation counting at the limit of detection in biogeosciences. Front Microbiol 2023; 14:1194848. [PMID: 37485520 PMCID: PMC10361571 DOI: 10.3389/fmicb.2023.1194848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/15/2023] [Indexed: 07/25/2023] Open
Abstract
Liquid scintillation is widely used to quantify the activity of radioisotopes. We present an overview of the technique and its application to biogeosciences, particularly for turnover rate measurements. Microbial communities and their metabolism are notoriously difficult to analyze in low energy environments as biomass is exceedingly sparse and turnover rates low. Highly sensitive methods, such as liquid scintillation counting, are required to investigate low metabolic rates and conclusively differentiate them from the background noise of the respective analyzer. We conducted a series of experiments to explore the effects of luminescence, measurement time and temperature on scintillation measurements. Luminescence, the spontaneous emission of photons, disproportionally affects samples within the first few hours after sample preparation and can be minimized by following simple guidelines. Short measurement times will negatively affect liquid scintillation analysis or if background noise makes up a significant proportion of the detected events. Measurement temperature affected liquid scintillation analysis only when the temperature during the measurement reached approximately 30°C or higher, i.e. the liquid scintillation analyzer was placed in an environment without temperature control, but not in cases where chemicals were stored at elevated temperatures prior to measurement. Basic understanding on the functionality of a liquid scintillation analyzer and simple precautions prior to the measurement can significantly lower the minimum detection limit and therefore allow for determination of low turnover rates previously lost in the background noise.
Collapse
|
37
|
Chen Y, Dai T, Li N, Li Q, Lyu Y, Di P, Lyu L, Zhang S, Li J. Environmental heterogeneity shapes the C and S cycling-associated microbial community in Haima's cold seeps. Front Microbiol 2023; 14:1199853. [PMID: 37502402 PMCID: PMC10370420 DOI: 10.3389/fmicb.2023.1199853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/07/2023] [Indexed: 07/29/2023] Open
Abstract
Environmental heterogeneity in cold seeps is usually reflected by different faunal aggregates. The sediment microbiome, especially the geochemical cycling-associated communities, sustains the ecosystem through chemosynthesis. To date, few studies have paid attention to the structuring and functioning of geochemical cycling-associated communities relating to environmental heterogeneity in different faunal aggregates of cold seeps. In this study, we profiled the microbial community of four faunal aggregates in the Haima cold seep, South China Sea. Through a combination of geochemical and meta-omics approaches, we have found that geochemical variables, such as sulfate and calcium, exhibited a significant variation between different aggregates, indicating changes in the methane flux. Anaerobic methanotrophic archaea (ANME), sulfate-reducing, and sulfide-oxidizing bacteria (SRB and SOB) dominated the microbial community but varied in composition among the four aggregates. The diversity of archaea and bacteria exhibited a strong correlation between sulfate, calcium, and silicate. Interspecies co-exclusion inferred by molecular ecological network analysis increased from non-seep to clam aggregates and peaked at the mussel aggregate. The networked geochemical cycling-associated species showed an obvious aggregate-specific distribution pattern. Notably, hydrocarbon oxidation and sulfate reduction by ANME and SRB produced carbonate and sulfide, driving the alkalization of the sediment environment, which may impact the microbial communities. Collectively, these results highlighted that geofluid and microbial metabolism together resulted in environmental heterogeneity, which shaped the C and S cycling-associated microbial community.
Collapse
Affiliation(s)
- Yu Chen
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Tianjiao Dai
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, China
| | - Niu Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Qiqi Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Yuanjiao Lyu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Pengfei Di
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Lina Lyu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Si Zhang
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Jie Li
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| |
Collapse
|
38
|
Yue XL, Xu L, Cui L, Fu GY, Xu XW. Metagenome-based analysis of carbon-fixing microorganisms and their carbon-fixing pathways in deep-sea sediments of the southwestern Indian Ocean. Mar Genomics 2023; 70:101045. [PMID: 37245381 DOI: 10.1016/j.margen.2023.101045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/30/2023]
Abstract
Carbon fixation by chemoautotrophic microorganisms in the dark ocean makes a large contribution to oceanic primary production and the global carbon cycle. In contrast to the Calvin cycle-dominated carbon-fixing pathway in the marine euphotic zone, carbon-fixing pathways and their hosts in deep-sea areas are diverse. In this study, four deep-sea sediment samples close to hydrothermal vents in the southwestern Indian Ocean were collected and processed using metagenomic analysis to investigate carbon fixation potential. Functional annotations revealed that all six carbon-fixing pathways had genes to varied degrees present in the samples. The reductive tricarboxylic acid cycle and Calvin cycle genes occurred in all samples, in contrast to the Wood-Ljungdahl pathway, which previous studies found mainly in the hydrothermal area. The annotations also elucidated the chemoautotrophic microbial members associated with the six carbon-fixing pathways, and the majority of them containing key carbon fixation genes belonged to the phyla Pseudomonadota and Desulfobacterota. The binned metagenome-assembled genomes revealed that key genes for the Calvin cycle and the 3-hydroxypropionate/4-hydroxybutyrate cycle were also found in the order Rhodothermales and the family Hyphomicrobiaceae. By identifying the carbon metabolic pathways and microbial populations in the hydrothermal fields of the southwest Indian Ocean, our study sheds light on complex biogeochemical processes in deep-sea environments and lays the foundation for further in-depth investigations of carbon fixation processes in deep-sea ecosystems.
Collapse
Affiliation(s)
- Xiao-Lan Yue
- School of Oceanography, Shanghai Jiao Tong University, Shanghai 200030, PR China; Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, PR China; Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Lin Xu
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, PR China; College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Li Cui
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Ge-Yi Fu
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, PR China.
| | - Xue-Wei Xu
- School of Oceanography, Shanghai Jiao Tong University, Shanghai 200030, PR China; Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, PR China.
| |
Collapse
|
39
|
Yin Z, Zheng R, Li L, Xi S, Luan Z, Sun C, Zhang X. In situ Raman quantitative monitoring of methanogenesis: Culture experiments of a deep-sea cold seep methanogenic archaeon. Front Microbiol 2023; 14:1128064. [PMID: 37089553 PMCID: PMC10115991 DOI: 10.3389/fmicb.2023.1128064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/20/2023] [Indexed: 04/08/2023] Open
Abstract
Gas production from several metabolic pathways is a necessary process that accompanies the growth and central metabolism of some microorganisms. However, accurate and rapid nondestructive detection of gas production is still challenging. To this end, gas chromatography (GC) is primarily used, which requires sampling and sample preparation. Furthermore, GC is expensive and difficult to operate. Several researchers working on microbial gases are looking forward to a new method to accurately capture the gas trends within a closed system in real-time. In this study, we developed a precise quantitative analysis for headspace gas in Hungate tubes using Raman spectroscopy. This method requires only a controlled focus on the gas portion inside Hungate tubes, enabling nondestructive, real-time, continuous monitoring without the need for sampling. The peak area ratio was selected to establish a calibration curve with nine different CH4–N2 gaseous mixtures and a linear relationship was observed between the peak area ratio of methane to nitrogen and their molar ratios (A(CH4)/A(N2) = 6.0739 × n(CH4)/n(N2)). The results of in situ quantitative analysis using Raman spectroscopy showed good agreement with those of GC in the continuous monitoring of culture experiments of a deep-sea cold seep methanogenic archaeon. This method significantly improves the detection efficiency and shows great potential for in situ quantitative gas detection in microbiology. It can be a powerful complementary tool to GC.
Collapse
Affiliation(s)
- Ziyu Yin
- CAS Key Laboratory of Marine Geology and Environment and CAS Key Laboratory of Experimental Marine Biology and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Geology and Laboratory for Marine Biology and Biotechnology, Pilot Laboratory for Marine Science and Technology, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Rikuan Zheng
- CAS Key Laboratory of Marine Geology and Environment and CAS Key Laboratory of Experimental Marine Biology and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Geology and Laboratory for Marine Biology and Biotechnology, Pilot Laboratory for Marine Science and Technology, Qingdao, China
| | - Lianfu Li
- CAS Key Laboratory of Marine Geology and Environment and CAS Key Laboratory of Experimental Marine Biology and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Geology and Laboratory for Marine Biology and Biotechnology, Pilot Laboratory for Marine Science and Technology, Qingdao, China
| | - Shichuan Xi
- CAS Key Laboratory of Marine Geology and Environment and CAS Key Laboratory of Experimental Marine Biology and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Geology and Laboratory for Marine Biology and Biotechnology, Pilot Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhendong Luan
- CAS Key Laboratory of Marine Geology and Environment and CAS Key Laboratory of Experimental Marine Biology and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Geology and Laboratory for Marine Biology and Biotechnology, Pilot Laboratory for Marine Science and Technology, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chaomin Sun
- CAS Key Laboratory of Marine Geology and Environment and CAS Key Laboratory of Experimental Marine Biology and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Geology and Laboratory for Marine Biology and Biotechnology, Pilot Laboratory for Marine Science and Technology, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xin Zhang
- CAS Key Laboratory of Marine Geology and Environment and CAS Key Laboratory of Experimental Marine Biology and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Geology and Laboratory for Marine Biology and Biotechnology, Pilot Laboratory for Marine Science and Technology, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Xin Zhang,
| |
Collapse
|
40
|
Cai L, Weinbauer MG, Xie L, Zhang R. The smallest in the deepest: the enigmatic role of viruses in the deep biosphere. Natl Sci Rev 2023; 10:nwad009. [PMID: 36960220 PMCID: PMC10029852 DOI: 10.1093/nsr/nwad009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
It is commonly recognized that viruses control the composition, metabolism, and evolutionary trajectories of prokaryotic communities, with resulting vital feedback on ecosystem functioning and nutrient cycling in a wide range of ecosystems. Although the deep biosphere has been estimated to be the largest reservoir for viruses and their prokaryotic hosts, the biology and ecology of viruses therein remain poorly understood. The deep virosphere is an enigmatic field of study in which many critical questions are still to be answered. Is the deep virosphere simply a repository for deeply preserved, non-functioning virus particles? Or are deep viruses infectious agents that can readily infect suitable hosts and subsequently shape microbial populations and nutrient cycling? Can the cellular content released by viral lysis, and even the organic structures of virions themselves, serve as the source of bioavailable nutrients for microbial activity in the deep biosphere as in other ecosystems? In this review, we synthesize our current knowledge of viruses in the deep biosphere and seek to identify topics with the potential for substantial discoveries in the future.
Collapse
Affiliation(s)
- Lanlan Cai
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Markus G Weinbauer
- Sorbonne Universités, UPMC, Université Paris 06, CNRS, Laboratoire d’Océanographie de Villefranche (LOV), Villefranche BP28, France
| | - Le Xie
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | | |
Collapse
|
41
|
Zhang C, Liu X, Shi LD, Li J, Xiao X, Shao Z, Dong X. Unexpected genetic and microbial diversity for arsenic cycling in deep sea cold seep sediments. NPJ Biofilms Microbiomes 2023; 9:13. [PMID: 36991068 PMCID: PMC10060404 DOI: 10.1038/s41522-023-00382-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 03/13/2023] [Indexed: 03/31/2023] Open
Abstract
Cold seeps, where cold hydrocarbon-rich fluid escapes from the seafloor, show strong enrichment of toxic metalloid arsenic (As). The toxicity and mobility of As can be greatly altered by microbial processes that play an important role in global As biogeochemical cycling. However, a global overview of genes and microbes involved in As transformation at seeps remains to be fully unveiled. Using 87 sediment metagenomes and 33 metatranscriptomes derived from 13 globally distributed cold seeps, we show that As detoxification genes (arsM, arsP, arsC1/arsC2, acr3) were prevalent at seeps and more phylogenetically diverse than previously expected. Asgardarchaeota and a variety of unidentified bacterial phyla (e.g. 4484-113, AABM5-125-24 and RBG-13-66-14) may also function as the key players in As transformation. The abundances of As cycling genes and the compositions of As-associated microbiome shifted across different sediment depths or types of cold seep. The energy-conserving arsenate reduction or arsenite oxidation could impact biogeochemical cycling of carbon and nitrogen, via supporting carbon fixation, hydrocarbon degradation and nitrogen fixation. Overall, this study provides a comprehensive overview of As cycling genes and microbes at As-enriched cold seeps, laying a solid foundation for further studies of As cycling in deep sea microbiome at the enzymatic and processual levels.
Collapse
Affiliation(s)
- Chuwen Zhang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Xinyue Liu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, China
| | - Ling-Dong Shi
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Jiwei Li
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Xi Xiao
- Key Laboratory of Marine Mineral Resources, Ministry of Natural Resources, Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou, China
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Xiyang Dong
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.
| |
Collapse
|
42
|
Lyu L, Fang K, Zhu Z, Li J, Chen Y, Wang L, Mai Z, Li Q, Zhang S. Bioaccumulation of emerging persistent organic pollutants in the deep-sea cold seep ecosystems: Evidence from chlorinated paraffin. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130472. [PMID: 36455324 DOI: 10.1016/j.jhazmat.2022.130472] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/16/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Persistent organic pollutants (POPs) are highly toxic and can accumulate in marine organisms, causing nonnegligible harm to the global marine ecosystem. The Cold seep is an essential marine ecosystem with the critical ecological function of maintaining the deep-sea carbon cycle and buffering global climate change. However, the environmental impact of emerging POPs in the deep-sea cold seep ecosystem is unknown. Here, we investigated the potential pollution of chlorinated paraffins (CPs) and their bioaccumulation in the cold seep ecosystem. High concentrations of CPs were detected in the cold seep ecosystems, where CPs bioaccumulated by the keystone species of deep-sea mussels can be released into the surface sediment and vertically migrate into the deeper sediment. Furthermore, more toxic CPs were accumulated from transforming other CPs in the cold seep ecosystem. Our study provides the first evidence that high concentrations of POPs are bioaccumulated by deep-sea mussels in the cold seep ecosystem, causing adverse ecological effects. The discovery of CPs bioaccumulation in the deep-sea cold seep ecosystem is a crucial mechanism affecting deep-sea carbon transport and cycling. This study has important guiding significance for revealing the deep-sea carbon cycle process, addressing global climate change, and making deep-sea ecological and environmental protection policies.
Collapse
Affiliation(s)
- Lina Lyu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, Guangdong, China
| | - Kejing Fang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, Guangdong, China
| | - Zhenchang Zhu
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Jie Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, Guangdong, China
| | - Yu Chen
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, Guangdong, China
| | - Lin Wang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, Guangdong, China
| | - Zhimao Mai
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, Guangdong, China
| | - Qiqi Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, Guangdong, China
| | - Si Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, Guangdong, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, Guangdong, China.
| |
Collapse
|
43
|
Zhang C, Fang YX, Yin X, Lai H, Kuang Z, Zhang T, Xu XP, Wegener G, Wang JH, Dong X. The majority of microorganisms in gas hydrate-bearing subseafloor sediments ferment macromolecules. MICROBIOME 2023; 11:37. [PMID: 36864529 PMCID: PMC9979476 DOI: 10.1186/s40168-023-01482-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 01/30/2023] [Indexed: 06/01/2023]
Abstract
BACKGROUND Gas hydrate-bearing subseafloor sediments harbor a large number of microorganisms. Within these sediments, organic matter and upward-migrating methane are important carbon and energy sources fueling a light-independent biosphere. However, the type of metabolism that dominates the deep subseafloor of the gas hydrate zone is poorly constrained. Here we studied the microbial communities in gas hydrate-rich sediments up to 49 m below the seafloor recovered by drilling in the South China Sea. We focused on distinct geochemical conditions and performed metagenomic and metatranscriptomic analyses to characterize microbial communities and their role in carbon mineralization. RESULTS Comparative microbial community analysis revealed that samples above and in sulfate-methane interface (SMI) zones were clearly distinguished from those below the SMI. Chloroflexota were most abundant above the SMI, whereas Caldatribacteriota dominated below the SMI. Verrucomicrobiota, Bathyarchaeia, and Hadarchaeota were similarly present in both types of sediment. The genomic inventory and transcriptional activity suggest an important role in the fermentation of macromolecules. In contrast, sulfate reducers and methanogens that catalyze the consumption or production of commonly observed chemical compounds in sediments are rare. Methanotrophs and alkanotrophs that anaerobically grow on alkanes were also identified to be at low abundances. The ANME-1 group actively thrived in or slightly below the current SMI. Members from Heimdallarchaeia were found to encode the potential for anaerobic oxidation of short-chain hydrocarbons. CONCLUSIONS These findings indicate that the fermentation of macromolecules is the predominant energy source for microorganisms in deep subseafloor sediments that are experiencing upward methane fluxes. Video Abstract.
Collapse
Affiliation(s)
- Chuwen Zhang
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, China
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Yun-Xin Fang
- Guangzhou Marine Geological Survey, China Geological Survey, Ministry of Natural Resources, Guangzhou, China
| | - Xiuran Yin
- Faculty of Biology/Chemistry, University of Bremen, Bremen, Germany
- MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Hongfei Lai
- Guangzhou Marine Geological Survey, China Geological Survey, Ministry of Natural Resources, Guangzhou, China
| | - Zenggui Kuang
- Guangzhou Marine Geological Survey, China Geological Survey, Ministry of Natural Resources, Guangzhou, China
| | - Tianxueyu Zhang
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, China
| | - Xiang-Po Xu
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, China
| | - Gunter Wegener
- MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Jiang-Hai Wang
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, China.
| | - Xiyang Dong
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.
| |
Collapse
|
44
|
Zhu M, Dai X. Stringent response ensures the timely adaptation of bacterial growth to nutrient downshift. Nat Commun 2023; 14:467. [PMID: 36709335 PMCID: PMC9884231 DOI: 10.1038/s41467-023-36254-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 01/20/2023] [Indexed: 01/30/2023] Open
Abstract
Timely adaptation to nutrient downshift is crucial for bacteria to maintain fitness during feast and famine cycle in the natural niche. However, the molecular mechanism that ensures the timely adaption of bacterial growth to nutrient downshift remains poorly understood. Here, we quantitatively investigated the adaptation of Escherichia coli to various kinds of nutrient downshift. We found that relA deficient strain, which is devoid of stringent response, exhibits a significantly longer growth lag than wild type strain during adapting to both amino acid downshift and carbon downshift. Quantitative proteomics show that increased (p)ppGpp level promotes the growth adaption of bacteria to amino acid downshift via triggering the proteome resource re-allocation from ribosome synthesis to amino acid biosynthesis. Such type of proteome re-allocation is significantly delayed in the relA-deficient strain, which underlies its longer lag than wild type strain during amino acid downshift. During carbon downshift, a lack of stringent response in relA deficient strain leads to disruption of the transcription-translation coordination, thus compromising the transcription processivity and further the timely expression of related catabolic operons for utilizing secondary carbon sources. Our studies shed light on the fundamental strategy of bacteria to maintain fitness under nutrient-fluctuating environments.
Collapse
Affiliation(s)
- Manlu Zhu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei Province, China.
| | - Xiongfeng Dai
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei Province, China.
| |
Collapse
|
45
|
Bioactivity and Metabolome Mining of Deep-Sea Sediment-Derived Microorganisms Reveal New Hybrid PKS-NRPS Macrolactone from Aspergillus versicolor PS108-62. Mar Drugs 2023; 21:md21020095. [PMID: 36827136 PMCID: PMC9961484 DOI: 10.3390/md21020095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Despite low temperatures, poor nutrient levels and high pressure, microorganisms thrive in deep-sea environments of polar regions. The adaptability to such extreme environments renders deep-sea microorganisms an encouraging source of novel, bioactive secondary metabolites. In this study, we isolated 77 microorganisms collected by a remotely operated vehicle from the seafloor in the Fram Strait, Arctic Ocean (depth of 2454 m). Thirty-two bacteria and six fungal strains that represented the phylogenetic diversity of the isolates were cultured using an One-Strain-Many-Compounds (OSMAC) approach. The crude EtOAc extracts were tested for antimicrobial and anticancer activities. While antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) and Enterococcus faecium was common for many isolates, only two bacteria displayed anticancer activity, and two fungi inhibited the pathogenic yeast Candida albicans. Due to bioactivity against C. albicans and rich chemical diversity based on molecular network-based untargeted metabolomics, Aspergillus versicolor PS108-62 was selected for an in-depth chemical investigation. A chemical work-up of the SPE-fractions of its dichloromethane subextract led to the isolation of a new PKS-NRPS hybrid macrolactone, versicolide A (1), a new quinazoline (-)-isoversicomide A (3), as well as three known compounds, burnettramic acid A (2), cyclopenol (4) and cyclopenin (5). Their structures were elucidated by a combination of HRMS, NMR, [α]D, FT-IR spectroscopy and computational approaches. Due to the low amounts obtained, only compounds 2 and 4 could be tested for bioactivity, with 2 inhibiting the growth of C. albicans (IC50 7.2 µg/mL). These findings highlight, on the one hand, the vast potential of the genus Aspergillus to produce novel chemistry, particularly from underexplored ecological niches such as the Arctic deep sea, and on the other, the importance of untargeted metabolomics for selection of marine extracts for downstream chemical investigations.
Collapse
|
46
|
Chen J, Zeng H, Lv W, Sun N, Wang C, Xu W, Hu M, Gan X, He L, He S, Fang C. Pseudo-chromosome-length genome assembly for a deep-sea eel Ilyophis brunneus sheds light on the deep-sea adaptation. SCIENCE CHINA. LIFE SCIENCES 2023:10.1007/s11427-022-2251-8. [PMID: 36648612 DOI: 10.1007/s11427-022-2251-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/22/2022] [Indexed: 01/18/2023]
Abstract
High hydrostatic pressure, low temperature, and scarce food supply are the major factors that limit the survival of vertebrates in extreme deep-sea environments. Here, we constructed a high-quality genome of the deep-sea Muddy arrowtooth eel (MAE, Ilyophis brunneus, captured below a depth of 3,500 m) by using Illumina, PacBio, and Hi-C sequencing. We compare it against those of shallow-water eel and other outgroups to explore the genetic basis that underlies the adaptive evolution to deep-sea biomes. The MAE genome was estimated to be 1.47 Gb and assembled into 14 pseudo-chromosomes. Phylogenetic analyses indicated that MAE diverged from its closely related shallow-sea species, European eel, ∼111.9 Mya and experienced a rapid evolution. The genome evolutionary analyses primarily revealed the following: (i) under high hydrostatic pressure, the positively selected gene TUBGCP3 and the expanded family MLC1 may improve the cytoskeleton stability; ACOX1 may enhance the fluidity of cell membrane and maintain transport activity; the expansion of ABCC12 gene family may enhance the integrity of DNA; (ii) positively selected HARS likely maintain the transcription ability at low temperatures; and (iii) energy metabolism under a food-limited environment may be increased by expanded and positively selected genes in AMPK and mTOR signaling pathways.
Collapse
Affiliation(s)
- Jie Chen
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Honghui Zeng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Wenqi Lv
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ning Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cheng Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenjie Xu
- School for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Mingliang Hu
- School for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Xiaoni Gan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Lisheng He
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Shunping He
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China. .,State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Chengchi Fang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
47
|
Sangodkar N, Gonsalves MJ, Nazareth DR. Macrofaunal Distribution, Diversity, and Its Ecological Interaction at the Cold Seep Site of Krishna-Godavari Basin, East Coast of India. MICROBIAL ECOLOGY 2023; 85:61-75. [PMID: 34982193 DOI: 10.1007/s00248-021-01942-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Cold seeps are characterized by typical endemic communities with associated microorganisms that depend on sulfide, methane, reduced nitrogenous compounds, and metals as electron donors for their survival through chemosynthesis. The discovery of an active cold seep site in January 2018 in the Krishna-Godavari (K-G) basin of Bay of Bengal was followed by a transit cruise in March 2018 to investigate the distribution and diversity of macrofauna. Further, the ambient sediment and pore water biochemistry were estimated to understand its relationship with macrofauna and the microbial associates of the sediment. Samples were collected at a water depth of around 1750 m at 3 stations: SP1, SP2, and SP3, using the box corer. The benthic fauna at the sites consisted mainly of Bivalvia, shrimps of Caridea family, Gastropoda species, Malacostraca species, Polychaeta, and few species of Echinoidea, Ophiuroidea, and Echiura. A total of 2313 macrofaunal individuals belonging to 8 classes, 18 families, and 20 species were identified from all the three stations. The communities were diverse at these sites with an average Shannon diversity index of 1.64 and are closely related to the lineages previously studied in ecologically similar environments. Most of the macrofauna were found to be filter feeders preferring a low organic carbon environment. Relict vesicomyid clams at the present study site suggest the succession from vesicomyids to the present composition of bivalve mussels and siboglinid worms. The microbial associates in the sediment significantly correlated with methane and hydrogen sulfide concentrations. The study suggests that the K-G basin cold seep serves as a conducive environment for the flourishing of benthic communities and therefore can support a rich biodiversity.
Collapse
Affiliation(s)
- Nitisha Sangodkar
- Aqua-Geomicrobiology Laboratory, Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa, 403 004, India
- School of Earth, Ocean and Atmospheric Sciences, Goa University, Taleigao Plateau, Goa, 403 001, India
| | - Maria Judith Gonsalves
- Aqua-Geomicrobiology Laboratory, Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa, 403 004, India.
| | - Delcy R Nazareth
- Aqua-Geomicrobiology Laboratory, Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa, 403 004, India
- Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India
| |
Collapse
|
48
|
Jiang Q, Jing H, Liu H, Du M. Biogeographic distributions of microbial communities associated with anaerobic methane oxidation in the surface sediments of deep-sea cold seeps in the South China Sea. Front Microbiol 2022; 13:1060206. [PMID: 36620029 PMCID: PMC9822730 DOI: 10.3389/fmicb.2022.1060206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Cold seeps are oasis for the microbes in the deep-sea ecosystems, and various cold seeps are located along the northern slope of the South China Sea (SCS). However, by far most microbial ecological studies were limited to specific cold seep in the SCS, and lack of comparison between different regions. Here, the surface sediments (0-4 cm) from the Site F/Haima cold seeps and the Xisha trough in the SCS were used to elucidate the biogeography of microbial communities, with particular interest in the typical functional groups involved in the anaerobic oxidation of methane (AOM) process. Distinct microbial clusters corresponding to the three sampling regions were formed, and significantly higher gene abundance of functional groups were present in the cold seeps than the trough. This biogeographical distribution could be explained by the geochemical characteristics of sediments, such as total nitrogen (TN), total phosphorus (TP), nitrate (NO3 -), total sulfur (TS) and carbon to nitrogen ratios (C/N). Phylogenetic analysis demonstrated that mcrA and pmoA genotypes were closely affiliated with those from wetland and mangroves, where denitrifying anaerobic methane oxidation (DAMO) process frequently occurred; and highly diversified dsrB genotypes were revealed as well. In addition, significantly higher relative abundance of NC10 group was found in the Xisha trough, suggesting that nitrite-dependent DAMO (N-DAMO) process was more important in the hydrate-bearing trough, although its potential ecological contribution to AOM deserves further investigation. Our study also further demonstrated the necessity of combining functional genes and 16S rRNA gene to obtain a comprehensive picture of the population shifts of natural microbial communities among different oceanic regions.
Collapse
Affiliation(s)
- Qiuyun Jiang
- CAS Key Laboratory for Experimental Study Under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China,University of Chinese Academy of Sciences, Beijing, China
| | - Hongmei Jing
- CAS Key Laboratory for Experimental Study Under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China,HKUST-CAS Sanya Joint Laboratory of Marine Science Research, Chinese Academy of Sciences, Sanya, China,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China,*Correspondence: Hongmei Jing,
| | - Hao Liu
- CAS Key Laboratory for Experimental Study Under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Mengran Du
- CAS Key Laboratory for Experimental Study Under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| |
Collapse
|
49
|
Frequent Occurrence and Metabolic Versatility of Marinifilaceae Bacteria as Key Players in Organic Matter Mineralization in Global Deep Seas. mSystems 2022; 7:e0086422. [PMID: 36342154 PMCID: PMC9765461 DOI: 10.1128/msystems.00864-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Transfer of animal and plant detritus of both terrestrial and marine origins to the deep sea occurs on a global scale. Microorganisms play an important role in mineralizing them therein, but these are yet to be identified in situ. To observe key bacteria involved, we conducted long-term in situ incubation and found that members of the family Marinifilaceae (MF) occurred as some of the most predominant bacteria thriving on the new inputs of plant and animal biomasses in the deep sea in both marginal and oceanic areas. This taxon is diverse and ubiquitous in marine environments. A total of 11 MAGs belonging to MF were retrieved from metagenomic data and diverged into four subgroups in the phylogenomic tree. Based on metagenomic and metatranscriptomic analyses, we described the metabolic features and in situ metabolizing activities of different subgroups. The MF-2 subgroup, which dominates plant detritus-enriched cultures, specializes in polysaccharide degradation and lignin oxidation and has high transcriptional activities of related genes in situ. Intriguingly, members of this subgroup encode a nitrogen fixation pathway to compensate for the shortage of nitrogen sources inside the plant detritus. In contrast, other subgroups dominating the animal tissue-supported microbiomes are distinguished from MF-2 with regard to carbon and nitrogen metabolism and exhibit high transcriptional activity for proteolysis in situ. Despite these metabolic divergences of MF lineages, they show high in situ transcriptional activities for organic fermentation and anaerobic respiration (reductions of metal and/or dimethyl sulfoxide). These results highlight the role of previously unrecognized Marinifilaceae bacteria in organic matter mineralization in marine environments by coupling carbon and nitrogen cycling with metal and sulfur. IMPORTANCE Microbial mineralization of organic matter has a significant impact on the global biogeochemical cycle. This report confirms the role of Marinifilaceae in organic degradation in the oceans, with a contribution to ocean carbon cycling that has previously been underestimated. It was the dominant taxon thriving on plant and animal biomasses in our in situ incubator, as well as in whale falls and wood falls. At least 9 subgroups were revealed, and they were widely distributed in oceans globally but predominant in organic-matter-rich environments, with an average relative abundance of 8.3%. Different subgroups display a preference for the degradation of different macromolecules (polysaccharides, lignin, and protein) and adapt to their environments via special metabolic mechanisms.
Collapse
|
50
|
Mu H, Han F, Wang Q, Wang Y, Dai X, Zhu M. Recent functional insights into the magic role of (p)ppGpp in growth control. Comput Struct Biotechnol J 2022; 21:168-175. [PMID: 36544478 PMCID: PMC9747358 DOI: 10.1016/j.csbj.2022.11.063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Rapid growth and survival are two key traits that enable bacterial cells to thrive in their natural habitat. The guanosine tetraphosphate and pentaphosphate [(p)ppGpp], also known as "magic spot", is a key second messenger inside bacterial cells as well as chloroplasts of plants and green algae. (p)ppGpp not only controls various stages of central dogma processes (replication, transcription, ribosome maturation and translation) and central metabolism but also regulates various physiological processes such as pathogenesis, persistence, motility and competence. Under extreme conditions such as nutrient starvation, (p)ppGpp-mediated stringent response is crucial for the survival of bacterial cells. This mini-review highlights some of the very recent progress on the key role of (p)ppGpp in bacterial growth control in light of cellular resource allocation and cell size regulation. We also briefly discuss some recent functional insights into the role of (p)ppGpp in plants and green algae from the angle of growth and development and further discuss several important open directions for future studies.
Collapse
Affiliation(s)
| | | | - Qian Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei Province, China
| | - Yanling Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei Province, China
| | - Xiongfeng Dai
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei Province, China
| | - Manlu Zhu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei Province, China
| |
Collapse
|