1
|
Innamorati KA, Earl JP, Barrera SC, Ehrlich RL, Aiyeku J, Gordon A, Powell E, Retchless AC, Ahmed A, Sen B, Balashov S, Mell JC, Hillier SL, Ehrlich GD. Metronidazole response profiles of Gardnerella species are congruent with phylogenetic and comparative genomic analyses. Genome Med 2025; 17:28. [PMID: 40133961 PMCID: PMC11934483 DOI: 10.1186/s13073-025-01446-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 02/25/2025] [Indexed: 03/27/2025] Open
Abstract
BACKGROUND Bacterial vaginosis (BV) affects 20-50% of reproductive-age female patients annually, arising when opportunistic pathogens outcompete healthy vaginal flora. Many patients fail to resolve symptoms with a course of metronidazole, the current first-line treatment for BV. Our study was designed to identify genomic variation associated with metronidazole resistance among strains of Gardnerella vaginalis spp. (GV), a genus of biogenic-amine-producing bacteria closely associated with BV pathogenesis, for the development of a companion molecular diagnostic. METHODS Whole-genome sequencing and comparative genomic metrics, including average nucleotide identity and GC content, were performed on a diverse set of 129 GV genomes to generate data for detailed taxonomic analyses. Pangenomic analyses were employed to construct a phylogenetic tree and cluster highly related strains within genospecies. G. vaginalis spp. clinical isolates within our collection were subjected to plate-based minimum inhibitory concentration (MIC) testing of metronidazole (n = 60) and clindamycin (n = 63). DECIPHER and MAFFT were used to identify genospecies-specific primers associated with antibiotic-resistance phenotypes. PCR-based analyses with these primers were used to confirm their specificity for the relevant genospecies. RESULTS Eleven distinct genospecies based on standard ANI criteria were identified among the GV strains in our collection. Metronidazole MIC testing revealed six genospecies within a closely related phylogenetic clade contained only highly metronidazole-resistant strains (MIC ≥ 32 µg/mL) and suggested at least two mechanisms of metronidazole resistance within the eleven GV genospecies. All strains within the six highly metronidazole-resistant genospecies displayed susceptibility to clinically relevant clindamycin concentrations (MIC ≤ 2 µg/mL). A PCR-based molecular diagnostic assay was developed to distinguish between members of the metronidazole-resistant and mixed-response genospecies, which should be useful for determining the clade membership of various GV strains and could assist in the selection of appropriate antibiotic therapies for BV cases. CONCLUSIONS This study provides comparative genomic and phylogenetic evidence for eleven distinct genospecies within the genus Gardnerella vaginalis spp., and identifies genospecies-specific responses to metronidazole, the first-line treatment for BV. A companion molecular diagnostic assay was developed that is capable of identifying essentially all highly metronidazole-resistant strains that phylogenetically cluster together within the GV genospecies, which is informative for antibiotic treatment options.
Collapse
Affiliation(s)
- Katherine A Innamorati
- Center for Advanced Microbial Processing, Drexel University College of Medicine, Philadelphia, PA, USA
- Center for Genomic Sciences, Drexel University College of Medicine, Philadelphia, PA, USA
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N 15th St, Rm 5110, Philadelphia, PA, USA
| | - Joshua P Earl
- Center for Advanced Microbial Processing, Drexel University College of Medicine, Philadelphia, PA, USA.
- Center for Genomic Sciences, Drexel University College of Medicine, Philadelphia, PA, USA.
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N 15th St, Rm 5110, Philadelphia, PA, USA.
- Earl Consulting, LLC, 3631 Wallace Street, Philadelphia, PA, 19104, USA.
| | - Shirley C Barrera
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N 15th St, Rm 5110, Philadelphia, PA, USA
| | - Rachel L Ehrlich
- Center for Advanced Microbial Processing, Drexel University College of Medicine, Philadelphia, PA, USA
- Center for Genomic Sciences, Drexel University College of Medicine, Philadelphia, PA, USA
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N 15th St, Rm 5110, Philadelphia, PA, USA
| | - Josephine Aiyeku
- Center for Advanced Microbial Processing, Drexel University College of Medicine, Philadelphia, PA, USA
- Center for Genomic Sciences, Drexel University College of Medicine, Philadelphia, PA, USA
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N 15th St, Rm 5110, Philadelphia, PA, USA
| | - Ari Gordon
- Center for Advanced Microbial Processing, Drexel University College of Medicine, Philadelphia, PA, USA
- Center for Genomic Sciences, Drexel University College of Medicine, Philadelphia, PA, USA
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N 15th St, Rm 5110, Philadelphia, PA, USA
| | - Evan Powell
- Magee-Women's Hospital of University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Adam C Retchless
- Center for Genomic Sciences, Allegheny Singer Research Institute, Pittsburgh, PA, USA
| | - Azad Ahmed
- Center for Advanced Microbial Processing, Drexel University College of Medicine, Philadelphia, PA, USA
- Center for Genomic Sciences, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Bhaswati Sen
- Center for Advanced Microbial Processing, Drexel University College of Medicine, Philadelphia, PA, USA
- Center for Genomic Sciences, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Sergey Balashov
- Center for Advanced Microbial Processing, Drexel University College of Medicine, Philadelphia, PA, USA
- Center for Genomic Sciences, Drexel University College of Medicine, Philadelphia, PA, USA
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N 15th St, Rm 5110, Philadelphia, PA, USA
| | - Joshua Chang Mell
- Center for Advanced Microbial Processing, Drexel University College of Medicine, Philadelphia, PA, USA
- Center for Genomic Sciences, Drexel University College of Medicine, Philadelphia, PA, USA
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N 15th St, Rm 5110, Philadelphia, PA, USA
| | | | - Garth D Ehrlich
- Center for Advanced Microbial Processing, Drexel University College of Medicine, Philadelphia, PA, USA.
- Center for Genomic Sciences, Drexel University College of Medicine, Philadelphia, PA, USA.
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N 15th St, Rm 5110, Philadelphia, PA, USA.
- Department of Otolaryngology - Head and Neck Surgery, Drexel University College of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Bujdoš D, Walter J, O'Toole PW. aurora: a machine learning gwas tool for analyzing microbial habitat adaptation. Genome Biol 2025; 26:66. [PMID: 40122838 PMCID: PMC11930000 DOI: 10.1186/s13059-025-03524-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 03/03/2025] [Indexed: 03/25/2025] Open
Abstract
A primary goal of microbial genome-wide association studies is identifying genomic variants associated with a particular habitat. Existing tools fail to identify known causal variants if the analyzed trait shaped the phylogeny. Furthermore, due to inclusion of allochthonous strains or metadata errors, the stated sources of strains in public databases are often incorrect, and strains may not be adapted to the habitat from which they were isolated. We describe a new tool, aurora, that identifies autochthonous strains and the genes associated with habitats while acknowledging the potential role of the habitat adaptation trait in shaping phylogeny.
Collapse
Affiliation(s)
- Dalimil Bujdoš
- APC Microbiome Ireland, University College Cork, National University of Ireland, Cork, Ireland
- School of Microbiology, University College Cork, National University of Ireland, Cork, Ireland
| | - Jens Walter
- APC Microbiome Ireland, University College Cork, National University of Ireland, Cork, Ireland
- School of Microbiology, University College Cork, National University of Ireland, Cork, Ireland
- Department of Medicine, University College Cork, National University of Ireland, Cork, Ireland
| | - Paul W O'Toole
- APC Microbiome Ireland, University College Cork, National University of Ireland, Cork, Ireland.
- School of Microbiology, University College Cork, National University of Ireland, Cork, Ireland.
| |
Collapse
|
3
|
Kilian M, Slotved HC, Fuursted K, D'Mello A, Tettelin H. Re-evaluation of boundaries of Streptococcus mitis and Streptococcus oralis and demonstration of multiple later synonyms of Streptococcus mitis, Streptococcus oralis and Streptococcus thalassemiae: description of Streptococcus mitis subsp. carlssonii subsp. nov. and emended description of Streptococcus mitis. Int J Syst Evol Microbiol 2025; 75. [PMID: 40067351 DOI: 10.1099/ijsem.0.006704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2025] Open
Abstract
The commensal species Streptococcus mitis and Streptococcus oralis are genetically diverse to a degree that challenges traditional definitions of species. This causes automatic identification based on DNA sequences or cellular extract profiles problematic. Based on an initial analysis of 266 genomes, we subjected a subset of 100 representative genomes to detailed phylogenetic, pairwise distance and gene pattern analyses. S. mitis and S. oralis constitute a continuum of clones that are genetically unique. To recognize most isolates as separate species is biologically and practically meaningless. We recommend bending the proposed similarity borders to accommodate the biological reality. Accordingly, we conclude that Streptococcus toyakuensis, Streptococcus chosunensis, Streptococcus gwangjuensis, Streptococcus humanilactis and Streptococcus hohhotensis are later heterotypic synonyms of S. mitis. Type strains of effectively but not validly published 'Streptococcus shenyangsis', 'Streptococcus symci' and 'Streptococcus vulneris' belong in S. mitis. Streptococcus parapneumoniae and Streptococcus nakanonensis are later synonyms of Streptococcus thalassemiae. Streptococcus downii is a later synonym of Streptococcus oralis subsp. dentisani, and the type of 'Streptococcus halitosis' belongs in Streptococcus oralis subsp. tigurinus. The genome sequence of the type of the recently proposed 'Streptococcus bouchesdurhonensis' is based on a mixed culture. Phylogenetic results and the pattern of presence/absence of accessory genes support the distinction of two subspecies of S. mitis, i.e. Sreptococcus mitis subsp. mitis subsp. nov. (type strain is NCTC 12261T) and Sreptococcus mitis subsp. carlssonii subsp. nov. (type strain is SK608=CCUG 55085T=LMG 33510T). The special population structure of the Streptococcus mitis-pneumoniae-pseudopneumoniae-thalassemiae complex renders automated classification of isolates based on average nucleotide identity or digital DNA-DNA hybridization values problematic. As an alternative, for initial taxonomic assignment, we present a whole-genome phylogeny-based method that enables phylogenetic comparison of new isolates in the context of a set of 117 well-characterized reference strains assigned to the Mitis/Sanguinis group.
Collapse
Affiliation(s)
- Mogens Kilian
- Department of Biomedicine, Aarhus University, Skou building 1115-139A, C. F. Møllers Allé 6, DK-8000 Aarhus C, Denmark
| | - Hans-Christian Slotved
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Kurt Fuursted
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Adonis D'Mello
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Hervé Tettelin
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Zhou Z, Riley R, Kautsar S, Wu W, Egan R, Hofmeyr S, Goldhaber-Gordon S, Yu M, Ho H, Liu F, Chen F, Morgan-Kiss R, Shi L, Liu H, Wang Z. GenomeOcean: An Efficient Genome Foundation Model Trained on Large-Scale Metagenomic Assemblies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.30.635558. [PMID: 39975405 PMCID: PMC11838515 DOI: 10.1101/2025.01.30.635558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Genome foundation models hold transformative potential for precision medicine, drug discovery, and understanding complex biological systems. However, existing models are often inefficient, constrained by suboptimal tokenization and architectural design, and biased toward reference genomes, limiting their representation of low-abundance, uncultured microbes in the rare biosphere. To address these challenges, we developed GenomeOcean, a 4-billion-parameter generative genome foundation model trained on over 600 Gbp of high-quality contigs derived from 220 TB of metagenomic datasets collected from diverse habitats across Earth's ecosystems. A key innovation of GenomeOcean is training directly on large-scale co-assemblies of metagenomic samples, enabling enhanced representation of rare microbial species and improving generalizability beyond genome-centric approaches. We implemented a byte-pair encoding (BPE) tokenization strategy for genome sequence generation, alongside architectural optimizations, achieving up to 150× faster sequence generation while maintaining high biological fidelity. GenomeOcean excels in representing microbial species and generating protein-coding genes constrained by evolutionary principles. Additionally, its fine-tuned model demonstrates the ability to discover novel biosynthetic gene clusters (BGCs) in natural genomes and perform zero-shot synthesis of biochemically plausible, complete BGCs. GenomeOcean sets a new benchmark for metagenomic research, natural product discovery, and synthetic biology, offering a robust foundation for advancing these fields.
Collapse
Affiliation(s)
| | - Robert Riley
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Satria Kautsar
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Weimin Wu
- Northwestern University, Evanston, IL, USA
| | - Rob Egan
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Steven Hofmeyr
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | - Mutian Yu
- Northwestern University, Evanston, IL, USA
| | - Harrison Ho
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- University of California at Merced, Merced, CA, USA
| | - Fengchen Liu
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- University of California at Berkeley, Berkeley, CA, USA
| | | | | | - Lizhen Shi
- Northwestern University, Evanston, IL, USA
| | - Han Liu
- Northwestern University, Evanston, IL, USA
| | - Zhong Wang
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- University of California at Merced, Merced, CA, USA
| |
Collapse
|
5
|
Fang Y, Meng L, Xia J, Gotoh Y, Hayashi T, Nagasaki K, Endo H, Okazaki Y, Ogata H. Genome-resolved year-round dynamics reveal a broad range of giant virus microdiversity. mSystems 2025; 10:e0116824. [PMID: 39714212 PMCID: PMC11748492 DOI: 10.1128/msystems.01168-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/03/2024] [Indexed: 12/24/2024] Open
Abstract
Giant viruses are crucial for marine ecosystem dynamics because they regulate microeukaryotic community structure, accelerate carbon and nutrient cycles, and drive the evolution of their hosts through co-evolutionary processes. Previously reported long-term observations revealed that these viruses display seasonal fluctuations in abundance. However, the underlying genetic mechanisms driving such dynamics of these viruses remain largely unknown. In this study, we investigated the dynamics of giant viruses using time-series metagenomes from eutrophic coastal seawater samples collected over 20 months. A newly developed computational pipeline generated 1,065 high-quality genomes covering six major giant virus lineages. These genomic data revealed year-round recovery of the viral community structure at the study site and distinct dynamics of viral populations that were classified as persistent (n = 9), seasonal (n = 389), sporadic (n = 318), or others. By profiling the intra-species nucleotide-resolved microdiversity through read mapping, we also identified year-round recovery dynamics at subpopulation level for viruses classified as persistent or seasonal. Our results further indicated that giant viruses with broader niche breadth tended to exhibit higher levels of microdiversity. We argue that greater microdiversity of viruses likely enhances adaptability and thus survival under the virus-host arms race during prolonged interactions with their hosts.IMPORTANCERecent genome-resolved metagenomic surveys have uncovered the vast genomic diversity of giant viruses, which play significant roles in aquatic ecosystems by acting as bloom terminators and influencing biogeochemical cycles. However, the relationship between the ecological dynamics of giant viruses and underlying genetic structures of viral populations remains unresolved. In this study, we performed deep metagenomic sequencing of seawater samples collected across a time-series from a coastal area in Japan. The results revealed a significant positive correlation between microdiversity and temporal persistence of giant virus populations, suggesting that population structure is a crucial factor for adaptation and survival in the interactions with their hosts.
Collapse
Grants
- 21H05057 MEXT | Japan Society for the Promotion of Science (JSPS)
- Nos. 2018-31 Kyoto University | Institute for Chemical Research, Kyoto University (ICR)
- Nos. 2017-25 Kyoto University | Institute for Chemical Research, Kyoto University (ICR)
- 22H00384 MEXT | Japan Society for the Promotion of Science (JSPS)
- 22H00385 MEXT | Japan Society for the Promotion of Science (JSPS)
- 16H06279 MEXT | Japan Society for the Promotion of Science (JSPS)
- 16H06429 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 16K21723 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 16H06437 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- Nos. 2021-33 Kyoto University | Institute for Chemical Research, Kyoto University (ICR)
- Nos. 2019-33 Kyoto University | Institute for Chemical Research, Kyoto University (ICR)
Collapse
Affiliation(s)
- Yue Fang
- Institute for Chemical Research, Kyoto University, Uji, Japan
| | - Lingjie Meng
- Institute for Chemical Research, Kyoto University, Uji, Japan
| | - Jun Xia
- Institute for Chemical Research, Kyoto University, Uji, Japan
| | - Yasuhiro Gotoh
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tetsuya Hayashi
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Keizo Nagasaki
- Faculty of Science and Technology, Kochi University, Kochi, Japan
| | - Hisashi Endo
- Institute for Chemical Research, Kyoto University, Uji, Japan
| | - Yusuke Okazaki
- Institute for Chemical Research, Kyoto University, Uji, Japan
| | - Hiroyuki Ogata
- Institute for Chemical Research, Kyoto University, Uji, Japan
| |
Collapse
|
6
|
Arkan-Ozdemir S, Üstüntürk-Onan M, Ilhan-Sungur E. Facivitalis istanbulensis gen. nov., sp. nov., a novel member of the family Sphingomonadaceae with the potential for aromatic-degradation isolated from Jet A1 fuel. Antonie Van Leeuwenhoek 2024; 118:34. [PMID: 39602022 DOI: 10.1007/s10482-024-02037-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024]
Abstract
A novel gram-stain-indeterminate, rod-shaped, endospore-forming, motile, aerobic bacterium, designated JETA1-E2T, was isolated from aircraft fuel Jet A1 sample. The strain showed high pairwise similarity values of partial 16S rRNA gene sequences to Sphingomonas paucimobilis (MT367853) (99.42%), Sphingomonas sanguinis (MF319771) (99.34%), and Sphingomonas pseudosanguinis (HE716953) (99.27%) within the family Sphingomonadaceae. However, API test results revealed that the strain JETA1-E2T differed from these type strains. The phylogenetic tree based on the whole genome and the phylogenomic tree generated with the UBCG tool showed that the strain JETA1-E2T formed a distinct monophyletic clade within the family Sphingomonadaceae, and clustered distantly with the genera Sphingomonas and Sphingobium. The predominant respiratory quinone is Q-10. The major fatty acids are C16:0 and summed feature 8 (C18:1ω7c and/or C18:1ω6c). C19:0 is present in small amounts. The polar lipids are diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine, aminophospholipid, unidentified glycolipid, and two unidentified sphingoglycolipids. The only polyamine is putrescine in minor amounts. The DNA G + C content of the type strain is 66.5 mol%. Several unique genes in the strain JETA1-E2T may contribute to fight against various stressors, virulence and pathogenicity, as well as survival in challenging conditions. The strain JETA1-E2T contains 100 of the characterised proteins available in the HADEG database of which 58% of these are involved in metabolic process of aromatics degradation. The findings indicate that the strain JETA1-E2T has the potential to metabolise hydrocarbons such as fuel, especially aromatic compounds. Based on the results of polyphasic taxonomic analyses, the strain JETA1-E2T represents a novel species in a new genus in the family Sphingomonadaceae for which the name Facivitalis istanbulensis gen. nov., sp. nov. is proposed. The type strain of Facivitalis istanbulensis is JETA1-E2T (DSM 117971T = LMG 33634T = KUEN 1206 (B) F3-1-1T).
Collapse
Affiliation(s)
- Simge Arkan-Ozdemir
- Department of Biology, Institute of Graduate Studies in Sciences, Istanbul University, 34134, Vezneciler, Istanbul, Türkiye
- Department of Pathology Laboratory Techniques, Vocational School of Health Services, Uskudar University, 34664, Uskudar, Istanbul, Türkiye
| | - Miray Üstüntürk-Onan
- Department of Biology, Faculty of Science, Istanbul University, 34134, Vezneciler, Istanbul, Türkiye
| | - Esra Ilhan-Sungur
- Department of Biology, Faculty of Science, Istanbul University, 34134, Vezneciler, Istanbul, Türkiye.
| |
Collapse
|
7
|
Tzfadia O, Gijsbers A, Vujkovic A, Snobre J, Vargas R, Dewaele K, Meehan CJ, Farhat M, Hakke S, Peters PJ, de Jong BC, Siroy A, Ravelli RBG. Single nucleotide variation catalog from clinical isolates mapped on tertiary and quaternary structures of ESX-1-related proteins reveals critical regions as putative Mtb therapeutic targets. Microbiol Spectr 2024; 12:e0381623. [PMID: 38874407 PMCID: PMC11302016 DOI: 10.1128/spectrum.03816-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 05/02/2024] [Indexed: 06/15/2024] Open
Abstract
Proteins encoded by the ESX-1 genes of interest are essential for full virulence in all Mycobacterium tuberculosis complex (Mtbc) lineages, the pathogens causing the highest mortality worldwide. Identifying critical regions in these ESX-1-related proteins could provide preventive or therapeutic targets for Mtb infection, the game changer needed for tuberculosis control. We analyzed a compendium of whole genome sequences of clinical Mtb isolates from all lineages from >32,000 patients and identified single nucleotide polymorphisms. When mutations corresponding to all non-synonymous single nucleotide polymorphisms were mapped on structural models of the ESX-1 proteins, fully conserved regions emerged. Some could be assigned to known quaternary structures, whereas others could be predicted to be involved in yet-to-be-discovered interactions. Some mutants had clonally expanded (found in >1% of the isolates); these mutants were mostly located at the surface of globular domains, remote from known intra- and inter-molecular protein-protein interactions. Fully conserved intrinsically disordered regions of proteins were found, suggesting that these regions are crucial for the pathogenicity of the Mtbc. Altogether, our findings highlight fully conserved regions of proteins as attractive vaccine antigens and drug targets to control Mtb virulence. Extending this approach to the whole Mtb genome as well as other microorganisms will enhance vaccine development for various pathogens. IMPORTANCE We mapped all non-synonymous single nucleotide polymorphisms onto each of the experimental and predicted ESX-1 proteins' structural models and inspected their placement. Varying sizes of conserved regions were found. Next, we analyzed predicted intrinsically disordered regions within our set of proteins, finding two putative long stretches that are fully conserved, and discussed their potential essential role in immunological recognition. Combined, our findings highlight new targets for interfering with Mycobacterium tuberculosis complex virulence.
Collapse
Affiliation(s)
- Oren Tzfadia
- Mycobacteriology Unit, Institute of Tropical Medicine, Antwerp, Belgium
| | - Abril Gijsbers
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Alexandra Vujkovic
- Clinical Virology Unit, Institute of Tropical Medicine, Antwerp, Belgium
- ADReM Data Lab, University of Antwerp, Antwerp, Belgium
| | - Jihad Snobre
- Mycobacteriology Unit, Institute of Tropical Medicine, Antwerp, Belgium
| | - Roger Vargas
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
| | - Klaas Dewaele
- Mycobacteriology Unit, Institute of Tropical Medicine, Antwerp, Belgium
| | - Conor J. Meehan
- Mycobacteriology Unit, Institute of Tropical Medicine, Antwerp, Belgium
- Department of Biosciences, Nottingham Trent University, Nottingham, United Kingdom
| | - Maha Farhat
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
| | - Sneha Hakke
- Division of Nanoscopy, Maastricht Multimodal Imaging Institute (M4i), Maastricht University, Maastricht, the Netherlands
| | - Peter J. Peters
- Division of Nanoscopy, Maastricht Multimodal Imaging Institute (M4i), Maastricht University, Maastricht, the Netherlands
| | - Bouke C. de Jong
- Mycobacteriology Unit, Institute of Tropical Medicine, Antwerp, Belgium
| | - Axel Siroy
- Unité de soutien à l'Institut Européen de Chimie et Biologie (IECB), CNRS, INSERM, IECB, US1, Université de Bordeaux, Pessac, France
| | - Raimond B. G. Ravelli
- Division of Nanoscopy, Maastricht Multimodal Imaging Institute (M4i), Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
8
|
Martín-Rodríguez AJ, Fernández-Juárez V, Valeriano VD, Mihindukulasooriya I, Ceresnova L, Joffré E, Jensie-Markopoulos S, Moore ERB, Sjöling Å. A hotspot of diversity: novel Shewanella species isolated from Baltic Sea sediments delineate a sympatric species complex. Int J Syst Evol Microbiol 2024; 74. [PMID: 39150443 PMCID: PMC11329295 DOI: 10.1099/ijsem.0.006480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024] Open
Abstract
Two bacterial strains, SP1S1-4T and SP2S1-2T, were isolated from sediment samples collected in the Stockholm archipelago in November 2021. Following whole-genome sequencing, these strains were identified as tentatively belonging to two novel Shewanella genospecies, based on digital DNA-DNA hybridization, as implemented in the Type Strain Genome Server. Shewanella septentrionalis, Shewanella baltica and Shewanella hafniensis were, in this order and within a narrow genomic relatedness range, their closest genotypic relatives. Additional sampling and sequencing efforts led to the retrieval of distinct isolates that were monophyletic with SP1S1-4T and SP2S1-2T, respectively, based on phylogenomic analysis of whole-genome sequences. Comparative analyses of genome sequence data, which included blast-based average nucleotide identity, core genome-based and core proteome-based phylogenomics, in addition to MALDI-TOF MS-based protein profiling, confirmed the distinctness of the putative novel genospecies with respect to their closest genotypic relatives. A comprehensive phenotypic characterisation of SP1S1-4T and SP2S1-2T revealed only minor differences with respect to the type strains of S. septentrionalis, S. baltica and S. hafniensis. Based on the collective phylogenomic, proteomic, and phenotypic evidence presented here, we describe two novel genospecies within the genus Shewanella, for which the names Shewanella scandinavica sp. nov. and Shewanella vaxholmensis sp. nov. are proposed. The type strains are, respectively, SP2S1-2T (=CCUG 76457T=CECT 30688T), with a draft genome sequence of 5 041 805 bp and a G+C content of 46.3 mol%, and SP1S1-4T (=CCUG 76453T=CECT 30684T), with a draft genome sequence of 4 920147 bp and a G+C content of 46.0 mol%. Our findings suggest the existence of a species complex formed by the species S. baltica, S. septentrionalis, S. scandinavica sp. nov., and S. vaxholmensis sp. nov., with S. hafniensis falling in the periphery, where distinct genomic species clusters could be identified. However, this does not exclude the possibility of a continuum of genomic diversity within this sedimental ecosystem, as discussed herein with additional sequenced isolates.
Collapse
Affiliation(s)
- Alberto J Martín-Rodríguez
- Department of Clinical Sciences, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Centre for Translational Microbiome Research (CTMR), Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Víctor Fernández-Juárez
- Department of Infectious Diseases, Institute for Biomedicine, Sahlgrenska Academy of the University of Gothenburg, Gothenburg, Sweden
- Culture Collection University of Gothenburg (CCUG), Sahlgrenska University Hospital and Sahlgrenska Academy of the University of Gothenburg, Gothenburg, Sweden
| | - Valerie D Valeriano
- Centre for Translational Microbiome Research (CTMR), Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Indiwari Mihindukulasooriya
- Centre for Translational Microbiome Research (CTMR), Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Livia Ceresnova
- Centre for Translational Microbiome Research (CTMR), Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Enrique Joffré
- Centre for Translational Microbiome Research (CTMR), Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
- Department of Chemistry and Molecular Biology (CMB), University of Gothenburg, Gothenburg, Sweden
| | - Susanne Jensie-Markopoulos
- Culture Collection University of Gothenburg (CCUG), Sahlgrenska University Hospital and Sahlgrenska Academy of the University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| | - Edward R B Moore
- Department of Infectious Diseases, Institute for Biomedicine, Sahlgrenska Academy of the University of Gothenburg, Gothenburg, Sweden
- Culture Collection University of Gothenburg (CCUG), Sahlgrenska University Hospital and Sahlgrenska Academy of the University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| | - Åsa Sjöling
- Centre for Translational Microbiome Research (CTMR), Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
- Department of Chemistry and Molecular Biology (CMB), University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
9
|
García-Cabrerizo R, Cryan JF. A gut (microbiome) feeling about addiction: Interactions with stress and social systems. Neurobiol Stress 2024; 30:100629. [PMID: 38584880 PMCID: PMC10995916 DOI: 10.1016/j.ynstr.2024.100629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/29/2024] [Accepted: 03/17/2024] [Indexed: 04/09/2024] Open
Abstract
In recent years, an increasing attention has given to the intricate and diverse connection of microorganisms residing in our gut and their impact on brain health and central nervous system disease. There has been a shift in mindset to understand that drug addiction is not merely a condition that affects the brain, it is now being recognized as a disorder that also involves external factors such as the intestinal microbiota, which could influence vulnerability and the development of addictive behaviors. Furthermore, stress and social interactions, which are closely linked to the intestinal microbiota, are powerful modulators of addiction. This review delves into the mechanisms through which the microbiota-stress-immune axis may shape drug addiction and social behaviors. This work integrates preclinical and clinical evidence that demonstrate the bidirectional communication between stress, social behaviors, substance use disorders and the gut microbiota, suggesting that gut microbes might modulate social stress having a significance in drug addiction.
Collapse
Affiliation(s)
- Rubén García-Cabrerizo
- IUNICS, University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Department of Medicine, University of the Balearic Islands, Palma, Spain
| | - John F. Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
10
|
Sterzi L, Nodari R, Di Marco F, Ferrando ML, Saluzzo F, Spitaleri A, Allahverdi H, Papaleo S, Panelli S, Rimoldi SG, Batisti Biffignandi G, Corbella M, Cavallero A, Prati P, Farina C, Cirillo DM, Zuccotti G, Bandi C, Comandatore F. Genetic barriers more than environmental associations explain Serratia marcescens population structure. Commun Biol 2024; 7:468. [PMID: 38632370 PMCID: PMC11023947 DOI: 10.1038/s42003-024-06069-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
Bacterial species often comprise well-separated lineages, likely emerged and maintained by genetic isolation and/or ecological divergence. How these two evolutionary actors interact in the shaping of bacterial population structure is currently not fully understood. In this study, we investigate the genetic and ecological drivers underlying the evolution of Serratia marcescens, an opportunistic pathogen with high genomic flexibility and able to colonise diverse environments. Comparative genomic analyses reveal a population structure composed of five deeply-demarcated genetic clusters with open pan-genome but limited inter-cluster gene flow, partially explained by Restriction-Modification (R-M) systems incompatibility. Furthermore, a large-scale research on hundred-thousands metagenomic datasets reveals only a partial habitat separation of the clusters. Globally, two clusters only show a separate gene composition coherent with ecological adaptations. These results suggest that genetic isolation has preceded ecological adaptations in the shaping of the species diversity, an evolutionary scenario coherent with the Evolutionary Extended Synthesis.
Collapse
Affiliation(s)
- Lodovico Sterzi
- Department of Biomedical and Clinical Sciences, Pediatric Clinical Research Center "Romeo and Enrica Invernizzi", Università Di Milano, 20157, Milan, Italy
| | - Riccardo Nodari
- Department of Biomedical and Clinical Sciences, Pediatric Clinical Research Center "Romeo and Enrica Invernizzi", Università Di Milano, 20157, Milan, Italy
| | - Federico Di Marco
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Laura Ferrando
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Saluzzo
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Hamed Allahverdi
- Department of Biomedical and Clinical Sciences, Pediatric Clinical Research Center "Romeo and Enrica Invernizzi", Università Di Milano, 20157, Milan, Italy
| | - Stella Papaleo
- Department of Biomedical and Clinical Sciences, Pediatric Clinical Research Center "Romeo and Enrica Invernizzi", Università Di Milano, 20157, Milan, Italy
| | - Simona Panelli
- Department of Biomedical and Clinical Sciences, Pediatric Clinical Research Center "Romeo and Enrica Invernizzi", Università Di Milano, 20157, Milan, Italy
| | - Sara Giordana Rimoldi
- Laboratorio di Microbiologia Clinica, Virologia e Diagnostica delle Bioemergenze, ASST Fatebenefratelli Sacco, Milan, Italy
| | | | - Marta Corbella
- Department of Microbiology & Virology, Fondazione IRCCS Policlinico San Matteo, Viale Camillo Golgi 19, 27100, Pavia, Italy
| | | | - Paola Prati
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna (IZSLER), Pavia, Italy
| | - Claudio Farina
- Laboratory of Microbiology and Virology, Azienda Socio-Sanitaria Territoriale (ASST) Papa Giovanni XXIII, Bergamo, Italy
| | - Daniela Maria Cirillo
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Gianvincenzo Zuccotti
- Department of Biomedical and Clinical Sciences, Pediatric Clinical Research Center "Romeo and Enrica Invernizzi", Università Di Milano, 20157, Milan, Italy
- Department of Paediatrics, Children's Hospital "V. Buzzi", Milano, Italy
| | - Claudio Bandi
- Department of Biosciences and Pediatric Clinical Research Center "Romeo Ed Enrica Invernizzi", University of Milan, 20133, Milan, Italy
| | - Francesco Comandatore
- Department of Biomedical and Clinical Sciences, Pediatric Clinical Research Center "Romeo and Enrica Invernizzi", Università Di Milano, 20157, Milan, Italy.
| |
Collapse
|
11
|
Zhang H, Liu H, Han X. Traits-based approach: leveraging genome size in plant-microbe interactions. Trends Microbiol 2024; 32:333-341. [PMID: 37925351 DOI: 10.1016/j.tim.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 11/06/2023]
Abstract
Trait-based approaches have gained growing interest in studying plant-microbe interactions. However, current traits normally considered (e.g., morphological, physiological, or chemical traits) are biased towards those showing large intraspecific variations, necessitating the identification of fewer plastic traits that differ between species. Here, we propose using genome size (the amount of DNA in the nucleus of a cell) as a suitable trait for studying plant-microbiome interactions due to its relatively stable nature, minimally affected by external environmental variations. Emerging evidence suggests that plant genome size affects the plant-associated microbial community, and tissue-specific environments select microbes based on their genome size. These findings pinpoint environmental selection in genome size as an emerging driver of plant-microbiome interactions, potentially impacting ecosystem functions and productivity.
Collapse
Affiliation(s)
- Haiyang Zhang
- College of Life Sciences, Hebei University, Baoding, China.
| | - Hongwei Liu
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2753, Australia
| | - Xingguo Han
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
12
|
Zhu S, Hong J, Wang T. Horizontal gene transfer is predicted to overcome the diversity limit of competing microbial species. Nat Commun 2024; 15:800. [PMID: 38280843 PMCID: PMC10821886 DOI: 10.1038/s41467-024-45154-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 01/17/2024] [Indexed: 01/29/2024] Open
Abstract
Natural microbial ecosystems harbor substantial diversity of competing species. Explaining such diversity is challenging, because in classic theories it is extremely infeasible for a large community of competing species to stably coexist in homogeneous environments. One important aspect mostly overlooked in these theories, however, is that microbes commonly share genetic materials with their neighbors through horizontal gene transfer (HGT), which enables the dynamic change of species growth rates due to the fitness effects of the mobile genetic elements (MGEs). Here, we establish a framework of species competition by accounting for the dynamic gene flow among competing microbes. Combining theoretical derivation and numerical simulations, we show that in many conditions HGT can surprisingly overcome the biodiversity limit predicted by the classic model and allow the coexistence of many competitors, by enabling dynamic neutrality of competing species. In contrast with the static neutrality proposed by previous theories, the diversity maintained by HGT is highly stable against random perturbations of microbial fitness. Our work highlights the importance of considering gene flow when addressing fundamental ecological questions in the world of microbes and has broad implications for the design and engineering of complex microbial consortia.
Collapse
Affiliation(s)
- Shiben Zhu
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Juken Hong
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Teng Wang
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
13
|
Haider D, Hall MW, LaRoche J, Beiko RG. Mock microbial community meta-analysis using different trimming of amplicon read lengths. Environ Microbiol 2024; 26:e16566. [PMID: 38149467 DOI: 10.1111/1462-2920.16566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 12/12/2023] [Indexed: 12/28/2023]
Abstract
Trimming of sequencing reads is a pre-processing step that aims to discard sequence segments such as primers, adapters and low quality nucleotides that will interfere with clustering and classification steps. We evaluated the impact of trimming length of paired-end 16S and 18S rRNA amplicon reads on the ability to reconstruct the taxonomic composition and relative abundances of communities with a known composition in both even and uneven proportions. We found that maximizing read retention maximizes recall but reduces precision by increasing false positives. The presence of expected taxa was accurately predicted across broad trim length ranges but recovering original relative proportions remains a difficult challenge. We show that parameters that maximize taxonomic recovery do not simultaneously maximize relative abundance accuracy. Trim length represents one of several experimental parameters that have non-uniform impact across microbial clades, making it a difficult parameter to optimize. This study offers insights, guidelines, and helps researchers assess the significance of their decisions when trimming raw reads in a microbiome analysis based on overlapping or non-overlapping paired-end amplicons.
Collapse
Affiliation(s)
- Diana Haider
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, Canada
- Institute for Comparative Genomics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Michael W Hall
- Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, Canada
- Institute for Comparative Genomics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Julie LaRoche
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Institute for Comparative Genomics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Robert G Beiko
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Institute for Comparative Genomics, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
14
|
Boyte ME, Benkowski A, Pane M, Shehata HR. Probiotic and postbiotic analytical methods: a perspective of available enumeration techniques. Front Microbiol 2023; 14:1304621. [PMID: 38192285 PMCID: PMC10773886 DOI: 10.3389/fmicb.2023.1304621] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/20/2023] [Indexed: 01/10/2024] Open
Abstract
Probiotics are the largest non-herbal/traditional dietary supplements category worldwide. To be effective, a probiotic strain must be delivered viable at an adequate dose proven to deliver a health benefit. The objective of this article is to provide an overview of the various technologies available for probiotic enumeration, including a general description of each technology, their advantages and limitations, and their potential for the future of the probiotics industry. The current "gold standard" for analytical quantification of probiotics in the probiotic industry is the Plate Count method (PC). PC measures the bacterial cell's ability to proliferate into detectable colonies, thus PC relies on cultivability as a measure of viability. Although viability has widely been measured by cultivability, there has been agreement that the definition of viability is not limited to cultivability. For example, bacterial cells may exist in a state known as viable but not culturable (VBNC) where the cells lose cultivability but can maintain some of the characteristics of viable cells as well as probiotic properties. This led to questioning the association between viability and cultivability and the accuracy of PC in enumerating all the viable cells in probiotic products. PC has always been an estimate of the number of viable cells and not a true cell count. Additionally, newer probiotic categories such as Next Generation Probiotics (NGPs) are difficult to culture in routine laboratories as NGPs are often strict anaerobes with extreme sensitivity to atmospheric oxygen. Thus, accurate quantification using culture-based techniques will be complicated. Another emerging category of biotics is postbiotics, which are inanimate microorganisms, also often referred to as tyndallized or heat-killed bacteria. Obviously, culture dependent methods are not suitable for these products, and alternative methods are needed for their quantification. Different methodologies provide a more complete picture of a heterogeneous bacterial population versus PC focusing exclusively on the eventual multiplication of the cells. Alternative culture-independent techniques including real-time PCR, digital PCR and flow cytometry are discussed. These methods can measure viability beyond cultivability (i.e., by measuring cellular enzymatic activity, membrane integrity or membrane potential), and depending on how they are designed they can achieve strain-specific enumeration.
Collapse
Affiliation(s)
- Marie-Eve Boyte
- NutraPharma Consulting Services Inc., Sainte-Anne-des-Plaines, QC, Canada
| | | | - Marco Pane
- Probiotical Research s.r.l., Novara, Italy
| | | |
Collapse
|
15
|
Rafiq M, Hassan N, Rehman M, Hayat M, Nadeem G, Hassan F, Iqbal N, Ali H, Zada S, Kang Y, Sajjad W, Jamal M. Challenges and Approaches of Culturing the Unculturable Archaea. BIOLOGY 2023; 12:1499. [PMID: 38132325 PMCID: PMC10740628 DOI: 10.3390/biology12121499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023]
Abstract
Since Carl Woese's discovery of archaea as a third domain of life, numerous archaeal species have been discovered, yet archaeal diversity is poorly characterized. Culturing archaea is complicated, but several queries about archaeal cell biology, evolution, physiology, and diversity need to be solved by culturing and culture-dependent techniques. Increasing interest in demand for innovative culturing methods has led to various technological and methodological advances. The current review explains frequent hurdles hindering uncultured archaea isolation and discusses features for more archaeal cultivation. This review also discusses successful strategies and available media for archaeal culturing, which might be helpful for future culturing practices.
Collapse
Affiliation(s)
- Muhammad Rafiq
- Department of Microbiology, Faculty of Life Sciences and Informatics, Balochistan University of IT, Engineering and Management Sciences, Quetta 87100, Pakistan
- FF Institute (Huzhou) Co., Ltd., Huzhou 313000, China
| | - Noor Hassan
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering-College, Pakistan Institute of Engineering and Applied Sciences, Islamabad 44000, Pakistan
| | - Maliha Rehman
- Department of Microbiology, Faculty of Life Sciences and Informatics, Balochistan University of IT, Engineering and Management Sciences, Quetta 87100, Pakistan
| | - Muhammad Hayat
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Jinan 266101, China
| | - Gullasht Nadeem
- Department of Microbiology, Faculty of Life Sciences and Informatics, Balochistan University of IT, Engineering and Management Sciences, Quetta 87100, Pakistan
| | - Farwa Hassan
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering-College, Pakistan Institute of Engineering and Applied Sciences, Islamabad 44000, Pakistan
| | - Naveed Iqbal
- Department of Biotechnology, Faculty of Life Sciences and Informatics, Balochistan University of IT, Engineering and Management Sciences, Quetta 87100, Pakistan
- The Department of Paediatrics and Child Health, Aga Khan University, Karachi 74800, Pakistan
| | - Hazrat Ali
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering-College, Pakistan Institute of Engineering and Applied Sciences, Islamabad 44000, Pakistan
| | - Sahib Zada
- Guangzhou Institute of Energy Conservation, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yingqian Kang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education of Guizhou, Guiyang 550025, China
- Key Laboratory of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Wasim Sajjad
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan
| | - Muhsin Jamal
- Department of Microbiology, Abdul Wali Khan University, Garden Campus, Mardan 23200, Pakistan
| |
Collapse
|
16
|
Liu Y, Brinkhoff T, Berger M, Poehlein A, Voget S, Paoli L, Sunagawa S, Amann R, Simon M. Metagenome-assembled genomes reveal greatly expanded taxonomic and functional diversification of the abundant marine Roseobacter RCA cluster. MICROBIOME 2023; 11:265. [PMID: 38007474 PMCID: PMC10675870 DOI: 10.1186/s40168-023-01644-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/07/2023] [Indexed: 11/27/2023]
Abstract
BACKGROUND The RCA (Roseobacter clade affiliated) cluster belongs to the family Roseobacteracea and represents a major Roseobacter lineage in temperate to polar oceans. Despite its prevalence and abundance, only a few genomes and one described species, Planktomarina temperata, exist. To gain more insights into our limited understanding of this cluster and its taxonomic and functional diversity and biogeography, we screened metagenomic datasets from the global oceans and reconstructed metagenome-assembled genomes (MAG) affiliated to this cluster. RESULTS The total of 82 MAGs, plus five genomes of isolates, reveal an unexpected diversity and novel insights into the genomic features, the functional diversity, and greatly refined biogeographic patterns of the RCA cluster. This cluster is subdivided into three genera: Planktomarina, Pseudoplanktomarina, and the most deeply branching Candidatus Paraplanktomarina. Six of the eight Planktomarina species have larger genome sizes (2.44-3.12 Mbp) and higher G + C contents (46.36-53.70%) than the four Pseudoplanktomarina species (2.26-2.72 Mbp, 42.22-43.72 G + C%). Cand. Paraplanktomarina is represented only by one species with a genome size of 2.40 Mbp and a G + C content of 45.85%. Three novel species of the genera Planktomarina and Pseudoplanktomarina are validly described according to the SeqCode nomenclature for prokaryotic genomes. Aerobic anoxygenic photosynthesis (AAP) is encoded in three Planktomarina species. Unexpectedly, proteorhodopsin (PR) is encoded in the other Planktomarina and all Pseudoplanktomarina species, suggesting that this light-driven proton pump is the most important mode of acquiring complementary energy of the RCA cluster. The Pseudoplanktomarina species exhibit differences in functional traits compared to Planktomarina species and adaptations to more resource-limited conditions. An assessment of the global biogeography of the different species greatly expands the range of occurrence and shows that the different species exhibit distinct biogeographic patterns. They partially reflect the genomic features of the species. CONCLUSIONS Our detailed MAG-based analyses shed new light on the diversification, environmental adaptation, and global biogeography of a major lineage of pelagic bacteria. The taxonomic delineation and validation by the SeqCode nomenclature of prominent genera and species of the RCA cluster may be a promising way for a refined taxonomic identification of major prokaryotic lineages and sublineages in marine and other prokaryotic communities assessed by metagenomics approaches. Video Abstract.
Collapse
Affiliation(s)
- Yanting Liu
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl Von Ossietzky Str. 9-11, 26129, Oldenburg, Germany.
- Max Planck Institute for Marine Microbiology, Bremen, Germany.
- State Key Laboratory for Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, People's Republic of China.
| | - Thorsten Brinkhoff
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl Von Ossietzky Str. 9-11, 26129, Oldenburg, Germany.
| | - Martine Berger
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl Von Ossietzky Str. 9-11, 26129, Oldenburg, Germany
| | - Anja Poehlein
- Department of Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Georg-August University Göttingen, Grisebachstr. 8, 37077, Göttingen, Germany
| | - Sonja Voget
- Department of Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Georg-August University Göttingen, Grisebachstr. 8, 37077, Göttingen, Germany
| | - Lucas Paoli
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, Zurich, Switzerland
| | - Shinichi Sunagawa
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, Zurich, Switzerland
| | - Rudolf Amann
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Meinhard Simon
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl Von Ossietzky Str. 9-11, 26129, Oldenburg, Germany.
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Ammerländer Heerstr. 231, 26129, Oldenburg, Germany.
| |
Collapse
|
17
|
Hu Z, Bai X. Self-repair and resuscitation of viable injured bacteria in chlorinated drinking water: Achromobacter as an example. WATER RESEARCH 2023; 245:120585. [PMID: 37690414 DOI: 10.1016/j.watres.2023.120585] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/24/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023]
Abstract
Chlorine disinfection for the treatment of drinking water can cause injury to the membrane and DNA of bacterial cells and may induce the surviving injured bacteria into a viable but non-culturable (VBNC) state. It is difficult to monitor viable injured bacteria by heterotrophic plate counting (HPC), and their presence is also easily miscalculated in flow cytometry intact cell counting (FCM-ICC). Viable injured bacteria have a potential risk of resuscitation in drinking water distribution systems (DWDSs) and pose a threat to public health when drinking from faucets. In this study, bacteria with injured membranes were isolated from chlorinated drinking water by FCM cell sorting. The culture rate of injured bacteria varied from 0.08% to 2.6% on agar plates and 0.39% to 6.5% in 96-well plates. As the dominant genus among the five identified genera, as well as an opportunistic pathogen with multiple antibiotic resistance, Achromobacter was selected and further studied. After treatment with chlorine at a concentration of 1.2 mg/L, Achromobacter entered into the intermediate injured state on the FCM plot, and the injury on the bacterial surface was observed by electron microscopy. However, the CTC respiratory activity assay showed that 75.0% of the bacteria were still physiologically active, and they entered into a VBNC state. The injured VBNC Achromobacter in sterile drinking water were resuscitated after approximately 25 h. The cellular repair behavior of injured bacteria was studied by Fourier transform infrared attenuated total reflectance (FTIR-ATR) and comet assays. It was found that DNA injury rather than membrane injury was repaired first. The expression of Ku and ligD increased significantly during the DNA repair period, indicating that non-homologous end-joining (NHEJ) played an important role in repairing DNA double-strand breaks. This study deepened the understanding of the effect of chlorine disinfection on bacterial viability in drinking water and will provide support for the improvement of the chlorine disinfection process for the treatment of drinking water.
Collapse
Affiliation(s)
- Zengyi Hu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaohui Bai
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
18
|
Vientós‐Plotts AI, Ericsson AC, Reinero CR. The respiratory microbiota and its impact on health and disease in dogs and cats: A One Health perspective. J Vet Intern Med 2023; 37:1641-1655. [PMID: 37551852 PMCID: PMC10473014 DOI: 10.1111/jvim.16824] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 07/10/2023] [Indexed: 08/09/2023] Open
Abstract
Healthy lungs were long thought of as sterile, with presence of bacteria identified by culture representing contamination. Recent advances in metagenomics have refuted this belief by detecting rich, diverse, and complex microbial communities in the healthy lower airways of many species, albeit at low concentrations. Although research has only begun to investigate causality and potential mechanisms, alterations in these microbial communities (known as dysbiosis) have been described in association with inflammatory, infectious, and neoplastic respiratory diseases in humans. Similar studies in dogs and cats are scarce. The microbial communities in the respiratory tract are linked to distant microbial communities such as in the gut (ie, the gut-lung axis), allowing interplay of microbes and microbial products in health and disease. This review summarizes considerations for studying local microbial communities, key features of the respiratory microbiota and its role in the gut-lung axis, current understanding of the healthy respiratory microbiota, and examples of dysbiosis in selected respiratory diseases of dogs and cats.
Collapse
Affiliation(s)
- Aida I. Vientós‐Plotts
- College of Veterinary MedicineUniversity of MissouriColumbiaMissouriUSA
- Department of Veterinary Medicine and Surgery, College of Veterinary MedicineUniversity of MissouriColumbiaMissouriUSA
- Comparative Internal Medicine LaboratoryUniversity of MissouriColumbiaMissouriUSA
| | - Aaron C. Ericsson
- College of Veterinary MedicineUniversity of MissouriColumbiaMissouriUSA
- University of Missouri Metagenomics CenterUniversity of MissouriColumbiaMissouriUSA
- Department of Veterinary Pathobiology, College of Veterinary MedicineUniversity of MissouriColumbiaMissouriUSA
| | - Carol R. Reinero
- College of Veterinary MedicineUniversity of MissouriColumbiaMissouriUSA
- Department of Veterinary Medicine and Surgery, College of Veterinary MedicineUniversity of MissouriColumbiaMissouriUSA
- Comparative Internal Medicine LaboratoryUniversity of MissouriColumbiaMissouriUSA
| |
Collapse
|
19
|
Martiny JBH, Martiny AC, Brodie E, Chase AB, Rodríguez-Verdugo A, Treseder KK, Allison SD. Investigating the eco-evolutionary response of microbiomes to environmental change. Ecol Lett 2023; 26 Suppl 1:S81-S90. [PMID: 36965002 DOI: 10.1111/ele.14209] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/13/2023] [Accepted: 03/06/2023] [Indexed: 03/27/2023]
Abstract
Microorganisms are the primary engines of biogeochemical processes and foundational to the provisioning of ecosystem services to human society. Free-living microbial communities (microbiomes) and their functioning are now known to be highly sensitive to environmental change. Given microorganisms' capacity for rapid evolution, evolutionary processes could play a role in this response. Currently, however, few models of biogeochemical processes explicitly consider how microbial evolution will affect biogeochemical responses to environmental change. Here, we propose a conceptual framework for explicitly integrating evolution into microbiome-functioning relationships. We consider how microbiomes respond simultaneously to environmental change via four interrelated processes that affect overall microbiome functioning (physiological acclimation, demography, dispersal and evolution). Recent evidence in both the laboratory and the field suggests that ecological and evolutionary dynamics occur simultaneously within microbiomes; however, the implications for biogeochemistry under environmental change will depend on the timescales over which these processes contribute to a microbiome's response. Over the long term, evolution may play an increasingly important role for microbially driven biogeochemical responses to environmental change, particularly to conditions without recent historical precedent.
Collapse
Affiliation(s)
- Jennifer B H Martiny
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, USA
| | - Adam C Martiny
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, USA
- Department of Earth System Science, University of California, Irvine, California, USA
| | - Eoin Brodie
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, California, USA
| | - Alexander B Chase
- Department of Earth Sciences, Southern Methodist University, Dallas, Texas, USA
| | | | - Kathleen K Treseder
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, USA
| | - Steven D Allison
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, USA
- Department of Earth System Science, University of California, Irvine, California, USA
| |
Collapse
|
20
|
Liao J, Shenhav L, Urban JA, Serrano M, Zhu B, Buck GA, Korem T. Microdiversity of the vaginal microbiome is associated with preterm birth. Nat Commun 2023; 14:4997. [PMID: 37591872 PMCID: PMC10435516 DOI: 10.1038/s41467-023-40719-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 08/07/2023] [Indexed: 08/19/2023] Open
Abstract
Preterm birth (PTB) is the leading cause of neonatal morbidity and mortality. The vaginal microbiome has been associated with PTB, yet the mechanisms underlying this association are not fully understood. Understanding microbial genetic adaptations to selective pressures, especially those related to the host, may yield insights into these associations. Here, we analyze metagenomic data from 705 vaginal samples collected during pregnancy from 40 women who delivered preterm spontaneously and 135 term controls from the Multi-Omic Microbiome Study-Pregnancy Initiative. We find that the vaginal microbiome of pregnancies that ended preterm exhibited unique genetic profiles. It was more genetically diverse at the species level, a result which we validate in an additional cohort, and harbored a higher richness and diversity of antimicrobial resistance genes, likely promoted by transduction. Interestingly, we find that Gardnerella species drove this higher genetic diversity, particularly during the first half of the pregnancy. We further present evidence that Gardnerella spp. underwent more frequent recombination and stronger purifying selection in genes involved in lipid metabolism. Overall, our population genetics analyses reveal associations between the vaginal microbiome and PTB and suggest that evolutionary processes acting on vaginal microbes may play a role in adverse pregnancy outcomes such as PTB.
Collapse
Affiliation(s)
- Jingqiu Liao
- Program for Mathematical Genomics, Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, USA.
| | - Liat Shenhav
- Center for Studies in Physics and Biology, Rockefeller University, New York, NY, USA
| | - Julia A Urban
- Program for Mathematical Genomics, Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Myrna Serrano
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
- Center for Microbiome Engineering and Data Analysis, Virginia Commonwealth University, Richmond, VA, USA
| | - Bin Zhu
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
- Center for Microbiome Engineering and Data Analysis, Virginia Commonwealth University, Richmond, VA, USA
| | - Gregory A Buck
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
- Center for Microbiome Engineering and Data Analysis, Virginia Commonwealth University, Richmond, VA, USA
- Department of Computer Science, School of Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Tal Korem
- Program for Mathematical Genomics, Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY, USA.
- CIFAR Azrieli Global Scholars program, CIFAR, Toronto, ON, Canada.
| |
Collapse
|
21
|
Zhang JW, Wang R, Liang X, Han P, Zheng YL, Li XF, Gao DZ, Liu M, Hou LJ, Dong HP. Novel Gene Clusters for Natural Product Synthesis Are Abundant in the Mangrove Swamp Microbiome. Appl Environ Microbiol 2023; 89:e0010223. [PMID: 37191511 PMCID: PMC10304795 DOI: 10.1128/aem.00102-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/21/2023] [Indexed: 05/17/2023] Open
Abstract
Natural microbial communities produce a diverse array of secondary metabolites with ecologically and biotechnologically relevant activities. Some of them have been used clinically as drugs, and their production pathways have been identified in a few culturable microorganisms. However, since the vast majority of microorganisms in nature have not been cultured, identifying the synthetic pathways of these metabolites and tracking their hosts remain a challenge. The microbial biosynthetic potential of mangrove swamps remains largely unknown. Here, we examined the diversity and novelty of biosynthetic gene clusters in dominant microbial populations in mangrove wetlands by mining 809 newly reconstructed draft genomes and probing the activities and products of these clusters by using metatranscriptomic and metabolomic techniques. A total of 3,740 biosynthetic gene clusters were identified from these genomes, including 1,065 polyketide and nonribosomal peptide gene clusters, 86% of which showed no similarity to known clusters in the Minimum Information about a Biosynthetic Gene Cluster (MIBiG) repository. Of these gene clusters, 59% were harbored by new species or lineages of Desulfobacterota-related phyla and Chloroflexota, whose members are highly abundant in mangrove wetlands and for which few synthetic natural products have been reported. Metatranscriptomics revealed that most of the identified gene clusters were active in field and microcosm samples. Untargeted metabolomics was also used to identify metabolites from the sediment enrichments, and 98% of the mass spectra generated were unrecognizable, further supporting the novelty of these biosynthetic gene clusters. Our study taps into a corner of the microbial metabolite reservoir in mangrove swamps, providing clues for the discovery of new compounds with valuable activities. IMPORTANCE At present, the majority of known clinical drugs originated from cultivated species of a few bacterial lineages. It is vital for the development of new pharmaceuticals to explore the biosynthetic potential of naturally uncultivable microorganisms using new techniques. Based on the large numbers of genomes reconstructed from mangrove wetlands, we identified abundant and diverse biosynthetic gene clusters in previously unsuspected phylogenetic groups. These gene clusters exhibited a variety of organizational architectures, especially for nonribosomal peptide synthetase (NRPS) and polyketide synthase (PKS), implying the presence of new compounds with valuable activities in the mangrove swamp microbiome.
Collapse
Affiliation(s)
- Jia-Wei Zhang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China
| | - Ran Wang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China
| | - Xia Liang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China
| | - Ping Han
- Key Laboratory of Geographic Information Science, Ministry of Education, East China Normal University, Shanghai, China
| | - Yan-Ling Zheng
- Key Laboratory of Geographic Information Science, Ministry of Education, East China Normal University, Shanghai, China
| | - Xiao-Fei Li
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China
| | - Deng-Zhou Gao
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China
| | - Min Liu
- Key Laboratory of Geographic Information Science, Ministry of Education, East China Normal University, Shanghai, China
| | - Li-Jun Hou
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China
| | - Hong-Po Dong
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China
| |
Collapse
|
22
|
Liao J, Shenhav L, Urban JA, Serrano M, Zhu B, Buck GA, Korem T. Microdiversity of the Vaginal Microbiome is Associated with Preterm Birth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.13.523991. [PMID: 36711990 PMCID: PMC9882146 DOI: 10.1101/2023.01.13.523991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Preterm birth (PTB) is the leading cause of neonatal morbidity and mortality. The vaginal microbiome has been associated with PTB, yet the mechanisms underlying this association are not fully understood. Understanding microbial genetic adaptations to selective pressures, especially those related to the host, may yield new insights into these associations. To this end, we analyzed metagenomic data from 705 vaginal samples collected longitudinally during pregnancy from 40 women who delivered preterm spontaneously and 135 term controls from the Multi-Omic Microbiome Study-Pregnancy Initiative (MOMS-PI). We find that the vaginal microbiome of pregnancies that ended preterm exhibits unique genetic profiles. It is more genetically diverse at the species level, a result which we validate in an additional cohort, and harbors a higher richness and diversity of antimicrobial resistance genes, likely promoted by transduction. Interestingly, we find that Gardnerella species, a group of central vaginal pathobionts, are driving this higher genetic diversity, particularly during the first half of the pregnancy. We further present evidence that Gardnerella spp. undergoes more frequent recombination and stronger purifying selection in genes involved in lipid metabolism. Overall, our results reveal novel associations between the vaginal microbiome and PTB using population genetics analyses, and suggest that evolutionary processes acting on the vaginal microbiome may play a vital role in adverse pregnancy outcomes such as preterm birth.
Collapse
Affiliation(s)
- Jingqiu Liao
- Program for Mathematical Genomics, Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Liat Shenhav
- Center for Studies in Physics and Biology, Rockefeller University, New York, NY, USA
| | - Julia A. Urban
- Program for Mathematical Genomics, Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Myrna Serrano
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
- Center for Microbiome Engineering and Data Analysis, Virginia Commonwealth University, Richmond, VA, USA
| | - Bin Zhu
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
- Center for Microbiome Engineering and Data Analysis, Virginia Commonwealth University, Richmond, VA, USA
| | - Gregory A. Buck
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
- Center for Microbiome Engineering and Data Analysis, Virginia Commonwealth University, Richmond, VA, USA
- Department of Computer Science, School of Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Tal Korem
- Program for Mathematical Genomics, Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY, USA
- CIFAR Azrieli Global Scholars program, CIFAR, Toronto, Canada
| |
Collapse
|
23
|
Maatouk M, Rolain JM, Bittar F. Using Genomics to Decipher the Enigmatic Properties and Survival Adaptation of Candidate Phyla Radiation. Microorganisms 2023; 11:1231. [PMID: 37317205 PMCID: PMC10221324 DOI: 10.3390/microorganisms11051231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 06/16/2023] Open
Abstract
Microbial ecology is a critical field for understanding the composition, diversity, and functions of microorganisms in various environmental and health-related processes. The discovery of Candidate Phyla Radiation (CPR) through culture-independent methods has introduced a new division of microbes characterized by a symbiotic/parasitic lifestyle, small cell size, and small genome. Despite being poorly understood, CPRs have garnered significant attention in recent years due to their widespread detection in a variety of environmental and clinical samples. These microorganisms have been found to exhibit a high degree of genetic diversity compared to other microbes. Several studies have shed light on their potential importance in global biogeochemical cycles and their impact on various human activities. In this review, we provide a systematic overview of the discovery of CPRs. We then focus on describing how the genomic characteristics of CPRs have helped them interact with and adapt to other microbes in different ecological niches. Future works should focus on discovering the metabolic capacities of CPRs and, if possible, isolating them to obtain a better understanding of these microorganisms.
Collapse
Affiliation(s)
- Mohamad Maatouk
- Aix-Marseille Université, IRD, APHM, MEPHI, 13005 Marseille, France; (M.M.); (J.-M.R.)
- IHU Méditerranée Infection, 13005 Marseille, France
| | - Jean-Marc Rolain
- Aix-Marseille Université, IRD, APHM, MEPHI, 13005 Marseille, France; (M.M.); (J.-M.R.)
- IHU Méditerranée Infection, 13005 Marseille, France
| | - Fadi Bittar
- Aix-Marseille Université, IRD, APHM, MEPHI, 13005 Marseille, France; (M.M.); (J.-M.R.)
- IHU Méditerranée Infection, 13005 Marseille, France
| |
Collapse
|
24
|
Gong X, Liu X, Li Y, Ma K, Song W, Zhou J, Tu Q. Distinct Ecological Processes Mediate Domain-Level Differentiation in Microbial Spatial Scaling. Appl Environ Microbiol 2023; 89:e0209622. [PMID: 36815790 PMCID: PMC10056974 DOI: 10.1128/aem.02096-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/26/2023] [Indexed: 02/24/2023] Open
Abstract
The spatial scaling of biodiversity, such as the taxa-area relationship (TAR) and distance-decay relationship (DDR), is a typical ecological pattern that is followed by both microbes and macrobes in natural ecosystems. Previous studies focusing on microbes mainly aimed to address whether and how different types of microbial taxa differ in spatial scaling patterns, leaving the underlying mechanisms largely untouched. In this study, the spatial scaling of different microbial domains and their associated ecological processes in an intertidal zone were comparatively investigated. The significant spatial scaling of biodiversity could be observed across all microbial domains, including archaea, bacteria, fungi, and protists. Among them, archaea and fungi were found with much stronger DDR slopes than those observed in bacteria and protists. For both TAR and DDR, rare subcommunities were mainly responsible for the observed spatial scaling patterns, except for the DDR of protists and bacteria. This was also evidenced by extending the TAR and DDR diversity metrics to Hill numbers. Further statistical analyses demonstrated that different microbial domains were influenced by different environmental factors and harbored distinct local community assembly processes. Of these, drift was mainly responsible for the compositional variations of bacteria and protists. Archaea were shaped by strong homogeneous selection, whereas fungi were more affected by dispersal limitation. Such differing ecological processes resulted in the domain-level differentiation of microbial spatial scaling. This study links ecological processes with microbial spatial scaling and provides novel mechanistic insights into the diversity patterns of microbes that belong to different trophic levels. IMPORTANCE As the most diverse and numerous life form on Earth, microorganisms play indispensable roles in natural ecological processes. Revealing their diversity patterns across space and through time is of essential importance to better understand the underlying ecological mechanisms controlling the distribution and assembly of microbial communities. However, the diversity patterns and their underlying ecological mechanisms for different microbial domains and/or trophic levels require further exploration. In this study, the spatial scaling of different microbial domains and their associated ecological processes in a mudflat intertidal zone were investigated. The results showed different spatial scaling patterns for different microbial domains. Different ecological processes underlie the domain-level differentiation of microbial spatial scaling. This study links ecological processes with microbial spatial scaling to provide novel mechanistic insights into the diversity patterns of microorganisms that belong to different trophic levels.
Collapse
Affiliation(s)
- Xiaofan Gong
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Xia Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Yueyue Li
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Kai Ma
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Wen Song
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Jiayin Zhou
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Qichao Tu
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
- Joint Lab for Ocean Research and Education at Dalhousie University, Shandong University and Xiamen University, Qingdao, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou, China
| |
Collapse
|
25
|
Zhang H, Ni Y, Ji H, Liu H, Liu S. Research trends of omics in ulcerative colitis: A bibliometric analysis. Front Med (Lausanne) 2023; 10:1115240. [PMID: 37051213 PMCID: PMC10083299 DOI: 10.3389/fmed.2023.1115240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 02/20/2023] [Indexed: 03/28/2023] Open
Abstract
BackgroundOmics has emerged as a promising biological science to shed light on the etiology, pathogenesis, and treatment of ulcerative colitis (UC). At present, although research on the omics of UC has drawn global attention, there is still a lack of bibliometric analysis in this field. This study aimed to access the trends and hotspots of omics in UC research.MethodPublications related to omics in UC from 1 January 2000 to 15 October 2022 were retrieved from the Web of Science Core Collection database. VOSviewer, CiteSpace, and the online bibliometric analysis platform “Bibliometrix” were adopted to extract and visualize information.ResultsA total of 385 publications were finally included and the annual number of publications fluctuated. The trend in publications increased rapidly after 2019. The United States showed its dominant position in several publications, total citations, and international collaborations. The top five research organizations for publications on the research of omics in UC were Harvard Medical School, the Icahn School of Medicine at Mount Sinai, Karolinska Institutet, the Brigham and Women's Hospital, and the Massachusetts General Hospital. Ashwin Ananthakrishnan from the Massachusetts General Hospital was the most productive author, and Séverine Vermeire from the Catholic University of Leuven was co-cited most often. Inflammatory bowel disease was the most popular and co-cited journal in this field. The reference with citation bursts and trend topics showed that “ulcerative colitis,” “inflammatory bowel disease,” “microbiome,” “transcriptomics,” “genomics,” “metabolomics,” “proteomics,” “dysbiosis,” “biomarkers,” “loci,” and “therapy” are currently research hotspots.ConclusionOur study presents several important insights into the research trends and developments in the field of omics in UC, which will provide key information for further research.
Collapse
Affiliation(s)
- He Zhang
- Department of Gastroenterology, Guang' anmen Hospital, China Academy of Traditional Chinese Medical Sciences, Beijing, China
| | - Yuanyuan Ni
- Department of Gastroenterology, Guang' anmen Hospital, China Academy of Traditional Chinese Medical Sciences, Beijing, China
| | - Hangyu Ji
- Office of Good Clinical Practice, Guang' anmen Hospital, China Academy of Traditional Chinese Medical Sciences, Beijing, China
| | - Hongliang Liu
- Department of Gastroenterology, Guang' anmen Hospital, China Academy of Traditional Chinese Medical Sciences, Beijing, China
| | - Shaoneng Liu
- Department of Gastroenterology, Guang' anmen Hospital, China Academy of Traditional Chinese Medical Sciences, Beijing, China
- *Correspondence: Shaoneng Liu
| |
Collapse
|
26
|
Botelho J, Cazares A, Schulenburg H. The ESKAPE mobilome contributes to the spread of antimicrobial resistance and CRISPR-mediated conflict between mobile genetic elements. Nucleic Acids Res 2023; 51:236-252. [PMID: 36610752 PMCID: PMC9841420 DOI: 10.1093/nar/gkac1220] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 01/09/2023] Open
Abstract
Mobile genetic elements (MGEs) mediate the shuffling of genes among organisms. They contribute to the spread of virulence and antibiotic resistance (AMR) genes in human pathogens, such as the particularly problematic group of ESKAPE pathogens. Here, we performed the first systematic analysis of MGEs, including plasmids, prophages, and integrative and conjugative/mobilizable elements (ICEs/IMEs), across all ESKAPE pathogens. We found that different MGE types are asymmetrically distributed across these pathogens, and that most horizontal gene transfer (HGT) events are restricted by phylum or genus. We show that the MGEs proteome is involved in diverse functional processes and distinguish widespread proteins within the ESKAPE context. Moreover, anti-CRISPRs and AMR genes are overrepresented in the ESKAPE mobilome. Our results also underscore species-specific trends shaping the number of MGEs, AMR, and virulence genes across pairs of conspecific ESKAPE genomes with and without CRISPR-Cas systems. Finally, we observed that CRISPR spacers found on prophages, ICEs/IMEs, and plasmids have different targeting biases: while plasmid and prophage CRISPRs almost exclusively target other plasmids and prophages, respectively, ICEs/IMEs CRISPRs preferentially target prophages. Overall, our study highlights the general importance of the ESKAPE mobilome in contributing to the spread of AMR and mediating conflict among MGEs.
Collapse
Affiliation(s)
- João Botelho
- To whom correspondence should be addressed. Tel: +49 431 880 4143;
| | - Adrian Cazares
- EMBL’s European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge, UK,Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Hinrich Schulenburg
- Antibiotic Resistance Evolution Group, Max Planck Institute for Evolutionary Biology, Plön, Germany,Department of Evolutionary Ecology and Genetics, Zoological Institute, Christian Albrechts University, Kiel, Germany
| |
Collapse
|
27
|
Geurtsen J, de Been M, Weerdenburg E, Zomer A, McNally A, Poolman J. Genomics and pathotypes of the many faces of Escherichia coli. FEMS Microbiol Rev 2022; 46:fuac031. [PMID: 35749579 PMCID: PMC9629502 DOI: 10.1093/femsre/fuac031] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 06/22/2022] [Indexed: 01/09/2023] Open
Abstract
Escherichia coli is the most researched microbial organism in the world. Its varied impact on human health, consisting of commensalism, gastrointestinal disease, or extraintestinal pathologies, has generated a separation of the species into at least eleven pathotypes (also known as pathovars). These are broadly split into two groups, intestinal pathogenic E. coli (InPEC) and extraintestinal pathogenic E. coli (ExPEC). However, components of E. coli's infinite open accessory genome are horizontally transferred with substantial frequency, creating pathogenic hybrid strains that defy a clear pathotype designation. Here, we take a birds-eye view of the E. coli species, characterizing it from historical, clinical, and genetic perspectives. We examine the wide spectrum of human disease caused by E. coli, the genome content of the bacterium, and its propensity to acquire, exchange, and maintain antibiotic resistance genes and virulence traits. Our portrayal of the species also discusses elements that have shaped its overall population structure and summarizes the current state of vaccine development targeted at the most frequent E. coli pathovars. In our conclusions, we advocate streamlining efforts for clinical reporting of ExPEC, and emphasize the pathogenic potential that exists throughout the entire species.
Collapse
Affiliation(s)
- Jeroen Geurtsen
- Janssen Vaccines and Prevention B.V., 2333 Leiden, the Netherlands
| | - Mark de Been
- Janssen Vaccines and Prevention B.V., 2333 Leiden, the Netherlands
| | | | - Aldert Zomer
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 Utrecht, the Netherlands
| | - Alan McNally
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, B15 2TT Birmingham, United Kingdom
| | - Jan Poolman
- Janssen Vaccines and Prevention B.V., 2333 Leiden, the Netherlands
| |
Collapse
|
28
|
Advanced prokaryotic systematics: the modern face of an ancient science. New Microbes New Infect 2022; 49-50:101036. [DOI: 10.1016/j.nmni.2022.101036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/13/2022] Open
|
29
|
Achtman M, Zhou Z, Charlesworth J, Baxter L. EnteroBase: hierarchical clustering of 100 000s of bacterial genomes into species/subspecies and populations. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210240. [PMID: 35989609 PMCID: PMC9393565 DOI: 10.1098/rstb.2021.0240] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 03/07/2022] [Indexed: 12/14/2022] Open
Abstract
The definition of bacterial species is traditionally a taxonomic issue while bacterial populations are identified by population genetics. These assignments are species specific, and depend on the practitioner. Legacy multilocus sequence typing is commonly used to identify sequence types (STs) and clusters (ST Complexes). However, these approaches are not adequate for the millions of genomic sequences from bacterial pathogens that have been generated since 2012. EnteroBase (http://enterobase.warwick.ac.uk) automatically clusters core genome MLST allelic profiles into hierarchical clusters (HierCC) after assembling annotated draft genomes from short-read sequences. HierCC clusters span core sequence diversity from the species level down to individual transmission chains. Here we evaluate HierCC's ability to correctly assign 100 000s of genomes to the species/subspecies and population levels for Salmonella, Escherichia, Clostridoides, Yersinia, Vibrio and Streptococcus. HierCC assignments were more consistent with maximum-likelihood super-trees of core SNPs or presence/absence of accessory genes than classical taxonomic assignments or 95% ANI. However, neither HierCC nor ANI were uniformly consistent with classical taxonomy of Streptococcus. HierCC was also consistent with legacy eBGs/ST Complexes in Salmonella or Escherichia and with O serogroups in Salmonella. Thus, EnteroBase HierCC supports the automated identification of and assignment to species/subspecies and populations for multiple genera. This article is part of a discussion meeting issue 'Genomic population structures of microbial pathogens'.
Collapse
|
30
|
Pinacho-Guendulain B, Montiel-Castro AJ, Ramos-Fernández G, Pacheco-López G. Social complexity as a driving force of gut microbiota exchange among conspecific hosts in non-human primates. Front Integr Neurosci 2022; 16:876849. [PMID: 36110388 PMCID: PMC9468716 DOI: 10.3389/fnint.2022.876849] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
The emergent concept of the social microbiome implies a view of a highly connected biological world, in which microbial interchange across organisms may be influenced by social and ecological connections occurring at different levels of biological organization. We explore this idea reviewing evidence of whether increasing social complexity in primate societies is associated with both higher diversity and greater similarity in the composition of the gut microbiota. By proposing a series of predictions regarding such relationship, we evaluate the existence of a link between gut microbiota and primate social behavior. Overall, we find that enough empirical evidence already supports these predictions. Nonetheless, we conclude that studies with the necessary, sufficient, explicit, and available evidence are still scarce. Therefore, we reflect on the benefit of founding future analyses on the utility of social complexity as a theoretical framework.
Collapse
Affiliation(s)
- Braulio Pinacho-Guendulain
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana (UAM), Ciudad de México, Mexico
| | - Augusto Jacobo Montiel-Castro
- Department of Health Sciences, Metropolitan Autonomous University (UAM), Lerma, Mexico
- *Correspondence: Augusto Jacobo Montiel-Castro,
| | - Gabriel Ramos-Fernández
- Institute for Research on Applied Mathematics and Systems (IIMAS), National Autonomous University of Mexico (UNAM), Mexico City, Mexico
- Center for Complexity Sciences, National Autonomous University of Mexico, Mexico City, Mexico
| | - Gustavo Pacheco-López
- Department of Health Sciences, Metropolitan Autonomous University (UAM), Lerma, Mexico
- Gustavo Pacheco-López,
| |
Collapse
|
31
|
Relevance of prokaryotic subspecies in the age of genomics. New Microbes New Infect 2022; 48:101024. [PMID: 36176539 PMCID: PMC9513812 DOI: 10.1016/j.nmni.2022.101024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 08/13/2022] [Accepted: 08/22/2022] [Indexed: 11/20/2022] Open
|
32
|
Kang M, Lim JY, Kim J, Hwang I, Goo E. Influence of genomic structural variations and nutritional conditions on the emergence of quorum sensing-dependent gene regulation defects in Burkholderia glumae. Front Microbiol 2022; 13:950600. [PMID: 35910611 PMCID: PMC9335073 DOI: 10.3389/fmicb.2022.950600] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/29/2022] [Indexed: 11/30/2022] Open
Abstract
Bacteria often change their genetic and physiological traits to survive in harsh environments. To determine whether, in various strains of Burkholderia glumae, genomic diversity is associated with the ability to adapt to ever-changing environments, whole genomes of 44 isolates from different hosts and regions were analyzed. Whole-genome phylogenetic analysis of the 44 isolates revealed six clusters and two divisions. While all isolates possessed chromosomes 1 and 2, strains BGR80S and BGR81S had one chromosome resulting from the merging of the two chromosomes. Upon comparison of genomic structures to the prototype BGR1, inversions, deletions, and rearrangements were found within or between chromosomes 1 and/or 2 in the other isolates. When three isolates—BGR80S, BGR15S, and BGR21S, representing clusters III, IV, and VI, respectively—were grown in Luria-Bertani medium, spontaneous null mutations were identified in qsmR encoding a quorum-sensing master regulator. Six days after subculture, qsmR mutants were found at detectable frequencies in BGR15S and BGR21S, and reached approximately 40% at 8 days after subculture. However, the qsmR mutants appeared 2 days after subculture in BGR80S and dominated the population, reaching almost 80%. No qsmR mutant was detected at detectable frequency in BGR1 or BGR13S. The spontaneous qsmR mutants outcompeted their parental strains in the co-culture. Daily addition of glucose or casamino acids to the batch cultures of BGR80S delayed emergence of qsmR mutants and significantly reduced their incidence. These results indicate that spontaneous qsmR mutations are correlated with genomic structures and nutritional conditions.
Collapse
Affiliation(s)
- Minhee Kang
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Jae Yun Lim
- School of Systems Biomedical Science, Soongsil University, Seoul, South Korea
| | - Jinwoo Kim
- Department of Plant Medicine and Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju, South Korea
| | - Ingyu Hwang
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Eunhye Goo
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- *Correspondence: Eunhye Goo,
| |
Collapse
|
33
|
Patil PG, Sharma J, Nanjundappa M, Singh NV, Bohra A, Gunnaiah R, Jamma SM, Vinayaka J, Sangnure VR, Marathe RA. Identification and validation of SSR markers for Xanthomonas axonopodis pv. punicae an incitant of bacterial blight of pomegranate. 3 Biotech 2022; 12:153. [PMID: 35755801 DOI: 10.1007/s13205-022-03209-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/22/2022] [Indexed: 11/01/2022] Open
Abstract
This study reports genome wide characterization and development of first set of microsatellite markers through in silico analysis of eight sequenced Xanthomonas axonopodis pv. punicae strains available in the public database. SSR survey resulted in identification of ~ 4638 perfect SSRs, with mean marker frequency 901 SSRs/Mb and densitiy of 11,006 bp/Mb aross the eight genomes. Frequency distribution graphs revealed hexa-nucleotide repeats were more prominent fowllowed by tri-, tetra-, di- and penta-nucleotides in the analysed genomes. We desinged 2927 SSR primers that are specific to the strain LMG 859 and ePCR confirmed on seven other Xap genomes. This resulted in identification of 542 informative SSRs that are producing single amplicons, from which 66 primers were successfully validated through wet lab experiments on eight Xap isolates of pomegranate. Furthermore, utility of these SSRs were demostrated by analysing molecular diversity among 22 Xap isolates using 20 Xap_SSR primers. SSRs revealed moderate genetic diversity among Xap isolates (61%) and grouped 11 isolates that are repersenting six different states into one cluster. This proved the earlier evidence of wider spread of ST3 type Xap acoss India using Multi locus Sequence Typing (MLST) technique. In summary, Xap_SSR will serve as powerful genomics tools that would helps in monitoring of population dynamics, taxonomy, epidomology and quarantine aspects in bacterial blight pathogen through development of microsatellite based Multilocus Variable number of Tandem repeat analysis (MLVA) in future. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03209-z.
Collapse
Affiliation(s)
- Prakash G Patil
- Biotechnology and Plant Pathology, ICAR-National Research Centre on Pomegranate (NRCP), Solapur, 413255 India
| | - Jyotsana Sharma
- Biotechnology and Plant Pathology, ICAR-National Research Centre on Pomegranate (NRCP), Solapur, 413255 India
| | - Manjunatha Nanjundappa
- Biotechnology and Plant Pathology, ICAR-National Research Centre on Pomegranate (NRCP), Solapur, 413255 India
| | - N V Singh
- Biotechnology and Plant Pathology, ICAR-National Research Centre on Pomegranate (NRCP), Solapur, 413255 India
| | - Abhishek Bohra
- State Agriculture Biotechnology, Centre, Centre for Crop & Food Innovation, Murdoch University, Perth, Western Australia
| | - Raghavendra Gunnaiah
- Department of Biotechnology and Crop Improvement, University of Horticultural Sciences (UHS), Bagalkot, 587104 India
| | - Shivani M Jamma
- Biotechnology and Plant Pathology, ICAR-National Research Centre on Pomegranate (NRCP), Solapur, 413255 India
| | - Jeer Vinayaka
- Biotechnology and Plant Pathology, ICAR-National Research Centre on Pomegranate (NRCP), Solapur, 413255 India
| | - Vipul R Sangnure
- Biotechnology and Plant Pathology, ICAR-National Research Centre on Pomegranate (NRCP), Solapur, 413255 India
| | - R A Marathe
- Biotechnology and Plant Pathology, ICAR-National Research Centre on Pomegranate (NRCP), Solapur, 413255 India
| |
Collapse
|
34
|
Meghdadi H, Khosravi AD, Hashemzadeh M, Tabandeh MR. New design of multilocus sequence analysis of rpoB, ssrA, tuf, atpE, ku, and dnaK for identification of Mycobacterium species. Mol Biol Rep 2022; 49:7967-7977. [PMID: 35717471 DOI: 10.1007/s11033-022-07638-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Differentiating Mycobacterium tuberculosis (MTB) from nontuberculous mycobacteria (NTM) is very important in the treatment process of patients. According to the American Thoracic Society guideline (ATS), NTM clinical isolates should be identified at the species level proper treatment and patient management. This study aimed to identify NTM clinical isolates by evaluationg rpoB, ssrA, tuf, atpE, ku, and dnaK genes, and use multilocus sequence analysis (MLSA) to concatenate the six genes. METHODS Ninety-six Mycobacterium isolates, including 86 NTM and 10 MTB isolates, from all the patients referred to the certain TB Reference Centres were included. All isolates were evaluated by PCR amplification of rpoB, ssrA, tuf, ku, atpE, and dnaK genes and MLSA. RESULTS Out of 96 isolates, 91 (94.8%), 87 (90.6%), 72 (75%), 84 (87.5%) and 79 (82.3%) were differentiated to the species level by rpoB, tuf, ssrA, dnaK and atpE genes, respectively. The ku gene was able to identify 69 (80.2%) isolates of the 86 NTM isolates to the species level. We could identify 100% of the isolates to the species level by MLSA. CONCLUSIONS None of the PCR targets used in this study were able to completely differentiate all species. The MLSA technique used to concatenate the six genes could increase the identification of clinical Mycobacterium isolates and all 16 species were well-differentiated.
Collapse
Affiliation(s)
- Hossein Meghdadi
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Azar Dokht Khosravi
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Mohammad Hashemzadeh
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Reza Tabandeh
- Department of Basic Sciences, Division of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
35
|
Amelia TSM, Suaberon FAC, Vad J, Fahmi ADM, Saludes JP, Bhubalan K. Recent Advances of Marine Sponge-Associated Microorganisms as a Source of Commercially Viable Natural Products. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:492-512. [PMID: 35567600 DOI: 10.1007/s10126-022-10130-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/25/2022] [Indexed: 06/15/2023]
Abstract
Many industrially significant compounds have been derived from natural products in the environment. Research efforts so far have contributed to the discovery of beneficial natural products that have improved the quality of life on Earth. As one of the sources of natural products, marine sponges have been progressively recognised as microbial hotspots with reports of the sponges harbouring diverse microbial assemblages, genetic material, and metabolites with multiple industrial applications. Therefore, this paper aims at reviewing the recent literature (primarily published between 2016 and 2022) on the types and functions of natural products synthesised by sponge-associated microorganisms, thereby helping to bridge the gap between research and industrial applications. The metabolites that have been derived from sponge-associated microorganisms, mostly bacteria, fungi, and algae, have shown application prospects especially in medicine, cosmeceutical, environmental protection, and manufacturing industries. Sponge bacteria-derived natural products with medical properties harboured anticancer, antibacterial, antifungal, and antiviral functions. Efforts in re-identifying the origin of known and future sponge-sourced natural products would further clarify the roles and significance of microbes within marine sponges.
Collapse
Affiliation(s)
- Tan Suet May Amelia
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Ferr Angelus C Suaberon
- Center for Natural Drug Discovery & Development (CND3), University of San Agustin, 5000, Iloilo City, Philippines
| | - Johanne Vad
- Changing Oceans Research Group, School of GeoSciences, University of Edinburgh, Edinburgh, UK
| | - Afiq Durrani Mohd Fahmi
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
- Eco-Innovation Research Interest Group, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Jonel P Saludes
- Center for Natural Drug Discovery & Development (CND3), University of San Agustin, 5000, Iloilo City, Philippines
- Department of Chemistry, University of San Agustin, 5000, Iloilo City, Philippines
- Department of Science and Technology, Balik Scientist Program, Philippine Council for Health Research & Development (PCHRD), Bicutan, 1631, Taguig, Philippines
| | - Kesaven Bhubalan
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.
- Eco-Innovation Research Interest Group, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.
| |
Collapse
|
36
|
Bowers RM, Nayfach S, Schulz F, Jungbluth SP, Ruhl IA, Sheremet A, Lee J, Goudeau D, Eloe-Fadrosh EA, Stepanauskas R, Malmstrom RR, Kyrpides NC, Dunfield PF, Woyke T. Dissecting the dominant hot spring microbial populations based on community-wide sampling at single-cell genomic resolution. THE ISME JOURNAL 2022; 16:1337-1347. [PMID: 34969995 PMCID: PMC9039060 DOI: 10.1038/s41396-021-01178-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/29/2021] [Accepted: 12/10/2021] [Indexed: 02/07/2023]
Abstract
With advances in DNA sequencing and miniaturized molecular biology workflows, rapid and affordable sequencing of single-cell genomes has become a reality. Compared to 16S rRNA gene surveys and shotgun metagenomics, large-scale application of single-cell genomics to whole microbial communities provides an integrated snapshot of community composition and function, directly links mobile elements to their hosts, and enables analysis of population heterogeneity of the dominant community members. To that end, we sequenced nearly 500 single-cell genomes from a low diversity hot spring sediment sample from Dewar Creek, British Columbia, and compared this approach to 16S rRNA gene amplicon and shotgun metagenomics applied to the same sample. We found that the broad taxonomic profiles were similar across the three sequencing approaches, though several lineages were missing from the 16S rRNA gene amplicon dataset, likely the result of primer mismatches. At the functional level, we detected a large array of mobile genetic elements present in the single-cell genomes but absent from the corresponding same species metagenome-assembled genomes. Moreover, we performed a single-cell population genomic analysis of the three most abundant community members, revealing differences in population structure based on mutation and recombination profiles. While the average pairwise nucleotide identities were similar across the dominant species-level lineages, we observed differences in the extent of recombination between these dominant populations. Most intriguingly, the creek's Hydrogenobacter sp. population appeared to be so recombinogenic that it more closely resembled a sexual species than a clonally evolving microbe. Together, this work demonstrates that a randomized single-cell approach can be useful for the exploration of previously uncultivated microbes from community composition to population structure.
Collapse
Affiliation(s)
- Robert M. Bowers
- grid.451309.a0000 0004 0449 479XU.S. Department of Energy, Joint Genome Institute, Berkeley, CA USA
| | - Stephen Nayfach
- grid.451309.a0000 0004 0449 479XU.S. Department of Energy, Joint Genome Institute, Berkeley, CA USA
| | - Frederik Schulz
- grid.451309.a0000 0004 0449 479XU.S. Department of Energy, Joint Genome Institute, Berkeley, CA USA
| | - Sean P. Jungbluth
- grid.184769.50000 0001 2231 4551Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - Ilona A. Ruhl
- grid.22072.350000 0004 1936 7697Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4 Canada ,grid.419357.d0000 0001 2199 3636National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO USA
| | - Andriy Sheremet
- grid.22072.350000 0004 1936 7697Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4 Canada
| | - Janey Lee
- grid.451309.a0000 0004 0449 479XU.S. Department of Energy, Joint Genome Institute, Berkeley, CA USA
| | - Danielle Goudeau
- grid.451309.a0000 0004 0449 479XU.S. Department of Energy, Joint Genome Institute, Berkeley, CA USA
| | - Emiley A. Eloe-Fadrosh
- grid.451309.a0000 0004 0449 479XU.S. Department of Energy, Joint Genome Institute, Berkeley, CA USA
| | - Ramunas Stepanauskas
- grid.296275.d0000 0000 9516 4913Bigelow Laboratory for Ocean Sciences, 60 Bigelow Drive, East Boothbay, ME USA
| | - Rex R. Malmstrom
- grid.451309.a0000 0004 0449 479XU.S. Department of Energy, Joint Genome Institute, Berkeley, CA USA
| | - Nikos C. Kyrpides
- grid.451309.a0000 0004 0449 479XU.S. Department of Energy, Joint Genome Institute, Berkeley, CA USA
| | - Peter F. Dunfield
- grid.22072.350000 0004 1936 7697Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4 Canada
| | - Tanja Woyke
- U.S. Department of Energy, Joint Genome Institute, Berkeley, CA, USA.
| |
Collapse
|
37
|
Two-Dimensional Cell Separation: a High-Throughput Approach to Enhance the Culturability of Bacterial Cells from Environmental Samples. Microbiol Spectr 2022; 10:e0000722. [PMID: 35467387 PMCID: PMC9248899 DOI: 10.1128/spectrum.00007-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Culture-independent sequence data from various environmental samples have revealed an immense microbial diversity of environmental, clinical, and industrial importance that has not yet been cultured. Cultivation is imperative to validate findings emerging from cultivation-independent molecular data and exploit the isolated organisms for biotechnological purposes. Efforts have been made to boost the cultivability of microbes from environmental samples by use of a range of techniques and instrumentation. The manuscript presents a novel yet simple and innovative approach to improving the cultivability of natural microorganisms without sophisticated instrumentation. By employing gradient centrifugation combined with serial dilution (“two-dimensional cell separation”), significantly higher numbers of genera (>2-fold higher) and species (>3-fold higher) were isolated from environmental samples, including soil, anaerobic sludge, and landfill leachate, than from using serial dilution alone. This simple and robust protocol can be modified for any environment and culture medium and provides access to untapped microbial diversity. IMPORTANCE In the manuscript, we have developed a novel yet simple and innovative approach to improving the cultivability of natural microorganisms without sophisticated instrumentation. The method used gradient centrifugation combined with serial dilution (two-dimensional cell separation) to improve taxum recovery from samples. This simple and robust protocol can be modified for any environment and culture medium and provides access to untapped microbial diversity. This approach can be incorporated with less labor and complexity in laboratories with minimal instrumentation. As cultivation is a workflow that is well suited to lower-resource microbiology labs, we believe improvements in cultivability can increase opportunities for scientific collaborations between low-resource labs and groups focused on high-resource cultivation-independent methodologies.
Collapse
|
38
|
Li H, Meier-Kolthoff JP, Hu C, Wang Z, Zhu J, Zheng W, Tian Y, Guo F. Panoramic Insights into Microevolution and Macroevolution of A Prevotella copri-containing Lineage in Primate Guts. GENOMICS, PROTEOMICS & BIOINFORMATICS 2022; 20:334-349. [PMID: 35123073 PMCID: PMC9684210 DOI: 10.1016/j.gpb.2021.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/23/2021] [Accepted: 11/01/2021] [Indexed: 01/05/2023]
Abstract
Prevotella copri and its related taxa are widely detected in mammalian gut microbiomes and have been linked with an enterotype in humans. However, their microevolution and macroevolution among hosts are poorly characterized. In this study, extensively collected marker genes and genomes were analyzed to trace their evolutionary history, host specificity, and biogeographic distribution. Investigations based on marker genes and genomes suggest that a P. copri-containing lineage (PCL) harbors diverse species in higher primates. Firstly, P. copri in the human gut consisted of multiple groups exhibiting high genomic divergence and conspicuous but non-strict biogeographic patterns. Most African strains with high genomic divergence from other strains were phylogenetically located at the root of the species, indicating the co-evolutionary history of P. copri and Homo sapiens. Secondly, although long-term co-evolution between PCL and higher primates was revealed, sporadic signals of co-speciation and extensive host jumping of PCL members were suggested among higher primates. Metagenomic and phylogenetic analyses indicated that P. copri and other PCL species found in domesticated mammals had been recently transmitted from humans. Thirdly, strong evidence was found on the extensively horizontal transfer of genes (e.g., genes encoding carbohydrate-active enzymes) among sympatric P. copri groups and PCL species in the same primate host. Our study provides panoramic insights into the combined effects of vertical and horizontal transmission, as well as potential niche adaptation, on the microevolutionary and macroevolutionary history for an enterotype-representative lineage.
Collapse
Affiliation(s)
- Hao Li
- School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Jan P. Meier-Kolthoff
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, D-38124 Braunschweig, Germany
| | - Canxin Hu
- School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Zhongjie Wang
- School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Jun Zhu
- School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Wei Zheng
- School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Yun Tian
- School of Life Sciences, Xiamen University, Xiamen 361102, China,Fujian Provincial Universities Key Laboratory of Microbial Resource, Xiamen University, Xiamen 361102, China
| | - Feng Guo
- School of Life Sciences, Xiamen University, Xiamen 361102, China,Fujian Provincial Universities Key Laboratory of Microbial Resource, Xiamen University, Xiamen 361102, China,Corresponding author.
| |
Collapse
|
39
|
Choudoir MJ, DeAngelis KM. A framework for integrating microbial dispersal modes into soil ecosystem ecology. iScience 2022; 25:103887. [PMID: 35243247 PMCID: PMC8866892 DOI: 10.1016/j.isci.2022.103887] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Dispersal is a fundamental community assembly process that maintains soil microbial biodiversity across spatial and temporal scales, yet the impact of dispersal on ecosystem function is largely unpredictable. Dispersal is unique in that it contributes to both ecological and evolutionary processes and is shaped by both deterministic and stochastic forces. The ecosystem-level ramifications of dispersal outcomes are further compounded by microbial dormancy dynamics and environmental selection. Here we review the knowledge gaps and challenges that remain in defining how dispersal, environmental filtering, and microbial dormancy interact to influence the relationship between microbial community structure and function in soils. We propose the classification of microbial dispersal into three categories, through vegetative or active cells, through dormant cells, and through acellular dispersal, each with unique spatiotemporal dynamics and microbial trait associations. This conceptual framework should improve the integration of dispersal in defining soil microbial community structure-function relationships.
Collapse
|
40
|
Habitat Adaptation Drives Speciation of a Streptomyces Species with Distinct Habitats and Disparate Geographic Origins. mBio 2022; 13:e0278121. [PMID: 35012331 PMCID: PMC8749437 DOI: 10.1128/mbio.02781-21] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Microbial diversification is driven by geographic and ecological factors, but how the relative importance of these factors varies among species, geographic scales, and habitats remains unclear. Streptomyces, a genus of antibiotic-producing, spore-forming, and widespread bacteria, offers a robust model for identifying the processes underlying population differentiation. We examined the population structure of 37 Streptomyces olivaceus strains isolated from various sources, showing that they diverged into two habitat-associated (free-living and insect-associated) and geographically disparate lineages. More frequent gene flow within than between the lineages confirmed genetic isolation in S. olivaceus. Geographic isolation could not explain the genetic isolation; instead, habitat type was a strong predictor of genetic distance when controlling for geographic distance. The identification of habitat-specific genetic variations, including genes involved in regulation, resource use, and secondary metabolism, suggested a significant role of habitat adaptation in the diversification process. Physiological assays revealed fitness trade-offs under different environmental conditions in the two lineages. Notably, insect-associated isolates could outcompete free-living isolates in a free-iron-deficient environment. Furthermore, substrate (e.g., sialic acid and glycogen) utilization but not thermal traits differentiated the two lineages. Overall, our results argue that adaptive processes drove ecological divergence among closely related streptomycetes, eventually leading to dispersal limitation and gene flow barriers between the lineages. S. olivaceus may best be considered a species complex consisting of two cryptic species. IMPORTANCE Both isolation by distance and isolation by environment occur in bacteria, and different diversification patterns may apply to different species. Streptomyces species, typified by producing useful natural products, are widespread in nature and possess high genetic diversity. However, the ecological processes and evolutionary mechanisms that shape their distribution are not well understood. Here, we show that the population structure of a ubiquitous Streptomyces species complex matches its habitat distribution and can be defined by gene flow discontinuities. Using comparative genomics and physiological assays, we reveal that gains and losses of specific genomic traits play a significant role in the transition between free-living and host-associated lifestyles, driving speciation of the species. These results provide new insights into the evolutionary trajectory of Streptomyces and the notion of species.
Collapse
|
41
|
Goh CBS, Goh CHP, Wong LW, Cheng WT, Yule CM, Ong KS, Lee SM, Pasbakhsh P, Tan JBL. A three-dimensional (3D) printing approach to fabricate an isolation chip for high throughput in situ cultivation of environmental microbes. LAB ON A CHIP 2022; 22:387-402. [PMID: 34935836 DOI: 10.1039/d1lc00723h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The full plethora of environmental bacteria is often poorly represented in vitro as the majority remain difficult, if not impossible, to culture under standard laboratory settings. These bacteria often require native conditions for the formation of cell masses that collectively have higher chances of survival. With that, a 3D-printed version of the isolation chip (iChip) was used to cultivate bacteria from a tropical peat swamp in situ prior to growth and maintenance in vitro. Briefly, plates made from either acrylonitrile butadiene styrene (ABS), polylactic acid (PLA), or epoxy resin were tested in terms of their usability and durability under acidic conditions similar to those of peat matter. The epoxy resin plates were then found to be most optimal for the sampling conditions. Peat soil samples were collected from the base of a Koompassia malaccensis tree and reconstituted in molten 10% (wt/vol) tryptone soy agar (TSA) prior to inoculation. The iChips were subsequently assembled and buried in the site of origin. As a comparison, bacteria from the same soil sample were cultivated directly on TSA and incubated at 28 °C for two weeks. Thereafter, agar plugs from the iChip were transferred to TSA plates to allow microcolonies within each plug to grow. Each pure isolate from both cultivation approaches that grew was then pooled and extracted for total DNA prior to 16S rRNA gene amplification and sequencing via Illumina MiSeq. Taxonomic abundance comparison revealed that the bacterial taxa at the level of order were significantly different between the two approaches, particularly in the orders, Burkholderiales, Xanthomonodales, Enterobacteriales, and Actinomycetales (differences of 12.0, 7.1, 8.0, and 4.2%, respectively). This indicated that the 3D-printed iChips present a possible low-cost tool for the isolation of bacterial genera that may not be able to grow on media directly in vitro.
Collapse
Affiliation(s)
- Calvin Bok Sun Goh
- School of Science, Monash University Malaysia, Bandar Sunway, 47500 Malaysia.
- Tropical Medicine and Biology Multidisciplinary Platform, Monash University Malaysia, Bandar Sunway, 47500 Malaysia
| | - Clariss Hui Peng Goh
- School of Medical and Life Sciences, Sunway University, Bandar Sunway, 47500 Malaysia
| | - Li Wen Wong
- School of Science, Monash University Malaysia, Bandar Sunway, 47500 Malaysia.
| | - Wai Teng Cheng
- School of Science, Monash University Malaysia, Bandar Sunway, 47500 Malaysia.
| | - Catherine Mary Yule
- School of Science and Engineering, University of the Sunshine Coast, Queensland, 4556, Australia
| | - Kuan Shion Ong
- School of Science, Monash University Malaysia, Bandar Sunway, 47500 Malaysia.
| | - Sui Mae Lee
- School of Science, Monash University Malaysia, Bandar Sunway, 47500 Malaysia.
- Tropical Medicine and Biology Multidisciplinary Platform, Monash University Malaysia, Bandar Sunway, 47500 Malaysia
| | - Pooria Pasbakhsh
- School of Engineering, Monash University Malaysia, Bandar Sunway, 47500 Malaysia.
| | - Joash Ban Lee Tan
- School of Science, Monash University Malaysia, Bandar Sunway, 47500 Malaysia.
- Tropical Medicine and Biology Multidisciplinary Platform, Monash University Malaysia, Bandar Sunway, 47500 Malaysia
| |
Collapse
|
42
|
Tariq M, Jameel F, Ijaz U, Abdullah M, Rashid K. Biofertilizer microorganisms accompanying pathogenic attributes: a potential threat. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:77-90. [PMID: 35221573 PMCID: PMC8847475 DOI: 10.1007/s12298-022-01138-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/30/2021] [Accepted: 01/14/2022] [Indexed: 05/04/2023]
Abstract
Application of biofertilizers containing living or dormant plant growth promoting bacterial cells is considered to be an ecofriendly alternative of chemical fertilizers for improved crop production. Biofertilizers opened myriad doors towards sustainable agriculture as they effectively reduce heavy use of chemical fertilizers and pesticides by keeping soils profuse in micro and macronutrients, regulating plant hormones and restraining infections caused by the pests present in soil without inflicting environmental damage. Generally, pathogenicity and biosafety testing of potential plant growth promoting bacteria (PGPB) are not performed, and the bacteria are reported to be beneficial solely on testing plant growth promoting characteristics. Unfortunately, some rhizosphere and endophytic PGPB are reported to be involved in various diseases. Such PGPB can also spread virulence and multidrug resistance genes carried by them through horizontal gene transfer to other bacteria in the environment. Therefore, deployment of such microbial populations in open fields could lead to disastrous side effects on human health and environment. Careless declaration of bacteria as PGPB is more pronounced in research publications. Here, we present a comprehensive report of declared PGPB which are reported to be pathogenic in other studies. This review also suggests the employment of some additional safety assessment protocols before reporting a bacteria as beneficial and product development.
Collapse
Affiliation(s)
- Mohsin Tariq
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Farwah Jameel
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Usman Ijaz
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Muhammad Abdullah
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Kamran Rashid
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
43
|
Guglielmini J, Hennart M, Badell E, Toubiana J, Criscuolo A, Brisse S. Genomic Epidemiology and Strain Taxonomy of Corynebacterium diphtheriae. J Clin Microbiol 2021; 59:e0158121. [PMID: 34524891 PMCID: PMC8601238 DOI: 10.1128/jcm.01581-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 09/03/2021] [Indexed: 12/13/2022] Open
Abstract
Corynebacterium diphtheriae is highly transmissible and can cause large diphtheria outbreaks where vaccination coverage is insufficient. Sporadic cases or small clusters are observed in high-vaccination settings. The phylogeography and short timescale evolution of C. diphtheriae are not well understood, in part due to a lack of harmonized analytical approaches of genomic surveillance and strain tracking. We combined 1,305 genes with highly reproducible allele calls into a core genome multilocus sequence typing (cgMLST) scheme. We analyzed cgMLST gene diversity among 602 isolates from sporadic clinical cases, small clusters, or large outbreaks. We defined sublineages based on the phylogenetic structure within C. diphtheriae and strains based on the highest number of cgMLST mismatches within documented outbreaks. We performed time-scaled phylogenetic analyses of major sublineages. The cgMLST scheme showed high allele call rate in C. diphtheriae and the closely related species C. belfantii and C. rouxii. We demonstrate its utility to delineate epidemiological case clusters and outbreaks using a 25 mismatches threshold and reveal a number of cryptic transmission chains, most of which are geographically restricted to one or a few adjacent countries. Subcultures of the vaccine strain PW8 differed by up to 20 cgMLST mismatches. Phylogenetic analyses revealed a short-timescale evolutionary gain or loss of the diphtheria toxin and biovar-associated genes. We devised a genomic taxonomy of strains and deeper sublineages (defined using a 500-cgMLST-mismatch threshold), currently comprising 151 sublineages, only a few of which are geographically widespread based on current sampling. The cgMLST genotyping tool and nomenclature was made publicly accessible (https://bigsdb.pasteur.fr/diphtheria). Standardized genome-scale strain genotyping will help tracing transmission and geographic spread of C. diphtheriae. The unified genomic taxonomy of C. diphtheriae strains provides a common language for studies of ecology, evolution, and virulence heterogeneity among C. diphtheriae sublineages.
Collapse
Affiliation(s)
- Julien Guglielmini
- Institut Pasteur, Université de Paris, Bioinformatics and Biostatistics Hub, Department of Computational Biology, Paris, France
| | - Melanie Hennart
- Institut Pasteur, Université de Paris, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
- Sorbonne Université, Collège Doctoral, Paris, France
| | - Edgar Badell
- Institut Pasteur, Université de Paris, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
- National Reference Center for the Corynebacteria of the Diphtheriae Complex, Paris, France
| | - Julie Toubiana
- Institut Pasteur, Université de Paris, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
- National Reference Center for the Corynebacteria of the Diphtheriae Complex, Paris, France
- Université de Paris, Service de Pédiatrie Générale et Maladies Infectieuses, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Alexis Criscuolo
- Institut Pasteur, Université de Paris, Bioinformatics and Biostatistics Hub, Department of Computational Biology, Paris, France
| | - Sylvain Brisse
- Institut Pasteur, Université de Paris, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
- National Reference Center for the Corynebacteria of the Diphtheriae Complex, Paris, France
| |
Collapse
|
44
|
Luo D, Wang X, Feng X, Tian M, Wang S, Tang SL, Ang P, Yan A, Luo H. Population differentiation of Rhodobacteraceae along with coral compartments. THE ISME JOURNAL 2021; 15:3286-3302. [PMID: 34017056 PMCID: PMC8528864 DOI: 10.1038/s41396-021-01009-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/29/2021] [Accepted: 05/06/2021] [Indexed: 02/04/2023]
Abstract
Coral mucus, tissue, and skeleton harbor compositionally different microbiota, but how these coral compartments shape the microbial evolution remains unexplored. Here, we sampled bacteria inhabiting a prevalent coral species Platygyra acuta and sequenced genomes of 234 isolates comprising two populations in Rhodobacteraceae, an alphaproteobacterial lineage representing a significant but variable proportion (5-50%) of the coral microbiota. The Ruegeria population (20 genomes) contains three clades represented by eight, six, and six isolates predominantly sampled from the skeleton (outgroup), mucus (clade-M), and skeleton (clade-S), respectively. The clade-M possesses functions involved in the utilization of coral osmolytes abundant in the mucus (e.g., methylamines, DMSP, taurine, and L-proline), whereas the clade-S uniquely harbors traits that may promote adaptation to the low-energy and diurnally anoxic skeleton (e.g., sulfur oxidation and swimming motility). These between-clade genetic differences were largely supported by physiological assays. Expanded analyses by including genomes of 24 related isolates (including seven new genomes) from other marine environments suggest that clade-M and clade-S may have diversified in non-coral habitats, but they also consolidated a key role of distinct coral compartments in diversifying many of the above-mentioned traits. The unassigned Rhodobacteraceae population (214 genomes) varies only at a few dozen nucleotide sites across the whole genomes, but the number of between-compartment migration events predicted by the Slatkin-Maddison test supported that dispersal limitation between coral compartments is another key mechanism diversifying microbial populations. Collectively, our results suggest that different coral compartments represent ecologically distinct and microgeographically separate habitats that drive the evolution of the coral microbiota.
Collapse
Affiliation(s)
- Danli Luo
- grid.10784.3a0000 0004 1937 0482Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR ,grid.10784.3a0000 0004 1937 0482Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Xiaojun Wang
- grid.10784.3a0000 0004 1937 0482Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR ,grid.10784.3a0000 0004 1937 0482Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Xiaoyuan Feng
- grid.10784.3a0000 0004 1937 0482Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR ,grid.10784.3a0000 0004 1937 0482Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Mengdan Tian
- grid.194645.b0000000121742757School of Biological Sciences, The University of Hong Kong, Shatin, Hong Kong SAR
| | - Sishuo Wang
- grid.10784.3a0000 0004 1937 0482Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - Sen-Lin Tang
- grid.506939.0Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Put Ang
- grid.10784.3a0000 0004 1937 0482Institute of Space and Earth Information Science, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - Aixin Yan
- grid.194645.b0000000121742757School of Biological Sciences, The University of Hong Kong, Shatin, Hong Kong SAR
| | - Haiwei Luo
- grid.10784.3a0000 0004 1937 0482Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR ,grid.10784.3a0000 0004 1937 0482Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|
45
|
Tahon G, Gök D, Lebbe L, Willems A. Description and functional testing of four species of the novel phototrophic genus Chioneia gen. nov., isolated from different East Antarctic environments. Syst Appl Microbiol 2021; 44:126250. [PMID: 34592543 DOI: 10.1016/j.syapm.2021.126250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 10/20/2022]
Abstract
Seven Gram-negative, aerobic, non-sporulating, motile strains were isolated from terrestrial (R-67880T, R-67883, R-36501 and R-36677T) and aquatic (R-39604, R-39161T and R-39594T) East Antarctic environments (i.e. soil and aquatic microbial mats), between 2007 and 2014. Analysis of near-complete 16S rRNA gene sequences revealed that the strains potentially form a novel genus in the family Sphingomonadaceae (Alphaproteobacteria). DNA-DNA reassociation and average nucleotide identity values indicated distinction from close neighbors in the family Sphingomonadaceae and showed that the seven isolates form four different species. The main central pathways present in the strains are the glycolysis, tricarboxylic acid cycle and pentose phosphate pathway. The strains can use only a limited number of carbon sources and mainly depend on ammonia and sulfate as a nitrogen and sulfur source, respectively. The novel strains showed the potential of aerobic anoxygenic phototrophy, based on the presence of bacteriochlorophyll a pigments, which was corroborated by the presence of genes for all building blocks for a type 2 photosynthetic reaction center in the annotated genomes. Based on the results of phenotypic, genomic, phylogenetic and chemotaxonomic analyses, the strains could be assigned four new species in the novel genus Chioneia gen. nov. in the family Sphingomonadaceae, for which the names C. frigida sp. nov. (R-67880T, R-67883 and R-36501), C. hiemis sp. nov. (R-36677T), C. brumae sp. nov. (R-39161T and R-39604) and C. algoris sp. nov. (R-39594T) are proposed.
Collapse
Affiliation(s)
- Guillaume Tahon
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium.
| | - Duygu Gök
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium.
| | - Liesbeth Lebbe
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium.
| | - Anne Willems
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium.
| |
Collapse
|
46
|
Prakash O, Parmar M, Vaijanapurkar M, Rale V, Shouche YS. Recent trend, biases and limitations of cultivation-based diversity studies of microbes. FEMS Microbiol Lett 2021; 368:6359716. [PMID: 34459476 DOI: 10.1093/femsle/fnab118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 08/27/2021] [Indexed: 12/22/2022] Open
Abstract
The current study attempts to analyze recent trends, biases and limitations of cultivation-based microbial diversity studies based on published, novel species in the past 6 years in the International Journal of Systematic and Evolutionary Microbiology (IJSEM), an official publication of the International Committee on Systematics of Prokaryotes (ICSP) and the Bacteriology and Applied Microbiology (BAM) Division of the International Union of Microbiological Societies (IUMS). IJSEM deals with taxa that have validly published names under the International Code of Nomenclature of Prokaryotes (ICNP). All the relevant publications from the last 6 years were retrieved, sorted and analyzed to get the answers to What is the current rate of novel species description? Which country has contributed substantially and which phyla represented better in culturable diversity studies? What are the current limitations? Published data for the past 6 years indicate that 500-900 novel species are reported annually. China, Korea, Germany, UK, India and the USA are at the forefront while contributions from other nations are meager. Despite the recent development in culturomics tools the dominance of Proteobacteria, Bacteroidetes and Actinobacteria are still prevalent in cultivation, while the representation of archaea, obligate anaerobes, microaerophiles, synergistic symbionts, aerotolerant and other fastidious microbes is poor. Single strain-based taxonomic descriptions prevail and emphasis on objective-based cultivation for biotechnological and environmental significance is not yet conspicuous.
Collapse
Affiliation(s)
- Om Prakash
- National Centre for Microbial Resource (NCMR), National Centre for Cell Science (NCCS), Pune 411007, Maharashtra, India
| | - Mrinalini Parmar
- National Centre for Microbial Resource (NCMR), National Centre for Cell Science (NCCS), Pune 411007, Maharashtra, India
| | - Manali Vaijanapurkar
- National Centre for Microbial Resource (NCMR), National Centre for Cell Science (NCCS), Pune 411007, Maharashtra, India.,Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune-412115, Maharashtra, India
| | - Vinay Rale
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune-412115, Maharashtra, India
| | - Yogesh S Shouche
- National Centre for Microbial Resource (NCMR), National Centre for Cell Science (NCCS), Pune 411007, Maharashtra, India
| |
Collapse
|
47
|
Hugenholtz P, Chuvochina M, Oren A, Parks DH, Soo RM. Prokaryotic taxonomy and nomenclature in the age of big sequence data. THE ISME JOURNAL 2021; 15:1879-1892. [PMID: 33824426 PMCID: PMC8245423 DOI: 10.1038/s41396-021-00941-x] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 02/01/2023]
Abstract
The classification of life forms into a hierarchical system (taxonomy) and the application of names to this hierarchy (nomenclature) is at a turning point in microbiology. The unprecedented availability of genome sequences means that a taxonomy can be built upon a comprehensive evolutionary framework, a longstanding goal of taxonomists. However, there is resistance to adopting a single framework to preserve taxonomic freedom, and ever increasing numbers of genomes derived from uncultured prokaryotes threaten to overwhelm current nomenclatural practices, which are based on characterised isolates. The challenge ahead then is to reach a consensus on the taxonomic framework and to adapt and scale the existing nomenclatural code, or create a new code, to systematically incorporate uncultured taxa into the chosen framework.
Collapse
Affiliation(s)
- Philip Hugenholtz
- grid.1003.20000 0000 9320 7537Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD Australia
| | - Maria Chuvochina
- grid.1003.20000 0000 9320 7537Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD Australia
| | - Aharon Oren
- grid.9619.70000 0004 1937 0538Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Edmond J. Safra campus, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Donovan H. Parks
- grid.1003.20000 0000 9320 7537Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD Australia
| | - Rochelle M. Soo
- grid.1003.20000 0000 9320 7537Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD Australia
| |
Collapse
|
48
|
Al-Blooshi SY, Latif MAA, Sabaneh NK, Mgaogao M, Hossain A. Development of a novel selective medium for culture of Gram-negative bacteria. BMC Res Notes 2021; 14:211. [PMID: 34051841 PMCID: PMC8164760 DOI: 10.1186/s13104-021-05628-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/21/2021] [Indexed: 11/10/2022] Open
Abstract
Objective Although many bacterial culture media are available commercially, there is a continuous effort to develop better selective media for bacteria, which cannot be grown on existing media. While exploring antibacterial properties of clove, we observed that it has the potential to selectively inhibit growth of certain types of bacteria. This led us to do the experiments, which resulted in developing a new media which selectively allowed the growth of only Gram-negative bacteria, while inhibiting the Gram-positive bacteria. Results Mueller Hinton Agar (MHA) was used as the base media and was modified to develop MHA-C15 (MHA containing 15% volume/volume water extract of clove). Gram-negative bacterial pathogens Escherichia coli, Klebsiella pneumoniae, Salmonella typhimurium and Pseudomonas aeruginosa grew on MHA-C15. However, none of the major Gram-positive bacterial pathogens such as Staphylococcus aureus, Streptococcus pneumoniae, Streptococcus pyogenes, Streptococcus mutans, Bacillus spp. and Enterococcus spp. grew on it. Taken together, these findings show that MHA-C15 is a newly developed selective media for culture of Gram-negative bacteria. Supplementary Information The online version contains supplementary material available at 10.1186/s13104-021-05628-2.
Collapse
Affiliation(s)
- Shooq Yousef Al-Blooshi
- Department of Medical Microbiology and Immunology, RAK Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Mustafa Amir Abdul Latif
- Department of Medical Microbiology and Immunology, RAK Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Nour K Sabaneh
- Department of Medical Microbiology and Immunology, RAK Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Michael Mgaogao
- Department of Medical Microbiology and Immunology, RAK Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates.,Central Research Laboratory, RAK Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Ashfaque Hossain
- Department of Medical Microbiology and Immunology, RAK Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates. .,Central Research Laboratory, RAK Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates.
| |
Collapse
|
49
|
European Population of Pectobacterium punjabense: Genomic Diversity, Tuber Maceration Capacity and a Detection Tool for This Rarely Occurring Potato Pathogen. Microorganisms 2021; 9:microorganisms9040781. [PMID: 33917923 PMCID: PMC8068253 DOI: 10.3390/microorganisms9040781] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 11/16/2022] Open
Abstract
Enterobacteria belonging to the Pectobacterium and Dickeya genera are responsible for soft rot and blackleg diseases occurring in many crops around the world. Since 2016, the number of described species has more than doubled. However, some new species, such as Pectobacterium punjabense, are often poorly characterized, and little is known about their genomic and phenotypic variation. Here, we explored several European culture collections and identified seven strains of P. punjabense. All were collected from potato blackleg symptoms, sometimes from a long time ago, i.e., the IFB5596 strain isolated almost 25 years ago. We showed that this species remains rare, with less than 0.24% of P. punjabense strains identified among pectinolytic bacteria present in the surveyed collections. The analysis of the genomic diversity revealed the non-clonal character of P. punjabense species. Furthermore, the strains showed aggressiveness differences. Finally, a qPCR Taqman assay was developed for rapid and specific strain characterization and for use in diagnostic programs.
Collapse
|
50
|
Xu M, Xu M, Tu Q. Comparative evaluation of Vibrio delineation methodologies in post-genomic era. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:209-217. [PMID: 33533180 DOI: 10.1111/1758-2229.12928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 01/17/2021] [Indexed: 06/12/2023]
Abstract
Vibrios are widespread in both marine and coastal water environments and are recognized as one of the most important prokaryotic pathogens because they may potentially threaten the health of both aquacultures and human beings. However, owing to highly similar physiological and biochemical properties, accurate classification and identification of Vibrio strains remains challenging. This hampers further research on the physiology, pathogeny, genomics, epidemics, and ecology of vibrios. Here, we comparatively evaluated multiple approaches including 16S rRNA gene identity, average nucleotide identity (ANI), gene content similarity and mutilocus sequence analysis (MLSA) to investigate their ability in delineating Vibrio strains. In addition, we also evaluated the possibility of applying bacterial prophages in classifying and identifying Vibrio strains. Our results showed that MLSA outperformed other methods in discriminating Vibrio species, suggesting that the other four approaches should be used with cautions in Vibrio delineation. Interestingly, we also found that prophages identified in Vibrio strains were highly specific at strain- and species-level, suggesting that prophages held the potential to be used for microbial species, sub-species, and strain-level identifications. This study is expected to provide valuable insights into the taxonomic identification and classification of complex microbial groups in the post-genomic era.
Collapse
Affiliation(s)
- Mengzhao Xu
- Department of Marine Sciences, Ocean College, Zhejiang University, Zhoushan, China
| | - Meiying Xu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangzhou, China
| | - Qichao Tu
- Institute for Marine Science and Technology, Shandong University, Qingdao, China
| |
Collapse
|