1
|
Bertola M, Righetti L, Gazza L, Ferrarini A, Fornasier F, Cirlini M, Lolli V, Galaverna G, Visioli G. Perenniality, more than genotypes, shapes biological and chemical rhizosphere composition of perennial wheat lines. FRONTIERS IN PLANT SCIENCE 2023; 14:1172857. [PMID: 37223792 PMCID: PMC10200949 DOI: 10.3389/fpls.2023.1172857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/06/2023] [Indexed: 05/25/2023]
Abstract
Perennial grains provide various ecosystem services compared to the annual counterparts thanks to their extensive root system and permanent soil cover. However, little is known about the evolution and diversification of perennial grains rhizosphere and its ecological functions over time. In this study, a suite of -OMICSs - metagenomics, enzymomics, metabolomics and lipidomics - was used to compare the rhizosphere environment of four perennial wheat lines at the first and fourth year of growth in comparison with an annual durum wheat cultivar and the parental species Thinopyrum intermedium. We hypothesized that wheat perenniality has a greater role in shaping the rhizobiome composition, biomass, diversity, and activity than plant genotypes because perenniality affects the quality and quantity of C input - mainly root exudates - hence modulating the plant-microbes crosstalk. In support of this hypothesis, the continuous supply of sugars in the rhizosphere along the years created a favorable environment for microbial growth which is reflected in a higher microbial biomass and enzymatic activity. Moreover, modification in the rhizosphere metabolome and lipidome over the years led to changes in the microbial community composition favoring the coexistence of more diverse microbial taxa, increasing plant tolerance to biotic and abiotic stresses. Despite the dominance of the perenniality effect, our data underlined that the OK72 line rhizobiome distinguished from the others by the increase in abundance of Pseudomonas spp., most of which are known as potential beneficial microorganisms, identifying this line as a suitable candidate for the study and selection of new perennial wheat lines.
Collapse
Affiliation(s)
- Marta Bertola
- Department of Food and Drugs, University of Parma, Parma, Italy
| | - Laura Righetti
- Department of Food and Drugs, University of Parma, Parma, Italy
- Wageningen Food Safety Research, Wageningen University and Research, Wageningen, Netherlands
- Laboratory of Organic Chemistry, Wageningen University, Wageningen, Netherlands
| | - Laura Gazza
- Council for Agricultural Research and Economics, Research Centre for Engineering and Agro-Food Processing, Rome, Italy
| | - Andrea Ferrarini
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Flavio Fornasier
- Council for Agricultural Research and Economics (CREA) Research Centre for Viticulture and Enology, Unit of Gorizia, Gorizia, Italy
| | - Martina Cirlini
- Department of Food and Drugs, University of Parma, Parma, Italy
| | - Veronica Lolli
- Department of Food and Drugs, University of Parma, Parma, Italy
| | | | - Giovanna Visioli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| |
Collapse
|
2
|
Vijayan J, Nathan VK, Ammini P, Ammanamveetil AMH. Bacterial diversity in the aquatic system in India based on metagenome analysis-a critical review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:28383-28406. [PMID: 36680718 PMCID: PMC9862233 DOI: 10.1007/s11356-023-25195-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 01/04/2023] [Indexed: 04/16/2023]
Abstract
Microbial analysis has become one of the most critical areas in aquatic ecology and a crucial component for assessing the contribution of microbes in food web dynamics and biogeochemical processes. Initial research was focused on estimating the abundance and distribution of the microbes using microscopy and culture-based analysis, which are undoubtedly complex tasks. Over the past few decades, microbiologists have endeavored to apply and extend molecular techniques to address pertinent questions related to the function and metabolism of microbes in aquatic ecology. Metagenomics analysis has revolutionized aquatic ecology studies involving the investigation of the genome of a mixed community of organisms in an ecosystem to identify microorganisms, their functionality, and the discovery of novel proteins. This review discusses the metagenomics analysis of bacterial diversity in and around different aquatic systems in India.
Collapse
Affiliation(s)
- Jasna Vijayan
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Cochin, 682 016, Kerala, India.
| | - Vinod Kumar Nathan
- School of Chemical and Biotechnology, Sastra Deemed University, Tirumalaisamudram, Thanjavur, 613401, Tamilnadu, India
| | - Parvathi Ammini
- Department of Biotechnology, Cochin University of Science and Technology, Cochin, 682022, Kerala, India
| | - Abdulla Mohamed Hatha Ammanamveetil
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Cochin, 682 016, Kerala, India
| |
Collapse
|
3
|
Abiotic Stress and Belowground Microbiome: The Potential of Omics Approaches. Int J Mol Sci 2022; 23:ijms23031091. [PMID: 35163015 PMCID: PMC8835006 DOI: 10.3390/ijms23031091] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 02/06/2023] Open
Abstract
Nowadays, the worldwide agriculture is experiencing a transition process toward more sustainable production, which requires the reduction of chemical inputs and the preservation of microbiomes’ richness and biodiversity. Plants are no longer considered as standalone entities, and the future of agriculture should be grounded on the study of plant-associated microorganisms and all their potentiality. Moreover, due to the climate change scenario and the resulting rising incidence of abiotic stresses, an innovative and environmentally friendly technique in agroecosystem management is required to support plants in facing hostile environments. Plant-associated microorganisms have shown a great attitude as a promising tool to improve agriculture sustainability and to deal with harsh environments. Several studies were carried out in recent years looking for some beneficial plant-associated microbes and, on the basis of them, it is evident that Actinomycetes and arbuscular mycorrhizal fungi (AMF) have shown a considerable number of positive effects on plants’ fitness and health. Given the potential of these microorganisms and the effects of climate change, this review will be focused on their ability to support the plant during the interaction with abiotic stresses and on multi-omics techniques which can support researchers in unearthing the hidden world of plant–microbiome interactions. These associated microorganisms can increase plants’ endurance of abiotic stresses through several mechanisms, such as growth-promoting traits or priming-mediated stress tolerance. Using a multi-omics approach, it will be possible to deepen these mechanisms and the dynamic of belowground microbiomes, gaining fundamental information to exploit them as staunch allies and innovative weapons against crop abiotic enemies threatening crops in the ongoing global climate change context.
Collapse
|
4
|
Reiß F, Kiefer N, Noll M, Kalkhof S. Application, release, ecotoxicological assessment of biocide in building materials and its soil microbial response. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112707. [PMID: 34461316 DOI: 10.1016/j.ecoenv.2021.112707] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/04/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Biocides are used in building materials to protect the building against microbial colonization and biodeterioration. However, these biocides are introduced by gradual leaching into soils in proximity of the buildings. This review discusses the aspects and characteristics of biocides from building materials in terms of (i) in-situ leaching and simulation thereof in-vitro and in-field tests, (ii) persistence, as well as photolytic and biodegradation, and its influence on toxicological evaluation, and (iii) evaluation of terrestrial toxicity by conventional ecotoxicological tests and novel holistic testing approaches. These aspects are influenced by multiple parameters, out of which water availability, physicochemical properties of microhabitats, combination of biocidal building materials, soil parameters, and composition of the soil microbiome are of utmost relevance. Deeper understanding of this multiparametric system and development of comprehensive characterization methodologies remains crucial, as to facilitate realistic assessment of the environmental impact of biocides used in construction materials and the corresponding degradation byproducts.
Collapse
Affiliation(s)
- Fabienne Reiß
- Institute for Bioanalysis, Department of Applied Sciences, Coburg University of Applied Sciences and Arts, 96450 Coburg, Germany
| | - Nadine Kiefer
- Institute for Bioanalysis, Department of Applied Sciences, Coburg University of Applied Sciences and Arts, 96450 Coburg, Germany
| | - Matthias Noll
- Institute for Bioanalysis, Department of Applied Sciences, Coburg University of Applied Sciences and Arts, 96450 Coburg, Germany; Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany.
| | - Stefan Kalkhof
- Institute for Bioanalysis, Department of Applied Sciences, Coburg University of Applied Sciences and Arts, 96450 Coburg, Germany; Proteomics Unit, Fraunhofer Institute for Cell Therapy and Immunology, Perlickstr. 1, 04103 Leipzig, Germany.
| |
Collapse
|
5
|
Improvement of Soil Microbial Diversity through Sustainable Agricultural Practices and Its Evaluation by -Omics Approaches: A Perspective for the Environment, Food Quality and Human Safety. Microorganisms 2021; 9:microorganisms9071400. [PMID: 34203506 PMCID: PMC8308033 DOI: 10.3390/microorganisms9071400] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 01/02/2023] Open
Abstract
Soil is one of the key elements for supporting life on Earth. It delivers multiple ecosystem services, which are provided by soil processes and functions performed by soil biodiversity. In particular, soil microbiome is one of the fundamental components in the sustainment of plant biomass production and plant health. Both targeted and untargeted management of soil microbial communities appear to be promising in the sustainable improvement of food crop yield, its nutritional quality and safety. –Omics approaches, which allow the assessment of microbial phylogenetic diversity and functional information, have increasingly been used in recent years to study changes in soil microbial diversity caused by agronomic practices and environmental factors. The application of these high-throughput technologies to the study of soil microbial diversity, plant health and the quality of derived raw materials will help strengthen the link between soil well-being, food quality, food safety and human health.
Collapse
|
6
|
Chiapello M, Zampieri E, Mello A. A Small Effort for Researchers, a Big Gain for Soil Metaproteomics. Front Microbiol 2020; 11:88. [PMID: 32117118 PMCID: PMC7010931 DOI: 10.3389/fmicb.2020.00088] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/15/2020] [Indexed: 11/23/2022] Open
Affiliation(s)
- Marco Chiapello
- Institute for Sustainable Plant Protection, National Research Council, Turin, Italy
| | - Elisa Zampieri
- Council for Agricultural Research and Economics Research Centre for Cereal and Industrial Crops (CREA-CI), Vercelli, Italy
| | - Antonietta Mello
- Institute for Sustainable Plant Protection, National Research Council, Turin, Italy
| |
Collapse
|
7
|
Mocali S, Benedetti A. Exploring research frontiers in microbiology: the challenge of metagenomics in soil microbiology. Res Microbiol 2010; 161:497-505. [PMID: 20452420 DOI: 10.1016/j.resmic.2010.04.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 04/13/2010] [Accepted: 04/13/2010] [Indexed: 11/28/2022]
Abstract
Soil is one of the most complex and challenging environments for microbiologists. In fact, although it contains the largest microbial diversity on the planet, the majority of these microbes are still uncharacterized and represent an enormous unexplored reservoir of genetic and metabolic diversity. Metagenomics, the study of the entire genome of soil biota, currently represents a powerful tool for assessing the diversity of complex microbial communities, providing access to a number of new species, genes or novel molecules that are relevant for biotechnology and agricultural applications. In this paper, the onset of new high-throughput metagenomic approaches and new perspectives in soil microbial ecology and data handling are discussed.
Collapse
Affiliation(s)
- Stefano Mocali
- CRA- Centro di Ricerca per lo Studio delle relazioni tra Pianta e Suolo, Via della Navicella, 2/4, 00184 Roma, Italy.
| | | |
Collapse
|