1
|
Zinkle AP, Morgan RT, Nygaard R, Mancia F. Structural insights into polyisoprenyl-binding glycosyltransferases. Structure 2025; 33:639-651. [PMID: 39884274 PMCID: PMC11972162 DOI: 10.1016/j.str.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/16/2024] [Accepted: 01/03/2025] [Indexed: 02/01/2025]
Abstract
Glycosyltransferases (GTs) catalyze the addition of sugars to diverse substrates facilitating complex glycoconjugate biosynthesis across all domains of life. When embedded in or associated with the membrane, these enzymes often depend on polyisoprenyl-phosphate or -pyrophosphate (PP) lipid carriers, including undecaprenyl phosphate in bacteria and dolichol phosphate in eukaryotes, to transfer glycan moieties. GTs that bind PP substrates (PP-GTs) are functionally diverse but share some common structural features within their family or subfamily, particularly with respect to how they interact with their cognate PP ligands. Recent advances in single-particle cryo-electron microscopy (cryo-EM) have provided insight into the structures of PP-GTs and the modes by which they bind their PP ligands. Here, we explore the structural landscape of PP-GTs, focusing mainly on those for which there is molecular-level information on liganded states, and highlight how PP coordination modalities may be shared or differ among members of this diverse enzyme class.
Collapse
Affiliation(s)
- Allen P Zinkle
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Ryan T Morgan
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Rie Nygaard
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Radiation Oncology, Weill Cornell Medical College, New York, NY 10065, USA.
| | - Filippo Mancia
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
2
|
Zeng WF, Yan G, Zhao HH, Liu C, Cao W. Uncovering missing glycans and unexpected fragments with pGlycoNovo for site-specific glycosylation analysis across species. Nat Commun 2024; 15:8055. [PMID: 39277585 PMCID: PMC11401942 DOI: 10.1038/s41467-024-52099-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 08/23/2024] [Indexed: 09/17/2024] Open
Abstract
Precision mapping of site-specific glycans using mass spectrometry is vital in glycoproteomics. However, the diversity of glycan compositions across species often exceeds database capacity, hindering the identification of rare glycans. Here, we introduce pGlycoNovo, a software within the pGlyco3 software environment, which employs a glycan first-based full-range Y-ion dynamic searching strategy. pGlycoNovo enables de novo identification of intact glycopeptides with rare glycans by considering all possible monosaccharide combinations, expanding the glycan search space to 16~1000 times compared to non-open search methods, while maintaining accuracy, sensitivity and speed. Reanalysis of SARS Covid-2 spike protein glycosylation data revealed 230 additional site-specific N-glycans and 30 previously unreported O-glycans. pGlycoNovo demonstrated high complementarity to six other tools and superior search speed. It enables characterization of site-specific N-glycosylation across five evolutionarily distant species, contributing to a dataset of 32,549 site-specific glycans on 4602 proteins, including 2409 site-specific rare glycans, and uncovering unexpected glycan fragments.
Collapse
Affiliation(s)
- Wen-Feng Zeng
- Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing, China
- Center for Infectious Disease Research & School of Engineering, Westlake University, Hangzhou, China
| | - Guoquan Yan
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai, China
| | - Huan-Huan Zhao
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai, China
| | - Chao Liu
- Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing, China
- School of Engineering Medicine & School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Weiqian Cao
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
- NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai, China.
| |
Collapse
|
3
|
Vershinin Z, Zaretsky M, Eichler J. N-glycosylation in Archaea - Expanding the process, components and roles of a universal post-translational modification. BBA ADVANCES 2024; 6:100120. [PMID: 39296579 PMCID: PMC11407970 DOI: 10.1016/j.bbadva.2024.100120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/21/2024] Open
Abstract
While performed by all three domains of life, N-glycosylation in Archaea is less well described than are the parallel eukaryal and bacterial processes. Still, what is known of the archaeal version of this universal post-translational modification reveals numerous seemingly domain-specific traits. Specifically, the biosynthesis of archaeal N-linked glycans relies on distinct pathway steps and components, rare sugars and sugar modifications, as well as unique lipid carriers upon which N-linked glycans are assembled. At the same time, Archaea possess the apparently unique ability to simultaneously modify their glycoproteins with very different N-linked glycans. In addition to these biochemical aspects of archaeal N-glycosylation, such post-translational modification has been found to serve a wide range of roles possibly unique to Archaea, including allowing these microorganisms to not only cope with the harsh physical conditions of the niches they can inhabit but also providing the ability to adapt to transient changes in such environments.
Collapse
Affiliation(s)
- Zlata Vershinin
- Dept. of Life Sciences, Ben-Gurion University of the Negev, Beersheva, Israel
| | - Marianna Zaretsky
- Dept. of Life Sciences, Ben-Gurion University of the Negev, Beersheva, Israel
| | - Jerry Eichler
- Dept. of Life Sciences, Ben-Gurion University of the Negev, Beersheva, Israel
| |
Collapse
|
4
|
Li XH, Duan JL, Ma JY, Liu XY, Sun XD, Wang Y, Tan MM, Yuan XZ. Probing the Surface Layer Modulation on Archaeal Mechanics and Adhesion at the Single-Cell Level. Anal Chem 2024; 96:8981-8989. [PMID: 38758609 DOI: 10.1021/acs.analchem.4c00038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024]
Abstract
Addressing the challenge of understanding how cellular interfaces dictate the mechanical resilience and adhesion of archaeal cells, this study demonstrates the role of the surface layer (S-layer) in methanogenic archaea. Using a combination of atomic force microscopy and single-cell force spectroscopy, we quantified the impact of S-layer disruption on cell morphology, mechanical properties, and adhesion capabilities. We demonstrate that the S-layer is crucial for maintaining cell morphology, where its removal induces significant cellular enlargement and deformation. Mechanical stability of the cell surface is substantially compromised upon S-layer disruption, as evidenced by decreased Young's modulus values. Adhesion experiments revealed that the S-layer primarily facilitates hydrophobic interactions, which are significantly reduced after its removal, affecting both cell-cell and cell-bubble interactions. Our findings illuminate the S-layer's fundamental role in methanogen architecture and provide a chemical understanding of archaeal cell surfaces, with implications for enhancing methane production in biotechnological applications.
Collapse
Affiliation(s)
- Xiao-Hua Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Jian-Lu Duan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Jing-Ya Ma
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Xiao-Yu Liu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Xiao-Dong Sun
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Yue Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Miao-Miao Tan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Xian-Zheng Yuan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, P. R. China
- Sino-French Research Institute for Ecology and Environment (ISFREE), Shandong University, Qingdao, Shandong 266237, P. R. China
- Weihai Research Institute of Industrial Technology, Shandong University, Weihai, Shandong 264209, P. R. China
| |
Collapse
|
5
|
Liu HZ, Song XQ, Zhang H. Sugar-coated bullets: Unveiling the enigmatic mystery 'sweet arsenal' in osteoarthritis. Heliyon 2024; 10:e27624. [PMID: 38496870 PMCID: PMC10944269 DOI: 10.1016/j.heliyon.2024.e27624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/19/2024] Open
Abstract
Glycosylation is a crucial post-translational modification process where sugar molecules (glycans) are covalently linked to proteins, lipids, or other biomolecules. In this highly regulated and complex process, a series of enzymes are involved in adding, modifying, or removing sugar residues. This process plays a pivotal role in various biological functions, influencing the structure, stability, and functionality of the modified molecules. Glycosylation is essential in numerous biological processes, including cell adhesion, signal transduction, immune response, and biomolecular recognition. Dysregulation of glycosylation is associated with various diseases. Glycation, a post-translational modification characterized by the non-enzymatic attachment of sugar molecules to proteins, has also emerged as a crucial factor in various diseases. This review comprehensively explores the multifaceted role of glycation in disease pathogenesis, with a specific focus on its implications in osteoarthritis (OA). Glycosylation and glycation alterations wield a profound influence on OA pathogenesis, intertwining with disease onset and progression. Diverse studies underscore the multifaceted role of aberrant glycosylation in OA, particularly emphasizing its intricate relationship with joint tissue degradation and inflammatory cascades. Distinct glycosylation patterns, including N-glycans and O-glycans, showcase correlations with inflammatory cytokines, matrix metalloproteinases, and cellular senescence pathways, amplifying the degenerative processes within cartilage. Furthermore, the impact of advanced glycation end-products (AGEs) formation in OA pathophysiology unveils critical insights into glycosylation-driven chondrocyte behavior and extracellular matrix remodeling. These findings illuminate potential therapeutic targets and diagnostic markers, signaling a promising avenue for targeted interventions in OA management. In this comprehensive review, we aim to thoroughly examine the significant impact of glycosylation or AGEs in OA and explore its varied effects on other related conditions, such as liver-related diseases, immune system disorders, and cancers, among others. By emphasizing glycosylation's role beyond OA and its implications in other diseases, we uncover insights that extend beyond the immediate focus on OA, potentially revealing novel perspectives for diagnosing and treating OA.
Collapse
Affiliation(s)
- Hong-zhi Liu
- Department of Orthopaedics, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xin-qiu Song
- The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Hongmei Zhang
- Department of Orthopaedics, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
6
|
Notaro A, Zaretsky M, Molinaro A, De Castro C, Eichler J. N-glycosylation in Archaea: Unusual sugars and unique modifications. Carbohydr Res 2023; 534:108963. [PMID: 37890267 DOI: 10.1016/j.carres.2023.108963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/26/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023]
Abstract
Archaea are microorganisms that comprise a distinct branch of the universal tree of life and which are best known as extremophiles, residing in a variety of environments characterized by harsh physical conditions. One seemingly universal trait of Archaea is the ability to perform N-glycosylation. At the same time, archaeal N-linked glycans present variety in terms of both composition and architecture not seen in the parallel eukaryal or bacterial processes. In this mini-review, many of the unique and unusual sugars found in archaeal N-linked glycans as identified by nuclear magnetic resonance spectroscopy are described.
Collapse
Affiliation(s)
- Anna Notaro
- Department of Agricultural Sciences, University of Napoli Federico II, Portici, Italy
| | - Marianna Zaretsky
- Department of Life Sciences, Ben-Gurion University of the Negev, Beersheva, Israel
| | - Antonio Molinaro
- Department of Chemical Sciences, University of Napoli Federico II, Napoli, Italy
| | - Cristina De Castro
- Department of Chemical Sciences, University of Napoli Federico II, Napoli, Italy
| | - Jerry Eichler
- Department of Life Sciences, Ben-Gurion University of the Negev, Beersheva, Israel.
| |
Collapse
|
7
|
Recalde A, González-Madrid G, Acevedo-López J, Jerez CA. Sessile Lifestyle Offers Protection against Copper Stress in Saccharolobus solfataricus. Microorganisms 2023; 11:1421. [PMID: 37374923 DOI: 10.3390/microorganisms11061421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Some archaea from the genus Sulfolobus are important for bioleaching of copper, where metal resistant microorganisms are required. Biofilm generation is one of the ways microorganisms cope with some stimuli in nature, including heavy metals. The response to external factors, particularly in the biofilm form of life, is still underexplored in archaea. To explore how model thermoacidophilic archaeon Saccharolobus solfataricus faces copper stress during this lifestyle, changes in biofilms were studied using crystal violet staining, confocal fluorescence microscopy, and qPCR approaches. It was found that biofilm formation reached a maximum at 0.5 mM Cu, before starting to decrease at higher metal concentrations. The morphology of biofilms at 0.5 mM Cu was observed to be different, displaying lower thickness, different sugar patterns, and higher amounts of cells compared to standard growing conditions. Furthermore, copA, which is responsive to intracellular Cu concentration, was downregulated in biofilm cells when compared with planktonic cells exposed to the same metal concentration. The latest results suggests that cells in biofilms are less exposed to Cu than those in planktonic culture. In a PolyP-deficient strain, Cu was not able to induce biofilm formation at 0.5 mM. In summary, the findings reported here suggest that the biofilm form of life confers S. solfataricus advantages to face stress caused by Cu.Biofilm formation remains a relatively unexplored topic in archaeal research. Therefore, this knowledge in model organisms such as S. solfataricus, and how they use it to face stress, could be of great importance to engineer organisms with improved capabilities to be applied in biotechnological processes, such as bioleaching of metals.
Collapse
Affiliation(s)
- Alejandra Recalde
- Laboratory of Molecular Microbiology and Biotechnology, Department of Biology, Faculty of Sciences, University of Chile, 8330111 Santiago, Chile
- Molecular Biology of Archaea, Institute of Biology II-Microbiology, University of Freiburg, 79104 Freiburg, Germany
| | - Gabriela González-Madrid
- Laboratory of Molecular Microbiology and Biotechnology, Department of Biology, Faculty of Sciences, University of Chile, 8330111 Santiago, Chile
| | - José Acevedo-López
- Laboratory of Molecular Microbiology and Biotechnology, Department of Biology, Faculty of Sciences, University of Chile, 8330111 Santiago, Chile
| | - Carlos A Jerez
- Laboratory of Molecular Microbiology and Biotechnology, Department of Biology, Faculty of Sciences, University of Chile, 8330111 Santiago, Chile
| |
Collapse
|
8
|
van Wolferen M, Pulschen AA, Baum B, Gribaldo S, Albers SV. The cell biology of archaea. Nat Microbiol 2022; 7:1744-1755. [PMID: 36253512 PMCID: PMC7613921 DOI: 10.1038/s41564-022-01215-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/25/2022] [Indexed: 12/15/2022]
Abstract
The past decade has revealed the diversity and ubiquity of archaea in nature, with a growing number of studies highlighting their importance in ecology, biotechnology and even human health. Myriad lineages have been discovered, which expanded the phylogenetic breadth of archaea and revealed their central role in the evolutionary origins of eukaryotes. These discoveries, coupled with advances that enable the culturing and live imaging of archaeal cells under extreme environments, have underpinned a better understanding of their biology. In this Review we focus on the shape, internal organization and surface structures that are characteristic of archaeal cells as well as membrane remodelling, cell growth and division. We also highlight some of the technical challenges faced and discuss how new and improved technologies will help address many of the key unanswered questions.
Collapse
Affiliation(s)
- Marleen van Wolferen
- Molecular Biology of Archaea, Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | | | - Buzz Baum
- Division of Cell Biology, MRC Laboratory of Molecular Biology, Cambridge, UK.
| | - Simonetta Gribaldo
- Evolutionary Biology of the Microbial Cell Unit, CNRS UMR2001, Department of Microbiology, Institute Pasteur, Paris, France.
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
9
|
Kelly J, Vinogradov E, Robotham A, Tessier L, Logan SM, Jarrell KF. Characterizing the N- and O-linked glycans of the PGF-CTERM sorting domain-containing S-layer protein of Methanoculleus marisnigri. Glycobiology 2022; 32:629-644. [PMID: 35481895 DOI: 10.1093/glycob/cwac019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/28/2022] [Accepted: 03/09/2022] [Indexed: 01/05/2023] Open
Abstract
The glycosylation of structural proteins is a widespread posttranslational modification in Archaea. Although only a handful of archaeal N-glycan structures have been determined to date, it is evident that the diversity of structures expressed is greater than in the other domains of life. Here, we report on our investigation of the N- and O-glycan modifications expressed by Methanoculleus marisnigri, a mesophilic methanogen from the Order Methanomicrobiales. Unusually, mass spectrometry (MS) analysis of purified archaella revealed no evidence for N- or O-glycosylation of the constituent archaellins, In contrast, the S-layer protein, identified as a PGF-CTERM sorting domain-containing protein encoded by MEMAR_RS02690, is both N- and O-glycosylated. Two N-glycans were identified by NMR and MS analysis: a trisaccharide α-GlcNAc-4-β-GlcNAc3NGaAN-4-β-Glc-Asn where the second residue is 2-N-acetyl, 3-N-glyceryl-glucosamide and a disaccharide β-GlcNAc3NAcAN-4-β-Glc-Asn, where the terminal residue is 2,3 di-N-acetyl-glucosamide. The same trisaccharide was also found N-linked to a type IV pilin. The S-layer protein is also extensively modified in the threonine-rich region near the C-terminus with O-glycans composed exclusively of hexoses. While the S-layer protein has a predicted PGF-CTERM processing site, no evidence of a truncated and lipidated C-terminus, the expected product of processing by an archaeosortase, was found. Finally, NMR also identified a polysaccharide expressed by M. marisnigri and composed of a repeating tetrasaccharide unit of [-2-β-Ribf-3-α-Rha2OMe-3-α-Rha - 2-α-Rha-]. This is the first report of N- and O-glycosylation in an archaeon from the Order Methanomicrobiales.
Collapse
Affiliation(s)
- John Kelly
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, Ontario K1A 0R6, Canada
| | - Evgeny Vinogradov
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, Ontario K1A 0R6, Canada
| | - Anna Robotham
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, Ontario K1A 0R6, Canada
| | - Luc Tessier
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, Ontario K1A 0R6, Canada
| | - Susan M Logan
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, Ontario K1A 0R6, Canada
| | - Ken F Jarrell
- Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
10
|
Fang Z, Qin H, Mao J, Wang Z, Zhang N, Wang Y, Liu L, Nie Y, Dong M, Ye M. Glyco-Decipher enables glycan database-independent peptide matching and in-depth characterization of site-specific N-glycosylation. Nat Commun 2022; 13:1900. [PMID: 35393418 PMCID: PMC8990002 DOI: 10.1038/s41467-022-29530-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 03/16/2022] [Indexed: 12/20/2022] Open
Abstract
Glycopeptides with unusual glycans or poor peptide backbone fragmentation in tandem mass spectrometry are unaccounted for in typical site-specific glycoproteomics analysis and thus remain unidentified. Here, we develop a glycoproteomics tool, Glyco-Decipher, to address these issues. Glyco-Decipher conducts glycan database-independent peptide matching and exploits the fragmentation pattern of shared peptide backbones in glycopeptides to improve the spectrum interpretation. We benchmark Glyco-Decipher on several large-scale datasets, demonstrating that it identifies more peptide-spectrum matches than Byonic, MSFragger-Glyco, StrucGP and pGlyco 3.0, with a 33.5%-178.5% increase in the number of identified glycopeptide spectra. The database-independent and unbiased profiling of attached glycans enables the discovery of 164 modified glycans in mouse tissues, including glycans with chemical or biological modifications. By enabling in-depth characterization of site-specific protein glycosylation, Glyco-Decipher is a promising tool for advancing glycoproteomics analysis in biological research.
Collapse
Affiliation(s)
- Zheng Fang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Hongqiang Qin
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jiawei Mao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Zhongyu Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Na Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Yan Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Luyao Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 710032, Xi'an, China
| | - Mingming Dong
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China.
- School of Bioengineering, Dalian University of Technology, 116024, Dalian, China.
| | - Mingliang Ye
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
11
|
Pabst M, Grouzdev DS, Lawson CE, Kleikamp HBC, de Ram C, Louwen R, Lin YM, Lücker S, van Loosdrecht MCM, Laureni M. A general approach to explore prokaryotic protein glycosylation reveals the unique surface layer modulation of an anammox bacterium. THE ISME JOURNAL 2022; 16:346-357. [PMID: 34341504 PMCID: PMC8776859 DOI: 10.1038/s41396-021-01073-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 07/09/2021] [Accepted: 07/19/2021] [Indexed: 02/07/2023]
Abstract
The enormous chemical diversity and strain variability of prokaryotic protein glycosylation makes their large-scale exploration exceptionally challenging. Therefore, despite the universal relevance of protein glycosylation across all domains of life, the understanding of their biological significance and the evolutionary forces shaping oligosaccharide structures remains highly limited. Here, we report on a newly established mass binning glycoproteomics approach that establishes the chemical identity of the carbohydrate components and performs untargeted exploration of prokaryotic oligosaccharides from large-scale proteomics data directly. We demonstrate our approach by exploring an enrichment culture of the globally relevant anaerobic ammonium-oxidizing bacterium Ca. Kuenenia stuttgartiensis. By doing so we resolve a remarkable array of oligosaccharides, which are produced by two seemingly unrelated biosynthetic routes, and which modify the same surface-layer protein simultaneously. More intriguingly, the investigated strain also accomplished modulation of highly specialized sugars, supposedly in response to its energy metabolism-the anaerobic oxidation of ammonium-which depends on the acquisition of substrates of opposite charges. Ultimately, we provide a systematic approach for the compositional exploration of prokaryotic protein glycosylation, and reveal a remarkable example for the evolution of complex oligosaccharides in bacteria.
Collapse
Affiliation(s)
- Martin Pabst
- grid.5292.c0000 0001 2097 4740Delft University of Technology, Department of Biotechnology, Delft, The Netherlands
| | | | - Christopher E. Lawson
- grid.184769.50000 0001 2231 4551DOE Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA USA
| | - Hugo B. C. Kleikamp
- grid.5292.c0000 0001 2097 4740Delft University of Technology, Department of Biotechnology, Delft, The Netherlands
| | - Carol de Ram
- grid.5292.c0000 0001 2097 4740Delft University of Technology, Department of Biotechnology, Delft, The Netherlands
| | - Rogier Louwen
- grid.5645.2000000040459992XDepartment of Medical Microbiology and Infectious Diseases, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Yue Mei Lin
- grid.5292.c0000 0001 2097 4740Delft University of Technology, Department of Biotechnology, Delft, The Netherlands
| | - Sebastian Lücker
- grid.5590.90000000122931605Department of Microbiology, IWWR, Radboud University, Nijmegen, the Netherlands
| | - Mark C. M. van Loosdrecht
- grid.5292.c0000 0001 2097 4740Delft University of Technology, Department of Biotechnology, Delft, The Netherlands
| | - Michele Laureni
- grid.5292.c0000 0001 2097 4740Delft University of Technology, Department of Biotechnology, Delft, The Netherlands
| |
Collapse
|
12
|
Speciale I, Notaro A, Garcia-Vello P, Di Lorenzo F, Armiento S, Molinaro A, Marchetti R, Silipo A, De Castro C. Liquid-state NMR spectroscopy for complex carbohydrate structural analysis: A hitchhiker's guide. Carbohydr Polym 2022; 277:118885. [PMID: 34893288 DOI: 10.1016/j.carbpol.2021.118885] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/23/2021] [Accepted: 11/09/2021] [Indexed: 11/19/2022]
Abstract
Structural determination of carbohydrates is mostly performed by liquid-state NMR, and it is a demanding task because the NMR signals of these biomolecules explore a rather narrow range of chemical shifts, with the result that the resonances of each monosaccharide unit heavily overlap with those of others, thus muddling their punctual identification. However, the full attribution of the NMR chemical shifts brings great advantages: it discloses the nature of the constituents, the way they are interconnected, in some cases their absolute configuration, and it paves the way to other and more sophisticated analyses. The purpose of this review is to provide a practical guide into this challenging subject. It will drive through the strategy used to assign the NMR data, pinpointing the core information disclosed from each NMR experiment, and suggesting useful tricks for their interpretation, along with other resources pivotal during the study of these biomolecules.
Collapse
Affiliation(s)
- Immacolata Speciale
- Department of Agricultural Sciences, University of Naples, 80055 Portici, Italy.
| | - Anna Notaro
- Department of Agricultural Sciences, University of Naples, 80055 Portici, Italy.
| | - Pilar Garcia-Vello
- Department of Chemical Sciences, University of Naples, 80126 Naples, Italy.
| | - Flaviana Di Lorenzo
- Department of Agricultural Sciences, University of Naples, 80055 Portici, Italy.
| | - Samantha Armiento
- Department of Chemical Sciences, University of Naples, 80126 Naples, Italy.
| | - Antonio Molinaro
- Department of Chemical Sciences, University of Naples, 80126 Naples, Italy.
| | - Roberta Marchetti
- Department of Chemical Sciences, University of Naples, 80126 Naples, Italy.
| | - Alba Silipo
- Department of Chemical Sciences, University of Naples, 80126 Naples, Italy.
| | - Cristina De Castro
- Department of Agricultural Sciences, University of Naples, 80055 Portici, Italy.
| |
Collapse
|
13
|
Terra VS, Mauri M, Sannasiddappa TH, Smith AA, Stevens MP, Grant AJ, Wren BW, Cuccui J. PglB function and glycosylation efficiency is temperature dependent when the pgl locus is integrated in the Escherichia coli chromosome. Microb Cell Fact 2022; 21:6. [PMID: 34986868 PMCID: PMC8728485 DOI: 10.1186/s12934-021-01728-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 12/17/2021] [Indexed: 11/23/2022] Open
Abstract
Background Campylobacter is an animal and zoonotic pathogen of global importance, and a pressing need exists for effective vaccines, including those that make use of conserved polysaccharide antigens. To this end, we adapted Protein Glycan Coupling Technology (PGCT) to develop a versatile Escherichia coli strain capable of generating multiple glycoconjugate vaccine candidates against Campylobacter jejuni. Results We generated a glycoengineering E. coli strain containing the conserved C. jejuni heptasaccharide coding region integrated in its chromosome as a model glycan. This methodology confers three advantages: (i) reduction of plasmids and antibiotic markers used for PGCT, (ii) swift generation of many glycan-protein combinations and consequent rapid identification of the most antigenic proteins or peptides, and (iii) increased genetic stability of the polysaccharide coding-region. In this study, by using the model glycan expressing strain, we were able to test proteins from C. jejuni, Pseudomonas aeruginosa (both Gram-negative), and Clostridium perfringens (Gram-positive) as acceptors. Using this pgl integrant E. coli strain, four glycoconjugates were readily generated. Two glycoconjugates, where both protein and glycan are from C. jejuni (double-hit vaccines), and two glycoconjugates, where the glycan antigen is conjugated to a detoxified toxin from a different pathogen (single-hit vaccines). Because the downstream application of Live Attenuated Vaccine Strains (LAVS) against C. jejuni is to be used in poultry, which have a higher body temperature of 42 °C, we investigated the effect of temperature on protein expression and glycosylation in the E. coli pgl integrant strain. Conclusions We determined that glycosylation is temperature dependent and that for the combination of heptasaccharide and carriers used in this study, the level of PglB available for glycosylation is a step limiting factor in the glycosylation reaction. We also demonstrated that temperature affects the ability of PglB to glycosylate its substrates in an in vitro glycosylation assay independent of its transcriptional level. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01728-7.
Collapse
Affiliation(s)
- Vanessa S Terra
- London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E7HT, UK
| | - Marta Mauri
- London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E7HT, UK
| | - Thippeswamy H Sannasiddappa
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, Cambridgeshire, UK
| | - Alexander A Smith
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, Cambridgeshire, UK
| | - Mark P Stevens
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Andrew J Grant
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, Cambridgeshire, UK
| | - Brendan W Wren
- London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E7HT, UK.
| | - Jon Cuccui
- London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E7HT, UK.
| | | |
Collapse
|
14
|
Alvarez Quispe C, Da Costa M, Beerens K, Desmet T. Exploration of archaeal nucleotide sugar epimerases unveils a new and highly promiscuous GDP-Gal4E subgroup. CURRENT RESEARCH IN BIOTECHNOLOGY 2022. [DOI: 10.1016/j.crbiot.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
15
|
Vershinin Z, Zaretsky M, Guan Z, Eichler J. Identifying Components of a Halobacterium salinarum N-Glycosylation Pathway. Front Microbiol 2021; 12:779599. [PMID: 34925283 PMCID: PMC8674786 DOI: 10.3389/fmicb.2021.779599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 10/27/2021] [Indexed: 11/13/2022] Open
Abstract
Whereas N-glycosylation is a seemingly universal process in Archaea, pathways of N-glycosylation have only been experimentally verified in a mere handful of species. Toward expanding the number of delineated archaeal N-glycosylation pathways, the involvement of the putative Halobacterium salinarum glycosyltransferases VNG1067G, VNG1066C, and VNG1062G in the assembly of an N-linked tetrasaccharide decorating glycoproteins in this species was addressed. Following deletion of each encoding gene, the impact on N-glycosylation of the S-layer glycoprotein and archaellins, major glycoproteins in this organism, was assessed by mass spectrometry. Likewise, the pool of dolichol phosphate, the lipid upon which this glycan is assembled, was also considered in each deletion strain. Finally, the impacts of such deletions were characterized in a series of biochemical, structural and physiological assays. The results revealed that VNG1067G, VNG1066C, and VNG1062G, renamed Agl25, Agl26, and Agl27 according to the nomenclature used for archaeal N-glycosylation pathway components, are responsible for adding the second, third and fourth sugars of the N-linked tetrasaccharide decorating Hbt. salinarum glycoproteins. Moreover, this study demonstrated how compromised N-glycosylation affects various facets of Hbt. salinarum cell behavior, including the transcription of archaellin-encoding genes.
Collapse
Affiliation(s)
- Zlata Vershinin
- Department of Life Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Marianna Zaretsky
- Department of Life Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Ziqiang Guan
- Department of Biochemistry, Duke University Medical Center, Durham, NC, United States
| | - Jerry Eichler
- Department of Life Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| |
Collapse
|
16
|
Morgan BR, Massi F. The Role of Substrate Mediated Allostery in the Catalytic Competency of the Bacterial Oligosaccharyltransferase PglB. Front Mol Biosci 2021; 8:740904. [PMID: 34604309 PMCID: PMC8479172 DOI: 10.3389/fmolb.2021.740904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/24/2021] [Indexed: 11/30/2022] Open
Abstract
The oligosaccharyltransferase of Campylobacter lari (PglB) catalyzes the glycosylation of asparagine in the consensus sequence N-X-S/T, where X is any residue except proline. Molecular dynamics simulations of PglB bound to two different substrates were used to characterize the differences in the structure and dynamics of the substrate-enzyme complexes that can explain the higher catalytic efficiency observed for substrates containing threonine at the +2 position rather than serine. We observed that a threonine-containing substrate is more tightly bound than a serine-containing substrate. Because serine lacks a methyl group relative to threonine, the serine-containing peptide cannot stably form simultaneous van der Waals interactions with T316 and I572 as the threonine-containing substrate can. As a result, the peptide-PglB interaction is destabilized and the allosteric communication between the periplasmic domain and external loop EL5 is disrupted. These changes ultimately lead to the reorientation of the periplasmic domain relative to the transmembrane domain such that the two domains are further apart compared to PglB bound to the threonine-containing peptide. The crystal structure of PglB bound to the peptide and a lipid-linked oligosaccharide analog shows a pronounced closing of the periplasmic domain over the transmembrane domain in comparison to structures of PglB with peptide only, indicating that a closed conformation of the domains is needed for catalysis. The results of our studies suggest that lower enzymatic activity observed for serine versus threonine results from a combination of less stable binding and structural changes in PglB that influence the ability to form a catalytically competent state. This study illustrates a mechanism for substrate specificity via modulation of dynamic allosteric pathways.
Collapse
Affiliation(s)
- Brittany R Morgan
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Francesca Massi
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, United States
| |
Collapse
|
17
|
Chakraborty S, Wagh K, Gnanakaran S, López CA. Development of Martini 2.2 parameters for N-glycans: a case study of the HIV-1 Env glycoprotein dynamics. Glycobiology 2021; 31:787-799. [PMID: 33755116 PMCID: PMC8351497 DOI: 10.1093/glycob/cwab017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 02/15/2021] [Accepted: 03/01/2021] [Indexed: 12/18/2022] Open
Abstract
N-linked glycans are ubiquitous in nature and play key roles in biology. For example, glycosylation of pathogenic proteins is a common immune evasive mechanism, hampering the development of successful vaccines. Due to their chemical variability and complex dynamics, an accurate molecular understanding of glycans is still limited by the lack of effective resolution of current experimental approaches. Here, we have developed and implemented a reductive model based on the popular Martini 2.2 coarse-grained force field for the computational study of N-glycosylation. We used the HIV-1 Env as a direct applied example of a highly glycosylated protein. Our results indicate that the model not only reproduces many observables in very good agreement with a fully atomistic force field but also can be extended to study large amount of glycosylation variants, a fundamental property that can aid in the development of drugs and vaccines.
Collapse
Affiliation(s)
- Srirupa Chakraborty
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Kshitij Wagh
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - S Gnanakaran
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Cesar A López
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| |
Collapse
|
18
|
Vershinin Z, Zaretsky M, Guan Z, Eichler J. Revisiting N-glycosylation in Halobacterium salinarum: Characterizing a dolichol phosphate- and glycoprotein-bound tetrasaccharide. Glycobiology 2021; 31:1645-1654. [PMID: 34314490 DOI: 10.1093/glycob/cwab080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/15/2021] [Accepted: 07/19/2021] [Indexed: 11/14/2022] Open
Abstract
Although Halobacterium salinarum provided the first example of N-glycosylation outside the Eukarya, much regarding such post-translational modification in this halophilic Archaea remains either unclear or unknown. The composition of an N-linked glycan decorating both the S-layer glycoprotein and archaellins offers one such example. Originally described some 40 years ago, reports from that time on have presented conflicted findings regarding the composition of this glycan, as well as differences between the protein-bound glycan and that version of the glycan attached to the lipid upon which it is assembled. To clarify these points, liquid chromatography-electrospray ionization mass spectrometry was employed here to revisit the composition of this glycan both when attached to selected asparagine residues of target proteins and when bound to the lipid dolichol phosphate upon which the glycan is assembled. Such efforts revealed the N-linked glycan as corresponding to a tetrasacchride comprising a hexose, a sulfated hexuronic acid, a hexuronic acid and a second sulfated hexuronic acid. When attached to dolichol phosphate but not to proteins, the same tetrasaccharide is methylated on the final sugar. Moreover, in the absence of the oligosaccharyltransferase AglB, there is an accumulation of the dolichol phosphate-linked methylated and disulfated tetrasacchride. Knowing the composition of this glycan at both the lipid- and protein-bound stages, together with the availability of gene deletion approaches for manipulating Halobacterium salinarum, will allow delineation of the N-glycosylation pathway in this organism.
Collapse
Affiliation(s)
- Zlata Vershinin
- Department of Life Sciences, Ben-Gurion University of the Negev, Beersheva, Israel
| | - Marianna Zaretsky
- Department of Life Sciences, Ben-Gurion University of the Negev, Beersheva, Israel
| | - Ziqiang Guan
- Department of Biochemistry, Duke University Medical Center, Durham NC, USA
| | - Jerry Eichler
- Department of Life Sciences, Ben-Gurion University of the Negev, Beersheva, Israel
| |
Collapse
|
19
|
Sheng Q, Li J, Chen Y, Liang X, Lan M. Hydrophilic graphene oxide-dopamine-cationic cellulose composites and their applications in N-Glycopeptides enrichment. Talanta 2021; 226:122112. [PMID: 33676668 DOI: 10.1016/j.talanta.2021.122112] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/07/2021] [Accepted: 01/09/2021] [Indexed: 12/22/2022]
Abstract
Glycosylation is one of the most important post-translational modifications of proteins, and plays an important role in the structure and function of proteins. However, due to the diversity of glycopeptide forms and their low abundance, it is extraordinarily challenging to capture and separate glycopeptides with high selectivity from complex biological samples with mass spectrometric analysis. Here, we synthesized a new type of hydrophilic composite based on electrostatic interactions, which has been proven to be effective in immobilizing cationic cellulose on graphene oxide-dopamine carriers (expressed as GO-DA-JR), for highly specific enrichment of N-glycopeptides. The introduction of cationic cellulose provides not only a perfect surface charge for the composite but also a greater ability to enrich glycosylated peptides. Thirty-two glycopeptides from human serum immunoglobulin G (IgG) tryptic digests were observed with a greatly improved signal-to-noise ratio (S/N) and also presented high performance in anti-interfering enrichment of glycopeptides from complex samples containing 100-fold bovine serum albumin tryptic digests. In addition, GO-DA-JR has higher sensitivity (1 fmol/μL IgG) and better enrichment capacity (up to 150 mg/g). Moreover, the results of glycopeptide enrichment and glycosylation analysis from human serum also show egood enrichment selectivity from real biological samples. This work exhibits high selectivity, high sensitivity, good stability and operability, indicating its potential for applications of glycopeptides enrichment in post-translational modification proteomics.
Collapse
Affiliation(s)
- Qianying Sheng
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, PR China.
| | - Junyan Li
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Yingxin Chen
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Xinmiao Liang
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Minbo Lan
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, PR China.
| |
Collapse
|
20
|
Hershewe J, Kightlinger W, Jewett MC. Cell-free systems for accelerating glycoprotein expression and biomanufacturing. J Ind Microbiol Biotechnol 2020; 47:977-991. [PMID: 33090335 PMCID: PMC7578589 DOI: 10.1007/s10295-020-02321-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/03/2020] [Indexed: 12/17/2022]
Abstract
Protein glycosylation, the enzymatic modification of amino acid sidechains with sugar moieties, plays critical roles in cellular function, human health, and biotechnology. However, studying and producing defined glycoproteins remains challenging. Cell-free glycoprotein synthesis systems, in which protein synthesis and glycosylation are performed in crude cell extracts, offer new approaches to address these challenges. Here, we review versatile, state-of-the-art systems for biomanufacturing glycoproteins in prokaryotic and eukaryotic cell-free systems with natural and synthetic N-linked glycosylation pathways. We discuss existing challenges and future opportunities in the use of cell-free systems for the design, manufacture, and study of glycoprotein biomedicines.
Collapse
Affiliation(s)
- Jasmine Hershewe
- Department of Chemical and Biological Engineering, Northwestern University, Technological Institute E136, 2145 Sheridan Road, Evanston, IL, 60208-3120, USA.,Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, IL, 60208-3120, USA.,Center for Synthetic Biology, Northwestern University, Technological Institute E136, 2145 Sheridan Road, Evanston, IL, 60208-3120, USA
| | - Weston Kightlinger
- Department of Chemical and Biological Engineering, Northwestern University, Technological Institute E136, 2145 Sheridan Road, Evanston, IL, 60208-3120, USA.,Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, IL, 60208-3120, USA.,Center for Synthetic Biology, Northwestern University, Technological Institute E136, 2145 Sheridan Road, Evanston, IL, 60208-3120, USA
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Technological Institute E136, 2145 Sheridan Road, Evanston, IL, 60208-3120, USA. .,Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, IL, 60208-3120, USA. .,Center for Synthetic Biology, Northwestern University, Technological Institute E136, 2145 Sheridan Road, Evanston, IL, 60208-3120, USA. .,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, 676 North Saint Clair Street, Suite 1200, Chicago, IL, 60611-3068, USA. .,Simpson Querrey Institute, Northwestern University, 303 East Superior Street, Suite 11-131, Chicago, IL, 60611-2875, USA.
| |
Collapse
|
21
|
Chiang CY, Chou CC, Chang HY, Hsu MF, Pao PJ, Chiang MH, Wang AHJ. Biochemical and molecular dynamics studies of archaeal polyisoprenyl pyrophosphate phosphatase from Saccharolobus solfataricus. Enzyme Microb Technol 2020; 139:109585. [DOI: 10.1016/j.enzmictec.2020.109585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 12/29/2022]
|
22
|
Evolutionary considerations of the oligosaccharyltransferase AglB and other aspects of N-glycosylation across Archaea. Mol Phylogenet Evol 2020; 153:106951. [PMID: 32889138 DOI: 10.1016/j.ympev.2020.106951] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 08/01/2020] [Accepted: 08/28/2020] [Indexed: 12/13/2022]
Abstract
Various biological markers in members of the TACK and Asgard archaeal super-phyla show Eukarya-like traits. These include the oligosaccharyltransferase, responsible for transferring glycans from the lipid carrier upon which they are assembled onto selected asparagine residues of target proteins during N-glycosylation. In Archaea, oligosaccharyltransferase activity is catalyzed by AglB. To gain deeper insight into AglB and N-glycosylation across archaeal phylogeny, bioinformatics approaches were employed to address variability in AglB sequence motifs involved in enzyme activity, construct a phylogenetic tree based on AglB sequences, search for archaeal homologues of non-catalytic subunits of the multimeric eukaryal oligosaccharyltransferase complex and predict the presence of aglB-based clusters of glycosylation-related genes in the Euryarchaeota and the DPANN, TACK and Asgard super-phyla. In addition, site-directed mutagenesis and mass spectrometry were employed to study the natural variability in the WWDXG motif central to oligosaccharyltransferase activity seen in archaeal AglB. The results clearly distinguish AglB from members of the DPANN super-phylum and the Euryarchaeota from the same enzyme in members of the TACK and Asgard super-phyla, which showed considerable similarity to its eukaryal homologue Stt3. The results thus support the evolutionary proximity of Eukarya and the TACK and Asgard archaea.
Collapse
|
23
|
Lu H, Pei C, Zhou H, Lü Y, He Y, Li Y, Han J, Xiang H, Eichler J, Jin C. Agl22 and Agl23 are involved in the synthesis and utilization of the lipid‐linked intermediates in the glycosylation pathways of the halophilic archaeaonHaloarcula hispanica. Mol Microbiol 2020; 114:762-774. [DOI: 10.1111/mmi.14577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Hua Lu
- State Key Laboratory of Mycology Institute of Microbiology Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| | - Caixia Pei
- State Key Laboratory of Mycology Institute of Microbiology Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| | - Hui Zhou
- State Key Laboratory of Mycology Institute of Microbiology Chinese Academy of Sciences Beijing China
| | - Yang Lü
- State Key Laboratory of Mycology Institute of Microbiology Chinese Academy of Sciences Beijing China
| | - Yun He
- Laboratory of Cellular and Molecular Tumor Immunology Institutes of Biology and Medical Sciences Jiangsu Laboratory of Infection Immunity Soochow University Suzhou China
| | - Yunsen Li
- Laboratory of Cellular and Molecular Tumor Immunology Institutes of Biology and Medical Sciences Jiangsu Laboratory of Infection Immunity Soochow University Suzhou China
| | - Jing Han
- State Key Laboratory of Microbial Resources Institute of Microbiology Chinese Academy of Sciences Beijing China
| | - Hua Xiang
- State Key Laboratory of Microbial Resources Institute of Microbiology Chinese Academy of Sciences Beijing China
| | - Jerry Eichler
- Department of Life Sciences Ben Gurion University of the Negev Beersheva Israel
| | - Cheng Jin
- State Key Laboratory of Mycology Institute of Microbiology Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
24
|
Eichler J. N-glycosylation in Archaea-New roles for an ancient posttranslational modification. Mol Microbiol 2020; 114:735-741. [PMID: 32633872 DOI: 10.1111/mmi.14569] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/27/2020] [Indexed: 12/26/2022]
Abstract
Genome analysis points to N-glycosylation as being an almost universal posttranslational modification in Archaea. Although such predictions have been confirmed in only a limited number of species, such studies are making it increasingly clear that the N-linked glycans which decorate archaeal glycoproteins present diversity in terms of both glycan composition and architecture far beyond what is seen in the other two domains of life. In addition to continuing to decipher pathways of N-glycosylation, recent efforts have revealed how Archaea exploit this variability in novel roles. As well as encouraging glycoprotein synthesis, folding and assembly into properly functioning higher ordered complexes, N-glycosylation also provides Archaea with a strategy to cope with changing environments. Archaea can, moreover, exploit the apparent species-specific nature of N-glycosylation for selectivity in mating, and hence, to maintain species boundaries, and in other events where cell-selective interactions are required. At the same time, addressing components of N-glycosylation pathways across archaeal phylogeny offers support for the concept of an archaeal origin for eukaryotes. In this MicroReview, these and other recent discoveries related to N-glycosylation in Archaea are considered.
Collapse
Affiliation(s)
- Jerry Eichler
- Department of Life Sciences, Ben-Gurion University of the Negev, Beersheva, Israel
| |
Collapse
|
25
|
Gandini R, Reichenbach T, Spadiut O, Tan TC, Kalyani DC, Divne C. A Transmembrane Crenarchaeal Mannosyltransferase Is Involved in N-Glycan Biosynthesis and Displays an Unexpected Minimal Cellulose-Synthase-like Fold. J Mol Biol 2020; 432:4658-4672. [PMID: 32569746 DOI: 10.1016/j.jmb.2020.06.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/13/2020] [Accepted: 06/16/2020] [Indexed: 11/30/2022]
Abstract
Protein glycosylation constitutes a critical post-translational modification that supports a vast number of biological functions in living organisms across all domains of life. A seemingly boundless number of enzymes, glycosyltransferases, are involved in the biosynthesis of these protein-linked glycans. Few glycan-biosynthetic glycosyltransferases have been characterized in vitro, mainly due to the majority being integral membrane proteins and the paucity of relevant acceptor substrates. The crenarchaeote Pyrobaculum calidifontis belongs to the TACK superphylum of archaea (Thaumarchaeota, Aigarchaeota, Crenarchaeota, Korarchaeota) that has been proposed as an eukaryotic ancestor. In archaea, N-glycans are mainly found on cell envelope surface-layer proteins, archaeal flagellins and pili. Archaeal N-glycans are distinct from those of eukaryotes, but one noteworthy exception is the high-mannose N-glycan produced by P. calidifontis, which is similar in sugar composition to the eukaryotic counterpart. Here, we present the characterization and crystal structure of the first member of a crenarchaeal membrane glycosyltransferase, PcManGT. We show that the enzyme is a GDP-, dolichylphosphate-, and manganese-dependent mannosyltransferase. The membrane domain of PcManGT includes three transmembrane helices that topologically coincide with "half" of the six-transmembrane helix cellulose-binding tunnel in Rhodobacter spheroides cellulose synthase BcsA. Conceivably, this "half tunnel" would be suitable for binding the dolichylphosphate-linked acceptor substrate. The PcManGT gene (Pcal_0472) is located in a large gene cluster comprising 14 genes of which 6 genes code for glycosyltransferases, and we hypothesize that this cluster may constitute a crenarchaeal N-glycosylation (PNG) gene cluster.
Collapse
Affiliation(s)
- Rosaria Gandini
- School of Engineering Sciences in Chemistry, Biotechnology, and Health (CBH), KTH Royal Institute of Technology, 10691 Stockholm, Sweden
| | - Tom Reichenbach
- School of Engineering Sciences in Chemistry, Biotechnology, and Health (CBH), KTH Royal Institute of Technology, 10691 Stockholm, Sweden
| | - Oliver Spadiut
- School of Engineering Sciences in Chemistry, Biotechnology, and Health (CBH), KTH Royal Institute of Technology, 10691 Stockholm, Sweden
| | - Tien-Chye Tan
- School of Engineering Sciences in Chemistry, Biotechnology, and Health (CBH), KTH Royal Institute of Technology, 10691 Stockholm, Sweden
| | - Dayanand C Kalyani
- School of Engineering Sciences in Chemistry, Biotechnology, and Health (CBH), KTH Royal Institute of Technology, 10691 Stockholm, Sweden
| | - Christina Divne
- School of Engineering Sciences in Chemistry, Biotechnology, and Health (CBH), KTH Royal Institute of Technology, 10691 Stockholm, Sweden.
| |
Collapse
|
26
|
Kightlinger W, Warfel KF, DeLisa MP, Jewett MC. Synthetic Glycobiology: Parts, Systems, and Applications. ACS Synth Biol 2020; 9:1534-1562. [PMID: 32526139 PMCID: PMC7372563 DOI: 10.1021/acssynbio.0c00210] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Indexed: 12/11/2022]
Abstract
Protein glycosylation, the attachment of sugars to amino acid side chains, can endow proteins with a wide variety of properties of great interest to the engineering biology community. However, natural glycosylation systems are limited in the diversity of glycoproteins they can synthesize, the scale at which they can be harnessed for biotechnology, and the homogeneity of glycoprotein structures they can produce. Here we provide an overview of the emerging field of synthetic glycobiology, the application of synthetic biology tools and design principles to better understand and engineer glycosylation. Specifically, we focus on how the biosynthetic and analytical tools of synthetic biology have been used to redesign glycosylation systems to obtain defined glycosylation structures on proteins for diverse applications in medicine, materials, and diagnostics. We review the key biological parts available to synthetic biologists interested in engineering glycoproteins to solve compelling problems in glycoscience, describe recent efforts to construct synthetic glycoprotein synthesis systems, and outline exemplary applications as well as new opportunities in this emerging space.
Collapse
Affiliation(s)
- Weston Kightlinger
- Department
of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Tech E136, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Tech B486, Evanston, Illinois 60208, United States
| | - Katherine F. Warfel
- Department
of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Tech E136, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Tech B486, Evanston, Illinois 60208, United States
| | - Matthew P. DeLisa
- Department
of Microbiology, Cornell University, 123 Wing Drive, Ithaca, New York 14853, United States
- Robert
Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, Ithaca, New York 14853, United States
- Nancy
E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Weill Hall, Ithaca, New York 14853, United States
| | - Michael C. Jewett
- Department
of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Tech E136, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Tech B486, Evanston, Illinois 60208, United States
| |
Collapse
|
27
|
Chao Q, Ding Y, Chen ZH, Xiang MH, Wang N, Gao XD. Recent Progress in Chemo-Enzymatic Methods for the Synthesis of N-Glycans. Front Chem 2020; 8:513. [PMID: 32612979 PMCID: PMC7309569 DOI: 10.3389/fchem.2020.00513] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 05/18/2020] [Indexed: 01/06/2023] Open
Abstract
Asparagine (N)-linked glycosylation is one of the most common co- and post-translational modifications of both intra- and extracellularly distributing proteins, which directly affects their biological functions, such as protein folding, stability and intercellular traffic. Production of the structural well-defined homogeneous N-glycans contributes to comprehensive investigation of their biological roles and molecular basis. Among the various methods, chemo-enzymatic approach serves as an alternative to chemical synthesis, providing high stereoselectivity and economic efficiency. This review summarizes some recent advances in the chemo-enzymatic methods for the production of N-glycans, including the preparation of substrates and sugar donors, and the progress in the glycosyltransferases characterization which leads to the diversity of N-glycan synthesis. We discuss the bottle-neck and new opportunities in exploiting the chemo-enzymatic synthesis of N-glycans based on our research experiences. In addition, downstream applications of the constructed N-glycans, such as automation devices and homogeneous glycoproteins synthesis are also described.
Collapse
Affiliation(s)
| | | | | | | | - Ning Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xiao-Dong Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
28
|
Mikolajczyk K, Kaczmarek R, Czerwinski M. How glycosylation affects glycosylation: the role of N-glycans in glycosyltransferase activity. Glycobiology 2020; 30:941-969. [PMID: 32363402 DOI: 10.1093/glycob/cwaa041] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 12/15/2022] Open
Abstract
N-glycosylation is one of the most important posttranslational modifications of proteins. It plays important roles in the biogenesis and functions of proteins by influencing their folding, intracellular localization, stability and solubility. N-glycans are synthesized by glycosyltransferases, a complex group of ubiquitous enzymes that occur in most kingdoms of life. A growing body of evidence shows that N-glycans may influence processing and functions of glycosyltransferases, including their secretion, stability and substrate/acceptor affinity. Changes in these properties may have a profound impact on glycosyltransferase activity. Indeed, some glycosyltransferases have to be glycosylated themselves for full activity. N-glycans and glycosyltransferases play roles in the pathogenesis of many diseases (including cancers), so studies on glycosyltransferases may contribute to the development of new therapy methods and novel glycoengineered enzymes with improved properties. In this review, we focus on the role of N-glycosylation in the activity of glycosyltransferases and attempt to summarize all available data about this phenomenon.
Collapse
Affiliation(s)
- Krzysztof Mikolajczyk
- Laboratory of Glycobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Weigla 12, 53-114 Wroclaw, Poland
| | - Radoslaw Kaczmarek
- Laboratory of Glycobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Weigla 12, 53-114 Wroclaw, Poland
| | - Marcin Czerwinski
- Laboratory of Glycobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Weigla 12, 53-114 Wroclaw, Poland
| |
Collapse
|
29
|
Li L, Ren M, Xu Y, Jin C, Zhang W, Dong X. Enhanced glycosylation of an S-layer protein enables a psychrophilic methanogenic archaeon to adapt to elevated temperatures in abundant substrates. FEBS Lett 2019; 594:665-677. [PMID: 31665542 DOI: 10.1002/1873-3468.13650] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/09/2019] [Accepted: 10/10/2019] [Indexed: 12/15/2022]
Abstract
Adaptation to higher temperatures would increase the environmental competitiveness of psychrophiles, organisms that thrive in low-temperature environments. Methanolobus psychrophilus, a cold wetland methanogen, 'evolved' as a mesophile, growing optimally at 30 °C after subculturings, and cells grown with ample substrates exhibited higher integrity. Here, we investigated N-glycosylation of S-layer proteins, the major archaeal envelope component, with respect to mesophilic adaptation. Lectin affinity enriched a glycoprotein in cells grown at 30 °C under ample substrate availability, which was identified as the S-layer protein Mpsy_1486. Four N-glycosylation sites were identified on Mpsy_1486, which exhibited different glycosylation profiles, with N94 only found in cells cultured at 30 °C. An N-linked glycosylation inhibitor, tunicamycin, reduced glycosylation levels of Mpsy_1486 and growth at 30 °C, thus establishing a link between S-layer protein glycosylation and higher temperature adaptation of the psychrophilic archaeon M. psychrophilus.
Collapse
Affiliation(s)
- Lingyan Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Mifang Ren
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yueqiang Xu
- University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Cheng Jin
- University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,Guangxi Academy of Sciences, Nanning, China
| | - Wenhao Zhang
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiuzhu Dong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
30
|
Characterization of the Streptomyces coelicolor Glycoproteome Reveals Glycoproteins Important for Cell Wall Biogenesis. mBio 2019; 10:mBio.01092-19. [PMID: 31239379 PMCID: PMC6593405 DOI: 10.1128/mbio.01092-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The physiological role of protein O-glycosylation in prokaryotes is poorly understood due to our limited knowledge of the extent of their glycoproteomes. In Actinobacteria, defects in protein O-mannosyl transferase (Pmt)-mediated protein O-glycosylation have been shown to significantly retard growth (Mycobacterium tuberculosis and Corynebacterium glutamicum) or result in increased sensitivities to cell wall-targeting antibiotics (Streptomyces coelicolor), suggesting that protein O-glycosylation has an important role in cell physiology. Only a single glycoprotein (SCO4142, or PstS) has been identified to date in S. coelicolor Combining biochemical and mass spectrometry-based approaches, we have isolated and characterized the membrane glycoproteome in S. coelicolor A total of ninety-five high-confidence glycopeptides were identified which mapped to thirty-seven new S. coelicolor glycoproteins and a deeper understanding of glycosylation sites in PstS. Glycosylation sites were found to be modified with up to three hexose residues, consistent with what has been observed previously in other Actinobacteria S. coelicolor glycoproteins have diverse roles and functions, including solute binding, polysaccharide hydrolases, ABC transporters, and cell wall biosynthesis, the latter being of potential relevance to the antibiotic-sensitive phenotype of pmt mutants. Null mutants in genes encoding a putative d-Ala-d-Ala carboxypeptidase (SCO4847) and an l,d-transpeptidase (SCO4934) were hypersensitive to cell wall-targeting antibiotics. Additionally, the sco4847 mutants displayed an increased susceptibility to lysozyme treatment. These findings strongly suggest that both glycoproteins are required for maintaining cell wall integrity and that glycosylation could be affecting enzyme function.IMPORTANCE In prokaryotes, the role of protein glycosylation is poorly understood due to our limited understanding of their glycoproteomes. In some Actinobacteria, defects in protein O-glycosylation have been shown to retard growth and result in hypersensitivity to cell wall-targeting antibiotics, suggesting that this modification is important for maintaining cell wall structure. Here, we have characterized the glycoproteome in Streptomyces coelicolor and shown that glycoproteins have diverse roles, including those related to solute binding, ABC transporters, and cell wall biosynthesis. We have generated mutants encoding two putative cell wall-active glycoproteins and shown them to be hypersensitive to cell wall-targeting antibiotics. These findings strongly suggest that both glycoproteins are required for maintaining cell wall integrity and that glycosylation affects enzyme function.
Collapse
|
31
|
Yates LE, Natarajan A, Li M, Hale ME, Mills DC, DeLisa MP. Glyco-recoded Escherichia coli: Recombineering-based genome editing of native polysaccharide biosynthesis gene clusters. Metab Eng 2019; 53:59-68. [DOI: 10.1016/j.ymben.2019.02.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/06/2019] [Accepted: 02/10/2019] [Indexed: 12/21/2022]
|
32
|
GlcNAc De- N-Acetylase from the Hyperthermophilic Archaeon Sulfolobus solfataricus. Appl Environ Microbiol 2019; 85:AEM.01879-18. [PMID: 30446550 DOI: 10.1128/aem.01879-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/04/2018] [Indexed: 01/17/2023] Open
Abstract
Sulfolobus solfataricus is an aerobic crenarchaeal hyperthermophile with optimum growth at temperatures greater than 80°C and pH 2 to 4. Within the crenarchaeal group of Sulfolobales, N-acetylglucosamine (GlcNAc) has been shown to be a component of exopolysaccharides, forming their biofilms, and of the N-glycan decorating some proteins. The metabolism of GlcNAc is still poorly understood in Archaea, and one approach to gaining additional information is through the identification and functional characterization of carbohydrate active enzymes (CAZymes) involved in the modification of GlcNAc. The screening of S. solfataricus extracts allowed the detection of a novel α-N-acetylglucosaminidase (α-GlcNAcase) activity, which has never been identified in Archaea Mass spectrometry analysis of the purified activity showed a protein encoded by the sso2901 gene. Interestingly, the purified recombinant enzyme, which was characterized in detail, revealed a novel de-N-acetylase activity specific for GlcNAc and derivatives. Thus, assays to identify an α-GlcNAcase found a GlcNAc de-N-acetylase instead. The α-GlcNAcase activity observed in S. solfataricus extracts did occur when SSO2901 was used in combination with an α-glucosidase. Furthermore, the inspection of the genomic context and the preliminary characterization of a putative glycosyltransferase immediately upstream of sso2901 (sso2900) suggest the involvement of these enzymes in the GlcNAc metabolism in S. solfataricus IMPORTANCE In this study, a preliminary screening of cellular extracts of S. solfataricus allowed the identification of an α-N-acetylglucosaminidase activity. However, the characterization of the corresponding recombinant enzyme revealed a novel GlcNAc de-N-acetylase, which, in cooperation with the α-glucosidase, catalyzed the hydrolysis of O-α-GlcNAc glycosides. In addition, we show that the product of a gene flanking the one encoding the de-N-acetylase is a putative glycosyltransferase, suggesting the involvement of the two enzymes in the metabolism of GlcNAc. The discovery and functional analysis of novel enzymatic activities involved in the modification of this essential sugar represent a powerful strategy to shed light on the physiology and metabolism of Archaea.
Collapse
|
33
|
Jervis AJ, Wood AG, Cain JA, Butler JA, Frost H, Lord E, Langdon R, Cordwell SJ, Wren BW, Linton D. Functional analysis of the Helicobacter pullorum N-linked protein glycosylation system. Glycobiology 2018; 28:233-244. [PMID: 29340583 PMCID: PMC6025236 DOI: 10.1093/glycob/cwx110] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 01/10/2018] [Indexed: 11/23/2022] Open
Abstract
N-linked protein glycosylation systems operate in species from all three domains of life. The model bacterial N-linked glycosylation system from Campylobacter jejuni is encoded by pgl genes present at a single chromosomal locus. This gene cluster includes the pglB oligosaccharyltransferase responsible for transfer of glycan from lipid carrier to protein. Although all genomes from species of the Campylobacter genus contain a pgl locus, among the related Helicobacter genus only three evolutionarily related species (H. pullorum, H. canadensis and H. winghamensis) potentially encode N-linked protein glycosylation systems. Helicobacter putative pgl genes are scattered in five chromosomal loci and include two putative oligosaccharyltransferase-encoding pglB genes per genome. We have previously demonstrated the in vitro N-linked glycosylation activity of H. pullorum resulting in transfer of a pentasaccharide to a peptide at asparagine within the sequon (D/E)XNXS/T. In this study, we identified the first H. pullorum N-linked glycoprotein, termed HgpA. Production of histidine-tagged HgpA in the background of insertional knockout mutants of H. pullorum pgl/wbp genes followed by analysis of HgpA glycan structures demonstrated the role of individual gene products in the PglB1-dependent N-linked protein glycosylation pathway. Glycopeptide purification by zwitterionic-hydrophilic interaction liquid chromatography coupled with tandem mass spectrometry identified six glycosites from five H. pullorum proteins, which was consistent with proteins reactive with a polyclonal antiserum generated against glycosylated HgpA. This study demonstrates functioning of a H. pullorum N-linked general protein glycosylation system.
Collapse
Affiliation(s)
- Adrian J Jervis
- Manchester Institute of Biotechnology, SYNBIOCHEM, University of Manchester, Manchester, UK
| | - Alison G Wood
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - Joel A Cain
- School of Molecular Bioscience and Charles Perkins Centre, The University of Sydney, 2006Australia
| | - Jonathan A Butler
- School of Healthcare Science, Manchester Metropolitan University, Manchester M1 5GD, UK
| | - Helen Frost
- Faculty of Biology, Medicine and Health, Michael Smith Building, University of Manchester, Manchester M13 9PT, UK
| | - Elizabeth Lord
- Faculty of Biology, Medicine and Health, Michael Smith Building, University of Manchester, Manchester M13 9PT, UK
| | - Rebecca Langdon
- Pathogen Molecular Biology Unit, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Stuart J Cordwell
- School of Molecular Bioscience and Charles Perkins Centre, The University of Sydney, 2006Australia
| | - Brendan W Wren
- Pathogen Molecular Biology Unit, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Dennis Linton
- Faculty of Biology, Medicine and Health, Michael Smith Building, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
34
|
Napiórkowska M, Boilevin J, Darbre T, Reymond JL, Locher KP. Structure of bacterial oligosaccharyltransferase PglB bound to a reactive LLO and an inhibitory peptide. Sci Rep 2018; 8:16297. [PMID: 30389987 PMCID: PMC6215017 DOI: 10.1038/s41598-018-34534-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/15/2018] [Indexed: 12/12/2022] Open
Abstract
Oligosaccharyltransferase (OST) is a key enzyme of the N-glycosylation pathway, where it catalyzes the transfer of a glycan from a lipid-linked oligosaccharide (LLO) to an acceptor asparagine within the conserved sequon N-X-T/S. A previous structure of a ternary complex of bacterial single subunit OST, PglB, bound to a non-hydrolyzable LLO analog and a wild type acceptor peptide showed how both substrates bind and how an external loop (EL5) of the enzyme provided specific substrate-binding contacts. However, there was a relatively large separation of the substrates at the active site. Here we present the X-ray structure of PglB bound to a reactive LLO analog and an inhibitory peptide, revealing previously unobserved interactions in the active site. We found that the atoms forming the N-glycosidic bond (C-1 of the GlcNAc moiety of LLO and the –NH2 group of the peptide) are closer than in the previous structure, suggesting that we have captured a conformation closer to the transition state of the reaction. We find that the distance between the divalent metal ion and the glycosidic oxygen of LLO is now 4 Å, suggesting that the metal stabilizes the leaving group of the nucleophilic substitution reaction. Further, the carboxylate group of a conserved aspartate of PglB mediates an interaction network between the reducing-end sugar of the LLO, the asparagine side chain of the acceptor peptide, and a bound divalent metal ion. The interactions identified in this novel state are likely to be relevant in the catalytic mechanisms of all OSTs.
Collapse
Affiliation(s)
- Maja Napiórkowska
- Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Jérémy Boilevin
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Tamis Darbre
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Jean-Louis Reymond
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Kaspar P Locher
- Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
35
|
Taguchi Y, Fujinami D, Kohda D. Comparative Analysis of the Oligosaccharide Donors (Lipid-Linked Oligosaccharides) for the N-Oligosaccharyl Transfer Reaction. TRENDS GLYCOSCI GLYC 2018. [DOI: 10.4052/tigg.1721.4j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Yuya Taguchi
- Division of Structural Biology, Medical institute of Bioregulation, Kyushu University
| | - Daisuke Fujinami
- Division of Structural Biology, Medical institute of Bioregulation, Kyushu University
| | - Daisuke Kohda
- Division of Structural Biology, Medical institute of Bioregulation, Kyushu University
| |
Collapse
|
36
|
Zaretsky M, Roine E, Eichler J. Sialic Acid-Like Sugars in Archaea: Legionaminic Acid Biosynthesis in the Halophile Halorubrum sp. PV6. Front Microbiol 2018; 9:2133. [PMID: 30245679 PMCID: PMC6137143 DOI: 10.3389/fmicb.2018.02133] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 08/20/2018] [Indexed: 11/25/2022] Open
Abstract
N-glycosylation is a post-translational modification that occurs in all three domains. In Archaea, however, N-linked glycans present a degree of compositional diversity not observed in either Eukarya or Bacteria. As such, it is surprising that nonulosonic acids (NulOs), nine-carbon sugars that include sialic acids, pseudaminic acids, and legionaminic acids, are routinely detected as components of protein-linked glycans in Eukarya and Bacteria but not in Archaea. In the following, we report that the N-linked glycan attached to the S-layer glycoprotein of the haloarchaea Halorubrum sp. PV6 includes an N-formylated legionaminic acid. Analysis of the Halorubrum sp. PV6 genome led to the identification of sequences predicted to comprise the legionaminic acid biosynthesis pathway. The transcription of pathway genes was confirmed, as was the co-transcription of several of these genes. In addition, the activities of LegI, which catalyzes the condensation of 2,4-di-N-acetyl-6-deoxymannose and phosphoenolpyruvate to generate legionaminic acid, and LegF, which catalyzes the addition of cytidine monophosphate (CMP) to legionaminic acid, both heterologously expressed in Haloferax volcanii, were demonstrated. Further genome analysis predicts that the genes encoding enzymes of the legionaminic acid biosynthetic pathway are clustered together with sequences seemingly encoding components of the N-glycosylation pathway in this organism. In defining the first example of a legionaminic acid biosynthesis pathway in Archaea, the findings reported here expand our insight into archaeal N-glycosylation, an almost universal post-translational modification in this domain of life.
Collapse
Affiliation(s)
- Marianna Zaretsky
- Department of Life Sciences, Ben-Gurion University of the Negev, Beersheva, Israel
| | - Elina Roine
- Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
| | - Jerry Eichler
- Department of Life Sciences, Ben-Gurion University of the Negev, Beersheva, Israel
| |
Collapse
|
37
|
Metabolic engineering of glycoprotein biosynthesis in bacteria. Emerg Top Life Sci 2018; 2:419-432. [PMID: 33525794 DOI: 10.1042/etls20180004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 07/12/2018] [Accepted: 08/06/2018] [Indexed: 02/07/2023]
Abstract
The demonstration more than a decade ago that glycoproteins could be produced in Escherichia coli cells equipped with the N-linked protein glycosylation machinery from Campylobacter jejuni opened the door to using simple bacteria for the expression and engineering of complex glycoproteins. Since that time, metabolic engineering has played an increasingly important role in developing and optimizing microbial cell glyco-factories for the production of diverse glycoproteins and other glycoconjugates. It is becoming clear that future progress in creating efficient glycoprotein expression platforms in bacteria will depend on the adoption of advanced strain engineering strategies such as rational design and assembly of orthogonal glycosylation pathways, genome-wide identification of metabolic engineering targets, and evolutionary engineering of pathway performance. Here, we highlight recent advances in the deployment of metabolic engineering tools and strategies to develop microbial cell glyco-factories for the production of high-value glycoprotein targets with applications in research and medicine.
Collapse
|
38
|
Eichler J, Imperiali B. Biogenesis of Asparagine-Linked Glycoproteins Across Domains of Life-Similarities and Differences. ACS Chem Biol 2018; 13:833-837. [PMID: 29481041 DOI: 10.1021/acschembio.8b00163] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Jerry Eichler
- Department of Life Sciences, Ben Gurion University of the Negev, Beersheva, Israel
| | - Barbara Imperiali
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
| |
Collapse
|
39
|
Eichler J, Imperiali B. Stereochemical Divergence of Polyprenol Phosphate Glycosyltransferases. Trends Biochem Sci 2017; 43:10-17. [PMID: 29183665 DOI: 10.1016/j.tibs.2017.10.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 10/27/2017] [Accepted: 10/30/2017] [Indexed: 01/22/2023]
Abstract
In the three domains of life, lipid-linked glycans contribute to various cellular processes ranging from protein glycosylation to glycosylphosphatidylinositol anchor biosynthesis to peptidoglycan assembly. In generating many of these glycoconjugates, phosphorylated polyprenol-based lipids are charged with single sugars by polyprenol phosphate glycosyltransferases. The resultant substrates serve as glycosyltransferase donors, complementing the more common nucleoside diphosphate sugars. It had been accepted that these polyprenol phosphate glycosyltransferases acted similarly, given their considerable sequence homology. Recent findings, however, suggest that matters may not be so simple. In this Opinion we propose that the stereochemistry of sugar addition by polyprenol phosphate glycosyltransferases is not conserved across evolution, even though the GT-A fold that characterizes such enzymes is omnipresent.
Collapse
Affiliation(s)
- Jerry Eichler
- Department of Life Sciences, Ben Gurion University of the Negev, Beersheva, Israel.
| | - Barbara Imperiali
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
40
|
Zhou Y, Zhu H, Fu S, Yao Q. Metagenomic evidence of stronger effect of stylo (legume) than bahiagrass (grass) on taxonomic and functional profiles of the soil microbial community. Sci Rep 2017; 7:10195. [PMID: 28860520 PMCID: PMC5579253 DOI: 10.1038/s41598-017-10613-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 07/07/2017] [Indexed: 12/21/2022] Open
Abstract
Plants are key determinants of soil microbial community (SMC). Legumes and grasses are distinct groups in various ecosystems; however, how they differentially shape SMC structure and functioning has yet to be explored. Here, we investigate SMC in soils grown with stylo (legume) or bahiagrass (grass). Soil metagenomic sequencing indicates that Archaea was more abundant in unplanted soils than in planted soils, and that stylo selected higher abundance of fungi than bahiagrass. When the stylo soils enriched Streptomyces, Frankia, Mycobacterium and Amycolatopsis, the bahiagrass soils enriched Sphingomonas and Sphingobium. NMDS reveals that the legume shaped SMC more greatly than the grass (P < 0.004). SMC functional profiles (KEGG and CAZy) were also greatly altered by plants with the legume being more effective (P < 0.000 and P < 0.000). The abundant microbial taxa contributed to the main community functions, with Conexibacter, Sphingomonas, and Burkholderia showing multifunctionality. Moreover, soil chemical property showed much higher direct effect on SMC structure and functional profiles than soil extracts, although the soil total nitrogen and some compounds (e.g. heptadecane, 1-pentadecyne and nonanoic acid) in soil extracts were best correlated with SMC structure and functional profiles. These findings are the first to suggest that legume species shape SMC more greatly than grass species.
Collapse
Affiliation(s)
- Yang Zhou
- College of Horticulture, South China Agricultural University, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Guangdong Engineering Research Center for Litchi, Guangdong Engineering Research Center for Grass Science, Guangzhou, 510642, China
| | - Honghui Zhu
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangzhou, 510070, China.
| | - Shenglei Fu
- College of Environment and Planning, Henan University, Kaifeng, 475004, China
| | - Qing Yao
- College of Horticulture, South China Agricultural University, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Guangdong Engineering Research Center for Litchi, Guangdong Engineering Research Center for Grass Science, Guangzhou, 510642, China.
| |
Collapse
|
41
|
Gandini R, Reichenbach T, Tan TC, Divne C. Structural basis for dolichylphosphate mannose biosynthesis. Nat Commun 2017; 8:120. [PMID: 28743912 PMCID: PMC5526996 DOI: 10.1038/s41467-017-00187-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 06/06/2017] [Indexed: 12/21/2022] Open
Abstract
Protein glycosylation is a critical protein modification. In biogenic membranes of eukaryotes and archaea, these reactions require activated mannose in the form of the lipid conjugate dolichylphosphate mannose (Dol-P-Man). The membrane protein dolichylphosphate mannose synthase (DPMS) catalyzes the reaction whereby mannose is transferred from GDP-mannose to the dolichol carrier Dol-P, to yield Dol-P-Man. Failure to produce or utilize Dol-P-Man compromises organism viability, and in humans, several mutations in the human dpm1 gene lead to congenital disorders of glycosylation (CDG). Here, we report three high-resolution crystal structures of archaeal DPMS from Pyrococcus furiosus, in complex with nucleotide, donor, and glycolipid product. The structures offer snapshots along the catalytic cycle, and reveal how lipid binding couples to movements of interface helices, metal binding, and acceptor loop dynamics to control critical events leading to Dol-P-Man synthesis. The structures also rationalize the loss of dolichylphosphate mannose synthase function in dpm1-associated CDG. The generation of glycolipid dolichylphosphate mannose (Dol-P-Man) is a critical step for protein glycosylation and GPI anchor synthesis. Here the authors report the structure of dolichylphosphate mannose synthase in complex with bound nucleotide and donor to provide insight into the mechanism of Dol-P-Man synthesis.
Collapse
Affiliation(s)
- Rosaria Gandini
- School of Biotechnology, KTH Royal Institute of Technology, S-10691, Stockholm, Sweden
| | - Tom Reichenbach
- School of Biotechnology, KTH Royal Institute of Technology, S-10691, Stockholm, Sweden
| | - Tien-Chye Tan
- School of Biotechnology, KTH Royal Institute of Technology, S-10691, Stockholm, Sweden
| | - Christina Divne
- School of Biotechnology, KTH Royal Institute of Technology, S-10691, Stockholm, Sweden.
| |
Collapse
|
42
|
Halim A, Anonsen JH. Microbial glycoproteomics. Curr Opin Struct Biol 2017; 44:143-150. [PMID: 28365498 DOI: 10.1016/j.sbi.2017.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/24/2017] [Accepted: 03/06/2017] [Indexed: 02/02/2023]
Abstract
Mass spectrometry-based "-omics" technologies are important tools for global and detailed mapping of post-translational modifications. Protein glycosylation is an abundant and important post translational modification widespread throughout all domains of life. Characterization of glycoproteins, including identification of glycan structure and components, their attachment sites and protein carriers, remains challenging. However, recent advances in glycoproteomics, a subbranch that studies and categorizes protein glycosylations, have greatly expanded the known protein glycosylation space and research in this area is rapidly accelerating. Here, we review recent developments in glycoproteomic technologies with a special focus on microbial protein glycosylation.
Collapse
Affiliation(s)
- Adnan Halim
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark.
| | - Jan Haug Anonsen
- Center for Integrative Microbial Evolution, The Mass Spectrometry and Proteomics Unit, Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway.
| |
Collapse
|
43
|
Eichler J, Guan Z. Lipid sugar carriers at the extremes: The phosphodolichols Archaea use in N-glycosylation. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:589-599. [PMID: 28330764 DOI: 10.1016/j.bbalip.2017.03.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 03/15/2017] [Accepted: 03/17/2017] [Indexed: 11/28/2022]
Abstract
N-glycosylation, a post-translational modification whereby glycans are covalently linked to select Asn residues of target proteins, occurs in all three domains of life. Across evolution, the N-linked glycans are initially assembled on phosphorylated cytoplasmically-oriented polyisoprenoids, with polyprenol (mainly C55 undecaprenol) fulfilling this role in Bacteria and dolichol assuming this function in Eukarya and Archaea. The eukaryal and archaeal versions of dolichol can, however, be distinguished on the basis of their length, degree of saturation and by other traits. As is true for many facets of their biology, Archaea, best known in their capacity as extremophiles, present unique approaches for synthesizing phosphodolichols. At the same time, general insight into the assembly and processing of glycan-bearing phosphodolichols has come from studies of the archaeal enzymes responsible. In this review, these and other aspects of archaeal phosphodolichol biology are addressed.
Collapse
Affiliation(s)
- Jerry Eichler
- Department of Life Sciences, Ben Gurion University of the Negev, Beersheva 84105, Israel.
| | - Ziqiang Guan
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
44
|
N-Glycosylation Is Important for Proper Haloferax volcanii S-Layer Stability and Function. Appl Environ Microbiol 2017; 83:AEM.03152-16. [PMID: 28039139 DOI: 10.1128/aem.03152-16] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 12/28/2016] [Indexed: 12/13/2022] Open
Abstract
N-Glycosylation, the covalent linkage of glycans to select Asn residues of target proteins, is an almost universal posttranslational modification in archaea. However, whereas roles for N-glycosylation have been defined in eukarya and bacteria, the function of archaeal N-glycosylation remains unclear. Here, the impact of perturbed N-glycosylation on the structure and physiology of the haloarchaeon Haloferax volcanii was considered. Cryo-electron microscopy was used to examine right-side-out membrane vesicles prepared from cells of a parent strain and from strains lacking genes encoding glycosyltransferases involved in assembling the N-linked pentasaccharide decorating the surface layer (S-layer) glycoprotein, the sole component of the S-layer surrounding H. volcanii cells. Whereas a regularly repeating S-layer covered the entire surface of vesicles prepared from parent strain cells, vesicles from the mutant cells were only partially covered. To determine whether such N-glycosylation-related effects on S-layer assembly also affected cell function, the secretion of a reporter protein was addressed in the parent and N-glycosylation mutant strains. Compromised S-layer glycoprotein N-glycosylation resulted in impaired transfer of the reporter past the S-layer and into the growth medium. Finally, an assessment of S-layer glycoprotein susceptibility to added proteases in the mutants revealed that in cells lacking AglD, which is involved in adding the final pentasaccharide sugar, a distinct S-layer glycoprotein conformation was assumed in which the N-terminal region was readily degraded. Perturbed N-glycosylation thus affects S-layer glycoprotein folding. These findings suggest that H. volcanii could adapt to changes in its surroundings by modulating N-glycosylation so as to affect S-layer architecture and function.IMPORTANCE Long held to be a process unique to eukaryotes, it is now accepted that bacteria and archaea also perform N-glycosylation, namely, the covalent attachment of sugars to select asparagine residues of target proteins. Yet, while information on the importance of N-glycosylation in eukaryotes and bacteria is available, the role of this posttranslational modification in archaea remains unclear. Here, insight into the purpose of archaeal N-glycosylation was gained by addressing the surface layer (S-layer) surrounding cells of the halophilic species Haloferax volcanii Relying on mutant strains defective in N-glycosylation, such efforts revealed that compromised N-glycosylation affected S-layer integrity and the transfer of a secreted reporter protein across the S-layer into the growth medium, as well as the conformation of the S-layer glycoprotein, the sole component of the S-layer. Thus, by modifying N-glycosylation, H. volcanii cells can change how they interact with their surroundings.
Collapse
|
45
|
Complementation of an aglB Mutant of Methanococcus maripaludis with Heterologous Oligosaccharyltransferases. PLoS One 2016; 11:e0167611. [PMID: 27907170 PMCID: PMC5131992 DOI: 10.1371/journal.pone.0167611] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 11/17/2016] [Indexed: 01/04/2023] Open
Abstract
The oligosaccharyltransferase is the signature enzyme for N-linked glycosylation in all domains of life. In Archaea, this enzyme termed AglB, is responsible for transferring lipid carrier-linked glycans to select asparagine residues in a variety of target proteins including archaellins, S-layer proteins and pilins. This study investigated the ability of a variety of AglBs to compensate for the oligosaccharyltransferase activity in Methanococcus maripaludis deleted for aglB, using archaellin FlaB2 as the reporter protein since all archaellins in Mc. maripaludis are modified at multiple sites by an N-linked tetrasaccharide and this modification is required for archaellation. In the Mc. maripaludis ΔaglB strain FlaB2 runs as at a smaller apparent molecular weight in western blots and is nonarchaellated. We demonstrate that AglBs from Methanococcus voltae and Methanothermococcus thermolithotrophicus functionally replaced the oligosaccharyltransferase activity missing in the Mc. maripaludis ΔaglB strain, both returning the apparent molecular weight of FlaB2 to wildtype size and restoring archaellation. This demonstrates that AglB from Mc. voltae has a relaxed specificity for the linking sugar of the transferred glycan since while the N-linked glycan present in Mc. voltae is similar to that of Mc. maripaludis, the Mc. voltae glycan uses N-acetylglucosamine as the linking sugar. In Mc. maripaludis that role is held by N-acetylgalactosamine. This study also identifies aglB from Mtc. thermolithotrophicus for the first time by its activity. Attempts to use AglB from Methanocaldococcus jannaschii, Haloferax volcanii or Sulfolobus acidocaldarius to functionally replace the oligosaccharyltransferase activity missing in the Mc. maripaludis ΔaglB strain were unsuccessful.
Collapse
|
46
|
Guan Z, Delago A, Nußbaum P, Meyer B, Albers SV, Eichler J. N-glycosylation in the thermoacidophilic archaeon Sulfolobus acidocaldarius involves a short dolichol pyrophosphate carrier. FEBS Lett 2016; 590:3168-78. [PMID: 27490243 DOI: 10.1002/1873-3468.12341] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 07/27/2016] [Accepted: 07/29/2016] [Indexed: 01/31/2023]
Abstract
N-glycosylation is a post-translational modification that occurs across evolution. In the thermoacidophilic archaea Sulfolobus acidocaldarius, glycoproteins are modified by an N-linked tribranched hexasaccharide reminiscent of the N-glycans assembled in Eukarya. Previously, hexose-bearing dolichol phosphate was detected in a S. acidocaldarius Bligh-Dyer lipid extract. Here, we used a specialized protocol for extracting lipid-linked oligosaccharides to detect a dolichol pyrophosphate bearing the intact hexasaccharide, as well as its biosynthetic intermediates. Furthermore, evidence for N-glycosylation of two S. acidocaldarius proteins by the same hexasaccharide and its derivatives was collected. These findings thus provide novel insight into archaeal N-glycosylation.
Collapse
Affiliation(s)
- Ziqiang Guan
- Department of Biochemistry, Duke University Medical Center, Durham, NC, USA
| | - Antonia Delago
- Department of Life Sciences, Ben Gurion University of the Negev, Beersheva, Israel
| | - Phillip Nußbaum
- Molecular Biology of Archaea, Institute for Biology II-Microbiology, Albert-Ludwigs-University of Freiburg, Germany
| | - Benjamin Meyer
- Molecular Biology of Archaea, Institute for Biology II-Microbiology, Albert-Ludwigs-University of Freiburg, Germany
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Institute for Biology II-Microbiology, Albert-Ludwigs-University of Freiburg, Germany
| | - Jerry Eichler
- Department of Life Sciences, Ben Gurion University of the Negev, Beersheva, Israel.
| |
Collapse
|
47
|
Schäffer C, Messner P. Emerging facets of prokaryotic glycosylation. FEMS Microbiol Rev 2016; 41:49-91. [PMID: 27566466 DOI: 10.1093/femsre/fuw036] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/17/2016] [Accepted: 08/01/2016] [Indexed: 12/16/2022] Open
Abstract
Glycosylation of proteins is one of the most prevalent post-translational modifications occurring in nature, with a wide repertoire of biological implications. Pathways for the main types of this modification, the N- and O-glycosylation, can be found in all three domains of life-the Eukarya, Bacteria and Archaea-thereby following common principles, which are valid also for lipopolysaccharides, lipooligosaccharides and glycopolymers. Thus, studies on any glycoconjugate can unravel novel facets of the still incompletely understood fundamentals of protein N- and O-glycosylation. While it is estimated that more than two-thirds of all eukaryotic proteins would be glycosylated, no such estimate is available for prokaryotic glycoproteins, whose understanding is lagging behind, mainly due to the enormous variability of their glycan structures and variations in the underlying glycosylation processes. Combining glycan structural information with bioinformatic, genetic, biochemical and enzymatic data has opened up an avenue for in-depth analyses of glycosylation processes as a basis for glycoengineering endeavours. Here, the common themes of glycosylation are conceptualised for the major classes of prokaryotic (i.e. bacterial and archaeal) glycoconjugates, with a special focus on glycosylated cell-surface proteins. We describe the current knowledge of biosynthesis and importance of these glycoconjugates in selected pathogenic and beneficial microbes.
Collapse
Affiliation(s)
- Christina Schäffer
- Department of NanoBiotechnology, Institute of Biologically Inspired Materials, NanoGlycobiology unit, Universität für Bodenkultur Wien, A-1180 Vienna, Austria
| | - Paul Messner
- Department of NanoBiotechnology, Institute of Biologically Inspired Materials, NanoGlycobiology unit, Universität für Bodenkultur Wien, A-1180 Vienna, Austria
| |
Collapse
|
48
|
Lombard J. The multiple evolutionary origins of the eukaryotic N-glycosylation pathway. Biol Direct 2016; 11:36. [PMID: 27492357 PMCID: PMC4973528 DOI: 10.1186/s13062-016-0137-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 07/26/2016] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND The N-glycosylation is an essential protein modification taking place in the membranes of the endoplasmic reticulum (ER) in eukaryotes and the plasma membranes in archaea. It shares mechanistic similarities based on the use of polyisoprenol lipid carriers with other glycosylation pathways involved in the synthesis of bacterial cell wall components (e.g. peptidoglycan and teichoic acids). Here, a phylogenomic analysis was carried out to examine the validity of rival hypotheses suggesting alternative archaeal or bacterial origins to the eukaryotic N-glycosylation pathway. RESULTS The comparison of several polyisoprenol-based glycosylation pathways from the three domains of life shows that most of the implicated proteins belong to a limited number of superfamilies. The N-glycosylation pathway enzymes are ancestral to the eukaryotes, but their origins are mixed: Alg7, Dpm and maybe also one gene of the glycosyltransferase 1 (GT1) superfamily and Stt3 have proteoarchaeal (TACK superphylum) origins; alg2/alg11 may have resulted from the duplication of the original GT1 gene; the lumen glycosyltransferases were probably co-opted and multiplied through several gene duplications during eukaryogenesis; Alg13/Alg14 are more similar to their bacterial homologues; and Alg1, Alg5 and a putative flippase have unknown origins. CONCLUSIONS The origin of the eukaryotic N-glycosylation pathway is not unique and less straightforward than previously thought: some basic components likely have proteoarchaeal origins, but the pathway was extensively developed before the eukaryotic diversification through multiple gene duplications, protein co-options, neofunctionalizations and even possible horizontal gene transfers from bacteria. These results may have important implications for our understanding of the ER evolution and eukaryogenesis. REVIEWERS This article was reviewed by Pr. Patrick Forterre and Dr. Sergei Mekhedov (nominated by Editorial Board member Michael Galperin).
Collapse
Affiliation(s)
- Jonathan Lombard
- National Evolutionary Synthesis Center, 2024 W. Main Street Suite A200, Durham, NC, 27705, USA.
- Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK.
| |
Collapse
|
49
|
AglM and VNG1048G, Two Haloarchaeal UDP-Glucose Dehydrogenases, Show Different Salt-Related Behaviors. Life (Basel) 2016; 6:life6030031. [PMID: 27527219 PMCID: PMC5041007 DOI: 10.3390/life6030031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 07/27/2016] [Accepted: 07/29/2016] [Indexed: 11/16/2022] Open
|
50
|
Wurch L, Giannone RJ, Belisle BS, Swift C, Utturkar S, Hettich RL, Reysenbach AL, Podar M. Genomics-informed isolation and characterization of a symbiotic Nanoarchaeota system from a terrestrial geothermal environment. Nat Commun 2016; 7:12115. [PMID: 27378076 PMCID: PMC4935971 DOI: 10.1038/ncomms12115] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 06/01/2016] [Indexed: 02/06/2023] Open
Abstract
Biological features can be inferred, based on genomic data, for many microbial lineages that remain uncultured. However, cultivation is important for characterizing an organism's physiology and testing its genome-encoded potential. Here we use single-cell genomics to infer cultivation conditions for the isolation of an ectosymbiotic Nanoarchaeota (‘Nanopusillus acidilobi') and its host (Acidilobus, a crenarchaeote) from a terrestrial geothermal environment. The cells of ‘Nanopusillus' are among the smallest known cellular organisms (100–300 nm). They appear to have a complete genetic information processing machinery, but lack almost all primary biosynthetic functions as well as respiration and ATP synthesis. Genomic and proteomic comparison with its distant relative, the marine Nanoarchaeum equitans illustrate an ancient, common evolutionary history of adaptation of the Nanoarchaeota to ectosymbiosis, so far unique among the Archaea. Many microbial lineages have not yet been cultured, which hampers our understanding of their physiology. Here, Wurch et al. use single-cell genomics to infer cultivation conditions for the isolation of a tiny ectosymbiotic nanoarchaeon and its crenarchaeota host from a geothermal spring.
Collapse
Affiliation(s)
- Louie Wurch
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA.,Department of Microbiology, University of Tennessee, Knoxville, Tennessee 37996, USA
| | | | - Bernard S Belisle
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA.,Department of Microbiology, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Carolyn Swift
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA.,Department of Microbiology, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Sagar Utturkar
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Robert L Hettich
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA.,Department of Microbiology, University of Tennessee, Knoxville, Tennessee 37996, USA
| | | | - Mircea Podar
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA.,Department of Microbiology, University of Tennessee, Knoxville, Tennessee 37996, USA
| |
Collapse
|