1
|
Yan X, Zhu B, Mo C. Effects of feature-based attention on numerosity perception. Perception 2025; 54:362-374. [PMID: 40105651 DOI: 10.1177/03010066251326828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
One of the most remarkable human cognitive abilities is the "sense of number," that is, the almost instantaneous perception of numerosity information in the visual environment. While numerosity perception mirrors primary sensory processing in many aspects, little is known whether and how numerosity perception is influenced by selective attention to numerosity. Here, we investigated the effects of feature-based attention on numerosity perception using the visual search paradigm and the adaptation paradigm, respectively. In the visual search experiment, participants identified the presence of a numerosity-defined outlier among an array of distractors, while in the numerosity adaptation experiment, participants attended to a random dot field whose numerosity either matched or differed from the adaptor. We found a "semiparallel" search pattern in which attention was captured by the numerosity-defined outliers in a time-consuming, rather than an instantaneous manner. Interestingly, reduced numerosity adaptation aftereffects were observed when the attended numerosity matched the numerosity of the adaptor, indicating weakened perceptual representation of numerosity induced by feature-based attention. Our findings show, for the first time, that numerosity serves as a unique unit of nonspatial feature-based attention and that numerosity perception was modulated by feature-based attention via a distinctive mechanism that differed from other primary visual features.
Collapse
Affiliation(s)
- Xin Yan
- Sun-Yat-Sen University, China
| | - Baoyi Zhu
- University of Chinese Academy of Sciences, China
| | - Ce Mo
- Sun-Yat-Sen University, China
| |
Collapse
|
2
|
Theves S. Thinking as Analogy-Making: Toward a Neural Process Account of General Intelligence. J Neurosci 2025; 45:e1555242025. [PMID: 40306976 PMCID: PMC12044041 DOI: 10.1523/jneurosci.1555-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 02/27/2025] [Accepted: 03/03/2025] [Indexed: 05/02/2025] Open
Abstract
What is the secret of human intelligence? A key discovery in psychology is that performance correlations across diverse cognitive tasks are explained by a few broad abilities and one overarching general factor, which is also predictive of real-life achievements. Whether these factors correspond to biological processes is a century-old debate. While previous research focused on localizing their correlates in brain structure, connectivity, and activation levels, the mechanisms of neural information processing related to intelligence are still unexplored. I outline a new approach integrating psychometrics with neuroscientific advances in identifying the computations underlying single tasks from their representational geometry to provide a novel perspective on this topic. In particular, I propose a neural process account of the general factor that builds on the central role of structure mapping-the process of abstracting and reasoning based on relational knowledge-in human cognition. Neural coding properties in the hippocampal and prefrontal-parietal systems that enable inferential leaps through structural abstraction might contribute to the general factor. In general, integrating neuro-representational and psychometric research has the potential to uncover core principles of natural intelligence.
Collapse
Affiliation(s)
- Stephanie Theves
- Max Planck Institute for Empirical Aesthetics, Frankfurt am Main 60322, Germany
| |
Collapse
|
3
|
Farshad M, Barth B, Svaldi J, Artemenko C, Schroeder PA. Outbalanced: The cross-cortical effects of prefrontal neuromodulation in posterior parietal cortex. Cortex 2025; 185:96-112. [PMID: 40014897 DOI: 10.1016/j.cortex.2025.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/19/2024] [Accepted: 01/12/2025] [Indexed: 03/01/2025]
Abstract
Cognitive phenomena such as the Spatial-Numerical Association of Response Codes (SNARC) effect can arise in the fronto-parietal cortical network. Prior neuromodulation studies with cathodal transcranial direct current stimulation (tDCS) over the left prefrontal cortex (PFC) reduced the SNARC effect. Prior neuroimaging studies with functional near-infrared spectroscopy (fNIRS), however, showed signatures of the SNARC effect in the posterior parietal cortex (PPC). In this study, we investigated the distant neural effect of prefrontal neuromodulation on hemodynamic activity in the parietal cortex by combining cathodal tDCS with fNIRS. The SNARC effect and the numerical distance effect (NDE) were assessed in an event-related cross-over design (N = 45), when cathodal tDCS of 1 mA at the left PFC was applied simultaneously during the measurement of fNIRS covering the bilateral PPC. At the behavioral level, prefrontal tDCS did not significantly reduce the SNARC effect, indicating that the replication failed here. Crucially, at the neuronal level, prefrontal tDCS reduced left parietal activation associated with the SNARC effect but not with the NDE. This neuronal effect of tDCS in a remote site was shown in preregistered primary region-of-interest analyses and in secondary all-channel analyses. The results showed how the combination of neuromodulation and neuroimaging shed light on the fronto-parietal network responsible for numerical cognition, and how fNIRS can assess the distant neural effects of cathodal tDCS.
Collapse
Affiliation(s)
- Maryam Farshad
- Department of Psychology, Clinical Psychology & Psychotherapy, University of Tübingen, Tübingen, Germany.
| | - Beatrix Barth
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health, University Hospital Tübingen, Tübingen, Germany; German Center for Mental Health (DZPG), Partner Site Tübingen, Germany.
| | - Jennifer Svaldi
- Department of Psychology, Clinical Psychology & Psychotherapy, University of Tübingen, Tübingen, Germany; German Center for Mental Health (DZPG), Partner Site Tübingen, Germany; LEAD Graduate School & Research Network, Germany.
| | - Christina Artemenko
- German Center for Mental Health (DZPG), Partner Site Tübingen, Germany; LEAD Graduate School & Research Network, Germany; Department of Psychology, Diagnostics and Cognitive Neuropsychology, University of Tübingen, Tübingen, Germany.
| | - Philipp A Schroeder
- Department of Psychology, Clinical Psychology & Psychotherapy, University of Tübingen, Tübingen, Germany; German Center for Mental Health (DZPG), Partner Site Tübingen, Germany.
| |
Collapse
|
4
|
Cha O. Categorical frequency judgments as effective ensemble judgments for object features. Sci Rep 2025; 15:10531. [PMID: 40148393 PMCID: PMC11950181 DOI: 10.1038/s41598-025-93760-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 03/10/2025] [Indexed: 03/29/2025] Open
Abstract
The present study explored the potential of categorical frequency judgments as effective ensemble judgments, motivated by the observation that most studies on ensemble judgments have focused on univariate statistics, such as mean and variance. However, these univariate statistics may not fully capture the complexity of real-world tasks that require judgments on complex object features. In such cases, categorical statistics like mode (the most frequent instance in a set) and diversity (the number of different instances in a set) may provide more relevant information. For instance, when a speaker enters an auditorium and scans her audience, relative frequencies of different emotional expressions could be more useful than the representation of the average face with a potentially faint expression. Study 1 examined the relationship between mode judgment and diversity comparison in facial identities, while Study 2 extended the examination of mode judgments across different object categories (faces and blobs). The results indicate that categorical frequency judgments share behavioral variability across tasks and object categories, supporting their potential as effective ensemble judgments. Future research may explore how these categorical frequency judgments interact with univariate statistical judgments to enhance our understanding of ensemble judgments.
Collapse
Affiliation(s)
- Oakyoon Cha
- Department of Psychology, Sogang University, Seoul, 04107, Republic of Korea.
- Department of Psychology, Sungshin Women's University, Seoul, 02844 , Republic of Korea.
| |
Collapse
|
5
|
Kido T, Yotsumoto Y, Hayashi MJ. Hierarchical representations of relative numerical magnitudes in the human frontoparietal cortex. Nat Commun 2025; 16:419. [PMID: 39762208 PMCID: PMC11704262 DOI: 10.1038/s41467-024-55599-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
The ability to estimate numerical magnitude is essential for decision-making and is thought to underlie arithmetic skills. In humans, neural populations in the frontoparietal regions are tuned to represent numerosity. However, it remains unclear whether their response properties are fixed to a specific numerosity (i.e., absolute code) or dynamically scaled according to the range of numerosities relevant to the context (i.e., relative code). Here, using functional magnetic resonance imaging combined with multivariate pattern analysis, we uncover evidence that representations of relative numerosity coding emerge gradually as visual information processing advances in the frontoparietal regions. In contrast, the early sensory areas predominantly exhibit absolute coding. These findings indicate a hierarchical organization of relative numerosity representations that adapt their response properties according to the context. Our results highlight the existence of a context-dependent optimization mechanism in numerosity representation, enabling the efficient processing of infinite magnitude information with finite neural resources.
Collapse
Affiliation(s)
- Teruaki Kido
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
- Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology, Suita, Japan
| | - Yuko Yotsumoto
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan.
| | - Masamichi J Hayashi
- Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology, Suita, Japan.
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan.
| |
Collapse
|
6
|
Caponi C, Castaldi E, Grasso PA, Arrighi R. Feature-selective adaptation of numerosity perception. Proc Biol Sci 2025; 292:20241841. [PMID: 39876730 PMCID: PMC11775598 DOI: 10.1098/rspb.2024.1841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/03/2024] [Accepted: 01/03/2025] [Indexed: 01/30/2025] Open
Abstract
Perceptual adaptation has been widely used to infer the existence of numerosity detectors, enabling animals to quickly estimate the number of objects in a scene. Here, we investigated, in humans, whether numerosity adaptation is influenced by stimulus feature changes as previous research suggested that adaptation is reduced when the colour of adapting and test stimuli did not match. We tested whether such adaptation reduction is due to unspecific novelty effects or changes of stimuli identity. Numerosity adaptation was measured for stimuli matched or unmatched for low-level (colour, luminance, shape and motion) or high-level (letters' identity and face emotions) features. Robust numerosity adaptation occurred in all conditions, but it was reduced when adapting and test stimuli differed for colour, luminance and shape. However, no reduction was observed between moving and still stimuli, a readable change that did not affect the item's identity. Similarly, changes in letters' spatial rotations or face features did not affect adaptation magnitude. Overall, changes in stimulus identity defined by low-level features, rather than novelty in general, determined the strength of the adaptation effects, provided these changes were readily noticeable. These findings suggest that numerosity mechanisms operate on categorized items in addition to the total quantity of the set.
Collapse
Affiliation(s)
- Camilla Caponi
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy
| | - Elisa Castaldi
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy
| | | | - Roberto Arrighi
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy
| |
Collapse
|
7
|
Abstract
The human brain possesses neural networks and mechanisms enabling the representation of numbers, basic arithmetic operations, and mathematical reasoning. Without the ability to represent numerical quantity and perform calculations, our scientifically and technically advanced culture would not exist. However, the origins of numerical abilities are grounded in an intuitive understanding of quantity deeply rooted in biology. Nevertheless, more advanced symbolic arithmetic skills require a cultural background with formal mathematical education. In the past two decades, cognitive neuroscience has seen significant progress in understanding the workings of the calculating brain through various methods and model systems. This review begins by exploring the mental and neuronal representations of nonsymbolic numerical quantity and then progresses to symbolic representations acquired in childhood. During arithmetic operations (addition, subtraction, multiplication, and division), these representations are processed and transformed according to arithmetic rules and principles, leveraging different mental strategies and types of arithmetic knowledge that can be dissociated in the brain. Although it was once believed that number processing and calculation originated from the language faculty, it is now evident that mathematical and linguistic abilities are primarily processed independently in the brain. Understanding how the healthy brain processes numerical information is crucial for gaining insights into debilitating numerical disorders, including acquired conditions like acalculia and learning-related calculation disorders such as developmental dyscalculia.
Collapse
Affiliation(s)
- Andreas Nieder
- Animal Physiology Unit, Institute of Neurobiology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
8
|
Johnston WJ, Fine JM, Yoo SBM, Ebitz RB, Hayden BY. Semi-orthogonal subspaces for value mediate a binding and generalization trade-off. Nat Neurosci 2024; 27:2218-2230. [PMID: 39289564 DOI: 10.1038/s41593-024-01758-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 08/09/2024] [Indexed: 09/19/2024]
Abstract
When choosing between options, we must associate their values with the actions needed to select them. We hypothesize that the brain solves this binding problem through neural population subspaces. Here, in macaques performing a choice task, we show that neural populations in five reward-sensitive regions encode the values of offers presented on the left and right in distinct subspaces. This encoding is sufficient to bind offer values to their locations while preserving abstract value information. After offer presentation, all areas encode the value of the first and second offers in orthogonal subspaces; this orthogonalization also affords binding. Our binding-by-subspace hypothesis makes two new predictions confirmed by the data. First, behavioral errors should correlate with spatial, but not temporal, neural misbinding. Second, behavioral errors should increase when offers have low or high values, compared to medium values, even when controlling for value difference. Together, these results support the idea that the brain uses semi-orthogonal subspaces to bind features.
Collapse
Affiliation(s)
- W Jeffrey Johnston
- Center for Theoretical Neuroscience and Mortimer B. Zuckerman Mind, Brain, and Behavior Institute, Columbia University, New York, NY, USA.
| | - Justin M Fine
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Seng Bum Michael Yoo
- Department of Biomedical Engineering, Sunkyunkwan University, and Center for Neuroscience Imaging Research, Institute of Basic Sciences, Suwon, Republic of Korea
| | - R Becket Ebitz
- Department of Neuroscience, Université de Montréal, Montreal, Quebec, Canada
| | - Benjamin Y Hayden
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
9
|
Liang T, Rong KL, Qiao JD, Ke Y, Yung WH. Automatic Experimental Numerosity Generation and Numerical Training for Rodents. Curr Protoc 2024; 4:e70044. [PMID: 39531170 DOI: 10.1002/cpz1.70044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Non-symbolic stimuli representing numerosities are invariably associated with continuous magnitudes, complicating the interpretation of experimental studies on numerosity perception. Although various algorithms for experimental numerosity generation have been proposed, they do not consider the quantifiable distribution of values of continuous magnitudes and the degree of numerosity-magnitudes association. Consequently, they cannot thoroughly exclude the possibility of magnitudes integration or strategy switch between different magnitudes in numerical stimulus perception. Here, we introduce a protocol for numerosity generation, animal training, and behavior outcomes analysis that takes the aforementioned issues into consideration. This protocol has been applied to rodents and is applicable to other animals in numerosity studies. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Algorithm for generating non-symbolic numerical stimuli Alternate Protocol: General algorithm for generating non-symbolic numerical stimuli Basic Protocol 2: Numerical training and testing for rodents.
Collapse
Affiliation(s)
- Tuo Liang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Kang-Lin Rong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Jing-Da Qiao
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Ya Ke
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Wing-Ho Yung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Department of Neuroscience, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
10
|
Benedetto A, Chelli E, Petrizzo I, Arrighi R, Anobile G. The role of motor effort on the sensorimotor number system. PSYCHOLOGICAL RESEARCH 2024; 88:2432-2443. [PMID: 38980356 PMCID: PMC11522110 DOI: 10.1007/s00426-024-02002-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024]
Abstract
The integration of numerical information with motor processes has emerged as a fascinating area of investigation in both animal and human cognition. The interest in a sensorimotor number system has recently generated neurophysiological and psychophysical evidence which combine to highlight the importance of motor functions in the encoding of numerical information. Nevertheless, several key questions remain, such as the influence of non-numerical motor parameters over numerical perception. Here we tested the role of physical effort, a parameter positively correlated with the number of actions, in modulating the link between hand-actions and visual numerosity perception. Effort was manipulated during sensorimotor adaptation as well as during a new actions-estimation paradigm. The results of Experiment 1 shows that physical effort in the absence of actions (passive effort) is not sufficient to activate the sensorimotor number system, indicating that self-produced actions are instead necessary. Further experiments demonstrated that effort is marginally integrated during motor adaptation (Experiment 2) but discarded when estimating the number of self-produced hand actions (Experiment 3). Overall, the results indicate that the sensorimotor number system is largely fed by the number of discrete actions rather than the amount of effort but also indicates that effort (under specific circumstances) might be integrated. These findings provide novel insights into the sensorimotor numerical integration, paving the way for future investigations, such as on its functional role.
Collapse
Affiliation(s)
- Alessandro Benedetto
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy
| | - Eleonora Chelli
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy
- School of Psychology, The University of Sydney, Sydney, Australia
| | - Irene Petrizzo
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy
- Center for Mind/Brain Science, University of Trento, Rovereto, Italy
| | - Roberto Arrighi
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy
| | - Giovanni Anobile
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy.
| |
Collapse
|
11
|
Kutter EF, Dehnen G, Borger V, Surges R, Nieder A, Mormann F. Single-neuron representation of nonsymbolic and symbolic number zero in the human medial temporal lobe. Curr Biol 2024; 34:4794-4802.e3. [PMID: 39321795 DOI: 10.1016/j.cub.2024.08.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/06/2024] [Accepted: 08/22/2024] [Indexed: 09/27/2024]
Abstract
The number zero holds a special status among numbers, indispensable for developing a comprehensive number theory.1,2,3,4 Despite its importance in mathematics, the neuronal foundation of zero in the human brain is unknown. We conducted single-neuron recordings in neurosurgical patients5,6,7 while they made judgments involving nonsymbolic number representations (dot numerosity), including the empty set, and symbolic numbers (Arabic numerals), including numeral zero. Neurons showed responsiveness to either the empty set or numeral zero, but not both. Neuronal activity to zero in both nonsymbolic and symbolic formats exhibited a numerical distance effect, indicating that zero representations are integrated together with countable numerosities and positive integers at the low end of the number line.8,9 A boundary in neuronal coding existed between the nonsymbolic empty set and small numerosities, correlating with the relative difficulty in discriminating numerosity zero behaviorally. Conversely, no such boundary was found for symbolic zero activity, suggesting that symbolic representations integrate zero with other numerals along the number line, reconciling its outlier role. The status of zero as a special nonsymbolic numerical quantity is reflected in the activity of neurons in the human brain, which seems to serve as a scaffold for more advanced representations of zero as a symbolic number.
Collapse
Affiliation(s)
- Esther F Kutter
- Department of Epileptology, University of Bonn Medical Center, Venusberg-Campus 1, 53127 Bonn, Germany; Animal Physiology, Institute of Neurobiology, University of Tübingen, 72076 Tübingen, Germany
| | - Gert Dehnen
- Department of Epileptology, University of Bonn Medical Center, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Valeri Borger
- Department of Neurosurgery, University of Bonn Medical Center, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Rainer Surges
- Department of Epileptology, University of Bonn Medical Center, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Andreas Nieder
- Animal Physiology, Institute of Neurobiology, University of Tübingen, 72076 Tübingen, Germany.
| | - Florian Mormann
- Department of Epileptology, University of Bonn Medical Center, Venusberg-Campus 1, 53127 Bonn, Germany.
| |
Collapse
|
12
|
Wang M, Xie Z, Wang T, Dong S, Ma Z, Zhang X, Li X, Yuan Y. Low-intensity transcranial ultrasound stimulation improves memory behavior in an ADHD rat model by modulating cortical functional network connectivity. Neuroimage 2024; 299:120841. [PMID: 39244077 DOI: 10.1016/j.neuroimage.2024.120841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/09/2024] Open
Abstract
Working memory in attention deficit hyperactivity disorder (ADHD) is closely related to cortical functional network connectivity (CFNC), such as abnormal connections between the frontal, temporal, occipital cortices and with other brain regions. Low-intensity transcranial ultrasound stimulation (TUS) has the advantages of non-invasiveness, high spatial resolution, and high penetration depth and can improve ADHD memory behavior. However, how it modulates CFNC in ADHD and the CFNC mechanism that improves working memory behavior in ADHD remain unclear. In this study, we observed working memory impairment in ADHD rats, establishing a corresponding relationship between changes in CFNCs and the behavioral state during the working memory task. Specifically, we noted abnormalities in the information transmission and processing capabilities of CFNC in ADHD rats while performing working memory tasks. These abnormalities manifested in the network integration ability of specific areas, as well as the information flow and functional differentiation of CFNC. Furthermore, our findings indicate that TUS effectively enhances the working memory ability of ADHD rats by modulating information transmission, processing, and integration capabilities, along with adjusting the information flow and functional differentiation of CFNC. Additionally, we explain the CFNC mechanism through which TUS improves working memory in ADHD. In summary, these findings suggest that CFNCs are important in working memory behaviors in ADHD.
Collapse
Affiliation(s)
- Mengran Wang
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China; Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, Qinhuangdao 066004, China
| | - Zhenyu Xie
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China; Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, Qinhuangdao 066004, China
| | - Teng Wang
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China; Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, Qinhuangdao 066004, China
| | - Shuxun Dong
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China; Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, Qinhuangdao 066004, China
| | - Zhenfang Ma
- Department of Rehabilitation, Hebei General Hospital, Shijiazhuang 050000, China
| | - Xiangjian Zhang
- Department of Neurology, Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Xin Li
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China; Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, Qinhuangdao 066004, China.
| | - Yi Yuan
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China; Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, Qinhuangdao 066004, China.
| |
Collapse
|
13
|
Prado J, Knops A. Spatial attention in mental arithmetic: A literature review and meta-analysis. Psychon Bull Rev 2024; 31:2036-2057. [PMID: 38565841 DOI: 10.3758/s13423-024-02499-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2024] [Indexed: 04/04/2024]
Abstract
We review the evidence for the conceptual association between arithmetic and space and quantify the effect size in meta-analyses. We focus on three effects: (a) the operational momentum effect (OME), which has been defined as participants' tendency to overestimate results of addition problems and underestimate results of subtraction problems; (b) the arithmetic cueing effect, in which arithmetic problems serve as spatial cues in target detection or temporal order judgment tasks; and (c) the associations between arithmetic and space observed with eye- and hand-tracking studies. The OME was consistently found in paradigms that provided the participants with numerical response alternatives. The OME shows a large effect size, driven by an underestimation during subtraction while addition was unbiased. In contrast, paradigms in which participants indicated their estimate by transcoding their final estimate to a spatial reference frame revealed no consistent OME. Arithmetic cueing studies show a reliable small to medium effect size, driven by a rightward bias for addition. Finally, eye- and hand-tracking studies point to replicable associations between arithmetic and eye or hand movements. To account for the complexity of the observed pattern, we introduce the Adaptive Pathways in Mental Arithmetic (APiMA) framework. The model accommodates central notions of numerical and arithmetic processing and helps identifying which pathway a given paradigm operates on. It proposes that the divergence between OME and arithmetic cueing studies comes from the predominant use of non-symbolic versus symbolic stimuli, respectively. Overall, our review and findings clearly support an association between arithmetic and spatial processing.
Collapse
Affiliation(s)
- Jérôme Prado
- Centre de Recherche en Neurosciences de Lyon (CRNL), INSERM U1028 - CNRS UMR5292, Université de Lyon, Lyon, France
| | - André Knops
- Université Paris Cité, LaPsyDÉ, CNRS, F-75005, Paris, France.
| |
Collapse
|
14
|
Li Z, Fang H, Fan W, Wu J, Cui J, Li BM, Wang C. Brain markers of subtraction and multiplication skills in childhood: task-based functional connectivity and individualized structural similarity. Cereb Cortex 2024; 34:bhae374. [PMID: 39329357 DOI: 10.1093/cercor/bhae374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/20/2024] [Accepted: 08/30/2024] [Indexed: 09/28/2024] Open
Abstract
Arithmetic, a high-order cognitive ability, show marked individual difference over development. Despite recent advancements in neuroimaging techniques have enabled the identification of brain markers for individual differences in high-order cognitive abilities, it remains largely unknown about the brain markers for arithmetic. This study used a data-driven connectome-based prediction model to identify brain markers of arithmetic skills from arithmetic-state functional connectivity and individualized structural similarity in 132 children aged 8 to 15 years. We found that both subtraction-state functional connectivity and individualized SS successfully predicted subtraction and multiplication skills but multiplication-state functional connectivity failed to predict either skill. Among the four successful prediction models, most predictive connections were located in frontal-parietal, default-mode, and secondary visual networks. Further computational lesion analyses revealed the essential structural role of frontal-parietal network in predicting subtraction and the essential functional roles of secondary visual, language, and ventral multimodal networks in predicting multiplication. Finally, a few shared nodes but largely nonoverlapping functional and structural connections were found to predict subtraction and multiplication skills. Altogether, our findings provide new insights into the brain markers of arithmetic skills in children and highlight the importance of studying different connectivity modalities and different arithmetic domains to advance our understanding of children's arithmetic skills.
Collapse
Affiliation(s)
- Zheng Li
- Institute of Brain Science, School of Basic Medical Sciences, Hangzhou Normal University, Yuhangtang Road 2318, Yuhang District, Hangzhou 311121, China
- Zhejiang Philosophy and Social Science Laboratory for Research in Early Development and Childcare, Hangzhou Normal University, Yuhangtang Road 2318, Yuhang District, Hangzhou 311121, China
| | - Haifeng Fang
- Institute of Brain Science, School of Basic Medical Sciences, Hangzhou Normal University, Yuhangtang Road 2318, Yuhang District, Hangzhou 311121, China
- Zhejiang Philosophy and Social Science Laboratory for Research in Early Development and Childcare, Hangzhou Normal University, Yuhangtang Road 2318, Yuhang District, Hangzhou 311121, China
| | - Weiguo Fan
- Institute of Brain Science, School of Basic Medical Sciences, Hangzhou Normal University, Yuhangtang Road 2318, Yuhang District, Hangzhou 311121, China
- Zhejiang Philosophy and Social Science Laboratory for Research in Early Development and Childcare, Hangzhou Normal University, Yuhangtang Road 2318, Yuhang District, Hangzhou 311121, China
| | - Jiaoyu Wu
- Institute of Brain Science, School of Basic Medical Sciences, Hangzhou Normal University, Yuhangtang Road 2318, Yuhang District, Hangzhou 311121, China
- Zhejiang Philosophy and Social Science Laboratory for Research in Early Development and Childcare, Hangzhou Normal University, Yuhangtang Road 2318, Yuhang District, Hangzhou 311121, China
| | - Jiaxin Cui
- College of Education, Hebei Normal University, South Second Ring Road 20, Shijiazhuang 050016, China
| | - Bao-Ming Li
- Institute of Brain Science, School of Basic Medical Sciences, Hangzhou Normal University, Yuhangtang Road 2318, Yuhang District, Hangzhou 311121, China
- Zhejiang Philosophy and Social Science Laboratory for Research in Early Development and Childcare, Hangzhou Normal University, Yuhangtang Road 2318, Yuhang District, Hangzhou 311121, China
| | - Chunjie Wang
- Institute of Brain Science, School of Basic Medical Sciences, Hangzhou Normal University, Yuhangtang Road 2318, Yuhang District, Hangzhou 311121, China
- Department of Psychology, Jing Hengyi School of Education, Hangzhou Normal University, Yuhangtang Road 2318, Yuhang District, Hangzhou 311121, China
| |
Collapse
|
15
|
Luo J, Yokoi I, Dumoulin SO, Takemura H. Bistable perception of symbolic numbers. J Vis 2024; 24:12. [PMID: 39287596 PMCID: PMC11421664 DOI: 10.1167/jov.24.9.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/03/2024] [Indexed: 09/19/2024] Open
Abstract
Numerals, that is, semantic expressions of numbers, enable us to have an exact representation of the amount of things. Visual processing of numerals plays an indispensable role in the recognition and interpretation of numbers. Here, we investigate how visual information from numerals is processed to achieve semantic understanding. We first found that partial occlusion of some digital numerals introduces bistable interpretations. Next, by using the visual adaptation method, we investigated the origin of this bistability in human participants. We showed that adaptation to digital and normal Arabic numerals, as well as homologous shapes, but not Chinese numerals, biases the interpretation of a partially occluded digital numeral. We suggest that this bistable interpretation is driven by intermediate shape processing stages of vision, that is, by features more complex than local visual orientations, but more basic than the abstract concepts of numerals.
Collapse
Affiliation(s)
- Junxiang Luo
- Division of Sensory and Cognitive Brain Mapping, Department of System Neuroscience, National Institute for Physiological Sciences, Okazaki, Japan
| | - Isao Yokoi
- Division of Sensory and Cognitive Brain Mapping, Department of System Neuroscience, National Institute for Physiological Sciences, Okazaki, Japan
- Technical Division, National Institute for Physiological Sciences, Okazaki, Japan
| | - Serge O Dumoulin
- Spinoza Centre for Neuroimaging, Amsterdam, the Netherlands
- Computational Cognitive Neuroscience and Neuroimaging, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
- Experimental and Applied Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Experimental Psychology, Utrecht University, Utrecht, the Netherlands
| | - Hiromasa Takemura
- Division of Sensory and Cognitive Brain Mapping, Department of System Neuroscience, National Institute for Physiological Sciences, Okazaki, Japan
- The Graduate Institute for Advanced Studies, SOKENDAI, Hayama, Japan
- Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology, Suita, Japan
| |
Collapse
|
16
|
Ren X, Libertus ME. (Dis)similarities between non-symbolic and symbolic number representations: Insights from vector space models. Acta Psychol (Amst) 2024; 248:104374. [PMID: 38908226 DOI: 10.1016/j.actpsy.2024.104374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 06/20/2024] [Accepted: 06/20/2024] [Indexed: 06/24/2024] Open
Abstract
Empirical evidence in support of a shared system for non-symbolic and symbolic number processing has been inconclusive. The current study aims to address this question in a novel way, specifically by testing whether the efficient coding principle based on co-occurrence of number symbols in natural language holds for both non-symbolic and symbolic number processing. The efficient coding principle postulates that perception is optimized when stimuli frequently co-occur in a natural environment. We hypothesized that both numerical ratios and co-occurrence frequencies of symbolic numbers would significantly influence participants' performance on a non-symbolic and symbolic number comparison task. To test this hypothesis, we employed latent semantic analysis on a TASA corpus to quantify number co-occurrence in natural language and calculate language similarity estimates. We engaged 73 native English speakers (mean age = 19.36, standard deviation = 1.83) with normal or corrected vision and no learning disorders in a number comparison task involving non-symbolic (dot arrays) and symbolic stimuli (Arabic numerals and English number words). Results showed that numerical ratios significantly predicted participants' performances across all number formats (ps < 0.001). Language similarity estimates derived from everyday language also predicted performance on the non-symbolic task and the symbolic task involving number words (ps < 0.007). Our results highlight the complex nature of numerical processing, pointing to the co-occurrence of number symbols in natural language as an auxiliary factor in understanding the shared characteristics between non-symbolic and symbolic number representations. Given that our study focused on a limited number range (5 to 16) and a specific task type, future studies should explore a wider range of tasks and numbers to further test the role of the efficient coding principle in number processing.
Collapse
Affiliation(s)
- Xueying Ren
- Department of Psychology, University of Pittsburgh, Pittsburgh 15260, PA, USA; Learning Research and Development Center, University of Pittsburgh, Pittsburgh 15260, PA, USA; Center for the Neural Basis of Cognition, Pittsburgh 15260, PA, USA.
| | - Melissa E Libertus
- Department of Psychology, University of Pittsburgh, Pittsburgh 15260, PA, USA; Learning Research and Development Center, University of Pittsburgh, Pittsburgh 15260, PA, USA; Center for the Neural Basis of Cognition, Pittsburgh 15260, PA, USA
| |
Collapse
|
17
|
Lõoke M, Guérineau C, Broseghini A, Mongillo P, Marinelli L. Visual continuum in non-human animals: serial dependence revealed in dogs. Proc Biol Sci 2024; 291:20240051. [PMID: 39045690 PMCID: PMC11267470 DOI: 10.1098/rspb.2024.0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/18/2024] [Accepted: 06/04/2024] [Indexed: 07/25/2024] Open
Abstract
Serial dependence is a recently described phenomenon by which the perceptual evaluation of a stimulus is biased by a previously attended one. By integrating stimuli over time, serial dependence is believed to ensure a stable conscious experience. Despite increasing studies in humans, it is unknown if the process occurs also in other species. Here, we assessed whether serial dependence occurs in dogs. To this aim, dogs were trained on a quantity discrimination task before being presented with a discrimination where one of the discriminanda was preceded by a task-irrelevant stimulus. If dogs are susceptible to serial dependence, the task-irrelevant stimulus was hypothesized to influence the perception of the subsequently presented quantity. Our results revealed that dogs perceived the currently presented quantity to be closer to the one presented briefly before, in accordance with serial dependence. The direction and strength of the effect were comparable to those observed in humans. Data regarding dogs' attention during the task suggest that dogs used two different quantity estimation mechanisms, an indication of a higher cognitive mechanism involved in the process. The present results are the first empirical evidence that serial dependence extends beyond humans, suggesting that the mechanism is shared by phylogenetically distant mammals.
Collapse
Affiliation(s)
- Miina Lõoke
- Dipartimento di Biomedicina Comparata e Alimentazione, University of Padua, Legnaro, PD35020, Italy
| | - Cécile Guérineau
- Dipartimento di Biomedicina Comparata e Alimentazione, University of Padua, Legnaro, PD35020, Italy
| | - Anna Broseghini
- Dipartimento di Biomedicina Comparata e Alimentazione, University of Padua, Legnaro, PD35020, Italy
| | - Paolo Mongillo
- Dipartimento di Biomedicina Comparata e Alimentazione, University of Padua, Legnaro, PD35020, Italy
| | - Lieta Marinelli
- Dipartimento di Biomedicina Comparata e Alimentazione, University of Padua, Legnaro, PD35020, Italy
| |
Collapse
|
18
|
Guo J, Wei W. Factors influencing the role of inhibitory control in non-symbolic numerical processing. Acta Psychol (Amst) 2024; 248:104346. [PMID: 38870687 DOI: 10.1016/j.actpsy.2024.104346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 05/10/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024] Open
Abstract
Previous studies have found that inhibitory control plays an important role in non-symbolic numerical processing. However, this role may be influenced by the visual cue control method or the stimulus' presentation time. We investigated these questions by conducting three experiments using a priming paradigm to compare the level of inhibitory control in a sequential dot comparison task with single-dimensional and multi-dimensional control of visual cues under two presentation time conditions (300 ms and 1500 ms). We found that neither the method of visual cue control nor the presentation time of dot arrays affected the level of inhibitory control in the dot comparison task. These results reveal a stable role of inhibitory control in non-symbolic numerical processing, providing further evidence for integrating numerical and visual information during non-symbolic numerical processing.
Collapse
Affiliation(s)
- Junzhen Guo
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hang Zhou 310028, China
| | - Wei Wei
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hang Zhou 310028, China.
| |
Collapse
|
19
|
Jurewicz K, Sleezer BJ, Mehta PS, Hayden BY, Ebitz RB. Irrational choices via a curvilinear representational geometry for value. Nat Commun 2024; 15:6424. [PMID: 39080250 PMCID: PMC11289086 DOI: 10.1038/s41467-024-49568-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/06/2024] [Indexed: 08/02/2024] Open
Abstract
We make decisions by comparing values, but it is not yet clear how value is represented in the brain. Many models assume, if only implicitly, that the representational geometry of value is linear. However, in part due to a historical focus on noisy single neurons, rather than neuronal populations, this hypothesis has not been rigorously tested. Here, we examine the representational geometry of value in the ventromedial prefrontal cortex (vmPFC), a part of the brain linked to economic decision-making, in two male rhesus macaques. We find that values are encoded along a curved manifold in vmPFC. This curvilinear geometry predicts a specific pattern of irrational decision-making: that decision-makers will make worse choices when an irrelevant, decoy option is worse in value, compared to when it is better. We observe this type of irrational choices in behavior. Together, these results not only suggest that the representational geometry of value is nonlinear, but that this nonlinearity could impose bounds on rational decision-making.
Collapse
Affiliation(s)
- Katarzyna Jurewicz
- Department of Neurosciences, Faculté de médecine, and Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage, Université de Montréal, Montréal, QC, Canada
- Department of Physiology, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC, Canada
| | - Brianna J Sleezer
- Department of Neuroscience, Center for Magnetic Resonance Research, and Center for Neuroengineering, University of Minnesota, Minneapolis, MN, USA
| | - Priyanka S Mehta
- Department of Neuroscience, Center for Magnetic Resonance Research, and Center for Neuroengineering, University of Minnesota, Minneapolis, MN, USA
- Psychology Program, Department of Human Behavior, Justice, and Diversity, University of Wisconsin, Superior, Superior, WI, USA
| | - Benjamin Y Hayden
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - R Becket Ebitz
- Department of Neurosciences, Faculté de médecine, and Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
20
|
Xie Y, Chang H, Zhang Y, Wang C, Zhang Y, Chen L, Geng F, Ku Y, Menon V, Chen F. Long-term abacus training gains in children are predicted by medial temporal lobe anatomy and circuitry. Dev Sci 2024; 27:e13489. [PMID: 38421061 PMCID: PMC11161333 DOI: 10.1111/desc.13489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 03/02/2024]
Abstract
Abacus-based mental calculation (AMC) is a widely used educational tool for enhancing math learning, offering an accessible and cost-effective method for classroom implementation. Despite its universal appeal, the neurocognitive mechanisms that drive the efficacy of AMC training remain poorly understood. Notably, although abacus training relies heavily on the rapid recall of number positions and sequences, the role of memory systems in driving long-term AMC learning remains unknown. Here, we sought to address this gap by investigating the role of the medial temporal lobe (MTL) memory system in predicting long-term AMC training gains in second-grade children, who were longitudinally assessed up to fifth grade. Leveraging multimodal neuroimaging data, we tested the hypothesis that MTL systems, known for their involvement in associative memory, are instrumental in facilitating AMC-induced improvements in math skills. We found that gray matter volume in bilateral MTL, along with functional connectivity between the MTL and frontal and ventral temporal-occipital cortices, significantly predicted learning gains. Intriguingly, greater gray matter volume but weaker connectivity of the posterior parietal cortex predicted better learning outcomes, offering a more nuanced view of brain systems at play in AMC training. Our findings not only underscore the critical role of the MTL memory system in AMC training but also illuminate the neurobiological factors contributing to individual differences in cognitive skill acquisition. A video abstract of this article can be viewed at https://youtu.be/StVooNRc7T8. RESEARCH HIGHLIGHTS: We investigated the role of medial temporal lobe (MTL) memory system in driving children's math learning following abacus-based mental calculation (AMC) training. AMC training improved math skills in elementary school children across their second and fifth grade. MTL structural integrity and functional connectivity with prefrontal and ventral temporal-occipital cortices predicted long-term AMC training-related gains.
Collapse
Affiliation(s)
- Ye Xie
- Bio-X Laboratory, School of Physics, Zhejiang University, Hangzhou, 310027, PR China
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, United States
- Center for Brain and Mental Well-being, Department of Psychology, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Hyesang Chang
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Yi Zhang
- Bio-X Laboratory, School of Physics, Zhejiang University, Hangzhou, 310027, PR China
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Chunjie Wang
- Bio-X Laboratory, School of Physics, Zhejiang University, Hangzhou, 310027, PR China
- Institute of Brain Science and Department of Physiology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Yuan Zhang
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Lang Chen
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, United States
- Department of Psychology, Santa Clara University, Santa Clara, CA 95053, United States
| | - Fengji Geng
- Department of Curriculum and Learning Sciences, Zhejiang University, Hangzhou, 310058, PR China
- Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310003, PR China
| | - Yixuan Ku
- Center for Brain and Mental Well-being, Department of Psychology, Sun Yat-sen University, Guangzhou, 510006, PR China
- Peng Cheng Laboratory, Shenzhen, 518040, PR China
| | - Vinod Menon
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, United States
- Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, United States
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, United States
| | - Feiyan Chen
- Bio-X Laboratory, School of Physics, Zhejiang University, Hangzhou, 310027, PR China
| |
Collapse
|
21
|
Wang X, Shi S, Bao Y. Parallel processes of temporal control in the supplementary motor area and the frontoparietal circuit. Psych J 2024; 13:355-368. [PMID: 38105556 PMCID: PMC11169752 DOI: 10.1002/pchj.701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/04/2023] [Indexed: 12/19/2023]
Abstract
Durations in the several seconds' range are cognitively accessible during active timing. Functional neuroimaging studies suggest the engagement of the basal ganglia (BG) and supplementary motor area (SMA). However, their functional relevance and arrangement remain unclear because non-timing cognitive processes temporally coincide with the active timing. To examine the potential contamination by parallel processes, we introduced a sensory control and a motor control to the duration-reproduction task. By comparing their hemodynamic functions, we decomposed the neural activities in multiple brain loci linked to different cognitive processes. Our results show a dissociation of two cortical neural circuits: the SMA for both active timing and motor preparation, followed by a prefrontal-parietal circuit related to duration working memory. We argue that these cortical processes represent duration as the content but at different levels of abstraction, while the subcortical structures, including the BG and thalamus, provide the logistic basis of timing by coordinating the temporal framework across brain structures.
Collapse
Affiliation(s)
- Xuanyu Wang
- School of Psychological and Cognitive SciencesPeking UniversityBeijingChina
- Graduate School of Systemic NeurosciencesLudwig‐Maximilians‐Universität MünchenMunichGermany
| | - Shunyu Shi
- School of Psychological and Cognitive SciencesPeking UniversityBeijingChina
| | - Yan Bao
- School of Psychological and Cognitive SciencesPeking UniversityBeijingChina
- Institute of Medical Psychology, Ludwig‐Maximilians‐Universität MünchenMunichGermany
- Beijing Key Laboratory of Behavior and Mental HealthPeking UniversityBeijingChina
| |
Collapse
|
22
|
Fresnoza S, Ischebeck A. Probing Our Built-in Calculator: A Systematic Narrative Review of Noninvasive Brain Stimulation Studies on Arithmetic Operation-Related Brain Areas. eNeuro 2024; 11:ENEURO.0318-23.2024. [PMID: 38580452 PMCID: PMC10999731 DOI: 10.1523/eneuro.0318-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/06/2024] [Accepted: 02/26/2024] [Indexed: 04/07/2024] Open
Abstract
This systematic review presented a comprehensive survey of studies that applied transcranial magnetic stimulation and transcranial electrical stimulation to parietal and nonparietal areas to examine the neural basis of symbolic arithmetic processing. All findings were compiled with regard to the three assumptions of the triple-code model (TCM) of number processing. Thirty-seven eligible manuscripts were identified for review (33 with healthy participants and 4 with patients). Their results are broadly consistent with the first assumption of the TCM that intraparietal sulcus both hold a magnitude code and engage in operations requiring numerical manipulations such as subtraction. However, largely heterogeneous results conflicted with the second assumption of the TCM that the left angular gyrus subserves arithmetic fact retrieval, such as the retrieval of rote-learned multiplication results. Support is also limited for the third assumption of the TCM, namely, that the posterior superior parietal lobule engages in spatial operations on the mental number line. Furthermore, results from the stimulation of brain areas outside of those postulated by the TCM show that the bilateral supramarginal gyrus is involved in online calculation and retrieval, the left temporal cortex in retrieval, and the bilateral dorsolateral prefrontal cortex and cerebellum in online calculation of cognitively demanding arithmetic problems. The overall results indicate that multiple cortical areas subserve arithmetic skills.
Collapse
Affiliation(s)
- Shane Fresnoza
- Department of Psychology, University of Graz, 8010 Graz, Austria
- BioTechMed, 8010 Graz, Austria
| | - Anja Ischebeck
- Department of Psychology, University of Graz, 8010 Graz, Austria
- BioTechMed, 8010 Graz, Austria
| |
Collapse
|
23
|
Kondapaneni N, Perona P. A number sense as an emergent property of the manipulating brain. Sci Rep 2024; 14:6858. [PMID: 38514690 PMCID: PMC10958013 DOI: 10.1038/s41598-024-56828-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 03/12/2024] [Indexed: 03/23/2024] Open
Abstract
The ability to understand and manipulate numbers and quantities emerges during childhood, but the mechanism through which humans acquire and develop this ability is still poorly understood. We explore this question through a model, assuming that the learner is able to pick up and place small objects from, and to, locations of its choosing, and will spontaneously engage in such undirected manipulation. We further assume that the learner's visual system will monitor the changing arrangements of objects in the scene and will learn to predict the effects of each action by comparing perception with a supervisory signal from the motor system. We model perception using standard deep networks for feature extraction and classification. Our main finding is that, from learning the task of action prediction, an unexpected image representation emerges exhibiting regularities that foreshadow the perception and representation of numbers and quantity. These include distinct categories for zero and the first few natural numbers, a strict ordering of the numbers, and a one-dimensional signal that correlates with numerical quantity. As a result, our model acquires the ability to estimate numerosity, i.e. the number of objects in the scene, as well as subitization, i.e. the ability to recognize at a glance the exact number of objects in small scenes. Remarkably, subitization and numerosity estimation extrapolate to scenes containing many objects, far beyond the three objects used during training. We conclude that important aspects of a facility with numbers and quantities may be learned with supervision from a simple pre-training task. Our observations suggest that cross-modal learning is a powerful learning mechanism that may be harnessed in artificial intelligence.
Collapse
|
24
|
Caponi C, Castaldi E, Burr DC, Binda P. Adaptation to numerosity affects the pupillary light response. Sci Rep 2024; 14:6097. [PMID: 38480839 PMCID: PMC10938002 DOI: 10.1038/s41598-024-55646-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/26/2024] [Indexed: 03/17/2024] Open
Abstract
We recently showed that the gain of the pupillary light response depends on numerosity, with weaker responses to fewer items. Here we show that this effect holds when the stimuli are physically identical but are perceived as less numerous due to numerosity adaptation. Twenty-eight participants adapted to low (10 dots) or high (160 dots) numerosities and subsequently watched arrays of 10-40 dots, with variable or homogeneous dot size. Luminance was constant across all stimuli. Pupil size was measured with passive viewing, and the effects of adaptation were checked in a separate psychophysical session. We found that perceived numerosity was systematically lower, and pupillary light responses correspondingly smaller, following adaptation to high rather than low numerosities. This is consistent with numerosity being a primary visual feature, spontaneously encoded even when task irrelevant, and affecting automatic and unconscious behaviours like the pupillary light response.
Collapse
Affiliation(s)
- Camilla Caponi
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy
| | - Elisa Castaldi
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy.
| | - David Charles Burr
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy
| | - Paola Binda
- Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| |
Collapse
|
25
|
Albert L, Potheegadoo J, Herbelin B, Bernasconi F, Blanke O. Numerosity estimation of virtual humans as a digital-robotic marker for hallucinations in Parkinson's disease. Nat Commun 2024; 15:1905. [PMID: 38472203 DOI: 10.1038/s41467-024-45912-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 02/07/2024] [Indexed: 03/14/2024] Open
Abstract
Hallucinations are frequent non-motor symptoms in Parkinson's disease (PD) associated with dementia and higher mortality. Despite their high clinical relevance, current assessments of hallucinations are based on verbal self-reports and interviews that are limited by important biases. Here, we used virtual reality (VR), robotics, and digital online technology to quantify presence hallucination (vivid sensations that another person is nearby when no one is actually present and can neither be seen nor heard) in laboratory and home-based settings. We establish that elevated numerosity estimation of virtual human agents in VR is a digital marker for experimentally induced presence hallucinations in healthy participants, as confirmed across several control conditions and analyses. We translated the digital marker (numerosity estimation) to an online procedure that 170 PD patients carried out remotely at their homes, revealing that PD patients with disease-related presence hallucinations (but not control PD patients) showed higher numerosity estimation. Numerosity estimation enables quantitative monitoring of hallucinations, is an easy-to-use unobtrusive online method, reaching people far away from medical centers, translating neuroscientific findings using robotics and VR, to patients' homes without specific equipment or trained staff.
Collapse
Affiliation(s)
- Louis Albert
- Laboratory of Cognitive Neuroscience, Neuro-X Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland
| | - Jevita Potheegadoo
- Laboratory of Cognitive Neuroscience, Neuro-X Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland
| | - Bruno Herbelin
- Laboratory of Cognitive Neuroscience, Neuro-X Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland
| | - Fosco Bernasconi
- Laboratory of Cognitive Neuroscience, Neuro-X Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland
| | - Olaf Blanke
- Laboratory of Cognitive Neuroscience, Neuro-X Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland.
- Department of Clinical Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
26
|
Liu P, Bo K, Ding M, Fang R. Emergence of Emotion Selectivity in Deep Neural Networks Trained to Recognize Visual Objects. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.16.537079. [PMID: 37163104 PMCID: PMC10168209 DOI: 10.1101/2023.04.16.537079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Recent neuroimaging studies have shown that the visual cortex plays an important role in representing the affective significance of visual input. The origin of these affect-specific visual representations is debated: they are intrinsic to the visual system versus they arise through reentry from frontal emotion processing structures such as the amygdala. We examined this problem by combining convolutional neural network (CNN) models of the human ventral visual cortex pre-trained on ImageNet with two datasets of affective images. Our results show that (1) in all layers of the CNN models, there were artificial neurons that responded consistently and selectively to neutral, pleasant, or unpleasant images and (2) lesioning these neurons by setting their output to 0 or enhancing these neurons by increasing their gain led to decreased or increased emotion recognition performance respectively. These results support the idea that the visual system may have the intrinsic ability to represent the affective significance of visual input and suggest that CNNs offer a fruitful platform for testing neuroscientific theories.
Collapse
Affiliation(s)
- Peng Liu
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, USA
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| | - Ke Bo
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| | - Mingzhou Ding
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, USA
| | - Ruogu Fang
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, USA
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| |
Collapse
|
27
|
Liu P, Bo K, Ding M, Fang R. Emergence of Emotion Selectivity in Deep Neural Networks Trained to Recognize Visual Objects. PLoS Comput Biol 2024; 20:e1011943. [PMID: 38547053 PMCID: PMC10977720 DOI: 10.1371/journal.pcbi.1011943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 02/24/2024] [Indexed: 04/02/2024] Open
Abstract
Recent neuroimaging studies have shown that the visual cortex plays an important role in representing the affective significance of visual input. The origin of these affect-specific visual representations is debated: they are intrinsic to the visual system versus they arise through reentry from frontal emotion processing structures such as the amygdala. We examined this problem by combining convolutional neural network (CNN) models of the human ventral visual cortex pre-trained on ImageNet with two datasets of affective images. Our results show that in all layers of the CNN models, there were artificial neurons that responded consistently and selectively to neutral, pleasant, or unpleasant images and lesioning these neurons by setting their output to zero or enhancing these neurons by increasing their gain led to decreased or increased emotion recognition performance respectively. These results support the idea that the visual system may have the intrinsic ability to represent the affective significance of visual input and suggest that CNNs offer a fruitful platform for testing neuroscientific theories.
Collapse
Affiliation(s)
- Peng Liu
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, Florida, United States of America
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Ke Bo
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Mingzhou Ding
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, Florida, United States of America
| | - Ruogu Fang
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, Florida, United States of America
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
28
|
Liang T, Peng RC, Rong KL, Li JX, Ke Y, Yung WH. Disparate processing of numerosity and associated continuous magnitudes in rats. SCIENCE ADVANCES 2024; 10:eadj2566. [PMID: 38381814 PMCID: PMC10881051 DOI: 10.1126/sciadv.adj2566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 01/18/2024] [Indexed: 02/23/2024]
Abstract
The studies of number sense in different species are severely hampered by the inevitable entanglement of non-numerical attributes inherent in nonsymbolic stimuli representing numerosity, resulting in contrasting theories of numerosity processing. Here, we developed an algorithm and associated analytical methods to generate stimuli that not only minimized the impact of non-numerical magnitudes in numerosity perception but also allowed their quantification. We trained number-naïve rats with these stimuli as sound pulses representing two or three numbers and demonstrated that their numerical discrimination ability mainly relied on numerosity. Also, studying the learning process revealed that rats used numerosity before using magnitudes for choices. This numerical processing could be impaired specifically by silencing the posterior parietal cortex. Furthermore, modeling this capacity by neural networks shed light on the separation of numerosity and magnitudes extraction. Our study helps dissect the relationship between magnitude and numerosity processing, and the above different findings together affirm the independent existence of innate number and magnitudes sense in rats.
Collapse
Affiliation(s)
- Tuo Liang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Rong-Chao Peng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- School of Biomedical Engineering, Guangdong Medical University, Dongguan, Guangdong, China
| | - Kang-Lin Rong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Jia-Xin Li
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Ya Ke
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Wing-Ho Yung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Department of Neuroscience, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
29
|
Ohki T, Kunii N, Chao ZC. Efficient, continual, and generalized learning in the brain - neural mechanism of Mental Schema 2.0. Rev Neurosci 2023; 34:839-868. [PMID: 36960579 DOI: 10.1515/revneuro-2022-0137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/26/2023] [Indexed: 03/25/2023]
Abstract
There has been tremendous progress in artificial neural networks (ANNs) over the past decade; however, the gap between ANNs and the biological brain as a learning device remains large. With the goal of closing this gap, this paper reviews learning mechanisms in the brain by focusing on three important issues in ANN research: efficiency, continuity, and generalization. We first discuss the method by which the brain utilizes a variety of self-organizing mechanisms to maximize learning efficiency, with a focus on the role of spontaneous activity of the brain in shaping synaptic connections to facilitate spatiotemporal learning and numerical processing. Then, we examined the neuronal mechanisms that enable lifelong continual learning, with a focus on memory replay during sleep and its implementation in brain-inspired ANNs. Finally, we explored the method by which the brain generalizes learned knowledge in new situations, particularly from the mathematical generalization perspective of topology. Besides a systematic comparison in learning mechanisms between the brain and ANNs, we propose "Mental Schema 2.0," a new computational property underlying the brain's unique learning ability that can be implemented in ANNs.
Collapse
Affiliation(s)
- Takefumi Ohki
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Tokyo 113-0033, Japan
| | - Naoto Kunii
- Department of Neurosurgery, The University of Tokyo, Tokyo 113-0033, Japan
| | - Zenas C Chao
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
30
|
Viesel-Nordmeyer N, Prado J. Arithmetic skills are associated with left fronto-temporal gray matter volume in 536 children and adolescents. NPJ SCIENCE OF LEARNING 2023; 8:56. [PMID: 38065992 PMCID: PMC10709444 DOI: 10.1038/s41539-023-00201-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 10/31/2023] [Indexed: 10/16/2024]
Abstract
There are large individual differences in arithmetic skills. Although a number of brain-wide association studies have attempted to identify the neural correlates of these individual differences, studies have focused on relatively small sample sizes and have yielded inconsistent results. In the current voxel-based morphometry study, we merged six structural imaging datasets of children and adolescents (from 7.5 to 15 years) whose levels of arithmetic skills were assessed, leading to a combined sample of n = 536. Controlling for individual differences in age, gender, as well as language, and intelligence, we found a unique positive relation between arithmetic skill and gray matter volume in the left inferior frontal gyrus (IFG) and middle temporal gyrus (MTG). Our results suggest that individual differences in arithmetic skills are associated with structural differences in left fronto-temporal areas, rather than in regions of the parietal cortex and hippocampus that are often associated with arithmetic processing.
Collapse
Affiliation(s)
- Nurit Viesel-Nordmeyer
- Lyon Neuroscience Research Center (CRNL), INSERM U1028-CNRS UMR5292, University of Lyon, 69500, Bron, France.
- Department of Rehabilitation Sciences, TU Dortmund University, Dortmund, Allemagne.
- Laboratoire de Psychologie Cognitive, Aix-Marseille University & CNRS, Marseille, France.
| | - Jérôme Prado
- Lyon Neuroscience Research Center (CRNL), INSERM U1028-CNRS UMR5292, University of Lyon, 69500, Bron, France.
| |
Collapse
|
31
|
Bufacchi RJ, Battaglia-Mayer A, Iannetti GD, Caminiti R. Cortico-spinal modularity in the parieto-frontal system: A new perspective on action control. Prog Neurobiol 2023; 231:102537. [PMID: 37832714 DOI: 10.1016/j.pneurobio.2023.102537] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 08/22/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023]
Abstract
Classical neurophysiology suggests that the motor cortex (MI) has a unique role in action control. In contrast, this review presents evidence for multiple parieto-frontal spinal command modules that can bypass MI. Five observations support this modular perspective: (i) the statistics of cortical connectivity demonstrate functionally-related clusters of cortical areas, defining functional modules in the premotor, cingulate, and parietal cortices; (ii) different corticospinal pathways originate from the above areas, each with a distinct range of conduction velocities; (iii) the activation time of each module varies depending on task, and different modules can be activated simultaneously; (iv) a modular architecture with direct motor output is faster and less metabolically expensive than an architecture that relies on MI, given the slow connections between MI and other cortical areas; (v) lesions of the areas composing parieto-frontal modules have different effects from lesions of MI. Here we provide examples of six cortico-spinal modules and functions they subserve: module 1) arm reaching, tool use and object construction; module 2) spatial navigation and locomotion; module 3) grasping and observation of hand and mouth actions; module 4) action initiation, motor sequences, time encoding; module 5) conditional motor association and learning, action plan switching and action inhibition; module 6) planning defensive actions. These modules can serve as a library of tools to be recombined when faced with novel tasks, and MI might serve as a recombinatory hub. In conclusion, the availability of locally-stored information and multiple outflow paths supports the physiological plausibility of the proposed modular perspective.
Collapse
Affiliation(s)
- R J Bufacchi
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia, Rome, Italy; International Center for Primate Brain Research (ICPBR), Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Sciences (CAS), Shanghai, China
| | - A Battaglia-Mayer
- Department of Physiology and Pharmacology, University of Rome, Sapienza, Italy
| | - G D Iannetti
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia, Rome, Italy; Department of Neuroscience, Physiology and Pharmacology, University College London (UCL), London, UK
| | - R Caminiti
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia, Rome, Italy.
| |
Collapse
|
32
|
Díaz-Barriga Yáñez A, Longo L, Chesnokova H, Poletti C, Thevenot C, Prado J. Neural evidence for procedural automatization during cognitive development: Intraparietal response to changes in very-small addition problem-size increases with age. Dev Cogn Neurosci 2023; 64:101310. [PMID: 37806070 PMCID: PMC10570710 DOI: 10.1016/j.dcn.2023.101310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 07/28/2023] [Accepted: 10/02/2023] [Indexed: 10/10/2023] Open
Abstract
Cognitive development is often thought to depend on qualitative changes in problem-solving strategies, with early developing algorithmic procedures (e.g., counting when adding numbers) considered being replaced by retrieval of associations (e.g., between operands and answers of addition problems) in adults. However, algorithmic procedures might also become automatized with practice. In a large cross-sectional fMRI study from age 8 to adulthood (n = 128), we evaluate this hypothesis by measuring neural changes associated with age-related reductions in a behavioral hallmark of mental addition, the problem-size effect (an increase in solving time as problem sum increases). We found that age-related decreases in problem-size effect were paralleled by age-related increases of activity in a region of the intraparietal sulcus that already supported the problem-size effect in 8- to 9-year-olds, at an age the effect is at least partly due to explicit counting. This developmental effect, which was also observed in the basal ganglia and prefrontal cortex, was restricted to problems with operands ≤ 4. These findings are consistent with a model positing that very-small arithmetic problems-and not larger problems-might rely on an automatization of counting procedures rather than a shift towards retrieval, and suggest a neural automatization of procedural knowledge during cognitive development.
Collapse
Affiliation(s)
- Andrea Díaz-Barriga Yáñez
- Centre de Recherche en Neurosciences de Lyon (CRNL), INSERM U1028 - CNRS UMR5292, Université de Lyon, France
| | - Léa Longo
- Centre de Recherche en Neurosciences de Lyon (CRNL), INSERM U1028 - CNRS UMR5292, Université de Lyon, France
| | - Hanna Chesnokova
- Centre de Recherche en Neurosciences de Lyon (CRNL), INSERM U1028 - CNRS UMR5292, Université de Lyon, France
| | - Céline Poletti
- Institut de Psychologie, Université de Lausanne, Switzerland
| | | | - Jérôme Prado
- Centre de Recherche en Neurosciences de Lyon (CRNL), INSERM U1028 - CNRS UMR5292, Université de Lyon, France.
| |
Collapse
|
33
|
Nieder A. Convergent Circuit Computation for Categorization in the Brains of Primates and Songbirds. Cold Spring Harb Perspect Biol 2023; 15:a041526. [PMID: 38040453 PMCID: PMC10691494 DOI: 10.1101/cshperspect.a041526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Abstract
Categorization is crucial for behavioral flexibility because it enables animals to group stimuli into meaningful classes that can easily be generalized to new circumstances. A most abstract quantitative category is set size, the number of elements in a set. This review explores how categorical number representations are realized by the operations of excitatory and inhibitory neurons in associative telencephalic microcircuits in primates and songbirds. Despite the independent evolution of the primate prefrontal cortex and the avian nidopallium caudolaterale, the neuronal computations of these associative pallial circuits show surprising correspondence. Comparing cellular functions in distantly related taxa can inform about the evolutionary principles of circuit computations for cognition in distinctly but convergently realized brain structures.
Collapse
Affiliation(s)
- Andreas Nieder
- Animal Physiology Unit, Institute of Neurobiology, University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
34
|
Kazanina N, Poeppel D. The neural ingredients for a language of thought are available. Trends Cogn Sci 2023; 27:996-1007. [PMID: 37625973 DOI: 10.1016/j.tics.2023.07.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023]
Abstract
The classical notion of a 'language of thought' (LoT), advanced prominently by the philosopher Jerry Fodor, is an influential position in cognitive science whereby the mental representations underpinning thought are considered to be compositional and productive, enabling the construction of new complex thoughts from more primitive symbolic concepts. LoT theory has been challenged because a neural implementation has been deemed implausible. We disagree. Examples of critical computational ingredients needed for a neural implementation of a LoT have in fact been demonstrated, in particular in the hippocampal spatial navigation system of rodents. Here, we show that cell types found in spatial navigation (border cells, object cells, head-direction cells, etc.) provide key types of representation and computation required for the LoT, underscoring its neurobiological viability.
Collapse
Affiliation(s)
- Nina Kazanina
- University of Bristol, Bristol, UK; Ernst Strüngmann Institute for Neuroscience, Frankfurt, Germany
| | - David Poeppel
- Ernst Strüngmann Institute for Neuroscience, Frankfurt, Germany; New York University, New York, NY, USA.
| |
Collapse
|
35
|
Hase K. Grouping rule in tadpole: is quantity more or size assortment more important? Anim Cogn 2023; 26:1905-1913. [PMID: 37668885 DOI: 10.1007/s10071-023-01823-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/06/2023]
Abstract
The ability to perceive group size and discriminate the ontogeny of conspecifics would play a crucial role in the grouping behavior of animals. However, the relative importance of numerical quantity and size-assortative preferences in shaping grouping rules remains poorly understood. In this study, I examined the responses of Miyako toad (Bufo gargarizans miyakonis) tadpoles to number quantity and size discrimination by choice tests at different ontogenetic stages (small, medium, and large). The results revealed that small-sized tadpoles in early developmental stages significantly preferred larger numbers (4) compared to smaller ones (1). However, this preference was not observed in later developmental stages (medium and large). And interestingly, when there was no quantity bias, size discrimination was not observed in tadpoles, irrespective of their ontogeny. These findings suggest that Miyako toad tadpoles discern quantity, i.e., the number of conspecifics, but exhibit ontogeny-dependent utilization of this ability. Understanding the interplay between numerical quantity and size-assortative preferences in grouping behavior will provide esteemed insights into the adaptive value of number sense in vertebrates and shed light on evolutionary processes.
Collapse
Affiliation(s)
- Kazuko Hase
- Research Center for Integrative Evolutionary Science, The Graduate University for Advanced Studies [SOKENDAI], Shonan Village, Hayama, Kanagawa, 240-0193, Japan.
- Department of Ecological Developmental Adaptability Life Sciences, Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-Ku, Sendai, 980-8577, Japan.
| |
Collapse
|
36
|
Szymanik J, Kochari A, Bremnes HS. Questions About Quantifiers: Symbolic and Nonsymbolic Quantity Processing by the Brain. Cogn Sci 2023; 47:e13346. [PMID: 37867321 DOI: 10.1111/cogs.13346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 05/11/2023] [Accepted: 09/06/2023] [Indexed: 10/24/2023]
Abstract
One approach to understanding how the human cognitive system stores and operates with quantifiers such as "some," "many," and "all" is to investigate their interaction with the cognitive mechanisms for estimating and comparing quantities from perceptual input (i.e., nonsymbolic quantities). While a potential link between quantifier processing and nonsymbolic quantity processing has been considered in the past, it has never been discussed extensively. Simultaneously, there is a long line of research within the field of numerical cognition on the relationship between processing exact number symbols (such as "3" or "three") and nonsymbolic quantity. This accumulated knowledge can potentially be harvested for research on quantifiers since quantifiers and number symbols are two different ways of referring to quantity information symbolically. The goal of the present review is to survey the research on the relationship between quantifiers and nonsymbolic quantity processing mechanisms and provide a set of research directions and specific questions for the investigation of quantifier processing.
Collapse
Affiliation(s)
- Jakub Szymanik
- Center for Brain/Mind Sciences and the Department of Information Engineering and Computer Science, University of Trento
| | - Arnold Kochari
- Institute for Logic, Language, and Computation, University of Amsterdam
| | | |
Collapse
|
37
|
Prpic V, Basamh YA, Goodridge CM, Agostini T, Murgia M. Contrasting symbolic and non-symbolic numerical representations in a joint classification task. Psychon Bull Rev 2023; 30:1422-1430. [PMID: 36650364 PMCID: PMC10482780 DOI: 10.3758/s13423-023-02246-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2023] [Indexed: 01/18/2023]
Abstract
Both symbolic (digits) and non-symbolic (dots) numerals are spatially coded, with relatively small numbers being responded faster with a left key and large numbers being responded faster with a right key (spatial-numerical association of response codes [SNARC]). The idea of format independent SNARC seems to support the existence of a common system for symbolic and non-symbolic numerical representations, although evidence in the field is still mixed. The aim of the present study is to investigate whether symbolic and non-symbolic numerals interact in the SNARC effect when both information is simultaneously displayed. To do so, participants were presented with dice-like patterns, with digits being used instead of dots. In two separate magnitude classification tasks, participants had to respond either to the number of digits presented on the screen or to their numerical size. In the non-symbolic task, they had to judge whether the digits on the screen were more or less than three, irrespective of the numerical value of the digits. In the symbolic task, participants had to judge whether the digits on the screen were numerically smaller or larger than three, irrespective of the number of digits being present. The results show a consistent SNARC effect in the symbolic task and no effect in the non-symbolic one. Furthermore, congruency between symbolic and non-symbolic numerals did not modulate the response patterns, thus supporting the idea of independent representations and questioning some propositions of current theoretical accounts.
Collapse
Affiliation(s)
- Valter Prpic
- Department of Philosophy and Communication Studies, University of Bologna, Via Azzo Gardino 23, Bologna, Italy.
- Institute for Psychological Sciences, De Montfort University, Leicester, UK.
| | - Yasmine A Basamh
- Institute for Psychological Sciences, De Montfort University, Leicester, UK
| | | | - Tiziano Agostini
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Mauro Murgia
- Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
38
|
Cicchini GM, Anobile G, Burr DC, Marchesini P, Arrighi R. The role of non-numerical information in the perception of temporal numerosity. Front Psychol 2023; 14:1197064. [PMID: 37588242 PMCID: PMC10425770 DOI: 10.3389/fpsyg.2023.1197064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/19/2023] [Indexed: 08/18/2023] Open
Abstract
Numerosity perception refers to the ability to make rapid but approximate estimates of the quantity of elements in a set (spatial numerosity) or presented sequentially (temporal numerosity). Whether numerosity is directly perceived or indirectly recomputed from non-numerical features is a highly debated issue. In the spatial domain, area and density have been suggested as the main parameters through which numerosity would be recomputed. In the temporal domain, stimuli duration and temporal frequency could be similarly exploited to retrieve numerosity. By adapting a psychophysical technique previously exploited in the spatial domain, we investigated whether temporal visual numerosity is directly perceived. Adult participants observed sequences of visual impulses sampled from a stimulus space spanning several levels of temporal frequency and duration (and hence numerosity), and then reproduced the sequence as accurately as possible via a series of keypresses. Crucially, participants were not asked to reproduce any particular property (such as number of impulses) but were free to choose any available cue (such as total duration, or temporal frequency). The results indicate that while the overall sequence duration was barely considered, numerosity and temporal frequency were both spontaneously used as the main cues to reproduce the sequences, with a slight but significant dominance of numerosity. Overall, the results are in line with previous literature suggesting that numerosity is directly encoded, even for temporal sequences, but a non-numerical feature (temporal frequency) is also used in reproducing sequences.
Collapse
Affiliation(s)
| | - Giovanni Anobile
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy
| | - David C. Burr
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy
- School of Psychology, University of Sydney, Camperdown, NSW, Australia
| | - Paolo Marchesini
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy
| | - Roberto Arrighi
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy
| |
Collapse
|
39
|
Bengochea M, Sitt JD, Izard V, Preat T, Cohen L, Hassan BA. Numerical discrimination in Drosophila melanogaster. Cell Rep 2023; 42:112772. [PMID: 37453418 PMCID: PMC10442639 DOI: 10.1016/j.celrep.2023.112772] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/18/2023] [Accepted: 06/22/2023] [Indexed: 07/18/2023] Open
Abstract
Sensitivity to numbers is a crucial cognitive ability. The lack of experimental models amenable to systematic genetic and neural manipulation has precluded discovering neural circuits required for numerical cognition. Here, we demonstrate that Drosophila flies spontaneously prefer sets containing larger numbers of objects. This preference is determined by the ratio between the two numerical quantities tested, a characteristic signature of numerical cognition across species. Individual flies maintained their numerical choice over consecutive days. Using a numerical visual conditioning paradigm, we found that flies are capable of associating sucrose with numerical quantities and can be trained to reverse their spontaneous preference for large quantities. Finally, we show that silencing lobula columnar neurons (LC11) reduces the preference for more objects, thus identifying a neuronal substrate for numerical cognition in invertebrates. This discovery paves the way for the systematic analysis of the behavioral and neural mechanisms underlying the evolutionary conserved sensitivity to numerosity.
Collapse
Affiliation(s)
- Mercedes Bengochea
- Institut du Cerveau-Paris Brain Institute (ICM), Sorbonne Université, Inserm, CNRS, Hôpital Pitié-Salpêtrière, Paris, France
| | - Jacobo D Sitt
- Institut du Cerveau-Paris Brain Institute (ICM), Sorbonne Université, Inserm, CNRS, Hôpital Pitié-Salpêtrière, Paris, France
| | - Veronique Izard
- Université de Paris, CNRS, Integrative Neuroscience and Cognition Center, 75006 Paris, France
| | - Thomas Preat
- Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 10 Rue Vauquelin, 75005 Paris, France
| | - Laurent Cohen
- Institut du Cerveau-Paris Brain Institute (ICM), Sorbonne Université, Inserm, CNRS, Hôpital Pitié-Salpêtrière, Paris, France; AP-HP, Hôpital de La Pitié Salpêtrière, Féderation de Neurologie, Paris, France.
| | - Bassem A Hassan
- Institut du Cerveau-Paris Brain Institute (ICM), Sorbonne Université, Inserm, CNRS, Hôpital Pitié-Salpêtrière, Paris, France.
| |
Collapse
|
40
|
Yuan X, Ni L, Li H, Zhang D, Zhou K. The neural correlates of individual differences in numerosity perception: A voxel-based morphometry study. iScience 2023; 26:107392. [PMID: 37554464 PMCID: PMC10405316 DOI: 10.1016/j.isci.2023.107392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/30/2023] [Accepted: 07/11/2023] [Indexed: 08/10/2023] Open
Abstract
Numerosity perception is a fundamental cognitive function in humans and animals. Using an individual difference approach with a comprehensive dataset (N = 249), we performed a voxel-based morphometry analysis to unravel the neuroanatomical substrates associated with individual differences in numerosity perception sensitivity, measured by a classical non-symbolic numerical judgment task. Results showed that greater gray matter volume (GMV) in the left cerebellum, right temporal pole, and right parahippocampal was positively correlated to higher perceptual sensitivity to numerosity. In contrast, the GMV in the left intraparietal sulcus, and bilateral precentral/postcentral gyrus was negatively correlated to the sensitivity of numerosity perception. These findings indicate that a wide range of brain structures, rather than a specific anatomical structure or circuit, forms the neuroanatomical basis of numerosity perception, lending support to the emerging network view of the neural representation of numerosity. This work contributes to a more comprehensive understanding of how the brain processes numerical information. •Unveils neuroanatomical basis of numerosity perception •Discovers positive and negative greater GMV correlations •Links GMV in a wide range of brain regions to numerical sensitivity •Supports the network view of the neural representation of numerosity perception
Collapse
Affiliation(s)
- Xinyi Yuan
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education (Beijing Normal University), Faculty of Psychology, Beijing Normal University, Beijing 100875, China
| | - Liangping Ni
- Department of Radiology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
- Medical Imaging Research Center, Anhui Medical University, Hefei 230032, China
| | - Huan Li
- Department of Radiology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
- Medical Imaging Research Center, Anhui Medical University, Hefei 230032, China
| | - Dai Zhang
- Department of Radiology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
- Medical Imaging Research Center, Anhui Medical University, Hefei 230032, China
| | - Ke Zhou
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education (Beijing Normal University), Faculty of Psychology, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
41
|
Eisenkolb VM, Held LM, Utzschmid A, Lin XX, Krieg SM, Meyer B, Gempt J, Jacob SN. Human acute microelectrode array recordings with broad cortical access, single-unit resolution, and parallel behavioral monitoring. Cell Rep 2023; 42:112467. [PMID: 37141095 DOI: 10.1016/j.celrep.2023.112467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/06/2023] [Accepted: 04/18/2023] [Indexed: 05/05/2023] Open
Abstract
There are vast gaps in our understanding of the organization and operation of the human nervous system at the level of individual neurons and their networks. Here, we report reliable and robust acute multichannel recordings using planar microelectrode arrays (MEAs) implanted intracortically in awake brain surgery with open craniotomies that grant access to large parts of the cortical hemisphere. We obtained high-quality extracellular neuronal activity at the microcircuit, local field potential level and at the cellular, single-unit level. Recording from the parietal association cortex, a region rarely explored in human single-unit studies, we demonstrate applications on these complementary spatial scales and describe traveling waves of oscillatory activity as well as single-neuron and neuronal population responses during numerical cognition, including operations with uniquely human number symbols. Intraoperative MEA recordings are practicable and can be scaled up to explore cellular and microcircuit mechanisms of a wide range of human brain functions.
Collapse
Affiliation(s)
- Viktor M Eisenkolb
- Translational Neurotechnology Laboratory, Department of Neurosurgery, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany; Department of Neurosurgery, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - Lisa M Held
- Translational Neurotechnology Laboratory, Department of Neurosurgery, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - Alexander Utzschmid
- Translational Neurotechnology Laboratory, Department of Neurosurgery, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - Xiao-Xiong Lin
- Translational Neurotechnology Laboratory, Department of Neurosurgery, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany; Graduate School of Systemic Neurosciences, Ludwig Maximilians University Munich, Großhaderner Straße 2, 82152 Planegg-Martinsried, Germany
| | - Sandro M Krieg
- Department of Neurosurgery, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - Bernhard Meyer
- Department of Neurosurgery, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - Jens Gempt
- Department of Neurosurgery, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - Simon N Jacob
- Translational Neurotechnology Laboratory, Department of Neurosurgery, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany; Department of Neurosurgery, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany.
| |
Collapse
|
42
|
Nakai T, Nishimoto S. Artificial neural network modelling of the neural population code underlying mathematical operations. Neuroimage 2023; 270:119980. [PMID: 36848969 DOI: 10.1016/j.neuroimage.2023.119980] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 02/10/2023] [Accepted: 02/23/2023] [Indexed: 02/28/2023] Open
Abstract
Mathematical operations have long been regarded as a sparse, symbolic process in neuroimaging studies. In contrast, advances in artificial neural networks (ANN) have enabled extracting distributed representations of mathematical operations. Recent neuroimaging studies have compared distributed representations of the visual, auditory and language domains in ANNs and biological neural networks (BNNs). However, such a relationship has not yet been examined in mathematics. Here we hypothesise that ANN-based distributed representations can explain brain activity patterns of symbolic mathematical operations. We used the fMRI data of a series of mathematical problems with nine different combinations of operators to construct voxel-wise encoding/decoding models using both sparse operator and latent ANN features. Representational similarity analysis demonstrated shared representations between ANN and BNN, an effect particularly evident in the intraparietal sulcus. Feature-brain similarity (FBS) analysis served to reconstruct a sparse representation of mathematical operations based on distributed ANN features in each cortical voxel. Such reconstruction was more efficient when using features from deeper ANN layers. Moreover, latent ANN features allowed the decoding of novel operators not used during model training from brain activity. The current study provides novel insights into the neural code underlying mathematical thought.
Collapse
Affiliation(s)
- Tomoya Nakai
- Center for Information and Neural Networks, National Institute of Information and Communications Technology, Suita, Japan; Lyon Neuroscience Research Center (CRNL), INSERM U1028 - CNRS UMR5292, University of Lyon, Bron, France.
| | - Shinji Nishimoto
- Center for Information and Neural Networks, National Institute of Information and Communications Technology, Suita, Japan; Graduate School of Frontier Biosciences, Osaka University, Suita, Japan; Graduate School of Medicine, Osaka University, Suita, Japan
| |
Collapse
|
43
|
Lucon-Xiccato T, Gatto E, Fontana CM, Bisazza A. Quantity discrimination in newly hatched zebrafish suggests hardwired numerical abilities. Commun Biol 2023; 6:247. [PMID: 36959336 PMCID: PMC10036331 DOI: 10.1038/s42003-023-04595-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 02/14/2023] [Indexed: 03/25/2023] Open
Abstract
An intriguing hypothesis to explain the ubiquity of numerical abilities is that all vertebrates are born with hardwired neuronal networks for processing numbers. To date, only studies on human foetuses have clearly supported this hypothesis. Zebrafish hatch 48-72 h after fertilisation with an embryonic nervous system, providing a unique opportunity for investigating this hypothesis. Here, we demonstrated that zebrafish larvae exposed to vertical bars at birth acquired an attraction for bar stimuli and we developed a numerical discrimination task based on this preference. When tested with a series of discriminations of increasing difficulty (1vs.4, 1vs.3, 1vs.2, and 2vs.4 bars), zebrafish larvae reliably selected the greater numerosity. The preference was significant when stimuli were matched for surface area, luminance, density, and convex hull, thereby suggesting a true capacity to process numerical information. Converging results from two phylogenetically distant species suggests that numerical abilities might be a hallmark feature of vertebrates' brains.
Collapse
Affiliation(s)
- Tyrone Lucon-Xiccato
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.
| | - Elia Gatto
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | | | - Angelo Bisazza
- Department of General Psychology, University of Padova, Padova, Italy
- Padova Neuroscience Center, University of Padova, Padova, Italy
| |
Collapse
|
44
|
Bengochea M, Hassan B. Numerosity as a visual property: Evidence from two highly evolutionary distant species. Front Physiol 2023; 14:1086213. [PMID: 36846325 PMCID: PMC9949967 DOI: 10.3389/fphys.2023.1086213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/31/2023] [Indexed: 02/11/2023] Open
Abstract
Most animals, from humans to invertebrates, possess an ability to estimate numbers. This evolutionary advantage facilitates animals' choice of environments with more food sources, more conspecifics to increase mating success, and/or reduced predation risk among others. However, how the brain processes numerical information remains largely unknown. There are currently two lines of research interested in how numerosity of visual objects is perceived and analyzed in the brain. The first argues that numerosity is an advanced cognitive ability processed in high-order brain areas, while the second proposes that "numbers" are attributes of the visual scene and thus numerosity is processed in the visual sensory system. Recent evidence points to a sensory involvement in estimating magnitudes. In this Perspective, we highlight this evidence in two highly evolutionary distant species: humans and flies. We also discuss the advantages of studying numerical processing in fruit flies in order to dissect the neural circuits involved in and required for numerical processing. Based on experimental manipulation and the fly connectome, we propose a plausible neural network for number sense in invertebrates.
Collapse
Affiliation(s)
- Mercedes Bengochea
- Institut du Cerveau-Paris Brain Institute (ICM), Sorbonne Université, Inserm, CNRS, Hôpital Pitié-Salpêtrière, Paris, France
| | - Bassem Hassan
- Institut du Cerveau-Paris Brain Institute (ICM), Sorbonne Université, Inserm, CNRS, Hôpital Pitié-Salpêtrière, Paris, France
| |
Collapse
|
45
|
Hu J, Konovalov A, Ruff CC. A unified neural account of contextual and individual differences in altruism. eLife 2023; 12:e80667. [PMID: 36752704 PMCID: PMC9908080 DOI: 10.7554/elife.80667] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 01/19/2023] [Indexed: 02/09/2023] Open
Abstract
Altruism is critical for cooperation and productivity in human societies but is known to vary strongly across contexts and individuals. The origin of these differences is largely unknown, but may in principle reflect variations in different neurocognitive processes that temporally unfold during altruistic decision making (ranging from initial perceptual processing via value computations to final integrative choice mechanisms). Here, we elucidate the neural origins of individual and contextual differences in altruism by examining altruistic choices in different inequality contexts with computational modeling and electroencephalography (EEG). Our results show that across all contexts and individuals, wealth distribution choices recruit a similar late decision process evident in model-predicted evidence accumulation signals over parietal regions. Contextual and individual differences in behavior related instead to initial processing of stimulus-locked inequality-related value information in centroparietal and centrofrontal sensors, as well as to gamma-band synchronization of these value-related signals with parietal response-locked evidence-accumulation signals. Our findings suggest separable biological bases for individual and contextual differences in altruism that relate to differences in the initial processing of choice-relevant information.
Collapse
Affiliation(s)
- Jie Hu
- Zurich Center for Neuroeconomics, Department of Economics, University of ZurichZurichSwitzerland
| | - Arkady Konovalov
- Zurich Center for Neuroeconomics, Department of Economics, University of ZurichZurichSwitzerland
- Centre for Human Brain Health, School of Psychology, University of BirminghamBirminghamUnited Kingdom
| | - Christian C Ruff
- Zurich Center for Neuroeconomics, Department of Economics, University of ZurichZurichSwitzerland
- University Research Priority Program 'Adaptive Brain Circuits in Development and Learning' (URPP AdaBD), University of ZurichZurichSwitzerland
| |
Collapse
|
46
|
The role of spatial information in an approximate cross-modal number matching task. Atten Percept Psychophys 2023; 85:1253-1266. [PMID: 36720781 PMCID: PMC9888741 DOI: 10.3758/s13414-023-02658-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2023] [Indexed: 02/02/2023]
Abstract
The approximate number system (ANS) is thought to be an innate cognitive system that allows humans to perceive numbers (>4) in a fuzzy manner. One assumption of the ANS is that numerosity is represented amodally due to a mechanism, which filters out nonnumerical information from stimulus material. However, some studies show that nonnumerical information (e.g., spatial parameters) influence the numerosity percept as well. Here, we investigated whether there is a cross-modal transfer of spatial information between the haptic and visual modality in an approximate cross-modal number matching task. We presented different arrays of dowels (haptic stimuli) to 50 undergraduates and asked them to compare haptically perceived numerosity to two visually presented dot arrays. Participants chose which visually presented array matched the numerosity of the haptic stimulus. The distractor varied in number and displayed a random pattern, whereas the matching (target) dot array was either spatially identical or spatially randomized (to the haptic stimulus). We hypothesized that if a "numerosity" percept is based solely on number, neither spatially identical nor spatial congruence between the haptic and the visual target arrays would affect the accuracy in the task. However, results show significant processing advantages for targets with spatially identical patterns and, furthermore, that spatial congruency between haptic source and visual target facilitates performance. Our results show that spatial information was extracted from the haptic stimuli and influenced participants' responses, which challenges the assumption that numerosity is represented in a truly abstract manner by filtering out any other stimulus features.
Collapse
|
47
|
Lee J, Jung M, Lustig N, Lee J. Neural representations of the perception of handwritten digits and visual objects from a convolutional neural network compared to humans. Hum Brain Mapp 2023; 44:2018-2038. [PMID: 36637109 PMCID: PMC9980894 DOI: 10.1002/hbm.26189] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 12/04/2022] [Accepted: 12/12/2022] [Indexed: 01/14/2023] Open
Abstract
We investigated neural representations for visual perception of 10 handwritten digits and six visual objects from a convolutional neural network (CNN) and humans using functional magnetic resonance imaging (fMRI). Once our CNN model was fine-tuned using a pre-trained VGG16 model to recognize the visual stimuli from the digit and object categories, representational similarity analysis (RSA) was conducted using neural activations from fMRI and feature representations from the CNN model across all 16 classes. The encoded neural representation of the CNN model exhibited the hierarchical topography mapping of the human visual system. The feature representations in the lower convolutional (Conv) layers showed greater similarity with the neural representations in the early visual areas and parietal cortices, including the posterior cingulate cortex. The feature representations in the higher Conv layers were encoded in the higher-order visual areas, including the ventral/medial/dorsal stream and middle temporal complex. The neural representations in the classification layers were observed mainly in the ventral stream visual cortex (including the inferior temporal cortex), superior parietal cortex, and prefrontal cortex. There was a surprising similarity between the neural representations from the CNN model and the neural representations for human visual perception in the context of the perception of digits versus objects, particularly in the primary visual and associated areas. This study also illustrates the uniqueness of human visual perception. Unlike the CNN model, the neural representation of digits and objects for humans is more widely distributed across the whole brain, including the frontal and temporal areas.
Collapse
Affiliation(s)
- Juhyeon Lee
- Department of Brain and Cognitive EngineeringKorea UniversitySeoulRepublic of Korea
| | - Minyoung Jung
- Department of Brain and Cognitive EngineeringKorea UniversitySeoulRepublic of Korea
| | - Niv Lustig
- Department of Brain and Cognitive EngineeringKorea UniversitySeoulRepublic of Korea
| | - Jong‐Hwan Lee
- Department of Brain and Cognitive EngineeringKorea UniversitySeoulRepublic of Korea
| |
Collapse
|
48
|
Nakai T, Girard C, Longo L, Chesnokova H, Prado J. Cortical representations of numbers and nonsymbolic quantities expand and segregate in children from 5 to 8 years of age. PLoS Biol 2023; 21:e3001935. [PMID: 36603025 PMCID: PMC9815645 DOI: 10.1371/journal.pbio.3001935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 11/30/2022] [Indexed: 01/06/2023] Open
Abstract
Number symbols, such as Arabic numerals, are cultural inventions that have transformed human mathematical skills. Although their acquisition is at the core of early elementary education in children, it remains unknown how the neural representations of numerals emerge during that period. It is also unclear whether these relate to an ontogenetically earlier sense of approximate quantity. Here, we used multivariate fMRI adaptation coupled with within- and between-format machine learning to probe the cortical representations of Arabic numerals and approximate nonsymbolic quantity in 89 children either at the beginning (age 5) or four years into formal education (age 8). Although the cortical representations of both numerals and nonsymbolic quantities expanded from age 5 to age 8, these representations also segregated with learning and development. Specifically, a format-independent neural representation of quantity was found in the right parietal cortex, but only for 5-year-olds. These results are consistent with the so-called symbolic estrangement hypothesis, which argues that the relation between symbolic and nonsymbolic quantity weakens with exposure to formal mathematics in children.
Collapse
Affiliation(s)
- Tomoya Nakai
- Lyon Neuroscience Research Center (CRNL), INSERM U1028—CNRS UMR5292, University of Lyon, Bron, France
- * E-mail: (TN); (JP)
| | - Cléa Girard
- Lyon Neuroscience Research Center (CRNL), INSERM U1028—CNRS UMR5292, University of Lyon, Bron, France
| | - Léa Longo
- Lyon Neuroscience Research Center (CRNL), INSERM U1028—CNRS UMR5292, University of Lyon, Bron, France
| | - Hanna Chesnokova
- Lyon Neuroscience Research Center (CRNL), INSERM U1028—CNRS UMR5292, University of Lyon, Bron, France
| | - Jérôme Prado
- Lyon Neuroscience Research Center (CRNL), INSERM U1028—CNRS UMR5292, University of Lyon, Bron, France
- * E-mail: (TN); (JP)
| |
Collapse
|
49
|
Yago Malo J, Cicchini GM, Morrone MC, Chiofalo ML. Quantum spin models for numerosity perception. PLoS One 2023; 18:e0284610. [PMID: 37098002 PMCID: PMC10128973 DOI: 10.1371/journal.pone.0284610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/04/2023] [Indexed: 04/26/2023] Open
Abstract
Humans share with animals, both vertebrates and invertebrates, the capacity to sense the number of items in their environment already at birth. The pervasiveness of this skill across the animal kingdom suggests that it should emerge in very simple populations of neurons. Current modelling literature, however, has struggled to provide a simple architecture carrying out this task, with most proposals suggesting the emergence of number sense in multi-layered complex neural networks, and typically requiring supervised learning; while simple accumulator models fail to predict Weber's Law, a common trait of human and animal numerosity processing. We present a simple quantum spin model with all-to-all connectivity, where numerosity is encoded in the spectrum after stimulation with a number of transient signals occurring in a random or orderly temporal sequence. We use a paradigmatic simulational approach borrowed from the theory and methods of open quantum systems out of equilibrium, as a possible way to describe information processing in neural systems. Our method is able to capture many of the perceptual characteristics of numerosity in such systems. The frequency components of the magnetization spectra at harmonics of the system's tunneling frequency increase with the number of stimuli presented. The amplitude decoding of each spectrum, performed with an ideal-observer model, reveals that the system follows Weber's law. This contrasts with the well-known failure to reproduce Weber's law with linear system or accumulators models.
Collapse
Affiliation(s)
- Jorge Yago Malo
- Department of Physics "Enrico Fermi" and INFN, University of Pisa, Pisa, Italy
| | | | - Maria Concetta Morrone
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa and PisaVisionLab, Pisa, Italy
| | | |
Collapse
|
50
|
Conrad BN, Pollack C, Yeo DJ, Price GR. Structural and functional connectivity of the inferior temporal numeral area. Cereb Cortex 2022; 33:6152-6170. [PMID: 36587366 PMCID: PMC10183753 DOI: 10.1093/cercor/bhac492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 01/02/2023] Open
Abstract
A growing body of evidence suggests that in adults, there is a spatially consistent "inferior temporal numeral area" (ITNA) in the occipitotemporal cortex that appears to preferentially process Arabic digits relative to non-numerical symbols and objects. However, very little is known about why the ITNA is spatially segregated from regions that process other orthographic stimuli such as letters, and why it is spatially consistent across individuals. In the present study, we used diffusion-weighted imaging and functional magnetic resonance imaging to contrast structural and functional connectivity between left and right hemisphere ITNAs and a left hemisphere letter-preferring region. We found that the left ITNA had stronger structural and functional connectivity than the letter region to inferior parietal regions involved in numerical magnitude representation and arithmetic. Between hemispheres, the left ITNA showed stronger structural connectivity with the left inferior frontal gyrus (Broca's area), while the right ITNA showed stronger structural connectivity to the ipsilateral inferior parietal cortex and stronger functional coupling with the bilateral IPS. Based on their relative connectivity, our results suggest that the left ITNA may be more readily involved in mapping digits to verbal number representations, while the right ITNA may support the mapping of digits to quantity representations.
Collapse
Affiliation(s)
- Benjamin N Conrad
- Department of Psychology & Human Development, Peabody College, Vanderbilt University, 230 Appleton Place, Nashville, TN, 37203, USA
| | - Courtney Pollack
- Department of Psychology & Human Development, Peabody College, Vanderbilt University, 230 Appleton Place, Nashville, TN, 37203, USA
| | - Darren J Yeo
- Department of Psychology & Human Development, Peabody College, Vanderbilt University, 230 Appleton Place, Nashville, TN, 37203, USA.,Division of Psychology, School of Social Sciences, Nanyang Technological University, 48 Nanyang Avenue, Singapore, 639818
| | - Gavin R Price
- Department of Psychology & Human Development, Peabody College, Vanderbilt University, 230 Appleton Place, Nashville, TN, 37203, USA.,Department of Psychology, University of Exeter, Washington Singer Building Perry Road, Exeter, EX4 4QG, United Kingdom
| |
Collapse
|