1
|
Yukawa H, Kono H, Ishiwata H, Igarashi R, Takakusagi Y, Arai S, Hirano Y, Suhara T, Baba Y. Quantum life science: biological nano quantum sensors, quantum technology-based hyperpolarized MRI/NMR, quantum biology, and quantum biotechnology. Chem Soc Rev 2025; 54:3293-3322. [PMID: 39874046 DOI: 10.1039/d4cs00650j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
The emerging field of quantum life science combines principles from quantum physics and biology to study fundamental life processes at the molecular level. Quantum mechanics, which describes the properties of small particles, can help explain how quantum phenomena such as tunnelling, superposition, and entanglement may play a role in biological systems. However, capturing these effects in living systems is a formidable challenge, as it involves dealing with dissipation and decoherence caused by the surrounding environment. We overview the current status of the quantum life sciences from technologies and topics in quantum biology. Technologies such as biological nano quantum sensors, quantum technology-based hyperpolarized MRI/NMR, high-speed 2D electronic spectrometers, and computer simulations are being developed to address these challenges. These interdisciplinary fields have the potential to revolutionize our understanding of living organisms and lead to advancements in genetics, molecular biology, medicine, and bioengineering.
Collapse
Affiliation(s)
- Hiroshi Yukawa
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan.
| | - Hidetoshi Kono
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan.
| | - Hitoshi Ishiwata
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan.
| | - Ryuji Igarashi
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan.
| | - Yoichi Takakusagi
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan.
| | - Shigeki Arai
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan.
| | - Yu Hirano
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan.
| | - Tetsuya Suhara
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan.
| | - Yoshinobu Baba
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan.
| |
Collapse
|
2
|
Hajyahia S, Taub M, Eitan O, Dashevsky O, Yovel Y. Greater mouse-tailed bats use their tail as a tactile sensor when navigating backwards. iScience 2025; 28:112014. [PMID: 40124524 PMCID: PMC11927745 DOI: 10.1016/j.isci.2025.112014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/30/2024] [Accepted: 02/10/2025] [Indexed: 03/25/2025] Open
Abstract
Animals use a wide arsenal of sensory modalities to orient, often combining information from different modalities to improve sensing. Animals mostly move forward and hence most of their sensory organs are frontal. In some situations, moving backwards is a necessity and some animals have evolved designated sensory strategies. The greater mouse-tailed bats (Rhinopoma microphyllum) belong to one of few bat families that possess a long free tail which they wag in a pendulum like pattern when moving backwards up walls and between obstacles. We show that greater mouse-tailed bats use their tail to navigate around obstacles and are hindered when their tail is anesthetized. Additionally, we find that they use their tail to discriminate between textures and can sense subtle changes. We suggest that the use of the tail as a tactile sensor enables these bats to move backwards quickly when other sensory modalities are useless.
Collapse
Affiliation(s)
- Sahar Hajyahia
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Mor Taub
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ofri Eitan
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Orit Dashevsky
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Yossi Yovel
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
3
|
Oh IT, Kim SC, Kim Y, Kim YH, Chae KS. Magnetic sense-dependent probabilistic decision-making in humans. Front Neurosci 2025; 19:1497021. [PMID: 40125477 PMCID: PMC11925921 DOI: 10.3389/fnins.2025.1497021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 02/11/2025] [Indexed: 03/25/2025] Open
Abstract
Even though it is not well characterized how much humans can sense the geomagnetic field (GMF), numerous magnetosensitive animals can detect GMF broadly as a sensory cue, when a spatial decision-making is needed for orientation or migration. In an article of recent series of studies, we showed that the empirical probabilities of stone selections in Go game were significantly different from the theoretical probability. In this study, we assessed the implication of the GMF in modulating subconscious non-spatial decision-making in human subjects and the underlying mechanism with exploiting the zero-sum binary stone selection of Go game as a proof-of-principle. In a laboratory setting, the experimental probability in a decision-making was significantly hampered by the cancelation of the ambient GMF. Moreover, the attenuation of decision-making was confirmed by a specific range of magnetic resonance radiofrequency. In numerous stone selection games among amateur Go players in the artificial magnetic field setting, the analyses of stone selection rate by trials and steps for decision-making pinpointed the subconscious stone selection as a primary modulating target in the binary decision-making. Our findings may provide unique insights into the impact of sensing GMF in probabilistic decision-making in which theoretical probability is manifested into empirical probability through a magnetic field resonance-dependent mechanism.
Collapse
Affiliation(s)
- In-Taek Oh
- Brain Science and Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Soo-Chan Kim
- Department of Electrical and Electronic Engineering, Research Center for Applied Human Sciences, Hankyong National University, Anseong, Republic of Korea
| | - Yongkuk Kim
- Department of Mathematics, Kyungpook National University, Daegu, Republic of Korea
| | - Yong-Hwan Kim
- Neuroscience Program, School of Allied Health Sciences, Boise State University, Boise, ID, United States
| | - Kwon-Seok Chae
- Brain Science and Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
- Department of Biology Education, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
4
|
Goforth KM, Lohmann CMF, Gavin A, Henning R, Harvey A, Hinton TL, Lim DS, Lohmann KJ. Learned magnetic map cues and two mechanisms of magnetoreception in turtles. Nature 2025; 638:1015-1022. [PMID: 39939776 DOI: 10.1038/s41586-024-08554-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 12/19/2024] [Indexed: 02/14/2025]
Abstract
Growing evidence indicates that migratory animals exploit the magnetic field of the Earth for navigation, both as a compass to determine direction and as a map to determine geographical position1. It has long been proposed that, to navigate using a magnetic map, animals must learn the magnetic coordinates of the destination2,3, yet the pivotal hypothesis that animals can learn magnetic signatures of geographical areas has, to our knowledge, yet to be tested. Here we report that an iconic navigating species, the loggerhead turtle (Caretta caretta), can learn such information. When fed repeatedly in magnetic fields replicating those that exist in particular oceanic locations, juvenile turtles learned to distinguish magnetic fields in which they encountered food from magnetic fields that exist elsewhere, an ability that might underlie foraging site fidelity. Conditioned responses in this new magnetic map assay were unaffected by radiofrequency oscillating magnetic fields, a treatment expected to disrupt radical-pair-based chemical magnetoreception4-6, suggesting that the magnetic map sense of the turtle does not rely on this mechanism. By contrast, orientation behaviour that required use of the magnetic compass was disrupted by radiofrequency oscillating magnetic fields. The findings provide evidence that two different mechanisms of magnetoreception underlie the magnetic map and magnetic compass in sea turtles.
Collapse
Affiliation(s)
- Kayla M Goforth
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Biology, Texas A&M University, College Station, TX, USA.
| | - Catherine M F Lohmann
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Andrew Gavin
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Reyco Henning
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Andrew Harvey
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tara L Hinton
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Dana S Lim
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kenneth J Lohmann
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
5
|
Kang F, Bonné R, Nielsen LP. Electromagnetic induction properties of filamentous bacteria in sediment. PNAS NEXUS 2025; 4:pgaf011. [PMID: 39898181 PMCID: PMC11787994 DOI: 10.1093/pnasnexus/pgaf011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 12/03/2024] [Indexed: 02/04/2025]
Abstract
Microbial perception of spatial electromagnetic fields is essential for navigation and communication on Earth's surface system, but current understanding of this phenomenon is limited. At present, cable bacteria of the Desulfobulbaceae family have the longest known range of electron transport. In fact, the flow of electrons along these long filamentous bacteria generates an external electrostatic field, suggesting a potential for electromagnetic induction mirroring that of metallic wires. In this study, we measured the responses of cable bacteria to externally applied electric waves. We noted the formation and disappearance of square waves caused by a pair of spatially variable electric fields, generating negative and positive mirror-symmetric inductions (±1.20 mV in marine sediment) along the horizontally filamentous bacterial layer. Both seawater Candidatus Electrothrix and freshwater Ca. Electronema exhibited this electric induction. The distinct spatial boundary of bacterial induction was strictly confined within 12.5 mm below the surface of the seawater sediment. The results of this study open further avenues of research into understanding how bacteria sense and respond to spatial electromagnetic information.
Collapse
Affiliation(s)
- Fuxing Kang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, 210095 Jiangsu, China
- Center for Electromicrobiology, Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
| | - Robin Bonné
- Center for Electromicrobiology, Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
| | - Lars Peter Nielsen
- Center for Electromicrobiology, Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
6
|
Grinberg M, Vodeneev V. The role of signaling systems of plant in responding to key astrophysical factors: increased ionizing radiation, near-null magnetic field and microgravity. PLANTA 2025; 261:31. [PMID: 39797920 DOI: 10.1007/s00425-025-04610-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 01/06/2025] [Indexed: 01/13/2025]
Abstract
Plants will form the basis of artificial ecosystems in space exploration and the creation of bases on other planets. Astrophysical factors, such as ionizing radiation (IR), magnetic fields (MF) and gravity, can significantly affect the growth and development of plants beyond Earth. However, to date, the ways in which these factors influence plants remain largely unexplored. The review shows that, despite the lack of specialized receptors, plants are able to perceive changes in astrophysical factors. Potential mechanisms for perceiving changes in IR, MF and gravity levels are considered. The main pathway for inducing effects in plants is caused by primary physicochemical reactions and change in the levels of secondary messengers, including ROS and Ca2+. The presence of common components, including secondary messengers, in the chain of responses to astrophysical factors determines the complex nature of the response under their combined action. The analysis performed and the proposed hypothesis will help in planning space missions, as well as identifying the most important areas of research in space biology.
Collapse
Affiliation(s)
- Marina Grinberg
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia.
| | - Vladimir Vodeneev
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| |
Collapse
|
7
|
Grob R, Wegmann JW, Rössler W, Fleischmann PN. Cataglyphis ants have a polarity-sensitive magnetic compass. Curr Biol 2024; 34:5833-5838.e2. [PMID: 39644891 DOI: 10.1016/j.cub.2024.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 10/17/2024] [Accepted: 11/07/2024] [Indexed: 12/09/2024]
Abstract
Spatial orientation based on the geomagnetic field (GMF) is a widespread phenomenon in the animal kingdom, predominantly observed in long-distance migrating birds,1 sea turtles,2 lobsters,3 and Lepidoptera.4,5 Although magnetoreception has been studied intensively, the mechanism remains elusive. A crucial question for a mechanistic understanding of magnetoreception is whether animals rely on inclination or polarity-based magnetic information. Inclination-based magnetic orientation utilizes the angle between the magnetic field lines and gravity, indicating poleward and equatorward. In contrast, polarity-based magnetic orientation allows animals to detect the polarity of the GMF, the north and south direction of the field vector. Cataglyphis desert ants are excellent experimental models for testing whether magnetic inclination or polarity of the magnetic field is used for navigation. Desert ants are solitary foragers with exceptional navigational skills.6 When the ants leave their underground nest for the first time to become foragers, they perform learning walks for up to three days to learn the visual panorama and calibrate their compass systems.7,8 The ants repeatedly stop their forward movement during learning walks for performing turns (pirouettes), interrupted by stopping phases. Gaze directions during the longest stopping phases are directed toward the nest entrance.9 We experimentally manipulated look-back behavior systematically by altering polarity or inclination of the GMF. We demonstrate that Cataglyphis ants, contrary to most other insects studied,10 possess a polarity-sensitive magnetic compass, making them ideal experimental models for narrowing down the evidence for particle-based mechanisms underlying magnetosensation in this insect.
Collapse
Affiliation(s)
- Robin Grob
- Behavioral Physiology and Sociobiology (Zoology II), Biocenter, University of Würzburg, 97074 Würzburg, Germany; Department of Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, 7034 Trondheim, Norway
| | - Johanna W Wegmann
- Behavioral Physiology and Sociobiology (Zoology II), Biocenter, University of Würzburg, 97074 Würzburg, Germany; AG Neurosensorik/Animal Navigation, Institute of Biology and Environmental Sciences, Faculty V, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany
| | - Wolfgang Rössler
- Behavioral Physiology and Sociobiology (Zoology II), Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Pauline N Fleischmann
- Behavioral Physiology and Sociobiology (Zoology II), Biocenter, University of Würzburg, 97074 Würzburg, Germany; AG Neurosensorik/Animal Navigation, Institute of Biology and Environmental Sciences, Faculty V, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany.
| |
Collapse
|
8
|
Arai S, Kobayashi R, Adachi M, Kimura K, Masai H. Possibility of two-dimensional ordering of cryptochrome 4a from European robin. Biochem Biophys Res Commun 2024; 737:150513. [PMID: 39126860 DOI: 10.1016/j.bbrc.2024.150513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Cryptochrome (Cry) in some species could act as a quantum senser to detect the inclination angle of geomagnetic field, the function of which attributes the magnetic sensitivity of spins of unpaired electrons in radical pair (RP) in CRY generated by blue light irradiation. However, the effect of blue light on the structure and molecular behavior of Cry has not been well investigated. We conducted the size exclusion chromatography (SEC) and small-angle X-ray scattering (SAXS) analyses to inspect the molecular structure and behavior of cryptochrome 4a (ErCry4a) from European robin, a representative magnetosensory animal. The results indicated that ErCry4a could form flat-shape oligomers. Moreover, blue light irradiation induced the contraction of the ErCry4a molecule at the monomer scale and simultaneously accelerated the two-dimensional oligomerization of ErCry4a. This oligomerization may enhance the regularity of the two-dimensional arrangement of ErCry4a molecules, providing a positive effect for detecting the inclination angle.
Collapse
Affiliation(s)
- Shigeki Arai
- National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagwa, Inage-ku, Chiba-city, Chiba, 263-8555, Japan.
| | - Ryoma Kobayashi
- National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagwa, Inage-ku, Chiba-city, Chiba, 263-8555, Japan
| | - Motoyasu Adachi
- National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagwa, Inage-ku, Chiba-city, Chiba, 263-8555, Japan
| | - Koji Kimura
- Graduate School of Engineering Global College, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi, 466-8555, Japan; Japan Synchrotron Radiation Research Institute, SPring-8, Kouto, Sayo, Hyogo, 679-5198, Japan
| | - Hirokazu Masai
- Department of Materials and Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka, 563-8577, Japan
| |
Collapse
|
9
|
Panagopoulos DJ, Karabarbounis A, Chrousos GP. Biophysical mechanism of animal magnetoreception, orientation and navigation. Sci Rep 2024; 14:30053. [PMID: 39627252 PMCID: PMC11615392 DOI: 10.1038/s41598-024-77883-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/25/2024] [Indexed: 12/06/2024] Open
Abstract
We describe a biophysical mechanism for animal magnetoreception, orientation and navigation in the geomagnetic field (GMF), based on the ion forced oscillation (IFO) mechanism in animal cell membrane voltage-gated ion channels (VGICs) (IFO-VGIC mechanism). We review previously suggested hypotheses. We describe the structure and function of VGICs and argue that they are the most sensitive electromagnetic sensors in all animals. We consider the magnetic force exerted by the GMF on a mobile ion within a VGIC of an animal with periodic velocity variation. We apply this force in the IFO equation resulting in solution connecting the GMF intensity with the velocity variation rate. We show that animals with periodic velocity variations, receive oscillating forces on their mobile ions within VGICs, which are forced to oscillate exerting forces on the voltage sensors of the channels, similar or greater to the forces from membrane voltage changes that normally induce gating. Thus, the GMF in combination with the varying animal velocity can gate VGICs and alter cell homeostasis in a degree depending, for a given velocity and velocity variation rate, on GMF intensity (unique in each latitude) and the angle between velocity and GMF axis, which determine animal position and orientation.
Collapse
Affiliation(s)
- Dimitris J Panagopoulos
- Choremeion Research Laboratory, 1st Department of Paediatrics, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece.
- Electromagnetic Field-Biophysics Research Laboratory, Athens, Greece.
| | - Andreas Karabarbounis
- Department of Physics, Section of Nuclear and Particle Physics, National and Kapodistrian University of Athens, Athens, Greece
| | - George P Chrousos
- Choremeion Research Laboratory, 1st Department of Paediatrics, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
- Medical School, University Research Institute of Maternal and Child Health and Precision Medicine, and UNESCO Chair On Adolescent Health Care, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, Athens, Greece
| |
Collapse
|
10
|
Sotoodehfar A, Rishabh, Zadeh-Haghighi H, Simon C. Quantum theory of a potential biological magnetic field sensor: Radical pair mechanism in flavin adenine dinucleotide biradicals. Comput Struct Biotechnol J 2024; 26:70-77. [PMID: 39697355 PMCID: PMC11652833 DOI: 10.1016/j.csbj.2024.11.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 12/20/2024] Open
Abstract
Recent studies in vitro and in vivo suggest that flavin adenine dinucleotide (FAD) on its own might be able to act as a biological magnetic field sensor. Motivated by these observations, in this study, we develop a detailed quantum theoretical model for the radical pair mechanism (RPM) for the flavin adenine biradical within the FAD molecule. We use the results of existing molecular dynamics simulations to determine the time-varying distance between the radicals on FAD, which we then feed into a quantum master equation treatment of the RPM. In contrast to previous semi-classical models, which are limited to the low-field and high-field cases, our quantum model can predict the full magnetic field dependence of the transient absorption signal. Our model's predictions are consistent with experiments at physiological pH values.
Collapse
Affiliation(s)
- Amirhosein Sotoodehfar
- Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4, Canada
- Institute for Quantum Science and Technology, University of Calgary, Calgary, AB, T2N 1N4, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Rishabh
- Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4, Canada
- Institute for Quantum Science and Technology, University of Calgary, Calgary, AB, T2N 1N4, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Hadi Zadeh-Haghighi
- Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4, Canada
- Institute for Quantum Science and Technology, University of Calgary, Calgary, AB, T2N 1N4, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Christoph Simon
- Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4, Canada
- Institute for Quantum Science and Technology, University of Calgary, Calgary, AB, T2N 1N4, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 1N4, Canada
| |
Collapse
|
11
|
Ramsay JL, Schuhmann F, Solov’yov IA, Kattnig DR. Cryptochrome magnetoreception: Time course of photoactivation from non-equilibrium coarse-grained molecular dynamics. Comput Struct Biotechnol J 2024; 26:58-69. [PMID: 39802491 PMCID: PMC11725172 DOI: 10.1016/j.csbj.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/01/2024] [Accepted: 11/01/2024] [Indexed: 01/16/2025] Open
Abstract
Magnetoreception, the ability to sense magnetic fields, is widespread in animals but remains poorly understood. The leading model links this ability in migratory birds to the photo-activation of the protein cryptochrome. Magnetic information is thought to induce structural changes in cryptochrome via a transient radical pair intermediate. This signal transduction pathway has been the subject of previous all-atom molecular dynamics (MD) simulations, but insights were limited to short timescales and equilibrium structures. To address this, we developed a non-equilibrium coarse-grained MD simulation approach, exploring cryptochrome's photo-reduction over 20 replicates of 20 µs each. Our results revealed significant structural changes across the protein, with an overall time constant of 3 µs. The C-terminal (CT) region responded on a timescale of 4.7 µs, followed by the EEE-motif, while the phosphate binding loop (PBL) showed slower dynamics (9 µs). Network analysis highlighted direct pathways connecting the tryptophan tetrad to the CT, and distant pathways involving the EEE and PBL regions. The CT-dynamics are significantly impacted by a rearrangement of tryptophan residues in the central electron transfer chain. Our findings underscore the importance of considering longer timescales when studying cryptochrome magnetoreception and highlight the potential of non-equilibrium coarse-grained MD simulations as a powerful tool to unravel protein photoactivation reactions.
Collapse
Affiliation(s)
- Jessica L. Ramsay
- Department of Physics, University of Exeter, Stocker Rd., Exeter EX4 4QL, UK
- Living Systems Institute, University of Exeter, Stocker Rd., Exeter EX4 4QD, UK
| | - Fabian Schuhmann
- Niels Bohr International Academy, Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, Copenhagen 2100, Denmark
| | - Ilia A. Solov’yov
- Institute of Physics, Carl von Ossietzky Universität Oldenburg, Carl-von-Ossietzky Str. 9–11, Oldenburg 26129, Germany
- Research Centre for Neurosensory Science, Carl von Ossietzky Universität Oldenburg, Carl-von-Ossietzky-Str. 9-11, Oldenburg 26129, Germany
- Center for Nanoscale Dynamics (CENAD), Carl von Ossietzky Universität Oldenburg, Ammerländer Heerstr. 114–118, Oldenburg 26129, Germany
| | - Daniel R. Kattnig
- Department of Physics, University of Exeter, Stocker Rd., Exeter EX4 4QL, UK
- Living Systems Institute, University of Exeter, Stocker Rd., Exeter EX4 4QD, UK
| |
Collapse
|
12
|
Loonen AJM. The putative role of the habenula in animal migration. Physiol Behav 2024; 286:114668. [PMID: 39151652 DOI: 10.1016/j.physbeh.2024.114668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/26/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND When an addicted animal seeks a specific substance, it is based on the perception of internal and external cues that strongly motivate to pursue the acquisition of that compound. In essence, a similar process acts out when an animal leaves its present area to begin its circannual migration. This review article examines the existence of scientific evidence for possible relatedness of migration and addiction by influencing Dorsal Diencephalic Conduction System (DDCS) including the habenula. METHODS For this review especially the databases of Pubmed and Embase were frequently and non-systematically searched. RESULTS The mechanisms of bird migration have been thoroughly investigated. Especially the mechanism of the circannual biorhythm and its associated endocrine regulation has been well elucidated. A typical behavior called "Zugunruhe" marks the moment of leaving in migratory birds. The role of magnetoreception in navigation has also been clarified in recent years. However, how bird migration is regulated at the neuronal level in the forebrain is not well understood. Among mammals, marine mammals are most similar to birds. They use terrestrial magnetic field when navigating and often bridge long distances between breeding and foraging areas. Population migration is further often seen among the large hoofed mammals in different parts of the world. Importantly, learning processes and social interactions with conspecifics play a major role in these ungulates. Considering the evolutionary development of the forebrain in vertebrates, it can be postulated that the DDCS plays a central role in regulating the readiness and intensity of essential (emotional) behaviors. There is manifold evidence that this DDCS plays an important role in relapse to abuse after prolonged periods of abstinence from addictive behavior. It is also possible that the DDCS plays a role in navigation. CONCLUSIONS The role of the DDCS in the neurobiological regulation of bird migration has hardly been investigated. The involvement of this system in relapse to addiction in mammals might suggest to change this. It is recommended that particularly during "Zugunruhe" the role of neuronal regulation via the DDCS will be further investigated.
Collapse
Affiliation(s)
- Anton J M Loonen
- Pharmacotherapy, Epidemiology & Economics, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713AV Groningen, the Netherlands.
| |
Collapse
|
13
|
Kwon Y, Kim J, Son YB, Lee SA, Choi SS, Cho Y. Advanced Neural Functional Imaging in C. elegans Using Lab-on-a-Chip Technology. MICROMACHINES 2024; 15:1027. [PMID: 39203678 PMCID: PMC11356251 DOI: 10.3390/mi15081027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/03/2024]
Abstract
The ability to perceive and adapt to environmental changes is crucial for the survival of all organisms. Neural functional imaging, particularly in model organisms, such as Caenorhabditis elegans, provides valuable insights into how animals sense and process external cues through their nervous systems. Because of its fully mapped neural anatomy, transparent body, and genetic tractability, C. elegans serves as an ideal model for these studies. This review focuses on advanced methods for neural functional imaging in C. elegans, highlighting calcium imaging techniques, lab-on-a-chip technologies, and their applications in the study of various sensory modalities, including chemosensation, mechanosensation, thermosensation, photosensation, and magnetosensation. We discuss the benefits of these methods in terms of precision, reproducibility, and ability to study dynamic neural processes in real time, ultimately advancing our understanding of the fundamental principles of neural activity and connectivity.
Collapse
Affiliation(s)
- Youngeun Kwon
- Department of Chemical Engineering, Myongji University, Yongin 17058, Republic of Korea; (Y.K.); (J.K.); (Y.B.S.)
| | - Jihye Kim
- Department of Chemical Engineering, Myongji University, Yongin 17058, Republic of Korea; (Y.K.); (J.K.); (Y.B.S.)
| | - Ye Bin Son
- Department of Chemical Engineering, Myongji University, Yongin 17058, Republic of Korea; (Y.K.); (J.K.); (Y.B.S.)
| | - Sol Ah Lee
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA;
| | - Shin Sik Choi
- Department of Bio-Pharmaceutical Sciences, Myongji University, Yongin 17058, Republic of Korea;
- The Natural Science Research Institute, Department of Food and Nutrition, Myongji University, Yongin 17058, Republic of Korea
- elegslab Inc., Seoul 06083, Republic of Korea
| | - Yongmin Cho
- Department of Chemical Engineering, Myongji University, Yongin 17058, Republic of Korea; (Y.K.); (J.K.); (Y.B.S.)
- elegslab Inc., Seoul 06083, Republic of Korea
| |
Collapse
|
14
|
Serna JDP, Alves OC, Abreu F, Acosta-Avalos D. Magnetite in the abdomen and antennae of Apis mellifera honeybees. J Biol Phys 2024; 50:215-228. [PMID: 38727764 PMCID: PMC11106226 DOI: 10.1007/s10867-024-09656-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 04/16/2024] [Indexed: 05/21/2024] Open
Abstract
The detection of magnetic fields by animals is known as magnetoreception. The ferromagnetic hypothesis explains magnetoreception assuming that magnetic nanoparticles are used as magnetic field transducers. Magnetite nanoparticles in the abdomen of Apis mellifera honeybees have been proposed in the literature as the magnetic field transducer. However, studies with ants and stingless bees have shown that the whole body of the insect contain magnetic material, and that the largest magnetization is in the antennae. The aim of the present study is to investigate the magnetization of all the body parts of honeybees as has been done with ants and stingless bees. To do that, the head without antennae, antennae, thorax, and abdomen obtained from Apis mellifera honeybees were analyzed using magnetometry and Ferromagnetic Resonance (FMR) techniques. The magnetometry and FMR measurements show the presence of magnetic material in all honeybee body parts. Our results present evidence of the presence of biomineralized magnetite nanoparticles in the honeybee abdomen and, for the first time, magnetite in the antennae. FMR measurements permit to identify the magnetite in the abdomen as biomineralized. As behavioral experiments reported in the literature have shown that the abdomen is involved in magnetoreception, new experimental approaches must be done to confirm or discard the involvement of the antennae in magnetoreception.
Collapse
Affiliation(s)
- Jilder Dandy Peña Serna
- Coordenação de Física Aplicada (COMAN), Centro Brasileiro de Pesquisas Físicas (CBPF), R. Xavier Sigaud, 150, Rio de Janeiro, 22290-180, Brazil
| | - Odivaldo Cambraia Alves
- Universidade Federal Fluminense (UFF), Outeiro de São Joao Batista, Campus do Valonguinho, Centro, RJ, Niterói 24020-141, Brazil
| | - Fernanda Abreu
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, 21941-902, Brazil
| | - Daniel Acosta-Avalos
- Coordenação de Física Aplicada (COMAN), Centro Brasileiro de Pesquisas Físicas (CBPF), R. Xavier Sigaud, 150, Rio de Janeiro, 22290-180, Brazil.
| |
Collapse
|
15
|
Liu L, Huang B, Lu Y, Zhao Y, Tang X, Shi Y. Interactions between electromagnetic radiation and biological systems. iScience 2024; 27:109201. [PMID: 38433903 PMCID: PMC10906530 DOI: 10.1016/j.isci.2024.109201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024] Open
Abstract
Even though the bioeffects of electromagnetic radiation (EMR) have been extensively investigated during the past several decades, our understandings of the bioeffects of EMR and the mechanisms of the interactions between the biological systems and the EMRs are still far from satisfactory. In this article, we introduce and summarize the consensus, controversy, limitations, and unsolved issues. The published works have investigated the EMR effects on different biological systems including humans, animals, cells, and biochemical reactions. Alternative methodologies also include dielectric spectroscopy, detection of bioelectromagnetic emissions, and theoretical predictions. In many studies, the thermal effects of the EMR are not properly controlled or considered. The frequency of the EMR investigated is limited to the commonly used bands, particularly the frequencies of the power line and the wireless communications; far fewer studies were performed for other EMR frequencies. In addition, the bioeffects of the complex EM environment were rarely discussed. In summary, our understanding of the bioeffects of the EMR is quite restrictive and further investigations are needed to answer the unsolved questions.
Collapse
Affiliation(s)
- Lingyu Liu
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Bing Huang
- Brain Function and Disease Laboratory, Department of Pharmacology, Shantou University Medical College, 22 Xin-Ling Road, Shantou 515041, China
| | - Yingxian Lu
- Westlake Laboratory of Life Sciences and Biomedicine, Xihu District, Hangzhou 310024, Zhejiang Province, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Yanyu Zhao
- Westlake Laboratory of Life Sciences and Biomedicine, Xihu District, Hangzhou 310024, Zhejiang Province, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Xiaping Tang
- Westlake Laboratory of Life Sciences and Biomedicine, Xihu District, Hangzhou 310024, Zhejiang Province, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Yigong Shi
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Westlake Laboratory of Life Sciences and Biomedicine, Xihu District, Hangzhou 310024, Zhejiang Province, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| |
Collapse
|
16
|
Nair PS, Zadeh-Haghighi H, Simon C. Radical pair model for magnetic field effects on NMDA receptor activity. Sci Rep 2024; 14:3628. [PMID: 38351304 PMCID: PMC10864372 DOI: 10.1038/s41598-024-54343-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/12/2024] [Indexed: 02/16/2024] Open
Abstract
The N-methyl-D-aspartate receptor is a prominent player in brain development and functioning. Perturbations to its functioning through external stimuli like magnetic fields can potentially affect the brain in numerous ways. Various studies have shown that magnetic fields of varying strengths affect these receptors. We propose that the radical pair mechanism, a quantum mechanical process, could explain some of these field effects. Radicals of the form [Formula: see text], where R is a protein residue that can be Serine or Tyrosine, are considered for this study. The variation in the singlet fractional yield of the radical pairs, as a function of magnetic field strength, is calculated to understand how the magnetic field affects the products of the radical pair reactions. Based on the results, the radical pair mechanism is a likely candidate for explaining the magnetic field effects observed on the receptor activity. The model predicts changes in the behaviour of the system as magnetic field strength is varied and also predicts certain isotope effects. The results further suggest that similar effects on radical pairs could be a plausible explanation for various magnetic field effects within the brain.
Collapse
Affiliation(s)
- Parvathy S Nair
- Department of Physics, Indian Institute of Science Education and Research (IISER), Tirupati, Tirupati, Andhra Pradesh, 517507, India.
| | - Hadi Zadeh-Haghighi
- Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4, Canada.
- Institute for Quantum Science and Technology, University of Calgary, Calgary, AB, T2N 1N4, Canada.
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 1N4, Canada.
| | - Christoph Simon
- Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4, Canada.
- Institute for Quantum Science and Technology, University of Calgary, Calgary, AB, T2N 1N4, Canada.
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
17
|
Hüttner T, von Fersen L, Miersch L, Dehnhardt G. Passive electroreception in bottlenose dolphins (Tursiops truncatus): implication for micro- and large-scale orientation. J Exp Biol 2023; 226:jeb245845. [PMID: 38035544 PMCID: PMC10714143 DOI: 10.1242/jeb.245845] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 10/10/2023] [Indexed: 12/02/2023]
Abstract
For the two dolphin species Sotalia guianensis (Guiana dolphin) and Tursiops truncatus (bottlenose dolphin), previous research has shown that the vibrissal crypts located on the rostrum represent highly innervated, ampullary electroreceptors and that both species are correspondingly sensitive to weak electric fields. In the present study, for a comparative assessment of the sensitivity of the bottlenose dolphin's electroreceptive system, we determined detection thresholds for DC and AC electric fields with two bottlenose dolphins. In a psychophysical experiment, the animals were trained to respond to electric field stimuli using the go/no-go paradigm. We show that the two bottlenose dolphins are able to detect DC electric fields as low as 2.4 and 5.5 µV cm-1, respectively, a detection threshold in the same order of magnitude as those in the platypus and the Guiana dolphin. Detection thresholds for AC fields (1, 5 and 25 Hz) were generally higher than those for DC fields, and the sensitivity for AC fields decreased with increasing frequency. Although the electroreceptive sensitivity of dolphins is lower than that of elasmobranchs, it is suggested that it allows for both micro- and macro-scale orientation. In dolphins pursuing benthic foraging strategies, electroreception may facilitate short-range prey detection and target-oriented snapping of their prey. Furthermore, the ability to detect weak electric fields may enable dolphins to perceive the Earth's magnetic field through induction-based magnetoreception, thus allowing large-scale orientation.
Collapse
Affiliation(s)
- Tim Hüttner
- Institute for Biosciences, University of Rostock, Albert-Einstein-Strasse 3, 18059 Rostock, Germany
- Behavioral Ecology and Conservation Lab, Nuremberg Zoo, Am Tiergarten 30, 90480 Nuremberg, Germany
| | - Lorenzo von Fersen
- Behavioral Ecology and Conservation Lab, Nuremberg Zoo, Am Tiergarten 30, 90480 Nuremberg, Germany
| | - Lars Miersch
- Institute for Biosciences, University of Rostock, Albert-Einstein-Strasse 3, 18059 Rostock, Germany
| | - Guido Dehnhardt
- Institute for Biosciences, University of Rostock, Albert-Einstein-Strasse 3, 18059 Rostock, Germany
| |
Collapse
|
18
|
Serna JDP, Antonialli-Junior W, Antonio DS, Batista NR, Alves OC, Abreu F, Acosta-Avalos D. Magnetic nanoparticles in the body parts of Polistes versicolor and Polybia paulista wasps are biomineralized: evidence from magnetization measurements and ferromagnetic resonance spectroscopy. Biometals 2023; 36:877-886. [PMID: 36602694 DOI: 10.1007/s10534-022-00485-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023]
Abstract
The detection of the geomagnetic field by animals to use as a cue in homing and migration is known as magnetoreception. The ferromagnetic hypothesis explains magnetoreception assuming that magnetic nanoparticles in cellular structures are used as magnetic field transducers. Considering magnetoreception in social insects, the most studied has been the honeybee Apis mellifera and only in two wasp species (Vespa orientalis and Polybia paulista) have been shown a magnetosensitive behavior. In the present report the body parts (abdomen, head and antennae) of Polistes versicolor and Polybia paulista wasps were studied aiming to find biomineralized magnetic nanoparticles, using magnetometry measurements and ferromagnetic resonance spectroscopy. The magnetometry measurements show the presence of magnetic nanoparticles in all body parts, being characterized as mixtures of superparamagnetic, single domain and pseudo-single domain nanoparticles. From the ferromagnetic resonance spectra were obtained the asymmetry ratio A and the effective g factor geff, and those parameters are consistent with the presence of biomineralized magnetic nanoparticles in both wasps. In the case of Polybia paulista, the magnetic nanoparticles can be associated with some sort of magnetosensor once this wasp is magnetosensitive. For Polistes versicolor, the results indicate that this wasp can be magnetosensitive as Polybia paulista once their magnetic nanoparticles are biomineralized in the body. Behavioral studies with Polistes versicolor wasps deserve to be performed.
Collapse
Affiliation(s)
- Jilder Dandy Peña Serna
- Coordenação de Materia Condensada, Física Aplicada e Nanociencia, Centro Brasileiro de Pesquisas Físicas - CBPF, R. Xavier Sigaud, 150, Rio de Janeiro, 22290-180, Brazil
| | - William Antonialli-Junior
- Laboratorio de Ecologia Comportamental, Universidade Estadual de Mato Grosso do Sul, Dourados, MS, Brazil
| | - Denise Sguarizi Antonio
- Laboratorio de Ecologia Comportamental, Universidade Estadual de Mato Grosso do Sul, Dourados, MS, Brazil
| | - Nathan Rodrigues Batista
- Laboratorio de Ecologia Comportamental, Universidade Estadual de Mato Grosso do Sul, Dourados, MS, Brazil
| | - Odivaldo Cambraia Alves
- Universidade Federal Fluminense-UFF, Outeiro de São Joao Batista, Campus do Valonguinho, Centro, Niterói, RJ, 24020-141, Brazil
| | - Fernanda Abreu
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro-UFRJ, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Daniel Acosta-Avalos
- Coordenação de Materia Condensada, Física Aplicada e Nanociencia, Centro Brasileiro de Pesquisas Físicas - CBPF, R. Xavier Sigaud, 150, Rio de Janeiro, 22290-180, Brazil.
| |
Collapse
|
19
|
Ma T, Ding Q, Liu C, Wu H. Electromagnetic fields regulate calcium-mediated cell fate of stem cells: osteogenesis, chondrogenesis and apoptosis. Stem Cell Res Ther 2023; 14:133. [PMID: 37194107 DOI: 10.1186/s13287-023-03303-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/28/2023] [Indexed: 05/18/2023] Open
Abstract
Electromagnetic fields (EMF) are increasing in popularity as a safe and non-invasive therapy. On the one hand, it is widely acknowledged that EMF can regulate the proliferation and differentiation of stem cells, promoting the undifferentiated cells capable of osteogenesis, angiogenesis, and chondroblast differentiation to achieve bone repair purpose. On the other hand, EMF can inhibit tumor stem cells proliferation and promote apoptosis to suppress tumor growth. As an essential second messenger, intracellular calcium plays a role in regulating cell cycle, such as proliferation, differentiation and apoptosis. There is increasing evidence that the modulation of intracellular calcium ion by EMF leads to differential outcomes in different stem cells. This review summarizes the regulation of channels, transporters, and ion pumps by EMF-induced calcium oscillations. It furtherly discusses the role of molecules and pathways activated by EMF-dependent calcium oscillations in promoting bone and cartilage repair and inhibiting tumor stem cells growth.
Collapse
Affiliation(s)
- Tian Ma
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Qing Ding
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Chaoxu Liu
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Hua Wu
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
20
|
Clifton G, Stark AY, Li C, Gravish N. The bumpy road ahead: the role of substrate roughness on animal walking and a proposed comparative metric. J Exp Biol 2023; 226:307149. [PMID: 37083141 DOI: 10.1242/jeb.245261] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Outside laboratory conditions and human-made structures, animals rarely encounter flat surfaces. Instead, natural substrates are uneven surfaces with height variation that ranges from the microscopic scale to the macroscopic scale. For walking animals (which we define as encompassing any form of legged movement across the ground, such as walking, running, galloping, etc.), such substrate 'roughness' influences locomotion in a multitude of ways across scales, from roughness that influences how each toe or foot contacts the ground, to larger obstacles that animals must move over or navigate around. Historically, the unpredictability and variability of natural environments has limited the ability to collect data on animal walking biomechanics. However, recent technical advances, such as more sensitive and portable cameras, biologgers, laboratory tools to fabricate rough terrain, as well as the ability to efficiently store and analyze large variable datasets, have expanded the opportunity to study how animals move under naturalistic conditions. As more researchers endeavor to assess walking over rough terrain, we lack a consistent approach to quantifying roughness and contextualizing these findings. This Review summarizes existing literature that examines non-human animals walking on rough terrain and presents a metric for characterizing the relative substrate roughness compared with animal size. This framework can be applied across terrain and body scales, facilitating direct comparisons of walking over rough surfaces in animals ranging in size from ants to elephants.
Collapse
Affiliation(s)
| | | | - Chen Li
- Department of Mechanical Engineering, Johns Hopkins University, MD, USA
| | - Nicholas Gravish
- Department of Mechanical and Aerospace Engineering, University of California San Diego, San Diego, CA, USA
| |
Collapse
|
21
|
Mannino G, Casacci LP, Bianco Dolino G, Badolato G, Maffei ME, Barbero F. The Geomagnetic Field (GMF) Is Necessary for Black Garden Ant ( Lasius niger L.) Foraging and Modulates Orientation Potentially through Aminergic Regulation and MagR Expression. Int J Mol Sci 2023; 24:ijms24054387. [PMID: 36901820 PMCID: PMC10002094 DOI: 10.3390/ijms24054387] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
The geomagnetic field (GMF) can affect a wide range of animal behaviors in various habitats, primarily providing orientation cues for homing or migratory events. Foraging patterns, such as those implemented by Lasius niger, are excellent models to delve into the effects of GMF on orientation abilities. In this work, we assessed the role of GMF by comparing the L. niger foraging and orientation performance, brain biogenic amine (BA) contents, and the expression of genes related to the magnetosensory complex and reactive oxygen species (ROS) of workers exposed to near-null magnetic fields (NNMF, ~40 nT) and GMF (~42 µT). NNMF affected workers' orientation by increasing the time needed to find the food source and return to the nest. Moreover, under NNMF conditions, a general drop in BAs, but not melatonin, suggested that the lower foraging performance might be correlated to a decrease in locomotory and chemical perception abilities, potentially driven by dopaminergic and serotoninergic regulations, respectively. The variation in the regulation of genes related to the magnetosensory complex in NNMF shed light on the mechanism of ant GMF perception. Overall, our work provides evidence that the GMF, along with chemical and visual cues, is necessary for the L. niger orientation process.
Collapse
|
22
|
Wei NL, Xu W, Tang HL, Xie Q, Zhai Y, Chen J, Zhang XY, Zhu JH. Learning from magnetotactic bacteria: mms6 protects stem cells from oxidative damage. Front Cell Neurosci 2022; 16:1075640. [PMID: 36505515 PMCID: PMC9728029 DOI: 10.3389/fncel.2022.1075640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/02/2022] [Indexed: 11/24/2022] Open
Abstract
Oxidative damage generally exists in stroke and impairs stem cells' survival; however, the problem is difficult to treat. In order to help stem cells to resist this damage, we inserted a magnetotactic bacteria (MB) gene, mms6, into the neural stem cell genome by lentiviral transfection. It was found that the transfection of mms6 significantly improved the survival rate of stem cells in the condition of iron overload but not hypoxia. The bioenergetic profile also revealed that iron overloading weakened the mitochondrial respiration and spare respiration capacity of stem cells, but that these were enhanced after the expression of mms6. Additionally, Western blotting (WB) data revealed that mms6 upregulated the expression of glutathione peroxidase (GPX4), which protected stem cells from oxidative damage and ferroptosis. In order to determine the possible mechanisms, we analyzed the interactions between the MMS6 protein, Fe2+, and GPX4 via analog computation. The predicted models found that the MMS6 protein had a direct chelating site in the region of M6A with divalent iron; it also had weak binding with GPX4. Taken together, the magnetotactic bacterial gene mms6 protected stem cells from oxidative damage via binding with Fe2+, which could help them adapt to the microenvironment of stroke.
Collapse
Affiliation(s)
- Nai-Li Wei
- Department of Neurosurgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- State Key Laboratory for Medical Neurobiology, Department of Neurosurgery, Institutes of Brain Science, Fudan University Huashan Hospital, Shanghai Medical College-Fudan University, Shanghai, China
| | - Wenjing Xu
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Hai-Liang Tang
- State Key Laboratory for Medical Neurobiology, Department of Neurosurgery, Institutes of Brain Science, Fudan University Huashan Hospital, Shanghai Medical College-Fudan University, Shanghai, China
| | - Qiang Xie
- Department of Neurosurgery, Fudan University Zhongshan Hospital, Shanghai Medical College of Fudan University, Shanghai, China
| | - Yuting Zhai
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Jian Chen
- Department of Neurosurgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Xiao-Yong Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Jian-Hong Zhu
- State Key Laboratory for Medical Neurobiology, Department of Neurosurgery, Institutes of Brain Science, Fudan University Huashan Hospital, Shanghai Medical College-Fudan University, Shanghai, China
| |
Collapse
|
23
|
Feng J, Song B, Zhang Y. Semantic parsing of the life process by quantum biology. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 175:79-89. [PMID: 36126802 DOI: 10.1016/j.pbiomolbio.2022.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/23/2022] [Accepted: 09/13/2022] [Indexed: 06/15/2023]
Abstract
A fact that an ever-increasingly number of research attention has focused on quantum biology demonstrates that it is, by no means, new to works in physic and mathematics, but to molecular biologists, geneticists, and biochemists. This is owing to that quantum biology serves as a distinctive discipline, by using quantum theory to study life sciences in combination with physics, mechanics, mathematics, statistics, and modern biology. Notably, quantum mechanics and its fundamental principles have been employed to clarify complex biological processes and molecular homeostasis within the organic life. Consequently, using the principles of quantum mechanics to study dynamic changes and energy transfer of molecules at the quantum level in biology has been accepted as an unusually distinguishable way to a better explanation of many phenomena in life. It is plausible that a clear conceptual quantum theoretical event is also considered to generally occur for short-term picoseconds or femtoseconds on microscopic nano- and subnanometer scales in biology and biosciences. For instance, photosynthesis, enzyme -catalyzed reactions, magnetic perception, the capture of smell and vision, DNA fragmentation, cellular breathing, mitochondrial processing, as well as brain thinking and consciousness, are all manifested within quantum superposition, quantum coherence, quantum entanglement, quantum tunneling, and other effects. In this mini-review, we describe the recent progress in quantum biology, with a promising direction for further insights into this field.
Collapse
Affiliation(s)
- Jing Feng
- Bioengineering College and Graduate School, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing, 400044, China; Chongqing University Jiangjin Hospital, School of Medicine, Chongqing University, No. 725 Jiangzhou Avenue, Dingshan Street, Jiangjin District, Chongqing, 402260, China; The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering & Faculty of Medical Sciences, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing, 400044, China
| | - Bo Song
- School of Optical-Electrical Computer Engineering, University of Shanghai for Science and Technology, No. 580 Jungong Road, Yangpu District, Shanghai, 200093, China
| | - Yiguo Zhang
- Chongqing University Jiangjin Hospital, School of Medicine, Chongqing University, No. 725 Jiangzhou Avenue, Dingshan Street, Jiangjin District, Chongqing, 402260, China; The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering & Faculty of Medical Sciences, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing, 400044, China.
| |
Collapse
|
24
|
Cooke SJ, Bergman JN, Twardek WM, Piczak ML, Casselberry GA, Lutek K, Dahlmo LS, Birnie-Gauvin K, Griffin LP, Brownscombe JW, Raby GD, Standen EM, Horodysky AZ, Johnsen S, Danylchuk AJ, Furey NB, Gallagher AJ, Lédée EJI, Midwood JD, Gutowsky LFG, Jacoby DMP, Matley JK, Lennox RJ. The movement ecology of fishes. JOURNAL OF FISH BIOLOGY 2022; 101:756-779. [PMID: 35788929 DOI: 10.1111/jfb.15153] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Movement of fishes in the aquatic realm is fundamental to their ecology and survival. Movement can be driven by a variety of biological, physiological and environmental factors occurring across all spatial and temporal scales. The intrinsic capacity of movement to impact fish individually (e.g., foraging) with potential knock-on effects throughout the ecosystem (e.g., food web dynamics) has garnered considerable interest in the field of movement ecology. The advancement of technology in recent decades, in combination with ever-growing threats to freshwater and marine systems, has further spurred empirical research and theoretical considerations. Given the rapid expansion within the field of movement ecology and its significant role in informing management and conservation efforts, a contemporary and multidisciplinary review about the various components influencing movement is outstanding. Using an established conceptual framework for movement ecology as a guide (i.e., Nathan et al., 2008: 19052), we synthesized the environmental and individual factors that affect the movement of fishes. Specifically, internal (e.g., energy acquisition, endocrinology, and homeostasis) and external (biotic and abiotic) environmental elements are discussed, as well as the different processes that influence individual-level (or population) decisions, such as navigation cues, motion capacity, propagation characteristics and group behaviours. In addition to environmental drivers and individual movement factors, we also explored how associated strategies help survival by optimizing physiological and other biological states. Next, we identified how movement ecology is increasingly being incorporated into management and conservation by highlighting the inherent benefits that spatio-temporal fish behaviour imbues into policy, regulatory, and remediation planning. Finally, we considered the future of movement ecology by evaluating ongoing technological innovations and both the challenges and opportunities that these advancements create for scientists and managers. As aquatic ecosystems continue to face alarming climate (and other human-driven) issues that impact animal movements, the comprehensive and multidisciplinary assessment of movement ecology will be instrumental in developing plans to guide research and promote sustainability measures for aquatic resources.
Collapse
Affiliation(s)
- Steven J Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and the Institute of Environmental and Interdisciplinary Science, Carleton University, Ottawa, Ontario, Canada
| | - Jordanna N Bergman
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and the Institute of Environmental and Interdisciplinary Science, Carleton University, Ottawa, Ontario, Canada
| | - William M Twardek
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and the Institute of Environmental and Interdisciplinary Science, Carleton University, Ottawa, Ontario, Canada
| | - Morgan L Piczak
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and the Institute of Environmental and Interdisciplinary Science, Carleton University, Ottawa, Ontario, Canada
| | - Grace A Casselberry
- Department of Environmental Conservation, University of Massachusetts, Amherst, Massachusetts, USA
| | - Keegan Lutek
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Lotte S Dahlmo
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- Laboratory for Freshwater Ecology and Inland Fisheries, NORCE Norwegian Research Centre, Bergen, Norway
| | - Kim Birnie-Gauvin
- Section for Freshwater Fisheries and Ecology, National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark
| | - Lucas P Griffin
- Department of Environmental Conservation, University of Massachusetts, Amherst, Massachusetts, USA
| | - Jacob W Brownscombe
- Great Lakes Laboratory for Fisheries and Aquatic Sciences, Fisheries and Oceans Canada, Burlington, Ontario, Canada
| | - Graham D Raby
- Biology Department, Trent University, Peterborough, Ontario, Canada
| | - Emily M Standen
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Andrij Z Horodysky
- Department of Marine and Environmental Science, Hampton University, Hampton, Virginia, USA
| | - Sönke Johnsen
- Biology Department, Duke University, Durham, North Caroline, USA
| | - Andy J Danylchuk
- Department of Environmental Conservation, University of Massachusetts, Amherst, Massachusetts, USA
| | - Nathan B Furey
- Department of Biological Sciences, University of New Hampshire, Durham, New Hampshire, USA
| | | | - Elodie J I Lédée
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Jon D Midwood
- Great Lakes Laboratory for Fisheries and Aquatic Sciences, Fisheries and Oceans Canada, Burlington, Ontario, Canada
| | - Lee F G Gutowsky
- Environmental & Life Sciences Program, Trent University, Peterborough, Ontario, Canada
| | - David M P Jacoby
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Jordan K Matley
- Program in Aquatic Resources, St Francis Xavier University, Antigonish, Nova Scotia, Canada
| | - Robert J Lennox
- Laboratory for Freshwater Ecology and Inland Fisheries, NORCE Norwegian Research Centre, Bergen, Norway
- Norwegian Institute for Nature Research, Trondheim, Norway
| |
Collapse
|
25
|
Song M, Dong S, Zhang X, Dai Y, Zhang X, Shen Y. A moderate static magnetic field promotes C. elegans longevity through cytochrome P450s. Sci Rep 2022; 12:16108. [PMID: 36167800 PMCID: PMC9515093 DOI: 10.1038/s41598-022-20647-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 09/16/2022] [Indexed: 11/15/2022] Open
Abstract
Ageing is co-regulated by genetic and environmental factors. Life on earth lives and evolves in a mild geomagnetic field. Yet, the biological effects of a moderate magnetic field on ageing and the underlying genetic mechanisms remain barely unknown. Here, we report that a moderate static magnetic field (SMF) extends the lifespan of Caenorhabditis elegans, a well-established model organism in ageing research. Consistently, the SMF-treated worms show improved motility and mitochondrial function when aged. We identified from the transcriptomic changes upon SMF treatment that the upregulation of three cytochrome P450 genes are required for SMF-induced longevity. Our findings thus reveal that proper SMF treatment could promote longevity through the well-conserved cytochrome P450 enzymes.
Collapse
Affiliation(s)
- Mengjiao Song
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signaling Network, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Rd., Shanghai, 200031, China
| | - Shiming Dong
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signaling Network, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Rd., Shanghai, 200031, China
| | - Xiangfei Zhang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
| | - Yumin Dai
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signaling Network, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Rd., Shanghai, 200031, China
| | - Xin Zhang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
| | - Yidong Shen
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signaling Network, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Rd., Shanghai, 200031, China.
| |
Collapse
|
26
|
Levitt BB, Lai HC, Manville AM. Effects of non-ionizing electromagnetic fields on flora and fauna, Part 2 impacts: how species interact with natural and man-made EMF. REVIEWS ON ENVIRONMENTAL HEALTH 2022; 37:327-406. [PMID: 34243228 DOI: 10.1515/reveh-2021-0050] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/26/2021] [Indexed: 06/13/2023]
Abstract
Ambient levels of nonionizing electromagnetic fields (EMF) have risen sharply in the last five decades to become a ubiquitous, continuous, biologically active environmental pollutant, even in rural and remote areas. Many species of flora and fauna, because of unique physiologies and habitats, are sensitive to exogenous EMF in ways that surpass human reactivity. This can lead to complex endogenous reactions that are highly variable, largely unseen, and a possible contributing factor in species extinctions, sometimes localized. Non-human magnetoreception mechanisms are explored. Numerous studies across all frequencies and taxa indicate that current low-level anthropogenic EMF can have myriad adverse and synergistic effects, including on orientation and migration, food finding, reproduction, mating, nest and den building, territorial maintenance and defense, and on vitality, longevity and survivorship itself. Effects have been observed in mammals such as bats, cervids, cetaceans, and pinnipeds among others, and on birds, insects, amphibians, reptiles, microbes and many species of flora. Cyto- and geno-toxic effects have long been observed in laboratory research on animal models that can be extrapolated to wildlife. Unusual multi-system mechanisms can come into play with non-human species - including in aquatic environments - that rely on the Earth's natural geomagnetic fields for critical life-sustaining information. Part 2 of this 3-part series includes four online supplement tables of effects seen in animals from both ELF and RFR at vanishingly low intensities. Taken as a whole, this indicates enough information to raise concerns about ambient exposures to nonionizing radiation at ecosystem levels. Wildlife loss is often unseen and undocumented until tipping points are reached. It is time to recognize ambient EMF as a novel form of pollution and develop rules at regulatory agencies that designate air as 'habitat' so EMF can be regulated like other pollutants. Long-term chronic low-level EMF exposure standards, which do not now exist, should be set accordingly for wildlife, and environmental laws should be strictly enforced - a subject explored in Part 3.
Collapse
Affiliation(s)
| | - Henry C Lai
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Albert M Manville
- Advanced Academic Programs, Krieger School of Arts and Sciences, Environmental Sciences and Policy, Johns Hopkins University, Washington DC Campus, USA
| |
Collapse
|
27
|
Belpomme D, Irigaray P. Why electrohypersensitivity and related symptoms are caused by non-ionizing man-made electromagnetic fields: An overview and medical assessment. ENVIRONMENTAL RESEARCH 2022; 212:113374. [PMID: 35537497 DOI: 10.1016/j.envres.2022.113374] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/30/2022] [Accepted: 04/25/2022] [Indexed: 06/14/2023]
Abstract
Much of the controversy over the cause of electrohypersensitivity (EHS) lies in the absence of recognized clinical and biological criteria for a widely accepted diagnosis. However, there are presently sufficient data for EHS to be acknowledged as a distinctly well-defined and objectively characterized neurologic pathological disorder. Because we have shown that 1) EHS is frequently associated with multiple chemical sensitivity (MCS) in EHS patients, and 2) that both individualized disorders share a common pathophysiological mechanism for symptom occurrence; it appears that EHS and MCS can be identified as a unique neurologic syndrome, regardless their causal origin. In this overview we distinguish the etiology of EHS itself from the environmental causes that trigger pathophysiological changes and clinical symptoms after EHS has occurred. Contrary to present scientifically unfounded claims, we indubitably refute the hypothesis of a nocebo effect to explain the genesis of EHS and its presentation. We as well refute the erroneous concept that EHS could be reduced to a vague and unproven "functional impairment". To the contrary, we show here there are objective pathophysiological changes and health effects induced by electromagnetic field (EMF) exposure in EHS patients and most of all in healthy subjects, meaning that excessive non-thermal anthropogenic EMFs are strongly noxious for health. In this overview and medical assessment we focus on the effects of extremely low frequencies, wireless communications radiofrequencies and microwaves EMF. We discuss how to better define and characterize EHS. Taken into consideration the WHO proposed causality criteria, we show that EHS is in fact causally associated with increased exposure to man-made EMF, and in some cases to marketed environmental chemicals. We therefore appeal to all governments and international health institutions, particularly the WHO, to urgently consider the growing EHS-associated pandemic plague, and to acknowledge EHS as a mainly new real EMF causally-related pathology.
Collapse
Affiliation(s)
- Dominique Belpomme
- Medical Oncology Department, Paris University, Paris, France; European Cancer and Environment Research Institute (ECERI), Brussels, Belgium.
| | - Philippe Irigaray
- European Cancer and Environment Research Institute (ECERI), Brussels, Belgium
| |
Collapse
|
28
|
Abstract
The ability to detect magnetic fields is a sensory modality that is used by many animals to navigate. While first postulated in the 1800s, for decades, it was considered a biological myth. A series of elegant behavioral experiments in the 1960s and 1970s showed conclusively that the sense is real; however, the underlying mechanism(s) remained unresolved. Consequently, this has given rise to a series of beliefs that are critically analyzed in this manuscript. We address six assertions: (1) Magnetoreception does not exist; (2) It has to be magnetite; (3) Birds have a conserved six loci magnetic sense system in their upper beak; (4) It has to be cryptochrome; (5) MagR is a protein biocompass; and (6) The electromagnetic induction hypothesis is dead. In advancing counter-arguments for these beliefs, we hope to stimulate debate, new ideas, and the design of well-controlled experiments that can aid our understanding of this fascinating biological phenomenon.
Collapse
Affiliation(s)
- Simon Nimpf
- Division of Neurobiology, Faculty of Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, 82152 Munich, Germany
| | - David A Keays
- Division of Neurobiology, Faculty of Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, 82152 Munich, Germany.,University of Cambridge, Department of Physiology, Development & Neuroscience, Downing Street, CB2 3EG Cambridge, UK.,Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus- Vienna-Biocenter 1, 1030 Vienna, Austria
| |
Collapse
|
29
|
Human magnetic sense is mediated by a light and magnetic field resonance-dependent mechanism. Sci Rep 2022; 12:8997. [PMID: 35637212 PMCID: PMC9151822 DOI: 10.1038/s41598-022-12460-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
Numerous organisms use the Earth’s magnetic field as a sensory cue for migration, body alignment, or food search. Despite some contradictory reports, yet it is generally accepted that humans do not sense the geomagnetic field. Here, we demonstrate that a magnetic field resonance mechanism mediates light-dependent magnetic orientation in men, using a rotary chair experiment combined with a two-alternative forced choice paradigm. Two groups of subjects were classified with different magnetic orientation tendencies depending on the food context. Magnetic orientation of the subjects was sensitive to the wavelength of incident light and was critically dependent on blue light reaching the eyes. Importantly, it appears that a magnetic field resonance-dependent mechanism mediates these responses, as evidenced by disruption or augmentation of the ability to orient by radiofrequency magnetic fields at the Larmor frequency and the dependence of these effects on the angle between the radiofrequency and geomagnetic fields. Furthermore, inversion of the vertical component of the geomagnetic field revealed a non-canonical inclination compass effect on the magnetic orientation. These results establish the existence of a human magnetic sense and suggest an underlying quantum mechanical magnetoreception mechanism.
Collapse
|
30
|
Arai S, Shimizu R, Adachi M, Hirai M. Magnetic field effects on the structure and molecular behavior of pigeon iron–sulfur protein. Protein Sci 2022; 31:e4313. [DOI: 10.1002/pro.4313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/31/2022] [Accepted: 04/02/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Shigeki Arai
- Institute for Quantum Life Science National Institutes for Quantum Science and Technology Tokai Ibaraki Japan
| | - Rumi Shimizu
- Institute for Quantum Life Science National Institutes for Quantum Science and Technology Tokai Ibaraki Japan
| | - Motoyasu Adachi
- Institute for Quantum Life Science National Institutes for Quantum Science and Technology Tokai Ibaraki Japan
| | - Mitsuhiro Hirai
- Graduate School of Science and Technology Gunma University Maebashi Gunma Japan
| |
Collapse
|
31
|
Further Reading. Anim Welf 2022. [DOI: 10.1002/9781119857099.furread] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
32
|
Takahashi S, Hombe T, Matsumoto S, Ide K, Yoda K. Head direction cells in a migratory bird prefer north. SCIENCE ADVANCES 2022; 8:eabl6848. [PMID: 35119935 PMCID: PMC8816328 DOI: 10.1126/sciadv.abl6848] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Animals exhibit remarkable navigation abilities as if they have an internal compass. Head direction (HD) cells encoding the animal's heading azimuth are found in the brain of several animal species; the HD cell signals are dependent on the vestibular nuclei, where magnetic responsive cells are present in birds. However, it is difficult to determine whether HD cell signals drive the compass orientation in animals, as they do not necessarily rely on the magnetic compass under all circumstances. Recording of HD cell activities from the medial pallium of shearwater chicks (Calonectris leucomelas) just before their first migration, during which they strongly rely on compass orientation, revealed that shearwater HD cells prefer a north orientation. The preference remained stable regardless of geolocations and environmental cues, suggesting the existence of a magnetic compass regulated by internally generated HD signals. Our findings provide insight into the integration of the direction and magnetoreception senses.
Collapse
Affiliation(s)
- Susumu Takahashi
- Laboratory of Cognitive and Behavioral Neuroscience, Graduate School of Brain Science, Doshisha University, Kyotanabe City, Kyoto 610-0394, Japan
| | - Takumi Hombe
- Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Sakiko Matsumoto
- Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Kaoru Ide
- Laboratory of Cognitive and Behavioral Neuroscience, Graduate School of Brain Science, Doshisha University, Kyotanabe City, Kyoto 610-0394, Japan
| | - Ken Yoda
- Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| |
Collapse
|
33
|
England SJ, Robert D. The ecology of electricity and electroreception. Biol Rev Camb Philos Soc 2022; 97:383-413. [PMID: 34643022 DOI: 10.1111/brv.12804] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 11/29/2022]
Abstract
Electricity, the interaction between electrically charged objects, is widely known to be fundamental to the functioning of living systems. However, this appreciation has largely been restricted to the scale of atoms, molecules, and cells. By contrast, the role of electricity at the ecological scale has historically been largely neglected, characterised by punctuated islands of research infrequently connected to one another. Recently, however, an understanding of the ubiquity of electrical forces within the natural environment has begun to grow, along with a realisation of the multitude of ecological interactions that these forces may influence. Herein, we provide the first comprehensive collation and synthesis of research in this emerging field of electric ecology. This includes assessments of the role electricity plays in the natural ecology of predator-prey interactions, pollination, and animal dispersal, among many others, as well as the impact of anthropogenic activity on these systems. A detailed introduction to the ecology and physiology of electroreception - the biological detection of ecologically relevant electric fields - is also provided. Further to this, we suggest avenues for future research that show particular promise, most notably those investigating the recently discovered sense of aerial electroreception.
Collapse
Affiliation(s)
- Sam J England
- School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, U.K
| | - Daniel Robert
- School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, U.K
| |
Collapse
|
34
|
Putman NF. Magnetosensation. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2022; 208:1-7. [PMID: 35098367 DOI: 10.1007/s00359-021-01538-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 10/19/2022]
|
35
|
Nichols S, Havens L, Taylor B. Sensation to navigation: a computational neuroscience approach to magnetic field navigation. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2022; 208:167-176. [PMID: 35098368 DOI: 10.1007/s00359-021-01535-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 12/11/2021] [Accepted: 12/14/2021] [Indexed: 10/19/2022]
Abstract
Diverse taxa use Earth's magnetic field (i.e., magnetoreception) as a guide during long-distance navigation. However, despite decades of research, specific sensory mechanisms of magnetoreception remain unconfirmed. Necessarily, this has led to theoretical and computational work developing hypotheses of how animals may navigate using magnetoreception. One hypothesized strategy relies on an animal using combinations of magnetic intensity and inclination as a kind of signature to identify a specific region or location. Using these signatures, animals could use a waypoint-based navigation strategy. We show that this navigation strategy is biologically plausible using a close approximation of neural processing to successfully guide an agent in a simulated magnetic field. Moreover, we accomplish this strategy using a processing approach previously utilized for mechanoreception, suggesting processing of Earth's magnetic field may share features with the processing of other, more well-understood sensory systems. Taken together, our results suggest that both for the engineering of novel navigation systems and the study of animal magnetoreception, we should take lessons from other sensory systems.
Collapse
Affiliation(s)
- Sebastian Nichols
- Department of Biology, The University of North Carolina at Chapel Hill, 120 South Rd., CB 3280, Chapel Hill, NC, 27599, USA
| | - Luke Havens
- Department of Biology, The University of North Carolina at Chapel Hill, 120 South Rd., CB 3280, Chapel Hill, NC, 27599, USA
| | - Brian Taylor
- Department of Biology, The University of North Carolina at Chapel Hill, 120 South Rd., CB 3280, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
36
|
Granger J, Cummer SA, Lohmann KJ, Johnsen S. Environmental sources of radio frequency noise: potential impacts on magnetoreception. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2022; 208:83-95. [DOI: 10.1007/s00359-021-01516-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 10/07/2021] [Accepted: 10/13/2021] [Indexed: 11/27/2022]
|
37
|
Naisbett-Jones LC, Lohmann KJ. Magnetoreception and magnetic navigation in fishes: a half century of discovery. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2022; 208:19-40. [PMID: 35031832 DOI: 10.1007/s00359-021-01527-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 01/15/2023]
Abstract
As the largest and most diverse vertebrate group on the planet, fishes have evolved an impressive array of sensory abilities to overcome the challenges associated with navigating the aquatic realm. Among these, the ability to detect Earth's magnetic field, or magnetoreception, is phylogenetically widespread and used by fish to guide movements over a wide range of spatial scales ranging from local movements to transoceanic migrations. A proliferation of recent studies, particularly in salmonids, has revealed that fish can exploit Earth's magnetic field not only as a source of directional information for maintaining consistent headings, but also as a kind of map for determining location at sea and for returning to natal areas. Despite significant advances, much about magnetoreception in fishes remains enigmatic. How fish detect magnetic fields remains unknown and our understanding of the evolutionary origins of vertebrate magnetoreception would benefit greatly from studies that include a wider array of fish taxa. The rich diversity of life-history characteristics that fishes exhibit, the wide variety of environments they inhabit, and their suitability for manipulative studies, make fishes promising subjects for magnetoreception studies.
Collapse
Affiliation(s)
| | - Kenneth J Lohmann
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
| |
Collapse
|
38
|
Binhi VN, Rubin AB. Theoretical Concepts in Magnetobiology after 40 Years of Research. Cells 2022; 11:274. [PMID: 35053390 PMCID: PMC8773520 DOI: 10.3390/cells11020274] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/06/2022] [Accepted: 01/11/2022] [Indexed: 12/23/2022] Open
Abstract
This review contains information on the development of magnetic biology, one of the multidisciplinary areas of biophysics. The main historical facts are presented and the general observed properties of magnetobiological phenomena are listed. The unavoidable presence of nonspecific magnetobiological effects in the everyday life of a person and society is shown. Particular attention is paid to the formation of theoretical concepts in magnetobiology and the state of the art in this area of research. Some details are provided on the molecular mechanisms of the nonspecific action of a magnetic field on organisms. The prospects of magnetobiology for the near and distant future are discussed.
Collapse
Affiliation(s)
- Vladimir N. Binhi
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
| | - Andrei B. Rubin
- Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1/12, 119234 Moscow, Russia;
| |
Collapse
|
39
|
Magnetic maps in animal navigation. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2022; 208:41-67. [PMID: 34999936 PMCID: PMC8918461 DOI: 10.1007/s00359-021-01529-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 11/21/2021] [Accepted: 11/25/2021] [Indexed: 12/03/2022]
Abstract
In addition to providing animals with a source of directional or ‘compass’ information, Earth’s magnetic field also provides a potential source of positional or ‘map’ information that animals might exploit to assess location. In less than a generation, the idea that animals use Earth’s magnetic field as a kind of map has gone from a contentious hypothesis to a well-established tenet of animal navigation. Diverse animals ranging from lobsters to birds are now known to use magnetic positional information for a variety of purposes, including staying on track along migratory pathways, adjusting food intake at appropriate points in a migration, remaining within a suitable oceanic region, and navigating toward specific goals. Recent findings also indicate that sea turtles, salmon, and at least some birds imprint on the magnetic field of their natal area when young and use this information to facilitate return as adults, a process that may underlie long-distance natal homing (a.k.a. natal philopatry) in many species. Despite recent progress, much remains to be learned about the organization of magnetic maps, how they develop, and how animals use them in navigation.
Collapse
|
40
|
Kim Y, Lee K, Lee J, Jang S, Kim H, Lee H, Lee SW, Wang G, Park C. Bird-Inspired Self-Navigating Artificial Synaptic Compass. ACS NANO 2021; 15:20116-20126. [PMID: 34793113 DOI: 10.1021/acsnano.1c08005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Extrasensory neuromorphic devices that can recognize, memorize, and learn stimuli imperceptible to human beings are of considerable interest in interactive intelligent electronics research. This study presents an artificially intelligent magnetoreceptive synapse inspired by the magnetocognitive ability used by birds for navigation and orientation. The proposed synaptic platform is based on arrays of ferroelectric field-effect transistors with air-suspended magneto-interactive top-gates. A suspended gate of an elastomeric composite with superparamagnetic particles laminated with an electrically conductive polymer is mechanically deformed under a magnetic field, facilitating control of the magnetic-field-dependent contact area of the suspended gate with an underlying ferroelectric layer. The remanent polarization of the ferroelectric layer is electrically programmed with the deformed suspended gate, resulting in analog conductance modulation as a function of the magnitude, number, and time interval of the input magnetic pulses. The proposed extrasensory magnetoreceptive synapse may be used as an artificially intelligent synaptic compass that facilitates barrier-adaptable navigation and mapping of a moving object.
Collapse
Affiliation(s)
- Youngwoo Kim
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Kyuho Lee
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Junseok Lee
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Seonghoon Jang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - HoYeon Kim
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hyunhaeng Lee
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Seung Won Lee
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Gunuk Wang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Cheolmin Park
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul, 03722, Republic of Korea
| |
Collapse
|
41
|
Uncovering how animals use combinations of magnetic field properties to navigate: a computational approach. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2021; 208:155-166. [PMID: 34820708 DOI: 10.1007/s00359-021-01523-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 11/03/2021] [Accepted: 11/07/2021] [Indexed: 10/19/2022]
Abstract
Certain animal species use the earth's magnetic field (i.e., magnetoreception) in conjunction with other sensory modalities to navigate long distances. It is hypothesized that several animals use combinations of magnetic inclination and intensity as unique signatures for localization, potentially enabling migration without a pre-surveyed map. However, it is unknown how animals use magnetic signatures to generate guidance commands. While animal experiments have been invaluable in advancing this area, it is a difficult phenomenon to study in vivo or in situ. Modeling and simulation present a powerful complementary tool that can be used to investigate whether and how animals use magnetic signatures to navigate. This perspective article summarizes work we have conducted that systematically and mechanistically uses modeling and simulation to study the use of magnetic signatures. We have studied this phenomenon from simulated agents that navigate in simple and abstract environments, to physical devices that navigate in realistic environments. The results have consistently demonstrated that this is a plausible way in which animals might navigate, and provided early insights into the environmental and animal-specific factors that are most important to this navigation strategy.
Collapse
|
42
|
Gao Y, Wen P, Cardé RT, Xu H, Huang Q. In addition to cryptochrome 2, magnetic particles with olfactory co-receptor are important for magnetic orientation in termites. Commun Biol 2021; 4:1121. [PMID: 34556782 PMCID: PMC8460727 DOI: 10.1038/s42003-021-02661-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 09/08/2021] [Indexed: 12/02/2022] Open
Abstract
The volatile trail pheromone is an ephemeral chemical cue, whereas the geomagnetic field (GMF) provides a stable positional reference. However, it is unclear whether and how the cryptic termites perceive the GMF for orientation in light or darkness until now. Here, we found that the two termite species, Reticulitermes chinensis and Odontotermes formosanus, use the GMF for orientation. Our silencing cryptochrome 2 (Cry2) impaired magnetic orientation in white light but had no significant impact in complete darkness, suggesting that Cry2 can mediate magnetic orientation in termites only under light. Coincidentally, the presence of magnetic particles enabled the magnetic orientation of termites in darkness. When knock-downing the olfactory co-receptor (Orco) to exclude the effect of trail pheromone, unexpectedly, we found that the Orco participated in termite magnetic orientation under both light and darkness. Our findings revealed a novel magnetoreception model depending on the joint action of radical pair, magnetic particle, and olfactory co-receptor. Gao et al. analyze the role of magnetoreceptor candidates cryptochrome 2 (Cry2), magnetic particles and olfactory coreceptor (Orco) in magnetic orientation in two termite species. They report that termites use Cry2 for directional preference in white light, magnetic particles in darkness, and Orco participates in termite magnetic orientation under both light and darkness.
Collapse
Affiliation(s)
- Yongyong Gao
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Ping Wen
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan Province, 650223, China
| | - Ring T Cardé
- Department of Entomology, University of California Riverside, Riverside, CA, 92521, USA
| | - Huan Xu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Qiuying Huang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
43
|
Dybus A, Kulig H, Yu YH, Lanckriet R, Proskura W, Cheng YH. CRY1 Gene Polymorphism and Racing Performance of Homing Pigeons. Animals (Basel) 2021; 11:2632. [PMID: 34573598 PMCID: PMC8466513 DOI: 10.3390/ani11092632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 11/16/2022] Open
Abstract
Cryptochromes (CRY) are the family of proteins proposed as the putative magnetoreceptor molecules. In birds, among others in pigeons, CRY1 is widely expressed in a retina. Homing pigeons are known for their navigational abilities, and pigeon racing is a popular sport. So, the purpose of this study was to analyze the variability of the nucleotide sequence of the homing pigeon CRY1 gene, spanning the region coding the two amino acids W320 and W374 of Trp-triad, and estimate the relationship between genotypes and the racing performance. Investigations were carried out on 129 pigeons. Analysis of sequencing results indicated the AG to TT change within the seventh intron of CRY1 gene. Genotypes were determined by the forced PCR-RFLP method. The influence of detected polymorphism on the results of racing pigeons in 100-400 km flights was shown. The AG/TT individuals achieved significantly higher (p ≤ 0.05) mean values of ace points (AP) than the AG/AG ones. Regarding the detected nucleotide change localization, the polymorphism may be involved in CRY1 gene expression modulation. The AG to TT change in CRY1 gene may be considered as a potential genetic marker of racing performance in homing pigeons.
Collapse
Affiliation(s)
- Andrzej Dybus
- Department of Genetics, West Pomeranian University of Technology, 70-311 Szczecin, Poland;
| | - Hanna Kulig
- Department of Genetics, West Pomeranian University of Technology, 70-311 Szczecin, Poland;
| | - Yu-Hsiang Yu
- Department of Biotechnology and Animal Science, National Ilan University, Yilan 26047, Taiwan; (Y.-H.Y.); (Y.-H.C.)
| | | | - Witold Proskura
- Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, 71-270 Szczecin, Poland;
| | - Yeong-Hsiang Cheng
- Department of Biotechnology and Animal Science, National Ilan University, Yilan 26047, Taiwan; (Y.-H.Y.); (Y.-H.C.)
| |
Collapse
|
44
|
Liu X, Zhang Y, Guo Y, Jiao W, Gao X, Lee WSV, Wang Y, Deng X, He Y, Jiao J, Zhang C, Hu G, Liang X, Fan H. Electromagnetic Field-Programmed Magnetic Vortex Nanodelivery System for Efficacious Cancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100950. [PMID: 34279055 PMCID: PMC8456207 DOI: 10.1002/advs.202100950] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/06/2021] [Indexed: 05/05/2023]
Abstract
Effective delivery of anticancer drugs into the nucleus for pharmacological action is impeded by a series of intratumoral transport barriers. Despite the significant potential of magnetic nanovehicles in electromagnetic field (EF)-activated drug delivery, modularizing a tandem magnetoresponsive activity in a one-nanoparticle system to meet different requirements at both tissue and cellular levels remain highly challenging. Herein, a strategy is described by employing sequential EF frequencies in inducing a succession of magnetoresponses in the magnetic nanovehicles that aims to realize cascaded tissue penetration and nuclear accumulation. This nanovehicle features ferrimagnetic vortex-domain iron oxide nanorings coated with a thermo-responsive polyethylenimine copolymer (PI/FVIOs). It is shown that the programmed cascading of low frequency (Lf)-EF-induced magnetophoresis and medium frequency (Mf)-EF-stimulated magneto-thermia can steer the Doxorubicin (DOX)-PI/FVIOs to the deep tissue and subsequently trigger intracellular burst release of DOX for successful nuclear entry. By programming the order of different EF frequencies, it is demonstrated that first-stage Lf-EF and subsequent Mf-EF operation enables DOX-PI/FVIOs to effectively deliver 86.2% drug into the nucleus in vivo. This nanodelivery system empowers potent antitumoral activity in various models of intractable tumors, including DOX-resistant MCF-7 breast cancer cells, triple-negative MDA-MB-231 breast cancer cells, and BxPC-3 pancreatic cancer cells with poor permeability.
Collapse
Affiliation(s)
- Xiaoli Liu
- Key Laboratory of Resource Biology and Biotechnology in Western ChinaMinistry of EducationSchool of MedicineNorthwest UniversityXi'anShaanxi710069China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyCAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology of ChinaNo. 11, First North Road, ZhongguancunBeijing100190China
| | - Yifan Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of EducationCollege of Chemistry and Materials ScienceNorthwest UniversityXi'an710127China
| | - Yu Guo
- Department of Engineering MechanicsZhejiang UniversityHangzhou310027China
| | - Wangbo Jiao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of EducationCollege of Chemistry and Materials ScienceNorthwest UniversityXi'an710127China
| | - Xiao Gao
- Key Laboratory of Resource Biology and Biotechnology in Western ChinaMinistry of EducationSchool of MedicineNorthwest UniversityXi'anShaanxi710069China
| | - Wee Siang Vincent Lee
- Department of Materials Science and EngineeringNational University of SingaporeSingapore117573
| | - Yanyun Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of EducationCollege of Chemistry and Materials ScienceNorthwest UniversityXi'an710127China
| | - Xia Deng
- School of Life Sciences and Electron Microscopy Center of Lanzhou UniversityLanzhou UniversityLanzhou730000China
| | - Yuan He
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of EducationCollege of Chemistry and Materials ScienceNorthwest UniversityXi'an710127China
| | - Ju Jiao
- Department of Nuclear MedicineThe Third Affiliated Hospital of Sun Yat‐sen University600 Tianhe RoadGuangzhouGuangdong510630China
| | - Ce Zhang
- State Key Laboratory of Cultivation Base for Photoelectric Technology and Functional MaterialsLaboratory of Optoelectronic Technology of Shaanxi ProvinceNational Center for International Research of Photoelectric Technology & Nanofunctional Materials and ApplicationInstitute of Photonics and Photon‐TechnologyNorthwest UniversityXuefu Street No. 1Xi'an710127China
| | - Guoqing Hu
- Department of Engineering MechanicsZhejiang UniversityHangzhou310027China
| | - Xing‐Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyCAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology of ChinaNo. 11, First North Road, ZhongguancunBeijing100190China
- University of Chinese Academy of SciencesNo.19(A) Yuquan Road, Shijingshan DistrictBeijing100049China
| | - Haiming Fan
- Key Laboratory of Resource Biology and Biotechnology in Western ChinaMinistry of EducationSchool of MedicineNorthwest UniversityXi'anShaanxi710069China
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of EducationCollege of Chemistry and Materials ScienceNorthwest UniversityXi'an710127China
| |
Collapse
|
45
|
Hu X, Li F, Xia F, Wang Q, Lin P, Wei M, Gong L, Low LE, Lee JY, Ling D. Dynamic nanoassembly-based drug delivery system (DNDDS): Learning from nature. Adv Drug Deliv Rev 2021; 175:113830. [PMID: 34139254 DOI: 10.1016/j.addr.2021.113830] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/19/2021] [Accepted: 06/10/2021] [Indexed: 12/18/2022]
Abstract
Dynamic nanoassembly-based drug delivery system (DNDDS) has evolved from being a mere curiosity to emerging as a promising strategy for high-performance diagnosis and/or therapy of various diseases. However, dynamic nano-bio interaction between DNDDS and biological systems remains poorly understood, which can be critical for precise spatiotemporal and functional control of DNDDS in vivo. To deepen the understanding for fine control over DNDDS, we aim to explore natural systems as the root of inspiration for researchers from various fields. This review highlights ingenious designs, nano-bio interactions, and controllable functionalities of state-of-the-art DNDDS under endogenous or exogenous stimuli, by learning from nature at the molecular, subcellular, and cellular levels. Furthermore, the assembly strategies and response mechanisms of tailor-made DNDDS based on the characteristics of various diseased microenvironments are intensively discussed. Finally, the current challenges and future perspectives of DNDDS are briefly commented.
Collapse
|
46
|
Binhi VN. Random Effects in Magnetobiology and a Way to Summarize Them. Bioelectromagnetics 2021; 42:501-515. [PMID: 34233018 DOI: 10.1002/bem.22359] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 06/12/2021] [Accepted: 06/21/2021] [Indexed: 11/06/2022]
Abstract
In magnetobiology, it is difficult to reproduce the nonspecific (not associated with specialized receptors) biological effects of weak magnetic fields. This means that some important characteristic of the data may be missed in standard statistical processing, where the set of measurements to be averaged belongs to the same population so that the contribution of fluctuations decreases according to the Central Limit Theorem. It has been shown that a series of measurements of a nonspecific magnetic effect contains not only the usual scatter of data around the mean but also a significant random component in the mean itself. This random component indicates that measurements belong to different statistical populations, which requires special processing. This component, otherwise called heterogeneity, is an additional characteristic that is typically overlooked, and which reduces reproducibility. The current method for studying and summarizing highly heterogeneous data is the random-effect meta-analysis of absolute values, i.e., of magnitudes, rather than the values themselves. However, this estimator-the average of absolute values-has a significant positive bias when it comes to the small effects that are characteristic of magnetobiology. To solve this problem, an improved estimator based on the folded normal distribution that gives several times less bias is proposed. We used this improved estimator to analyze the nonspecific effect of the hypomagnetic field in the Stroop test in 40 subjects and found a statistically significant meta-effect with a standardized average of magnitudes of about 0.1. It has been shown that the proposed approach can also be applied to a single study. © 2021 Bioelectromagnetics Society.
Collapse
Affiliation(s)
- Vladimir N Binhi
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
47
|
Castello P, Jimenez P, Martino CF. The Role of Pulsed Electromagnetic Fields on the Radical Pair Mechanism. Bioelectromagnetics 2021; 42:491-500. [PMID: 34224591 DOI: 10.1002/bem.22358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 06/08/2021] [Accepted: 06/19/2021] [Indexed: 11/09/2022]
Abstract
In recent decades, the use of pulsed electromagnetic fields (PEMF) in therapeutics has been one of the main fields of activity in the bioelectromagnetics arena. Nevertheless, progress in this area has been hindered by the lack of consensus on a biophysical mechanism of interaction that can satisfactorily explain how low-level, non-thermal electromagnetic fields would be able to sufficiently affect chemistry as to elicit biological effects in living organisms. This specifically applies in cases where the induced electric fields are too small to generate a biological response of any consequence. A growing body of experimental observations that would explain the nature of these effects speaks strongly about the involvement of a theory known as the radical pair mechanism (RPM). This mechanism explains how a pair of reactive oxygen species with distinct chemical fate can be influenced by a low-level external magnetic field through Zeeman and hyperfine interactions. So far, a study of the effects of complex spatiotemporal signals within the context of the RPM has not been performed. Here, we present a computational investigation of such effects by utilizing a generic PEMF test signal and RPM models of different complexity. Surprisingly, our results show how substantially different chemical results can be obtained within ranges that depend on the specific orientation of the PEMF test signal with respect to the background static magnetic field, its waveform, and both of their amplitudes. These results provide a basis for explaining the distinctive biological relevance of PEMF signals on radical pair chemical reactions. © 2021 Bioelectromagnetics Society.
Collapse
Affiliation(s)
- Pablo Castello
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Belgrano, Buenos Aires, Argentina
| | - Pablo Jimenez
- Centro Atómico Bariloche, CONICET, CNEA, S. C. de Bariloche, Argentina
| | - Carlos F Martino
- Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland
| |
Collapse
|
48
|
Lee KS, Dumke R, Paterek T. Numerical tests of magnetoreception models assisted with behavioral experiments on American cockroaches. Sci Rep 2021; 11:12221. [PMID: 34108599 PMCID: PMC8190300 DOI: 10.1038/s41598-021-91815-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 05/26/2021] [Indexed: 02/05/2023] Open
Abstract
Many animals display sensitivity to external magnetic field, but it is only in the simplest organisms that the sensing mechanism is understood. Here we report on behavioural experiments where American cockroaches (Periplaneta americana) were subjected to periodically rotated external magnetic fields with a period of 10 min. The insects show increased activity when placed in a periodically rotated Earth-strength field, whereas this effect is diminished in a twelve times stronger periodically rotated field. We analyse established models of magnetoreception, the magnetite model and the radical pair model, in light of this adaptation result. A broad class of magnetite models, based on single-domain particles found in insects and assumption that better alignment of magnetic grains towards the external field yields better sensing and higher insect activity, is shown to be excluded by the measured data. The radical-pair model explains the data if we assume that contrast in the chemical yield on the order of one in a thousand is perceivable by the animal, and that there also exists a threshold value for detection, attained in an Earth-strength field but not in the stronger field.
Collapse
Affiliation(s)
- Kai Sheng Lee
- grid.59025.3b0000 0001 2224 0361School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371 Singapore
| | - Rainer Dumke
- grid.59025.3b0000 0001 2224 0361School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371 Singapore ,grid.4280.e0000 0001 2180 6431Centre for Quantum Technologies, National University of Singapore, Singapore, 117543 Singapore
| | - Tomasz Paterek
- grid.59025.3b0000 0001 2224 0361School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371 Singapore ,grid.8585.00000 0001 2370 4076Institute of Theoretical Physics and Astrophysics, Faculty of Mathematics, Physics, and Informatics, University of Gdańsk, 80-308 Gdańsk, Poland
| |
Collapse
|
49
|
Taylor BK, Bernish MK, Pizzuti SA, Kehl CE. A bioinspired navigation strategy that uses magnetic signatures to navigate without GPS in a linearized northern Atlantic ocean: a simulation study. BIOINSPIRATION & BIOMIMETICS 2021; 16:046006. [PMID: 33601358 DOI: 10.1088/1748-3190/abe7cd] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 02/18/2021] [Indexed: 06/12/2023]
Abstract
Certain animal species use the Earth's magnetic field (i.e. magnetoreception) in conjunction with other sensory modalities to navigate long distances. It is hypothesized that several animals use combinations of magnetic inclination and intensity as unique signatures for localization, enabling migration without a pre-surveyed map. However, it is unknown how animals use magnetic signatures to generate guidance commands, and the extent to which species-specific capabilities and environmental factors affect a given strategy's efficacy or deterioration. Understanding animal magnetoreception can aid in developing better engineered navigation systems that are less reliant on satellites, which are expensive and can become unreliable or unavailable under a variety of circumstances. Building on previous studies, we implement an agent-based computer simulation that uses two variants of a magnetic signature-based navigation strategy. The strategy can successfully migrate to eight specified goal points in an environment that resembles the northern Atlantic ocean. In particular, one variant reaches all goal points with faster ocean current velocities, while the other variant reaches all goal points with slower ocean current velocities. We also employ dynamic systems tools to examine the stability of the strategy as a proxy for whether it is guaranteed to succeed. The findings demonstrate the efficacy of the strategy and can help in the development of new navigation technologies that are less reliant on satellites and pre-surveyed maps.
Collapse
Affiliation(s)
- Brian K Taylor
- Department of Biology, The University of North Carolina at Chapel Hill, United States of America
| | - Margaret K Bernish
- Department of Biology, The University of North Carolina at Chapel Hill, United States of America
| | - Susan A Pizzuti
- Department of Biology, The University of North Carolina at Chapel Hill, United States of America
| | - Catherine E Kehl
- Department of Biology, The University of North Carolina at Chapel Hill, United States of America
| |
Collapse
|
50
|
Wyeth RC, Holden T, Jalala H, Murray JA. Rare-Earth Magnets Influence Movement Patterns of the Magnetically Sensitive Nudibranch Tritonia exsulans in Its Natural Habitat. THE BIOLOGICAL BULLETIN 2021; 240:105-117. [PMID: 33939940 DOI: 10.1086/713663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
AbstractThe nudibranch Tritonia exsulans (previously Tritonia diomedea) is known to have behaviors and neurons that can be modified by perturbations of the Earth's magnetic field. There is no definitive evidence for how this magnetic sense is used in nature. Using an exploratory approach, we tested for possible effects of magnetic perturbations based on underwater video of crawling patterns in the slugs' natural habitat, with magnets of varying strength deployed on the substrate. For analysis, we used a paired comparison of tracks of animals between segments 25-50 cm distant from the magnets and segments of the same tracks 0-25 cm from the magnets, to determine whether any differences depended on the strength of the magnet. Most track measurements (length, displacement, velocity, and tortuosity) showed no such differences. However, effects were observed for the changes in track headings between successive points. These results showed that tracks had relatively higher heading variability when they moved closer to stronger magnets. We suggest that this supports a hypothesis that T. exsulans continuously uses a magnetic sense to help maintain straight-line navigation. Further specific testing of the hypothesis is now needed to verify this new possibility for how animals can benefit from a compass sense.
Collapse
|