1
|
Watson D, Mentch F, Billings J, Ostberg K, March ME, Kalish JM, Li D, Cannon I, Guay-Woodford LM, Hartung E, Strong A. Elucidating the Molecular Landscape of Cystic Kidney Disease: Old Friends, New Friends and Some Surprises. Am J Med Genet A 2025; 197:e64011. [PMID: 39888183 DOI: 10.1002/ajmg.a.64011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/15/2025] [Accepted: 01/20/2025] [Indexed: 02/01/2025]
Abstract
Cystic kidney diseases (CyKD) are a diverse group of disorders affecting more than 1 in 1000 individuals. Over 120 genes are implicated, primarily encoding components of the primary cilium, transcription factors, and morphogens. Prognosis varies greatly by molecular diagnosis. Causal variants are not identified in 10%-60% of individuals due to our limited understanding of CyKD. To elucidate the molecular landscape of CyKD, we queried the CAG Biobank using the ICD10 codes N28.1, Q61.1, Q61.11, Q61.19, Q61.2, Q61.3, and Q61.8 to identify individuals with CyKD. One hundred eight individuals met clinical criteria for CyKD and underwent proband-only exome sequencing. Causal variants were identified in 86/108 (80%) individuals. The most common molecular diagnoses were PKD1-related autosomal dominant polycystic kidney disease (32/108; 30%) and autosomal recessive polycystic kidney disease (21/108; 19%). Other common molecular diagnoses were ciliopathy syndromes (7/108; 6.5%) and Tuberous Sclerosis (6/108; 5.6%). Seven individuals had variants in genes not previously associated with CyKD (7/108; 6.5%). Candidate genes were identified in five individuals (5/108; 4.5%). Discordance between molecular and clinical diagnosis was present in two individuals. We demonstrate a high molecular diagnosis rate in individuals with CyKD that can result in diagnostic reclassification, supporting a role for genetic testing in CyKD.
Collapse
Affiliation(s)
- Deborah Watson
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Frank Mentch
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jonathan Billings
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Kayleigh Ostberg
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Michael E March
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Jennifer M Kalish
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Dong Li
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - India Cannon
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Lisa M Guay-Woodford
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Division of Nephrology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Erum Hartung
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Division of Nephrology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Alanna Strong
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Dai R, Yin Y, Yu M, Zhang Y, Zhang J, Liu T, Fang X, Wu X, Shen Q, Xu H. Genitourinary defects, anxiety and aggressive-like behavior and glucose metabolism disorders in Zmym2 mutant mice with inserted piggyBac transposon. Front Cell Dev Biol 2025; 13:1523266. [PMID: 40313719 PMCID: PMC12043690 DOI: 10.3389/fcell.2025.1523266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 03/31/2025] [Indexed: 05/03/2025] Open
Abstract
Mutations in ZMYM2 lead to syndromic congenital anomalies of the kidney and urinary tract (CAKUT) in humans. Tbx18 is co-expressed with Zmym2 in mesenchymal compartment of developing mouse ureter, indicating a potential in vivo relevance of the TBX18-ZMYM2 protein interaction in ureter development. The presence of multiple phenotypes beyond the urinary system in CAKUT patients carrying ZMYM2 mutations suggests that ZMYM2 has extensive roles in various developmental processes. This study aims to comprehensively examine the multi-phenotypic consequence of ZMYM2 mutations, with a particular focus on the roles of ZMYM2 in embryonic development, late metanephros formation, and the reproductive, nervous and endocrine systems, in addition to its role in urinary system. Using a new Zmym2 mutant mouse model with an inserted piggyBac transposon (PB), we found that homozygous Zmym2 mutations resulted in severe growth retardation of embryos by embryonic day 9.5 (E9.5D) and lethality from E10.5D. Heterozygous mutations caused morphogenetic issues in the genitourinary system, including duplex kidneys, vesicoureteral reflux (VUR), and cryptorchidism. And these heterozygous mutants exhibited anxiety and aggressive-like behaviors, and glucose metabolism disorders. Additionally, Zmym2 mutations induced duplicated ureteric bud (UB) eruption and abnormal nephrogenic zone extension, contributing to duplex kidney formation. Reduced apoptosis in the nephric duct might have contributed to abnormal ureter-bladder connections, which could explain the observed cases of VUR. Notably, Tbx18 is co-expressed with Zmym2 in mouse kidney, reduced Tbx18 expression in Zmym2 mutants further supports the hypothesis that Zmym2 interacts with Tbx18 during kidney development. Zmym2 PB mouse is the first model to demonstrate roles of Zmym2 in neuroethology and endocrinology, extending its significant beyond genitourinary defects and embryonic development. Further investigation of these phenotypes in CAKUT patients carrying ZMYM2 mutations will enhance our understanding of their phenotypes and improve strategies for early diagnosis, monitoring, and treatment.
Collapse
Affiliation(s)
- Rufeng Dai
- Department of Nephrology, Children’s Hospital of Fudan University, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| | - Ye Yin
- Department of Nephrology, Children’s Hospital of Fudan University, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| | - Minghui Yu
- Department of Nephrology, Children’s Hospital of Fudan University, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| | - Yumeng Zhang
- Department of Nephrology, Children’s Hospital of Fudan University, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| | - Jingjia Zhang
- Department of Nephrology, Children’s Hospital of Fudan University, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| | - Tianyi Liu
- Department of Nephrology, Children’s Hospital of Fudan University, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| | - Xiaoyan Fang
- Department of Nephrology, Children’s Hospital of Fudan University, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| | - Xiaohui Wu
- Department of Nephrology, Children’s Hospital of Fudan University, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
- State Key Laboratory of Genetic Engineering and National Center for International Research of Development and Disease, Institute of Developmental Biology and Molecular Medicine, Fudan University, Shanghai, China
| | - Qian Shen
- Department of Nephrology, Children’s Hospital of Fudan University, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
- National Key Laboratory of Kidney Diseases, People's Liberation Army General Hospital, Beijing, China
| | - Hong Xu
- Department of Nephrology, Children’s Hospital of Fudan University, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
- National Key Laboratory of Kidney Diseases, People's Liberation Army General Hospital, Beijing, China
| |
Collapse
|
3
|
Li P, Yang Y, Ning B, Tian Y, Wang L, Zeng W, Lu H, Zhang T. Transcriptome analysis of multiple tissues and identification of tissue-specific genes in Lueyang black-bone chicken. Poult Sci 2025; 104:104986. [PMID: 40068570 PMCID: PMC11932687 DOI: 10.1016/j.psj.2025.104986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/27/2025] [Accepted: 03/03/2025] [Indexed: 03/28/2025] Open
Abstract
Systematically constructing a gene expression atlas of poultry tissues is critically important for advancing poultry research and production. In this study, the gene expression profiles of 9 major tissues of Lueyang black-bone chicken were successfully constructed by transcriptome sequencing technology. Through in-depth analysis of transcriptome data, a total of 10 housekeeping genes (HKGs) and 87 marker genes (MGs) were identified. Furthermore, by applying weighted gene co-expression network analysis (WGCNA), we delineated nine tissue-specific modules and 90 hub genes, offering novel insights into the regulatory networks underlying tissue-specific gene expression. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that HKGs were predominantly involved in maintaining fundamental cellular functions, with significant enrichment in pathways related to oxidative phosphorylation, cell cycle regulation, and DNA replication. MGs were closely associated with tissue-specific physiological functions, providing valuable insights into the molecular mechanisms governing tissue functionality. Notably, through multidimensional validation, EEF1A1 and FTH1 were confirmed to exhibit cross-tissue expression stability, establishing them as ideal reference genes for multi-tissue qPCR experiments in chickens. Additionally, we successfully identified tissue marker genes, including TNNT2, PIT54, SFTPC, and PGM1, which are specific to the heart, liver, lung, and breast muscle, respectively. The results of this study have important scientific value in expanding reference gene selection and elucidating tissue-specific molecular mechanisms, and provide solid theoretical support and technical guidance for poultry breeding improvement and production practice optimization.
Collapse
Affiliation(s)
- Pan Li
- School of Biological Science and Engineering, Shaanxi University of Technology, 723001 Hanzhong, China.
| | - Yufei Yang
- School of Biological Science and Engineering, Shaanxi University of Technology, 723001 Hanzhong, China.
| | - Bo Ning
- School of Biological Science and Engineering, Shaanxi University of Technology, 723001 Hanzhong, China.
| | - Yingmin Tian
- School of Mathematics and Computer Science, Shaanxi University of Technology, 723001 Hanzhong, China.
| | - Ling Wang
- School of Biological Science and Engineering, Shaanxi University of Technology, 723001 Hanzhong, China; Engineering Research Center of quality improvement and safety control of Qinba special meat products, 723001 Hanzhong, China; QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C, Shaanxi University of Technology, 723001 Hanzhong, China; Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi University of Technology, 723001 Hanzhong, China.
| | - Wenxian Zeng
- School of Biological Science and Engineering, Shaanxi University of Technology, 723001 Hanzhong, China; Engineering Research Center of quality improvement and safety control of Qinba special meat products, 723001 Hanzhong, China; QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C, Shaanxi University of Technology, 723001 Hanzhong, China; Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi University of Technology, 723001 Hanzhong, China.
| | - Hongzhao Lu
- School of Biological Science and Engineering, Shaanxi University of Technology, 723001 Hanzhong, China; Engineering Research Center of quality improvement and safety control of Qinba special meat products, 723001 Hanzhong, China; QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C, Shaanxi University of Technology, 723001 Hanzhong, China; Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi University of Technology, 723001 Hanzhong, China.
| | - Tao Zhang
- School of Biological Science and Engineering, Shaanxi University of Technology, 723001 Hanzhong, China; Engineering Research Center of quality improvement and safety control of Qinba special meat products, 723001 Hanzhong, China; QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C, Shaanxi University of Technology, 723001 Hanzhong, China; Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi University of Technology, 723001 Hanzhong, China.
| |
Collapse
|
4
|
Sugano Y, Sekiya M, Murayama Y, Osaki Y, Iwasaki H, Suzuki H, Fukushima H, Suzuki H, Noguchi E, Shimano H. Case-based learning: a case of maturity-onset diabetes of the young 5 (MODY5) due to 17q12 microdeletion with a diminished plasma glucagon level. Diabetol Int 2025; 16:432-438. [PMID: 40166445 PMCID: PMC11954765 DOI: 10.1007/s13340-025-00804-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/04/2025] [Indexed: 04/02/2025]
Abstract
Maturity-onset diabetes of the young type 5 (MODY5), causally associated with loss-of-function of the HNF1B gene, is a rare form of monogenic diabetes that has been underdiagnosed in part because microdeletions of chromosome 17q12 encompassing the HNF1B gene cannot be detected by sequencing-based approaches, which accounts for about 50% of MODY5 cases. We herein describe a 37-year-old Japanese woman who manifested diabetic ketosis at the onset. The coexistence of features associated with MODY5, including abnormal renal function, impaired insulin secretion, pancreatic hypoplasia and hypomagnesemia, prompted us to decode her genomic information using whole-exome sequencing, where we were not able to identify any pathogenic HNF1B gene mutations. We further examined her genomic integrity using multiplex ligation probe amplification (MLPA) analysis, leading to identification of the 17q12 microdeletion which was further supported by array comparative genomic hybridization (array-CGH). Her insulin secretory capacity was insufficient, whereas her total daily dose of insulin was 11 U/day (0.25 U/Kg/day), indicating that she was relatively sensitive to insulin. As a possible explanation, we found that her plasma glucagon level was below the detection limit. Since inactivation of acetyl-CoA carboxylase 1 (ACACA), encoded in close proximity to the HNF1B gene, was reported to blunt glucagon secretion, the concurrent deletion of the ACACA gene may be in part responsible for this manifestation. In conclusion, the genetic analyses of MODY5 cases require the judicious use of appropriate genetic technologies. In addition, alpha-cell dysfunction may at least in part account for the variable clinical manifestations of MODY5. Supplementary Information The online version contains supplementary material available at 10.1007/s13340-025-00804-2.
Collapse
Affiliation(s)
- Yoko Sugano
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575 Japan
| | - Motohiro Sekiya
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575 Japan
| | - Yuki Murayama
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575 Japan
| | - Yoshinori Osaki
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575 Japan
| | - Hitoshi Iwasaki
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575 Japan
| | - Hiroaki Suzuki
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575 Japan
| | - Hiroko Fukushima
- Department of Child Health, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Hisato Suzuki
- Department of Medical Genetics, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Emiko Noguchi
- Department of Medical Genetics, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Hitoshi Shimano
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575 Japan
| |
Collapse
|
5
|
Groopman E, Milo Rasouly H. Navigating Genetic Testing in Nephrology: Options and Decision-Making Strategies. Kidney Int Rep 2025; 10:673-695. [PMID: 40225372 PMCID: PMC11993218 DOI: 10.1016/j.ekir.2024.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/03/2024] [Accepted: 12/10/2024] [Indexed: 04/15/2025] Open
Abstract
Technological advances such as next-generation sequencing (NGS) have enabled high-throughput assessment of the human genome, supporting the usage of genetic testing as a first-line tool across clinical medicine. Although individually rare, genetic causes account for end-stage renal disease in 10% to 15% of adults and 70% of children, and in many of these individuals, genetic testing can identify a specific etiology and meaningfully impact management. However, with numerous options for genetic testing available, nephrologists may feel uncomfortable integrating genetics into their clinical practice. Here, we aim to demystify the process of genetic test selection and highlight the opportunities for interdisciplinary collaboration between nephrologists and genetics professionals, thereby supporting precision medicine for patients with kidney disease. We first detail the various clinical genetic testing modalities, highlighting their technical advantages and limitations, and then discuss indications for their usage. Next, we provide a generalized workflow for genetic test selection among individuals with kidney disease and illustrate how this workflow can be applied to genetic test selection across diverse clinical contexts. We then discuss key areas related to the usage of genetic testing in clinical nephrology that merit further research and approaches to investigate them.
Collapse
Affiliation(s)
- Emily Groopman
- Pediatrics and Medical Genetics Combined Residency Program, Children’s National Hospital, Washington, DC, USA
| | - Hila Milo Rasouly
- Division of Nephrology, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York, USA
| |
Collapse
|
6
|
Sharma M, Maurya K, Nautiyal A, Chitme HR. Monogenic Diabetes: A Comprehensive Overview and Therapeutic Management of Subtypes of Mody. Endocr Res 2025; 50:1-11. [PMID: 39106207 DOI: 10.1080/07435800.2024.2388606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/21/2024] [Accepted: 07/31/2024] [Indexed: 08/09/2024]
Abstract
BACKGROUND Monogenic diabetes often occurs as a result of single-gene mutations. The illness is minimally affected by environmental and behavioral factors, and it constitutes around one to five percent of all cases of diabetes. METHODS Newborn diabetes mellitus (NDM) and maturity-onset diabetes of the young (MODY) are the predominant causes of monogenic diabetes, accounting for a larger proportion of cases, while syndromic diabetes represents a smaller percentage. MODY, a group of inherited non-autoimmune diabetes mellitus disorders, is quite common. However, it remains frequently misdiagnosed despite increasing public awareness. The condition is characterized by insulin resistance, the development of diabetes at a young age (before 25 years), mild high blood sugar levels, inheritance in an autosomal dominant pattern, and the preservation of natural insulin production. RESULTS Currently, there are 14 distinct subtypes of MODY that have been identified. Each subtype possesses distinct characteristics in terms of their frequency, clinical symptoms, severity of diabetes, related complications, and response to medicinal interventions. Due to the clinical similarities, lack of awareness, and high expense of genetic testing, distinguishing between type I (T1D) and type II diabetes mellitus (T2D) can be challenging, resulting in misdiagnosis of this type of diabetes. As a consequence, a significant number of individuals are being deprived of adequate medical attention. Accurate diagnosis enables the utilization of novel therapeutic strategies and enhances the management of therapy in comparison to type II and type I diabetes. CONCLUSION This article offers a concise overview of the clinical subtypes and characteristics of monogenic diabetes. Furthermore, this article discusses the various subtypes of MODY, as well as the process of diagnosing, managing, and treating the condition. It also addresses the difficulties encountered in detecting and treating MODY.
Collapse
Affiliation(s)
- Manisha Sharma
- Department of Pharmacy Practice, School of Pharmaceutical Sciences, Shri Guru Ram Rai University, Dehradun, Uttarakhand, India
| | - Kajal Maurya
- Department of Pharmacy Practice, School of Pharmaceutical Sciences, Shri Guru Ram Rai University, Dehradun, Uttarakhand, India
| | - Anuj Nautiyal
- Department of Pharmacy Practice, School of Pharmaceutical Sciences, Shri Guru Ram Rai University, Dehradun, Uttarakhand, India
| | | |
Collapse
|
7
|
König L, Schmidts M. The role of chromatin-related epigenetic modulations in CAKUT. Curr Top Dev Biol 2025; 163:169-227. [PMID: 40254345 DOI: 10.1016/bs.ctdb.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) represent a major health burden in humans. Phenotypes range from renal hypoplasia or renal agenesis, cystic renal dysplasia, duplicated or horseshoe kidneys to obstruction of the ureteropelvic junction, megaureters, duplicated ureters, urethral valves or bladder malformations. Over the past decade, next-generation sequencing has identified numerous causative genes; however, the genetic basis of most cases remains unexplained. It is assumed that environmental factors have a significant impact on the phenotype, but, overall, the pathogenesis has remained poorly understood. Interestingly however, CAKUT is a common phenotypic feature in two human syndromes, Kabuki and Koolen-de Vries syndrome, caused by dysfunction of genes encoding for KMT2D and KANSL1, both members of protein complexes playing an important role in histone modifications. In this chapter, we discuss current knowledge regarding epigenetic modulation in renal development and a putatively under-recognized role of epigenetics in CAKUT.
Collapse
Affiliation(s)
- Luise König
- Center for Pediatrics and Adolescent Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Miriam Schmidts
- Center for Pediatrics and Adolescent Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; CIBSS-Center for Integrative Biological Signaling Studies, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
8
|
Sachinidis A, Trachana M, Taparkou A, Gavriilidis G, Vasileiou V, Keisaris S, Verginis P, Adamichou C, Boumpas D, Psomopoulos F, Garyfallos A. Characterization of T-bet expressing B cells in lupus patients indicates a putative prognostic and therapeutic value of these cells for the disease. Clin Exp Immunol 2025; 219:uxaf008. [PMID: 39918986 PMCID: PMC12062963 DOI: 10.1093/cei/uxaf008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/02/2025] [Accepted: 02/04/2025] [Indexed: 02/09/2025] Open
Abstract
OBJECTIVE To investigate whether T-bet+ B cells, as well as age-associated B cells/ABCs (CD19 + CD21-CD11c + T-bet+) and double-negative B cells/DN (CD19 + IgD-CD27- CXCR5-T-bet+), serve as prognostic and/or therapeutic tools for systemic lupus erythematosus (SLE) in humans. METHODS Flow cytometry was used for enumerating T-bet+ B cells and ABCs/DN subsets, found in the peripheral blood of 10 healthy donors and 22 active SLE patients. Whole blood assay cultures, combined with in vitro pharmacological treatments, were performed to evaluate the effects of hydroxychloroquine, anifrolumab, and fasudil (a ROCK kinase inhibitor) on T-bet+ B cells' percentage. Moreover, previously published single-cell RNA sequencing (scRNA-seq) data were used in a meta-analysis to allow characterization of genes and pathways associated with the biology of T-bet in B cells. RESULTS T-bet+ B cells displayed an expansion in SLE patients [1.47 (1.9-0.7) vs 10.85 (37.4-3.6)]. Similarly, both ABCs and DN were found to be expanded. Interestingly, percentages of T-bet+ B cells positively correlated with patients' SLEDAI scores (rs = 0.55, P = 0.007). Cell culture experiments conducted revealed that all three agents tested can deplete T-bet + B cells (without affecting the cell viability of lymphocytes, T cells, and B cells). According to bioinformatics analyses, T-bet is highly expressed in two B-cell clusters with pathogenic characteristics for SLE (designated as atypical memory B cells and activated naïve B cells). These clusters can be targeted for therapeutic interventions. CONCLUSIONS T-bet+ B cells can serve as a putative prognostic biomarker of lupus severity. Circumstantial data suggest that these cells may promote disease pathogenesis and may represent a novel therapeutic target.
Collapse
Affiliation(s)
- Athanasios Sachinidis
- 4th Department of Internal Medicine, Hippokration General Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Maria Trachana
- Paediatric Immunology and Rheumatology Referral Centre, 1st Paediatric Department, Hippokration General Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Anna Taparkou
- Paediatric Immunology and Rheumatology Referral Centre, 1st Paediatric Department, Hippokration General Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - George Gavriilidis
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thermi, Thessaloniki, Greece
| | - Vasileios Vasileiou
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thermi, Thessaloniki, Greece
| | - Sofoklis Keisaris
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thermi, Thessaloniki, Greece
| | - Panayotis Verginis
- Laboratory of Immune Regulation and Tolerance, Division of Basic Sciences, Medical School, University of Crete, Heraklion, Greece
| | - Christina Adamichou
- 4th Department of Internal Medicine, Hippokration General Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitrios Boumpas
- 4th Department of Internal Medicine, “Attikon” University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Fotis Psomopoulos
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thermi, Thessaloniki, Greece
| | - Alexandros Garyfallos
- 4th Department of Internal Medicine, Hippokration General Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
9
|
Kaimori JY, Matsuda J, Jan A, Kawano Y, Kawaoka T, Asahina Y, Doi Y, Oka T, Nagata M, Ishihara Y, Miyashita Y, Asano T, Sakaguchi Y, Isaka Y. A Novel Heterozygous and Pathogenic Variant of the HNF1B Gene Associated with Autosomal Dominant Tubulointerstitial Kidney Disease with a Broad Spectrum of Extrarenal Phenotypes: A Case Report. Intern Med 2025:4548-24. [PMID: 39814389 DOI: 10.2169/internalmedicine.4548-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2025] Open
Abstract
We encountered a family with hereditary renal failure, renal medullary cysts, pancreatic hypoplasia, hypomagnesemia, liver enzyme abnormalities, and diabetes mellitus (DM). We identified a novel heterozygous variant of HNF1B (NM_000458.4:c.791dup, p.L264Ffs*30) using whole-exome sequencing of genomic DNA samples from this family. This variant is located in the DNA-binding domain of the HNF1B protein and produces a truncated protein with a de novo sequence, suggesting that this variant changes HNF1B binding to genomic DNA or causes nonsense-mediated mRNA decay. Based on the phenotypes and identified gene variants, this family suffers from autosomal dominant tubulointerstitial kidney disease caused by this HNF1B variant.
Collapse
Affiliation(s)
- Jun-Ya Kaimori
- Department of Health and Nutrition, Otemae University, Japan
- Department of Nephrology, The University of Osaka Graduate School of Medicine, Japan
| | - Jun Matsuda
- Department of Nephrology, The University of Osaka Graduate School of Medicine, Japan
| | - Asif Jan
- Department of Pharmacy, University of Peshawar, Pakistan
- District Headquarters Hospital (DHQH), Pakistan
| | - Yuki Kawano
- Department of Nephrology, The University of Osaka Graduate School of Medicine, Japan
| | - Takayuki Kawaoka
- Department of Nephrology, The University of Osaka Graduate School of Medicine, Japan
| | - Yuta Asahina
- Department of Nephrology, The University of Osaka Graduate School of Medicine, Japan
| | - Yohei Doi
- Department of Nephrology, The University of Osaka Graduate School of Medicine, Japan
| | - Tatsufumi Oka
- Department of Nephrology, The University of Osaka Graduate School of Medicine, Japan
| | - Miho Nagata
- Department of Cardiology, The University of Osaka Graduate School of Medicine, Japan
| | - Yasuki Ishihara
- Department of Cardiology, The University of Osaka Graduate School of Medicine, Japan
| | - Yohei Miyashita
- Department of Cardiology, The University of Osaka Graduate School of Medicine, Japan
| | - Toshihiro Asano
- Department of Cardiology, The University of Osaka Graduate School of Medicine, Japan
| | - Yusuke Sakaguchi
- Department of Nephrology, The University of Osaka Graduate School of Medicine, Japan
| | - Yoshitaka Isaka
- Department of Nephrology, The University of Osaka Graduate School of Medicine, Japan
| |
Collapse
|
10
|
Dahmer-Heath M, Gerß J, Fliser D, Liebau MC, Speer T, Telgmann AK, Burgmaier K, Pennekamp P, Pape L, Schaefer F, Konrad M, König JC, NEOCYST Consortium 10. Urinary Dickkopf-3 Reflects Disease Severity and Predicts Short-Term Kidney Function Decline in Renal Ciliopathies. Kidney Int Rep 2025; 10:197-208. [PMID: 39810774 PMCID: PMC11725807 DOI: 10.1016/j.ekir.2024.09.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/17/2024] [Accepted: 09/30/2024] [Indexed: 01/16/2025] Open
Abstract
Introduction Phenotypic heterogeneity and unpredictability of individual disease progression present enormous challenges in ultrarare renal ciliopathies. The tubular-derived glycoprotein, Dickkopf-related protein 3 (DKK3) is a promising biomarker for kidney fibrosis and prediction of kidney function decline. Here, we measured urinary DKK3 (uDKK3) levels in 195 pediatric patients with renal ciliopathy to assess its potential as a discriminative and prediction marker. Methods uDKK3 concentration was measured in 357 spot urine samples from 247 individuals, including 52 healthy age-matched controls. Disease entities comprised nephronophthisis (NPH) (n = 37), autosomal recessive polycystic kidney disease (ARPKD) (n = 61), Bardet Biedl syndrome (BBS) (n = 57), and hepatocyte nuclear factor 1 beta (HNF1B)-nephropathy (n = 40). The results were correlated with chronic kidney disease (CKD) stage and annual estimated glomerular filtration rate (eGFR) decline. Results Median uDKK3-to-creatinine ratios (uDKK3/crea) in all disease entities were significantly higher compared with healthy controls (11pg/mg uDKK3/crea, P < 0.001): NPH, 1.219 pg/mg; HNF1B, 731 pg/mg; BBS, 541 pg/mg; and ARPKD, 437 pg/mg. A significant correlation of CKD stage with uDKK3 levels was observed for all disease entities (P < 0.0001) with no other clinical parameter having a relevant impact. In our cohort, uDKK3 values >4.700 pg/mg were associated with a significantly greater annual eGFR loss independently of diagnosis and eGFR (P = 0.0029). Although we observed a trend toward lower uDKK3 levels in glomerulopathies compared to renal ciliopathies, there was no discriminative difference between individual ciliopathy entities (P = 0.2637). Conclusion In renal ciliopathies, uDKK3 is a marker to assess disease severity and estimate short-term kidney function decline.
Collapse
Affiliation(s)
- Mareike Dahmer-Heath
- Department of General Pediatrics, University Children's Hospital Münster, Münster, Germany
| | - Joachim Gerß
- Institute of Biostatistics and Clinical Research, University of Münster, Münster, Germany
| | - Danilo Fliser
- Department of Internal Medicine IV, Nephrology and Hypertension, Saarland University Medical Center, Homburg/ Saar, Germany
| | - Max Christoph Liebau
- Department of Pediatrics, University Hospital Cologne and Faculty of Medicine, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, Center for Family Health and Center for Rare Disease, University Hospital Cologne and Medical Faculty, University of Cologne, Cologne, Germany
| | - Thimoteus Speer
- Department of Internal Medicine IV, Nephrology and Hypertension, Saarland University Medical Center, Homburg/ Saar, Germany
- Else Kroener Fresenius Center for Nephrological Research, University Hospital Frankfurt, Frankfurt, Germany
| | | | - Kathrin Burgmaier
- Department of Pediatrics, University Hospital Cologne and Faculty of Medicine, University of Cologne, Cologne, Germany
- Faculty of Applied Healthcare Science, Deggendorf Institute of Technology, Deggendorf, Germany
| | - Petra Pennekamp
- Department of General Pediatrics, University Children's Hospital Münster, Münster, Germany
| | - Lars Pape
- Department of Pediatrics II, University Hospital of Essen, Essen, Germany
| | - Franz Schaefer
- Division of Pediatric Nephrology, Center for Pediatrics and Adolescent Medicine, Heidelberg, Germany
| | - Martin Konrad
- Department of General Pediatrics, University Children's Hospital Münster, Münster, Germany
| | - Jens Christian König
- Department of General Pediatrics, University Children's Hospital Münster, Münster, Germany
| | - NEOCYST Consortium10
- Department of General Pediatrics, University Children's Hospital Münster, Münster, Germany
- Institute of Biostatistics and Clinical Research, University of Münster, Münster, Germany
- Department of Internal Medicine IV, Nephrology and Hypertension, Saarland University Medical Center, Homburg/ Saar, Germany
- Department of Pediatrics, University Hospital Cologne and Faculty of Medicine, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, Center for Family Health and Center for Rare Disease, University Hospital Cologne and Medical Faculty, University of Cologne, Cologne, Germany
- Else Kroener Fresenius Center for Nephrological Research, University Hospital Frankfurt, Frankfurt, Germany
- Faculty of Applied Healthcare Science, Deggendorf Institute of Technology, Deggendorf, Germany
- Department of Pediatrics II, University Hospital of Essen, Essen, Germany
- Division of Pediatric Nephrology, Center for Pediatrics and Adolescent Medicine, Heidelberg, Germany
| |
Collapse
|
11
|
Chen X, Yang C, Wei Q, Huang M, Wang A, Zhang M. A novel mutation in HNF1B promotes ferroptosis-mediated renal mesangial cells fibrosis. Biochem Biophys Res Commun 2024; 736:150803. [PMID: 39490151 DOI: 10.1016/j.bbrc.2024.150803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 11/05/2024]
Abstract
Maturity onset diabetes of the young type 5(MODY5) is typically attributed to mutations in the HNF1B gene, which encodes transcription factors that play a significant role in kidney development and function maintenance. In this study, we identified a novel HNF1B gene mutation (c.445C > A) in a young male MODY5 patient exhibiting elevated serum creatinine levels and albuminuria. Through transfection of wild type and mutant HNF1B plasmids into mouse mesangial cells (MMCs), we investigated the impact on molecular indicators related to proliferation, fibrosis and oxidative stress. The results revealed that the HNF1B novel mutation promoted the expression of fibronectin, type 1 collagen, and CyclinD1, as well as increasing cellular oxidative stress and susceptibility to ferroptosis in MMCs. Our findings established a novel association between HNF1B mutant diseases and mesangial cell proliferation and fibrosis, suggesting that mutations of HNF1B may contribute to the progression of renal function in MODY5 patients. Additionally, our results implicate potential therapeutic targets for restraining fibrosis.
Collapse
Affiliation(s)
- Xin Chen
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Chuanhui Yang
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Qianying Wei
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Mei Huang
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Aiping Wang
- Department of Endocrinology, Nanjing Junxie Hospital, Nanjing, 210029, China.
| | - Mei Zhang
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
12
|
Dell KM, Hartung EA. Approach to simple kidney cysts in children. Pediatr Nephrol 2024; 39:3387-3395. [PMID: 38676761 PMCID: PMC11511774 DOI: 10.1007/s00467-024-06386-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/29/2024]
Abstract
The finding of a simple kidney cyst in a child can pose a diagnostic and management challenge for pediatric nephrologists, urologists, and primary care providers. The reported prevalence varies from 0.22 to 1% in large ultrasonography-based series of more than 10,000 children each. The true prevalence, however, may be higher or lower, as factors such as variations in referral patterns, indications for ultrasonography, or technical considerations could impact prevalence rates. For many patients, simple kidney cysts may be found incidentally when imaging is performed for another indication. Although simple cysts can occur in children, they may also represent the first sign of autosomal dominant polycystic kidney disease (ADPKD) or other less common cystic kidney diseases. Definitive guidelines regarding the evaluation and monitoring of children with simple kidney cysts have not been established. The desire on the part of the practitioner and/or parents to establish a definitive diagnosis should be balanced with the cost and inconvenience of repeated imaging and visits with specialists. The goals of this review are to (1) outline the definition, epidemiology, clinical presentation, and natural history of simple kidney cysts in childhood; (2) describe clinical features that could suggest a diagnosis other than a simple kidney cyst; and (3) present a suggested framework for evaluating and monitoring of children with one or more simple kidney cysts.
Collapse
Affiliation(s)
- Katherine M Dell
- Section On Pediatric Nephrology and Hypertension, Department of Pediatrics, Cleveland Clinic Children's, Case Western Reserve University, Cleveland, OH, USA.
| | - Erum A Hartung
- Division of Nephrology, Department of Pediatrics, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
13
|
Li B, Sadagopan A, Li J, Wu Y, Cui Y, Konda P, Weiss CN, Choueiri TK, Doench JG, Viswanathan SR. A framework for target discovery in rare cancers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.24.620074. [PMID: 39484513 PMCID: PMC11527139 DOI: 10.1101/2024.10.24.620074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
While large-scale functional genetic screens have uncovered numerous cancer dependencies, rare cancers are poorly represented in such efforts and the landscape of dependencies in many rare cancers remains obscure. We performed genome-scale CRISPR knockout screens in an exemplar rare cancer, TFE3-translocation renal cell carcinoma (tRCC), revealing previously unknown tRCC-selective dependencies in pathways related to mitochondrial biogenesis, oxidative metabolism, and kidney lineage specification. To generalize to other rare cancers in which experimental models may not be readily available, we employed machine learning to infer gene dependencies in a tumor or cell line based on its transcriptional profile. By applying dependency prediction to alveolar soft part sarcoma (ASPS), a distinct rare cancer also driven by TFE3 translocations, we discovered and validated that MCL1 represents a dependency in ASPS but not tRCC. Finally, we applied our model to predict gene dependencies in tumors from the TCGA (11,373 tumors; 28 lineages) and multiple additional rare cancers (958 tumors across 16 types, including 13 distinct subtypes of kidney cancer), nominating potentially actionable vulnerabilities in several poorly-characterized cancer types. Our results couple unbiased functional genetic screening with a predictive model to establish a landscape of candidate vulnerabilities across cancers, including several rare cancers currently lacking in potential targets.
Collapse
Affiliation(s)
- Bingchen Li
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA 02215, USA
| | - Ananthan Sadagopan
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA 02215, USA
| | - Jiao Li
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA 02215, USA
| | - Yuqianxun Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA 02215, USA
| | - Yantong Cui
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA 02215, USA
| | - Prathyusha Konda
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA 02215, USA
| | - Cary N. Weiss
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA 02215, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute; Boston, MA 02215, USA
| | - Toni K. Choueiri
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School; Boston, MA 02215, USA
- Department of Medicine, Brigham and Women’s Hospital; Boston, MA 02215, USA
| | - John G. Doench
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
| | - Srinivas R. Viswanathan
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School; Boston, MA 02215, USA
- Department of Medicine, Brigham and Women’s Hospital; Boston, MA 02215, USA
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
| |
Collapse
|
14
|
Bagattin A, Tammaccaro SL, Chiral M, Makinistoglu MP, Zimmermann N, Lerner J, Garbay S, Kuperwasser N, Pontoglio M. HNF1β bookmarking involves Topoisomerase 1 activation and DNA topology relaxation in mitotic chromatin. Cell Rep 2024; 43:114805. [PMID: 39388351 DOI: 10.1016/j.celrep.2024.114805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 07/03/2024] [Accepted: 09/12/2024] [Indexed: 10/12/2024] Open
Abstract
HNF1β (HNF1B) is a transcription factor frequently mutated in patients with developmental renal disease. It binds to mitotic chromatin and reactivates gene expression after mitosis, a phenomenon referred to as bookmarking. Using a crosslinking method that circumvents the artifacts of formaldehyde, we demonstrate that HNF1β remains associated with chromatin in a sequence-specific way in both interphase and mitosis. We identify an HNF1β-interacting protein, BTBD2, that enables the interaction and activation of Topoisomerase 1 (TOP1) exclusively during mitosis. Our study identifies a shared microhomology domain between HNF1β and TOP1, where a mutation, found in "maturity onset diabetes of the young" patients, disrupts their interaction. Importantly, HNF1β recruits TOP1 and induces DNA relaxation around HNF1β mitotic chromatin sites, elucidating its crucial role in chromatin remodeling and gene reactivation after mitotic exit. These findings shed light on how HNF1β reactivates target gene expression after mitosis, providing insights into its crucial role in maintenance of cellular identity.
Collapse
Affiliation(s)
- Alessia Bagattin
- Epigenetics and Development Laboratory, Growth and Signaling Department, Université Paris Cité, CNRS, INSERM, Institut Necker-Enfants Malades, 75015 Paris, France.
| | - Salvina Laura Tammaccaro
- Epigenetics and Development Laboratory, Growth and Signaling Department, Université Paris Cité, CNRS, INSERM, Institut Necker-Enfants Malades, 75015 Paris, France
| | - Magali Chiral
- Epigenetics and Development Laboratory, Growth and Signaling Department, Université Paris Cité, CNRS, INSERM, Institut Necker-Enfants Malades, 75015 Paris, France
| | - Munevver Parla Makinistoglu
- Epigenetics and Development Laboratory, Growth and Signaling Department, Université Paris Cité, CNRS, INSERM, Institut Necker-Enfants Malades, 75015 Paris, France
| | - Nicolas Zimmermann
- Epigenetics and Development Laboratory, Growth and Signaling Department, Université Paris Cité, CNRS, INSERM, Institut Necker-Enfants Malades, 75015 Paris, France
| | - Jonathan Lerner
- Epigenetics and Development Laboratory, Growth and Signaling Department, Université Paris Cité, CNRS, INSERM, Institut Necker-Enfants Malades, 75015 Paris, France
| | - Serge Garbay
- Epigenetics and Development Laboratory, Growth and Signaling Department, Université Paris Cité, CNRS, INSERM, Institut Necker-Enfants Malades, 75015 Paris, France
| | - Nicolas Kuperwasser
- Epigenetics and Development Laboratory, Growth and Signaling Department, Université Paris Cité, CNRS, INSERM, Institut Necker-Enfants Malades, 75015 Paris, France
| | - Marco Pontoglio
- Epigenetics and Development Laboratory, Growth and Signaling Department, Université Paris Cité, CNRS, INSERM, Institut Necker-Enfants Malades, 75015 Paris, France.
| |
Collapse
|
15
|
Sánchez-Cazorla E, Carrera N, García-González MÁ. HNF1B Transcription Factor: Key Regulator in Renal Physiology and Pathogenesis. Int J Mol Sci 2024; 25:10609. [PMID: 39408938 PMCID: PMC11476927 DOI: 10.3390/ijms251910609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/19/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
The HNF1B gene, located on chromosome 17q12, encodes a transcription factor essential for the development of several organs. It regulates the expression of multiple genes in renal, pancreatic, hepatic, neurological, and genitourinary tissues during prenatal and postnatal development, influencing processes such as nephrogenesis, cellular polarity, tight junction formation, cilia development, ion transport in the renal tubule, and renal metabolism. Mutations that alter the function of Hnf1b deregulate those processes, leading to various pathologies characterized by both renal and extrarenal manifestations. The main renal diseases that develop are polycystic kidney disease, hypoplastic or dysplastic kidneys, structural abnormalities, Congenital Anomalies of the Kidney and Urinary Tract (CAKUT), and electrolyte imbalances such as hyperuricemia and hypomagnesemia. Extrarenal manifestations include Maturity-Onset Diabetes of the Young (MODY), hypertransaminasemia, genital and urinary tract malformations, Autism Spectrum Disorder (ASD), and other neurodevelopmental disorders. Patients with HNF1B alterations typically carry either punctual mutations or a monoallelic microdeletion in the 17q12 region. Future research on the molecular mechanisms and genotype-phenotype correlations in HNF1B-related conditions will enhance our understanding, leading to improved clinical management, genetic counseling, monitoring, and patient care.
Collapse
Affiliation(s)
- Eloísa Sánchez-Cazorla
- Group of Genetics and Developmental Biology of Renal Disease, Laboratory of Nephrology, No. 11, Health Research Institute of Santiago de Compostela (IDIS), Clinical University Hospital (CHUS), 15706 Santiago de Compostela, Spain;
- Genomic Medicine Group, Clinical University Hospital (CHUS), 15706 Santiago de Compostela, Spain
| | - Noa Carrera
- Group of Genetics and Developmental Biology of Renal Disease, Laboratory of Nephrology, No. 11, Health Research Institute of Santiago de Compostela (IDIS), Clinical University Hospital (CHUS), 15706 Santiago de Compostela, Spain;
- Genomic Medicine Group, Clinical University Hospital (CHUS), 15706 Santiago de Compostela, Spain
- RICORS 2040 (Kidney Disease), ISCIII, 15706 Santiago de Compostela, Spain
| | - Miguel Ángel García-González
- Group of Genetics and Developmental Biology of Renal Disease, Laboratory of Nephrology, No. 11, Health Research Institute of Santiago de Compostela (IDIS), Clinical University Hospital (CHUS), 15706 Santiago de Compostela, Spain;
- Genomic Medicine Group, Clinical University Hospital (CHUS), 15706 Santiago de Compostela, Spain
- RICORS 2040 (Kidney Disease), ISCIII, 15706 Santiago de Compostela, Spain
| |
Collapse
|
16
|
Serbis A, Kantza E, Siomou E, Galli-Tsinopoulou A, Kanaka-Gantenbein C, Tigas S. Monogenic Defects of Beta Cell Function: From Clinical Suspicion to Genetic Diagnosis and Management of Rare Types of Diabetes. Int J Mol Sci 2024; 25:10501. [PMID: 39408828 PMCID: PMC11476815 DOI: 10.3390/ijms251910501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Monogenic defects of beta cell function refer to a group of rare disorders that are characterized by early-onset diabetes mellitus due to a single gene mutation affecting insulin secretion. It accounts for up to 5% of all pediatric diabetes cases and includes transient or permanent neonatal diabetes, maturity-onset diabetes of the young (MODY), and various syndromes associated with diabetes. Causative mutations have been identified in genes regulating the development or function of the pancreatic beta cells responsible for normal insulin production and/or release. To date, more than 40 monogenic diabetes subtypes have been described, with those caused by mutations in HNF1A and GCK genes being the most prevalent. Despite being caused by a single gene mutation, each type of monogenic diabetes, especially MODY, can appear with various clinical phenotypes, even among members of the same family. This clinical heterogeneity, its rarity, and the fact that it shares some features with more common types of diabetes, can make the clinical diagnosis of monogenic diabetes rather challenging. Indeed, several cases of MODY or syndromic diabetes are accurately diagnosed in adulthood, after having been mislabeled as type 1 or type 2 diabetes. The recent widespread use of more reliable sequencing techniques has improved monogenic diabetes diagnosis, which is important to guide appropriate treatment and genetic counselling. The current review aims to summarize the latest knowledge on the clinical presentation, genetic confirmation, and therapeutic approach of the various forms of monogenic defects of beta cell function, using three imaginary clinical scenarios and highlighting clinical and laboratory features that can guide the clinician in reaching the correct diagnosis.
Collapse
Affiliation(s)
- Anastasios Serbis
- Department of Pediatrics, University of Ioannina, 45110 Ioannina, Greece; (E.K.); (E.S.)
- Department of Endocrinology & Diabetes Center, University of Ioannina, 45110 Ioannina, Greece;
- 2nd Department of Pediatrics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, AHEPA University General Hospital, 54636 Thessaloniki, Greece;
| | - Evanthia Kantza
- Department of Pediatrics, University of Ioannina, 45110 Ioannina, Greece; (E.K.); (E.S.)
| | - Ekaterini Siomou
- Department of Pediatrics, University of Ioannina, 45110 Ioannina, Greece; (E.K.); (E.S.)
| | - Assimina Galli-Tsinopoulou
- 2nd Department of Pediatrics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, AHEPA University General Hospital, 54636 Thessaloniki, Greece;
| | - Christina Kanaka-Gantenbein
- Division of Endocrinology, Diabetes and Metabolism and Aghia Sophia ENDO-ERN Center for Rare Pediatric Endocrine Disorders, First Department of Pediatrics, Medical School, Aghia Sophia Children’s Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Stelios Tigas
- Department of Endocrinology & Diabetes Center, University of Ioannina, 45110 Ioannina, Greece;
| |
Collapse
|
17
|
Han JY, Gwack J, Kim TY, Park J. A Korean Family Presenting with Renal Cysts and Maturity-Onset Diabetes of the Young Caused by a Novel In-Frame Deletion of HNF1B. Int J Mol Sci 2024; 25:9823. [PMID: 39337310 PMCID: PMC11432569 DOI: 10.3390/ijms25189823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Maturity-onset diabetes of the young (MODY; OMIM # 606391) comprises a cluster of inherited disorders within non-autoimmune diabetes mellitus (DM), typically emerging during adolescence or young adulthood. We report a novel in-frame deletion of HNF1B in a family with renal cysts and MODY, furthering our understanding of HNF1B-related phenotypes. We conducted sequential genetic testing to investigate the glucose intolerance, renal cysts, hepatic cysts, and agenesis of the dorsal pancreas observed in the proband. A comprehensive clinical exome sequencing approach using a Celemics G-Mendeliome Clinical Exome Sequencing Panel was employed. Considering the clinical manifestations observed in the proband, gene panel sequencing identified a heterozygous HNF1B variant, c.36_38delCCT/p.(Leu13del) (reference transcript ID: NM_000458.4), as the most likely cause of MODY in the proband. The patient's clinical presentation was consistent with MODY caused by the HNF1B variant, showing signs of glucose intolerance, renal cysts, hepatic cysts, and agenesis of the dorsal pancreas. Sanger sequencing confirmed the same HNF1B variant and established the paternally inherited autosomal dominant status of the heterozygous variant in the patient, as well as in his father and sister. The presence of early-onset diabetes, renal cysts, a family history of the condition, and nephropathy appearing before or after the diagnosis of diabetes mellitus (DM) suggests a diagnosis of HNF1B-MODY5. Early diagnosis is crucial for preventing complications of DM, enabling family screening, providing pre-conceptional genetic counseling, and monitoring kidney function decline.
Collapse
Affiliation(s)
- Ji Yoon Han
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| | - Jin Gwack
- Department of Preventive Medicine, Jeonbuk National University Medical School, Jeonju 54907, Republic of Korea;
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| | - Tae Yun Kim
- Department of Thoracic and Cardiovascular Surgery, Jeonbuk National University Medical School and Hospital, Jeonju 54907, Republic of Korea
| | - Joonhong Park
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
- Department of Laboratory Medicine, Jeonbuk National University Medical School and Hospital, Jeonju 54907, Republic of Korea
| |
Collapse
|
18
|
Gazeu A, Collardeau-Frachon S. Practical Approach to Congenital Anomalies of the Kidneys: Focus on Anomalies With Insufficient or Abnormal Nephron Development: Renal Dysplasia, Renal Hypoplasia, and Renal Tubular Dysgenesis. Pediatr Dev Pathol 2024; 27:459-493. [PMID: 39270126 DOI: 10.1177/10935266241239241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) accounts for up to 30% of antenatal congenital anomalies and is the main cause of kidney failure in children worldwide. This review focuses on practical approaches to CAKUT, particularly those with insufficient or abnormal nephron development, such as renal dysplasia, renal hypoplasia, and renal tubular dysgenesis. The review provides insights into the histological features, pathogenesis, mechanisms, etiologies, antenatal and postnatal presentation, management, and prognosis of these anomalies. Differential diagnoses are discussed as several syndromes may include CAKUT as a phenotypic component and renal dysplasia may occur in some ciliopathies, tumor predisposition syndromes, and inborn errors of metabolism. Diagnosis and genetic counseling for CAKUT are challenging, due to the extensive variability in presentation, genetic and phenotypic heterogeneity, and difficulties to assess postnatal lung and renal function on prenatal imaging. The review highlights the importance of perinatal autopsy and pathological findings in surgical specimens to establish the diagnosis and prognosis of CAKUT. The indications and the type of genetic testing are discussed. The aim is to provide essential insights into the practical approaches, diagnostic processes, and genetic considerations offering valuable guidance for pediatric and perinatal pathologists.
Collapse
Affiliation(s)
- Alexia Gazeu
- Department of pathology, Hôpital Femme-Mère-Enfant, Hospices Civils de Lyon, University Hospital of Lyon, Lyon Bron, France
- Université Claude Bernard Lyon 1, Faculté de Médecine Lyon Est, Lyon, France
| | - Sophie Collardeau-Frachon
- Department of pathology, Hôpital Femme-Mère-Enfant, Hospices Civils de Lyon, University Hospital of Lyon, Lyon Bron, France
- Université Claude Bernard Lyon 1, Faculté de Médecine Lyon Est, Lyon, France
- Société française de Fœtopathologie, Soffoet, Paris, France
| |
Collapse
|
19
|
Tanaka S, Akagawa H, Azuma K, Higuchi S, Ujiie A, Hashimoto K, Iwasaki N. High prevalence of copy number variations in the Japanese participants with suspected MODY. Clin Genet 2024; 106:293-304. [PMID: 38733153 DOI: 10.1111/cge.14544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024]
Abstract
Maturity-Onset Diabetes of the Young (MODY) is a diabetes mellitus subtype caused by a single gene. The detection rate of the responsible gene is 27% in the United Kingdom, indicating that the causative gene remains unknown in the majority of clinically diagnosed MODY cases. To improve the detection rate, we applied comprehensive genetic testing using whole exome sequencing (WES) followed by Multiplex Ligation-dependent Probe Amplification (MLPA) and functional analyses. Twenty-one unrelated Japanese participants with MODY were enrolled in the study. To detect copy number variations (CNVs), WES was performed first, followed by MLPA analysis for participants who were negative on the basis of WES. Undetermined variants were analyzed according to their functional properties. WES identified 7 pathogenic and 3 novel likely pathogenic variants in the 21 participants. Functional analyses revealed that 1 in 3 variants was pathogenic. MLPA analysis applied to the remaining 13 undetermined samples identified 4 cases with pathogenic CNVs: 3 in HNF4A and 1 in HNF1B. Pathogenic variants were identified in 12 participants (12/21, 57.1%) - relatively high rate reported to date. Notably, one-third of the participants had CNVs in HNF4A or HNF1B, indicating a limitation of WES-only screening.
Collapse
Affiliation(s)
- Satoshi Tanaka
- Institute for Comprehensive Medical Sciences, Tokyo Women's Medical University, Tokyo, Japan
- Diabetes and Metabolism, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Hiroyuki Akagawa
- Institute for Comprehensive Medical Sciences, Tokyo Women's Medical University, Tokyo, Japan
- Department of Neurosurgery, Tokyo Women's Medical University Adachi Medical Center, Tokyo, Japan
| | - Kenkou Azuma
- Institute for Comprehensive Medical Sciences, Tokyo Women's Medical University, Tokyo, Japan
| | - Sayaka Higuchi
- Institute for Comprehensive Medical Sciences, Tokyo Women's Medical University, Tokyo, Japan
| | - Atsushi Ujiie
- Department of Diabetes, Endocrinology and Hematology, Dokkyo Medical University Saitama Medical Center, Saitama, Japan
| | - Koshi Hashimoto
- Department of Diabetes, Endocrinology and Hematology, Dokkyo Medical University Saitama Medical Center, Saitama, Japan
| | - Naoko Iwasaki
- Institute for Comprehensive Medical Sciences, Tokyo Women's Medical University, Tokyo, Japan
- Diabetes and Metabolism, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
- Division of Diabetes, Endocrinology and Metabolism, Tokyo Women's Medical University Yachiyo Medical Center, Chiba, Japan
| |
Collapse
|
20
|
Vourdoumpa A, Paltoglou G, Mertzanian A, Sertedaki A, Sakou II, Karanasios S, Karavanaki K, Charmandari E. Challenges in the management of patients with HNF1B MODY and multisystem manifestations: the cases of two adolescent boys. Hormones (Athens) 2024; 23:439-445. [PMID: 38980656 DOI: 10.1007/s42000-024-00580-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 06/25/2024] [Indexed: 07/10/2024]
Abstract
INTRODUCTION Hepatocyte nuclear factor-1 beta (HNF1B) encodes a homeodomain-containing transcription factor, which is expressed early in embryogenesis and is involved in the development of multiple tissues and organs. HNF1B mutations cause complex multisystem disorders, with renal developmental disease and maturity onset diabetes of the young (HNF1B MODY), a rare cause of diabetes mellitus, being representative features. METHODS We present two adolescent boys from different socioeconomic backgrounds who were diagnosed with genetically confirmed HNF1B MODY following hospitalization for diabetic ketoacidosis in the first case and after diagnostic work-up due to impaired glucose tolerance in the second case. Multisystem manifestations, including pancreatic hypoplasia and early-onset diabetes mellitus (DM), renal cysts, hypomagnesemia, hyperuricemia, liver and biliary impairment, genital tract malformations, and primary hyperparathyroidism were also present, strongly suggesting HNF1B MODY. RESULTS The first patient was treated with subcutaneous insulin but was lost to follow-up due to social reasons. Conversely, early diagnosis in the second patient allowed the management of multisystem defects by a multidisciplinary team of experts. Moreover, manifestation of HNF1B MODY in the form of diabetic ketoacidosis was prevented and a structured diabetes training program has proven successful in regulating glycemic control, postponing the necessity for insulin treatment. CONCLUSION Early genetic work-up of patients with dysglycemia associated with a specific phenotype suggestive of HNF1B MODY is extremely important in the care of children and adolescents with diabetes since it ensures that early and optimal management is initiated, thereby preventing the onset of life-threatening diabetic ketoacidosis and other multisystem complications and/or comorbidities.
Collapse
Affiliation(s)
- Aikaterini Vourdoumpa
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, "Aghia Sophia" Children's Hospital, Athens, 11527, Greece
- Diabetes and Metabolism Clinic, Second Department of Pediatrics, National and Kapodistrian University of Athens, "P. & A. Kyriakou" Children's Hospital, Athens, 11527, Greece
| | - George Paltoglou
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, "Aghia Sophia" Children's Hospital, Athens, 11527, Greece.
- Diabetes and Metabolism Clinic, Second Department of Pediatrics, National and Kapodistrian University of Athens, "P. & A. Kyriakou" Children's Hospital, Athens, 11527, Greece.
| | - Anny Mertzanian
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, "Aghia Sophia" Children's Hospital, Athens, 11527, Greece
| | - Amalia Sertedaki
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, "Aghia Sophia" Children's Hospital, Athens, 11527, Greece
| | - Irini-Ikbale Sakou
- Diabetes and Metabolism Clinic, Second Department of Pediatrics, National and Kapodistrian University of Athens, "P. & A. Kyriakou" Children's Hospital, Athens, 11527, Greece
| | - Spyridon Karanasios
- Diabetes and Metabolism Clinic, Second Department of Pediatrics, National and Kapodistrian University of Athens, "P. & A. Kyriakou" Children's Hospital, Athens, 11527, Greece
| | - Kyriaki Karavanaki
- Diabetes and Metabolism Clinic, Second Department of Pediatrics, National and Kapodistrian University of Athens, "P. & A. Kyriakou" Children's Hospital, Athens, 11527, Greece
| | - Evangelia Charmandari
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, "Aghia Sophia" Children's Hospital, Athens, 11527, Greece
- Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, 11527, Greece
| |
Collapse
|
21
|
Song CY, Yang J, Jiang S, Du GL. HNF1β, LHX1, and GGNBP2 deletion contributed to kidney and reproductive dysfunction in 17q12 deletion syndrome: evidence from a case report. Front Genet 2024; 15:1391804. [PMID: 39221224 PMCID: PMC11361975 DOI: 10.3389/fgene.2024.1391804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
17q12 deletion syndrome is a chromosomal abnormality, where there is a small missing piece (deletion) of genetic material on the long arm (q) of chromosome 17. Sign and symptoms can vary widely among different patients. Recently, a patient was diagnosed with 17q12 deletion syndrome in our hospital, and the clinical characteristics presented as absence of the right kidney, compensatory hypertrophy of the left kidney, multiple small cysts in the left kidney, pancreatic atrophy, hypomagnesemia, bowed uterus, multiple follicular cysts in both lobes of the thyroid gland, and maturity-onset diabetes of the young type 5 (MODY-5). A 1.5-Mb deletion with haploinsufficiency for 20 genes within the 17q12 region was found through copy number variation (CNV) analysis based on metagenomic next-generation sequencing (mNGS) technology. In addition to HNF1B absence, the LIM-class homeobox 1 transcription factor (LHX1) and GGNBP2 absence was also involved in regulation of kidney development and the reproductive system through bioinformatics analysis. The inheriting risk of 17q12 deletion syndrome is about 50%, and it is recommended to provide genetic counseling to all patients who are suspected or diagnosed with the syndrome.
Collapse
Affiliation(s)
- Chun-Yu Song
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, China
- Department of Endocrinology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- First Clinical Medical College of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Jing Yang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, China
- Department of Endocrinology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Sheng Jiang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, China
- Department of Endocrinology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Guo-Li Du
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, China
- Department of Endocrinology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Bayingolin Mongolian Autonomous Prefecture People’s Hospital, Kuerle, China
| |
Collapse
|
22
|
Guarnaroli M, Padoan F, Fava C, Benetti MG, Brugnara M, Pietrobelli A, Piacentini G, Pecoraro L. The Impact of Autosomal Dominant Polycystic Kidney Disease in Children: A Nephrological, Nutritional, and Psychological Point of View. Biomedicines 2024; 12:1823. [PMID: 39200287 PMCID: PMC11351308 DOI: 10.3390/biomedicines12081823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/31/2024] [Accepted: 08/08/2024] [Indexed: 09/02/2024] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a hereditary disorder characterized by the formation of numerous fluid-filled cysts in the kidneys, leading to progressive renal failure and various extrarenal complications, including hypertension. This review explores the genetic basis of ADPKD, including emerging evidence of epigenetic mechanisms in modulating gene expression and disease progression in ADPKD. Furthermore, it proposes to examine the pathological characteristics of this condition at the nephrological, cardiovascular, nutritional, and psychological levels, emphasizing that the follow-up of patients with ADPKD should be multidisciplinary from a young pediatric age.
Collapse
Affiliation(s)
- Matteo Guarnaroli
- Pediatric Unit, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, 37126 Verona, Italy
| | - Flavia Padoan
- Pediatric Unit, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, 37126 Verona, Italy
| | - Cristiano Fava
- General Medicine and Hypertension Unit, Department of Medicine, University of Verona, 37126 Verona, Italy;
| | - Maria Giulia Benetti
- Pediatric Unit, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, 37126 Verona, Italy
| | - Milena Brugnara
- Pediatric Unit, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, 37126 Verona, Italy
| | - Angelo Pietrobelli
- Pediatric Unit, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, 37126 Verona, Italy
| | - Giorgio Piacentini
- Pediatric Unit, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, 37126 Verona, Italy
| | - Luca Pecoraro
- Pediatric Unit, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, 37126 Verona, Italy
| |
Collapse
|
23
|
Knoers NV, van Eerde AM. The Role of Genetic Testing in Adult CKD. J Am Soc Nephrol 2024; 35:1107-1118. [PMID: 39288914 PMCID: PMC11377809 DOI: 10.1681/asn.0000000000000401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Mounting evidence indicates that monogenic disorders are the underlying cause in a significant proportion of patients with CKD. In recent years, the diagnostic yield of genetic testing in these patients has increased significantly as a result of revolutionary developments in genetic sequencing techniques and sequencing data analysis. Identification of disease-causing genetic variant(s) in patients with CKD may facilitate prognostication and personalized management, including nephroprotection and decisions around kidney transplantation, and is crucial for genetic counseling and reproductive family planning. A genetic diagnosis in a patient with CKD allows for screening of at-risk family members, which is also important for determining their eligibility as kidney transplant donors. Despite evidence for clinical utility, increased availability, and data supporting the cost-effectiveness of genetic testing in CKD, especially when applied early in the diagnostic process, many nephrologists do not use genetic testing to its full potential because of multiple perceived barriers. Our aim in this article was to empower nephrologists to (further) implement genetic testing as a diagnostic means in their clinical practice, on the basis of the most recent insights and exemplified by patient vignettes. We stress why genetic testing is of significant clinical benefit to many patients with CKD, provide recommendations for which patients to test and which test(s) to order, give guidance about interpretation of genetic testing results, and highlight the necessity for and essential components of pretest and post-test genetic counseling.
Collapse
Affiliation(s)
- Nine V.A.M. Knoers
- Department of Genetics, University Medical Center Groningen, Groningen, The Netherlands
| | | |
Collapse
|
24
|
Buffin-Meyer B, Richard J, Guigonis V, Weber S, König J, Heidet L, Moussaoui N, Vu JP, Faguer S, Casemayou A, Prakash R, Baudouin V, Hogan J, Alexandrou D, Bockenhauer D, Bacchetta J, Ranchin B, Pruhova S, Zieg J, Lahoche A, Okorn C, Antal-Kónya V, Morin D, Becherucci F, Habbig S, Liebau MC, Mauras M, Nijenhuis T, Llanas B, Mekahli D, Thumfart J, Tönshoff B, Massella L, Eckart P, Cloarec S, Cruz A, Patzer L, Roussey G, Vrillon I, Dunand O, Bessenay L, Taroni F, Zaniew M, Louillet F, Bergmann C, Schaefer F, van Eerde AM, Schanstra JP, Decramer S. Renal and Extrarenal Phenotypes in Patients With HNF1B Variants and Chromosome 17q12 Microdeletions. Kidney Int Rep 2024; 9:2514-2526. [PMID: 39156164 PMCID: PMC11328578 DOI: 10.1016/j.ekir.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/09/2024] [Accepted: 05/06/2024] [Indexed: 08/20/2024] Open
Abstract
Introduction Hepatocyte nuclear factor 1-beta (HNF1B) gene variants or the chromosome 17q12 deletion (17q12del) represent the most common monogenic cause of developmental kidney disease. Although neurodevelopmental disorders have been associated with the 17q12del, specific genotype-phenotype associations with respect to kidney function evolution have not yet been fully defined. Here, we aimed to determine whether 17q12del or specific HNF1B variants were associated with kidney survival in a large patient population with HNF1B disease. Methods This was a retrospective observational study involving 521 patients with HNF1B disease from 14 countries using the European Reference Network for rare kidney diseases with detailed information on the HNF1B genotype (HNF1B variants or the 17q12del). Median follow-up time was 11 years with 6 visits per patient. The primary end point was progression to chronic kidney disease (CKD) stage 3 (estimated glomerular filtration rate [eGFR] < 60 ml/min per 1.73 m2). Secondary end points were the development of hypomagnesemia or extrarenal disorders, including hyperuricemia and hyperglycemia. Results Progression toward CKD stage 3 was significantly delayed in patients with the 17q12del compared to patients with HNF1B variants (hazard ratio [HR]: 0.29, 95% confidence interval [CI]: 0.19-0.44, P < 0.001). Progression toward CKD stage 3 was also significantly delayed when HNF1B variants involved the HNF1B Pit-1, Oct-1, and Unc-86 homeodomain (POUh) DNA-binding and transactivation domains rather than the POU-specific domain (POUs) DNA-binding domain (HR: 0.15 [95% CI: 0.06-0.37), P < 0.001 and HR: 0.25 (95% CI: 0.11-0.57), P = 0.001, respectively). Finally, the 17q12del was positively associated with hypomagnesemia and negatively associated with hyperuricemia, but not with hyperglycemia. Conclusion Patients with the 17q12del display a significantly better kidney survival than patients with other HNF1B variants; and for the latter, variants in the POUs DNA-binding domain lead to the poorest kidney survival. These are clinically relevant HNF1B kidney genotype-phenotype correlations that inform genetic counseling.
Collapse
Affiliation(s)
- Bénédicte Buffin-Meyer
- National Institute of Health and Medical Research (INSERM), UMR 1297, Institute of Cardiovascular and Metabolic Disease, Toulouse, France
- University Paul Sabatier, Toulouse-III, Toulouse, France
| | - Juliette Richard
- Department of Pediatric Internal Medicine, Rheumatology and Nephrology, Toulouse University Hospital, Toulouse, France
- Centre De Référence Des Maladies Rénales Rares du Sud-Ouest (SORARE), Toulouse University Hospital, Toulouse, France
| | - Vincent Guigonis
- Department of Pediatrics, Hôpital Mère-Enfant, University Hospital of Limoges, Limoges, France
| | - Stefanie Weber
- Pediatric Nephrology, University Children's Hospital Marburg, Marburg, Germany
| | - Jens König
- Department of General Pediatrics, University Children's Hospital, Münster, Germany
| | - Laurence Heidet
- APHP, Service de Néphrologie Pédiatrique, Hôpital Universitaire Necker-Enfants malades, Paris, France
- Centre De Référence Des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Paris, France
| | - Nabila Moussaoui
- National Institute of Health and Medical Research (INSERM), UMR 1297, Institute of Cardiovascular and Metabolic Disease, Toulouse, France
- Centre De Référence Des Maladies Rénales Rares du Sud-Ouest (SORARE), Toulouse University Hospital, Toulouse, France
- Filière ORphan KIdney Disease (ORKiD), Montpellier, France
| | - Jeanne-Pierrette Vu
- National Institute of Health and Medical Research (INSERM), UMR 1297, Institute of Cardiovascular and Metabolic Disease, Toulouse, France
- University Paul Sabatier, Toulouse-III, Toulouse, France
| | - Stanislas Faguer
- National Institute of Health and Medical Research (INSERM), UMR 1297, Institute of Cardiovascular and Metabolic Disease, Toulouse, France
- University Paul Sabatier, Toulouse-III, Toulouse, France
- Centre De Référence Des Maladies Rénales Rares du Sud-Ouest (SORARE), Toulouse University Hospital, Toulouse, France
- Department of Nephrology and Organ Transplantation, University Hospital of Toulouse, and French Intensive Care Renal Network, Toulouse, France
| | - Audrey Casemayou
- National Institute of Health and Medical Research (INSERM), UMR 1297, Institute of Cardiovascular and Metabolic Disease, Toulouse, France
- University Paul Sabatier, Toulouse-III, Toulouse, France
- Centre De Référence Des Maladies Rénales Rares du Sud-Ouest (SORARE), Toulouse University Hospital, Toulouse, France
- Department of Nephrology and Organ Transplantation, University Hospital of Toulouse, and French Intensive Care Renal Network, Toulouse, France
| | - Richa Prakash
- APHP, Service de Néphrologie Pédiatrique, Hôpital Universitaire Necker-Enfants malades, Paris, France
- Centre De Référence Des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Paris, France
| | - Véronique Baudouin
- Nephrology Department, Robert Debré Hospital, APHP Nord, Paris University, Paris, France
| | - Julien Hogan
- Nephrology Department, Robert Debré Hospital, APHP Nord, Paris University, Paris, France
| | | | - Detlef Bockenhauer
- University College London, Department of Renal Medicine, London, UK
- Renal Unit, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- Department of Pediatric Nephrology, University Hospitals Leuven, Leuven, Belgium
| | - Justine Bacchetta
- Centre de Référence des Maladies Rénales Rares, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France
- INSERM 1033, Faculté de Médecine Lyon Est, Lyon, France
| | - Bruno Ranchin
- Centre de Référence des Maladies Rénales Rares, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France
| | - Stepanka Pruhova
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jakub Zieg
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Annie Lahoche
- Unité de néphrologie, Hôpital Jeanne de Flandre, CHU Lille, Lille, France
| | - Christine Okorn
- Department of Pediatrics II, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Violetta Antal-Kónya
- MTA-SE Lendület Nephrogenetic Laboratory, Budapest, Hungary
- Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Denis Morin
- Néphrologie Pédiatrique, CHU de Montpellier, Montpellier, France
- Centre De Référence Des Maladies Rénales Rares du Sud-Ouest (SORARE), Montpellier, France
- Université de Montpellier, Montpellier, France
| | | | - Sandra Habbig
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Max C. Liebau
- Department of Pediatrics and Center for Family Health, Center for Rare Diseases and Center for Molecular Medicine, University Hospital Cologne and Medical Faculty, University of Cologne, Cologne, Germany
| | - Mathilde Mauras
- Department of Pediatrics, Hôpital Nord, CHU de Saint-Etienne, Saint-Etienne, France
| | - Tom Nijenhuis
- Department of Nephrology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Brigitte Llanas
- Unité de Néphrologie Pédiatrique, Hôpital Pellegrin-Enfants, CHU de Bordeaux, Centre de Références des Maladies rénales rares du Sud-Ouest (SORARE), Bordeaux, France
| | - Djalila Mekahli
- Department of Pediatric Nephrology, University Hospitals, Leuven, Belgium
- PKD Research Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Julia Thumfart
- Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Burkhard Tönshoff
- Department of Pediatrics I, University Children's Hospital Heidelberg, Heidelberg, Germany
| | - Laura Massella
- Division of Nephrology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Philippe Eckart
- Department of Pediatrics, University Hospital of Caen, Caen, France
| | - Sylvie Cloarec
- Service de Néphrologie Pédiatrique, Hôpital Clocheville, CHRU, Tours, France
- Centre De Compétence Maladies Rénales Rares, Filière ORphan KIdney Disease (ORKiD), France
| | - Alejandro Cruz
- Pediatric Nephrology, University Hospital Vall d’Hebron, Barcelona, Spain
| | - Ludwig Patzer
- Klinik für Kinder- und Jugendmedizin, Krankenhaus St. Elisabeth und St. Barbara, Halle/Saale, Germany
| | - Gwenaelle Roussey
- Service des Maladies Chroniques de l'Enfant, Hopital Mère Enfant, CHU Nantes, Nantes, France
- Centre De Référence Des Maladies Rénales Rares du Sud-Ouest (SORARE), Nantes, France
| | - Isabelle Vrillon
- Service de Néphrologie Pédiatrique, Hôpital des Enfants, CHRU Nancy, Vandoeuvre les Nancy, France
| | - Olivier Dunand
- Service de Néphrologie Pédiatrique, CHU Réunion site Félix GUYON, St Denis, Ile de La Réunion, France
| | - Lucie Bessenay
- Department of Pediatric Nephrology, Centre Hospitalier Universitaire de Clermont-Ferrand, Clermont-Ferrand, France
| | - Francesca Taroni
- Pediatric Nephrology, Dialysis and Transplantation Unit Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Marcin Zaniew
- Department of Pediatrics, University of Zielona Góra, Zielona Góra, Poland
| | - Ferielle Louillet
- Département de Pédiatrie, Unité de Néphrologie-Hémodialyse, CHU Charles Nicolle, Rouen, France
| | - Carsten Bergmann
- Medizinische Genetik Mainz, Limbach Genetics, Mainz, Germany
- Department of Medicine IV, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany
| | - Franz Schaefer
- Division of Pediatric Nephrology, Heidelberg University Center for Pediatrics and Adolescent Medicine, Heidelberg, Germany
| | | | - Joost P. Schanstra
- National Institute of Health and Medical Research (INSERM), UMR 1297, Institute of Cardiovascular and Metabolic Disease, Toulouse, France
- University Paul Sabatier, Toulouse-III, Toulouse, France
| | - Stéphane Decramer
- National Institute of Health and Medical Research (INSERM), UMR 1297, Institute of Cardiovascular and Metabolic Disease, Toulouse, France
- Department of Pediatric Internal Medicine, Rheumatology and Nephrology, Toulouse University Hospital, Toulouse, France
- Centre De Référence Des Maladies Rénales Rares du Sud-Ouest (SORARE), Toulouse University Hospital, Toulouse, France
| |
Collapse
|
25
|
Zhang S, Ma Y, Zang X, Heng H, Liu X, Peng G, Liu R, Liang J, Geng H. A Case of 17q12 Microdeletion Syndrome in a MODY5 Type Diabetes with HNF-1β Gene Mutation Accompanied. Appl Clin Genet 2024; 17:125-130. [PMID: 39050772 PMCID: PMC11268705 DOI: 10.2147/tacg.s465859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 06/22/2024] [Indexed: 07/27/2024] Open
Abstract
Maturity Onset Diabetes of the Young (MODY) is an autosomal dominant inherited disorder prevalent among adolescents. Typically, it manifests with hyperglycemia before the age of 25. MODY5 is attributed to a mutation in the Hepatocyte Nuclear Factor-1β (HNF-1β) gene. A complete absence of HNF-1β is observed in 50% of those with MODY5. The 17q12 microdeletion syndrome closely linked with MODY5. Its incidence in the general population is around 1 in 14,500 and is linked with facial deformities, diabetes, polycystic kidneys, pancreatic hypertrophy, liver anomalies, and neuropsychological impairments. The most primary clinical signs are predominantly associated with the HNF-1β gene deletion. We chronicle the case of a male of 19 years of age diagnosed with diabetes, who, alongside persistent liver damage and polycystic kidneys, was referred from a community hospital to the Xuzhou Central Hospital. His clinical presentation included diabetes, liver dysfunction, polycystic kidneys, lipid irregularities, insulin resistance, and fatty atrophy. Subsequent genetic screening unveiled a 17q12 chromosomal deletion and an absence of the Hepatocyte Nuclear Factor-1β (HNF-1β) gene. Hence, for adolescent patients lacking a familial diabetes history but exhibiting symptoms like polycystic kidneys, liver damage, lipid irregularities, and fatty atrophy, a thorough assessment for the 17q12 microdeletion syndrome becomes imperative.
Collapse
Affiliation(s)
- Shuping Zhang
- Graduate School, Bengbu Medical University, Bengbu, Anhui, People’s Republic of China
| | - Yamei Ma
- Graduate School, Bengbu Medical University, Bengbu, Anhui, People’s Republic of China
| | - Xiu Zang
- Department of Endocrinology, Xuzhou Central Hospital, Xuzhou, Jiangsu, People’s Republic of China
| | - Hao Heng
- Department of Endocrinology, Xuzhou Central Hospital, Xuzhou, Jiangsu, People’s Republic of China
| | - Xuekui Liu
- Department of Endocrinology, Xuzhou Central Hospital, Xuzhou, Jiangsu, People’s Republic of China
| | - Gangshan Peng
- The Affiliated Xuzhou Clinical College, Xuzhou Medical University, Xuzhou, Jiangsu, People’s Republic of China
| | - Ran Liu
- The Affiliated Xuzhou Clinical College, Xuzhou Medical University, Xuzhou, Jiangsu, People’s Republic of China
| | - Jun Liang
- Graduate School, Bengbu Medical University, Bengbu, Anhui, People’s Republic of China
- Department of Endocrinology, Xuzhou Central Hospital, Xuzhou, Jiangsu, People’s Republic of China
| | - Houfa Geng
- Graduate School, Bengbu Medical University, Bengbu, Anhui, People’s Republic of China
- Department of Endocrinology, Xuzhou Central Hospital, Xuzhou, Jiangsu, People’s Republic of China
| |
Collapse
|
26
|
Schnell J, Miao Z, Achieng M, Fausto CC, Wang V, Kuyper FD, Thornton ME, Grubbs B, Kim J, Lindström NO. Stepwise developmental mimicry generates proximal-biased kidney organoids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.28.601028. [PMID: 39005387 PMCID: PMC11244853 DOI: 10.1101/2024.06.28.601028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The kidney maintains body fluid homeostasis by reabsorbing essential compounds and excreting waste. Proximal tubule cells, crucial for renal reabsorption of a range of sugars, ions, and amino acids, are highly susceptible to damage, leading to pathologies necessitating dialysis and kidney transplants. While human pluripotent stem cell-derived kidney organoids are used for modeling renal development, disease, and injury, the formation of proximal nephron cells in these 3D structures is incomplete. Here, we describe how to drive the development of proximal tubule precursors in kidney organoids by following a blueprint of in vivo human nephrogenesis. Transient manipulation of the PI3K signaling pathway activates Notch signaling in the early nephron and drives nephrons toward a proximal precursor state. These "proximal-biased" (PB) organoid nephrons proceed to generate proximal nephron precursor cells. Single-cell transcriptional analyses across the organoid nephron differentiation, comparing control and PB types, confirm the requirement of transient Notch signaling for proximal development. Indicative of functional maturity, PB organoids demonstrate dextran and albumin uptake, akin to in vivo proximal tubules. Moreover, PB organoids are highly sensitive to nephrotoxic agents, display an injury response, and drive expression of HAVCR1 / KIM1 , an early proximal-specific marker of kidney injury. Injured PB organoids show evidence of collapsed tubules, DNA damage, and upregulate the injury-response marker SOX9 . The PB organoid model therefore has functional relevance and potential for modeling mechanisms underpinning nephron injury. These advances improve the use of iPSC-derived kidney organoids as tools to understand developmental nephrology, model disease, test novel therapeutics, and for understanding human renal physiology.
Collapse
|
27
|
Rioux AV, Nsimba-Batomene TR, Slimani S, Bergeron NAD, Gravel MAM, Schreiber SV, Fiola MJ, Haydock L, Garneau AP, Isenring P. Navigating the multifaceted intricacies of the Na +-Cl - cotransporter, a highly regulated key effector in the control of hydromineral homeostasis. Physiol Rev 2024; 104:1147-1204. [PMID: 38329422 PMCID: PMC11381001 DOI: 10.1152/physrev.00027.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/01/2024] [Accepted: 02/03/2024] [Indexed: 02/09/2024] Open
Abstract
The Na+-Cl- cotransporter (NCC; SLC12A3) is a highly regulated integral membrane protein that is known to exist as three splice variants in primates. Its primary role in the kidney is to mediate the cosymport of Na+ and Cl- across the apical membrane of the distal convoluted tubule. Through this role and the involvement of other ion transport systems, NCC allows the systemic circulation to reclaim a fraction of the ultrafiltered Na+, K+, Cl-, and Mg+ loads in exchange for Ca2+ and [Formula: see text]. The physiological relevance of the Na+-Cl- cotransport mechanism in humans is illustrated by several abnormalities that result from NCC inactivation through the administration of thiazides or in the setting of hereditary disorders. The purpose of the present review is to discuss the molecular mechanisms and overall roles of Na+-Cl- cotransport as the main topics of interest. On reading the narrative proposed, one will realize that the knowledge gained in regard to these themes will continue to progress unrelentingly no matter how refined it has now become.
Collapse
Affiliation(s)
- A V Rioux
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - T R Nsimba-Batomene
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - S Slimani
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - N A D Bergeron
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - M A M Gravel
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - S V Schreiber
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - M J Fiola
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - L Haydock
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
- Service de Néphrologie-Transplantation Rénale Adultes, Hôpital Necker-Enfants Malades, AP-HP, INSERM U1151, Université Paris Cité, Paris, France
| | - A P Garneau
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
- Service de Néphrologie-Transplantation Rénale Adultes, Hôpital Necker-Enfants Malades, AP-HP, INSERM U1151, Université Paris Cité, Paris, France
| | - P Isenring
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| |
Collapse
|
28
|
Loeb GB, Kathail P, Shuai R, Chung R, Grona RJ, Peddada S, Sevim V, Federman S, Mader K, Chu A, Davitte J, Du J, Gupta AR, Ye CJ, Shafer S, Przybyla L, Rapiteanu R, Ioannidis N, Reiter JF. Variants in tubule epithelial regulatory elements mediate most heritable differences in human kidney function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.18.599625. [PMID: 38948875 PMCID: PMC11212968 DOI: 10.1101/2024.06.18.599625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Kidney disease is highly heritable; however, the causal genetic variants, the cell types in which these variants function, and the molecular mechanisms underlying kidney disease remain largely unknown. To identify genetic loci affecting kidney function, we performed a GWAS using multiple kidney function biomarkers and identified 462 loci. To begin to investigate how these loci affect kidney function, we generated single-cell chromatin accessibility (scATAC-seq) maps of the human kidney and identified candidate cis-regulatory elements (cCREs) for kidney podocytes, tubule epithelial cells, and kidney endothelial, stromal, and immune cells. Kidney tubule epithelial cCREs explained 58% of kidney function SNP-heritability and kidney podocyte cCREs explained an additional 6.5% of SNP-heritability. In contrast, little kidney function heritability was explained by kidney endothelial, stromal, or immune cell-specific cCREs. Through functionally informed fine-mapping, we identified putative causal kidney function variants and their corresponding cCREs. Using kidney scATAC-seq data, we created a deep learning model (which we named ChromKid) to predict kidney cell type-specific chromatin accessibility from sequence. ChromKid and allele specific kidney scATAC-seq revealed that many fine-mapped kidney function variants locally change chromatin accessibility in tubule epithelial cells. Enhancer assays confirmed that fine-mapped kidney function variants alter tubule epithelial regulatory element function. To map the genes which these regulatory elements control, we used CRISPR interference (CRISPRi) to target these regulatory elements in tubule epithelial cells and assessed changes in gene expression. CRISPRi of enhancers harboring kidney function variants regulated NDRG1 and RBPMS expression. Thus, inherited differences in tubule epithelial NDRG1 and RBPMS expression may predispose to kidney disease in humans. We conclude that genetic variants affecting tubule epithelial regulatory element function account for most SNP-heritability of human kidney function. This work provides an experimental approach to identify the variants, regulatory elements, and genes involved in polygenic disease.
Collapse
Affiliation(s)
- Gabriel B. Loeb
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, US
| | - Pooja Kathail
- Department of Electrical Engineering and Computer Science, Center for Computational Biology, University of California Berkeley, Berkeley, CA, USA
| | - Richard Shuai
- Department of Electrical Engineering and Computer Science, Center for Computational Biology, University of California Berkeley, Berkeley, CA, USA
| | - Ryan Chung
- Department of Electrical Engineering and Computer Science, Center for Computational Biology, University of California Berkeley, Berkeley, CA, USA
| | - Reinier J. Grona
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Sailaja Peddada
- Laboratory for Genomics Research, University of California, San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Volkan Sevim
- Laboratory for Genomics Research, University of California, San Francisco, San Francisco, CA, USA
- Genomic Sciences, GlaxoSmithKline, San Francisco, CA, USA
| | - Scot Federman
- Laboratory for Genomics Research, University of California, San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Karl Mader
- Laboratory for Genomics Research, University of California, San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Audrey Chu
- Genomic Sciences, GlaxoSmithKline, San Francisco, CA, USA
| | | | - Juan Du
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Alexander R. Gupta
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Chun Jimmie Ye
- Division of Rheumatology, Department of Medicine; Bakar Computational Health Sciences Institute; Parker Institute for Cancer Immunotherapy; Institute for Human Genetics; Department of Epidemiology & Biostatistics; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA and Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
| | - Shawn Shafer
- Laboratory for Genomics Research, University of California, San Francisco, San Francisco, CA, USA
- Genomic Sciences, GlaxoSmithKline, San Francisco, CA, USA
| | - Laralynne Przybyla
- Laboratory for Genomics Research, University of California, San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Radu Rapiteanu
- Genomic Sciences, GlaxoSmithKline, San Francisco, CA, USA
| | - Nilah Ioannidis
- Department of Electrical Engineering and Computer Science, Center for Computational Biology, University of California Berkeley, Berkeley, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Jeremy F. Reiter
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, US
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| |
Collapse
|
29
|
Bantounas I, Rooney KM, Lopes FM, Tengku F, Woods S, Zeef LAH, Lin IH, Kuba SY, Bates N, Hummelgaard S, Hillman KA, Cereghini S, Woolf AS, Kimber SJ. Human pluripotent stem cell-derived kidney organoids reveal tubular epithelial pathobiology of heterozygous HNF1B-associated dysplastic kidney malformations. Stem Cell Reports 2024; 19:859-876. [PMID: 38788724 PMCID: PMC11297557 DOI: 10.1016/j.stemcr.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
Hepatocyte nuclear factor 1B (HNF1B) encodes a transcription factor expressed in developing human kidney epithelia. Heterozygous HNF1B mutations are the commonest monogenic cause of dysplastic kidney malformations (DKMs). To understand their pathobiology, we generated heterozygous HNF1B mutant kidney organoids from CRISPR-Cas9 gene-edited human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) reprogrammed from a family with HNF1B-associated DKMs. Mutant organoids contained enlarged malformed tubules displaying deregulated cell turnover. Numerous genes implicated in Mendelian kidney tubulopathies were downregulated, and mutant tubules resisted the cyclic AMP (cAMP)-mediated dilatation seen in controls. Bulk and single-cell RNA sequencing (scRNA-seq) analyses indicated abnormal Wingless/Integrated (WNT), calcium, and glutamatergic pathways, the latter hitherto unstudied in developing kidneys. Glutamate ionotropic receptor kainate type subunit 3 (GRIK3) was upregulated in malformed mutant nephron tubules and prominent in HNF1B mutant fetal human dysplastic kidney epithelia. These results reveal morphological, molecular, and physiological roles for HNF1B in human kidney tubule differentiation and morphogenesis illuminating the developmental origin of mutant-HNF1B-causing kidney disease.
Collapse
Affiliation(s)
- Ioannis Bantounas
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, and the Manchester Academic Health Science Centre, Manchester, UK
| | - Kirsty M Rooney
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, and the Manchester Academic Health Science Centre, Manchester, UK
| | - Filipa M Lopes
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, and the Manchester Academic Health Science Centre, Manchester, UK
| | - Faris Tengku
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, and the Manchester Academic Health Science Centre, Manchester, UK
| | - Steven Woods
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, and the Manchester Academic Health Science Centre, Manchester, UK
| | - Leo A H Zeef
- Bioinformatics Core Facility, University of Manchester, Manchester, UK
| | - I-Hsuan Lin
- Bioinformatics Core Facility, University of Manchester, Manchester, UK
| | - Shweta Y Kuba
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, and the Manchester Academic Health Science Centre, Manchester, UK
| | - Nicola Bates
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, and the Manchester Academic Health Science Centre, Manchester, UK
| | - Sandra Hummelgaard
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, and the Manchester Academic Health Science Centre, Manchester, UK; Department of Biomedicine, Aarhus University, Denmark
| | - Katherine A Hillman
- Manchester Institute of Nephrology and Transplantation, Manchester University NHS Foundation Trust, Manchester, UK
| | - Silvia Cereghini
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Laboratorial de Biologie du Développement, IBPS, UMR7622, F-75005 Paris, France
| | - Adrian S Woolf
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, and the Manchester Academic Health Science Centre, Manchester, UK; Royal Manchester Children's Hospital, Manchester University NHS Foundation Trust, Manchester, UK.
| | - Susan J Kimber
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, and the Manchester Academic Health Science Centre, Manchester, UK.
| |
Collapse
|
30
|
Petrakis I, Sfakiotaki M, Bitsori M, Drosataki E, Dermitzaki K, Pleros C, Androvitsanea A, Samonakis D, Sertedaki A, Xekouki P, Galanakis E, Stylianou K. The Phenotypic Variability Associated with Hepatocyte Nuclear Factor 1B Genetic Defects Poses Challenges in Both Diagnosis and Therapy. Int J Mol Sci 2024; 25:4552. [PMID: 38674137 PMCID: PMC11050681 DOI: 10.3390/ijms25084552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/06/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
The evolving landscape of clinical genetics is becoming increasingly relevant in the field of nephrology. HNF1B-associated renal disease presents with a diverse array of renal and extrarenal manifestations, prominently featuring cystic kidney disease and diabetes mellitus. For the genetic analyses, whole exome sequencing (WES) and multiplex ligation-dependent probe amplification (MLPA) were performed. Bioinformatics analysis was performed with Ingenuity Clinical Insights software (Qiagen). The patient's electronic record was utilized after receiving informed consent. In this report, we present seven cases of HNF1B-associated kidney disease, each featuring distinct genetic abnormalities and displaying diverse extrarenal manifestations. Over 12 years, the mean decline in eGFR averaged -2.22 ± 0.7 mL/min/1.73 m2. Diabetes mellitus was present in five patients, kidney dysplastic lesions in six patients, pancreatic dysplasia, hypomagnesemia and abnormal liver function tests in three patients each. This case series emphasizes the phenotypic variability and the fast decline in kidney function associated with HNF-1B-related disease. Additionally, it underscores that complex clinical presentations may have a retrospectively straightforward explanation through the use of diverse genetic analytical tools.
Collapse
Affiliation(s)
- Ioannis Petrakis
- Department of Nephrology, University of Crete, 71500 Heraklion, Greece; (I.P.); (E.D.); (K.D.); (C.P.); (A.A.)
| | - Maria Sfakiotaki
- Department of Endocrinology, University of Crete, 71500 Heraklion, Greece; (M.S.); (P.X.)
| | - Maria Bitsori
- Department of Pediatrics, University of Crete, 71500 Heraklion, Greece; (M.B.); (E.G.)
| | - Eleni Drosataki
- Department of Nephrology, University of Crete, 71500 Heraklion, Greece; (I.P.); (E.D.); (K.D.); (C.P.); (A.A.)
| | - Kleio Dermitzaki
- Department of Nephrology, University of Crete, 71500 Heraklion, Greece; (I.P.); (E.D.); (K.D.); (C.P.); (A.A.)
| | - Christos Pleros
- Department of Nephrology, University of Crete, 71500 Heraklion, Greece; (I.P.); (E.D.); (K.D.); (C.P.); (A.A.)
| | - Ariadni Androvitsanea
- Department of Nephrology, University of Crete, 71500 Heraklion, Greece; (I.P.); (E.D.); (K.D.); (C.P.); (A.A.)
| | - Dimitrios Samonakis
- Department of Gastroenterology, University of Crete, 71500 Heraklion, Greece;
| | - Amalia Sertedaki
- First Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Paraskevi Xekouki
- Department of Endocrinology, University of Crete, 71500 Heraklion, Greece; (M.S.); (P.X.)
| | - Emmanouil Galanakis
- Department of Pediatrics, University of Crete, 71500 Heraklion, Greece; (M.B.); (E.G.)
| | - Kostas Stylianou
- Department of Nephrology, University of Crete, 71500 Heraklion, Greece; (I.P.); (E.D.); (K.D.); (C.P.); (A.A.)
| |
Collapse
|
31
|
Abdelrahman Z, Maxwell AP, McKnight AJ. Genetic and Epigenetic Associations with Post-Transplant Diabetes Mellitus. Genes (Basel) 2024; 15:503. [PMID: 38674437 PMCID: PMC11050138 DOI: 10.3390/genes15040503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Post-transplant diabetes mellitus (PTDM) is a common complication of solid organ transplantation. PTDM prevalence varies due to different diabetes definitions. Consensus guidelines for the diagnosis of PTDM have been published based on random blood glucose levels, glycated hemoglobin (HbA1c), and oral glucose tolerance test (OGTT). The task of diagnosing PTDM continues to pose challenges, given the potential for diabetes to manifest at different time points after transplantation, thus demanding constant clinical vigilance and repeated testing. Interpreting HbA1c levels can be challenging after renal transplantation. Pre-transplant risk factors for PTDM include obesity, sedentary lifestyle, family history of diabetes, ethnicity (e.g., African-Caribbean or South Asian ancestry), and genetic risk factors. Risk factors for PTDM include immunosuppressive drugs, weight gain, hepatitis C, and cytomegalovirus infection. There is also emerging evidence that genetic and epigenetic variation in the organ transplant recipient may influence the risk of developing PTDM. This review outlines many known risk factors for PTDM and details some of the pathways, genetic variants, and epigenetic features associated with PTDM. Improved understanding of established and emerging risk factors may help identify people at risk of developing PTDM and may reduce the risk of developing PTDM or improve the management of this complication of organ transplantation.
Collapse
Affiliation(s)
- Zeinab Abdelrahman
- Centre for Public Health, Queen’s University of Belfast, Belfast BT12 6BA, UK; (Z.A.); (A.P.M.)
| | - Alexander Peter Maxwell
- Centre for Public Health, Queen’s University of Belfast, Belfast BT12 6BA, UK; (Z.A.); (A.P.M.)
- Regional Nephrology Unit, Belfast City Hospital, Belfast BT9 7AB, UK
| | - Amy Jayne McKnight
- Centre for Public Health, Queen’s University of Belfast, Belfast BT12 6BA, UK; (Z.A.); (A.P.M.)
| |
Collapse
|
32
|
Lee R, Choi JE, Mun E, Kim KH, Choi SA, Kim HS. A Case of Chromosome 17q12 Deletion Syndrome with Type 2 Mayer-Rokitansky-Küster-Hauser Syndrome and Maturity-Onset Diabetes of the Young Type 5. CHILDREN (BASEL, SWITZERLAND) 2024; 11:404. [PMID: 38671621 PMCID: PMC11049139 DOI: 10.3390/children11040404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024]
Abstract
Chromosome 17q12 deletion syndrome (OMIM #614527) is a rare genetic disorder associated with a heterozygous 1.4-1.5 Mb deletion at chromosome 17q12, leading to a spectrum of clinical manifestations, including kidney abnormalities, neurodevelopmental delay, maturity-onset diabetes of the young type 5 (MODY5), and Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome. We present the case of a 14-year-old Korean female diagnosed with chromosome 17q12 deletion syndrome, confirmed by chromosomal microarray analysis. The patient exhibited MODY5 with pancreatic agenesis, MRKH syndrome, dysmorphic facial features, developmental delay, kidney rotation anomaly, portal vein thrombosis with liver hypoplasia, short stature, and scoliosis. Management involved the initiation of multiple daily insulin injections for diabetes control, gynecological evaluation for MRKH syndrome, and multidisciplinary care for associated complications. This case highlights the complexity and varied organ involvement in chromosome 17q12 deletion syndrome. A comprehensive and multidisciplinary approach is crucial for the management of affected individuals, including regular monitoring, tailored interventions across various medical specialties, and providing psychosocial support.
Collapse
Affiliation(s)
- Rosie Lee
- Department of Pediatrics, Keimyung University Dongsan Hospital, Daegu 42601, Republic of Korea;
| | - Jung Eun Choi
- Department of Pediatrics, Ewha Womans University College of Medicine, Seoul 07804, Republic of Korea; (J.E.C.); (E.M.); (K.h.K.); (S.A.C.)
| | - Eunji Mun
- Department of Pediatrics, Ewha Womans University College of Medicine, Seoul 07804, Republic of Korea; (J.E.C.); (E.M.); (K.h.K.); (S.A.C.)
| | - Kyung hee Kim
- Department of Pediatrics, Ewha Womans University College of Medicine, Seoul 07804, Republic of Korea; (J.E.C.); (E.M.); (K.h.K.); (S.A.C.)
| | - Sun Ah Choi
- Department of Pediatrics, Ewha Womans University College of Medicine, Seoul 07804, Republic of Korea; (J.E.C.); (E.M.); (K.h.K.); (S.A.C.)
| | - Hae Soon Kim
- Department of Pediatrics, Ewha Womans University College of Medicine, Seoul 07804, Republic of Korea; (J.E.C.); (E.M.); (K.h.K.); (S.A.C.)
| |
Collapse
|
33
|
Zhang X, Liu K, Lu X, Zheng W, Shi J, Yu S, Feng H, Yu Z. Late-onset Cholestasis with Paucity of Portal Area Secondary to HNF1β Deficiency in Adulthood: A Case Report. J Clin Transl Hepatol 2024; 12:327-331. [PMID: 38426190 PMCID: PMC10899876 DOI: 10.14218/jcth.2023.00464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/29/2023] [Accepted: 01/22/2024] [Indexed: 03/02/2024] Open
Abstract
Hepatocyte nuclear factor 1β (HNF1β) is essential for biliary development, while its genetic defect triggers the dysplasia of interlobular bile ducts, leading to life-threatening hepatitis and cholestasis. To date, this disorder has mainly been documented in neonates. Here, we report a case of cholestasis in an adult patient caused by a de novo HNF1β mutation. A liver biopsy revealed remarkable shrinkage of the portal area accompanied by a decrease or absence of interlobular bile ducts, veins, and arteries in the portal area. Our case showed that an HNF1β defect could induce late-onset cholestasis with paucity of the portal area in adulthood.
Collapse
Affiliation(s)
- Xuemei Zhang
- Department of Hepatopathy, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Kun Liu
- Department of Pathology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaona Lu
- Department of Hepatopathy, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenlan Zheng
- Department of Hepatopathy, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jia Shi
- Department of Hepatopathy, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shihan Yu
- Department of Hepatopathy, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hai Feng
- Institute of Infectious Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhuo Yu
- Department of Hepatopathy, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
34
|
Almutair A, Almulhem B. Semaglutide as a potential therapeutic alternative for HNF1B-MODY: a case study. Front Endocrinol (Lausanne) 2024; 15:1294264. [PMID: 38524636 PMCID: PMC10957750 DOI: 10.3389/fendo.2024.1294264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/31/2024] [Indexed: 03/26/2024] Open
Abstract
Maturity-onset diabetes of the young (MODY) is a grouping of monogenic disorders. It is characterized by dominantly inherited, non-insulin-dependent diabetes. MODY is relatively rare, encompassing up to 3.5% in those diagnosed under 30 years of age. Specific types are most commonly treated with sulfonylurea, particularly those identified as HNF4A-MODY and HNF1A-MODY. HNF1B-MODY is another type that is most frequently managed with insulin therapy but lacks a defined precision treatment. We present an 18-year-old, non-obese female patient diagnosed with HNF1B-MODY. She displays complete gene deletion, a renal cyst, and hypomagnesemia. Her treatment plan includes both long- and short-acting insulin, though she frequently encountered hypoglycemia and hyperglycemia. Semaglutide, a GLP-1RA, was administered weekly over 4 months. The patient's glucose level was continuously tracked using Dexcom's Continuous Glucose Monitoring system. The data suggested a notable improvement in her condition: time-in-range (TIR) increased from 70% to 88%, with some days achieving 100%, and the frequency of hypoglycemic episodes, indicated by time-below-range values, fell from 5% to 1%. The time-above-range values also dropped from 25% to 10%, and her HbA1c levels declined from 7% to 5.6%. During the semaglutide therapy, we were able to discontinue her insulin treatment. Additionally, her body mass index (BMI) was reduced from 24.1 to 20.1 kg/m2. However, the semaglutide treatment was halted after 4 months due to side effects such as nausea, vomiting, and reduced appetite. Other contributing factors included exam stress and a COVID-19 infection, which forced a switch back to insulin. Her last recorded HbA1c level under exclusive insulin therapy rose to 7.1%, and her BMI increased to 24.9 kg/m2. In conclusion, semaglutide could potentially replace insulin to improve glucose variability, TIR, and HbA1c in patients with HNF1B-MODY. However, more extensive studies are required to confirm its long-term safety and efficacy.
Collapse
Affiliation(s)
- Angham Almutair
- Pediatric Department, King Abdullah Specialized Children’s Hospital, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- College of Medicine, King Saud bin Abdul-Aziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Beshaier Almulhem
- Pediatric Department, King Abdullah Specialized Children’s Hospital, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- College of Medicine, King Saud bin Abdul-Aziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
35
|
Usala RL, Sobrero A, Riek A, McGill J, Urano F. Cystic and Atrophic Kidneys, Atrophic Pancreas, Arcuate Uterus, and Diabetes Mellitus Associated With Deletion of HNF1β Gene. AACE Clin Case Rep 2024; 10:75-76. [PMID: 38523851 PMCID: PMC10958632 DOI: 10.1016/j.aace.2023.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 06/22/2023] [Indexed: 03/26/2024] Open
Affiliation(s)
- Rachel L. Usala
- Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Alberto Sobrero
- Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Amy Riek
- Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Janet McGill
- Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Fumihiko Urano
- Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
| |
Collapse
|
36
|
Alamri N, Lanktree MB. Large Kidney Cysts in HNF1B Nephropathy Mimicking Autosomal Dominant Polycystic Kidney Disease. Can J Kidney Health Dis 2024; 11:20543581241232470. [PMID: 38370308 PMCID: PMC10874158 DOI: 10.1177/20543581241232470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/10/2024] [Indexed: 02/20/2024] Open
Abstract
Rationale Hepatocyte nuclear factor 1 beta (HNF1B) nephropathy is a rare autosomal dominant monogenic kidney disease. We present a case mimicking autosomal dominant polycystic kidney disease (ADPKD), highlighting the phenotypic heterogeneity of HNF1B-related disease. Presenting concerns of the patient A 37-year-old man presented with hypertensive urgency, accompanied by flank pain and abdominal distension. Despite the absence of familial kidney disease, imaging revealed large bilateral kidney cysts resembling ADPKD. Diagnosis We initially suspected de novo ADPKD. However, negative genetic testing results for PKD1 and PKD2 led to a 43-gene cystic kidney sequencing panel which identified a deletion encompassing the entire HNF1B gene. Intervention To alleviate discomfort caused by the kidney cysts, ultrasound-guided aspiration and foam sclerotherapy were performed. Tolvaptan, used for treating high-risk ADPKD, was not prescribed after confirming the diagnosis was HNF1B nephropathy. Outcomes A diagnosis of HNF1B nephropathy was reached following gene panel testing. Abdominal symptoms improved following cyst aspiration and foam sclerotherapy. Novel findings HNF1B nephropathy has a variable presentation but can lead to cysts appearing like ADPKD. A 43-gene cystic kidney sequencing panel identified the diagnosis in this uncertain case.
Collapse
Affiliation(s)
- Nada Alamri
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Matthew B. Lanktree
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- Department of Health Research Methods, Evidence & Impact, McMaster University, Hamilton, ON, Canada
- Population Health Research Institute, Hamilton, ON, Canada
- Division of Nephrology, St. Joseph’s Healthcare Hamilton, Hamilton, ON, Canada
| |
Collapse
|
37
|
Tse WT, Cao Y, Lam PPH, Law KM, Choy KW, Ting YH. Renal and extra-renal phenotypes in a fetus with a de novo pathogenic variant in the HNF1B gene. Prenat Diagn 2024; 44:251-254. [PMID: 38141042 DOI: 10.1002/pd.6501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/07/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023]
Abstract
We report a fetus with prenatal ultrasound at 21 gestational weeks showing left cystic renal dysplasia with subcapsular cysts and echogenic parenchyma, right echogenic kidney with absent corticomedullary differentiation, and left congenital diaphragmatic hernia (CDH) with bowel herniation, with intestinal atresia (IA) found on postmortem examination. Whole genome sequencing of fetal blood DNA revealed a heterozygous pathogenic variant c.344 + 2 T>G in the HNF1B gene (NM_000458). Sanger sequencing of the parental samples suggested that it arose de novo in the fetus. HNF1B-associated disorders affect multiple organs with significant phenotypic heterogeneity. In pediatric and adult patients, renal cystic disease and cystic dysplasia are the dominant phenotypes. In prenatal settings, renal anomaly is also the most common presentation, typically with bilateral hyperechogenic kidneys. Our case presented with two uncommon extra-renal phenotypes of CDH and IA besides the typical bilateral cystic renal dysplasia. This association has been reported in fetuses with 17q12 microdeletion but not with HNF1B point mutation. Our case is the first prenatal report of such an association and highlights the possible causal relationship of HNF1B defects with CDH and IA in addition to the typical renal anomalies.
Collapse
Affiliation(s)
- Wing Ting Tse
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, Hong Kong Special Administrative Region
| | - Ye Cao
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, Hong Kong Special Administrative Region
| | - Pensi Ping Hei Lam
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, Hong Kong Special Administrative Region
| | - Kwok Ming Law
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, Hong Kong Special Administrative Region
| | - Kwong Wai Choy
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, Hong Kong Special Administrative Region
| | - Yuen Ha Ting
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, Hong Kong Special Administrative Region
| |
Collapse
|
38
|
Cassart M, Garel C, Ulinski T, Freddy Avni E. Reversed cortico-medullary differentiation in the fetal and neonatal kidneys: an indicator of poor prognosis? Pediatr Radiol 2024; 54:285-292. [PMID: 38150104 DOI: 10.1007/s00247-023-05833-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/28/2023]
Abstract
BACKGROUND Bilateral reversed cortico-medullary differentiation is rarely observed on fetal or neonatal renal ultrasound and is therefore a diagnostic challenge. OBJECTIVE Our purpose was to widen the differential diagnoses of fetal and neonatal nephropathies introducing reversed cortico-medullary differentiation as a clue either on obstetric US or during follow-up of hyperechoic kidneys in order to improve the management of such rare clinical situations. MATERIALS AND METHODS We retrospectively reviewed the US images of 11 patients showing bilateral reversed cortico-medullary differentiation on prenatal examination or in which this pattern developed postnatally in the follow-up of fetal hyperechoic kidneys. For each patient, a precise diagnosis was established either on clinical assessment or, when available, on histological or genetic findings. RESULTS Six fetuses displayed bilateral reversed cortico-medullary differentiation on obstetric examination, and the pattern persisted throughout pregnancy. In the five other fetuses, the kidneys appeared initially homogeneously hyperechoic; this evolved into reversed cortico-medullary differentiation during the third trimester in two cases and shortly after birth in three cases. Two pregnancies were terminated because of estimated poor prognosis. In the nine surviving neonates, four died of renal failure in the post-natal period. The clinical evolution was more favorable in the remaining five newborns. CONCLUSIONS Six different diagnoses were established in patients presenting with a reversed cortico-medullary differentiation renal pattern. This finding was associated with poor outcome in six cases. An acute prenatal diagnosis of reversed cortico-medullary differentiation improves pre- and postnatal work-up and guides counseling and genetic testing.
Collapse
Affiliation(s)
- Marie Cassart
- Department of Radiology and Fetal Medicine, Iris Hospitals South, 63 Rue J. Paquot, 1050, Brussels, Belgium.
| | - Catherine Garel
- Department of Radiology, Armand-Trousseau Hospital, APHP, Sorbonne University, Paris, France
| | - Tim Ulinski
- Pediatric Nephrology Unit, Armand-Trousseau Hospital, APHP, Sorbonne University, Paris, France
| | - E Freddy Avni
- Department of Medical Imaging, Marie Curie Civil Hospital, Charleroi, Belgium
| |
Collapse
|
39
|
Wilson PC, Verma A, Yoshimura Y, Muto Y, Li H, Malvin NP, Dixon EE, Humphreys BD. Mosaic loss of Y chromosome is associated with aging and epithelial injury in chronic kidney disease. Genome Biol 2024; 25:36. [PMID: 38287344 PMCID: PMC10823641 DOI: 10.1186/s13059-024-03173-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 01/12/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Mosaic loss of Y chromosome (LOY) is the most common chromosomal alteration in aging men. Here, we use single-cell RNA and ATAC sequencing to show that LOY is present in the kidney and increases with age and chronic kidney disease. RESULTS The likelihood of a cell having LOY varies depending on its location in the nephron. Cortical epithelial cell types have a greater proportion of LOY than medullary or glomerular cell types, which may reflect their proliferative history. Proximal tubule cells are the most abundant cell type in the cortex and are susceptible to hypoxic injury. A subset of these cells acquires a pro-inflammatory transcription and chromatin accessibility profile associated with expression of HAVCR1, VCAM1, and PROM1. These injured epithelial cells have the greatest proportion of LOY and their presence predicts future kidney function decline. Moreover, proximal tubule cells with LOY are more likely to harbor additional large chromosomal gains and express pro-survival pathways. Spatial transcriptomics localizes injured proximal tubule cells to a pro-fibrotic microenvironment where they adopt a secretory phenotype and likely communicate with infiltrating immune cells. CONCLUSIONS We hypothesize that LOY is an indicator of increased DNA damage and potential marker of cellular senescence that can be applied to single-cell datasets in other tissues.
Collapse
Affiliation(s)
- Parker C Wilson
- Division of Diagnostic Innovation, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Amit Verma
- Division of Diagnostic Innovation, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yasuhiro Yoshimura
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Yoshiharu Muto
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Haikuo Li
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Nicole P Malvin
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Eryn E Dixon
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Benjamin D Humphreys
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Department of Developmental Biology, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
40
|
Hasegawa Y, Takahashi Y, Nagasawa K, Kinno H, Oda T, Hangai M, Odashima Y, Suzuki Y, Shimizu J, Ando T, Egawa I, Hashizume K, Nata K, Yabe D, Horikawa Y, Ishigaki Y. Japanese 17q12 Deletion Syndrome with Complex Clinical Manifestations. Intern Med 2024; 63:687-692. [PMID: 38432894 PMCID: PMC10982014 DOI: 10.2169/internalmedicine.1660-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 05/29/2023] [Indexed: 03/05/2024] Open
Abstract
17q12 deletion syndrome is a rare chromosomal anomaly with variable phenotypes, caused by the heterozygous deletion of chromosome 17q12. We herein report a 35-year-old Japanese patient with chromosomal 17q12 deletion syndrome identified by de novo deletion of the 1.46 Mb segment at the 17q12 band by genetic analyses. He exhibited a wide range of phenotypes, such as maturity-onset diabetes of the young (MODY) type 5, structural or functional abnormalities of the kidney, liver, and pancreas; facial dysmorphic features, electrolyte disorders; keratoconus, and acquired perforating dermatosis. This case report provides valuable resources concerning the clinical spectrum of rare 17q12 deletion syndrome.
Collapse
Affiliation(s)
- Yutaka Hasegawa
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Iwate Medical University, Japan
| | - Yoshihiko Takahashi
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Iwate Medical University, Japan
| | - Kan Nagasawa
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Iwate Medical University, Japan
| | - Hirofumi Kinno
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Iwate Medical University, Japan
| | - Tomoyasu Oda
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Iwate Medical University, Japan
| | - Mari Hangai
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Iwate Medical University, Japan
| | - Yoshimi Odashima
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Iwate Medical University, Japan
| | - Yoko Suzuki
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Iwate Medical University, Japan
| | - Jun Shimizu
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Iwate Medical University, Japan
| | - Toshihiko Ando
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Iwate Medical University, Japan
| | - Isao Egawa
- Department of Ophthalmology, School of Medicine, Iwate Medical University, Japan
| | - Kouhei Hashizume
- Department of Ophthalmology, School of Medicine, Iwate Medical University, Japan
| | - Koji Nata
- Division of Medical Biochemistry, School of Pharmacy, Iwate Medical University, Japan
| | - Daisuke Yabe
- Department of Diabetes, Endocrinology and Metabolism/Department of Rheumatology and Clinical Immunology, Gifu University Graduate School of Medicine, Japan
| | - Yukio Horikawa
- Department of Diabetes, Endocrinology and Metabolism/Department of Rheumatology and Clinical Immunology, Gifu University Graduate School of Medicine, Japan
- Clinical Genetics Center, Gifu University Hospital, Japan
| | - Yasushi Ishigaki
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Iwate Medical University, Japan
| |
Collapse
|
41
|
Sun HY, Lin XY. Genetic perspectives on childhood monogenic diabetes: Diagnosis, management, and future directions. World J Diabetes 2023; 14:1738-1753. [PMID: 38222792 PMCID: PMC10784795 DOI: 10.4239/wjd.v14.i12.1738] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/10/2023] [Accepted: 11/14/2023] [Indexed: 12/14/2023] Open
Abstract
Monogenic diabetes is caused by one or even more genetic variations, which may be uncommon yet have a significant influence and cause diabetes at an early age. Monogenic diabetes affects 1 to 5% of children, and early detection and gene-tically focused treatment of neonatal diabetes and maturity-onset diabetes of the young can significantly improve long-term health and well-being. The etiology of monogenic diabetes in childhood is primarily attributed to genetic variations affecting the regulatory genes responsible for beta-cell activity. In rare instances, mutations leading to severe insulin resistance can also result in the development of diabetes. Individuals diagnosed with specific types of monogenic diabetes, which are commonly found, can transition from insulin therapy to sulfonylureas, provided they maintain consistent regulation of their blood glucose levels. Scientists have successfully devised materials and methodologies to distinguish individuals with type 1 or 2 diabetes from those more prone to monogenic diabetes. Genetic screening with appropriate findings and interpretations is essential to establish a prognosis and to guide the choice of therapies and management of these interrelated ailments. This review aims to design a comprehensive literature summarizing genetic insights into monogenetic diabetes in children and adolescents as well as summarizing their diagnosis and mana-gement.
Collapse
Affiliation(s)
- Hong-Yan Sun
- Department of Endocrine and Metabolic Diseases, Yantaishan Hospital, Yantai 264003, Shandong Province, China
| | - Xiao-Yan Lin
- Department of Endocrine and Metabolic Diseases, Yantaishan Hospital, Yantai 264003, Shandong Province, China
| |
Collapse
|
42
|
Vivante A, Tan W, Harrington SG, Udler MS, Pollin TI. Case 36-2023: A 19-Year-Old Man with Diabetes and Kidney Cysts. N Engl J Med 2023; 389:1993-2003. [PMID: 37991859 DOI: 10.1056/nejmcpc2309347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Affiliation(s)
- Asaf Vivante
- From the Department of Pediatrics, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, and the Faculty of Medicine, Tel Aviv University, Tel Aviv - both in Israel (A.V.); the Departments of Pediatrics (W.T.), Radiology (S.G.H.), and Medicine (M.S.U.), Massachusetts General Hospital, and the Departments of Pediatrics (W.T.), Radiology (S.G.H.), and Medicine (M.S.U.), Harvard Medical School - both in Boston; and the Department of Medicine, University of Maryland School of Medicine, Baltimore (T.I.P.)
| | - Weizhen Tan
- From the Department of Pediatrics, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, and the Faculty of Medicine, Tel Aviv University, Tel Aviv - both in Israel (A.V.); the Departments of Pediatrics (W.T.), Radiology (S.G.H.), and Medicine (M.S.U.), Massachusetts General Hospital, and the Departments of Pediatrics (W.T.), Radiology (S.G.H.), and Medicine (M.S.U.), Harvard Medical School - both in Boston; and the Department of Medicine, University of Maryland School of Medicine, Baltimore (T.I.P.)
| | - Samantha G Harrington
- From the Department of Pediatrics, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, and the Faculty of Medicine, Tel Aviv University, Tel Aviv - both in Israel (A.V.); the Departments of Pediatrics (W.T.), Radiology (S.G.H.), and Medicine (M.S.U.), Massachusetts General Hospital, and the Departments of Pediatrics (W.T.), Radiology (S.G.H.), and Medicine (M.S.U.), Harvard Medical School - both in Boston; and the Department of Medicine, University of Maryland School of Medicine, Baltimore (T.I.P.)
| | - Miriam S Udler
- From the Department of Pediatrics, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, and the Faculty of Medicine, Tel Aviv University, Tel Aviv - both in Israel (A.V.); the Departments of Pediatrics (W.T.), Radiology (S.G.H.), and Medicine (M.S.U.), Massachusetts General Hospital, and the Departments of Pediatrics (W.T.), Radiology (S.G.H.), and Medicine (M.S.U.), Harvard Medical School - both in Boston; and the Department of Medicine, University of Maryland School of Medicine, Baltimore (T.I.P.)
| | - Toni I Pollin
- From the Department of Pediatrics, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, and the Faculty of Medicine, Tel Aviv University, Tel Aviv - both in Israel (A.V.); the Departments of Pediatrics (W.T.), Radiology (S.G.H.), and Medicine (M.S.U.), Massachusetts General Hospital, and the Departments of Pediatrics (W.T.), Radiology (S.G.H.), and Medicine (M.S.U.), Harvard Medical School - both in Boston; and the Department of Medicine, University of Maryland School of Medicine, Baltimore (T.I.P.)
| |
Collapse
|
43
|
Werfel L, Martens H, Hennies I, Gjerstad AC, Fröde K, Altarescu G, Banerjee S, Valenzuela Palafoll I, Geffers R, Kirschstein M, Christians A, Bjerre A, Haffner D, Weber RG. Diagnostic Yield and Benefits of Whole Exome Sequencing in CAKUT Patients Diagnosed in the First Thousand Days of Life. Kidney Int Rep 2023; 8:2439-2457. [PMID: 38025229 PMCID: PMC10658255 DOI: 10.1016/j.ekir.2023.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/07/2023] [Accepted: 08/07/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Congenital anomalies of the kidney and urinary tract (CAKUT) are the predominant cause of chronic kidney disease (CKD) and the need for kidney replacement therapy (KRT) in children. Although more than 60 genes are known to cause CAKUT if mutated, genetic etiology is detected, on average, in only 16% of unselected CAKUT cases, making genetic testing unproductive. Methods Whole exome sequencing (WES) was performed in 100 patients with CAKUT diagnosed in the first 1000 days of life with CKD stages 1 to 5D/T. Variants in 58 established CAKUT-associated genes were extracted, classified according to the American College of Medical Genetics and Genomics guidelines, and their translational value was assessed. Results In 25% of these mostly sporadic patients with CAKUT, a rare likely pathogenic or pathogenic variant was identified in 1 or 2 of 15 CAKUT-associated genes, including GATA3, HNF1B, LIFR, PAX2, SALL1, and TBC1D1. Of the 27 variants detected, 52% were loss-of-function and 18.5% de novo variants. The diagnostic yield was significantly higher in patients requiring KRT before 3 years of age (43%, odds ratio 2.95) and in patients with extrarenal features (41%, odds ratio 3.5) compared with patients lacking these criteria. Considering that all affected genes were previously associated with extrarenal complications, including treatable conditions, such as diabetes, hyperuricemia, hypomagnesemia, and hypoparathyroidism, the genetic diagnosis allowed preventive measures and/or early treatment in 25% of patients. Conclusion WES offers significant advantages for the diagnosis and management of patients with CAKUT diagnosed before 3 years of age, especially in patients who require KRT or have extrarenal anomalies.
Collapse
Affiliation(s)
- Lina Werfel
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - Helge Martens
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Imke Hennies
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - Ann Christin Gjerstad
- Division of Pediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Kerstin Fröde
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - Gheona Altarescu
- Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem, Israel
| | | | | | - Robert Geffers
- Genome Analytics Research Group, Helmholtz Center for Infection Research, Braunschweig, Germany
| | | | - Anne Christians
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Anna Bjerre
- Division of Pediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Dieter Haffner
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany
- Center for Congenital Kidney Diseases, Center for Rare Diseases, Hannover Medical School, Hannover, Germany
| | - Ruthild G. Weber
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
- Center for Congenital Kidney Diseases, Center for Rare Diseases, Hannover Medical School, Hannover, Germany
| |
Collapse
|
44
|
Kolvenbach CM, Shril S, Hildebrandt F. The genetics and pathogenesis of CAKUT. Nat Rev Nephrol 2023; 19:709-720. [PMID: 37524861 DOI: 10.1038/s41581-023-00742-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2023] [Indexed: 08/02/2023]
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) comprise a large variety of malformations that arise from defective kidney or urinary tract development and frequently lead to kidney failure. The clinical spectrum ranges from severe malformations, such as renal agenesis, to potentially milder manifestations, such as vesicoureteral reflux. Almost 50% of cases of chronic kidney disease that manifest within the first three decades of life are caused by CAKUT. Evidence suggests that a large number of CAKUT are genetic in origin. To date, mutations in ~54 genes have been identified as monogenic causes of CAKUT, contributing to 12-20% of the aetiology of the disease. Pathogenic copy number variants have also been shown to cause CAKUT and can be detected in 4-11% of patients. Furthermore, environmental and epigenetic factors can increase the risk of CAKUT. The discovery of novel CAKUT-causing genes is challenging owing to variable expressivity, incomplete penetrance and variable genotype-phenotype correlation. However, such a discovery could ultimately lead to improvements in the accurate molecular genetic diagnosis, assessment of prognosis and multidisciplinary clinical management of patients with CAKUT, potentially including personalized therapeutic approaches.
Collapse
Affiliation(s)
- Caroline M Kolvenbach
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Shirlee Shril
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Friedhelm Hildebrandt
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
45
|
Murphy R, Colclough K, Pollin TI, Ikle JM, Svalastoga P, Maloney KA, Saint-Martin C, Molnes J, Misra S, Aukrust I, de Franco E, Flanagan SE, Njølstad PR, Billings LK, Owen KR, Gloyn AL. The use of precision diagnostics for monogenic diabetes: a systematic review and expert opinion. COMMUNICATIONS MEDICINE 2023; 3:136. [PMID: 37794142 PMCID: PMC10550998 DOI: 10.1038/s43856-023-00369-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/21/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND Monogenic diabetes presents opportunities for precision medicine but is underdiagnosed. This review systematically assessed the evidence for (1) clinical criteria and (2) methods for genetic testing for monogenic diabetes, summarized resources for (3) considering a gene or (4) variant as causal for monogenic diabetes, provided expert recommendations for (5) reporting of results; and reviewed (6) next steps after monogenic diabetes diagnosis and (7) challenges in precision medicine field. METHODS Pubmed and Embase databases were searched (1990-2022) using inclusion/exclusion criteria for studies that sequenced one or more monogenic diabetes genes in at least 100 probands (Question 1), evaluated a non-obsolete genetic testing method to diagnose monogenic diabetes (Question 2). The risk of bias was assessed using the revised QUADAS-2 tool. Existing guidelines were summarized for questions 3-5, and review of studies for questions 6-7, supplemented by expert recommendations. Results were summarized in tables and informed recommendations for clinical practice. RESULTS There are 100, 32, 36, and 14 studies included for questions 1, 2, 6, and 7 respectively. On this basis, four recommendations for who to test and five on how to test for monogenic diabetes are provided. Existing guidelines for variant curation and gene-disease validity curation are summarized. Reporting by gene names is recommended as an alternative to the term MODY. Key steps after making a genetic diagnosis and major gaps in our current knowledge are highlighted. CONCLUSIONS We provide a synthesis of current evidence and expert opinion on how to use precision diagnostics to identify individuals with monogenic diabetes.
Collapse
Affiliation(s)
- Rinki Murphy
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
- Auckland Diabetes Centre, Te Whatu Ora Health New Zealand, Te Tokai Tumai, Auckland, New Zealand.
| | - Kevin Colclough
- Exeter Genomics Laboratory, Royal Devon University Healthcare NHS Foundation Trust, Exeter, United Kingdom
| | - Toni I Pollin
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jennifer M Ikle
- Department of Pediatrics, Division of Endocrinology & Diabetes, Stanford School of Medicine, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford School of Medicine, Stanford, CA, USA
| | - Pernille Svalastoga
- Children and Youth Clinic, Haukeland University Hospital, Bergen, Norway
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Kristin A Maloney
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Cécile Saint-Martin
- Department of Medical Genetics, AP-HP Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
| | - Janne Molnes
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Shivani Misra
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Department of Diabetes and Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Ingvild Aukrust
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Elisa de Franco
- Department of Clinical and Biomedical Science, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Sarah E Flanagan
- Department of Clinical and Biomedical Science, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Pål R Njølstad
- Children and Youth Clinic, Haukeland University Hospital, Bergen, Norway
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Liana K Billings
- Division of Endocrinology, NorthShore University HealthSystem, Skokie, IL, USA
- Department of Medicine, Pritzker School of Medicine, University of Chicago, Chicago, IL, USA
| | - Katharine R Owen
- Oxford Center for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Anna L Gloyn
- Department of Pediatrics, Division of Endocrinology & Diabetes, Stanford School of Medicine, Stanford, CA, USA.
- Stanford Diabetes Research Center, Stanford School of Medicine, Stanford, CA, USA.
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA.
| |
Collapse
|
46
|
Kumar A, Hollar L, McGill JB, Thaker PH, Salam M. MODY5 and Serous Ovarian Carcinoma in 17q12 Recurrent Deletion Syndrome. AACE Clin Case Rep 2023; 9:112-115. [PMID: 37520763 PMCID: PMC10382612 DOI: 10.1016/j.aace.2023.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/08/2023] [Accepted: 04/13/2023] [Indexed: 08/01/2023] Open
Abstract
Background/Objective Maturity-onset diabetes of the young type 5 (MODY5) is caused by a hepatocyte nuclear factor 1β (HNF1β) gene mutation on chromosome 17q12. HNF1β mutations have also been found in ovarian clear cell carcinoma, whereas ovarian non-clear cell carcinoma expresses this mutation rarely. 17q12 recurrent deletion syndrome features include MODY5, urogenital anomalies, and psychiatric and neurodevelopmental disorders. This is a report of a patient with 17q12 recurrent deletion syndrome with MODY5, uterine abnormalities, and low-grade serous ovarian cancer. Case Report A 25-year-old woman with recently diagnosed stage IIIC low-grade serous ovarian carcinoma was evaluated at the endocrinology clinic for diabetes, which was diagnosed at the age of 12 years. C-peptide level was detectable and T1DM antibodies were negative. The mother had diabetes, partially septated uterus, and solitary kidney. Abdominal computed tomography showed pancreatic atrophy, ascites, omental and peritoneal nodularity, and calcifications. Laparoscopy revealed bicornuate uterus, 2 cervices, and vaginal septum. The patient underwent total abdominal hysterectomy and bilateral salpingo-oophorectomy, lymph node dissection, and omentectomy. Chromosomal microarray analysis revealed a pathogenic ∼1.8 Mb loss of 17q12, denoted arr[hg19]17q12(34477479_36283807)x1. Discussion 17q12deletion has been described as a susceptibility locus in some ovarian cancers. However, to our knowledge, predisposition to ovarian cancer as a feature of 17q12 recurrent deletion syndrome or MODY5 was not reported previously. Conclusion The disease association reported suggests that medical providers should periodically evaluate for ovarian cancer, gut, and urogenital abnormalities in individuals with MODY5. Likewise, individuals with diabetes plus urogenital tract abnormalities or 17q12deletion in an ovarian tumor should undergo genetic testing for MODY5.
Collapse
Affiliation(s)
| | - Laura Hollar
- Department of Endocrinology, Heritage Medical Associates, Nashville, Tennessee
| | - Janet B. McGill
- Division of Endocrinology, Metabolism and Lipid Research, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Premal H. Thaker
- Division of Gynecologic Oncology, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Maamoun Salam
- Division of Endocrinology, Metabolism and Lipid Research, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| |
Collapse
|
47
|
Murphy R, Colclough K, Pollin TI, Ikle JM, Svalastoga P, Maloney KA, Saint-Martin C, Molnes J, Misra S, Aukrust I, de Franco A, Flanagan SE, Njølstad PR, Billings LK, Owen KR, Gloyn AL. A Systematic Review of the use of Precision Diagnostics in Monogenic Diabetes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.15.23288269. [PMID: 37131594 PMCID: PMC10153302 DOI: 10.1101/2023.04.15.23288269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Monogenic forms of diabetes present opportunities for precision medicine as identification of the underlying genetic cause has implications for treatment and prognosis. However, genetic testing remains inconsistent across countries and health providers, often resulting in both missed diagnosis and misclassification of diabetes type. One of the barriers to deploying genetic testing is uncertainty over whom to test as the clinical features for monogenic diabetes overlap with those for both type 1 and type 2 diabetes. In this review, we perform a systematic evaluation of the evidence for the clinical and biochemical criteria used to guide selection of individuals with diabetes for genetic testing and review the evidence for the optimal methods for variant detection in genes involved in monogenic diabetes. In parallel we revisit the current clinical guidelines for genetic testing for monogenic diabetes and provide expert opinion on the interpretation and reporting of genetic tests. We provide a series of recommendations for the field informed by our systematic review, synthesizing evidence, and expert opinion. Finally, we identify major challenges for the field and highlight areas for future research and investment to support wider implementation of precision diagnostics for monogenic diabetes.
Collapse
Affiliation(s)
- Rinki Murphy
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Auckland Diabetes Centre, Te Whatu Ora Health New Zealand, Te Tokai Tumai, Auckland, New Zealand
| | - Kevin Colclough
- Exeter Genomics Laboratory, Royal Devon University Healthcare NHS Foundation Trust, Exeter, United Kingdom
| | - Toni I Pollin
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jennifer M Ikle
- Department of Pediatrics, Division of Endocrinology & Diabetes, Stanford School of Medicine, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford School of Medicine, Stanford, CA, USA
| | - Pernille Svalastoga
- Children and Youth Clinic, Haukeland University Hospital, Bergen, Norway
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Kristin A Maloney
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Cécile Saint-Martin
- Department of Medical Genetics, AP-HP Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
| | - Janne Molnes
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Shivani Misra
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Department of Diabetes and Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Ingvild Aukrust
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - aiElisa de Franco
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Sarah E Flanagan
- Department of Clinical and Biomedical Science, Faculty of Health and Life Sciences, University of Exeter, UK
| | - Pål R Njølstad
- Children and Youth Clinic, Haukeland University Hospital, Bergen, Norway
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Liana K Billings
- Division of Endocrinology, NorthShore University HealthSystem, Skokie, IL, USA; Department of Medicine, Pritzker School of Medicine, University of Chicago, Chicago, IL, USA
| | - Katharine R Owen
- Oxford Center for Diabetes, Endocrinology & Metabolism, University of Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Anna L Gloyn
- Department of Pediatrics, Division of Endocrinology & Diabetes, Stanford School of Medicine, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| |
Collapse
|
48
|
De Groof J, Dachy A, Breysem L, Mekahli D. Cystic kidney diseases in children. Arch Pediatr 2023; 30:240-246. [PMID: 37062654 DOI: 10.1016/j.arcped.2023.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/24/2022] [Accepted: 02/12/2023] [Indexed: 04/18/2023]
Abstract
Cystic kidney disease comprises a broad group of heterogeneous diseases, which differ greatly in age at onset, disease manifestation, systemic involvement, disease progression, and long-term prognosis. As our understanding of these diseases continues to evolve and new treatment strategies continue to emerge, correctly differentiating and diagnosing these diseases becomes increasingly important. In this review, we aim to highlight the key features of the most relevant cystic kidney diseases, underscore important diagnostic characteristics of each disease, and present specific management options if applicable.
Collapse
Affiliation(s)
- J De Groof
- Department of Pediatric Nephrology, University Hospitals Leuven, Leuven, Belgium
| | - A Dachy
- PKD Research Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; Department of Pediatrics, ULiège Academic Hospital, Liège, Belgium
| | - L Breysem
- Department of Pediatric Radiology, University Hospitals Leuven, Leuven, Belgium
| | - D Mekahli
- Department of Pediatric Nephrology, University Hospitals Leuven, Leuven, Belgium; PKD Research Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
| |
Collapse
|
49
|
Kato H, Tateishi K, Iwadate D, Yamamoto K, Fujiwara H, Nakatsuka T, Kudo Y, Hayakawa Y, Ijichi H, Otsuka M, Kishikawa T, Takahashi R, Miyabayashi K, Nakai Y, Hirata Y, Toyoda A, Morishita S, Fujishiro M. HNF1B-driven three-dimensional chromatin structure for molecular classification in pancreatic cancers. Cancer Sci 2023; 114:1672-1685. [PMID: 36511816 PMCID: PMC10067390 DOI: 10.1111/cas.15690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/09/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022] Open
Abstract
The molecular subtypes of pancreatic cancer (PC), either classical/progenitor-like or basal/squamous-like, are currently a major topic of research because of their direct association with clinical outcomes. Some transcription factors (TFs) have been reported to be associated with these subtypes. However, the mechanisms by which these molecular signatures of PCs are established remain unknown. Epigenetic regulatory processes, supported by dynamic changes in the chromatin structure, are essential for transcriptional profiles. Previously, we reported the importance of open chromatin profiles in the biological features and transcriptional status of PCs. Here, we aimed to analyze the relationships between three-dimensional (3D) genome structures and the molecular subtypes of human PCs using Hi-C analysis. We observed a correlation of the specific elements of 3D genome modules, including compartments, topologically associating domains, and enhancer-promoter loops, with the expression of related genes. We focused on HNF1B, a TF that is implicated in the progenitor subtype. Forced expression of HNF1B in squamous-type PC organoids induced the upregulation and downregulation of genes associated with progenitor and squamous subtypes, respectively. Long-range genomic interactions induced by HNF1B were accompanied by compartment modulation and H3K27ac redistribution. We also found that these HNF1B-induced changes in subtype-related gene expression required an intrinsically disordered region, suggesting a possible involvement of phase separation in compartment modulation. Thus, mapping of 3D structural changes induced by TFs, such as HNF1B, may become a useful resource for further understanding the molecular features of PCs.
Collapse
Affiliation(s)
- Hiroyuki Kato
- Department of Gastroenterology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Keisuke Tateishi
- Department of Gastroenterology, Graduate School of MedicineThe University of TokyoTokyoJapan
- Division of Gastroenterology, Department of Internal MedicineSt Marianna University School of MedicineKawasakiJapan
| | - Dosuke Iwadate
- Department of Gastroenterology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Keisuke Yamamoto
- Department of Gastroenterology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Hiroaki Fujiwara
- Department of Gastroenterology, Graduate School of MedicineThe University of TokyoTokyoJapan
- Division of GastroenterologyThe Institute of Medical Science, Asahi Life FoundationTokyoJapan
| | - Takuma Nakatsuka
- Department of Gastroenterology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Yotaro Kudo
- Department of Gastroenterology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Yoku Hayakawa
- Department of Gastroenterology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Hideaki Ijichi
- Department of Gastroenterology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Motoyuki Otsuka
- Department of Gastroenterology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Takahiro Kishikawa
- Department of Gastroenterology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Ryota Takahashi
- Department of Gastroenterology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Koji Miyabayashi
- Department of Gastroenterology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Yousuke Nakai
- Department of Gastroenterology, Graduate School of MedicineThe University of TokyoTokyoJapan
- Department of Endoscopy and Endoscopic SurgeryThe University of Tokyo HospitalTokyoJapan
| | - Yoshihiro Hirata
- Division of Advanced Genome Medicine, The Institute of Medical ScienceThe University of TokyoTokyoJapan
| | - Atsushi Toyoda
- Comparative Genomics LaboratoryNational Institute of GeneticsShizuokaJapan
| | - Shinichi Morishita
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier SciencesThe University of TokyoChibaJapan
| | - Mitsuhiro Fujishiro
- Department of Gastroenterology, Graduate School of MedicineThe University of TokyoTokyoJapan
| |
Collapse
|
50
|
Nitte CM, Dobelke F, König J, Konrad M, Becker K, Kamp-Becker I, Weber S, for the NEOCYST consortium. Review of neurodevelopmental disorders in patients with HNF1B gene variations. Front Pediatr 2023; 11:1149875. [PMID: 36969268 PMCID: PMC10034397 DOI: 10.3389/fped.2023.1149875] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/20/2023] [Indexed: 03/25/2023] Open
Abstract
This review investigates the association between neurodevelopmental disorders (NDD) and variations of the gene HNF1B. Heterozygous intragenetic mutations or heterozygous gene deletions (17q12 microdeletion syndrome) of HNF1B are the cause of a multi-system developmental disorder, termed renal cysts and diabetes syndrome (RCAD). Several studies suggest that in general, patients with genetic variation of HNF1B have an elevated risk for additional neurodevelopmental disorders, especially autism spectrum disorder (ASD) but a comprehensive assessment is yet missing. This review provides an overview including all available studies of patients with HNF1B mutation or deletion with comorbid NDD with respect to the prevalence of NDDs and in how they differ between patients with an intragenic mutation or 17q12 microdeletion. A total of 31 studies was identified, comprising 695 patients with variations in HNF1B, (17q12 microdeletion N = 416, mutation N = 279). Main results include that NDDs are present in both groups (17q12 microdeletion 25.2% vs. mutation 6.8%, respectively) but that patients with 17q12 microdeletions presented more frequently with any NDDs and especially with learning difficulties compared to patients with a mutation of HNF1B. The observed prevalence of NDDs in patients with HNF1B variations seems to be higher than in the general population, but the validity of the estimated prevalence must be deemed insufficient. This review shows that systematical research of NDDs in patients with HNF1B mutations or deletions is lacking. Further studies regarding neuropsychological characteristics of both groups are needed. NDDs might be a concomitant of HFN1B-related disease and should be considered in clinical routine and scientific reports.
Collapse
Affiliation(s)
- Clara Marie Nitte
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Philipps University, Marburg, Germany
- Correspondence: Clara Nittel
| | - Frederike Dobelke
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Philipps University, Marburg, Germany
| | - Jens König
- Department of General Pediatrics, University Children’s Hospital, Münster, Germany
| | - Martin Konrad
- Department of General Pediatrics, University Children’s Hospital, Münster, Germany
| | - Katja Becker
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Philipps University, Marburg, Germany
| | - Inge Kamp-Becker
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Philipps University, Marburg, Germany
| | - Stefanie Weber
- Department of Pediatric and Adolescent Medicine, Philipps University, Marburg, Germany
| | | |
Collapse
|