1
|
Gillespie GM, Quastel MN, McMichael AJ. HLA-E: Immune Receptor Functional Mechanisms Revealed by Structural Studies. Immunol Rev 2025; 329:e13434. [PMID: 39753525 PMCID: PMC11698700 DOI: 10.1111/imr.13434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 12/10/2024] [Indexed: 01/06/2025]
Abstract
HLA-E is a nonclassical, nonpolymorphic, class Ib HLA molecule. Its primary function is to present a conserved nonamer peptide, termed VL9, derived from the signal sequence of classical MHC molecules to the NKG2x-CD94 receptors on NK cells and a subset of T lymphocytes. These receptors regulate the function of NK cells, and the importance of this role, which is conserved across mammalian species, probably accounts for the lack of genetic polymorphism. A second minor function is to present other, weaker binding, pathogen-derived peptides to T lymphocytes. Most of these peptides bind suboptimally to HLA-E, but this binding appears to be enabled by the relative stability of peptide-free, but receptive, HLA-E-β2m complexes. This, in turn, may favor nonclassical antigen processing that may be associated with bacteria infected cells. This review explores how the structure of HLA-E, bound to different peptides and then to NKG2-CD94 or T-cell receptors, relates to HLA-E cell biology and immunology. A detailed understanding of this molecule could open up opportunities for development of universal T-cell and NK-cell-based immunotherapies.
Collapse
MESH Headings
- Humans
- Histocompatibility Antigens Class I/metabolism
- Histocompatibility Antigens Class I/immunology
- Histocompatibility Antigens Class I/chemistry
- Animals
- HLA-E Antigens
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Protein Binding
- Antigen Presentation
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Receptors, Immunologic/metabolism
- Receptors, Immunologic/chemistry
- NK Cell Lectin-Like Receptor Subfamily C/metabolism
- Structure-Activity Relationship
- Peptides/chemistry
- Peptides/immunology
- Peptides/metabolism
- NK Cell Lectin-Like Receptor Subfamily D/metabolism
- NK Cell Lectin-Like Receptor Subfamily D/chemistry
- NK Cell Lectin-Like Receptor Subfamily D/immunology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/chemistry
- Protein Conformation
Collapse
Affiliation(s)
| | - Max N. Quastel
- Nuffield Department of Medicine, Center for Immuno‐OncologyUniversity of OxfordOxfordUK
| | - Andrew J. McMichael
- Nuffield Department of Medicine, Center for Immuno‐OncologyUniversity of OxfordOxfordUK
| |
Collapse
|
2
|
Macandog ADG, Catozzi C, Capone M, Nabinejad A, Nanaware PP, Liu S, Vinjamuri S, Stunnenberg JA, Galiè S, Jodice MG, Montani F, Armanini F, Cassano E, Madonna G, Mallardo D, Mazzi B, Pece S, Tagliamonte M, Vanella V, Barberis M, Ferrucci PF, Blank CU, Bouvier M, Andrews MC, Xu X, Santambrogio L, Segata N, Buonaguro L, Cocorocchio E, Ascierto PA, Manzo T, Nezi L. Longitudinal analysis of the gut microbiota during anti-PD-1 therapy reveals stable microbial features of response in melanoma patients. Cell Host Microbe 2024; 32:2004-2018.e9. [PMID: 39481388 PMCID: PMC11629153 DOI: 10.1016/j.chom.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 09/15/2024] [Accepted: 10/07/2024] [Indexed: 11/02/2024]
Abstract
Immune checkpoint inhibitors (ICIs) improve outcomes in advanced melanoma, but many patients are refractory or experience relapse. The gut microbiota modulates antitumor responses. However, inconsistent baseline predictors point to heterogeneity in responses and inadequacy of cross-sectional data. We followed patients with unresectable melanoma from baseline and during anti-PD-1 therapy, collecting fecal and blood samples that were surveyed for changes in the gut microbiota and immune markers. Varying patient responses were linked to different gut microbiota dynamics during ICI treatment. We select complete responders by their stable microbiota functions and validate them using multiple external cohorts and experimentally. We identify major histocompatibility complex class I (MHC class I)-restricted peptides derived from flagellin-related genes of Lachnospiraceae (FLach) as structural homologs of tumor-associated antigens, detect FLach-reactive CD8+ T cells in complete responders before ICI therapy, and demonstrate that FLach peptides improve antitumor immunity. These findings highlight the prognostic value of microbial functions and therapeutic potential of tumor-mimicking microbial peptides.
Collapse
Affiliation(s)
- Angeli D G Macandog
- Department of Experimental Oncology, Istituto Europeo di Oncologia-IRCCS, Milan 20139, Italy
| | - Carlotta Catozzi
- Department of Experimental Oncology, Istituto Europeo di Oncologia-IRCCS, Milan 20139, Italy
| | - Mariaelena Capone
- Melanoma, Cancer Immunotherapy and Development Therapeutics Unit, Istituto Nazionale Tumori-IRCCS Fondazione G. Pascale, Naples 80131, Italy
| | - Amir Nabinejad
- Department of Experimental Oncology, Istituto Europeo di Oncologia-IRCCS, Milan 20139, Italy
| | - Padma P Nanaware
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Shujing Liu
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104-4238, USA
| | - Smita Vinjamuri
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612-7342, USA
| | - Johanna A Stunnenberg
- Netherlands Cancer Institute (NKI)-AVL, North Holland, Amsterdam 1066 CX, the Netherlands
| | - Serena Galiè
- Department of Experimental Oncology, Istituto Europeo di Oncologia-IRCCS, Milan 20139, Italy
| | - Maria Giovanna Jodice
- Department of Experimental Oncology, Istituto Europeo di Oncologia-IRCCS, Milan 20139, Italy
| | - Francesca Montani
- Department of Experimental Oncology, Istituto Europeo di Oncologia-IRCCS, Milan 20139, Italy
| | - Federica Armanini
- Department of CIBIO, University of Trento, Trento, Povo 38123, Italy
| | - Ester Cassano
- Department of Experimental Oncology, Istituto Europeo di Oncologia-IRCCS, Milan 20139, Italy
| | - Gabriele Madonna
- Melanoma, Cancer Immunotherapy and Development Therapeutics Unit, Istituto Nazionale Tumori-IRCCS Fondazione G. Pascale, Naples 80131, Italy
| | - Domenico Mallardo
- Melanoma, Cancer Immunotherapy and Development Therapeutics Unit, Istituto Nazionale Tumori-IRCCS Fondazione G. Pascale, Naples 80131, Italy
| | | | - Salvatore Pece
- Department of Experimental Oncology, Istituto Europeo di Oncologia-IRCCS, Milan 20139, Italy
| | - Maria Tagliamonte
- Innovative Immunological Models, Istituto Nazionale Tumori-IRCCS Fondazione G. Pascale, Naples 80131, Italy
| | - Vito Vanella
- Melanoma, Cancer Immunotherapy and Development Therapeutics Unit, Istituto Nazionale Tumori-IRCCS Fondazione G. Pascale, Naples 80131, Italy
| | - Massimo Barberis
- Department of Experimental Oncology, Istituto Europeo di Oncologia-IRCCS, Milan 20139, Italy
| | | | - Christian U Blank
- Netherlands Cancer Institute (NKI)-AVL, North Holland, Amsterdam 1066 CX, the Netherlands
| | - Marlene Bouvier
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612-7342, USA
| | - Miles C Andrews
- Department of Medicine, School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Xiaowei Xu
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104-4238, USA
| | - Laura Santambrogio
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Nicola Segata
- Department of Experimental Oncology, Istituto Europeo di Oncologia-IRCCS, Milan 20139, Italy; Department of CIBIO, University of Trento, Trento, Povo 38123, Italy
| | - Luigi Buonaguro
- Innovative Immunological Models, Istituto Nazionale Tumori-IRCCS Fondazione G. Pascale, Naples 80131, Italy
| | - Emilia Cocorocchio
- Department of Experimental Oncology, Istituto Europeo di Oncologia-IRCCS, Milan 20139, Italy
| | - Paolo A Ascierto
- Melanoma, Cancer Immunotherapy and Development Therapeutics Unit, Istituto Nazionale Tumori-IRCCS Fondazione G. Pascale, Naples 80131, Italy
| | - Teresa Manzo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin 10126, Italy
| | - Luigi Nezi
- Department of Experimental Oncology, Istituto Europeo di Oncologia-IRCCS, Milan 20139, Italy.
| |
Collapse
|
3
|
Li L, Peng X, Batliwala M, Bouvier M. Crystal structures of MHC class I complexes reveal the elusive intermediate conformations explored during peptide editing. Nat Commun 2023; 14:5020. [PMID: 37596268 PMCID: PMC10439229 DOI: 10.1038/s41467-023-40736-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 08/08/2023] [Indexed: 08/20/2023] Open
Abstract
Studies have suggested that MHC class I (MHC I) molecules fluctuate rapidly between numerous conformational states and these motions support peptide sampling. To date, MHC I intermediates are largely uncharacterized experimentally and remain elusive. Here, we present x-ray crystal structures of HLA-B8 loaded with 20mer peptides that show pronounced distortions at the N-terminus of the groove. Long stretches of N-terminal amino acid residues are missing in the electron density maps creating an open-ended groove. Our structures also reveal highly unusual features in MHC I-peptide interaction at the N-terminus of the groove. Molecular dynamics simulations indicate that the complexes have varying degrees of conformational flexibility in a manner consistent with the structures. We suggest that our structures have captured the remarkable molecular dynamics of MHC I-peptide interaction. The visualization of peptide-dependent conformational motions in MHC I is a major step forward in our conceptual understanding of dynamics in high-affinity peptide selection.
Collapse
Affiliation(s)
- Lenong Li
- Department of Microbiology and Immunology, University of Illinois, Chicago, IL, 60612, USA
| | - Xubiao Peng
- Center for Quantum Technology Research and Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements, School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Mansoor Batliwala
- Department of Microbiology and Immunology, University of Illinois, Chicago, IL, 60612, USA
| | - Marlene Bouvier
- Department of Microbiology and Immunology, University of Illinois, Chicago, IL, 60612, USA.
| |
Collapse
|
4
|
Sun Y, Young MC, Woodward CH, Danon JN, Truong H, Gupta S, Winters TJ, Burslem G, Sgourakis NG. Universal open MHC-I molecules for rapid peptide loading and enhanced complex stability across HLA allotypes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.18.533266. [PMID: 36993702 PMCID: PMC10055308 DOI: 10.1101/2023.03.18.533266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The polymorphic nature and intrinsic instability of class I major histocompatibility complex (MHC-I) and MHC-like molecules loaded with suboptimal peptides, metabolites, or glycolipids presents a fundamental challenge for identifying disease-relevant antigens and antigen-specific T cell receptors (TCRs), hindering the development of autologous therapeutics. Here, we leverage the positive allosteric coupling between the peptide and light chain (β 2 microglobulin, β 2 m) subunits for binding to the MHC-I heavy chain (HC) through an engineered disulfide bond bridging conserved epitopes across the HC/β 2 m interface, to generate conformationally stable, open MHC-I molecules. Biophysical characterization shows that open MHC-I molecules are properly folded protein complexes of enhanced thermal stability compared to the wild type, when loaded with low- to intermediate-affinity peptides. Using solution NMR, we characterize the effects of the disulfide bond on the conformation and dynamics of the MHC-I structure, ranging from local changes in β 2 m interacting sites of the peptide binding groove to long-range effects on the α 2-1 helix and α 3 domain. The interchain disulfide bond stabilizes empty MHC-I molecules in a peptide-receptive, open conformation to promote peptide exchange across multiple human leucocyte antigen (HLA) allotypes, covering representatives from five HLA-A, six HLA-B supertypes, and oligomorphic HLA-Ib molecules. Our structural design, combined with conditional β-peptide ligands, provides a universal platform for generating ready-to-load MHC-I systems of enhanced stability, enabling a range of approaches to screen antigenic epitope libraries and probe polyclonal TCR repertoires in the context of highly polymorphic HLA-I allotypes, as well as oligomorphic nonclassical molecules. Significance Statement We outline a structure-guided approach for generating conformationally stable, open MHC-I molecules with enhanced ligand exchange kinetics spanning five HLA-A, all HLA-B supertypes, and oligomorphic HLA-Ib allotypes. We present direct evidence of positive allosteric cooperativity between peptide binding and β 2 m association with the heavy chain by solution NMR and HDX-MS spectroscopy. We demonstrate that covalently linked β 2 m serves as a conformational chaperone to stabilize empty MHC-I molecules in a peptide-receptive state, by inducing an open conformation and preventing intrinsically unstable heterodimers from irreversible aggregation. Our study provides structural and biophysical insights into the conformational properties of MHC-I ternary complexes, which can be further applied to improve the design of ultra-stable, universal ligand exchange systems in a pan-HLA allelic setting.
Collapse
|
5
|
Sun Y, Papadaki GF, Devlin CA, Danon JN, Young MC, Winters TJ, Burslem GM, Procko E, Sgourakis NG. Xeno interactions between MHC-I proteins and molecular chaperones enable ligand exchange on a broad repertoire of HLA allotypes. SCIENCE ADVANCES 2023; 9:eade7151. [PMID: 36827371 PMCID: PMC9956121 DOI: 10.1126/sciadv.ade7151] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 01/19/2023] [Indexed: 06/01/2023]
Abstract
Immunological chaperones tapasin and TAP binding protein, related (TAPBPR) play key roles in antigenic peptide optimization and quality control of nascent class I major histocompatibility complex (MHC-I) molecules. The polymorphic nature of MHC-I proteins leads to a range of allelic dependencies on chaperones for assembly and cell-surface expression, limiting chaperone-mediated peptide exchange to a restricted set of human leukocyte antigen (HLA) allotypes. Here, we demonstrate and characterize xeno interactions between a chicken TAPBPR ortholog and a complementary repertoire of HLA allotypes, relative to its human counterpart. We find that TAPBPR orthologs recognize empty MHC-I with broader allele specificity and facilitate peptide exchange by maintaining a reservoir of receptive molecules. Deep mutational scanning of human TAPBPR further identifies gain-of-function mutants, resembling the chicken sequence, which can enhance HLA-A*01:01 expression in situ and promote peptide exchange in vitro. These results highlight that polymorphic sites on MHC-I and chaperone surfaces can be engineered to manipulate their interactions, enabling chaperone-mediated peptide exchange on disease-relevant HLA alleles.
Collapse
Affiliation(s)
- Yi Sun
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 3501 Civic Center Blvd., Philadelphia, PA 19104, USA
| | - Georgia F. Papadaki
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 3501 Civic Center Blvd., Philadelphia, PA 19104, USA
| | - Christine A. Devlin
- Department of Biochemistry and Cancer Center at Illinois, University of Illinois, Urbana, IL 61820, USA
| | - Julia N. Danon
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 3501 Civic Center Blvd., Philadelphia, PA 19104, USA
| | - Michael C. Young
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 3501 Civic Center Blvd., Philadelphia, PA 19104, USA
| | - Trenton J. Winters
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 3501 Civic Center Blvd., Philadelphia, PA 19104, USA
| | - George M. Burslem
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 3501 Civic Center Blvd., Philadelphia, PA 19104, USA
- Department of Cancer Biology and Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Erik Procko
- Department of Biochemistry and Cancer Center at Illinois, University of Illinois, Urbana, IL 61820, USA
| | - Nikolaos G. Sgourakis
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 3501 Civic Center Blvd., Philadelphia, PA 19104, USA
| |
Collapse
|
6
|
Ruggiero FM, Springer S. Homotypic and heterotypic in cis associations of MHC class I molecules at the cell surface. CURRENT RESEARCH IN IMMUNOLOGY 2022; 3:85-99. [PMID: 35647522 PMCID: PMC9133507 DOI: 10.1016/j.crimmu.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/27/2022] [Accepted: 05/02/2022] [Indexed: 12/02/2022] Open
Abstract
Through the presentation of peptide antigens to cytotoxic T lymphocytes, major histocompatibility complex (MHC) class I molecules mediate the adaptive immune response against tumors and viruses. Additional non-immunological functions include the heterotypic association of class I molecules with cell surface receptors, regulating their activities by unknown mechanisms. Also, homotypic associations resulting in class I dimers and oligomers - of unknown function - have been related to pathological outcomes. In this review, we provide an overview of the current knowledge about the occurrence, biochemical nature, and dynamics of homotypic and heterotypic associations of class I molecules at the cell surface with special focus on the molecular species that take part in the complexes and on the evidence that supports novel biological roles for class I molecules. We show that both heterotypic and homotypic class I associations reported in the literature describe not one but several kinds of oligomers with distinctive stoichiometry and biochemical properties. Major histocompatibility complex class I molecules form homotypic and heterotypic associations at the cell surface. Associations show distinctive stoichiometry and biochemical properties. Associations might regulate immunological and non-immunological processes. Heterotypic association with cell surface receptors might regulate receptor's activity. Homotypic associations have been related to pathological outcomes.
Collapse
|
7
|
Arosa FA, Esgalhado AJ, Reste-Ferreira D, Cardoso EM. Open MHC Class I Conformers: A Look through the Looking Glass. Int J Mol Sci 2021; 22:ijms22189738. [PMID: 34575902 PMCID: PMC8470049 DOI: 10.3390/ijms22189738] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/04/2021] [Accepted: 09/08/2021] [Indexed: 12/16/2022] Open
Abstract
Studies carried out during the last few decades have consistently shown that cell surface MHC class I (MHC-I) molecules are endowed with functions unrelated with antigen presentation. These include cis–trans-interactions with inhibitory and activating KIR and LILR, and cis-interactions with receptors for hormones, growth factors, cytokines, and neurotransmitters. The mounting body of evidence indicates that these non-immunological MHC-I functions impact clinical and biomedical settings, including autoimmune responses, tumor escape, transplantation, and neuronal development. Notably, most of these functions appear to rely on the presence in hematopoietic and non-hematopoietic cells of heavy chains not associated with β2m and the peptide at the plasma membrane; these are known as open MHC-I conformers. Nowadays, open conformers are viewed as functional cis-trans structures capable of establishing physical associations with themselves, with other surface receptors, and being shed into the extracellular milieu. We review past and recent developments, strengthening the view that open conformers are multifunctional structures capable of fine-tuning cell signaling, growth, differentiation, and cell communication.
Collapse
Affiliation(s)
- Fernando A Arosa
- Health Sciences Research Center (CICS-UBI), University of Beira Interior, 6200-506 Covilhã, Portugal
- Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal
| | - André J Esgalhado
- Health Sciences Research Center (CICS-UBI), University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Débora Reste-Ferreira
- Health Sciences Research Center (CICS-UBI), University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Elsa M Cardoso
- Health Sciences Research Center (CICS-UBI), University of Beira Interior, 6200-506 Covilhã, Portugal
- Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal
- Health School, Guarda Polytechnic Institute, 6300-749 Guarda, Portugal
| |
Collapse
|
8
|
Truong HV, Sgourakis NG. Dynamics of MHC-I molecules in the antigen processing and presentation pathway. Curr Opin Immunol 2021; 70:122-128. [PMID: 34153556 PMCID: PMC8622473 DOI: 10.1016/j.coi.2021.04.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/20/2021] [Accepted: 04/30/2021] [Indexed: 01/07/2023]
Abstract
The endogenous antigen processing and presentation (APP) is a fundamental pathway found in jawed vertebrates, which allows for a set of epitope peptides sampled from the intracellular proteome to be assembled and displayed on class I proteins of the major histocompatibility complex (MHC-I). Peptide/MHC-I antigens enable different aspects of adaptive immunity to emerge, by providing a basis for recognition of self vs. non-self by T cells and Natural Killer (NK) cells. Pioneering studies of pMHC-I molecules and their higher-order protein complexes with molecular chaperones and membrane receptors have gleaned important insights into the peptide loading and antigen recognition mechanisms. While X-ray and cryoEM structures have provided us with static snapshots of different MHC-I assembly stages, complementary biophysical techniques have revealed that MHC-I molecules are highly mobile on a range of biologically relevant timescales, which bears importance for their assembly, peptide repertoire selection, membrane display and turnover. This review summarizes insights gained from experimental and simulation studies aimed at investigating MHC-I dynamics, and their functional implications.
Collapse
Affiliation(s)
- Hau V Truong
- Center for Computational and Genomic Medicine, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA 19104, USA; Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 3401 Civic Center Blvd., Philadelphia, PA 19104, USA
| | - Nikolaos G Sgourakis
- Center for Computational and Genomic Medicine, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA 19104, USA; Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 3401 Civic Center Blvd., Philadelphia, PA 19104, USA.
| |
Collapse
|
9
|
Jantz-Naeem N, Springer S. Venus flytrap or pas de trois? The dynamics of MHC class I molecules. Curr Opin Immunol 2021; 70:82-89. [PMID: 33993034 DOI: 10.1016/j.coi.2021.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/05/2021] [Accepted: 04/08/2021] [Indexed: 11/25/2022]
Abstract
The peptide binding site of major histocompatibility complex (MHC) class I molecules is natively unfolded when devoid of peptides. Peptide binding stabilizes the structure and slows the dynamics, but peptide-specific and subtype-specific motions influence, and are influenced by, interaction with assembly chaperones, the T cell receptor, and other class I-binding proteins. The molecular mechanisms of cooperation between peptide, class I heavy chain, and beta-2 microglobulin are insufficiently known but are being elucidated by nuclear magnetic resonance and other modern methods. It appears that micropolymorphic clusters of charged amino acids, often hidden in the molecule interior, determine the dynamics and thus chaperone dependence, cellular fate, and disease association of class I.
Collapse
Affiliation(s)
- Nouria Jantz-Naeem
- Department of Life Sciences and Chemistry, Jacobs University, Bremen, Germany
| | - Sebastian Springer
- Department of Life Sciences and Chemistry, Jacobs University, Bremen, Germany.
| |
Collapse
|
10
|
Weimershaus M, Evnouchidou I, Li L, van Endert P, Bouvier M. Trimming of MHC Class I Ligands by ERAP Aminopeptidases. Methods Mol Biol 2019; 1988:31-43. [PMID: 31147930 PMCID: PMC7279715 DOI: 10.1007/978-1-4939-9450-2_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Studies over the last decade on characterization of the major histocompatibility complex (MHC) class I antigen presentation pathway have highlighted the importance of antigen processing, peptide transport, peptide trimming, and peptide selection as key stages for the development of optimal peptide repertoires that are presented by MHC class I molecules to cytotoxic T lymphocytes (CTLs). The study of these stages and how they are regulated, is fundamental for progress in understanding the adaptive immune system. Here we describe an in vitro assay monitoring peptide trimming by the human endoplasmic reticulum amino peptidases 1 (ERAP1) and ERAP2 (ERAPs) as a tool to characterize trimming events and gain a better understanding of the role and function of ERAPs in peptide repertoire development. Specifically, our assay allows for monitoring trimming of free but also of MHC I-bound peptides which may reflect the physiological situation best.
Collapse
Affiliation(s)
- Mirjana Weimershaus
- INSERM U1151, Université Paris Descartes, Hopital Necker-Enfants Malades, Paris, France
- Institut IMAGINE, INSERM U1163, Paris, France
- Centre for Research on Inflammation, INSERM, U1149, Paris, France
| | - Irini Evnouchidou
- Faculté de Médecine, CNRS, UMR8253, Université Paris Descartes, INSERM, U1151, Paris, France
- Inovarion SAS, Paris, France
| | - Lenong Li
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Peter van Endert
- INSERM U1151, Université Paris Descartes, Hopital Necker-Enfants Malades, Paris, France
| | - Marlene Bouvier
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
11
|
Abstract
In the endoplasmic reticulum (ER), MHC class I molecules associate with several specialized proteins, forming a large macromolecular complex referred to as the "peptide-loading complex" (PLC). In the PLC, antigenic peptides undergo a stringent selection process that determines which antigen becomes part of the repertoire presented by MHC class I molecules. This ensures that the immune system elicits robust CD8+ T-cell responses to viruses and solid tumors. The ability to reconstitute in vitro MHC class I molecules in association with key proteins of the PLC provides a mean for studying at the molecular level how antigenic peptides are selected for presentation to CD8+ T-cells. Here, we describe practical procedures for generating a cell-free system made up of MHC class I molecules and tapasin that can be used for mechanistic studies of peptide loading and exchange.
Collapse
|
12
|
Natarajan K, Jiang J, May NA, Mage MG, Boyd LF, McShan AC, Sgourakis NG, Bax A, Margulies DH. The Role of Molecular Flexibility in Antigen Presentation and T Cell Receptor-Mediated Signaling. Front Immunol 2018; 9:1657. [PMID: 30065727 PMCID: PMC6056622 DOI: 10.3389/fimmu.2018.01657] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 07/04/2018] [Indexed: 01/20/2023] Open
Abstract
Antigen presentation is a cellular process that involves a number of steps, beginning with the production of peptides by proteolysis or aberrant synthesis and the delivery of peptides to cellular compartments where they are loaded on MHC class I (MHC-I) or MHC class II (MHC-II) molecules. The selective loading and editing of high-affinity immunodominant antigens is orchestrated by molecular chaperones: tapasin/TAP-binding protein, related for MHC-I and HLA-DM for MHC-II. Once peptide/MHC (pMHC) complexes are assembled, following various steps of quality control, they are delivered to the cell surface, where they are available for identification by αβ receptors on CD8+ or CD4+ T lymphocytes. In addition, recognition of cell surface peptide/MHC-I complexes by natural killer cell receptors plays a regulatory role in some aspects of the innate immune response. Many of the components of the pathways of antigen processing and presentation and of T cell receptor (TCR)-mediated signaling have been studied extensively by biochemical, genetic, immunological, and structural approaches over the past several decades. Until recently, however, dynamic aspects of the interactions of peptide with MHC, MHC with molecular chaperones, or of pMHC with TCR have been difficult to address experimentally, although computational approaches such as molecular dynamics (MD) simulations have been illuminating. Studies exploiting X-ray crystallography, cryo-electron microscopy, and multidimensional nuclear magnetic resonance (NMR) spectroscopy are beginning to reveal the importance of molecular flexibility as it pertains to peptide loading onto MHC molecules, the interactions between pMHC and TCR, and subsequent TCR-mediated signals. In addition, recent structural and dynamic insights into how molecular chaperones define peptide selection and fine-tune the MHC displayed antigen repertoire are discussed. Here, we offer a review of current knowledge that highlights experimental data obtained by X-ray crystallography and multidimensional NMR methodologies. Collectively, these findings strongly support a multifaceted role for protein plasticity and conformational dynamics throughout the antigen processing and presentation pathway in dictating antigen selection and recognition.
Collapse
Affiliation(s)
- Kannan Natarajan
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Jiansheng Jiang
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Nathan A May
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Michael G Mage
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Lisa F Boyd
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Andrew C McShan
- Department of Chemistry and Biochemistry, University of California at Santa Cruz, Santa Cruz, CA, United States
| | - Nikolaos G Sgourakis
- Department of Chemistry and Biochemistry, University of California at Santa Cruz, Santa Cruz, CA, United States
| | - Ad Bax
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - David H Margulies
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
13
|
Geng J, Zaitouna AJ, Raghavan M. Selected HLA-B allotypes are resistant to inhibition or deficiency of the transporter associated with antigen processing (TAP). PLoS Pathog 2018; 14:e1007171. [PMID: 29995954 PMCID: PMC6056074 DOI: 10.1371/journal.ppat.1007171] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 07/23/2018] [Accepted: 06/20/2018] [Indexed: 11/18/2022] Open
Abstract
Major histocompatibility complex class I (MHC-I) molecules present antigenic peptides to CD8+ T cells, and are also important for natural killer (NK) cell immune surveillance against infections and cancers. MHC-I molecules are assembled via a complex assembly pathway in the endoplasmic reticulum (ER) of cells. Peptides present in the cytosol of cells are transported into the ER via the transporter associated with antigen processing (TAP). In the ER, peptides are assembled with MHC-I molecules via the peptide-loading complex (PLC). Components of the MHC-I assembly pathway are frequently targeted by viruses, in order to evade host immunity. Many viruses encode inhibitors of TAP, which is thought to be a central source of peptides for the assembly of MHC-I molecules. However, human MHC-I (HLA-I) genes are highly polymorphic, and it is conceivable that several variants can acquire peptides via TAP-independent pathways, thereby conferring resistance to pathogen-derived inhibitors of TAP. To broadly assess TAP-independent expression within the HLA-B locus, expression levels of 27 frequent HLA-B alleles were tested in cells with deficiencies in TAP. Approximately 15% of tested HLA-B allotypes are expressed at relatively high levels on the surface of TAP1 or TAP2-deficient cells and occur in partially peptide-receptive forms and Endoglycosidase H sensitive forms on the cell surface. Synergy between high peptide loading efficiency, broad specificity for peptides prevalent within unconventional sources and high intrinsic stability of the empty form allows for deviations from the conventional HLA-I assembly pathway for some HLA-B*35, HLA-B*57 and HLA-B*15 alleles. Allotypes that display higher expression in TAP-deficient cells are more resistant to viral TAP inhibitor-induced HLA-I down-modulation, and HLA-I down-modulation-induced NK cell activation. Conversely, the same allotypes are expected to mediate stronger CD8+ T cell responses under TAP-inhibited conditions. Thus, the degree of resistance to TAP inhibition functionally separates specific HLA-B allotypes. Human leukocyte antigen (HLA) class I molecules present pathogen-derived components (peptides) to cytotoxic T cells, thereby inducing the T cells to kill virus-infected cells. A complex cellular pathway involving the transporter associated with antigen processing (TAP) is typically required for the loading of peptides onto HLA class I molecules, and for effective anti-viral immunity mediated by cytotoxic T cells. Many viruses encode inhibitors of TAP as a means to evade anti-viral immunity by cytotoxic T cells. In humans, there are three sets of genes encoding HLA class I molecules, which are the HLA-A, HLA-B and HLA-C genes. These genes are highly variable, with thousands of allelic variants in human populations. Most individuals typically express two variants of each gene, one inherited from each parent. We demonstrate that about 15% of tested HLA-B allotypes have higher resistance to viral inhibitors of TAP or deficiency of TAP, compared to other HLA-B variants. HLA-B allotypes that are more resistant to TAP inhibition are expected to induce stronger CD8+ T cell responses against pathogens that inhibit TAP. Thus, unconventional TAP-independent assembly pathways are broadly prevalent among HLA-B variants. Such pathways provide mechanisms to effectively combat viruses that evade the conventional TAP-dependent HLA-B assembly pathway.
Collapse
Affiliation(s)
- Jie Geng
- Department of Microbiology and Immunology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Anita J. Zaitouna
- Department of Microbiology and Immunology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Malini Raghavan
- Department of Microbiology and Immunology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
14
|
Geng J, Altman JD, Krishnakumar S, Raghavan M. Empty conformers of HLA-B preferentially bind CD8 and regulate CD8 + T cell function. eLife 2018; 7:36341. [PMID: 29741477 PMCID: PMC5990358 DOI: 10.7554/elife.36341] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 04/23/2018] [Indexed: 11/30/2022] Open
Abstract
When complexed with antigenic peptides, human leukocyte antigen (HLA) class I (HLA-I) molecules initiate CD8+ T cell responses via interaction with the T cell receptor (TCR) and co-receptor CD8. Peptides are generally critical for the stable cell surface expression of HLA-I molecules. However, for HLA-I alleles such as HLA-B*35:01, peptide-deficient (empty) heterodimers are thermostable and detectable on the cell surface. Additionally, peptide-deficient HLA-B*35:01 tetramers preferentially bind CD8 and to a majority of blood-derived CD8+ T cells via a CD8-dependent binding mode. Further functional studies reveal that peptide-deficient conformers of HLA-B*35:01 do not directly activate CD8+ T cells, but accumulate at the immunological synapse in antigen-induced responses, and enhance cognate peptide-induced cell adhesion and CD8+ T cell activation. Together, these findings indicate that HLA-I peptide occupancy influences CD8 binding affinity, and reveal a new set of regulators of CD8+ T cell activation, mediated by the binding of empty HLA-I to CD8. The immune system keeps tabs on everything that happens in our body, looking for potential signs of threat. To alert it to any problems, almost every cell produces specific proteins on its surface called human leukocyte antigens class I, or HLA-I for short. These HLA-I molecules are bound to small protein fragments called peptides that have been exported from within the cell and are presented to the cells of the immune system for scanning. When cells are healthy, the peptides all stem from normal proteins. But, if the cell has become infected or cancerous, it contains foreign or abnormal peptides. Some of the HLA-I molecules, however, are empty. These antigens are unstable, and their role is unclear. Now, Geng et al. investigated this further by studying blood samples from healthy donors. The experiments revealed that empty HLA-I molecules help specialized cells of the immune system, the killer T cells, to bind to the antigens, improving their killing ability. It is known that these T cells recognize and bind to the antigens through two receptor proteins, one of which is called CD8. It was known that when HLA-I molecules carry a peptide, only a small fraction of T cells with a matching receptor can bind. However, Geng et al. found that when HLA-Is were empty, a much larger proportion of the T cells was able to bind to antigens. This indicates that CD8 ‘prefers’ to attach to empty HLA-Is, maybe because binding sites are more accessible. CD8 also enhances the binding between the T cells and the antigen. Empty HLA-Is did not directly activate the T cells but did enhance their immune response. When both full and empty HLA-I were present, the T cells were even more effective at killing their targets. Understanding how killer T cells work is essential for the development of immunotherapies – treatments that help to boost the immune system to fight infections and cancer. Increasing the number of empty HLA-I molecules on cancer or infected cells could enhance T cell killing.
Collapse
Affiliation(s)
- Jie Geng
- Department of Microbiology and Immunology, Michigan Medicine, University of Michigan, Ann Arbor, United States
| | - John D Altman
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, United States.,Yerkes National Primate Research Center, Emory University, Atlanta, United States
| | | | - Malini Raghavan
- Department of Microbiology and Immunology, Michigan Medicine, University of Michigan, Ann Arbor, United States
| |
Collapse
|
15
|
van Hateren A, Anderson M, Bailey A, Werner JM, Skipp P, Elliott T. Direct evidence for conformational dynamics in major histocompatibility complex class I molecules. J Biol Chem 2017; 292:20255-20269. [PMID: 29021251 PMCID: PMC5724011 DOI: 10.1074/jbc.m117.809624] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/25/2017] [Indexed: 12/19/2022] Open
Abstract
Major histocompatibility complex class I molecules (MHC I) help protect jawed vertebrates by binding and presenting immunogenic peptides to cytotoxic T lymphocytes. Peptides are selected from a large diversity present in the endoplasmic reticulum. However, only a limited number of peptides complement the polymorphic MHC specificity determining pockets in a way that leads to high-affinity peptide binding and efficient antigen presentation. MHC I molecules possess an intrinsic ability to discriminate between peptides, which varies in efficiency between allotypes, but the mechanism of selection is unknown. Elucidation of the selection mechanism is likely to benefit future immune-modulatory therapies. Evidence suggests peptide selection involves transient adoption of alternative, presumably higher energy conformations than native peptide-MHC complexes. However, the instability of peptide-receptive MHC molecules has hindered characterization of such conformational plasticity. To investigate the dynamic nature of MHC, we refolded MHC proteins with peptides that can be hydrolyzed by UV light and thus released. We compared the resultant peptide-receptive MHC molecules with non-hydrolyzed peptide-loaded MHC complexes by monitoring the exchange of hydrogen for deuterium in solution. We found differences in hydrogen-deuterium exchange between peptide-loaded and peptide-receptive molecules that were negated by the addition of peptide to peptide-receptive MHC molecules. Peptide hydrolysis caused significant increases in hydrogen-deuterium exchange in sub-regions of the peptide-binding domain and smaller increases elsewhere, including in the α3 domain and the non-covalently associated β2-microglobulin molecule, demonstrating long-range dynamic communication. Comparing two MHC allotypes revealed allotype-specific differences in hydrogen-deuterium exchange, consistent with the notion that MHC I plasticity underpins peptide selection.
Collapse
Affiliation(s)
- Andy van Hateren
- Institute for Life Sciences and Centre for Cancer Immunology, Faculty of Medicine, Southampton SO17 1BJ
| | - Malcolm Anderson
- Waters Corporation, Stamford Avenue, Altrincham Road, Wilmslow SK9 4AX, United Kingdom
| | - Alistair Bailey
- Institute for Life Sciences and Centre for Cancer Immunology, Faculty of Medicine, Southampton SO17 1BJ; Centre for Proteomic Research, Biological Sciences, and Institute for Life Sciences, Southampton SO17 1BJ
| | - Jörn M Werner
- Institute for Life Sciences, Centre for Biological Sciences, and Faculty of Natural and Environmental Sciences, University of Southampton, Building 85, Southampton SO17 1BJ
| | - Paul Skipp
- Centre for Proteomic Research, Biological Sciences, and Institute for Life Sciences, Southampton SO17 1BJ
| | - Tim Elliott
- Institute for Life Sciences and Centre for Cancer Immunology, Faculty of Medicine, Southampton SO17 1BJ.
| |
Collapse
|
16
|
Wieczorek M, Abualrous ET, Sticht J, Álvaro-Benito M, Stolzenberg S, Noé F, Freund C. Major Histocompatibility Complex (MHC) Class I and MHC Class II Proteins: Conformational Plasticity in Antigen Presentation. Front Immunol 2017. [PMID: 28367149 DOI: 10.3389/fimmu.2017.00292.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Antigen presentation by major histocompatibility complex (MHC) proteins is essential for adaptive immunity. Prior to presentation, peptides need to be generated from proteins that are either produced by the cell's own translational machinery or that are funneled into the endo-lysosomal vesicular system. The prolonged interaction between a T cell receptor and specific pMHC complexes, after an extensive search process in secondary lymphatic organs, eventually triggers T cells to proliferate and to mount a specific cellular immune response. Once processed, the peptide repertoire presented by MHC proteins largely depends on structural features of the binding groove of each particular MHC allelic variant. Additionally, two peptide editors-tapasin for class I and HLA-DM for class II-contribute to the shaping of the presented peptidome by favoring the binding of high-affinity antigens. Although there is a vast amount of biochemical and structural information, the mechanism of the catalyzed peptide exchange for MHC class I and class II proteins still remains controversial, and it is not well understood why certain MHC allelic variants are more susceptible to peptide editing than others. Recent studies predict a high impact of protein intermediate states on MHC allele-specific peptide presentation, which implies a profound influence of MHC dynamics on the phenomenon of immunodominance and the development of autoimmune diseases. Here, we review the recent literature that describe MHC class I and II dynamics from a theoretical and experimental point of view and we highlight the similarities between MHC class I and class II dynamics despite the distinct functions they fulfill in adaptive immunity.
Collapse
Affiliation(s)
- Marek Wieczorek
- Protein Biochemistry, Institute for Biochemistry, Freie Universität Berlin , Berlin , Germany
| | - Esam T Abualrous
- Computational Molecular Biology Group, Institute for Mathematics , Berlin , Germany
| | - Jana Sticht
- Protein Biochemistry, Institute for Biochemistry, Freie Universität Berlin , Berlin , Germany
| | - Miguel Álvaro-Benito
- Protein Biochemistry, Institute for Biochemistry, Freie Universität Berlin , Berlin , Germany
| | | | - Frank Noé
- Computational Molecular Biology Group, Institute for Mathematics , Berlin , Germany
| | - Christian Freund
- Protein Biochemistry, Institute for Biochemistry, Freie Universität Berlin , Berlin , Germany
| |
Collapse
|
17
|
Wieczorek M, Abualrous ET, Sticht J, Álvaro-Benito M, Stolzenberg S, Noé F, Freund C. Major Histocompatibility Complex (MHC) Class I and MHC Class II Proteins: Conformational Plasticity in Antigen Presentation. Front Immunol 2017; 8:292. [PMID: 28367149 PMCID: PMC5355494 DOI: 10.3389/fimmu.2017.00292] [Citation(s) in RCA: 631] [Impact Index Per Article: 78.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 02/28/2017] [Indexed: 11/21/2022] Open
Abstract
Antigen presentation by major histocompatibility complex (MHC) proteins is essential for adaptive immunity. Prior to presentation, peptides need to be generated from proteins that are either produced by the cell’s own translational machinery or that are funneled into the endo-lysosomal vesicular system. The prolonged interaction between a T cell receptor and specific pMHC complexes, after an extensive search process in secondary lymphatic organs, eventually triggers T cells to proliferate and to mount a specific cellular immune response. Once processed, the peptide repertoire presented by MHC proteins largely depends on structural features of the binding groove of each particular MHC allelic variant. Additionally, two peptide editors—tapasin for class I and HLA-DM for class II—contribute to the shaping of the presented peptidome by favoring the binding of high-affinity antigens. Although there is a vast amount of biochemical and structural information, the mechanism of the catalyzed peptide exchange for MHC class I and class II proteins still remains controversial, and it is not well understood why certain MHC allelic variants are more susceptible to peptide editing than others. Recent studies predict a high impact of protein intermediate states on MHC allele-specific peptide presentation, which implies a profound influence of MHC dynamics on the phenomenon of immunodominance and the development of autoimmune diseases. Here, we review the recent literature that describe MHC class I and II dynamics from a theoretical and experimental point of view and we highlight the similarities between MHC class I and class II dynamics despite the distinct functions they fulfill in adaptive immunity.
Collapse
Affiliation(s)
- Marek Wieczorek
- Protein Biochemistry, Institute for Biochemistry, Freie Universität Berlin , Berlin , Germany
| | - Esam T Abualrous
- Computational Molecular Biology Group, Institute for Mathematics , Berlin , Germany
| | - Jana Sticht
- Protein Biochemistry, Institute for Biochemistry, Freie Universität Berlin , Berlin , Germany
| | - Miguel Álvaro-Benito
- Protein Biochemistry, Institute for Biochemistry, Freie Universität Berlin , Berlin , Germany
| | | | - Frank Noé
- Computational Molecular Biology Group, Institute for Mathematics , Berlin , Germany
| | - Christian Freund
- Protein Biochemistry, Institute for Biochemistry, Freie Universität Berlin , Berlin , Germany
| |
Collapse
|
18
|
van Hateren A, Bailey A, Elliott T. Recent advances in Major Histocompatibility Complex (MHC) class I antigen presentation: Plastic MHC molecules and TAPBPR-mediated quality control. F1000Res 2017; 6:158. [PMID: 28299193 PMCID: PMC5321123 DOI: 10.12688/f1000research.10474.1] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/13/2017] [Indexed: 01/25/2023] Open
Abstract
We have known since the late 1980s that the function of classical major histocompatibility complex (MHC) class I molecules is to bind peptides and display them at the cell surface to cytotoxic T cells. Recognition by these sentinels of the immune system can lead to the destruction of the presenting cell, thus protecting the host from pathogens and cancer. Classical MHC class I molecules (MHC I hereafter) are co-dominantly expressed, polygenic, and exceptionally polymorphic and have significant sequence diversity. Thus, in most species, there are many different MHC I allotypes expressed, each with different peptide-binding specificity, which can have a dramatic effect on disease outcome. Although MHC allotypes vary in their primary sequence, they share common tertiary and quaternary structures. Here, we review the evidence that, despite this commonality, polymorphic amino acid differences between allotypes alter the ability of MHC I molecules to change shape (that is, their conformational plasticity). We discuss how the peptide loading co-factor tapasin might modify this plasticity to augment peptide loading. Lastly, we consider recent findings concerning the functions of the non-classical MHC I molecule HLA-E as well as the tapasin-related protein TAPBPR (transporter associated with antigen presentation binding protein-related), which has been shown to act as a second quality-control stage in MHC I antigen presentation.
Collapse
Affiliation(s)
- Andy van Hateren
- Institute for Life Sciences and Cancer Sciences Unit, University of Southampton, Southampton, UK
| | - Alistair Bailey
- Institute for Life Sciences and Cancer Sciences Unit, University of Southampton, Southampton, UK
| | - Tim Elliott
- Institute for Life Sciences and Cancer Sciences Unit, University of Southampton, Southampton, UK
| |
Collapse
|
19
|
Thomas C, Tampé R. Proofreading of Peptide-MHC Complexes through Dynamic Multivalent Interactions. Front Immunol 2017; 8:65. [PMID: 28228754 PMCID: PMC5296336 DOI: 10.3389/fimmu.2017.00065] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 01/16/2017] [Indexed: 11/18/2022] Open
Abstract
The adaptive immune system is able to detect and destroy cells that are malignantly transformed or infected by intracellular pathogens. Specific immune responses against these cells are elicited by antigenic peptides that are presented on major histocompatibility complex class I (MHC I) molecules and recognized by cytotoxic T lymphocytes at the cell surface. Since these MHC I-presented peptides are generated in the cytosol by proteasomal protein degradation, they can be metaphorically described as a window providing immune cells with insights into the state of the cellular proteome. A crucial element of MHC I antigen presentation is the peptide-loading complex (PLC), a multisubunit machinery, which contains as key constituents the transporter associated with antigen processing (TAP) and the MHC I-specific chaperone tapasin (Tsn). While TAP recognizes and shuttles the cytosolic antigenic peptides into the endoplasmic reticulum (ER), Tsn samples peptides in the ER for their ability to form stable complexes with MHC I, a process called peptide proofreading or peptide editing. Through its selection of peptides that improve MHC I stability, Tsn contributes to the hierarchy of immunodominant peptide epitopes. Despite the fact that it concerns a key event in adaptive immunity, insights into the catalytic mechanism of peptide proofreading carried out by Tsn have only lately been gained via biochemical, biophysical, and structural studies. Furthermore, a Tsn homolog called TAP-binding protein-related (TAPBPR) has only recently been demonstrated to function as a second MHC I-specific chaperone and peptide proofreader. Although TAPBPR is PLC-independent and has a distinct allomorph specificity, it is likely to share a common catalytic mechanism with Tsn. This review focuses on the current knowledge of the multivalent protein–protein interactions and the concomitant dynamic molecular processes underlying peptide-proofreading catalysis. We do not only derive a model that highlights the common mechanistic principles shared by the MHC I editors Tsn and TAPBPR, and the MHC II editor HLA-DM, but also illustrate the distinct quality control strategies employed by these chaperones to sample epitopes. Unraveling the mechanistic underpinnings of catalyzed peptide proofreading will be crucial for a thorough understanding of many aspects of immune recognition, from infection control and tumor immunity to autoimmune diseases and transplant rejection.
Collapse
Affiliation(s)
- Christoph Thomas
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt , Frankfurt am Main , Germany
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt , Frankfurt am Main , Germany
| |
Collapse
|
20
|
Chen H, Li L, Weimershaus M, Evnouchidou I, van Endert P, Bouvier M. ERAP1-ERAP2 dimers trim MHC I-bound precursor peptides; implications for understanding peptide editing. Sci Rep 2016; 6:28902. [PMID: 27514473 PMCID: PMC4981824 DOI: 10.1038/srep28902] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 06/10/2016] [Indexed: 01/10/2023] Open
Abstract
The processing of MHC class I antigenic precursor peptides by the endoplasmic reticulum aminopeptidase 1 (ERAP1) and ERAP2 is an important event in the cell biology of antigen presentation. To date, the molecular context by which the ERAP enzymes trim precursor peptides, and how ERAPs shape peptide repertoires, remain open questions. Using ERAP1 and ERAP2 heterodimers (ERAP1/2), and N-terminally extended model and natural peptides in their free and HLA-B*0801-bound forms, we characterized the mode of action of ERAPs. We provide evidence that ERAP1/2 can trim MHC I-bound precursor peptides to their correct and final lengths, albeit more slowly than the corresponding free precursors. Trimming of MHC I-bound precursors by ERAP1/2 increases the conformational stability of MHC I/peptide complexes. From the data, we propose a molecular mechanistic model of ERAP1/2 as peptide editors. Overall, our study provides new findings on a significant issue of the ERAP-mediated processing pathway of MHC class I antigens.
Collapse
Affiliation(s)
- Hanna Chen
- Department of Microbiology and Immunology, University of Illinois at Chicago, College of Medicine, Chicago, IL 60612 USA
| | - Lenong Li
- Department of Microbiology and Immunology, University of Illinois at Chicago, College of Medicine, Chicago, IL 60612 USA
| | - Mirjana Weimershaus
- INSERM, Unité 1151; CNRS, Unité 8352; Université Paris Descartes, 75015 Paris, France
| | - Irini Evnouchidou
- INSERM, Unité 1151; CNRS, Unité 8352; Université Paris Descartes, 75015 Paris, France
| | - Peter van Endert
- INSERM, Unité 1151; CNRS, Unité 8352; Université Paris Descartes, 75015 Paris, France
| | - Marlene Bouvier
- Department of Microbiology and Immunology, University of Illinois at Chicago, College of Medicine, Chicago, IL 60612 USA
| |
Collapse
|
21
|
Interaction of TAPBPR, a tapasin homolog, with MHC-I molecules promotes peptide editing. Proc Natl Acad Sci U S A 2016; 113:E1006-15. [PMID: 26869717 DOI: 10.1073/pnas.1519894113] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Peptide loading of major histocompatibility complex class I (MHC-I) molecules is central to antigen presentation, self-tolerance, and CD8(+) T-cell activation. TAP binding protein, related (TAPBPR), a widely expressed tapasin homolog, is not part of the classical MHC-I peptide-loading complex (PLC). Using recombinant MHC-I molecules, we show that TAPBPR binds HLA-A*02:01 and several other MHC-I molecules that are either peptide-free or loaded with low-affinity peptides. Fluorescence polarization experiments establish that TAPBPR augments peptide binding by MHC-I. The TAPBPR/MHC-I interaction is reversed by specific peptides, related to their affinity. Mutational and small-angle X-ray scattering (SAXS) studies confirm the structural similarities of TAPBPR with tapasin. These results support a role of TAPBPR in stabilizing peptide-receptive conformation(s) of MHC-I, permitting peptide editing.
Collapse
|
22
|
van Hateren A, Bailey A, Werner JM, Elliott T. Plasticity of empty major histocompatibility complex class I molecules determines peptide-selector function. Mol Immunol 2015; 68:98-101. [PMID: 25818313 PMCID: PMC4726658 DOI: 10.1016/j.molimm.2015.03.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/04/2015] [Accepted: 03/09/2015] [Indexed: 11/28/2022]
Abstract
Major histocompatibility complex class I (MHC I) proteins provide protection from intracellular pathogens and cancer via each of a cell's MHC I molecules binding and presenting a peptide to cytotoxic T lymphocytes. MHC I genes are highly polymorphic and can have significant diversity, with polymorphisms predominantly localised in the peptide-binding groove where they can change peptide-binding specificity. However, polymorphic residues may also determine other functional properties, such as how dependent MHC I alleles are on the peptide-loading complex for optimal acquisition of peptide cargo. We describe how differences in the peptide-binding properties of two MHC I alleles correlates with altered conformational flexibility in the peptide-empty state. We hypothesise that plasticity is an intrinsic property encoded by the protein sequence, and that co-ordinated movements of the membrane-proximal and membrane-distal domains collectively determines how dependent MHC I are on the peptide-loading complex for efficient assembly with high affinity peptides.
Collapse
Affiliation(s)
- Andy van Hateren
- Institute for Life Sciences, Building 85, M55, University of Southampton, SO17 1BJ, UK; Cancer Sciences Unit, Faculty of Medicine, University of Southampton, SO16 6YD, UK.
| | - Alistair Bailey
- Institute for Life Sciences, Building 85, M55, University of Southampton, SO17 1BJ, UK; Cancer Sciences Unit, Faculty of Medicine, University of Southampton, SO16 6YD, UK; Centre for Biological Sciences, Faculty of Natural & Environmental Sciences, Building 85, M55, University of Southampton, SO17 1BJ, UK.
| | - Jörn M Werner
- Institute for Life Sciences, Building 85, M55, University of Southampton, SO17 1BJ, UK; Centre for Biological Sciences, Faculty of Natural & Environmental Sciences, Building 85, M55, University of Southampton, SO17 1BJ, UK.
| | - Tim Elliott
- Institute for Life Sciences, Building 85, M55, University of Southampton, SO17 1BJ, UK; Cancer Sciences Unit, Faculty of Medicine, University of Southampton, SO16 6YD, UK.
| |
Collapse
|
23
|
Bailey A, Dalchau N, Carter R, Emmott S, Phillips A, Werner JM, Elliott T. Selector function of MHC I molecules is determined by protein plasticity. Sci Rep 2015; 5:14928. [PMID: 26482009 PMCID: PMC5224517 DOI: 10.1038/srep14928] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 09/09/2015] [Indexed: 12/27/2022] Open
Abstract
The selection of peptides for presentation at the surface of most nucleated cells by major histocompatibility complex class I molecules (MHC I) is crucial to the immune response in vertebrates. However, the mechanisms of the rapid selection of high affinity peptides by MHC I from amongst thousands of mostly low affinity peptides are not well understood. We developed computational systems models encoding distinct mechanistic hypotheses for two molecules, HLA-B*44:02 (B*4402) and HLA-B*44:05 (B*4405), which differ by a single residue yet lie at opposite ends of the spectrum in their intrinsic ability to select high affinity peptides. We used in vivo biochemical data to infer that a conformational intermediate of MHC I is significant for peptide selection. We used molecular dynamics simulations to show that peptide selector function correlates with protein plasticity, and confirmed this experimentally by altering the plasticity of MHC I with a single point mutation, which altered in vivo selector function in a predictable way. Finally, we investigated the mechanisms by which the co-factor tapasin influences MHC I plasticity. We propose that tapasin modulates MHC I plasticity by dynamically coupling the peptide binding region and α3 domain of MHC I allosterically, resulting in enhanced peptide selector function.
Collapse
Affiliation(s)
- Alistair Bailey
- Institute for Life Sciences, Building 85, University of Southampton, SO17 1BJ, UK
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
- Centre for Biological Sciences, Faculty of Natural & Environmental Sciences, Building 85, University of Southampton, SO17 1BJ, UK
| | - Neil Dalchau
- Computational Science Laboratory, Microsoft Research, 21 Station Road, Cambridge, CB1 2FB, UK
| | - Rachel Carter
- Institute for Life Sciences, Building 85, University of Southampton, SO17 1BJ, UK
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Stephen Emmott
- Computational Science Laboratory, Microsoft Research, 21 Station Road, Cambridge, CB1 2FB, UK
| | - Andrew Phillips
- Computational Science Laboratory, Microsoft Research, 21 Station Road, Cambridge, CB1 2FB, UK
| | - Jörn M. Werner
- Institute for Life Sciences, Building 85, University of Southampton, SO17 1BJ, UK
- Centre for Biological Sciences, Faculty of Natural & Environmental Sciences, Building 85, University of Southampton, SO17 1BJ, UK
| | - Tim Elliott
- Institute for Life Sciences, Building 85, University of Southampton, SO17 1BJ, UK
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| |
Collapse
|
24
|
Sgourakis NG, May NA, Boyd LF, Ying J, Bax A, Margulies DH. A Novel MHC-I Surface Targeted for Binding by the MCMV m06 Immunoevasin Revealed by Solution NMR. J Biol Chem 2015; 290:28857-68. [PMID: 26463211 DOI: 10.1074/jbc.m115.689661] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Indexed: 12/21/2022] Open
Abstract
As part of its strategy to evade detection by the host immune system, murine cytomegalovirus (MCMV) encodes three proteins that modulate cell surface expression of major histocompatibility complex class I (MHC-I) molecules: the MHC-I homolog m152/gp40 as well as the m02-m16 family members m04/gp34 and m06/gp48. Previous studies of the m04 protein revealed a divergent Ig-like fold that is unique to immunoevasins of the m02-m16 family. Here, we engineer and characterize recombinant m06 and investigate its interactions with full-length and truncated forms of the MHC-I molecule H2-L(d) by several techniques. Furthermore, we employ solution NMR to map the interaction footprint of the m06 protein on MHC-I, taking advantage of a truncated H2-L(d), "mini-H2-L(d)," consisting of only the α1α2 platform domain. Mini-H2-L(d) refolded in vitro with a high affinity peptide yields a molecule that shows outstanding NMR spectral features, permitting complete backbone assignments. These NMR-based studies reveal that m06 binds tightly to a discrete site located under the peptide-binding platform that partially overlaps with the β2-microglobulin interface on the MHC-I heavy chain, consistent with in vitro binding experiments showing significantly reduced complex formation between m06 and β2-microglobulin-associated MHC-I. Moreover, we carry out NMR relaxation experiments to characterize the picosecond-nanosecond dynamics of the free mini-H2-L(d) MHC-I molecule, revealing that the site of interaction is highly ordered. This study provides insight into the mechanism of the interaction of m06 with MHC-I, suggesting a structural manipulation of the target MHC-I molecule at an early stage of the peptide-loading pathway.
Collapse
Affiliation(s)
| | - Nathan A May
- the Molecular Biology Section, Laboratory of Immunology, NIAID, National Institutes of Health, Bethesda, Maryland 20892
| | - Lisa F Boyd
- the Molecular Biology Section, Laboratory of Immunology, NIAID, National Institutes of Health, Bethesda, Maryland 20892
| | - Jinfa Ying
- From the Laboratory of Chemical Physics, NIDDK, and
| | - Ad Bax
- From the Laboratory of Chemical Physics, NIDDK, and
| | - David H Margulies
- the Molecular Biology Section, Laboratory of Immunology, NIAID, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
25
|
Abualrous ET, Saini SK, Ramnarayan VR, Ilca FT, Zacharias M, Springer S. The Carboxy Terminus of the Ligand Peptide Determines the Stability of the MHC Class I Molecule H-2Kb: A Combined Molecular Dynamics and Experimental Study. PLoS One 2015; 10:e0135421. [PMID: 26270965 PMCID: PMC4535769 DOI: 10.1371/journal.pone.0135421] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 07/21/2015] [Indexed: 11/18/2022] Open
Abstract
Major histocompatibility complex (MHC) class I molecules (proteins) bind peptides of eight to ten amino acids to present them at the cell surface to cytotoxic T cells. The class I binding groove binds the peptide via hydrogen bonds with the peptide termini and via diverse interactions with the anchor residue side chains of the peptide. To elucidate which of these interactions is most important for the thermodynamic and kinetic stability of the peptide-bound state, we have combined molecular dynamics simulations and experimental approaches in an investigation of the conformational dynamics and binding parameters of a murine class I molecule (H-2Kb) with optimal and truncated natural peptide epitopes. We show that the F pocket region dominates the conformational and thermodynamic properties of the binding groove, and that therefore the binding of the C terminus of the peptide to the F pocket region plays a crucial role in bringing about the peptide-bound state of MHC class I.
Collapse
Affiliation(s)
- Esam Tolba Abualrous
- Department of Chemistry and Life Sciences, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
- Department of Physics, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Sunil Kumar Saini
- Department of Chemistry and Life Sciences, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Venkat Raman Ramnarayan
- Department of Chemistry and Life Sciences, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Florin Tudor Ilca
- Department of Chemistry and Life Sciences, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Martin Zacharias
- Physik-Department T38, Technische Universität München, James-Franck-Strasse 1, 85748 Garching, Germany
| | - Sebastian Springer
- Department of Chemistry and Life Sciences, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
- * E-mail:
| |
Collapse
|
26
|
Denatured class I human leukocyte antigen antibodies in sensitized kidney recipients: prevalence, relevance, and impact on organ allocation. Transplantation 2015; 98:738-44. [PMID: 25289917 DOI: 10.1097/tp.0000000000000229] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Single antigen flow beads assays may overestimate sensitization because of the detection of supposedly irrelevant antibodies recognizing denatured class I human leukocyte antigens (HLAs). METHODS Sera of 323 HLA-sensitized kidney transplant candidates positive with a class I HLA single antigen flow beads assay were retested after acid treatment of the beads. Denatured HLA antibodies were identified according to ratio between the measured fluorescence intensity for treated and nontreated beads. T-lymphocyte flow cytometry crossmatches were performed to characterize the ability of these antibodies to recognize HLA on normal cells as a surrogate of their potential clinical relevance. Their impact on organ allocation was evaluated through a calculated panel reactive antibody. The utility of single antigen flow beads largely devoid of denatured HLA (iBeads) was also evaluated. RESULTS Denatured HLA antibodies were detected in 39% of the patients. They provided much less positive flow cytometry crossmatches than anti-native HLA antibodies (16% vs. 83%, P<0.0001). Removing the HLA-A and HLA-B antigens targeted by denatured HLA antibodies from unacceptable antigens lowered the calculated panel reactive antibody for 90 patients, sometimes dramatically. The iBeads assay demonstrated nearly the same ability to predict crossmatch results than the acid treatment assay. CONCLUSION Denatured class I HLA antibodies are common, but the antigens they target should not be considered as unacceptable in most cases, because they negatively impact access to a transplant while predominantly providing negative sensitive crossmatches. The iBeads assay seems to be a valuable alternative to better define unacceptable antigens.
Collapse
|
27
|
Ostermeir K, Springer S, Zacharias M. Coupling between side chain interactions and binding pocket flexibility in HLA-B*44:02 molecules investigated by molecular dynamics simulations. Mol Immunol 2015; 63:312-9. [DOI: 10.1016/j.molimm.2014.07.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 07/27/2014] [Accepted: 07/29/2014] [Indexed: 02/02/2023]
|
28
|
The first step of peptide selection in antigen presentation by MHC class I molecules. Proc Natl Acad Sci U S A 2015; 112:1505-10. [PMID: 25605945 DOI: 10.1073/pnas.1416543112] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
MHC class I molecules present a variable but limited repertoire of antigenic peptides for T-cell recognition. Understanding how peptide selection is achieved requires mechanistic insights into the interactions between the MHC I and candidate peptides. We find that, at first encounter, MHC I H-2K(b) considers a wide range of peptides, including those with expanded N termini and unfitting anchor residues. Discrimination occurs in the second step, when noncanonical peptides dissociate with faster exchange rates. This second step exhibits remarkable temperature sensitivity, as illustrated by numerous noncanonical peptides presented by H-2K(b) in cells cultured at 26 °C relative to 37 °C. Crystallographic analyses of H-2K(b)-peptide complexes suggest that a conformational adaptation of H-2K(b) drives the decisive step in peptide selection. We propose that MHC class I molecules consider initially a large peptide pool, subsequently refined by a temperature-sensitive induced-fit mechanism to retain the canonical peptide repertoire.
Collapse
|
29
|
Bailey A, van Hateren A, Elliott T, Werner JM. Two polymorphisms facilitate differences in plasticity between two chicken major histocompatibility complex class I proteins. PLoS One 2014; 9:e89657. [PMID: 24586943 PMCID: PMC3930747 DOI: 10.1371/journal.pone.0089657] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 01/21/2014] [Indexed: 11/18/2022] Open
Abstract
Major histocompatibility complex class I molecules (MHC I) present peptides to cytotoxic T-cells at the surface of almost all nucleated cells. The function of MHC I molecules is to select high affinity peptides from a large intracellular pool and they are assisted in this process by co-factor molecules, notably tapasin. In contrast to mammals, MHC homozygous chickens express a single MHC I gene locus, termed BF2, which is hypothesised to have co-evolved with the highly polymorphic tapasin within stable haplotypes. The BF2 molecules of the B15 and B19 haplotypes have recently been shown to differ in their interactions with tapasin and in their peptide selection properties. This study investigated whether these observations might be explained by differences in the protein plasticity that is encoded into the MHC I structure by primary sequence polymorphisms. Furthermore, we aimed to demonstrate the utility of a complimentary modelling approach to the understanding of complex experimental data. Combining mechanistic molecular dynamics simulations and the primary sequence based technique of statistical coupling analysis, we show how two of the eight polymorphisms between BF2*15∶01 and BF2*19∶01 facilitate differences in plasticity. We show that BF2*15∶01 is intrinsically more plastic than BF2*19∶01, exploring more conformations in the absence of peptide. We identify a protein sector of contiguous residues connecting the membrane bound α3 domain and the heavy chain peptide binding site. This sector contains two of the eight polymorphic residues. One is residue 22 in the peptide binding domain and the other 220 is in the α3 domain, a putative tapasin binding site. These observations are in correspondence with the experimentally observed functional differences of these molecules and suggest a mechanism for how modulation of MHC I plasticity by tapasin catalyses peptide selection allosterically.
Collapse
Affiliation(s)
- Alistair Bailey
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Andy van Hateren
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Tim Elliott
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Jörn M. Werner
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
- Centre for Biological Sciences, Faculty of Natural & Environmental Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
30
|
Kurimoto E, Kuroki K, Yamaguchi Y, Yagi-Utsumi M, Igaki T, Iguchi T, Maenaka K, Kato K. Structural and functional mosaic nature of MHC class I molecules in their peptide-free form. Mol Immunol 2013; 55:393-9. [DOI: 10.1016/j.molimm.2013.03.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 03/14/2013] [Accepted: 03/15/2013] [Indexed: 10/27/2022]
|
31
|
Theodossis A. On the trail of empty MHC class-I. Mol Immunol 2013; 55:131-4. [DOI: 10.1016/j.molimm.2012.10.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 10/08/2012] [Indexed: 11/27/2022]
|
32
|
Saini SK, Abualrous ET, Tigan AS, Covella K, Wellbrock U, Springer S. Not all empty MHC class I molecules are molten globules: Tryptophan fluorescence reveals a two-step mechanism of thermal denaturation. Mol Immunol 2013; 54:386-96. [DOI: 10.1016/j.molimm.2013.01.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 12/26/2012] [Accepted: 01/04/2013] [Indexed: 11/27/2022]
|
33
|
Studying MHC class I peptide loading and exchange in vitro. Methods Mol Biol 2013. [PMID: 23329480 DOI: 10.1007/978-1-62703-218-6_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
In the endoplasmic reticulum (ER), MHC class I molecules associate with several specialized proteins, forming a large macromolecular complex referred to as the "peptide-loading complex" (PLC). In the PLC, antigenic peptides undergo a stringent selection process for binding onto MHC class I molecules. This ensures that the immune system elicits robust CD8+ T-cell responses to viruses and solid tumors. The ability to reconstitute in vitro MHC class I molecules in association with key proteins of the PLC provides a mean for studying at the molecular level how antigenic peptides are selected for presentation to CD8+ T-cells. Here, we describe practical procedures for generating a cell-free system involving MHC class I molecules and tapasin, a critical protein of the PLC, that can be used as a versatile tool for biochemical and mechanistic studies of peptide loading and exchange.
Collapse
|
34
|
Mage MG, Dolan MA, Wang R, Boyd LF, Revilleza MJ, Robinson H, Natarajan K, Myers NB, Hansen TH, Margulies DH. The peptide-receptive transition state of MHC class I molecules: insight from structure and molecular dynamics. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 189:1391-9. [PMID: 22753930 PMCID: PMC3422668 DOI: 10.4049/jimmunol.1200831] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
MHC class I (MHC-I) proteins of the adaptive immune system require antigenic peptides for maintenance of mature conformation and immune function via specific recognition by MHC-I-restricted CD8(+) T lymphocytes. New MHC-I molecules in the endoplasmic reticulum are held by chaperones in a peptide-receptive (PR) transition state pending release by tightly binding peptides. In this study, we show, by crystallographic, docking, and molecular dynamics methods, dramatic movement of a hinged unit containing a conserved 3(10) helix that flips from an exposed "open" position in the PR transition state to a "closed" position with buried hydrophobic side chains in the peptide-loaded mature molecule. Crystallography of hinged unit residues 46-53 of murine H-2L(d) MHC-I H chain, complexed with mAb 64-3-7, demonstrates solvent exposure of these residues in the PR conformation. Docking and molecular dynamics predict how this segment moves to help form the A and B pockets crucial for the tight peptide binding needed for stability of the mature peptide-loaded conformation, chaperone dissociation, and Ag presentation.
Collapse
Affiliation(s)
- Michael G. Mage
- Molecular Biology Section, Laboratory of Immunology, NIAID, NIH, Bethesda, MD,Corresponding authors: , ph: 301-402-5537, fax: 301-480-7352; or , ph: 301-496-6429, fax: 301-496-0222
| | - Michael A. Dolan
- Computational Biology Section, Bioinformatics and Computational Biosciences Branch (BCBB), NIAID, NIH, Bethesda, MD
| | - Rui Wang
- Molecular Biology Section, Laboratory of Immunology, NIAID, NIH, Bethesda, MD
| | - Lisa F. Boyd
- Molecular Biology Section, Laboratory of Immunology, NIAID, NIH, Bethesda, MD
| | | | - Howard Robinson
- National Synchrotron Light Source, Brookhaven National Laboratories, Upton, New York
| | - Kannan Natarajan
- Molecular Biology Section, Laboratory of Immunology, NIAID, NIH, Bethesda, MD
| | - Nancy B. Myers
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Ted H. Hansen
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - David H. Margulies
- Molecular Biology Section, Laboratory of Immunology, NIAID, NIH, Bethesda, MD,Corresponding authors: , ph: 301-402-5537, fax: 301-480-7352; or , ph: 301-496-6429, fax: 301-496-0222
| |
Collapse
|
35
|
Schmidt F, Dietrich D, Eylenstein R, Groemping Y, Stehle T, Dodt G. The role of conserved PEX3 regions in PEX19-binding and peroxisome biogenesis. Traffic 2012; 13:1244-60. [PMID: 22624858 DOI: 10.1111/j.1600-0854.2012.01380.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 05/18/2012] [Accepted: 05/24/2012] [Indexed: 01/10/2023]
Abstract
The human peroxins PEX3 and PEX19 are essential for peroxisome biogenesis. They mediate the import of membrane proteins as well as the de novo formation of peroxisomes. PEX19 binds newly synthesized peroxisomal membrane proteins post-translationally and directs them to peroxisomes by engaging PEX3, a protein anchored in the peroxisomal membrane. After protein insertion into the lipid bilayer, PEX19 is released back to the cytosol. Crystallographic analysis provided detailed insights into the PEX3-PEX19 interaction and identified three highly conserved regions, the PEX19-binding region, a hydrophobic groove and an acidic cluster, on the surface of PEX3. Here, we used site-directed mutagenesis and biochemical and functional assays to determine the role of these regions in PEX19-binding and peroxisome biogenesis. Mutations in the PEX19-binding region reduce the affinity for PEX19 and destabilize PEX3. Furthermore, we provide evidence for a crucial function of the PEX3-PEX19 complex during de novo formation of peroxisomes in peroxisome-deficient cells, pointing to a dual function of the PEX3-PEX19 interaction in peroxisome biogenesis. The maturation of preperoxisomes appears to require the hydrophobic groove near the base of PEX3, presumably by its involvement in peroxisomal membrane protein insertion, while the acidic cluster does not appear to be functionally relevant.
Collapse
Affiliation(s)
- Friederike Schmidt
- Interfaculty Institute of Biochemistry, University of Tübingen, D-72076, Tübingen, Germany
| | | | | | | | | | | |
Collapse
|
36
|
Simone LC, Georgesen CJ, Simone PD, Wang X, Solheim JC. Productive association between MHC class I and tapasin requires the tapasin transmembrane/cytosolic region and the tapasin C-terminal Ig-like domain. Mol Immunol 2012; 49:628-39. [PMID: 22169163 PMCID: PMC3249531 DOI: 10.1016/j.molimm.2011.11.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 10/20/2011] [Accepted: 11/09/2011] [Indexed: 12/24/2022]
Abstract
The current model of antigen assembly with major histocompatibility complex (MHC) class I molecules posits that interactions between the tapasin N-terminal immunoglobulin (Ig)-like domain and the MHC class I peptide-binding groove permit tapasin to regulate antigen selection. Much less is known regarding interactions that might involve the tapasin C-terminal Ig-like domain. Additionally, the tapasin transmembrane/cytoplasmic region enables tapasin to bridge the MHC class I molecule to the transporter associated with antigen processing (TAP). In this investigation, we made use of two tapasin mutants to determine the relative contribution of the tapasin C-terminal Ig-like domain and the tapasin transmembrane/cytoplasmic region to the assembly of MHC class I molecules. Deletion of a loop within the tapasin C-terminal Ig-like domain (Δ334-342) prevented tapasin association with the MHC class I molecule K(d). Although tapasin Δ334-342 did not increase the efficiency of K(d) folding, K(d) surface expression was enhanced on cells expressing this mutant relative to tapasin-deficient cells. In contrast to tapasin Δ334-342, a soluble tapasin mutant lacking the transmembrane/cytoplasmic region retained the ability to bind to K(d) molecules, but did not facilitate K(d) surface expression. Furthermore, when soluble tapasin and tapasin Δ334-342 were co-expressed, soluble tapasin had a dominant negative effect on the folding and surface expression of not only K(d), but also D(b) and K(b). In addition, our molecular modeling of the MHC class I-tapasin interface revealed novel potential interactions involving tapasin residues 334-342. Together, these findings demonstrate that the tapasin C-terminal and transmembrane/cytoplasmic regions are critical to tapasin's capacity to associate effectively with the MHC class I molecule.
Collapse
Affiliation(s)
- Laura C. Simone
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, NE 68198, United States
| | - Corey J. Georgesen
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, NE 68198, United States
| | - Peter D. Simone
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, NE 68198, United States
| | - Xiaojian Wang
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, NE 68198, United States
| | - Joyce C. Solheim
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, NE 68198, United States
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, NE, 68198, United States
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, NE 68198, United States
| |
Collapse
|
37
|
Garstka MA, Fritzsche S, Lenart I, Hein Z, Jankevicius G, Boyle LH, Elliott T, Trowsdale J, Antoniou AN, Zacharias M, Springer S. Tapasin dependence of major histocompatibility complex class I molecules correlates with their conformational flexibility. FASEB J 2011; 25:3989-98. [PMID: 21836024 DOI: 10.1096/fj.11-190249] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Major histocompatibility complex (MHC) class I molecules present cell internally derived peptides at the plasma membrane for surveillance by cytotoxic T lymphocytes. The surface expression of most class I molecules at least partially depends on the endoplasmic reticulum protein, tapasin, which helps them to bind peptides of the right length and sequence. To determine what makes a class I molecule dependent on support by tapasin, we have conducted in silico molecular dynamics (MD) studies and laboratory experiments to assess the conformational state of tapasin-dependent and -independent class I molecules. We find that in the absence of peptide, the region around the F pocket of the peptide binding groove of the tapasin-dependent molecule HLA-B*44:02 is in a disordered conformational state and that it is converted to a conformationally stable state by tapasin. This novel chaperone function of tapasin has not been described previously. We demonstrate that the disordered state of class I is caused by the presence of two adjacent acidic residues in the bottom of the F pocket of class I, and we suggest that conformational disorder is a common feature of tapasin-dependent class I molecules, making them essentially unable to bind peptides on their own. MD simulations are a useful tool to predict such conformational disorder of class I molecules.
Collapse
|
38
|
Van Hateren A, James E, Bailey A, Phillips A, Dalchau N, Elliott T. The cell biology of major histocompatibility complex class I assembly: towards a molecular understanding. ACTA ACUST UNITED AC 2011; 76:259-75. [PMID: 21050182 DOI: 10.1111/j.1399-0039.2010.01550.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Major histocompatibility complex class I (MHC I) proteins protect the host from intracellular pathogens and cellular abnormalities through the binding of peptide fragments derived primarily from intracellular proteins. These peptide-MHC complexes are displayed at the cell surface for inspection by cytotoxic T lymphocytes. Here we reveal how MHC I molecules achieve this feat in the face of numerous levels of quality control. Among these is the chaperone tapasin, which governs peptide selection in the endoplasmic reticulum as part of the peptide-loading complex, and we propose key amino acid interactions central to the peptide selection mechanism. We discuss how the aminopeptidase ERAAP fine-tunes the peptide repertoire available to assembling MHC I molecules, before focusing on the journey of MHC I molecules through the secretory pathway, where calreticulin provides additional regulation of MHC I expression. Lastly we discuss how these processes culminate to influence immune responses.
Collapse
Affiliation(s)
- A Van Hateren
- Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, UK
| | | | | | | | | | | |
Collapse
|
39
|
Fu J, Bouvier M. Determinants of the endoplasmic reticulum (ER) lumenal-domain of the adenovirus serotype 2 E3-19K protein for association with and ER-retention of major histocompatibility complex class I molecules. Mol Immunol 2011; 48:532-8. [PMID: 21094528 PMCID: PMC3032990 DOI: 10.1016/j.molimm.2010.10.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 10/18/2010] [Accepted: 10/22/2010] [Indexed: 10/18/2022]
Abstract
The E3-19K immunomodulatory protein from adenoviruses (Ads) inhibits antigen presentation by major histocompatibility complex (MHC) class I molecules. As a result, the ability of Ad-specific cytotoxic T lymphocytes (CTLs) to lyse infected cells is suppressed. The ER-lumenal domain of E3-19K is subdivided into a variable (residues 1 to ∼78/81) and conserved (residues ∼79/82 to 98) region followed by a linker (residues 99-107). Using molecular and cellular approaches, we characterized in detail the properties of the ER-lumenal domain of E3-19K that enable it to target MHC class I molecules. Proteolysis of recombinant serotype 2 E3-19K (residues 1-100) (with six His residues) generated a large N-terminal (residues 1-88) and a small C-terminal fragment (residues 94-100) in solution. Neither of these fragments associates with HLA-A*1101 as shown by a native gel band-shift assay. In contrast, the N-terminal 1-93 residues of Ad2 E3-19K exhibited the same binding affinity to HLA-A*1101 as E3-19K. Using a site-directed mutational analysis and flow cytometry, we show that Tyr(93), but not Tyr(88), critically modulates the cell-surface expression of MHC class I molecules. Taken together, these results indicate that the sequence comprising residues 89-93 (M(89)SKQY(93)), and in particular Tyr(93), in the conserved region of E3-19K is critical for its immunomodulatory function. Residues 89-93 likely form a linker or loop in E3-19K. Overall, our data provide novel insights into the structure of E3-19K and identify key determinants for association with and ER-retention of its cellular target protein. This knowledge is important for our understanding of the molecular basis of Ad pathogenesis.
Collapse
Affiliation(s)
- Jie Fu
- Department of Microbiology and Immunology, University of Illinois at Chicago, College of Medicine, 835 S. Wolcott, Chicago, IL 60612
| | - Marlene Bouvier
- Department of Microbiology and Immunology, University of Illinois at Chicago, College of Medicine, 835 S. Wolcott, Chicago, IL 60612
| |
Collapse
|
40
|
Nojima H, Kanou K, Kamiya K, Atsuda K, Umeyama H, Takeda-Shitaka M. Dynamic influence of the two membrane-proximal immunoglobulin-like domains upon the peptide-binding platform domain in class I and class II major histocompatibility complexes: normal mode analysis. Chem Pharm Bull (Tokyo) 2010; 57:1193-9. [PMID: 19881266 DOI: 10.1248/cpb.57.1193] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Major histocompatibility complexes (MHCs) mainly fall into class I and class II. The two classes have similar structures, with two membrane-proximal immunoglobulin-like domains and a peptide-binding platform domain, though their organizations are different. We simulated the dynamics of a whole and partial model deficient in either of the two membrane-proximal domains for class I and class II using normal mode analysis. Our study showed that the influence of the two membrane-proximal domains upon the dynamics of the platform domain were decisively different between class II and class I. Both membrane-proximal domains (the alpha2 and beta2 domains) of class II MHC, especially the alpha2 domain, influenced the most important pocket that accommodates a large hydrophobic anchor side chain of the N-terminal side of the bound peptide, though the pocket was not in the alpha2 domain neighborhood. By contrast, the two membrane-proximal domains (the alpha3 and beta2m domains) of class I MHC had little influence upon the most important pocket that accommodates the N-terminal residue of the bound peptide. These results suggest that the two membrane-proximal domains of class II MHC have a greater influence upon peptide-binding than those of class I MHC.
Collapse
Affiliation(s)
- Hiroyuki Nojima
- School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | | | | | | | | | | |
Collapse
|
41
|
Peptide binding to MHC class I and II proteins: New avenues from new methods. Mol Immunol 2010; 47:649-57. [DOI: 10.1016/j.molimm.2009.10.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 10/08/2009] [Accepted: 10/13/2009] [Indexed: 01/27/2023]
|
42
|
Celie PHN, Toebes M, Rodenko B, Ovaa H, Perrakis A, Schumacher TNM. UV-induced ligand exchange in MHC class I protein crystals. J Am Chem Soc 2009; 131:12298-304. [PMID: 19655750 DOI: 10.1021/ja9037559] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
High-throughput structure determination of protein-ligand complexes is central in drug development and structural proteomics. To facilitate such high-throughput structure determination we designed an induced replacement strategy. Crystals of a protein complex bound to a photosensitive ligand are exposed to UV light, inducing the departure of the bound ligand, allowing a new ligand to soak in. We exemplify the approach for a class of protein complexes that is especially recalcitrant to high-throughput strategies: the MHC class I proteins. We developed a UV-sensitive, "conditional", peptide ligand whose UV-induced cleavage in the crystals leads to the exchange of the low-affinity lytic fragments for full-length peptides introduced in the crystallant solution. This "in crystallo" exchange is monitored by the loss of seleno-methionine anomalous diffraction signal of the conditional peptide compared to the signal of labeled MHC beta2m subunit. This method has the potential to facilitate high-throughput crystallography in various protein families.
Collapse
Affiliation(s)
- Patrick H N Celie
- Division of Biochemistry, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
43
|
Painter CA, Cruz A, López GE, Stern LJ, Zavala-Ruiz Z. Model for the peptide-free conformation of class II MHC proteins. PLoS One 2008; 3:e2403. [PMID: 18545669 PMCID: PMC2408972 DOI: 10.1371/journal.pone.0002403] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Accepted: 05/09/2008] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Major histocompatibility complex proteins are believed to undergo significant conformational changes concomitant with peptide binding, but structural characterization of these changes has remained elusive. METHODOLOGY/PRINCIPAL FINDINGS Here we use molecular dynamics simulations and experimental probes of protein conformation to investigate the peptide-free state of class II MHC proteins. Upon computational removal of the bound peptide from HLA-DR1-peptide complex, the alpha50-59 region folded into the P1-P4 region of the peptide binding site, adopting the same conformation as a bound peptide. Strikingly, the structure of the hydrophobic P1 pocket is maintained by engagement of the side chain of Phe alpha54. In addition, conserved hydrogen bonds observed in crystal structures between the peptide backbone and numerous MHC side chains are maintained between the alpha51-55 region and the rest of the molecule. The model for the peptide-free conformation was evaluated using conformationally-sensitive antibody and superantigen probes predicted to show no change, moderate change, or dramatic changes in their interaction with peptide-free DR1 and peptide-loaded DR1. The binding observed for these probes is in agreement with the movements predicted by the model. CONCLUSION/SIGNIFICANCE This work presents a molecular model for peptide-free class II MHC proteins that can help to interpret the conformational changes known to occur within the protein during peptide binding and release, and can provide insight into possible mechanisms for DM action.
Collapse
Affiliation(s)
- Corrie A. Painter
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Anthony Cruz
- Department of Chemistry, University of Puerto Rico, Mayagüez, Puerto Rico
| | - Gustavo E. López
- Department of Chemistry, University of Puerto Rico, Mayagüez, Puerto Rico
| | - Lawrence J. Stern
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail: (LS); (ZZ)
| | - Zarixia Zavala-Ruiz
- Department of Chemistry, University of Puerto Rico, San Juan, Puerto Rico
- * E-mail: (LS); (ZZ)
| |
Collapse
|
44
|
Bakker AH, Hoppes R, Linnemann C, Toebes M, Rodenko B, Berkers CR, Hadrup SR, van Esch WJE, Heemskerk MHM, Ovaa H, Schumacher TNM. Conditional MHC class I ligands and peptide exchange technology for the human MHC gene products HLA-A1, -A3, -A11, and -B7. Proc Natl Acad Sci U S A 2008; 105:3825-30. [PMID: 18308940 PMCID: PMC2268811 DOI: 10.1073/pnas.0709717105] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2007] [Indexed: 01/28/2023] Open
Abstract
Major histocompatibility complex (MHC) class I multimer technology has become an indispensable immunological assay system to dissect antigen-specific cytotoxic CD8(+) T cell responses by flow cytometry. However, the development of high-throughput assay systems, in which T cell responses against a multitude of epitopes are analyzed, has been precluded by the fact that for each T cell epitope, a separate in vitro MHC refolding reaction is required. We have recently demonstrated that conditional ligands that disintegrate upon exposure to long-wavelength UV light can be designed for the human MHC molecule HLA-A2. To determine whether this peptide-exchange technology can be developed into a generally applicable approach for high throughput MHC based applications we set out to design conditional ligands for the human MHC gene products HLA-A1, -A3, -A11, and -B7. Here, we describe the development and characterization of conditional ligands for this set of human MHC molecules and apply the peptide-exchange technology to identify melanoma-associated peptides that bind to HLA-A3 with high affinity. The conditional ligand technology developed here will allow high-throughput MHC-based analysis of cytotoxic T cell immunity in the vast majority of Western European individuals.
Collapse
Affiliation(s)
| | - Rieuwert Hoppes
- Cellular Biochemistry, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | | | | | - Boris Rodenko
- Cellular Biochemistry, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Celia R. Berkers
- Cellular Biochemistry, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | | | | | - Mirjam H. M. Heemskerk
- Department of Hematology, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - Huib Ovaa
- Cellular Biochemistry, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | | |
Collapse
|
45
|
Nojima H, Takeda-Shitaka M, Kanou K, Kamiya K, Umeyama H. Dynamic Interaction among the Platform Domain and Two Membrane-Proximal Immunoglobulin-Like Domains of Class I Major Histocompatibility Complex: Normal Mode Analysis. Chem Pharm Bull (Tokyo) 2008; 56:635-41. [DOI: 10.1248/cpb.56.635] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
46
|
Carey J, Lindman S, Bauer M, Linse S. Protein reconstitution and three-dimensional domain swapping: benefits and constraints of covalency. Protein Sci 2007; 16:2317-33. [PMID: 17962398 PMCID: PMC2211703 DOI: 10.1110/ps.072985007] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2007] [Revised: 07/30/2007] [Accepted: 08/01/2007] [Indexed: 10/22/2022]
Abstract
The phenomena of protein reconstitution and three-dimensional domain swapping reveal that highly similar structures can be obtained whether a protein is comprised of one or more polypeptide chains. In this review, we use protein reconstitution as a lens through which to examine the range of protein tolerance to chain interruptions and the roles of the primary structure in related features of protein structure and folding, including circular permutation, natively unfolded proteins, allostery, and amyloid fibril formation. The results imply that noncovalent interactions in a protein are sufficient to specify its structure under the constraints imposed by the covalent backbone.
Collapse
Affiliation(s)
- Jannette Carey
- Chemistry Department, Princeton University, NJ 08544-1009, USA.
| | | | | | | |
Collapse
|
47
|
Rodenko B, Toebes M, Hadrup SR, van Esch WJE, Molenaar AM, Schumacher TNM, Ovaa H. Generation of peptide-MHC class I complexes through UV-mediated ligand exchange. Nat Protoc 2007; 1:1120-32. [PMID: 17406393 DOI: 10.1038/nprot.2006.121] [Citation(s) in RCA: 261] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Major histocompatibility complex (MHC) class I molecules present peptide ligands on the cell surface for recognition by appropriate cytotoxic T cells. MHC-bound peptides are critical for the stability of the MHC complex, and standard strategies for the production of recombinant MHC complexes are based on in vitro refolding reactions with specific peptides. This strategy is not amenable to high-throughput production of vast collections of MHC molecules. We have developed conditional MHC ligands that form stable complexes with MHC molecules but can be cleaved upon UV irradiation. The resulting empty, peptide-receptive MHC molecules can be charged with epitopes of choice under native conditions. Here we describe in-depth procedures for the high-throughput production of peptide-MHC (pMHC) complexes by MHC exchange, the analysis of peptide exchange efficiency by ELISA and the parallel production of MHC tetramers for T-cell detection. The production of the conditional pMHC complex by an in vitro refolding reaction can be achieved within 2 weeks, and the actual high-throughput MHC peptide exchange and subsequent MHC tetramer formation require less than a day.
Collapse
Affiliation(s)
- Boris Rodenko
- Division of Cellular Biochemistry, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
48
|
Sieker F, Springer S, Zacharias M. Comparative molecular dynamics analysis of tapasin-dependent and -independent MHC class I alleles. Protein Sci 2007; 16:299-308. [PMID: 17242432 PMCID: PMC2203297 DOI: 10.1110/ps.062568407] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
MHC class I molecules load antigenic peptides in the endoplasmic reticulum and present them at the cell surface. Efficiency of peptide loading depends on the class I allele and can involve interaction with tapasin and other proteins of the loading complex. Allele HLA-B*4402 (Asp at position 116) depends on tapasin for efficient peptide loading, whereas HLA-B*4405 (identical to B*4402 except for Tyr116) can efficiently load peptides in the absence of tapasin. Both alleles adopt very similar structures in the presence of the same peptide. Comparative unrestrained molecular dynamics simulations on the alpha(1)/alpha(2) peptide binding domains performed in the presence of bound peptides resulted in structures in close agreement with experiments for both alleles. In the absence of peptides, allele-specific conformational changes occurred in the first segment of the alpha(2)-helix that flanks the peptide C-terminal binding region (F-pocket) and contacts residue 116. This segment is also close to the proposed tapasin contact region. For B*4402, a shift toward an altered F-pocket structure deviating significantly from the bound form was observed. Subsequent free energy simulations on induced F-pocket opening in B*4402 confirmed a conformation that deviated significantly from the bound structure. For B*4405, a free energy minimum close to the bound structure was found. The simulations suggest that B*4405 has a greater tendency to adopt a peptide receptive conformation in the absence of peptide, allowing tapasin-independent peptide loading. A possible role of tapasin could be the stabilization of a peptide-receptive class I conformation for HLA-B*4402 and other tapasin-dependent alleles.
Collapse
Affiliation(s)
- Florian Sieker
- School of Engineering and Science, International University Bremen, D-28759 Bremen, Germany
| | | | | |
Collapse
|
49
|
Liu H, Fu J, Bouvier M. Allele- and Locus-Specific Recognition of Class I MHC Molecules by the Immunomodulatory E3-19K Protein from Adenovirus. THE JOURNAL OF IMMUNOLOGY 2007; 178:4567-75. [PMID: 17372015 DOI: 10.4049/jimmunol.178.7.4567] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The E3-19K protein from human adenoviruses (Ads) retains class I MHC molecules in the endoplasmic reticulum. As a consequence, the cell surface expression of class I molecules is suppressed, allowing Ads to evade immune surveillance. Using native gel electrophoresis, gel filtration chromatography, and surface plasmon resonance, we show that a soluble form of the Ad type 2 (Ad2) E3-19K protein associates with HLA-A and -B molecules; equilibrium dissociation constants were in the nanomolar range and approximately 2.5-fold higher affinity for HLA-A (-A*0201, -A*0301, -A*1101, -A*3301, and -Aw*6801) relative to HLA-B (-B*0702 and -B*0801) molecules. Among the alleles of the HLA-A locus examined, HLA-A*3101 associated approximately 15-fold less avidly with soluble E3-19K. Soluble E3-19K interacted only very weakly with HLA-Cw*0304, and no interaction with HLA-Cw*0401 could be detected under identical conditions. Site-directed mutagenesis and flow cytometry demonstrated that MHC residue 56 plays a critical role in the association and endoplasmic reticulum retention of HLA-A molecules by E3-19K. This delineates the spatial environment around residue 56 as a putative E3-19K interaction surface on class I molecules. Overall, our data imply that a link may exist between host genetic factors and the susceptibility of individuals to Ad infections.
Collapse
Affiliation(s)
- Hong Liu
- School of Pharmacy, University of Connecticut, 69 N. Eagleville Road, Storrs, CT 06269, USA
| | | | | |
Collapse
|
50
|
Chen M, Bouvier M. Analysis of interactions in a tapasin/class I complex provides a mechanism for peptide selection. EMBO J 2007; 26:1681-90. [PMID: 17332746 PMCID: PMC1829385 DOI: 10.1038/sj.emboj.7601624] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Accepted: 01/30/2007] [Indexed: 11/08/2022] Open
Abstract
We examined interactions in a soluble tapasin (TPN)/HLA-B*0801 complex to gain mechanistic insights into the functions of TPN. Results show that TPN acts as a chaperone by increasing the ratio of active-to-inactive peptide-deficient HLA-B*0801 molecules in solution. TPN causes peptides to associate and dissociate faster owing to its effect on widening the binding groove of HLA-B*0801 molecules. Our data indicate that a TPN-assisted mechanism of peptide selection relies on disruption of conserved hydrogen bonds at the C-terminal end of the groove. Peptide sequence-dependent interactions along the entire length of the groove also play a role in this mechanism. We suggest that TPN influences presentation of antigenic peptides according to a mechanistically complicated process in which bound candidate peptides that are unable to conformationally disengage TPN from class I molecules are excluded from the repertoire. Overall, these studies unify our understanding of the functions of TPN.
Collapse
Affiliation(s)
- Mingnan Chen
- School of Pharmacy, University of Connecticut, Storrs, CT, USA
| | - Marlene Bouvier
- School of Pharmacy, University of Connecticut, Storrs, CT, USA
- School of Pharmacy, University of Connecticut, 69 N Eagleville Road, U-3092, Storrs, CT 06269, USA. Tel.: +1 860 486 4355; Fax: +1 860 486 4998; E-mail:
| |
Collapse
|