1
|
Presloid CJ, Jiang J, Kandel P, Anderson HR, Beardslee PC, Swayne TM, Schmitz KR. ClpS Directs Degradation of N-Degron Substrates With Primary Destabilizing Residues in Mycolicibacterium smegmatis. Mol Microbiol 2025; 123:16-30. [PMID: 39626090 PMCID: PMC11717620 DOI: 10.1111/mmi.15334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/06/2024] [Accepted: 11/13/2024] [Indexed: 12/08/2024]
Abstract
Drug-resistant tuberculosis infections are a major threat to global public health. The essential mycobacterial ClpC1P1P2 protease has received attention as a prospective target for novel antibacterial therapeutics. However, efforts to probe its function in cells are constrained by our limited knowledge of its physiological proteolytic repertoire. Here, we interrogate the role of mycobacterial ClpS in directing N-degron pathway proteolysis by ClpC1P1P2 in Mycolicibacterium smegmatis. Binding assays demonstrate that mycobacterial ClpS binds canonical primary destabilizing residues (Leu, Phe, Tyr, Trp) with moderate affinity. N-degron binding restricts the conformational flexibility of a loop adjacent to the ClpS N-degron binding pocket and strengthens ClpS•ClpC1 binding affinity ~30-fold, providing a mechanism for cells to prioritize N-degron proteolysis when substrates are abundant. Proteolytic reporter assays in M. smegmatis confirm degradation of substrates bearing primary N-degrons, but suggest that secondary N-degrons are absent in mycobacteria. This work expands our understanding of the mycobacterial N-degron pathway and identifies ClpS as a critical component for substrate specificity, providing insights that may support the development of improved Clp protease inhibitors.
Collapse
Affiliation(s)
| | - Jialiu Jiang
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware, USA
| | - Pratistha Kandel
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | - Henry R Anderson
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware, USA
| | - Patrick C Beardslee
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware, USA
| | - Thomas M Swayne
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware, USA
| | - Karl R Schmitz
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
2
|
Wang N, Gao JG, Wu MW. Molecular docking and molecular simulation studies for N-degron selectivity of chloroplastic ClpS from Chlamydomonas reinhardtii. Comput Biol Chem 2023; 103:107825. [PMID: 36773520 DOI: 10.1016/j.compbiolchem.2023.107825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023]
Abstract
Regarding the importance of N-degron pathway in protein degradation network, the adaptor protein ClpS recognizes the substrates bearing classical N-degrons, and delivers them to caseinolytic protease complex ClpAP for degradation. Interestingly, the majority of N-degrons located near the N-terminus of protein substrate are belonged to the hydrophobic type amino acids. Chloroplast, an important organelle for plant photosynthesis, contain a diversified Clp degradation system. Despite several studies have confirmed that chloroplastic ClpS is able to interact with classical N-degrons derived from prokaryotes, whereas, the molecular mechanism underlying how the chloroplastic ClpS protein could recognize the substrate tagged by N-degrons is still unclear until now. Chlamydomonas reinhardtii is a kind of unicellular model organism for photosynthesis researches, which possesses a large cup-shaped chloroplast, and the corresponding genome data indicates that it owns bacterial homologous adaptor protein, named CrClpS1. However, the relevant biochemical knowledges, and protein structure researches for CrClpS1 adaptor aren't reported up to date. The molecular interactions between CrClpS1 and possible N-degrons are undefined as well. Here, we build a reliable homology model of CrClpS1 and find a hydrophobic pocket for N-degron binding. We combine molecular docking, molecular dynamic simulations, and MM/PBSA, MM/GBSA binding free energy estimations to elucidate the molecular properties of CrClpS1-N-degron interactions. Besides, we investigate the conformational changes for CrClpS1-apo in water-solvent environment and analyze its possible biological significances through a long time molecular dynamic simulation. Specifically, the adaptor CrClpS1 displays the stronger interactions with Phe, Trp, Tyr, His and Ile with respect to other amino acids. Using the residue decomposition analysis, the interactions between CrClpS1 and N-degrons are heavily depended on several conservative residues, which are located around the hydrophobic pocket, implying that chloroplast isolated from Chlamydomonas reinhadtii adopts a relatively conservative N-degron recognition mode. Besides, the opening-closure of hydrophobic pocket of CrClpS1 might be beneficial for the N-degron selectivity.
Collapse
Affiliation(s)
- Ning Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China.
| | - Jian-Guo Gao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Ming-Wei Wu
- University of Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
3
|
AAA+ protease-adaptor structures reveal altered conformations and ring specialization. Nat Struct Mol Biol 2022; 29:1068-1079. [PMID: 36329286 PMCID: PMC9663308 DOI: 10.1038/s41594-022-00850-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 09/22/2022] [Indexed: 11/06/2022]
Abstract
ClpAP, a two-ring AAA+ protease, degrades N-end-rule proteins bound by the ClpS adaptor. Here we present high-resolution cryo-EM structures of Escherichia coli ClpAPS complexes, showing how ClpA pore loops interact with the ClpS N-terminal extension (NTE), which is normally intrinsically disordered. In two classes, the NTE is bound by a spiral of pore-1 and pore-2 loops in a manner similar to substrate-polypeptide binding by many AAA+ unfoldases. Kinetic studies reveal that pore-2 loops of the ClpA D1 ring catalyze the protein remodeling required for substrate delivery by ClpS. In a third class, D2 pore-1 loops are rotated, tucked away from the channel and do not bind the NTE, demonstrating asymmetry in engagement by the D1 and D2 rings. These studies show additional structures and functions for key AAA+ elements. Pore-loop tucking may be used broadly by AAA+ unfoldases, for example, during enzyme pausing/unloading.
Collapse
|
4
|
Division of labor between the pore-1 loops of the D1 and D2 AAA+ rings coordinates substrate selectivity of the ClpAP protease. J Biol Chem 2021; 297:101407. [PMID: 34780718 PMCID: PMC8666677 DOI: 10.1016/j.jbc.2021.101407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 11/06/2021] [Accepted: 11/08/2021] [Indexed: 11/24/2022] Open
Abstract
ClpAP, an ATP-dependent protease consisting of ClpA, a double-ring hexameric unfoldase of the ATPases associated with diverse cellular activities superfamily, and the ClpP peptidase, degrades damaged and unneeded proteins to support cellular proteostasis. ClpA recognizes many protein substrates directly, but it can also be regulated by an adapter, ClpS, that modifies ClpA’s substrate profile toward N-degron substrates. Conserved tyrosines in the 12 pore-1 loops lining the central channel of the stacked D1 and D2 rings of ClpA are critical for degradation, but the roles of these residues in individual steps during direct or adapter-mediated degradation are poorly understood. Using engineered ClpA hexamers with zero, three, or six pore-1 loop mutations in each ATPases associated with diverse cellular activities superfamily ring, we found that active D1 pore loops initiate productive engagement of substrates, whereas active D2 pore loops are most important for mediating the robust unfolding of stable native substrates. In complex with ClpS, active D1 pore loops are required to form a high affinity ClpA•ClpS•substrate complex, but D2 pore loops are needed to “tug on” and remodel ClpS to transfer the N-degron substrate to ClpA. Overall, we find that the pore-1 loop tyrosines in D1 are critical for direct substrate engagement, whereas ClpS-mediated substrate delivery requires unique contributions from both the D1 and D2 pore loops. In conclusion, our study illustrates how pore loop engagement, substrate capture, and powering of the unfolding/translocation steps are distributed between the two rings of ClpA, illuminating new mechanistic features that may be common to double-ring protein unfolding machines.
Collapse
|
5
|
Kim L, Heo J, Kwon DH, Shin JS, Jang SH, Park ZY, Song HK. Structural basis for the N-degron specificity of ClpS1 from Arabidopsis thaliana. Protein Sci 2020; 30:700-708. [PMID: 33368743 DOI: 10.1002/pro.4018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/11/2020] [Accepted: 12/22/2020] [Indexed: 12/25/2022]
Abstract
The N-degron pathway determines the half-life of proteins in both prokaryotes and eukaryotes by precisely recognizing the N-terminal residue (N-degron) of substrates. ClpS proteins from bacteria bind to substrates containing hydrophobic N-degrons (Leu, Phe, Tyr, and Trp) and deliver them to the caseinolytic protease system ClpAP. This mechanism is preserved in organelles such as mitochondria and chloroplasts. Bacterial ClpS adaptors bind preferentially to Leu and Phe N-degrons; however, ClpS1 from Arabidopsis thaliana (AtClpS1) shows a difference in that it binds strongly to Phe and Trp N-degrons and only weakly to Leu. This difference in behavior cannot be explained without structural information due to the high sequence homology between bacterial and plant ClpS proteins. Here, we report the structure of AtClpS1 at 2.0 Å resolution in the presence of a bound N-degron. The key determinants for α-amino group recognition are conserved among all ClpS proteins, but the α3-helix of eukaryotic AtClpS1 is significantly shortened, and consequently, a loop forming a pocket for the N-degron is moved slightly outward to enlarge the pocket. In addition, amino acid replacement from Val to Ala causes a reduction in hydrophobic interactions with Leu N-degron. A combination of the fine-tuned hydrophobic residues in the pocket and the basic gatekeeper at the entrance of the pocket controls the N-degron selectivity of the plant ClpS protein.
Collapse
Affiliation(s)
- Leehyeon Kim
- Department of Life Sciences, Korea University, Seoul, South Korea
| | - Jiwon Heo
- Department of Life Sciences, Korea University, Seoul, South Korea
| | - Do Hoon Kwon
- Department of Life Sciences, Korea University, Seoul, South Korea
| | - Jin Seok Shin
- Department of Life Sciences, Korea University, Seoul, South Korea
| | - Se Hwan Jang
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Zee-Yong Park
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Hyun Kyu Song
- Department of Life Sciences, Korea University, Seoul, South Korea
| |
Collapse
|
6
|
Kim S, Zuromski KL, Bell TA, Sauer RT, Baker TA. ClpAP proteolysis does not require rotation of the ClpA unfoldase relative to ClpP. eLife 2020; 9:e61451. [PMID: 33258771 PMCID: PMC7707817 DOI: 10.7554/elife.61451] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 11/17/2020] [Indexed: 01/01/2023] Open
Abstract
AAA+ proteases perform regulated protein degradation in all kingdoms of life and consist of a hexameric AAA+ unfoldase/translocase in complex with a self-compartmentalized peptidase. Based on asymmetric features of cryo-EM structures and a sequential hand-over-hand model of substrate translocation, recent publications have proposed that the AAA+ unfoldases ClpA and ClpX rotate with respect to their partner peptidase ClpP to allow function. Here, we test this model by covalently crosslinking ClpA to ClpP to prevent rotation. We find that crosslinked ClpAP complexes unfold, translocate, and degrade protein substrates in vitro, albeit modestly slower than uncrosslinked enzyme controls. Rotation of ClpA with respect to ClpP is therefore not required for ClpAP protease activity, although some flexibility in how the AAA+ ring docks with ClpP may be necessary for optimal function.
Collapse
Affiliation(s)
- Sora Kim
- Department of Biology, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Kristin L Zuromski
- Department of Chemistry, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Tristan A Bell
- Department of Biology, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Robert T Sauer
- Department of Biology, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Tania A Baker
- Department of Biology, Massachusetts Institute of TechnologyCambridgeUnited States
| |
Collapse
|
7
|
Modular and coordinated activity of AAA+ active sites in the double-ring ClpA unfoldase of the ClpAP protease. Proc Natl Acad Sci U S A 2020; 117:25455-25463. [PMID: 33020301 PMCID: PMC7568338 DOI: 10.1073/pnas.2014407117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Understanding of how ClpA and other double-ring AAA+ enzymes perform mechanical work is limited. Using site-specific cross-linking and mutagenesis, we introduced ATPase-inactive AAA+ modules at alternating positions in individual ClpA rings, or in both rings, to investigate potential active-site coordination during ClpAP degradation. ClpA variants containing alternating active/inactive ATPase modules processively unfolded, translocated, and supported ClpP degradation of protein substrates with energetic efficiencies similar to, or higher than, completely active ClpA. These results impact current models describing the mechanisms of AAA+ family enzymes. The cross-linking/mutagenesis method we employed will also be useful for answering other structure-function questions about ClpA and related double-ring enzymes. ClpA is a hexameric double-ring AAA+ unfoldase/translocase that functions with the ClpP peptidase to degrade proteins that are damaged or unneeded. How the 12 ATPase active sites of ClpA, 6 in the D1 ring and 6 in the D2 ring, work together to fuel ATP-dependent degradation is not understood. We use site-specific cross-linking to engineer ClpA hexamers with alternating ATPase-active and ATPase-inactive modules in the D1 ring, the D2 ring, or both rings to determine if these active sites function together. Our results demonstrate that D2 modules coordinate with D1 modules and ClpP during mechanical work. However, there is no requirement for adjacent modules in either ring to be active for efficient enzyme function. Notably, ClpAP variants with just three alternating active D2 modules are robust protein translocases and function with double the energetic efficiency of ClpAP variants with completely active D2 rings. Although D2 is the more powerful motor, three or six active D1 modules are important for high enzyme processivity, which depends on D1 and D2 acting coordinately. These results challenge sequential models of ATP hydrolysis and coupled mechanical work by ClpAP and provide an engineering strategy that will be useful in testing other aspects of ClpAP mechanism.
Collapse
|
8
|
Torres-Delgado A, Kotamarthi HC, Sauer RT, Baker TA. The Intrinsically Disordered N-terminal Extension of the ClpS Adaptor Reprograms Its Partner AAA+ ClpAP Protease. J Mol Biol 2020; 432:4908-4921. [PMID: 32687854 DOI: 10.1016/j.jmb.2020.07.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/13/2020] [Accepted: 07/13/2020] [Indexed: 11/18/2022]
Abstract
Adaptor proteins modulate substrate selection by AAA+ proteases. The ClpS adaptor delivers N-degron substrates to ClpAP but inhibits degradation of substrates bearing ssrA tags or other related degrons. How ClpS inhibits degradation of such substrates is poorly understood. Here, we demonstrate that ClpS impedes recognition of ssrA-tagged substrates by a non-competitive mechanism and also slows subsequent unfolding/translocation of these substrates as well as of N-degron substrates. This suppression of mechanical activity is largely a consequence of the ability of ClpS to repress ATP hydrolysis by ClpA, but several lines of evidence show that ClpS's inhibition of substrate binding and its ATPase repression are separable activities. Using ClpS mutants and ClpS-ClpA chimeras, we establish that engagement of the intrinsically disordered N-terminal extension of ClpS by ClpA is both necessary and sufficient to inhibit multiple steps of ClpAP-catalyzed degradation. These observations reveal how an adaptor can simultaneously modulate the catalytic activity of a AAA+ enzyme, efficiently promote recognition of some substrates, suppress recognition of other substrates, and thereby affect degradation of its menu of substrates in a specific manner. We propose that similar mechanisms are likely to be used by other adaptors to regulate substrate choice and the catalytic activity of molecular machines.
Collapse
Affiliation(s)
- Amaris Torres-Delgado
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Robert T Sauer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tania A Baker
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
9
|
Hua C, Wang T, Shao X, Xie Y, Huang H, Liu J, Zhang W, Zhang Y, Ding Y, Jiang L, Wang X, Deng X. Pseudomonas syringaedual‐function protein Lon switches between virulence and metabolism by acting as bothDNA‐binding transcriptional regulator and protease in different environments. Environ Microbiol 2020; 22:2968-2988. [DOI: 10.1111/1462-2920.15067] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 05/09/2020] [Accepted: 05/11/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Canfeng Hua
- Department of Biomedical SciencesCity University of Hong Kong, 83 Tat Chee Road, 16 Kowloon Tong, Hong Kong China
| | - Tingting Wang
- Department of Biomedical SciencesCity University of Hong Kong, 83 Tat Chee Road, 16 Kowloon Tong, Hong Kong China
| | - Xiaolong Shao
- Department of Biomedical SciencesCity University of Hong Kong, 83 Tat Chee Road, 16 Kowloon Tong, Hong Kong China
| | - Yingpeng Xie
- Department of Biomedical SciencesCity University of Hong Kong, 83 Tat Chee Road, 16 Kowloon Tong, Hong Kong China
| | - Hao Huang
- Department of Biomedical SciencesCity University of Hong Kong, 83 Tat Chee Road, 16 Kowloon Tong, Hong Kong China
| | - Jingui Liu
- Department of Biomedical SciencesCity University of Hong Kong, 83 Tat Chee Road, 16 Kowloon Tong, Hong Kong China
| | - Weitong Zhang
- Department of Biomedical SciencesCity University of Hong Kong, 83 Tat Chee Road, 16 Kowloon Tong, Hong Kong China
| | - Yingchao Zhang
- Department of Biomedical SciencesCity University of Hong Kong, 83 Tat Chee Road, 16 Kowloon Tong, Hong Kong China
| | - Yiqing Ding
- Department of Biomedical SciencesCity University of Hong Kong, 83 Tat Chee Road, 16 Kowloon Tong, Hong Kong China
| | - Lin Jiang
- Department of Biomedical SciencesCity University of Hong Kong, 83 Tat Chee Road, 16 Kowloon Tong, Hong Kong China
| | - Xin Wang
- Department of Biomedical SciencesCity University of Hong Kong, 83 Tat Chee Road, 16 Kowloon Tong, Hong Kong China
| | - Xin Deng
- Department of Biomedical SciencesCity University of Hong Kong, 83 Tat Chee Road, 16 Kowloon Tong, Hong Kong China
- Shenzhen Research InstituteCity University of Hong Kong Shenzhen Guangdong China
| |
Collapse
|
10
|
Mycobacterium tuberculosis ClpC1 N-Terminal Domain Is Dispensable for Adaptor Protein-Dependent Allosteric Regulation. Int J Mol Sci 2018; 19:ijms19113651. [PMID: 30463272 PMCID: PMC6274998 DOI: 10.3390/ijms19113651] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/13/2018] [Accepted: 11/15/2018] [Indexed: 12/03/2022] Open
Abstract
ClpC1 hexamers couple the energy of ATP hydrolysis to unfold and, subsequently, translocate specific protein substrates into the associated ClpP protease. Substrate recognition by ATPases associated with various cellular activities (AAA+) proteases is driven by the ATPase component, which selectively determines protein substrates to be degraded. The specificity of these unfoldases for protein substrates is often controlled by an adaptor protein with examples that include MecA regulation of Bacillus subtilis ClpC or ClpS-mediated control of Escherichia coli ClpA. No adaptor protein-mediated control has been reported for mycobacterial ClpC1. Using pulldown and stopped-flow fluorescence methods, we report data demonstrating that Mycobacterium tuberculosis ClpC1 catalyzed unfolding of an SsrA-tagged protein is negatively impacted by association with the ClpS adaptor protein. Our data indicate that ClpS-dependent inhibition of ClpC1 catalyzed SsrA-dependent protein unfolding does not require the ClpC1 N-terminal domain but instead requires the presence of an interaction surface located in the ClpC1 Middle Domain. Taken together, our results demonstrate for the first time that mycobacterial ClpC1 is subject to adaptor protein-mediated regulation in vitro.
Collapse
|
11
|
An optogenetic toolbox of LOV-based photosensitizers for light-driven killing of bacteria. Sci Rep 2018; 8:15021. [PMID: 30301917 PMCID: PMC6177443 DOI: 10.1038/s41598-018-33291-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 09/26/2018] [Indexed: 01/04/2023] Open
Abstract
Flavin-binding fluorescent proteins (FPs) are genetically encoded in vivo reporters, which are derived from microbial and plant LOV photoreceptors. In this study, we comparatively analyzed ROS formation and light-driven antimicrobial efficacy of eleven LOV-based FPs. In particular, we determined singlet oxygen (1O2) quantum yields and superoxide photosensitization activities via spectroscopic assays and performed cell toxicity experiments in E. coli. Besides miniSOG and SOPP, which have been engineered to generate 1O2, all of the other tested flavoproteins were able to produce singlet oxygen and/or hydrogen peroxide but exhibited remarkable differences in ROS selectivity and yield. Accordingly, most LOV-FPs are potent photosensitizers, which can be used for light-controlled killing of bacteria. Furthermore, the two variants Pp2FbFP and DsFbFP M49I, exhibiting preferential photosensitization of singlet oxygen or singlet oxygen and superoxide, respectively, were shown to be new tools for studying specific ROS-induced cell signaling processes. The tested LOV-FPs thus further expand the toolbox of optogenetic sensitizers usable for a broad spectrum of microbiological and biomedical applications.
Collapse
|
12
|
Piatkov KI, Vu TTM, Hwang CS, Varshavsky A. Formyl-methionine as a degradation signal at the N-termini of bacterial proteins. MICROBIAL CELL (GRAZ, AUSTRIA) 2016; 2:376-393. [PMID: 26866044 PMCID: PMC4745127 DOI: 10.15698/mic2015.10.231] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 08/17/2015] [Indexed: 02/04/2023]
Abstract
In bacteria, all nascent proteins bear the pretranslationally formed N-terminal formyl-methionine (fMet) residue. The fMet residue is cotranslationally deformylated by a ribosome-associated deformylase. The formylation of N-terminal Met in bacterial proteins is not strictly essential for either translation or cell viability. Moreover, protein synthesis by the cytosolic ribosomes of eukaryotes does not involve the formylation of N-terminal Met. What, then, is the main biological function of this metabolically costly, transient, and not strictly essential modification of N-terminal Met, and why has Met formylation not been eliminated during bacterial evolution? One possibility is that the similarity of the formyl and acetyl groups, their identical locations in N-terminally formylated (Nt-formylated) and Nt-acetylated proteins, and the recently discovered proteolytic function of Nt-acetylation in eukaryotes might also signify a proteolytic role of Nt-formylation in bacteria. We addressed this hypothesis about fMet-based degradation signals, termed fMet/N-degrons, using specific E. coli mutants, pulse-chase degradation assays, and protein reporters whose deformylation was altered, through site-directed mutagenesis, to be either rapid or relatively slow. Our findings strongly suggest that the formylated N-terminal fMet can act as a degradation signal, largely a cotranslational one. One likely function of fMet/N-degrons is the control of protein quality. In bacteria, the rate of polypeptide chain elongation is nearly an order of magnitude higher than in eukaryotes. We suggest that the faster emergence of nascent proteins from bacterial ribosomes is one mechanistic and evolutionary reason for the pretranslational design of bacterial fMet/N-degrons, in contrast to the cotranslational design of analogous Ac/N-degrons in eukaryotes.
Collapse
Affiliation(s)
- Konstantin I. Piatkov
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
- Center for Biotechnology and Biomedicine, Skolkovo Institute of Science and Technology, Moscow, 143026, Russia
| | - Tri T. M. Vu
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | - Cheol-Sang Hwang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, 790-784, South Korea
| | - Alexander Varshavsky
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
13
|
Stein BJ, Grant RA, Sauer RT, Baker TA. Structural Basis of an N-Degron Adaptor with More Stringent Specificity. Structure 2016; 24:232-42. [PMID: 26805523 DOI: 10.1016/j.str.2015.12.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 12/01/2015] [Accepted: 12/11/2015] [Indexed: 11/25/2022]
Abstract
The N-end rule dictates that a protein's N-terminal residue determines its half-life. In bacteria, the ClpS adaptor mediates N-end-rule degradation, by recognizing proteins bearing specific N-terminal residues and delivering them to the ClpAP AAA+ protease. Unlike most bacterial clades, many α-proteobacteria encode two ClpS paralogs, ClpS1 and ClpS2. Here, we demonstrate that both ClpS1 and ClpS2 from A. tumefaciens deliver N-end-rule substrates to ClpA, but ClpS2 has more stringent binding specificity, recognizing only a subset of the canonical bacterial N-end-rule residues. The basis of this enhanced specificity is addressed by crystal structures of ClpS2, with and without ligand, and structure-guided mutagenesis, revealing protein conformational changes and remodeling in the substrate-binding pocket. We find that ClpS1 and ClpS2 are differentially expressed during growth in A. tumefaciens and conclude that the use of multiple ClpS paralogs allows fine-tuning of N-end-rule degradation at the level of substrate recognition.
Collapse
Affiliation(s)
- Benjamin J Stein
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Robert A Grant
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Robert T Sauer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tania A Baker
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
14
|
AhYoung AP, Koehl A, Vizcarra CL, Cascio D, Egea PF. Structure of a putative ClpS N-end rule adaptor protein from the malaria pathogen Plasmodium falciparum. Protein Sci 2016; 25:689-701. [PMID: 26701219 DOI: 10.1002/pro.2868] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 12/20/2015] [Accepted: 12/21/2015] [Indexed: 01/05/2023]
Abstract
The N-end rule pathway uses an evolutionarily conserved mechanism in bacteria and eukaryotes that marks proteins for degradation by ATP-dependent chaperones and proteases such as the Clp chaperones and proteases. Specific N-terminal amino acids (N-degrons) are sufficient to target substrates for degradation. In bacteria, the ClpS adaptor binds and delivers N-end rule substrates for their degradation upon association with the ClpA/P chaperone/protease. Here, we report the first crystal structure, solved at 2.7 Å resolution, of a eukaryotic homolog of bacterial ClpS from the malaria apicomplexan parasite Plasmodium falciparum (Pfal). Despite limited sequence identity, Plasmodium ClpS is very similar to bacterial ClpS. Akin to its bacterial orthologs, plasmodial ClpS harbors a preformed hydrophobic pocket whose geometry and chemical properties are compatible with the binding of N-degrons. However, while the N-degron binding pocket in bacterial ClpS structures is open and accessible, the corresponding pocket in Plasmodium ClpS is occluded by a conserved surface loop that acts as a latch. Despite the closed conformation observed in the crystal, we show that, in solution, Pfal-ClpS binds and discriminates peptides mimicking bona fide N-end rule substrates. The presence of an apicoplast targeting peptide suggests that Pfal-ClpS localizes to this plastid-like organelle characteristic of all Apicomplexa and hosting most of its Clp machinery. By analogy with the related ClpS1 from plant chloroplasts and cyanobacteria, Plasmodium ClpS likely functions in association with ClpC in the apicoplast. Our findings open new venues for the design of novel anti-malarial drugs aimed at disrupting parasite-specific protein quality control pathways.
Collapse
Affiliation(s)
- Andrew P AhYoung
- Department of Biological Chemistry, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| | - Antoine Koehl
- Department of Biological Chemistry, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| | - Christina L Vizcarra
- Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, California
| | - Duilio Cascio
- Department of Energy Institute for Genomics and Proteomics, University of California at Los Angeles, Los Angeles, California
| | - Pascal F Egea
- Department of Biological Chemistry, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California.,Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California
| |
Collapse
|
15
|
Tryggvesson A, Ståhlberg FM, Töpel M, Tanabe N, Mogk A, Clarke AK. Characterization of ClpS2, an essential adaptor protein for the cyanobacterium Synechococcus elongatus. FEBS Lett 2015; 589:4039-46. [DOI: 10.1016/j.febslet.2015.11.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 11/13/2015] [Accepted: 11/16/2015] [Indexed: 11/16/2022]
|
16
|
Remodeling of a delivery complex allows ClpS-mediated degradation of N-degron substrates. Proc Natl Acad Sci U S A 2014; 111:E3853-9. [PMID: 25187555 DOI: 10.1073/pnas.1414933111] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ClpS adaptor collaborates with the AAA+ ClpAP protease to recognize and degrade N-degron substrates. ClpS binds the substrate N-degron and assembles into a high-affinity ClpS-substrate-ClpA complex, but how the N-degron is transferred from ClpS to the axial pore of the AAA+ ClpA unfoldase to initiate degradation is not known. Here we demonstrate that the unstructured N-terminal extension (NTE) of ClpS enters the ClpA processing pore in the active ternary complex. We establish that ClpS promotes delivery only in cis, as demonstrated by mixing ClpS variants with distinct substrate specificity and either active or inactive NTE truncations. Importantly, we find that ClpA engagement of the ClpS NTE is crucial for ClpS-mediated substrate delivery by using ClpS variants carrying "blocking" elements that prevent the NTE from entering the pore. These results support models in which enzymatic activity of ClpA actively remodels ClpS to promote substrate transfer, and highlight how ATPase/motor activities of AAA+ proteases can be critical for substrate selection as well as protein degradation.
Collapse
|
17
|
Abstract
Bacteria are frequently exposed to changes in environmental conditions, such as fluctuations in temperature, pH or the availability of nutrients. These assaults can be detrimental to cell as they often result in a proteotoxic stress, which can cause the accumulation of unfolded proteins. In order to restore a productive folding environment in the cell, bacteria have evolved a network of proteins, known as the protein quality control (PQC) network, which is composed of both chaperones and AAA+ proteases. These AAA+ proteases form a major part of this PQC network, as they are responsible for the removal of unwanted and damaged proteins. They also play an important role in the turnover of specific regulatory or tagged proteins. In this review, we describe the general features of an AAA+ protease, and using two of the best-characterised AAA+ proteases in Escherichia coli (ClpAP and ClpXP) as a model for all AAA+ proteases, we provide a detailed mechanistic description of how these machines work. Specifically, the review examines the physiological role of these machines, as well as the substrates and the adaptor proteins that modulate their substrate specificity.
Collapse
|
18
|
Truscott KN, Bezawork-Geleta A, Dougan DA. Unfolded protein responses in bacteria and mitochondria: a central role for the ClpXP machine. IUBMB Life 2012; 63:955-63. [PMID: 22031494 DOI: 10.1002/iub.526] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In the crowded environment of a cell, the protein quality control machinery, such as molecular chaperones and proteases, maintains a population of folded and hence functional proteins. The accumulation of unfolded proteins in a cell is particularly harmful as it not only reduces the concentration of active proteins but also overburdens the protein quality control machinery, which in turn, can lead to a significant increase in nonproductive folding and protein aggregation. To circumvent this problem, cells use heat shock and unfolded protein stress response pathways, which essentially sense the change to protein homeostasis upregulating protein quality control factors that act to restore the balance. Interestingly, several stress response pathways are proteolytically controlled. In this review, we provide a brief summary of targeted protein degradation by AAA+ proteases and focus on the role of ClpXP proteases, particularly in the signaling pathway of the Escherichia coli extracellular stress response and the mitochondrial unfolded protein response.
Collapse
Affiliation(s)
- Kaye N Truscott
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia.
| | | | | |
Collapse
|
19
|
Abstract
AAA+ family proteolytic machines (ClpXP, ClpAP, ClpCP, HslUV, Lon, FtsH, PAN/20S, and the 26S proteasome) perform protein quality control and are used in regulatory circuits in all cells. These machines contain a compartmental protease, with active sites sequestered in an interior chamber, and a hexameric ring of AAA+ ATPases. Substrate proteins are tethered to the ring, either directly or via adaptor proteins. An unstructured region of the substrate is engaged in the axial pore of the AAA+ ring, and cycles of ATP binding/hydrolysis drive conformational changes that create pulses of pulling that denature the substrate and translocate the unfolded polypeptide through the pore and into the degradation chamber. Here, we review our current understanding of the molecular mechanisms of substrate recognition, adaptor function, and ATP-fueled unfolding and translocation. The unfolding activities of these and related AAA+ machines can also be used to disassemble or remodel macromolecular complexes and to resolubilize aggregates.
Collapse
Affiliation(s)
- Robert T Sauer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | | |
Collapse
|
20
|
Varshavsky A. The N-end rule pathway and regulation by proteolysis. Protein Sci 2011; 20:1298-345. [PMID: 21633985 PMCID: PMC3189519 DOI: 10.1002/pro.666] [Citation(s) in RCA: 559] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 05/16/2011] [Accepted: 05/18/2011] [Indexed: 01/12/2023]
Abstract
The N-end rule relates the regulation of the in vivo half-life of a protein to the identity of its N-terminal residue. Degradation signals (degrons) that are targeted by the N-end rule pathway include a set called N-degrons. The main determinant of an N-degron is a destabilizing N-terminal residue of a protein. In eukaryotes, the N-end rule pathway is a part of the ubiquitin system and consists of two branches, the Ac/N-end rule and the Arg/N-end rule pathways. The Ac/N-end rule pathway targets proteins containing N(α) -terminally acetylated (Nt-acetylated) residues. The Arg/N-end rule pathway recognizes unacetylated N-terminal residues and involves N-terminal arginylation. Together, these branches target for degradation a majority of cellular proteins. For example, more than 80% of human proteins are cotranslationally Nt-acetylated. Thus most proteins harbor a specific degradation signal, termed (Ac)N-degron, from the moment of their birth. Specific N-end rule pathways are also present in prokaryotes and in mitochondria. Enzymes that produce N-degrons include methionine-aminopeptidases, caspases, calpains, Nt-acetylases, Nt-amidases, arginyl-transferases and leucyl-transferases. Regulated degradation of specific proteins by the N-end rule pathway mediates a legion of physiological functions, including the sensing of heme, oxygen, and nitric oxide; selective elimination of misfolded proteins; the regulation of DNA repair, segregation and condensation; the signaling by G proteins; the regulation of peptide import, fat metabolism, viral and bacterial infections, apoptosis, meiosis, spermatogenesis, neurogenesis, and cardiovascular development; and the functioning of adult organs, including the pancreas and the brain. Discovered 25 years ago, this pathway continues to be a fount of biological insights.
Collapse
Affiliation(s)
- Alexander Varshavsky
- 1Division of Biology, California Institute of Technology, Pasadena, California 91125.
| |
Collapse
|
21
|
Román-Hernández G, Hou JY, Grant RA, Sauer RT, Baker TA. The ClpS adaptor mediates staged delivery of N-end rule substrates to the AAA+ ClpAP protease. Mol Cell 2011; 43:217-28. [PMID: 21777811 PMCID: PMC3168947 DOI: 10.1016/j.molcel.2011.06.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 04/10/2011] [Accepted: 06/02/2011] [Indexed: 01/07/2023]
Abstract
The ClpS adaptor delivers N-end rule substrates to ClpAP, an energy-dependent AAA+ protease, for degradation. How ClpS binds specific N-end residues is known in atomic detail and clarified here, but the delivery mechanism is poorly understood. We show that substrate binding is enhanced when ClpS binds hexameric ClpA. Reciprocally, N-end rule substrates increase ClpS affinity for ClpA(6). Enhanced binding requires the N-end residue and a peptide bond of the substrate, as well as multiple aspects of ClpS, including a side chain that contacts the substrate α-amino group and the flexible N-terminal extension (NTE). Finally, enhancement also needs the N domain and AAA+ rings of ClpA, connected by a long linker. The NTE can be engaged by the ClpA translocation pore, but ClpS resists unfolding/degradation. We propose a staged-delivery model that illustrates how intimate contacts between the substrate, adaptor, and protease reprogram specificity and coordinate handoff from the adaptor to the protease.
Collapse
Affiliation(s)
| | - Jennifer Y. Hou
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Robert A. Grant
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Robert T. Sauer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Tania A. Baker
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| |
Collapse
|
22
|
Dougan DA, Micevski D, Truscott KN. The N-end rule pathway: from recognition by N-recognins, to destruction by AAA+proteases. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:83-91. [PMID: 21781991 DOI: 10.1016/j.bbamcr.2011.07.002] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 07/03/2011] [Accepted: 07/06/2011] [Indexed: 11/26/2022]
Abstract
Intracellular proteolysis is a tightly regulated process responsible for the targeted removal of unwanted or damaged proteins. The non-lysosomal removal of these proteins is performed by processive enzymes, which belong to the AAA+superfamily, such as the 26S proteasome and Clp proteases. One important protein degradation pathway, that is common to both prokaryotes and eukaryotes, is the N-end rule. In this pathway, proteins bearing a destabilizing amino acid residue at their N-terminus are degraded either by the ClpAP protease in bacteria, such as Escherichia coli or by the ubiquitin proteasome system in the eukaryotic cytoplasm. A suite of enzymes and other molecular components are also required for the successful generation, recognition and delivery of N-end rule substrates to their cognate proteases. In this review we examine the similarities and differences in the N-end rule pathway of bacterial and eukaryotic systems, focusing on the molecular determinants of this pathway.
Collapse
Affiliation(s)
- D A Dougan
- Department of Biochemistry, L Trobe Institute for Molecular Science, La Trobe University, Melbourne, 3086, Australia.
| | | | | |
Collapse
|
23
|
Dougan DA, Truscott KN, Zeth K. The bacterial N-end rule pathway: expect the unexpected. Mol Microbiol 2010; 76:545-58. [DOI: 10.1111/j.1365-2958.2010.07120.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
De Donatis GM, Singh SK, Viswanathan S, Maurizi MR. A single ClpS monomer is sufficient to direct the activity of the ClpA hexamer. J Biol Chem 2010; 285:8771-81. [PMID: 20068042 DOI: 10.1074/jbc.m109.053736] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ClpS is an adaptor protein that interacts with ClpA and promotes degradation of proteins with N-end rule degradation motifs (N-degrons) by ClpAP while blocking degradation of substrates with other motifs. Although monomeric ClpS forms a 1:1 complex with an isolated N-domain of ClpA, only one molecule of ClpS binds with high affinity to ClpA hexamers (ClpA(6)). One or two additional molecules per hexamer bind with lower affinity. Tightly bound ClpS dissociates slowly from ClpA(6) with a t((1/2)) of approximately 3 min at 37 degrees C. Maximum activation of degradation of the N-end rule substrate, LR-GFP(Venus), occurs with a single ClpS bound per ClpA(6); one ClpS is also sufficient to inhibit degradation of proteins without N-degrons. ClpS competitively inhibits degradation of unfolded substrates that interact with ClpA N-domains and is a non-competitive inhibitor with substrates that depend on internal binding sites in ClpA. ClpS inhibition of substrate binding is dependent on the order of addition. When added first, ClpS blocks binding of both high and low affinity substrates; however, when substrates first form committed complexes with ClpA(6), ClpS cannot displace them or block their degradation by ClpP. We propose that the first molecule of ClpS binds to the N-domain and to an additional functional binding site, sterically blocking binding of non-N-end rule substrates as well as additional ClpS molecules to ClpA(6). Limiting ClpS-mediated substrate delivery to one per ClpA(6) avoids congestion at the axial channel and allows facile transfer of proteins to the unfolding and translocation apparatus.
Collapse
Affiliation(s)
- Gian Marco De Donatis
- Laboratory of Cell Biology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892-4256, USA
| | | | | | | |
Collapse
|
25
|
Ge Z, Karzai AW. Co-evolution of multipartite interactions between an extended tmRNA tag and a robust Lon protease in Mycoplasma. Mol Microbiol 2009; 74:1083-99. [PMID: 19912542 DOI: 10.1111/j.1365-2958.2009.06923.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Messenger RNAs that lack in-frame stop codons promote ribosome stalling and accumulation of aberrant and potentially harmful polypeptides. The SmpB-tmRNA quality control system has evolved to solve problems associated with non-stop mRNAs, by rescuing stalled ribosomes and directing the addition of a peptide tag to the C-termini of the associated proteins, marking them for proteolysis. In Escherichia coli, the ClpXP system is the major contributor to disposal of tmRNA-tagged proteins. We have shown that the AAA+ Lon protease can also degrade tmRNA-tagged proteins, but with much lower efficiency. Here, we present a unique case of enhanced recognition and degradation of an extended Mycoplasma pneumoniae (MP) tmRNA tag by the MP-Lon protease. We demonstrate that MP-Lon can efficiently and selectively degrade MP-tmRNA-tagged proteins. Most significantly, our studies reveal that the larger (27 amino acids long) MP-tmRNA tag contains multiple discrete signalling motifs for efficient recognition and rapid degradation by Lon. We propose that higher-affinity multipartite interactions between MP-Lon and the extended MP-tmRNA tag have co-evolved from pre-existing weaker interactions, as exhibited by Lon in E. coli, to better fulfil the function of MP-Lon as the sole soluble cytoplasmic protease responsible for the degradation of tmRNA-tagged proteins.
Collapse
Affiliation(s)
- Zhiyun Ge
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | | |
Collapse
|
26
|
Chaperone-protease systems in regulation and protein quality control in Bacillus subtilis. Res Microbiol 2009; 160:637-44. [DOI: 10.1016/j.resmic.2009.08.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 08/20/2009] [Accepted: 08/20/2009] [Indexed: 12/13/2022]
|
27
|
Schmidt R, Bukau B, Mogk A. Principles of general and regulatory proteolysis by AAA+ proteases in Escherichia coli. Res Microbiol 2009; 160:629-36. [PMID: 19781640 DOI: 10.1016/j.resmic.2009.08.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 08/20/2009] [Accepted: 08/21/2009] [Indexed: 11/25/2022]
Abstract
General and regulated proteolysis in bacteria is crucial for cellular homeostasis and relies on high substrate specificity of the executing AAA+ proteases. Here we summarize the various strategies that tightly control substrate degradation from both sides: the generation of accessible degrons and their specific recognition by AAA+ proteases and cognate adaptor proteins.
Collapse
Affiliation(s)
- Ronny Schmidt
- Zentrum für Molekulare Biologie Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Universität Heidelberg, Im Neuenheimer Feld 282, Heidelberg D-69120, Germany
| | | | | |
Collapse
|
28
|
Kress W, Maglica Z, Weber-Ban E. Clp chaperone-proteases: structure and function. Res Microbiol 2009; 160:618-28. [PMID: 19732826 DOI: 10.1016/j.resmic.2009.08.006] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Revised: 08/14/2009] [Accepted: 08/14/2009] [Indexed: 11/26/2022]
Abstract
Clp proteases are the most widespread energy-dependent proteases in bacteria. Their two-component architecture of protease core and ATPase rings results in an inventory of several Clp protease complexes that often coexist. Here, we present insights into Clp protease function, from their assembly to substrate recruitment and processing, and how this is coupled to the expense of energy.
Collapse
Affiliation(s)
- Wolfgang Kress
- ETH Zurich, Institute of Molecular Biology & Biophysics, Schafmattstrasse 20, 8093 Zurich, Switzerland
| | | | | |
Collapse
|
29
|
Kress W, Mutschler H, Weber-Ban E. Both ATPase domains of ClpA are critical for processing of stable protein structures. J Biol Chem 2009; 284:31441-52. [PMID: 19726681 DOI: 10.1074/jbc.m109.022319] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ClpA is a ring-shaped hexameric chaperone that binds to both ends of the protease ClpP and catalyzes the ATP-dependent unfolding and translocation of substrate proteins through its central pore into the ClpP cylinder. Here we study the relevance of ATP hydrolysis in the two ATPase domains of ClpA. We designed ClpA Walker B variants lacking ATPase activity in the first (D1) or the second ATPase domain (D2) without impairing ATP binding. We found that the two ATPase domains of ClpA operate independently even in the presence of the protease ClpP or the adaptor protein ClpS. Notably, ATP hydrolysis in the first ATPase module is sufficient to process a small, single domain protein of low stability. Substrate proteins of moderate local stability were efficiently processed when D1 was inactivated. However, ATP hydrolysis in both domains was required for efficiently processing substrates of high local stability. Furthermore, we provide evidence for the ClpS-dependent directional translocation of N-end rule substrates from the N to C terminus and propose a mechanistic model for substrate handover from the adaptor protein to the chaperone.
Collapse
Affiliation(s)
- Wolfgang Kress
- Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland
| | | | | |
Collapse
|
30
|
Abstract
Members of the AAA+ protein superfamily contribute to many diverse aspects of protein homeostasis in prokaryotic cells. As a fundamental component of numerous proteolytic machines in bacteria, AAA+ proteins play a crucial part not only in general protein quality control but also in the regulation of developmental programmes, through the controlled turnover of key proteins such as transcription factors. To manage these many, varied tasks, Hsp100/Clp and AAA+ proteases use specific adaptor proteins to enhance or expand the substrate recognition abilities of their cognate protease. Here, we review our current knowledge of the modulation of bacterial AAA+ proteases by these cellular arbitrators.
Collapse
|
31
|
Davis JH, Baker TA, Sauer RT. Engineering synthetic adaptors and substrates for controlled ClpXP degradation. J Biol Chem 2009; 284:21848-21855. [PMID: 19549779 DOI: 10.1074/jbc.m109.017624] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Facile control of targeted intracellular protein degradation has many potential uses in basic science and biotechnology. One promising approach to this goal is to redesign adaptor proteins, which can regulate proteolytic specificity by tethering substrates to energy-dependent AAA+ proteases. Using the ClpXP protease, we have probed the minimal biochemical functions required for adaptor function by designing and characterizing variant substrates, adaptors, and ClpX enzymes. We find that substrate tethering mediated by heterologous interaction domains and a small bridging molecule mimics substrate delivery by the wild-type system. These results show that simple tethering is sufficient for synthetic adaptor function. In our engineered system, tethering and proteolysis depend on the presence of the macrolide rapamycin, providing a foundation for engineering highly specific degradation of target proteins in cells. Importantly, this degradation is regulated by a small molecule without the need for new adaptor or enzyme biosynthesis.
Collapse
Affiliation(s)
| | - Tania A Baker
- Department of Biology, Cambridge, Massachusetts 02139; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | | |
Collapse
|
32
|
Molecular basis of substrate selection by the N-end rule adaptor protein ClpS. Proc Natl Acad Sci U S A 2009; 106:8888-93. [PMID: 19451643 DOI: 10.1073/pnas.0903614106] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The N-end rule is a conserved degradation pathway that relates the stability of a protein to its N-terminal amino acid. Here, we present crystal structures of ClpS, the bacterial N-end rule adaptor, alone and engaged with peptides containing N-terminal phenylalanine, leucine, and tryptophan. These structures, together with a previous structure of ClpS bound to an N-terminal tyrosine, illustrate the molecular basis of recognition of the complete set of primary N-end rule amino acids. In each case, the alpha-amino group and side chain of the N-terminal residue are the major determinants of recognition. The binding pocket for the N-end residue is preformed in the free adaptor, and only small adjustments are needed to accommodate N-end rule residues having substantially different sizes and shapes. M53A ClpS is known to mediate degradation of an expanded repertoire of substrates, including those with N-terminal valine or isoleucine. A structure of Met53A ClpS engaged with an N-end rule tryptophan reveals an essentially wild-type mechanism of recognition, indicating that the Met(53) side chain directly enforces specificity by clashing with and excluding beta-branched side chains. Finally, experimental and structural data suggest mechanisms that make proteins with N-terminal methionine bind very poorly to ClpS, explaining why these high-abundance proteins are not degraded via the N-end rule pathway in the cell.
Collapse
|
33
|
Schuenemann VJ, Kralik SM, Albrecht R, Spall SK, Truscott KN, Dougan DA, Zeth K. Structural basis of N-end rule substrate recognition in Escherichia coli by the ClpAP adaptor protein ClpS. EMBO Rep 2009; 10:508-14. [PMID: 19373253 DOI: 10.1038/embor.2009.62] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Revised: 03/02/2009] [Accepted: 03/03/2009] [Indexed: 11/09/2022] Open
Abstract
In Escherichia coli, the ClpAP protease, together with the adaptor protein ClpS, is responsible for the degradation of proteins bearing an amino-terminal destabilizing amino acid (N-degron). Here, we determined the three-dimensional structures of ClpS in complex with three peptides, each having a different destabilizing residue--Leu, Phe or Trp--at its N terminus. All peptides, regardless of the identity of their N-terminal residue, are bound in a surface pocket on ClpS in a stereo-specific manner. Several highly conserved residues in this binding pocket interact directly with the backbone of the N-degron peptide and hence are crucial for the binding of all N-degrons. By contrast, two hydrophobic residues define the volume of the binding pocket and influence the specificity of ClpS. Taken together, our data suggest that ClpS has been optimized for the binding and delivery of N-degrons containing an N-terminal Phe or Leu.
Collapse
Affiliation(s)
- Verena J Schuenemann
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Spemannstrasse 35, Tübingen D-72076, Germany
| | | | | | | | | | | | | |
Collapse
|
34
|
Controlled destruction: AAA+ ATPases in protein degradation from bacteria to eukaryotes. Curr Opin Struct Biol 2009; 19:209-17. [DOI: 10.1016/j.sbi.2009.02.006] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2008] [Revised: 02/16/2009] [Accepted: 02/26/2009] [Indexed: 01/11/2023]
|
35
|
Kojetin DJ, McLaughlin PD, Thompson RJ, Dubnau D, Prepiak P, Rance M, Cavanagh J. Structural and motional contributions of the Bacillus subtilis ClpC N-domain to adaptor protein interactions. J Mol Biol 2009; 387:639-52. [PMID: 19361434 DOI: 10.1016/j.jmb.2009.01.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Revised: 01/19/2009] [Accepted: 01/23/2009] [Indexed: 10/21/2022]
Abstract
The AAA(+) (ATPases associated with a variety of cellular activities) superfamily protein ClpC is a key regulator of cell development in Bacillus subtilis. As part of a large oligomeric complex, ClpC controls an array of cellular processes by recognizing, unfolding, and providing misfolded and aggregated proteins as substrates for the ClpP peptidase. ClpC is unique compared to other HSP100/Clp proteins, as it requires an adaptor protein for all fundamental activities. The NMR solution structure of the N-terminal repeat domain of ClpC (N-ClpCR) comprises two structural repeats of a four-helix motif. NMR experiments used to map the MecA adaptor protein interaction surface of N-ClpCR reveal that regions involved in the interaction possess conformational flexibility and conformational exchange on the microsecond-to-millisecond timescale. The electrostatic surface of N-ClpCR differs substantially from the N-domain of Escherichia coli ClpA and ClpB, suggesting that the electrostatic surface characteristics of HSP100/Clp N-domains may play a role in adaptor protein and substrate interaction specificity, and perhaps contribute to the unique adaptor protein requirement of ClpC.
Collapse
Affiliation(s)
- Douglas J Kojetin
- Department of Molecular Genetics, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Affiliation(s)
- Alexander Varshavsky
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA.
| |
Collapse
|
37
|
|
38
|
Abstract
As a first step towards describing the role of proteolysis in maintaining genomic integrity, we have determined the effect of the loss of ClpXP, a major energy-dependent cytoplasmic protease that degrades truncated proteins as well as a number of regulatory proteins, on spontaneous mutagenesis. In a rifampicin-sensitive to rifampicin-resistance assay that detects base substitution mutations in the essential rpoB gene, there is a modest, but appreciable increase in mutagenesis in Delta(clpP-clpX) cells relative to wild-type cells. A colony papillation analysis using a set of lacZ strains revealed that genetic -1 frameshift mutations are strongly elevated in Clp-defective cells. A quantitative analysis using a valine-sensitive to valine-resistance assay that detects frameshift mutations showed that mutagenesis is elevated 50-fold in Clp-defective cells. Elevated frameshift mutagenesis observed in Clp-deficient cells is essentially abolished in lexA1[Ind(-)] (SOS-uninducible) cells, and in cells deleted for the SOS gene dinB, which codes for DNA polymerase IV. In contrast, mutagenesis is unaffected or stimulated in cells deleted for umuC or umuD, which code for critical components of DNA polymerase V. Loss of rpoS, which codes for a stress-response sigma factor known to upregulate dinB expression in stationary phase, does not affect mutagenesis. We propose that elevated DinB expression, as well as stabilization of UmuD/UmuD' heterodimers in Delta(clpP-clpX) cells, contributes to elevated mutagenesis. These findings suggest that in normal cells, Clp-mediated proteolysis plays an important role in preventing gratuitous mutagenesis.
Collapse
Affiliation(s)
- Abu Amar M Al Mamun
- University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Department of Microbiology and Molecular Genetics, International Center for Public Health, Newark, NJ 07101, USA
| | | |
Collapse
|
39
|
Wang KH, Roman-Hernandez G, Grant RA, Sauer RT, Baker TA. The molecular basis of N-end rule recognition. Mol Cell 2008; 32:406-14. [PMID: 18995838 PMCID: PMC3114436 DOI: 10.1016/j.molcel.2008.08.032] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Revised: 08/11/2008] [Accepted: 08/18/2008] [Indexed: 01/07/2023]
Abstract
The N-end rule targets specific proteins for destruction in prokaryotes and eukaryotes. Here, we report a crystal structure of a bacterial N-end rule adaptor, ClpS, bound to a peptide mimic of an N-end rule substrate. This structure, which was solved at a resolution of 1.15 A, reveals specific recognition of the peptide alpha-amino group via hydrogen bonding and shows that the peptide's N-terminal tyrosine side chain is buried in a deep hydrophobic cleft that pre-exists on the surface of ClpS. The adaptor side chains that contact the peptide's N-terminal residue are highly conserved in orthologs and in E3 ubiquitin ligases that mediate eukaryotic N-end rule recognition. We show that mutation of critical ClpS contact residues abrogates substrate delivery to and degradation by the AAA+ protease ClpAP, demonstrate that modification of the hydrophobic pocket results in altered N-end rule specificity, and discuss functional implications for the mechanism of substrate delivery.
Collapse
Affiliation(s)
- Kevin H Wang
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|
40
|
Maglica Z, Striebel F, Weber-Ban E. An intrinsic degradation tag on the ClpA C-terminus regulates the balance of ClpAP complexes with different substrate specificity. J Mol Biol 2008; 384:503-11. [PMID: 18835567 DOI: 10.1016/j.jmb.2008.09.046] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Revised: 09/02/2008] [Accepted: 09/17/2008] [Indexed: 11/16/2022]
Abstract
ATP-dependent protein degradation in bacteria is carried out by barrel-shaped proteases architecturally related to the proteasome. In Escherichia coli, ClpP interacts with two alternative ATPases, ClpA or ClpX, to form active protease complexes. ClpAP and ClpXP show different but overlapping substrate specificities. ClpXP is considered the primary recipient of ssrA-tagged substrates while ClpAP in complex with ClpS processes N-end rule substrates. Notably, in its free form, but not in complex with ClpS, ClpAP also degrades ssrA-tagged substrates and its own chaperone component, ClpA. To reveal the mechanism of ClpAP-mediated ClpA degradation, termed autodegradation, and its possible role in regulating ClpAP levels, we dissected ClpA to show that the flexible C-terminus of the second AAA module serves as the degradation signal. We demonstrate that ClpA becomes largely resistant to autodegradation in the absence of its C-terminus and, conversely, transfer of the last 11 residues of ClpA to the C-terminus of green fluorescent protein (GFP) renders GFP a substrate of ClpAP. This autodegradation tag bears similarity to the ssrA-tag in its degradation behavior, displaying similar catalytic turnover rates when coupled to GFP but a twofold lower apparent affinity constant compared to ssrA-tagged GFP. We show that, in analogy to the prevention of ssrA-mediated recognition, the adaptor ClpS inhibits autodegradation by a specificity switch as opposed to direct masking of the degradation signal. Our results demonstrate that in the presence of ssrA-tagged substrates, ClpA autodegradation will be competitively reduced. This simple mechanism allows for dynamic reallocation of free ClpAP versus ClpAPS in response to the presence of ssrA-tagged substrates.
Collapse
Affiliation(s)
- Zeljka Maglica
- ETH Zürich, Institute of Molecular Biology and Biophysics, Schafmattstr. 20, CH-8093 Zürich, Switzerland
| | | | | |
Collapse
|
41
|
Xia Z, Turner GC, Hwang CS, Byrd C, Varshavsky A. Amino acids induce peptide uptake via accelerated degradation of CUP9, the transcriptional repressor of the PTR2 peptide transporter. J Biol Chem 2008; 283:28958-68. [PMID: 18708352 DOI: 10.1074/jbc.m803980200] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Multiple pathways link expression of PTR2, the transporter of di- and tripeptides in the yeast Saccharomyces cerevisiae, to the availability and quality of nitrogen sources. Previous work has shown that induction of PTR2 by extracellular amino acids requires, in particular, SSY1 and PTR3. SSY1 is structurally similar to amino acid transporters but functions as a sensor of amino acids. PTR3 acts downstream of SSY1. Expression of the PTR2 peptide transporter is induced not only by amino acids but also by dipeptides with destabilizing N-terminal residues. These dipeptides bind to UBR1, the ubiquitin ligase of the N-end rule pathway, and allosterically accelerate the UBR1-dependent degradation of CUP9, a transcriptional repressor of PTR2. UBR1 targets CUP9 through its internal degron. Here we demonstrate that the repression of PTR2 by CUP9 requires TUP1 and SSN6, the corepressor proteins that form a complex with CUP9. We also show that the induction of PTR2 by amino acids is mediated by the UBR1-dependent acceleration of CUP9 degradation that requires both SSY1 and PTR3. The acceleration of CUP9 degradation is shown to be attained without increasing the activity of the N-end rule pathway toward substrates with destabilizing N-terminal residues. We also found that GAP1, a general amino acid transporter, strongly contributes to the induction of PTR2 by Trp. Although several aspects of this complex circuit remain to be understood, our findings establish new functional links between the amino acids-sensing SPS system, the CUP9-TUP1-SSN6 repressor complex, the PTR2 peptide transporter, and the UBR1-dependent N-end rule pathway.
Collapse
Affiliation(s)
- Zanxian Xia
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | | | |
Collapse
|
42
|
Xia Z, Webster A, Du F, Piatkov K, Ghislain M, Varshavsky A. Substrate-binding sites of UBR1, the ubiquitin ligase of the N-end rule pathway. J Biol Chem 2008; 283:24011-28. [PMID: 18566452 DOI: 10.1074/jbc.m802583200] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Substrates of a ubiquitin-dependent proteolytic system called the N-end rule pathway include proteins with destabilizing N-terminal residues. N-recognins, the pathway's ubiquitin ligases, contain three substrate-binding sites. The type-1 site is specific for basic N-terminal residues (Arg, Lys, and His). The type-2 site is specific for bulky hydrophobic N-terminal residues (Trp, Phe, Tyr, Leu, and Ile). We show here that the type-1/2 sites of UBR1, the sole N-recognin of the yeast Saccharomyces cerevisiae, are located in the first approximately 700 residues of the 1,950-residue UBR1. These sites are distinct in that they can be selectively inactivated by mutations, identified through a genetic screen. Mutations inactivating the type-1 site are in the previously delineated approximately 70-residue UBR motif characteristic of N-recognins. Fluorescence polarization and surface plasmon resonance were used to determine that UBR1 binds, with a K(d) of approximately 1 microm, to either type-1 or type-2 destabilizing N-terminal residues of reporter peptides but does not bind to a stabilizing N-terminal residue such as Gly. A third substrate-binding site of UBR1 targets an internal degron of CUP9, a transcriptional repressor of peptide import. We show that the previously demonstrated in vivo dependence of CUP9 ubiquitylation on the binding of cognate dipeptides to the type-1/2 sites of UBR1 can be reconstituted in a completely defined in vitro system. We also found that purified UBR1 and CUP9 interact nonspecifically and that specific binding (which involves, in particular, the binding by cognate dipeptides to the UBR1 type-1/2 sites) can be restored either by a chaperone such as EF1A or through macromolecular crowding.
Collapse
Affiliation(s)
- Zanxian Xia
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | | | | | |
Collapse
|
43
|
Wang KH, Oakes ESC, Sauer RT, Baker TA. Tuning the strength of a bacterial N-end rule degradation signal. J Biol Chem 2008; 283:24600-7. [PMID: 18550545 DOI: 10.1074/jbc.m802213200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The N-end rule is a degradation pathway conserved from bacteria to mammals that links a protein's stability in vivo to the identity of its N-terminal residue. In Escherichia coli, the components of this pathway directly responsible for protein degradation are the ClpAP protease and its adaptor ClpS. We recently demonstrated that ClpAP is able to recognize N-end motifs in the absence of ClpS although with significantly reduced substrate affinity. In this study, a systematic sequence analysis reveals new features of N-end rule degradation signals. To achieve specificity, recognition of an N-end motif by the protease-adaptor complex uses both the identity of the N-terminal residue and a free alpha-amino group. Acidic residues near the first residue decrease substrate affinity, demonstrating that the identity of adjacent residues can affect recognition although significant flexibility is tolerated. However, shortening the distance between the N-end residue and the stably folded portion of a protein prevents degradation entirely, indicating that an N-end signal alone is not always sufficient for degradation. Together, these data define in vitro the sequence and structural requirements for the function of bacterial N-end signals.
Collapse
Affiliation(s)
- Kevin H Wang
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | |
Collapse
|