1
|
Das A, Giri AK, Bhattacharjee P. Targeting 'histone mark': Advanced approaches in epigenetic regulation of telomere dynamics in cancer. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195007. [PMID: 38237857 DOI: 10.1016/j.bbagrm.2024.195007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024]
Abstract
Telomere integrity is required for the maintenance of genome stability and prevention of oncogenic transformation of cells. Recent evidence suggests the presence of epigenetic modifications as an important regulator of mammalian telomeres. Telomeric and subtelomeric regions are rich in epigenetic marks that regulate telomere length majorly through DNA methylation and post-translational histone modifications. Specific histone modifying enzymes play an integral role in establishing telomeric histone codes necessary for the maintenance of structural integrity. Alterations of crucial histone moieties and histone modifiers cause deregulations in the telomeric chromatin leading to carcinogenic manifestations. This review delves into the significance of histone modifications and their influence on telomere dynamics concerning cancer. Additionally, it highlights the existing research gaps that hold the potential to drive the development of therapeutic interventions targeting the telomere epigenome.
Collapse
Affiliation(s)
- Ankita Das
- Department of Environmental Science, University of Calcutta, Kolkata 700019, India; Department of Zoology, University of Calcutta, Kolkata 700019, India
| | - Ashok K Giri
- Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Pritha Bhattacharjee
- Department of Environmental Science, University of Calcutta, Kolkata 700019, India.
| |
Collapse
|
2
|
Strong E, Mervis CB, Tam E, Morris CA, Klein-Tasman BP, Velleman SL, Osborne LR. DNA methylation profiles in individuals with rare, atypical 7q11.23 CNVs correlate with GTF2I and GTF2IRD1 copy number. NPJ Genom Med 2023; 8:25. [PMID: 37709781 PMCID: PMC10502022 DOI: 10.1038/s41525-023-00368-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 08/18/2023] [Indexed: 09/16/2023] Open
Abstract
Williams-Beuren syndrome (WBS) and 7q11.23 duplication syndrome (Dup7) are rare neurodevelopmental disorders caused by deletion and duplication of a 1.5 Mb region that includes at least five genes with a known role in epigenetic regulation. We have shown that CNV of this chromosome segment causes dose-dependent, genome-wide changes in DNA methylation, but the specific genes driving these changes are unknown. We measured genome-wide whole blood DNA methylation in six participants with atypical CNV of 7q11.23 (three with deletions and three with duplications) using the Illumina HumanMethylation450k array and compared their profiles with those from groups of individuals with classic WBS or classic Dup7 and with typically developing (TD) controls. Across the top 1000 most variable positions we found that only the atypical rearrangements that changed the copy number of GTF2IRD1 and/or GTF2I (coding for the TFII-IRD1 and TFII-I proteins) clustered with their respective syndromic cohorts. This finding was supported by results from hierarchical clustering across a selection of differentially methylated CpGs, in addition to pyrosequencing validation. These findings suggest that CNV of the GTF2I genes at the telomeric end of the 7q11.23 interval is a key contributor to the large changes in DNA methylation that are seen in blood DNA from our WBS and Dup7 cohorts, compared to TD controls. Our findings suggest that members of the TFII-I protein family are involved in epigenetic processes that alter DNA methylation on a genome-wide level.
Collapse
Affiliation(s)
- Emma Strong
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Division of Genome Diagnostics, Department of Pathology and Laboratory Medicine, BC Children's and Women's Hospital, Vancouver, BC, Canada
| | - Carolyn B Mervis
- Department of Psychological and Brain Sciences, University of Louisville, Louisville, KY, USA
| | - Elaine Tam
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Colleen A Morris
- Department of Pediatrics, Kirk Kerkorian School of Medicine at University of Nevada Las Vegas, Las Vegas, NV, USA
| | | | - Shelley L Velleman
- Department of Communication Sciences and Disorders, University of Vermont, Burlington, VT, USA
| | - Lucy R Osborne
- Departments of Medicine and Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
3
|
Reid KM, Sanchez-Nieto JM, Terrasse S, Faccenda D, Pernaute B, Campanella M, Rodriguez TA, Cobb BS. MicroRNAs Regulate Ca 2+ Homeostasis in Murine Embryonic Stem Cells. Cells 2023; 12:1957. [PMID: 37566036 PMCID: PMC10417630 DOI: 10.3390/cells12151957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 08/12/2023] Open
Abstract
MicroRNAs (miRNAs) are important regulators of embryonic stem cell (ESC) biology, and their study has identified key regulatory mechanisms. To find novel pathways regulated by miRNAs in ESCs, we undertook a bioinformatics analysis of gene pathways differently expressed in the absence of miRNAs due to the deletion of Dicer, which encodes an RNase that is essential for the synthesis of miRNAs. One pathway that stood out was Ca2+ signaling. Interestingly, we found that Dicer-/- ESCs had no difference in basal cytoplasmic Ca2+ levels but were hyperresponsive when Ca2+ import into the endoplasmic reticulum (ER) was blocked by thapsigargin. Remarkably, the increased Ca2+ response to thapsigargin in ESCs resulted in almost no increase in apoptosis and no differences in stress response pathways, despite the importance of miRNAs in the stress response of other cell types. The increased Ca2+ response in Dicer-/- ESCs was also observed during purinergic receptor activation, demonstrating a physiological role for the miRNA regulation of Ca2+ signaling pathways. In examining the mechanism of increased Ca2+ responsiveness to thapsigargin, neither store-operated Ca2+ entry nor Ca2+ clearance mechanisms from the cytoplasm appeared to be involved. Rather, it appeared to involve an increase in the expression of one isoform of the IP3 receptors (Itpr2). miRNA regulation of Itpr2 expression primarily appeared to be indirect, with transcriptional regulation playing a major role. Therefore, the miRNA regulation of Itpr2 expression offers a unique mechanism to regulate Ca2+ signaling pathways in the physiology of pluripotent stem cells.
Collapse
Affiliation(s)
- Kimberley M. Reid
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, 4 Royal College Street, London NW1 0TU, UK; (K.M.R.)
| | - Juan Miguel Sanchez-Nieto
- National Heart and Lung Institute, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK (T.A.R.)
| | - Sandra Terrasse
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, 4 Royal College Street, London NW1 0TU, UK; (K.M.R.)
| | - Danilo Faccenda
- Department of Clinical, Pharmaceutical and Biological Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK;
- Centre for Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Queen Mary University of London, London E1 4NS, UK;
| | - Barbara Pernaute
- National Heart and Lung Institute, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK (T.A.R.)
| | - Michelangelo Campanella
- Centre for Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Queen Mary University of London, London E1 4NS, UK;
- University College London Consortium for Mitochondrial Research, London WC1E 6BT, UK
- Institute Gustave Roussy, 94800 Villejuif, France
- Department of Biomedical Sciences, University of Padua, 35122 Padua, Italy
| | - Tristan A. Rodriguez
- National Heart and Lung Institute, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK (T.A.R.)
| | - Bradley S. Cobb
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, 4 Royal College Street, London NW1 0TU, UK; (K.M.R.)
| |
Collapse
|
4
|
Maraghechi P, Aponte MTS, Ecker A, Lázár B, Tóth R, Szabadi NT, Gócza E. Pluripotency-Associated microRNAs in Early Vertebrate Embryos and Stem Cells. Genes (Basel) 2023; 14:1434. [PMID: 37510338 PMCID: PMC10379376 DOI: 10.3390/genes14071434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
MicroRNAs (miRNAs), small non-coding RNA molecules, regulate a wide range of critical biological processes, such as proliferation, cell cycle progression, differentiation, survival, and apoptosis, in many cell types. The regulatory functions of miRNAs in embryogenesis and stem cell properties have been extensively investigated since the early years of miRNA discovery. In this review, we will compare and discuss the impact of stem-cell-specific miRNA clusters on the maintenance and regulation of early embryonic development, pluripotency, and self-renewal of embryonic stem cells, particularly in vertebrates.
Collapse
Affiliation(s)
- Pouneh Maraghechi
- Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences; Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Szent-Györgyi Albert str. 4, 2100 Gödöllő, Hungary
| | - Maria Teresa Salinas Aponte
- Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences; Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Szent-Györgyi Albert str. 4, 2100 Gödöllő, Hungary
| | - András Ecker
- Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences; Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Szent-Györgyi Albert str. 4, 2100 Gödöllő, Hungary
| | - Bence Lázár
- Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences; Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Szent-Györgyi Albert str. 4, 2100 Gödöllő, Hungary
- National Centre for Biodiversity and Gene Conservation, Institute for Farm Animal Gene Conservation (NBGK-HGI), Isaszegi str. 200, 2100 Gödöllő, Hungary
| | - Roland Tóth
- Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences; Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Szent-Györgyi Albert str. 4, 2100 Gödöllő, Hungary
| | - Nikolett Tokodyné Szabadi
- Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences; Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Szent-Györgyi Albert str. 4, 2100 Gödöllő, Hungary
| | - Elen Gócza
- Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences; Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Szent-Györgyi Albert str. 4, 2100 Gödöllő, Hungary
| |
Collapse
|
5
|
Liu S, Sharma U. Sperm RNA Payload: Implications for Intergenerational Epigenetic Inheritance. Int J Mol Sci 2023; 24:5889. [PMID: 36982962 PMCID: PMC10052761 DOI: 10.3390/ijms24065889] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/03/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
There is mounting evidence that ancestral life experiences and environment can influence phenotypes in descendants. The parental environment regulates offspring phenotypes potentially via modulating epigenetic marks in the gametes. Here, we review examples of across-generational inheritance of paternal environmental effects and the current understanding of the role of small RNAs in such inheritance. We discuss recent advances in revealing the small RNA payload of sperm and how environmental conditions modulate sperm small RNAs. Further, we discuss the potential mechanism of inheritance of paternal environmental effects by focusing on sperm small RNA-mediated regulation of early embryonic gene expression and its role in influencing offspring phenotypes.
Collapse
Affiliation(s)
| | - Upasna Sharma
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| |
Collapse
|
6
|
Epigenetic genes and epilepsy - emerging mechanisms and clinical applications. Nat Rev Neurol 2022; 18:530-543. [PMID: 35859062 DOI: 10.1038/s41582-022-00693-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2022] [Indexed: 12/21/2022]
Abstract
An increasing number of epilepsies are being attributed to variants in genes with epigenetic functions. The products of these genes include factors that regulate the structure and function of chromatin and the placing, reading and removal of epigenetic marks, as well as other epigenetic processes. In this Review, we provide an overview of the various epigenetic processes, structuring our discussion around five function-based categories: DNA methylation, histone modifications, histone-DNA crosstalk, non-coding RNAs and chromatin remodelling. We provide background information on each category, describing the general mechanism by which each process leads to altered gene expression. We also highlight key clinical and mechanistic aspects, providing examples of genes that strongly associate with epilepsy within each class. We consider the practical applications of these findings, including tissue-based and biofluid-based diagnostics and precision medicine-based treatments. We conclude that variants in epigenetic genes are increasingly found to be causally involved in the epilepsies, with implications for disease mechanisms, treatments and diagnostics.
Collapse
|
7
|
Fatema K, Larson Z, Barrott J. Navigating the genomic instability mine field of osteosarcoma to better understand implications of non-coding RNAs. BIOCELL 2022; 46:2177-2193. [PMID: 35755302 PMCID: PMC9224338 DOI: 10.32604/biocell.2022.020141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Osteosarcoma is one of the most genomically complex cancers and as result, it has been difficult to assign genomic aberrations that contribute to disease progression and patient outcome consistently across samples. One potential source for correlating osteosarcoma and genomic biomarkers is within the non-coding regions of RNA that are differentially expressed. However, it is unsurprising that a cancer classification that is fraught with genomic instability is likely to have numerous studies correlating non-coding RNA expression and function have been published on the subject. This review undertakes the formidable task of evaluating the published literature of noncoding RNAs in osteosarcoma. This is not the first review on this topic and will certainly not be the last. The review is organized with an introduction into osteosarcoma and the epigenetic control of gene expression before reviewing the molecular function and expression of long non-coding RNAs, circular RNAs, and short non-coding RNAs such as microRNAs, piwi RNAs, and short-interfering RNAs. The review concludes with a review of the literature and how the biology of non-coding RNAs can be used therapeutically to treat cancers, especially osteosarcoma. We conclude that non-coding RNA expression and function in osteosarcoma is equally complex to understanding the expression differences and function of coding RNA and proteins; however, with the added lens of both coding and non-coding genomic sequence, researchers can begin to identify the patterns that consistently associate with aggressive osteosarcoma.
Collapse
Affiliation(s)
- Kaniz Fatema
- Biomedical and Pharmaceutical Science, Idaho State University, Pocatello, 83209, USA
| | - Zachary Larson
- Biomedical and Pharmaceutical Science, Idaho State University, Pocatello, 83209, USA
| | - Jared Barrott
- Biomedical and Pharmaceutical Science, Idaho State University, Pocatello, 83209, USA
| |
Collapse
|
8
|
Hatmal MM, Al-Hatamleh MAI, Olaimat AN, Alshaer W, Hasan H, Albakri KA, Alkhafaji E, Issa NN, Al-Holy MA, Abderrahman SM, Abdallah AM, Mohamud R. Immunomodulatory Properties of Human Breast Milk: MicroRNA Contents and Potential Epigenetic Effects. Biomedicines 2022; 10:1219. [PMID: 35740242 PMCID: PMC9219990 DOI: 10.3390/biomedicines10061219] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 02/07/2023] Open
Abstract
Infants who are exclusively breastfed in the first six months of age receive adequate nutrients, achieving optimal immune protection and growth. In addition to the known nutritional components of human breast milk (HBM), i.e., water, carbohydrates, fats and proteins, it is also a rich source of microRNAs, which impact epigenetic mechanisms. This comprehensive work presents an up-to-date overview of the immunomodulatory constituents of HBM, highlighting its content of circulating microRNAs. The epigenetic effects of HBM are discussed, especially those regulated by miRNAs. HBM contains more than 1400 microRNAs. The majority of these microRNAs originate from the lactating gland and are based on the remodeling of cells in the gland during breastfeeding. These miRNAs can affect epigenetic patterns by several mechanisms, including DNA methylation, histone modifications and RNA regulation, which could ultimately result in alterations in gene expressions. Therefore, the unique microRNA profile of HBM, including exosomal microRNAs, is implicated in the regulation of the genes responsible for a variety of immunological and physiological functions, such as FTO, INS, IGF1, NRF2, GLUT1 and FOXP3 genes. Hence, studying the HBM miRNA composition is important for improving the nutritional approaches for pregnancy and infant's early life and preventing diseases that could occur in the future. Interestingly, the composition of miRNAs in HBM is affected by multiple factors, including diet, environmental and genetic factors.
Collapse
Affiliation(s)
- Ma’mon M. Hatmal
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Mohammad A. I. Al-Hatamleh
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu 16150, Malaysia;
| | - Amin N. Olaimat
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan; (A.N.O.); (M.A.A.-H.)
| | - Walhan Alshaer
- Cell Therapy Center (CTC), The University of Jordan, Amman 11942, Jordan;
| | - Hanan Hasan
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan;
| | - Khaled A. Albakri
- Faculty of Medicine, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Enas Alkhafaji
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, The University of Jordan, Amman 11942, Jordan;
| | - Nada N. Issa
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Murad A. Al-Holy
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan; (A.N.O.); (M.A.A.-H.)
| | - Salim M. Abderrahman
- Department of Biology and Biotechnology, Faculty of Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Atiyeh M. Abdallah
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar;
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu 16150, Malaysia;
| |
Collapse
|
9
|
Dicer promotes genome stability via the bromodomain transcriptional co-activator BRD4. Nat Commun 2022; 13:1001. [PMID: 35194019 PMCID: PMC8863982 DOI: 10.1038/s41467-022-28554-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 01/14/2022] [Indexed: 01/01/2023] Open
Abstract
RNA interference is required for post-transcriptional silencing, but also has additional roles in transcriptional silencing of centromeres and genome stability. However, these roles have been controversial in mammals. Strikingly, we found that Dicer-deficient embryonic stem cells have strong proliferation and chromosome segregation defects as well as increased transcription of centromeric satellite repeats, which triggers the interferon response. We conducted a CRISPR-Cas9 genetic screen to restore viability and identified transcriptional activators, histone H3K9 methyltransferases, and chromosome segregation factors as suppressors, resembling Dicer suppressors identified in independent screens in fission yeast. The strongest suppressors were mutations in the transcriptional co-activator Brd4, which reversed the strand-specific transcription of major satellite repeats suppressing the interferon response, and in the histone acetyltransferase Elp3. We show that identical mutations in the second bromodomain of Brd4 rescue Dicer-dependent silencing and chromosome segregation defects in both mammalian cells and fission yeast. This remarkable conservation demonstrates that RNA interference has an ancient role in transcriptional silencing and in particular of satellite repeats, which is essential for cell cycle progression and proper chromosome segregation. Our results have pharmacological implications for cancer and autoimmune diseases characterized by unregulated transcription of satellite repeats. While RNA interference is conserved across species, small RNA pathways are very diverse. In this study, Gutbrod et al. find that non-canonical roles of Dicer in genome stability are in fact deeply conserved from yeast to humans.
Collapse
|
10
|
Akbari B, Ghahri-Saremi N, Soltantoyeh T, Hadjati J, Ghassemi S, Mirzaei HR. Epigenetic strategies to boost CAR T cell therapy. Mol Ther 2021; 29:2640-2659. [PMID: 34365035 DOI: 10.1016/j.ymthe.2021.08.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/19/2021] [Accepted: 07/31/2021] [Indexed: 02/08/2023] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy has led to a paradigm shift in cancer immunotherapy, but still several obstacles limit CAR T cell efficacy in cancers. Advances in high-throughput technologies revealed new insights into the role that epigenetic reprogramming plays in T cells. Mechanistic studies as well as comprehensive epigenome maps revealed an important role for epigenetic remodeling in T cell differentiation. These modifications shape the overall immune response through alterations in T cell phenotype and function. Here, we outline how epigenetic modifications in CAR T cells can overcome barriers limiting CAR T cell effectiveness, particularly in immunosuppressive tumor microenvironments. We also offer our perspective on how selected epigenetic modifications can boost CAR T cells to ultimately improve the efficacy of CAR T cell therapy.
Collapse
Affiliation(s)
- Behnia Akbari
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran
| | - Navid Ghahri-Saremi
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran
| | - Tahereh Soltantoyeh
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran
| | - Jamshid Hadjati
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran
| | - Saba Ghassemi
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran.
| |
Collapse
|
11
|
microRNA regulation of pluripotent state transition. Essays Biochem 2021; 64:947-954. [PMID: 33034348 DOI: 10.1042/ebc20200028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 01/02/2023]
Abstract
microRNAs (miRNAs) play essential roles in mouse embryonic stem cells (ESCs) and early embryo development. The exact mechanism by which miRNAs regulate cell fate transition during embryo development is still not clear. Recent studies have identified and captured various pluripotent stem cells (PSCs) that share similar characteristics with cells from different stages of pre- and post-implantation embryos. These PSCs provide valuable models to understand miRNA functions in early mammalian development. In this short review, we will summarize recent work towards understanding the function and mechanism of miRNAs in regulating the transition or conversion between different pluripotent states. In addition, we will highlight unresolved questions and key future directions related to miRNAs in pluripotent state transition. Studies in these areas will further our understanding of miRNA functions in early embryo development, and may lead to practical means to control human PSCs for clinical applications in regenerative medicine.
Collapse
|
12
|
Krapivin MI, Tikhonov AV, Efimova OA, Pendina AA, Smirnova AA, Chiryaeva OG, Talantova OE, Petrova LI, Dudkina VS, Baranov VS. Telomere Length in Chromosomally Normal and Abnormal Miscarriages and Ongoing Pregnancies and Its Association with 5-hydroxymethylcytosine Patterns. Int J Mol Sci 2021; 22:ijms22126622. [PMID: 34205622 PMCID: PMC8234291 DOI: 10.3390/ijms22126622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/06/2021] [Accepted: 06/18/2021] [Indexed: 12/15/2022] Open
Abstract
The present study investigates telomere length (TL) in dividing chorionic cytotrophoblast cells from karyotypically normal and abnormal first trimester miscarriages and ongoing pregnancies. Using Q-FISH, we measured relative TLs in the metaphase chromosomes of 61 chorionic villous samples. Relative TLs did not differ between karyotypically normal samples from miscarriages and those from ongoing pregnancies (p = 0.3739). However, among the karyotypically abnormal samples, relative TLs were significantly higher in ongoing pregnancies than in miscarriages (p < 0.0001). Relative TLs were also significantly higher in chorion samples from karyotypically abnormal ongoing pregnancies than in those from karyotypically normal ones (p = 0.0018) in contrast to miscarriages, where relative TL values were higher in the karyotypically normal samples (p = 0.002). In the karyotypically abnormal chorionic cytotrophoblast, the TL variance was significantly lower than in any other group (p < 0.05). Assessed by TL ratios between sister chromatids, interchromatid TL asymmetry demonstrated similar patterns across all of the chorion samples (p = 0.22) but significantly exceeded that in PHA-stimulated lymphocytes (p < 0.0001, p = 0.0003). The longer telomere was predominantly present in the hydroxymethylated sister chromatid in chromosomes featuring hemihydroxymethylation (containing 5-hydroxymethylcytosine in only one sister chromatid)-a typical sign of chorionic cytotrophoblast cells. Our results suggest that the phenomena of interchromatid TL asymmetry and its association to 5hmC patterns in chorionic cytotrophoblast, which are potentially linked to telomere lengthening through recombination, are inherent to the development programme. The TL differences in chorionic cytotrophoblast that are associated with karyotype and embryo viability seem to be determined by heredity rather than telomere elongation mechanisms. The inheritance of long telomeres by a karyotypically abnormal embryo promotes his development, whereas TL in karyotypically normal first-trimester embryos does not seem to have a considerable impact on developmental capacity.
Collapse
Affiliation(s)
- Mikhail I. Krapivin
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint Petersburg, Russia; (M.I.K.); (A.V.T.); (A.A.P.); (O.G.C.); (O.E.T.); (L.I.P.); (V.S.D.); (V.S.B.)
| | - Andrei V. Tikhonov
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint Petersburg, Russia; (M.I.K.); (A.V.T.); (A.A.P.); (O.G.C.); (O.E.T.); (L.I.P.); (V.S.D.); (V.S.B.)
| | - Olga A. Efimova
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint Petersburg, Russia; (M.I.K.); (A.V.T.); (A.A.P.); (O.G.C.); (O.E.T.); (L.I.P.); (V.S.D.); (V.S.B.)
- Correspondence:
| | - Anna A. Pendina
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint Petersburg, Russia; (M.I.K.); (A.V.T.); (A.A.P.); (O.G.C.); (O.E.T.); (L.I.P.); (V.S.D.); (V.S.B.)
| | - Anna A. Smirnova
- Department of Medical Biophysics, Saint Petersburg State Pediatric Medical University, Litovskaya Street 2, 194100 Saint Petersburg, Russia;
| | - Olga G. Chiryaeva
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint Petersburg, Russia; (M.I.K.); (A.V.T.); (A.A.P.); (O.G.C.); (O.E.T.); (L.I.P.); (V.S.D.); (V.S.B.)
| | - Olga E. Talantova
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint Petersburg, Russia; (M.I.K.); (A.V.T.); (A.A.P.); (O.G.C.); (O.E.T.); (L.I.P.); (V.S.D.); (V.S.B.)
| | - Lubov’ I. Petrova
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint Petersburg, Russia; (M.I.K.); (A.V.T.); (A.A.P.); (O.G.C.); (O.E.T.); (L.I.P.); (V.S.D.); (V.S.B.)
| | - Vera S. Dudkina
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint Petersburg, Russia; (M.I.K.); (A.V.T.); (A.A.P.); (O.G.C.); (O.E.T.); (L.I.P.); (V.S.D.); (V.S.B.)
| | - Vladislav S. Baranov
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint Petersburg, Russia; (M.I.K.); (A.V.T.); (A.A.P.); (O.G.C.); (O.E.T.); (L.I.P.); (V.S.D.); (V.S.B.)
| |
Collapse
|
13
|
Pendina AA, Krapivin MI, Efimova OA, Tikhonov AV, Mekina ID, Komarova EM, Koltsova AS, Gzgzyan AM, Kogan IY, Chiryaeva OG, Baranov VS. Telomere Length in Metaphase Chromosomes of Human Triploid Zygotes. Int J Mol Sci 2021; 22:ijms22115579. [PMID: 34070406 PMCID: PMC8197529 DOI: 10.3390/ijms22115579] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 02/02/2023] Open
Abstract
The human lifespan is strongly influenced by telomere length (TL) which is defined in a zygote—when two highly specialised haploid cells form a new diploid organism. Although TL is a variable parameter, it fluctuates in a limited range. We aimed to establish the determining factors of TL in chromosomes of maternal and paternal origin in human triploid zygotes. Using Q-FISH, we examined TL in the metaphase chromosomes of 28 human triploid zygotes obtained from 22 couples. The chromosomes’ parental origin was identified immunocytochemically through weak DNA methylation and strong hydroxymethylation in the sperm-derived (paternal) chromosomes versus strong DNA methylation and weak hydroxymethylation in the oocyte-derived (maternal) ones. In 24 zygotes, one maternal and two paternal chromosome sets were identified, while the four remaining zygotes contained one paternal and two maternal sets. For each zygote, we compared mean relative TLs between parental chromosomes, identifying a significant difference in favour of the paternal chromosomes, which attests to a certain “imprinting” of these regions. Mean relative TLs in paternal or maternal chromosomes did not correlate with the respective parent’s age. Similarly, no correlation was observed between the mean relative TL and sperm quality parameters: concentration, progressive motility and normal morphology. Based on the comparison of TLs in chromosomes inherited from a single individual’s gametes with those in chromosomes inherited from different individuals’ gametes, we compared intraindividual (intercellular) and interindividual variability, obtaining significance in favour of the latter and thus validating the role of heredity in determining TL in zygotes. A comparison of the interchromatid TL differences across the chromosomes from sets of different parental origin with those from PHA-stimulated lymphocytes showed an absence of a significant difference between the maternal and paternal sets but a significant excess over the lymphocytes. Therefore, interchromatid TL differences are more pronounced in zygotes than in lymphocytes. To summarise, TL in human zygotes is determined both by heredity and parental origin; the input of other factors is possible within the individual’s reaction norm.
Collapse
|
14
|
Samra N, Toubiana S, Yttervik H, Tzur-Gilat A, Morani I, Itzkovich C, Giladi L, Abu Jabal K, Cao JZ, Godley LA, Mory A, Baris Feldman H, Tveten K, Selig S, Weiss K. RBL2 bi-allelic truncating variants cause severe motor and cognitive impairment without evidence for abnormalities in DNA methylation or telomeric function. J Hum Genet 2021; 66:1101-1112. [PMID: 33980986 DOI: 10.1038/s10038-021-00931-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/14/2021] [Accepted: 04/14/2021] [Indexed: 02/01/2023]
Abstract
RBL2/p130, a member of the retinoblastoma family of proteins, is a key regulator of cell division and propagates irreversible senescence. RBL2/p130 is also involved in neuronal differentiation and survival, and eliminating Rbl2 in certain mouse strains leads to embryonic lethality accompanied by an abnormal central nervous system (CNS) phenotype. Conflicting reports exist regarding a role of RBL2/p130 in transcriptional regulation of DNA methyltransferases (DNMTs), as well as the control of telomere length. Here we describe the phenotype of three patients carrying bi-allelic RBL2-truncating variants. All presented with infantile hypotonia, severe developmental delay and microcephaly. Malignancies were not reported in carriers or patients. Previous studies carried out on mice and human cultured cells, associated RBL2 loss to DNA methylation and telomere length dysregulation. Here, we investigated whether patient cells lacking RBL2 display related abnormalities. The study of primary patient fibroblasts did not detect abnormalities in expression of DNMTs. Furthermore, methylation levels of whole genome DNA, and specifically of pericentromeric repeats and subtelomeric regions, were unperturbed. RBL2-null fibroblasts show no evidence for abnormal elongation by telomeric recombination. Finally, gradual telomere shortening, and normal onset of senescence were observed following continuous culturing of RBL2-mutated fibroblasts. Thus, this study resolves uncertainties regarding a potential non-redundant role for RBL2 in DNA methylation and telomere length regulation, and indicates that loss of function variants in RBL2 cause a severe autosomal recessive neurodevelopmental disorder in humans.
Collapse
Affiliation(s)
- Nadra Samra
- Genetic Unit, Ziv Medical Center, Tzfat, Israel.,Faculty of Medicine, Bar Ilan University, Tzfat, Israel
| | - Shir Toubiana
- Department of Genetics and Developmental Biology, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Hilde Yttervik
- Department of Medical Genetics, University Hospital of North Norway, Tromsø, Norway
| | - Aya Tzur-Gilat
- Department of Genetics and Developmental Biology, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | | | - Chen Itzkovich
- The Clinical Research Institute at Rambam Health Care Campus, Haifa, Israel
| | - Liran Giladi
- Department of Genetics and Developmental Biology, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | | | - John Z Cao
- Section of Hematology Oncology, Departments of Medicine and Human Genetics, The University of Chicago, Chicago, IL, USA
| | - Lucy A Godley
- Section of Hematology Oncology, Departments of Medicine and Human Genetics, The University of Chicago, Chicago, IL, USA
| | - Adi Mory
- The Genetics Institute, Rambam Health Care Campus, Haifa, Israel.,The Genetics Institute, Tel Aviv Sourasky Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Hagit Baris Feldman
- The Genetics Institute, Rambam Health Care Campus, Haifa, Israel.,The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.,The Genetics Institute, Tel Aviv Sourasky Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Kristian Tveten
- Department of Medical Genetics, Telemark Hospital Trust, Skien, Norway
| | - Sara Selig
- Department of Genetics and Developmental Biology, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel. .,Laboratory of Molecular Medicine, Rambam Health Care Campus, Haifa, Israel.
| | - Karin Weiss
- The Genetics Institute, Rambam Health Care Campus, Haifa, Israel.,The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
15
|
Fasoulakis Z, Daskalakis G, Diakosavvas M, Papapanagiotou I, Theodora M, Bourazan A, Alatzidou D, Pagkalos A, Kontomanolis EN. MicroRNAs Determining Carcinogenesis by Regulating Oncogenes and Tumor Suppressor Genes During Cell Cycle. Microrna 2021; 9:82-92. [PMID: 31538910 PMCID: PMC7366009 DOI: 10.2174/2211536608666190919161849] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 05/21/2019] [Accepted: 08/03/2019] [Indexed: 02/06/2023]
Abstract
AIM To provide a review considering microRNAs regulating oncogenes and tumor suppressor genes during the different stages of cell cycle, controlling carcinogenesis. METHODS The role of microRNAs involved as oncogenes' and tumor suppressor genes' regulators in cancer was searched in the relevant available literature in MEDLINE, including terms such as "microRNA", "oncogenes", "tumor suppressor genes", "metastasis", "cancer" and others. RESULTS MicroRNAs determine the expression levels of multiple cell cycle regulators, such as cyclins, cyclin dependent kinases and other major cell cycle activators including retinoblastoma 1 (RB- 1) and p53, resulting in alteration and promotion/inhibition of the cell cycle. CONCLUSION MicroRNAs are proven to have a key role in cancer pathophysiology by altering the expression profile of different regulator proteins during cell division cycle and DNA replication. Thus, by acting as oncogenes and tumor suppressor genes, they can either promote or inhibit cancer development and formation, revealing their innovative role as biomarkers and therapeutic tools.
Collapse
Affiliation(s)
- Zacharias Fasoulakis
- Department of Obstetrics and Gynecology, Democritus University of Thrace, Alexandroupolis, Greece
| | - George Daskalakis
- 1st Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, Athens, Greece
| | - Michail Diakosavvas
- 1st Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis Papapanagiotou
- 1st Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, Athens, Greece
| | - Marianna Theodora
- 1st Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, Athens, Greece
| | - Arzou Bourazan
- Department of Obstetrics and Gynecology, Democritus University of Thrace, Alexandroupolis, Greece
| | - Dimitra Alatzidou
- Department of Obstetrics and Gynecology, Democritus University of Thrace, Alexandroupolis, Greece
| | - Athanasios Pagkalos
- Department of Obstetrics and Gynecology, General Hospital of Xanthi, Thrace, Greece
| | - Emmanuel N Kontomanolis
- Department of Obstetrics and Gynecology, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
16
|
The Multiple Facets of ATRX Protein. Cancers (Basel) 2021; 13:cancers13092211. [PMID: 34062956 PMCID: PMC8124985 DOI: 10.3390/cancers13092211] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/30/2021] [Accepted: 05/02/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary The gene encoding for the epigenetic regulator ATRX is gaining a prominent position among the most important oncosuppressive genes of the human genome. ATRX gene somatic mutations are found across a number of diverse cancer types, suggesting its relevance in tumor induction and progression. In the present review, the multiple activities of ATRX protein are described in the light of the most recent literature available highlighting its multifaceted role in the caretaking of the human genome. Abstract ATRX gene codifies for a protein member of the SWI-SNF family and was cloned for the first time over 25 years ago as the gene responsible for a rare developmental disorder characterized by α-thalassemia and intellectual disability called Alpha Thalassemia/mental Retardation syndrome X-linked (ATRX) syndrome. Since its discovery as a helicase involved in alpha-globin gene transcriptional regulation, our understanding of the multiple roles played by the ATRX protein increased continuously, leading to the recognition of this multifaceted protein as a central “caretaker” of the human genome involved in cancer suppression. In this review, we report recent advances in the comprehension of the ATRX manifold functions that encompass heterochromatin epigenetic regulation and maintenance, telomere function, replicative stress response, genome stability, and the suppression of endogenous transposable elements and exogenous viral genomes.
Collapse
|
17
|
Cui Y, Hunt A, Li Z, Birkin E, Lane J, Ruge F, Jiang WG. Lead DEAD/H box helicase biomarkers with the therapeutic potential identified by integrated bioinformatic approaches in lung cancer. Comput Struct Biotechnol J 2020; 19:261-278. [PMID: 33425256 PMCID: PMC7779375 DOI: 10.1016/j.csbj.2020.12.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/02/2020] [Accepted: 12/08/2020] [Indexed: 02/07/2023] Open
Abstract
DEAD/H box helicases are implicated in lung cancer but have not been systematically investigated for their clinical significance and function. In this study, we aimed to evaluate the potential of DEAD/H box helicases as prognostic biomarkers and therapeutic targets in lung cancer by integrated bioinformatic analysis of multivariate large-scale databases. Survival and differential expression analysis of these helicases enabled us to identify four biomarkers with the most significant alterations. These were found to be the negative prognostic factors DDX11, DDX55 and DDX56, and positive prognostic factor DDX5. Pathway enrichment analysis indicates that MYC signalling is negatively associated with expression levels of the DDX5 gene while positively associated with that of DDX11, DDX55 and DDX56. High expression levels of the DDX5 gene is associated with low mutation levels of TP53 and MUC16, the two most frequently mutated genes in lung cancer. In contrast, high expression levels of DDX11, DDX55 and DDX56 genes are associated with high levels of TP53 and MUC16 mutation. The tumour-infiltrated CD8 + T and B cells positively correlate with levels of DDX5 gene expression, while negatively correlate with that of the other three DEAD box helicases, respectively. Moreover, the DDX5-associated miRNA profile is distinguished from the miRNA profiles of DDX11, DDX55 and DDX56, although each DDX has a different miRNA signature. The identification of these four DDX helicases as biomarkers will be valuable for prognostic prediction and targeted therapeutic development in lung cancer.
Collapse
Affiliation(s)
- Yuxin Cui
- Cardiff China Research Collaborative, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Adam Hunt
- Cardiff China Research Collaborative, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Zhilei Li
- Department of Pharmacy, Zhujiang Hospital of Southern Medical University, Guangzhou 510282, PR China
| | - Emily Birkin
- Cardiff & Vale University Health Board, University Hospital of Wales, Heath Park, Cardiff CF14 4XW, UK
| | - Jane Lane
- Cardiff China Research Collaborative, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Fiona Ruge
- Cardiff China Research Collaborative, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Wen G Jiang
- Cardiff China Research Collaborative, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| |
Collapse
|
18
|
Ghafouri-Fard S, Shoorei H, Anamag FT, Taheri M. The Role of Non-Coding RNAs in Controlling Cell Cycle Related Proteins in Cancer Cells. Front Oncol 2020; 10:608975. [PMID: 33330110 PMCID: PMC7734207 DOI: 10.3389/fonc.2020.608975] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 10/27/2020] [Indexed: 12/12/2022] Open
Abstract
Cell cycle is regulated by a number of proteins namely cyclin-dependent kinases (CDKs) and their associated cyclins which bind with and activate CDKs in a phase specific manner. Additionally, several transcription factors (TFs) such as E2F and p53 and numerous signaling pathways regulate cell cycle progression. Recent studies have accentuated the role of long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) in the regulation of cell cycle. Both lncRNAs and miRNAs interact with TFs participating in the regulation of cell cycle transition. Dysregulation of cell cycle regulatory miRNAs and lncRNAs results in human disorders particularly cancers. Understanding the role of lncRNAs, miRNAs, and TFs in the regulation of cell cycle would pave the way for design of anticancer therapies which intervene with the cell cycle progression. In the current review, we describe the role of lncRNAs and miRNAs in the regulation of cell cycle and their association with human malignancies.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
The Role of Alternative Lengthening of Telomeres Mechanism in Cancer: Translational and Therapeutic Implications. Cancers (Basel) 2020; 12:cancers12040949. [PMID: 32290440 PMCID: PMC7226354 DOI: 10.3390/cancers12040949] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 12/17/2022] Open
Abstract
Telomere maintenance mechanisms (i.e., telomerase activity (TA) and the alternative lengthening of telomere (ALT) mechanism) contribute to tumorigenesis by providing unlimited proliferative capacity to cancer cells. Although the role of either telomere maintenance mechanisms seems to be equivalent in providing a limitless proliferative ability to tumor cells, the contribution of TA and ALT to the clinical outcome of patients may differ prominently. In addition, several strategies have been developed to interfere with TA in cancer, including Imetelstat that has been the first telomerase inhibitor tested in clinical trials. Conversely, the limited information available on the molecular underpinnings of ALT has hindered thus far the development of genuine ALT-targeting agents. Moreover, whether anti-telomerase therapies may be hampered or not by possible adaptive responses is still debatable. Nonetheless, it is plausible hypothesizing that treatment with telomerase inhibitors may exert selective pressure for the emergence of cancer cells that become resistant to treatment by activating the ALT mechanism. This notion, together with the evidence that both telomere maintenance mechanisms may coexist within the same tumor and may distinctly impinge on patients' outcomes, suggests that ALT may exert an unexpected role in tumor biology that still needs to be fully elucidated.
Collapse
|
20
|
Yi Y, Xie H, Xiao X, Wang B, Du R, Liu Y, Li Z, Wang J, Sun L, Deng Z, Li J. Ultraviolet A irradiation induces senescence in human dermal fibroblasts by down-regulating DNMT1 via ZEB1. Aging (Albany NY) 2019; 10:212-228. [PMID: 29466247 PMCID: PMC5842848 DOI: 10.18632/aging.101383] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 02/09/2018] [Indexed: 12/20/2022]
Abstract
In this study, we report the role of DNA methyltransferase 1 (DNMT1) in ultraviolet A (UVA)-induced senescence in human dermal fibroblasts (HDFs). We show that DNMT1 expression was significantly reduced during UVA-induced senescence, and this senescence could be alleviated or aggravated by the up- or down-regulation of DNMT1, respectively. Expression of the transcription factor zinc finger E-box binding homeobox 1(ZEB1) also decreased after UVA irradiation, following a UVA-induced increase of intracellular reactive oxygen species (ROS). We show that ZEB1 binds to the DMNT1 promoter and regulates its transcription, which, in turn, affects cellular senescence. These changes in DMNT1 and ZEB1 expression following UVA exposure were confirmed in matched skin specimens that had or had not been sun-exposed. On analyzing the promoter methylation of 24 senescence associated genes in these matched skin specimens, we discovered that p53 promoter methylation was significantly reduced in sun-exposed skin. In vitro experiments confirmed that UVA irradiation reduced p53 promoter methylation, and DNMT1 up-regulation could reverse this effect. Collectively, down-regulation of ZEB1 caused by UVA induced ROS could transcriptionally inhibit DNMT1, leading to low methylation level of senescence related proteins p53 and increase its expression, eventually result in cellar senescence.
Collapse
Affiliation(s)
- Yuxin Yi
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Hongfu Xie
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiao Xiao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Ben Wang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Rui Du
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Yingzi Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Zibo Li
- The State Key Laboratory of Medical Genetics & School of Life Sciences, Central South University, Changsha, China
| | - Jun Wang
- The State Key Laboratory of Medical Genetics & School of Life Sciences, Central South University, Changsha, China
| | - Lunquan Sun
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Zhili Deng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, China.,Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, China.,Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China
| |
Collapse
|
21
|
Farzaneh M, Alishahi M, Derakhshan Z, Sarani NH, Attari F, Khoshnam SE. The Expression and Functional Roles of miRNAs in Embryonic and Lineage-Specific Stem Cells. Curr Stem Cell Res Ther 2019; 14:278-289. [PMID: 30674265 DOI: 10.2174/1574888x14666190123162402] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 12/15/2018] [Accepted: 01/03/2019] [Indexed: 01/01/2023]
Abstract
The discovery of small non-coding RNAs began an interesting era in cellular and molecular biology. To date, miRNAs are the best recognized non-coding RNAs for maintenance and differentiation of pluripotent stem cells including embryonic stem cells (ES), induced pluripotent stem cells (iPSC), and cancer stem cells. ES cells are defined by their ability to self-renew, teratoma formation, and to produce numerous types of differentiated cells. Dual capacity of ES cells for self-renewal and differentiation is controlled by specific interaction with the neighboring cells and intrinsic signaling pathways from the level of transcription to translation. The ES cells have been the suitable model for evaluating the function of non-coding RNAs and in specific miRNAs. So far, the general function of the miRNAs in ES cells has been assessed in mammalian and non-mammalian stem cells. Nowadays, the evolution of sequencing technology led to the discovery of numerous miRNAs in human and mouse ES cells that their expression levels significantly changes during proliferation and differentiation. Several miRNAs have been identified in ectoderm, mesoderm, and endoderm cells, as well. This review would focus on recent knowledge about the expression and functional roles of miRNAs in embryonic and lineage-specific stem cells. It also describes that miRNAs might have essential roles in orchestrating the Waddington's landscape structure during development.
Collapse
Affiliation(s)
- Maryam Farzaneh
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Masoumeh Alishahi
- Department of Biology, Tehran North Branch, Islamic Azad University, Tehran, Iran
| | - Zahra Derakhshan
- Department of Reproductive Biology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Neda H Sarani
- Faculty of Paramedical, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farnoosh Attari
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Seyed E Khoshnam
- Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
22
|
Moon IY, Choi JH, Chung JW, Jang ES, Jeong SH, Kim JW. MicroRNA‑20 induces methylation of hepatitis B virus covalently closed circular DNA in human hepatoma cells. Mol Med Rep 2019; 20:2285-2293. [PMID: 31257511 PMCID: PMC6691198 DOI: 10.3892/mmr.2019.10435] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 05/22/2019] [Indexed: 02/06/2023] Open
Abstract
Methylation was suggested to suppress the transcriptional activity of hepatitis B virus (HBV) covalently closed circular DNA (cccDNA) in hepatocytes. This may be associated with its low replicative activity during the inactive stage of chronic HBV infection; however, the exact mechanisms of methylation in HBV infection remain unknown. We have previously shown that short hairpin RNAs induced the methylation of the HBV genome in hepatoma cell lines. We also reported that the microRNA (miR) 17–92 cluster negatively regulates HBV replication in human hepatoma cells. In addition, miR-20a, a member of the miR 17–92 cluster, has sequence homology with the short hairpin RNA that induces HBV methylation. In the present study, we investigated whether miR-20a can function as an endogenous effector of HBV DNA methylation. The results indicated that overexpression of miR-20a could suppress the replicative activity of HBV and increased the degree of methylation of HBV cccDNA in the HepAD38 hepatoma cell line. Argonaute (AGO)1 and AGO2, effectors of the RNA-induced silencing complex, were detected in the nucleus of HepAD38 cells; however, only AGO2 was bound to HBV cccDNA. In addition, intranuclear AGO2 was determined to be bound with miR-20a. In conclusion, miR-20a may be loaded onto AGO2, prior to its translocation into the nucleus, inducing the methylation of HBV DNA in human hepatoma cells, leading to the suppression of HBV replication.
Collapse
Affiliation(s)
- In Young Moon
- Department of Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi 13620, Republic of Korea
| | - Jae Hee Choi
- Department of Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi 13620, Republic of Korea
| | - Jung Wha Chung
- Department of Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi 13620, Republic of Korea
| | - Eun Sun Jang
- Department of Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi 13620, Republic of Korea
| | - Sook-Hyang Jeong
- Department of Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi 13620, Republic of Korea
| | - Jin-Wook Kim
- Department of Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi 13620, Republic of Korea
| |
Collapse
|
23
|
Petti E, Buemi V, Zappone A, Schillaci O, Broccia PV, Dinami R, Matteoni S, Benetti R, Schoeftner S. SFPQ and NONO suppress RNA:DNA-hybrid-related telomere instability. Nat Commun 2019; 10:1001. [PMID: 30824709 PMCID: PMC6397292 DOI: 10.1038/s41467-019-08863-1] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 01/21/2019] [Indexed: 12/15/2022] Open
Abstract
In vertebrates, the telomere repeat containing long, non-coding RNA TERRA is prone to form RNA:DNA hybrids at telomeres. This results in the formation of R-loop structures, replication stress and telomere instability, but also contributes to alternative lengthening of telomeres (ALT). Here, we identify the TERRA binding proteins NONO and SFPQ as novel regulators of RNA:DNA hybrid related telomere instability. NONO and SFPQ locate at telomeres and have a common role in suppressing RNA:DNA hybrids and replication defects at telomeres. NONO and SFPQ act as heterodimers to suppress fragility and homologous recombination at telomeres, respectively. Combining increased telomere fragility with unleashing telomere recombination upon NONO/SFPQ loss of function causes massive recombination events, involving 35% of telomeres in ALT cells. Our data identify the RNA binding proteins SFPQ and NONO as novel regulators at telomeres that collaborate to ensure telomere integrity by suppressing telomere fragility and homologous recombination triggered by RNA:DNA hybrids. LncRNA TERRA forms RNA-DNA hybrids at telomere sites leading to telomere instability. Here the authors identify the RNA interacting factors NONO and SFPQ as proteins that interact with TERRA and telomere chromatin and reveal putative roles for these factors in telomere integry maintenance by interfering with RNA:DNA hybrid formation.
Collapse
Affiliation(s)
- Eleonora Petti
- Genomic Stability Unit, Laboratorio Nazionale-Consorzio Interuniversitario per le Biotecnologie (LNCIB), Padriciano 99, 34149, Trieste, Italy.,Department of Life Sciences, Università degli Studi di Trieste, Via E. Weiss 2, 34127, Trieste, Italy.,Oncogenomic and Epigenetic Unit, IRCCS-Regina Elena National Cancer Institute, via Elio Chianesi 53, 00144, Rome, Italy
| | - Valentina Buemi
- Genomic Stability Unit, Laboratorio Nazionale-Consorzio Interuniversitario per le Biotecnologie (LNCIB), Padriciano 99, 34149, Trieste, Italy.,Department of Life Sciences, Università degli Studi di Trieste, Via E. Weiss 2, 34127, Trieste, Italy
| | - Antonina Zappone
- Genomic Stability Unit, Laboratorio Nazionale-Consorzio Interuniversitario per le Biotecnologie (LNCIB), Padriciano 99, 34149, Trieste, Italy.,Department of Life Sciences, Università degli Studi di Trieste, Via E. Weiss 2, 34127, Trieste, Italy
| | - Odessa Schillaci
- Genomic Stability Unit, Laboratorio Nazionale-Consorzio Interuniversitario per le Biotecnologie (LNCIB), Padriciano 99, 34149, Trieste, Italy
| | - Pamela Veneziano Broccia
- Genomic Stability Unit, Laboratorio Nazionale-Consorzio Interuniversitario per le Biotecnologie (LNCIB), Padriciano 99, 34149, Trieste, Italy.,Department of Life Sciences, Università degli Studi di Trieste, Via E. Weiss 2, 34127, Trieste, Italy
| | - Roberto Dinami
- Genomic Stability Unit, Laboratorio Nazionale-Consorzio Interuniversitario per le Biotecnologie (LNCIB), Padriciano 99, 34149, Trieste, Italy.,Department of Life Sciences, Università degli Studi di Trieste, Via E. Weiss 2, 34127, Trieste, Italy.,Oncogenomic and Epigenetic Unit, IRCCS-Regina Elena National Cancer Institute, via Elio Chianesi 53, 00144, Rome, Italy
| | - Silvia Matteoni
- Cellular Networks and Molecular Therapeutic Targets, Proteomics Unit, IRCCS-Regina Elena National Cancer Institute, via Elio Chianesi 53, 00144, Rome, Italy
| | - Roberta Benetti
- Dipartimento di Area Medica (Dame), Università degli Studi di Udine, p.le Kolbe 1, 33100, Udine, Italy.,Cancer Epigenetics Unit, Laboratorio Nazionale-Consorzio Interuniversitario per le Biotecnologie (LNCIB), Padriciano 99, 34149, Trieste, Italy
| | - Stefan Schoeftner
- Genomic Stability Unit, Laboratorio Nazionale-Consorzio Interuniversitario per le Biotecnologie (LNCIB), Padriciano 99, 34149, Trieste, Italy. .,Department of Life Sciences, Università degli Studi di Trieste, Via E. Weiss 2, 34127, Trieste, Italy.
| |
Collapse
|
24
|
Kanitz A, Syed AP, Kaji K, Zavolan M. Conserved regulation of RNA processing in somatic cell reprogramming. BMC Genomics 2019; 20:100. [PMID: 30704403 PMCID: PMC6357513 DOI: 10.1186/s12864-019-5438-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 01/08/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Along with the reorganization of epigenetic and transcriptional networks, somatic cell reprogramming brings about numerous changes at the level of RNA processing. These include the expression of specific transcript isoforms and 3' untranslated regions. A number of studies have uncovered RNA processing factors that modulate the efficiency of the reprogramming process. However, a comprehensive evaluation of the involvement of RNA processing factors in the reprogramming of somatic mammalian cells is lacking. RESULTS Here, we used data from a large number of studies carried out in three mammalian species, mouse, chimpanzee and human, to uncover consistent changes in gene expression upon reprogramming of somatic cells. We found that a core set of nine splicing factors have consistent changes across the majority of data sets in all three species. Most striking among these are ESRP1 and ESRP2, which accelerate and enhance the efficiency of somatic cell reprogramming by promoting isoform expression changes associated with mesenchymal-to-epithelial transition. We further identify genes and processes in which splicing changes are observed in both human and mouse. CONCLUSIONS Our results provide a general resource for gene expression and splicing changes that take place during somatic cell reprogramming. Furthermore, they support the concept that splicing factors with evolutionarily conserved, cell type-specific expression can modulate the efficiency of the process by reinforcing intermediate states resembling the cell types in which these factors are normally expressed.
Collapse
Affiliation(s)
- Alexander Kanitz
- Biozentrum, University of Basel, Basel, Switzerland
- RNA Regulatory Networks, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Afzal Pasha Syed
- Biozentrum, University of Basel, Basel, Switzerland
- RNA Regulatory Networks, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Keisuke Kaji
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, Scotland, UK
| | - Mihaela Zavolan
- Biozentrum, University of Basel, Basel, Switzerland
- RNA Regulatory Networks, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| |
Collapse
|
25
|
Shukla S, Penta D, Mondal P, Meeran SM. Epigenetics of Breast Cancer: Clinical Status of Epi-drugs and Phytochemicals. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1152:293-310. [PMID: 31456191 DOI: 10.1007/978-3-030-20301-6_16] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Epigenetics refers to alterations in gene expression due to differential histone modifications and DNA methylation at promoter sites of genes. Epigenetic alterations are reversible and are heritable during somatic cell division, but do not involve changes in nucleotide sequence. Epigenetic regulation plays a critical role in normal growth and embryonic development by controlling transcriptional activities of several genes. In last two decades, these modifications have been well recognized to be involved in tumor initiation and progression, which has motivated many investigators to incorporate this novel field in cancer drug development. Recently, growing number of epigenetic changes have been reported that are involved in the regulations of genes involved in breast tumor growth and metastasis. Drugs possessing epigenetic modulatory activities known as epi-drugs, mainly the inhibitors of histone deacetylases (HDACs) and DNA methyltransferases (DNMTs). Some of these drugs are undergoing different clinical trials for breast cancer treatment. Several phytochemicals such as green tea polyphenols, curcumin, genistein, resveratrol and sulforaphane have also been shown to alter epigenetic modifications in multiple cancer types including breast cancer. In this chapter, we summarize the role of epigenetic changes in breast cancer progression and metastasis. We have also discussed about various epigenetic modulators possessing chemopreventive and therapeutic efficacy against breast cancer with future perspectives.
Collapse
Affiliation(s)
- Samriddhi Shukla
- Department of Paediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Dhanamjai Penta
- Laboratory of Cancer Epigenetics, Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, India
| | - Priya Mondal
- Laboratory of Cancer Epigenetics, Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, India
| | - Syed Musthapa Meeran
- Laboratory of Cancer Epigenetics, Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, India.
| |
Collapse
|
26
|
Yahyapour R, Salajegheh A, Safari A, Amini P, Rezaeyan A, Amraee A, Najafi M. Radiation-induced Non-targeted Effect and Carcinogenesis; Implications in Clinical Radiotherapy. J Biomed Phys Eng 2018; 8:435-446. [PMID: 30568933 PMCID: PMC6280111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 01/17/2017] [Indexed: 11/25/2022]
Abstract
Bystander or non-targeted effect is known to be an interesting phenomenon in radiobiology. The genetic consequences of bystander effect on non-irradiated cells have shown that this phenomenon can be considered as one of the most important factors involved in secondary cancer after exposure to ionizing radiation. Every year, millions of people around the world undergo radiotherapy in order to cure different types of cancers. The most crucial aim of radiotherapy is to improve treatment efficiency by reducing early and late effects of exposure to clinical doses of radiation. Secondary cancer induction resulted from exposure to high doses of radiation during treatment can reduce the effectiveness of this modality for cancer treatment. The perception of carcinogenesis risk of bystander effects and factors involved in this phenomenon might help reduce secondary cancer incidence years after radiotherapy. Different modalities such as radiation LET, dose and dose rate, fractionation, types of tissue, gender of patients, etc. may be involved in carcinogenesis risk of bystander effects. Therefore, selecting an appropriate treatment modality may improve cost-effectiveness of radiation therapy as well as the quality of life in survived patients. In this review, we first focus on the carcinogenesis evidence of non-targeted effects in radiotherapy and then review physical and biological factors that may influence the risk of secondary cancer induced by this phenomenon.
Collapse
Affiliation(s)
- R. Yahyapour
- School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| | - A. Salajegheh
- Department of Radiology, School of Paramedical, Shiraz University of Medical Sciences, Shiraz, Iran
| | - A. Safari
- Department of Medical Physics, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - P. Amini
- Department of Radiology, Faculty of Paramedical, Tehran University of Medical Sciences, Tehran, Iran
| | - A. Rezaeyan
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - A. Amraee
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - M. Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Science, Kermanshah, Iran
| |
Collapse
|
27
|
Wu Q, Sun X, Zheng G. VEGF overexpression is associated with optic nerve involvement and differentiation of retinoblastoma: A PRISMA-compliant meta-analysis. Medicine (Baltimore) 2018; 97:e13753. [PMID: 30572521 PMCID: PMC6319877 DOI: 10.1097/md.0000000000013753] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 11/27/2018] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Vascular endothelial growth factor (VEGF) plays an important role in the pathogenesis of cancer. Although numerous studies have investigated the association between VEGF expression and pathogenesis of retinoblastoma, the results remained inconsistent. To illuminate the association, we performed a meta-analysis study. METHODS According to the PRISMA guideline, eligible studies were searched in the Medicine, Embase, Web of Science, Chinese National Knowledge Infrastructure, and Wanfang databases. Stata 14.0 software was used to calculate the relevant statistical parameters. RESULTS Seventeen studies with 296 controls and 470 patients with retinoblastoma were included from 17 eligible literatures. Overall, significant association between VEGF overexpression and susceptibility of retinoblastoma was observed in Chinese population (odds ratio [OR] = 21.67, 95% confidence interval [CI] = 13.96-33.62). Subgroup analysis based on control sample type showed that VEGF overexpression was significantly associated with the risk of retinoblastoma (Normal retina tissue, OR = 23.97, 95% CI = 9.67-59.42; retinoblastoma adjacent tissue, OR = 20.85, 95% CI = 12.64-34.37). Significant associations of VEGF overexpression with optic nerve involvement and differentiation of retinoblastoma were found (Optic nerve involvement, OR = 6.90, 95% CI = 4.01-11.88; Differentiation, OR = 0.18, 95% CI = 0.12-0.28). In addition, only 1 study was included to analyze the role of VEGF protein expression in the prognosis of retinoblastoma, and the result showed that VEGF expression was significantly associated with the prognosis of retinoblastoma, which should be verified in the future studies. CONCLUSIONS Our findings demonstrated that VEGF overexpression was significantly associated with the risk of retinoblastoma. Besides, the results suggested that VEGF overexpression might have a crucial effect on the optic nerve involvement and differentiation of retinoblastoma.
Collapse
|
28
|
Liu Z, Zhang C, Skamagki M, Khodadadi-Jamayran A, Zhang W, Kong D, Chang CW, Feng J, Han X, Townes TM, Li H, Kim K, Zhao R. Elevated p53 Activities Restrict Differentiation Potential of MicroRNA-Deficient Pluripotent Stem Cells. Stem Cell Reports 2018; 9:1604-1617. [PMID: 29141234 PMCID: PMC5688240 DOI: 10.1016/j.stemcr.2017.10.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 10/09/2017] [Accepted: 10/10/2017] [Indexed: 12/21/2022] Open
Abstract
Pluripotent stem cells (PSCs) deficient for microRNAs (miRNAs), such as Dgcr8−/− or Dicer−/– embryonic stem cells (ESCs), contain no mature miRNA and cannot differentiate into somatic cells. How miRNA deficiency causes differentiation defects remains poorly understood. Here, we report that miR-302 is sufficient to enable neural differentiation of differentiation-incompetent Dgcr8−/− ESCs. Our data showed that miR-302 directly suppresses the tumor suppressor p53, which is modestly upregulated in Dgcr8−/− ESCs and serves as a barrier restricting neural differentiation. We demonstrated that direct inactivation of p53 by SV40 large T antigen, a short hairpin RNA against Trp53, or genetic ablation of Trp53 in Dgcr8−/− PSCs enables neural differentiation, while activation of p53 by the MDM2 inhibitor nutlin-3a in wild-type ESCs inhibits neural differentiation. Together, we demonstrate that a major function of miRNAs in neural differentiation is suppression of p53 and that modest activation of p53 blocks neural differentiation of miRNA-deficient PSCs. miR-302 enables neural differentiation of differentiation-incompetent Dgcr8−/− ESCs miR-302 directly suppresses p53 expression p53 inhibits neural differentiation of Dgcr8−/− and wild-type PSCs p53 may eliminate genetically defective embryos to save maternal resources
Collapse
Affiliation(s)
- Zhong Liu
- Department of Biochemistry and Molecular Genetics, Stem Cell Institute, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Cheng Zhang
- Department of Molecular Pharmacology and Experimental Therapeutics, Center for Individualized Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Maria Skamagki
- Cancer Biology and Genetics Program, Center for Cell Engineering, Center for Stem Cell Biology, Sloan-Kettering Institute, Cell and Developmental Biology Program, Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Alireza Khodadadi-Jamayran
- Department of Biochemistry and Molecular Genetics, Stem Cell Institute, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Wei Zhang
- Department of Biochemistry and Molecular Genetics, Stem Cell Institute, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Dexin Kong
- Department of Biochemistry and Molecular Genetics, Stem Cell Institute, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Chia-Wei Chang
- Department of Biochemistry and Molecular Genetics, Stem Cell Institute, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jingyang Feng
- Cook County Health and Hospital System, John H. Stroger Hospital, Chicago, IL 60612, USA
| | - Xiaosi Han
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Tim M Townes
- Department of Biochemistry and Molecular Genetics, Stem Cell Institute, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Hu Li
- Department of Molecular Pharmacology and Experimental Therapeutics, Center for Individualized Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Kitai Kim
- Cancer Biology and Genetics Program, Center for Cell Engineering, Center for Stem Cell Biology, Sloan-Kettering Institute, Cell and Developmental Biology Program, Weill Medical College of Cornell University, New York, NY 10065, USA.
| | - Rui Zhao
- Department of Biochemistry and Molecular Genetics, Stem Cell Institute, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
29
|
Memari F, Joneidi Z, Taheri B, Aval SF, Roointan A, Zarghami N. Epigenetics and Epi-miRNAs: Potential markers/therapeutics in leukemia. Biomed Pharmacother 2018; 106:1668-1677. [PMID: 30170355 DOI: 10.1016/j.biopha.2018.07.133] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 07/04/2018] [Accepted: 07/24/2018] [Indexed: 12/12/2022] Open
Abstract
Epigenetic variations can play remarkable roles in different normal and abnormal situations. Such variations have been shown to have a direct role in the pathogenesis of various diseases either through inhibition of tumor suppressor genes or increasing the expression of oncogenes. Enzymes involving in epigenetic machinery are the main actors in tuning the epigenetic-based controls on gene expressions. Aberrant expression of these enzymes can trigger a big chaos in the cellular gene expression networks and finally lead to cancer progression. This situation has been shown in different types of leukemia, where high or low levels of an epigenetic enzyme are partly or highly responsible for involvement or progression of a disease. DNA hypermethylation, different histone modifications, and aberrant miRNA expressions are three main epigenetic variations, which have been shown to play a role in leukemia progression. Epigenetic based treatments now are considered as novel and effective therapies in order to decrease the abnormal epigenetic modifications in patient cells. Different epigenetic-based approaches have been developed and tested to inhibit or reverse the unusual expression of epigenetic agents in leukemia. The reciprocal behavior of miRNAs in the regulation of epigenetic modifiers, while being regulated by them, unlocks a new opportunity in order to design some epigenetic-based miRNAs able to silence or sensitize these effectors in leukemia.
Collapse
Affiliation(s)
- Fatemeh Memari
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zeinab Joneidi
- Department of Genetics and Molecular Medicine, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Behnaz Taheri
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sedigheh Fekri Aval
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Roointan
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nosratollah Zarghami
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
30
|
Abstract
Research on stem cells is one of the fastest growing areas of regenerative medicine that paves the way for a comprehensive solution to cell therapy. Today, stem cells are precious assets for generating different types of cells derived from either natural embryonic stem (ES) cells or induced pluripotent stem (iPS) cells. The iPS technology can revolutionize the future of clinics by offering personalized medicine, which will provide the future treatment for curing untreatable diseases. Although iPS cell therapy is now at its infancy, promising research has motivated scientists to pursue this therapeutic approach. In this article, we provide information regarding similarities and differences between ES and iPS cells, and focus on the non-integrating methods of iPS generation via RNA molecules, especially microRNAs with an emphasis on the elucidation of their role and importance in pluripotency.
Collapse
Affiliation(s)
- Abbas Beh-Pajooh
- REBIRTH-Group Translational Hepatology and Stem Cell Biology, Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Tobias Cantz
- REBIRTH-Group Translational Hepatology and Stem Cell Biology, Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany.,Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| |
Collapse
|
31
|
Dan J, Rousseau P, Hardikar S, Veland N, Wong J, Autexier C, Chen T. Zscan4 Inhibits Maintenance DNA Methylation to Facilitate Telomere Elongation in Mouse Embryonic Stem Cells. Cell Rep 2018; 20:1936-1949. [PMID: 28834755 DOI: 10.1016/j.celrep.2017.07.070] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 05/20/2017] [Accepted: 07/25/2017] [Indexed: 11/30/2022] Open
Abstract
Proper telomere length is essential for embryonic stem cell (ESC) self-renewal and pluripotency. Mouse ESCs (mESCs) sporadically convert to a transient totipotent state similar to that of two-cell (2C) embryos to recover shortened telomeres. Zscan4, which exhibits a burst of expression in 2C-like mESCs, is required for telomere extension in these cells. However, the mechanism by which Zscan4 extends telomeres remains elusive. Here, we show that Zscan4 facilitates telomere elongation by inducing global DNA demethylation through downregulation of Uhrf1 and Dnmt1, major components of the maintenance DNA methylation machinery. Mechanistically, Zscan4 recruits Uhrf1 and Dnmt1 and promotes their degradation, which depends on the E3 ubiquitin ligase activity of Uhrf1. Blocking DNA demethylation prevents telomere elongation associated with Zscan4 expression, suggesting that DNA demethylation mediates the effect of Zscan4. Our results define a molecular pathway that contributes to the maintenance of telomere length homeostasis in mESCs.
Collapse
Affiliation(s)
- Jiameng Dan
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Philippe Rousseau
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montréal, Québec H3T 1E2, Canada
| | - Swanand Hardikar
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Nicolas Veland
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Jiemin Wong
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Chantal Autexier
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montréal, Québec H3T 1E2, Canada; Division of Experimental Medicine, Department of Anatomy and Cell Biology, McGill University, Montréal, Québec H3A 0C7, Canada
| | - Taiping Chen
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA.
| |
Collapse
|
32
|
Interplay between TETs and microRNAs in the adult brain for memory formation. Sci Rep 2018; 8:1678. [PMID: 29374200 PMCID: PMC5786039 DOI: 10.1038/s41598-018-19806-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 01/08/2018] [Indexed: 12/28/2022] Open
Abstract
5-hydroxymethylation (5-hmC) is an epigenetic modification on DNA that results from the conversion of 5-methylcytosine by Ten-Eleven Translocation (TET) proteins. 5-hmC is widely present in the brain and is subjected to dynamic regulation during development and upon neuronal activity. It was recently shown to be involved in memory processes but currently, little is known about how it is controlled in the brain during memory formation. Here, we show that Tet3 is selectively up-regulated by activity in hippocampal neurons in vitro, and after formation of fear memory in the hippocampus. This is accompanied by a decrease in miR-29b expression that, through complementary sequences, regulates the level of Tet3 by preferential binding to its 3′UTR. We newly reveal that SAM68, a nuclear RNA-binding protein known to regulate splicing, acts upstream of miR-29 by modulating its biogenesis. Together, these findings identify novel players in the adult brain necessary for the regulation of 5-hmC during memory formation.
Collapse
|
33
|
Stathopoulou A, Chhetri JB, Ambrose JC, Estève PO, Ji L, Erdjument-Bromage H, Zhang G, Neubert TA, Pradhan S, Herrero J, Schmitz RJ, Ooi SK. A novel requirement for DROSHA in maintenance of mammalian CG methylation. Nucleic Acids Res 2017; 45:9398-9412. [PMID: 28934503 PMCID: PMC5766157 DOI: 10.1093/nar/gkx695] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 07/27/2017] [Indexed: 12/18/2022] Open
Abstract
In mammals, faithful inheritance of genomic methylation patterns ensures proper gene regulation and cell behaviour, impacting normal development and fertility. Following establishment, genomic methylation patterns are transmitted through S-phase by the maintenance methyltransferase Dnmt1. Using a protein interaction screen, we identify Microprocessor component DROSHA as a novel DNMT1-interactor. Drosha-deficient embryonic stem (ES) cells display genomic hypomethylation that is not accounted for by changes in the levels of DNMT proteins. DNMT1-mediated methyltransferase activity is also reduced in these cells. We identify two transcripts that are specifically upregulated in Drosha- but not Dicer-deficient ES cells. Regions within these transcripts predicted to form stem-loop structures are processed by Microprocessor and can inhibit DNMT1-mediated methylation in vitro. Our results highlight DROSHA as a novel regulator of mammalian DNA methylation and we propose that DROSHA-mediated processing of RNA is necessary to ensure full DNMT1 activity. This adds to the DROSHA repertoire of non-miRNA dependent functions as well as implicating RNA in regulating DNMT1 activity and correct levels of genomic methylation.
Collapse
Affiliation(s)
| | - Jyoti B. Chhetri
- Department of Cancer Biology, UCL Cancer Institute, London WC1E 6BT, UK
| | - John C. Ambrose
- Bill Lyons Informatics Centre, UCL Cancer Institute, London WC1E 6BT, UK
| | | | - Lexiang Ji
- Institute of Bioinformatics, University of Georgia, 120 East Green Street, Athens, GA 30602, USA
| | - Hediye Erdjument-Bromage
- Department of Biochemistry and Molecular Pharmacology, Skirball Institute, NYU School of Medicine, New York, NY 10016, USA
| | - Guoqiang Zhang
- New England Biolabs, 240 Country Road, Ipswich, MA 01938, USA
| | - Thomas A. Neubert
- Department of Biochemistry and Molecular Pharmacology, Skirball Institute, NYU School of Medicine, New York, NY 10016, USA
| | | | - Javier Herrero
- Bill Lyons Informatics Centre, UCL Cancer Institute, London WC1E 6BT, UK
| | - Robert J. Schmitz
- Institute of Bioinformatics, University of Georgia, 120 East Green Street, Athens, GA 30602, USA
- Department of Genetics, University of Georgia, 120 East Green Street, Athens, GA 30602, USA
| | - Steen K.T. Ooi
- Department of Cancer Biology, UCL Cancer Institute, London WC1E 6BT, UK
- To whom correspondence should be addressed. Tel: +44 2076 790717; Fax: +44 2076 796817;
| |
Collapse
|
34
|
Gadd45a opens up the promoter regions of miR-295 facilitating pluripotency induction. Cell Death Dis 2017; 8:e3107. [PMID: 29022923 PMCID: PMC5682663 DOI: 10.1038/cddis.2017.497] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 08/13/2017] [Accepted: 08/31/2017] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) play crucial roles in the establishment of pluripotent state by controlling pluripotent network. However, the molecular mechanisms controlling miRNAs during somatic cell reprogramming remain obscure. In this study, we show Gadd45a (growth arrest and DNA-damage-inducible protein 45a) enhances reprogramming by activating miR-295. Furthermore, we show that Gadd45a binds the promoter regions of miR-295. Nuclease accessibility assay indicates that Gadd45a opens the promoter regions of miR-295. Levels of H3K9Ac and H3K27Ac on the promoter regions of miR-295 were also increased. In conclusion, our results indicate that Gadd45a relaxes the promoter regions of miR-295 and promotes the expression of miR-295 during reprogramming, implying a concise mechanism of Gadd45a and miR-290 cluster cooperation in cell-fate determination.
Collapse
|
35
|
Yuan K, Ai WB, Wan LY, Tan X, Wu JF. The miR-290-295 cluster as multi-faceted players in mouse embryonic stem cells. Cell Biosci 2017; 7:38. [PMID: 28794853 PMCID: PMC5547456 DOI: 10.1186/s13578-017-0166-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 08/01/2017] [Indexed: 01/04/2023] Open
Abstract
Increasing evidence indicates that embryonic stem cell specific microRNAs (miRNAs) play an essential role in the early development of embryo. Among them, the miR-290-295 cluster is the most highly expressed in the mouse embryonic stem cells and involved in various biological processes. In this paper, we reviewed the research progress of the function of the miR-290-295 cluster in embryonic stem cells. The miR-290-295 cluster is involved in regulating embryonic stem cell pluripotency maintenance, self-renewal, and reprogramming somatic cells to an embryonic stem cell-like state. Moreover, the miR-290-295 cluster has a latent pro-survival function in embryonic stem cells and involved in tumourigenesis and senescence with a great significance. Elucidating the interaction between the miR-290-295 cluster and other modes of gene regulation will provide us new ideas on the biology of pluripotent stem cells. In the near future, the broad prospects of the miRNA cluster will be shown in the stem cell field, such as altering cell identities with high efficiency through the transient introduction of tissue-specific miRNA cluster.
Collapse
Affiliation(s)
- Kai Yuan
- Institute of Organ Fibrosis and Targeted Drug Delivery, Medical College, China Three Gorges University, 8 Daxue Road, Xiling District, Yichang, 443002 China
| | - Wen-Bing Ai
- The Yiling Hospital of Yichang, 31 Donghu Road, Yi Ling District, Yichang, 443100 Hubei China
| | - Lin-Yan Wan
- Institute of Organ Fibrosis and Targeted Drug Delivery, Medical College, China Three Gorges University, 8 Daxue Road, Xiling District, Yichang, 443002 China.,The RenMin Hospital, China Three Gorges University, 31 Huti Subdistrict, Xi Ling District, Yichang, 443000 Hubei China
| | - Xiao Tan
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, 8 Daxue Road, Xiling District, Yichang, 443002 China
| | - Jiang-Feng Wu
- Institute of Organ Fibrosis and Targeted Drug Delivery, Medical College, China Three Gorges University, 8 Daxue Road, Xiling District, Yichang, 443002 China
| |
Collapse
|
36
|
Hao J, Duan FF, Wang Y. MicroRNAs and RNA binding protein regulators of microRNAs in the control of pluripotency and reprogramming. Curr Opin Genet Dev 2017; 46:95-103. [PMID: 28753462 DOI: 10.1016/j.gde.2017.07.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 06/19/2017] [Accepted: 07/11/2017] [Indexed: 12/09/2022]
Abstract
Post-transcriptional and translational regulations play essential roles during cellular reprogramming and in the maintenance and differentiation of pluripotent stem cells (PSCs). MicroRNAs (miRNAs) control cell cycle, glycolysis, chromatin state, survival and pluripotency of ESCs. Likewise, many miRNAs assist or act as a barrier for the generation of induced pluripotent stem cells (iPSCs). Recent studies also reveal exciting new directions on miRNA functions in regulating the switch between naive and primed pluripotent states as well as the establishment of totipotent-like state. Furthermore, the biogenesis and function of pluripotency related miRNAs are regulated by various RNA binding proteins (RBPs) at different levels. Revealing the interplay between RBPs and miRNAs will advance our understanding of molecular mechanisms controlling pluripotency and provide better means to manipulate PSCs for clinical applications. In this review, we summarize recent findings on the function of miRNAs in ESCs and during reprogramming. In addition, we also discuss new directions on miRNA functions in regulating the switch between different pluripotent states and RBP-mediated regulation of miRNA biogenesis and function in pluripotency control.
Collapse
Affiliation(s)
- Jing Hao
- Beijing Key Laboratory of Cardio Metabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Fei-Fei Duan
- Beijing Key Laboratory of Cardio Metabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Yangming Wang
- Beijing Key Laboratory of Cardio Metabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China.
| |
Collapse
|
37
|
Paces J, Nic M, Novotny T, Svoboda P. Literature review of baseline information to support the risk assessment of RNAi‐based GM plants. ACTA ACUST UNITED AC 2017. [PMCID: PMC7163844 DOI: 10.2903/sp.efsa.2017.en-1246] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jan Paces
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic (IMG)
| | | | | | - Petr Svoboda
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic (IMG)
| |
Collapse
|
38
|
Naderlinger E, Holzmann K. Epigenetic Regulation of Telomere Maintenance for Therapeutic Interventions in Gliomas. Genes (Basel) 2017; 8:E145. [PMID: 28513547 PMCID: PMC5448019 DOI: 10.3390/genes8050145] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/08/2017] [Accepted: 05/12/2017] [Indexed: 02/07/2023] Open
Abstract
High-grade astrocytoma of WHO grade 4 termed glioblastoma multiforme (GBM) is a common human brain tumor with poor patient outcome. Astrocytoma demonstrates two known telomere maintenance mechanisms (TMMs) based on telomerase activity (TA) and on alternative lengthening of telomeres (ALT). ALT is associated with lower tumor grades and better outcome. In contrast to ALT, regulation of TA in tumors by direct mutation and epigenetic activation of the hTERT promoter is well established. Here, we summarize the genetic background of TMMs in non-malignant cells and in cancer, in addition to clinical and pathological features of gliomas. Furthermore, we present new evidence for epigenetic mechanisms (EMs) involved in regulation of ALT and TA with special emphasis on human diffuse gliomas as potential therapeutic drug targets. We discuss the role of TMM associated telomeric chromatin factors such as DNA and histone modifying enzymes and non-coding RNAs including microRNAs and long telomeric TERRA transcripts.
Collapse
Affiliation(s)
- Elisabeth Naderlinger
- Institute of Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, Vienna 1090, Austria.
| | - Klaus Holzmann
- Institute of Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, Vienna 1090, Austria.
| |
Collapse
|
39
|
Caravia XM, Roiz-Valle D, Morán-Álvarez A, López-Otín C. Functional relevance of miRNAs in premature ageing. Mech Ageing Dev 2017; 168:10-19. [PMID: 28502819 DOI: 10.1016/j.mad.2017.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 03/30/2017] [Accepted: 05/09/2017] [Indexed: 02/06/2023]
Abstract
Ageing is a complex biological process characterized by the progressive loss of biological fitness due to the accumulation of macromolecular and cellular damage that affects most living organisms. Moreover, ageing is an important risk factor for many pathologies, including cardiovascular diseases, neurological disorders, and cancer. However, the ageing rate can be modulated by genetic, nutritional, and pharmacological factors, highlighting the concept of "ageing plasticity". Progeroid syndromes are a group of rare genetic diseases that resemble many characteristics of physiological ageing. Accordingly, studies on these diseases have been very useful for gaining mechanistic insights in ageing biology. In recent years, a great effort has been made in ageing research and several works have confirmed that geromiRs, the growing subgroup of miRNAs implicated in ageing, are able to modulate organismal lifespan. However, very little is still known about the impact of miRNA in premature ageing. In this review, we will address the functional relevance of this class of small non-coding RNAs in the regulation of the hallmarks of progeroid syndromes. In addition, we will discuss the potential strategies for managing progeria based on geromiR modulation.
Collapse
Affiliation(s)
- Xurde M Caravia
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, 33006 Oviedo, Spain
| | - David Roiz-Valle
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, 33006 Oviedo, Spain
| | - Alba Morán-Álvarez
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, 33006 Oviedo, Spain
| | - Carlos López-Otín
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, 33006 Oviedo, Spain; Centro de Investigación Biomédica en Red de Cáncer, Spain.
| |
Collapse
|
40
|
Geyer KK, Niazi UH, Duval D, Cosseau C, Tomlinson C, Chalmers IW, Swain MT, Cutress DJ, Bickham-Wright U, Munshi SE, Grunau C, Yoshino TP, Hoffmann KF. The Biomphalaria glabrata DNA methylation machinery displays spatial tissue expression, is differentially active in distinct snail populations and is modulated by interactions with Schistosoma mansoni. PLoS Negl Trop Dis 2017; 11:e0005246. [PMID: 28510608 PMCID: PMC5433704 DOI: 10.1371/journal.pntd.0005246] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 12/10/2016] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND The debilitating human disease schistosomiasis is caused by infection with schistosome parasites that maintain a complex lifecycle alternating between definitive (human) and intermediate (snail) hosts. While much is known about how the definitive host responds to schistosome infection, there is comparably less information available describing the snail's response to infection. METHODOLOGY/PRINCIPLE FINDINGS Here, using information recently revealed by sequencing of the Biomphalaria glabrata intermediate host genome, we provide evidence that the predicted core snail DNA methylation machinery components are associated with both intra-species reproduction processes and inter-species interactions. Firstly, methyl-CpG binding domain protein (Bgmbd2/3) and DNA methyltransferase 1 (Bgdnmt1) genes are transcriptionally enriched in gonadal compared to somatic tissues with 5-azacytidine (5-AzaC) treatment significantly inhibiting oviposition. Secondly, elevated levels of 5-methyl cytosine (5mC), DNA methyltransferase activity and 5mC binding in pigmented hybrid- compared to inbred (NMRI)- B. glabrata populations indicate a role for the snail's DNA methylation machinery in maintaining hybrid vigour or heterosis. Thirdly, locus-specific detection of 5mC by bisulfite (BS)-PCR revealed 5mC within an exonic region of a housekeeping protein-coding gene (Bg14-3-3), supporting previous in silico predictions and whole genome BS-Seq analysis of this species' genome. Finally, we provide preliminary evidence for parasite-mediated host epigenetic reprogramming in the schistosome/snail system, as demonstrated by the increase in Bgdnmt1 and Bgmbd2/3 transcript abundance following Bge (B. glabrata embryonic cell line) exposure to parasite larval transformation products (LTP). CONCLUSIONS/SIGNIFICANCE The presence of a functional DNA methylation machinery in B. glabrata as well as the modulation of these gene products in response to schistosome products, suggests a vital role for DNA methylation during snail development/oviposition and parasite interactions. Further deciphering the role of this epigenetic process during Biomphalaria/Schistosoma co-evolutionary biology may reveal key factors associated with disease transmission and, moreover, enable the discovery of novel lifecycle intervention strategies.
Collapse
Affiliation(s)
- Kathrin K. Geyer
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Penglais Campus, Aberystwyth, United Kingodm
| | - Umar H. Niazi
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Penglais Campus, Aberystwyth, United Kingodm
| | - David Duval
- Université Perpignan Via Domitia, CNRS, IFREMER, Perpignan, France
| | - Céline Cosseau
- Université Perpignan Via Domitia, CNRS, IFREMER, Perpignan, France
| | - Chad Tomlinson
- Genome Sequencing Center, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Iain W. Chalmers
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Penglais Campus, Aberystwyth, United Kingodm
| | - Martin T. Swain
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Penglais Campus, Aberystwyth, United Kingodm
| | - David J. Cutress
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Penglais Campus, Aberystwyth, United Kingodm
| | - Utibe Bickham-Wright
- Department of Pathobiological Sciences, School of Veterinary Medicine University of Wisconsin, Madison, United States of America
| | - Sabrina E. Munshi
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Penglais Campus, Aberystwyth, United Kingodm
| | - Christoph Grunau
- Université Perpignan Via Domitia, CNRS, IFREMER, Perpignan, France
| | - Timothy P. Yoshino
- Department of Pathobiological Sciences, School of Veterinary Medicine University of Wisconsin, Madison, United States of America
| | - Karl F. Hoffmann
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Penglais Campus, Aberystwyth, United Kingodm
| |
Collapse
|
41
|
Luoni A, Riva MA. MicroRNAs and psychiatric disorders: From aetiology to treatment. Pharmacol Ther 2016; 167:13-27. [PMID: 27452338 DOI: 10.1016/j.pharmthera.2016.07.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/14/2016] [Indexed: 01/09/2023]
Abstract
The emergence of psychiatric disorders relies on the interaction between genetic vulnerability and environmental adversities. Several studies have demonstrated a crucial role for epigenetics (e.g. DNA methylation, post-translational histone modifications and microRNA-mediated post-transcriptional regulation) in the translation of environmental cues into adult behavioural outcome, which can prove to be harmful thus increasing the risk to develop psychopathology. Within this frame, non-coding RNAs, especially microRNAs, came to light as pivotal regulators of many biological processes occurring in the Central Nervous System, both during the neuronal development as well as in the regulation of adult function, including learning, memory and neuronal plasticity. On these basis, in recent years it has been hypothesised a central role for microRNA modulation and expression regulation in many brain disorders, including neurodegenerative disorders and mental illnesses. Indeed, the aim of the present review is to present the most recent state of the art regarding microRNA involvement in psychiatric disorders. We will first describe the mechanisms that regulate microRNA biogenesis and we will report evidences of microRNA dysregulation in peripheral body fluids, in postmortem brain tissues from patients suffering from psychopathology as well as in animal models. Last, we will discuss the potential to consider microRNAs as putative target for pharmacological intervention, using common psychotropic drugs or more specific tools, with the aim to normalize functions that are disrupted in different psychiatric conditions.
Collapse
Affiliation(s)
- Alessia Luoni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
| | - Marco Andrea Riva
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy.
| |
Collapse
|
42
|
Pagano F, De Marinis E, Grignani F, Nervi C. Epigenetic role of miRNAs in normal and leukemic hematopoiesis. Epigenomics 2016; 5:539-52. [PMID: 24059800 DOI: 10.2217/epi.13.55] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Hematopoiesis is a regulated multistep process, whereby transcriptional and epigenetic events contribute to progenitor fate determination. miRNAs have emerged as key players in hematopoietic cell development, differentiation and malignant transformation. From embryonic development through to adult life, miRNAs cooperate with, or are regulated, by epigenetic factors. Moreover, recent findings suggest that they contribute to chromatin structural modification, and the functional relevance of this 'epigenetic-miRNA axis' will be discussed in this article. Finally, emerging evidence has highlighted that miRNAs have functional control in human hematopoietic cells, involving targeted recruitment of epigenetic complexes to evolutionarily conserved complementary genomic loci. We propose the existence of epigenetic-miRNA loops that are able to organize the whole gene expression profile in hematopoietic cells.
Collapse
Affiliation(s)
- Francesca Pagano
- Department of Medical-Surgical Sciences & Biotechnologies, University La Sapienza, Latina, 04100, Italy
| | | | | | | |
Collapse
|
43
|
Graham B, Marcais A, Dharmalingam G, Carroll T, Kanellopoulou C, Graumann J, Nesterova TB, Bermange A, Brazauskas P, Xella B, Kriaucionis S, Higgs DR, Brockdorff N, Mann M, Fisher AG, Merkenschlager M. MicroRNAs of the miR-290-295 Family Maintain Bivalency in Mouse Embryonic Stem Cells. Stem Cell Reports 2016; 6:635-642. [PMID: 27150236 PMCID: PMC4939759 DOI: 10.1016/j.stemcr.2016.03.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 03/19/2016] [Accepted: 03/21/2016] [Indexed: 11/03/2022] Open
Abstract
Numerous developmentally regulated genes in mouse embryonic stem cells (ESCs) are marked by both active (H3K4me3)- and polycomb group (PcG)-mediated repressive (H3K27me3) histone modifications. This bivalent state is thought to be important for transcriptional poising, but the mechanisms that regulate bivalent genes and the bivalent state remain incompletely understood. Examining the contribution of microRNAs (miRNAs) to the regulation of bivalent genes, we found that the miRNA biogenesis enzyme DICER was required for the binding of the PRC2 core components EZH2 and SUZ12, and for the presence of the PRC2-mediated histone modification H3K27me3 at many bivalent genes. Genes that lost bivalency were preferentially upregulated at the mRNA and protein levels. Finally, reconstituting Dicer-deficient ESCs with ESC miRNAs restored bivalent gene repression and PRC2 binding at formerly bivalent genes. Therefore, miRNAs regulate bivalent genes and the bivalent state itself.
Collapse
Affiliation(s)
- Bryony Graham
- Lymphocyte Development Group, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK; Epigenetics Section, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK; MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Antoine Marcais
- Lymphocyte Development Group, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK; Epigenetics Section, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Gopuraja Dharmalingam
- Epigenetics Section, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Thomas Carroll
- Epigenetics Section, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Chryssa Kanellopoulou
- Laboratory of Immunology, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Johannes Graumann
- Department of Proteomics and Signal Transduction, Max-Planck Institute for Biochemistry, 82152 Martinsried, Germany
| | | | - Anna Bermange
- Lymphocyte Development Group, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK; Epigenetics Section, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Pijus Brazauskas
- Ludwig Institute for Cancer Research, University of Oxford, Nuffield Department of Clinical Medicine, Oxford OX3 7DQ, UK
| | - Barbara Xella
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Skirmantas Kriaucionis
- Ludwig Institute for Cancer Research, University of Oxford, Nuffield Department of Clinical Medicine, Oxford OX3 7DQ, UK
| | - Douglas R Higgs
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Neil Brockdorff
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max-Planck Institute for Biochemistry, 82152 Martinsried, Germany
| | - Amanda G Fisher
- Lymphocyte Development Group, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK; Epigenetics Section, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Matthias Merkenschlager
- Lymphocyte Development Group, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK; Epigenetics Section, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK.
| |
Collapse
|
44
|
Lee YJ, Ramakrishna S, Chauhan H, Park WS, Hong SH, Kim KS. Dissecting microRNA-mediated regulation of stemness, reprogramming, and pluripotency. ACTA ACUST UNITED AC 2016; 5:2. [PMID: 27006752 PMCID: PMC4802578 DOI: 10.1186/s13619-016-0028-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 02/20/2016] [Indexed: 02/06/2023]
Abstract
Increasing evidence indicates that microRNAs (miRNAs), endogenous short non-coding RNAs 19–24 nucleotides in length, play key regulatory roles in various biological events at the post-transcriptional level. Embryonic stem cells (ESCs) represent a valuable tool for disease modeling, drug discovery, developmental studies, and potential cell-based therapies in regenerative medicine due to their unlimited self-renewal and pluripotency. Therefore, remarkable progress has been made in recent decades toward understanding the expression and functions of specific miRNAs in the establishment and maintenance of pluripotency. Here, we summarize the recent knowledge regarding the regulatory roles of miRNAs in self-renewal of pluripotent ESCs and during cellular reprogramming, as well as the potential role of miRNAs in two distinct pluripotent states (naïve and primed).
Collapse
Affiliation(s)
- Young Jin Lee
- iDream Research Center, MizMedi Women's Hospital, Seoul, 07639 South Korea
| | - Suresh Ramakrishna
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763 South Korea.,College of Medicine, Hanyang University, Seoul, South Korea
| | | | - Won Sun Park
- Department of Physiology, School of Medicine, Kangwon National University, Chuncheon, 24341 South Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, School of Medicine, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon-si, Gangwon-do 24341 South Korea.,Stem Cell Institute, Kangwon National University, Chuncheon, 24341 South Korea
| | - Kye-Seong Kim
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763 South Korea.,College of Medicine, Hanyang University, Seoul, South Korea
| |
Collapse
|
45
|
Telomere Length Maintenance and Cardio-Metabolic Disease Prevention Through Exercise Training. Sports Med 2016; 46:1213-37. [DOI: 10.1007/s40279-016-0482-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
46
|
Chen X, Fan S, Song E. Noncoding RNAs: New Players in Cancers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 927:1-47. [PMID: 27376730 DOI: 10.1007/978-981-10-1498-7_1] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The world of noncoding RNAs (ncRNAs) has gained widespread attention in recent years due to their novel and crucial potency of biological regulation. Noncoding RNAs play essential regulatory roles in a broad range of developmental processes and diseases, notably human cancers. Regulatory ncRNAs represent multiple levels of structurally and functionally distinct RNAs, including the best-known microRNAs (miRNAs), the complicated long ncRNAs (lncRNAs), and the newly identified circular RNAs (circRNAs). However, the mechanisms by which they act remain elusive. In this chapter, we will review the current knowledge of the ncRNA field, discussing the genomic context, biological functions, and mechanisms of action of miRNAs, lncRNAs, and circRNAs. We also highlight the implications of the biogenesis and gene expression dysregulation of different ncRNA subtypes in the initiation and development of human malignancies.
Collapse
Affiliation(s)
- Xueman Chen
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, China
| | - Siting Fan
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, China
| | - Erwei Song
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, China.
| |
Collapse
|
47
|
Zhang PY, Li G, Deng ZJ, Liu LY, Chen L, Tang JZ, Wang YQ, Cao ST, Fang YX, Wen F, Xu Y, Chen X, Shi KQ, Li WF, Xie C, Tang KF. Dicer interacts with SIRT7 and regulates H3K18 deacetylation in response to DNA damaging agents. Nucleic Acids Res 2015; 44:3629-42. [PMID: 26704979 PMCID: PMC4856966 DOI: 10.1093/nar/gkv1504] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 12/10/2015] [Indexed: 01/14/2023] Open
Abstract
Dicer participates in heterochromatin formation in fission yeast and plants. However, whether it has a similar role in mammals remains controversial. Here we showed that the human Dicer protein interacts with SIRT7, an NAD+-dependent H3K18Ac (acetylated lysine 18 of histone H3) deacetylase, and holds a proportion of SIRT7 in the cytoplasm. Dicer knockdown led to an increase of chromatin-associated SIRT7 and simultaneously a decrease of cytoplasmic SIRT7, while its overexpression induced SIRT7 reduction in the chromatin-associated fraction and increment in the cytoplasm. Furthermore, DNA damaging agents promoted Dicer expression, leading to decreased level of chromatin-associated SIRT7 and increased level of H3K18Ac, which can be alleviated by Dicer knockdown. Taken together with that H3K18Ac was exclusively associated with the chromatin, our findings suggest that Dicer induction by DNA damaging treatments prevents H3K18Ac deacetylation, probably by trapping more SIRT7 in the cytoplasm.
Collapse
Affiliation(s)
- Pei-Ying Zhang
- Institute of Translational Medicine, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang, P.R. China Cancer Center, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang, P.R. China
| | - Guiling Li
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325015, Zhejiang, P.R. China
| | - Zhu-Jun Deng
- Institute of Translational Medicine, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang, P.R. China Cancer Center, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang, P.R. China
| | - Li-Yuan Liu
- Department of Infection and Liver Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang, P.R. China
| | - Li Chen
- Institute of Translational Medicine, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang, P.R. China Cancer Center, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang, P.R. China
| | - Jun-Zhou Tang
- Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, P.R. China
| | - Yu-Qun Wang
- Department of Infection and Liver Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang, P.R. China
| | - Su-Ting Cao
- Department of Infection and Liver Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang, P.R. China
| | - Yu-Xiao Fang
- Institute of Translational Medicine, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang, P.R. China Cancer Center, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang, P.R. China
| | - Fuping Wen
- Institute of Translational Medicine, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang, P.R. China
| | - Yunsheng Xu
- Institute of Translational Medicine, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang, P.R. China Department of Dermato-Venereology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang, P.R. China
| | - Xiaoming Chen
- Institute of Translational Medicine, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang, P.R. China Department of Pediatric Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang, P.R. China
| | - Ke-Qing Shi
- Department of Infection and Liver Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang, P.R. China
| | - Wen-Feng Li
- Department of Radiation Oncology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang, P.R. China
| | - Congying Xie
- Department of Radiation Oncology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang, P.R. China
| | - Kai-Fu Tang
- Institute of Translational Medicine, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang, P.R. China Cancer Center, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang, P.R. China Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325015, Zhejiang, P.R. China
| |
Collapse
|
48
|
Macias S, Cordiner RA, Gautier P, Plass M, Cáceres JF. DGCR8 Acts as an Adaptor for the Exosome Complex to Degrade Double-Stranded Structured RNAs. Mol Cell 2015; 60:873-85. [PMID: 26687677 PMCID: PMC4691244 DOI: 10.1016/j.molcel.2015.11.011] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 07/16/2015] [Accepted: 11/06/2015] [Indexed: 01/18/2023]
Abstract
The Microprocessor complex (DGCR8/Drosha) is required for microRNA (miRNA) biogenesis but also binds and regulates the stability of several types of cellular RNAs. Of particular interest, DGCR8 controls the stability of mature small nucleolar RNA (snoRNA) transcripts independently of Drosha, suggesting the existence of alternative DGCR8 complex(es) with other nucleases to process a variety of cellular RNAs. Here, we found that DGCR8 copurifies with subunits of the nuclear exosome, preferentially associating with its hRRP6-containing nucleolar form. Importantly, we demonstrate that DGCR8 is essential for the recruitment of the exosome to snoRNAs and to human telomerase RNA. In addition, we show that the DGCR8/exosome complex controls the stability of the human telomerase RNA component (hTR/TERC). Altogether, these data suggest that DGCR8 acts as an adaptor to recruit the exosome complex to structured RNAs and induce their degradation. DGCR8 forms an alternative complex with the hRRP6-containing form of the exosome DGCR8 acts as an adaptor to recruit the exosome to target structured RNAs The DGCR8/hRRP6 complex also controls the stability of human telomerase RNA
Collapse
Affiliation(s)
- Sara Macias
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Ross A Cordiner
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Philippe Gautier
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Mireya Plass
- Department of Biology, Center for Computational and Applied Transcriptomics, University of Copenhagen, Ole Maaloes Vej 5, 2200 Copenhagen, Denmark
| | - Javier F Cáceres
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK.
| |
Collapse
|
49
|
Hadjimichael C, Chanoumidou K, Papadopoulou N, Arampatzi P, Papamatheakis J, Kretsovali A. Common stemness regulators of embryonic and cancer stem cells. World J Stem Cells 2015; 7:1150-1184. [PMID: 26516408 PMCID: PMC4620423 DOI: 10.4252/wjsc.v7.i9.1150] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 05/30/2015] [Accepted: 10/08/2015] [Indexed: 02/06/2023] Open
Abstract
Pluripotency of embryonic stem cells (ESCs) and induced pluripotent stem cells is regulated by a well characterized gene transcription circuitry. The circuitry is assembled by ESC specific transcription factors, signal transducing molecules and epigenetic regulators. Growing understanding of stem-like cells, albeit of more complex phenotypes, present in tumors (cancer stem cells), provides a common conceptual and research framework for basic and applied stem cell biology. In this review, we highlight current results on biomarkers, gene signatures, signaling pathways and epigenetic regulators that are common in embryonic and cancer stem cells. We discuss their role in determining the cell phenotype and finally, their potential use to design next generation biological and pharmaceutical approaches for regenerative medicine and cancer therapies.
Collapse
|
50
|
The omniscient placenta: Metabolic and epigenetic regulation of fetal programming. Front Neuroendocrinol 2015; 39:28-37. [PMID: 26368654 PMCID: PMC4681645 DOI: 10.1016/j.yfrne.2015.09.001] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 09/10/2015] [Accepted: 09/11/2015] [Indexed: 12/21/2022]
Abstract
Fetal development could be considered a sensitive period wherein exogenous insults and changes to the maternal milieu can have long-term impacts on developmental programming. The placenta provides the fetus with protection and necessary nutrients for growth, and responds to maternal cues and changes in nutrient signaling through multiple epigenetic mechanisms. The X-linked enzyme O-linked-N-acetylglucosamine transferase (OGT) acts as a nutrient sensor that modifies numerous proteins to alter various cellular signals, including major epigenetic processes. This review describes epigenetic alterations in the placenta in response to insults during pregnancy, the potential links of OGT as a nutrient sensor to placental epigenetics, and the implications of placental epigenetics in long-term neurodevelopmental programming. We describe the role of placental OGT in the sex-specific programming of hypothalamic-pituitary-adrenal (HPA) axis programming deficits by early prenatal stress as an example of how placental signaling can have long-term effects on neurodevelopment.
Collapse
|