1
|
Bradley D, Hogrebe A, Dandage R, Dubé AK, Leutert M, Dionne U, Chang A, Villén J, Landry CR. The fitness cost of spurious phosphorylation. EMBO J 2024; 43:4720-4751. [PMID: 39256561 PMCID: PMC11480408 DOI: 10.1038/s44318-024-00200-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 09/12/2024] Open
Abstract
The fidelity of signal transduction requires the binding of regulatory molecules to their cognate targets. However, the crowded cell interior risks off-target interactions between proteins that are functionally unrelated. How such off-target interactions impact fitness is not generally known. Here, we use Saccharomyces cerevisiae to inducibly express tyrosine kinases. Because yeast lacks bona fide tyrosine kinases, the resulting tyrosine phosphorylation is biologically spurious. We engineered 44 yeast strains each expressing a tyrosine kinase, and quantitatively analysed their phosphoproteomes. This analysis resulted in ~30,000 phosphosites mapping to ~3500 proteins. The number of spurious pY sites generated correlates strongly with decreased growth, and we predict over 1000 pY events to be deleterious. However, we also find that many of the spurious pY sites have a negligible effect on fitness, possibly because of their low stoichiometry. This result is consistent with our evolutionary analyses demonstrating a lack of phosphotyrosine counter-selection in species with tyrosine kinases. Our results suggest that, alongside the risk for toxicity, the cell can tolerate a large degree of non-functional crosstalk as interaction networks evolve.
Collapse
Affiliation(s)
- David Bradley
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
- Department of Biochemistry, Microbiology and Bioinformatics, Université Laval, Québec, QC, Canada
- Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), Université du Québec à Montréal, Montréal, QC, Canada
- Université Laval Big Data Research Center (BDRC_UL), Québec, QC, Canada
- Department of Biology, Université Laval, Québec, QC, Canada
| | - Alexander Hogrebe
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Rohan Dandage
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
- Department of Biochemistry, Microbiology and Bioinformatics, Université Laval, Québec, QC, Canada
- Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), Université du Québec à Montréal, Montréal, QC, Canada
- Université Laval Big Data Research Center (BDRC_UL), Québec, QC, Canada
- Department of Biology, Université Laval, Québec, QC, Canada
| | - Alexandre K Dubé
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
- Department of Biochemistry, Microbiology and Bioinformatics, Université Laval, Québec, QC, Canada
- Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), Université du Québec à Montréal, Montréal, QC, Canada
- Université Laval Big Data Research Center (BDRC_UL), Québec, QC, Canada
- Department of Biology, Université Laval, Québec, QC, Canada
| | - Mario Leutert
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
| | - Ugo Dionne
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
- Department of Biochemistry, Microbiology and Bioinformatics, Université Laval, Québec, QC, Canada
- Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), Université du Québec à Montréal, Montréal, QC, Canada
- Université Laval Big Data Research Center (BDRC_UL), Québec, QC, Canada
- Department of Biology, Université Laval, Québec, QC, Canada
| | - Alexis Chang
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Judit Villén
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
| | - Christian R Landry
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada.
- Department of Biochemistry, Microbiology and Bioinformatics, Université Laval, Québec, QC, Canada.
- Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), Université du Québec à Montréal, Montréal, QC, Canada.
- Université Laval Big Data Research Center (BDRC_UL), Québec, QC, Canada.
- Department of Biology, Université Laval, Québec, QC, Canada.
| |
Collapse
|
2
|
Cho D, Lee HM, Kim JA, Song JG, Hwang SH, Lee B, Park J, Tran KM, Kim J, Vo PNL, Bae J, Pimt T, Lee K, Gsponer J, Kim HW, Na D. Autoinhibited Protein Database: a curated database of autoinhibitory domains and their autoinhibition mechanisms. Database (Oxford) 2024; 2024:baae085. [PMID: 39192607 PMCID: PMC11349611 DOI: 10.1093/database/baae085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/30/2024] [Accepted: 08/05/2024] [Indexed: 08/29/2024]
Abstract
Autoinhibition, a crucial allosteric self-regulation mechanism in cell signaling, ensures signal propagation exclusively in the presence of specific molecular inputs. The heightened focus on autoinhibited proteins stems from their implication in human diseases, positioning them as potential causal factors or therapeutic targets. However, the absence of a comprehensive knowledgebase impedes a thorough understanding of their roles and applications in drug discovery. Addressing this gap, we introduce Autoinhibited Protein Database (AiPD), a curated database standardizing information on autoinhibited proteins. AiPD encompasses details on autoinhibitory domains (AIDs), their targets, regulatory mechanisms, experimental validation methods, and implications in diseases, including associated mutations and post-translational modifications. AiPD comprises 698 AIDs from 532 experimentally characterized autoinhibited proteins and 2695 AIDs from their 2096 homologs, which were retrieved from 864 published articles. AiPD also includes 42 520 AIDs of computationally predicted autoinhibited proteins. In addition, AiPD facilitates users in investigating potential AIDs within a query sequence through comparisons with documented autoinhibited proteins. As the inaugural autoinhibited protein repository, AiPD significantly aids researchers studying autoinhibition mechanisms and their alterations in human diseases. It is equally valuable for developing computational models, analyzing allosteric protein regulation, predicting new drug targets, and understanding intervention mechanisms AiPD serves as a valuable resource for diverse researchers, contributing to the understanding and manipulation of autoinhibition in cellular processes. Database URL: http://ssbio.cau.ac.kr/databases/AiPD.
Collapse
Affiliation(s)
- Daeahn Cho
- Department of Biomedical Engineering, Chung-Ang University, Seoul 06974, South Korea
| | - Hyang-Mi Lee
- Department of Biomedical Engineering, Chung-Ang University, Seoul 06974, South Korea
| | - Ji Ah Kim
- Department of Biomedical Engineering, Chung-Ang University, Seoul 06974, South Korea
| | - Jae Gwang Song
- Department of Bio-integrated Science and Technology, College of Life Sciences, Sejong University, Seoul 05006, Republic of Korea
| | - Su-hee Hwang
- Department of Biomedical Engineering, Chung-Ang University, Seoul 06974, South Korea
| | - Bomi Lee
- Department of Bio-integrated Science and Technology, College of Life Sciences, Sejong University, Seoul 05006, Republic of Korea
| | - Jinsil Park
- Department of Bio-integrated Science and Technology, College of Life Sciences, Sejong University, Seoul 05006, Republic of Korea
| | - Kha Mong Tran
- Department of Biomedical Engineering, Chung-Ang University, Seoul 06974, South Korea
| | - Jiwon Kim
- Department of Bio-integrated Science and Technology, College of Life Sciences, Sejong University, Seoul 05006, Republic of Korea
| | - Phuong Ngoc Lam Vo
- Department of Biomedical Engineering, Chung-Ang University, Seoul 06974, South Korea
| | - Jooeun Bae
- Department of Bio-integrated Science and Technology, College of Life Sciences, Sejong University, Seoul 05006, Republic of Korea
| | - Teerapat Pimt
- Department of Biomedical Engineering, Chung-Ang University, Seoul 06974, South Korea
| | - Kangseok Lee
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Jörg Gsponer
- Center for High-Throughput Biology, University of British Columbia, 2125 East Mall, Vancouver, BC V6T 1Z4, Canada
| | - Hyung Wook Kim
- Department of Bio-integrated Science and Technology, College of Life Sciences, Sejong University, Seoul 05006, Republic of Korea
| | - Dokyun Na
- Department of Biomedical Engineering, Chung-Ang University, Seoul 06974, South Korea
| |
Collapse
|
3
|
Bradley D, Hogrebe A, Dandage R, Dubé AK, Leutert M, Dionne U, Chang A, Villén J, Landry CR. The fitness cost of spurious phosphorylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.08.561337. [PMID: 37873463 PMCID: PMC10592693 DOI: 10.1101/2023.10.08.561337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The fidelity of signal transduction requires the binding of regulatory molecules to their cognate targets. However, the crowded cell interior risks off-target interactions between proteins that are functionally unrelated. How such off-target interactions impact fitness is not generally known, but quantifying this is required to understand the constraints faced by cell systems as they evolve. Here, we use the model organism S. cerevisiae to inducibly express tyrosine kinases. Because yeast lacks bona fide tyrosine kinases, most of the resulting tyrosine phosphorylation is spurious. This provides a suitable system to measure the impact of artificial protein interactions on fitness. We engineered 44 yeast strains each expressing a tyrosine kinase, and quantitatively analysed their phosphoproteomes. This analysis resulted in ~30,000 phosphosites mapping to ~3,500 proteins. Examination of the fitness costs in each strain revealed a strong correlation between the number of spurious pY sites and decreased growth. Moreover, the analysis of pY effects on protein structure and on protein function revealed over 1000 pY events that we predict to be deleterious. However, we also find that a large number of the spurious pY sites have a negligible effect on fitness, possibly because of their low stoichiometry. This result is consistent with our evolutionary analyses demonstrating a lack of phosphotyrosine counter-selection in species with bona fide tyrosine kinases. Taken together, our results suggest that, alongside the risk for toxicity, the cell can tolerate a large degree of non-functional crosstalk as interaction networks evolve.
Collapse
Affiliation(s)
- David Bradley
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
- Department of Biochemistry, Microbiology and Bioinformatics, Université Laval, Québec, QC, Canada
- Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), Université du Québec à Montréal, Montréal, QC, Canada
- Université Laval Big Data Research Center (BDRC_UL), Québec, QC, Canada
- Department of Biology, Université Laval, Québec, QC, Canada
| | - Alexander Hogrebe
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Rohan Dandage
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
- Department of Biochemistry, Microbiology and Bioinformatics, Université Laval, Québec, QC, Canada
- Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), Université du Québec à Montréal, Montréal, QC, Canada
- Université Laval Big Data Research Center (BDRC_UL), Québec, QC, Canada
- Department of Biology, Université Laval, Québec, QC, Canada
| | - Alexandre K Dubé
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
- Department of Biochemistry, Microbiology and Bioinformatics, Université Laval, Québec, QC, Canada
- Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), Université du Québec à Montréal, Montréal, QC, Canada
- Université Laval Big Data Research Center (BDRC_UL), Québec, QC, Canada
- Department of Biology, Université Laval, Québec, QC, Canada
| | - Mario Leutert
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
| | - Ugo Dionne
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
- Department of Biochemistry, Microbiology and Bioinformatics, Université Laval, Québec, QC, Canada
- Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), Université du Québec à Montréal, Montréal, QC, Canada
- Université Laval Big Data Research Center (BDRC_UL), Québec, QC, Canada
- Department of Biology, Université Laval, Québec, QC, Canada
| | - Alexis Chang
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Judit Villén
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Christian R Landry
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
- Department of Biochemistry, Microbiology and Bioinformatics, Université Laval, Québec, QC, Canada
- Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), Université du Québec à Montréal, Montréal, QC, Canada
- Université Laval Big Data Research Center (BDRC_UL), Québec, QC, Canada
- Department of Biology, Université Laval, Québec, QC, Canada
| |
Collapse
|
4
|
Li Y, Gong H. Identifying a Feasible Transition Pathway between Two Conformational States for a Protein. J Chem Theory Comput 2022; 18:4529-4543. [PMID: 35723447 DOI: 10.1021/acs.jctc.2c00390] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Proteins usually need to transit between different conformational states to fulfill their biological functions. In the mechanistic study of such transition processes by molecular dynamics simulations, identification of the minimum free energy path (MFEP) can substantially reduce the sampling space, thus enabling rigorous thermodynamic evaluation of the process. Conventionally, the MFEP is derived by iterative local optimization from an initial path, which is typically generated by simple brute force techniques like the targeted molecular dynamics (tMD). Therefore, the quality of the initial path determines the successfulness of MFEP estimation. In this work, we propose a method to improve derivation of the initial path. Through iterative relaxation-biasing simulations in a bidirectional manner, this method can construct a feasible transition pathway connecting two known states for a protein. Evaluation on small, fast-folding proteins against long equilibrium trajectories supports the good sampling efficiency of our method. When applied to larger proteins including the catalytic domain of human c-Src kinase as well as the converter domain of myosin VI, the paths generated by our method deviate significantly from those computed with the generic tMD approach. More importantly, free energy profiles and intermediate states obtained from our paths exhibit remarkable improvements over those from tMD paths with respect to both physical rationality and consistency with a priori knowledge.
Collapse
Affiliation(s)
- Yao Li
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China.,Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China
| | - Haipeng Gong
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China.,Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
5
|
Transient exposure of a buried phosphorylation site in an autoinhibited protein. Biophys J 2022; 121:91-101. [PMID: 34864046 PMCID: PMC8758417 DOI: 10.1016/j.bpj.2021.11.2890] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/25/2021] [Accepted: 11/29/2021] [Indexed: 01/07/2023] Open
Abstract
Autoinhibition is a mechanism used to regulate protein function, often by making functional sites inaccessible through the interaction with a cis-acting inhibitory domain. Such autoinhibitory domains often display a substantial degree of structural disorder when unbound, and only become structured in the inhibited state. These conformational dynamics make it difficult to study the structural origin of regulation, including effects of regulatory post-translational modifications. Here, we study the autoinhibition of the Dbl Homology domain in the protein Vav1 by the so-called acidic inhibitory domain. We use molecular simulations to study the process by which a mostly unstructured inhibitory domain folds upon binding and how transient exposure of a key buried tyrosine residue makes it accessible for phosphorylation. We show that the inhibitory domain, which forms a helix in the bound and inhibited stated, samples helical structures already before binding and that binding occurs via a molten-globule-like intermediate state. Together, our results shed light on key interactions that enable the inhibitory domain to sample a finely tuned equilibrium between an inhibited and a kinase-accessible state.
Collapse
|
6
|
Protein Dynamics Enables Phosphorylation of Buried Residues in Cdk2/Cyclin-A-Bound p27. Biophys J 2020; 119:2010-2018. [PMID: 33147476 DOI: 10.1016/j.bpj.2020.06.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/22/2020] [Accepted: 06/26/2020] [Indexed: 11/21/2022] Open
Abstract
Proteins carry out a wide range of functions that are tightly regulated in space and time. Protein phosphorylation is the most common post-translation modification of proteins and plays a key role in the regulation of many biological processes. The finding that many phosphorylated residues are not solvent exposed in the unphosphorylated state opens several questions for understanding the mechanism that underlies phosphorylation and how phosphorylation may affect protein structures. First, because kinases need access to the phosphorylated residue, how do such buried residues become modified? Second, once phosphorylated, what are the structural effects of phosphorylation of buried residues, and do they lead to changed conformational dynamics? We have used the ternary complex between p27Kip1 (p27), Cdk2, and cyclin A to study these questions using enhanced sampling molecular dynamics simulations. In line with previous NMR and single-molecule fluorescence experiments, we observe transient exposure of Tyr88 in p27, even in its unphosphorylated state. Once Tyr88 is phosphorylated, we observe a coupling to a second site, thus making Tyr74 more easily exposed and thereby the target for a second phosphorylation step. Our observations provide atomic details on how protein dynamics plays a role in modulating multisite phosphorylation in p27, thus supplementing previous experimental observations. More generally, we discuss how the observed phenomenon of transient exposure of buried residues may play a more general role in regulating protein function.
Collapse
|
7
|
Best RB. A Tale of Two Tyrosines. Biophys J 2020; 119:1927-1928. [PMID: 33120016 DOI: 10.1016/j.bpj.2020.09.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 09/29/2020] [Indexed: 10/23/2022] Open
Affiliation(s)
- Robert B Best
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
8
|
Lv M, Gao J, Li M, Ma R, Li F, Liu Y, Liu M, Zhang J, Yao X, Wu J, Shi Y, Tang Y, Pan Y, Zhang Z, Ruan K. Conformational Selection in Ligand Recognition by the First Tudor Domain of PHF20L1. J Phys Chem Lett 2020; 11:7932-7938. [PMID: 32885980 DOI: 10.1021/acs.jpclett.0c02039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The first Tudor domain (Tudor1) of PHF20L1 recognizes (non)histone methylation to play versatile roles. However, the underlying ligand-recognition mechanism remains unknown as a closed state revealed in the free-form structure. NMR relaxation dispersion and molecular dynamics simulations suggest a pre-existing low-population conformation with a remarkable rearrangement of aromatic cage residues of PHF20L1 Tudor1. Such an open-form conformation is utilized to recognize lysine 142 methylated DNMT1, a cosolvent, and an NMR fragment screening hit, as revealed by the complex crystal structures. Intriguingly, the ligand binding capacity was enhanced by mutation that tunes up the open-state population only. The recognition of DNMT1 by PHF20L1 was further validated in cancer cells. This conformational selection mechanism will enable the discovery of small molecule inhibitors against the seemingly "undruggable" PHF20L1 Tudor1.
Collapse
Affiliation(s)
- Mengqi Lv
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, the First Affiliated Hospital & School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, P.R. China
| | - Jia Gao
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, the First Affiliated Hospital & School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, P.R. China
| | - Mingwei Li
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, the First Affiliated Hospital & School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, P.R. China
| | - Rongsheng Ma
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, the First Affiliated Hospital & School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, P.R. China
| | - Fudong Li
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, the First Affiliated Hospital & School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, P.R. China
| | - Yaqian Liu
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, the First Affiliated Hospital & School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, P.R. China
| | - Mingqing Liu
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, the First Affiliated Hospital & School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, P.R. China
| | - Jiahai Zhang
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, the First Affiliated Hospital & School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, P.R. China
| | - Xuebiao Yao
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, the First Affiliated Hospital & School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, P.R. China
| | - Jihui Wu
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, the First Affiliated Hospital & School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, P.R. China
| | - Yunyu Shi
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, the First Affiliated Hospital & School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, P.R. China
| | - Yajun Tang
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, the First Affiliated Hospital & School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, P.R. China
| | - Yueyin Pan
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, the First Affiliated Hospital & School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, P.R. China
| | - Zhiyong Zhang
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, the First Affiliated Hospital & School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, P.R. China
| | - Ke Ruan
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, the First Affiliated Hospital & School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, P.R. China
| |
Collapse
|
9
|
Löber J, Hitzing C, Münchhalfen M, Engels N. Vav family proteins constitute disparate branching points for distinct BCR signaling pathways. Eur J Immunol 2020; 50:1912-1928. [PMID: 32671844 DOI: 10.1002/eji.202048621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/18/2020] [Accepted: 07/10/2020] [Indexed: 01/16/2023]
Abstract
Antigen recognition by B-cell antigen receptors (BCRs) activates distinct intracellular signaling pathways that control the differentiation fate of activated B lymphocytes. BCR-proximal signaling enzymes comprise protein tyrosine kinases, phosphatases, and plasma membrane lipid-modifying enzymes, whose function is furthermore coordinated by catalytically inert adaptor proteins. Here, we show that an additional class of enzymatic activity provided by guanine-nucleotide exchange factors (GEFs) of the Vav family controls BCR-proximal Ca2+ mobilization, cytoskeletal actin reorganization, and activation of the PI3 kinase/Akt pathway. Whereas Vav1 and Vav3 supported all of those signaling processes to different extents in a human B-cell model system, Vav2 facilitated Actin remodeling, and activation of Akt but did not promote Ca2+ signaling. On BCR activation, Vav1 was directly recruited to the phosphorylated BCR and to the central adaptor protein SLP65 via its Src homology 2 domain. Pharmacological inhibition or genetic inactivation of the substrates of Vav GEFs, small G proteins of the Rho/Rac family, impaired BCR-induced Ca2+ mobilization, probably because phospholipase Cγ2 requires activated Rac proteins for optimal activity. Our findings show that Vav family members are key relays of the BCR signalosome that differentially control distinct signaling pathways both in a catalysis-dependent and -independent manner.
Collapse
Affiliation(s)
- Jens Löber
- Institute of Cellular & Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Christoffer Hitzing
- Institute of Cellular & Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Matthias Münchhalfen
- Institute of Cellular & Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Niklas Engels
- Institute of Cellular & Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
10
|
Kabra A, Rumpa E, Li Y. Modulation of conformational equilibrium by phosphorylation underlies the activation of deubiquitinase A. J Biol Chem 2020; 295:3945-3951. [PMID: 32071088 DOI: 10.1074/jbc.ac119.010808] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 02/16/2020] [Indexed: 01/20/2023] Open
Abstract
Deubiquitinases deconjugate ubiquitin modifications from target proteins and are involved in many cellular processes in eukaryotes. The functions of deubiquitinases are regulated by post-translational modifications, mainly phosphorylation and ubiquitination. Post-translational modifications can result in subtle changes in structural and dynamic properties, which are difficult to identify but functionally important. In this work, we used NMR spectroscopy to characterize the conformational properties of the human deubiquitinase A (DUBA), a negative regulator of type I interferon. DUBA activity is regulated by phosphorylation at a single serine residue, Ser-177. We found that the catalytic rate constant of DUBA is enhanced by phosphorylation. By comparing NMR and enzyme kinetics data among different forms of DUBA with low and high activities, we concluded that a two-state equilibrium that was present only in phosphorylated DUBA is important for DUBA activity. Our results highlight the importance of defining conformational dynamics in understanding the mechanism of DUBA activation.
Collapse
Affiliation(s)
- Ashish Kabra
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40208
| | - Efsita Rumpa
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40208
| | - Ying Li
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40208
| |
Collapse
|
11
|
Structure and regulation of human epithelial cell transforming 2 protein. Proc Natl Acad Sci U S A 2019; 117:1027-1035. [PMID: 31888991 DOI: 10.1073/pnas.1913054117] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Epithelial cell transforming 2 (Ect2) protein activates Rho GTPases and controls cytokinesis and many other cellular processes. Dysregulation of Ect2 is associated with various cancers. Here, we report the crystal structure of human Ect2 and complementary mechanistic analyses. The data show the C-terminal PH domain of Ect2 folds back and blocks the canonical RhoA-binding site at the catalytic center of the DH domain, providing a mechanism of Ect2 autoinhibition. Ect2 is activated by binding of GTP-bound RhoA to the PH domain, which suggests an allosteric mechanism of Ect2 activation and a positive-feedback loop reinforcing RhoA signaling. This bimodal RhoA binding of Ect2 is unusual and was confirmed with Förster resonance energy transfer (FRET) and hydrogen-deuterium exchange mass spectrometry (HDX-MS) analyses. Several recurrent cancer-associated mutations map to the catalytic and regulatory interfaces, and dysregulate Ect2 in vitro and in vivo. Together, our findings provide mechanistic insights into Ect2 regulation in normal cells and under disease conditions.
Collapse
|
12
|
Arbesú M, Pons M. Integrating disorder in globular multidomain proteins: Fuzzy sensors and the role of SH3 domains. Arch Biochem Biophys 2019; 677:108161. [PMID: 31678340 DOI: 10.1016/j.abb.2019.108161] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/20/2019] [Accepted: 10/24/2019] [Indexed: 12/25/2022]
Abstract
Intrinsically disordered proteins represent about one third of eukaryotic proteins. An additional third correspond to proteins containing folded domains as well as large intrinsically disordered regions (IDR). While IDRs may represent functionally autonomous domains, in some instances it has become clear that they provide a new layer of regulation for the activity displayed by the folded domains. The sensitivity of the conformational ensembles defining the properties of IDR to small changes in the cellular environment and the capacity to modulate this response through post-translational modifications makes IDR ideal sensors enabling continuous, integrative responses to complex cellular inputs. Folded domains (FD), on the other hand, are ideal effectors, e.g. by catalyzing enzymatic reactions or participating in binary on/off switches. In this perspective review we discuss the possible role of intramolecular fuzzy complexes to integrate the very different dynamic scales of IDR and FD, inspired on the recent observations of such dynamic complexes in Src family kinases, and we explore the possible general role of the SH3 domains connecting IDRs and FD.
Collapse
Affiliation(s)
- Miguel Arbesú
- Biomolecular NMR laboratory. Department of Inorganic and Organic Chemistry. University of Barcelona, Baldiri Reixac, 10-12, 08028, Barcelona, Spain
| | - Miquel Pons
- Biomolecular NMR laboratory. Department of Inorganic and Organic Chemistry. University of Barcelona, Baldiri Reixac, 10-12, 08028, Barcelona, Spain.
| |
Collapse
|
13
|
Structural Insights into the Regulation Mechanism of Small GTPases by GEFs. Molecules 2019; 24:molecules24183308. [PMID: 31514408 PMCID: PMC6767298 DOI: 10.3390/molecules24183308] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 12/12/2022] Open
Abstract
Small GTPases are key regulators of cellular events, and their dysfunction causes many types of cancer. They serve as molecular switches by cycling between inactive guanosine diphosphate (GDP)-bound and active guanosine triphosphate (GTP)-bound states. GTPases are deactivated by GTPase-activating proteins (GAPs) and are activated by guanine-nucleotide exchange factors (GEFs). The intrinsic GTP hydrolysis activity of small GTPases is generally low and is accelerated by GAPs. GEFs promote GDP dissociation from small GTPases to allow for GTP binding, which results in a conformational change of two highly flexible segments, called switch I and switch II, that enables binding of the gamma phosphate and allows small GTPases to interact with downstream effectors. For several decades, crystal structures of many GEFs and GAPs have been reported and have shown tremendous structural diversity. In this review, we focus on the latest structural studies of GEFs. Detailed pictures of the variety of GEF mechanisms at atomic resolution can provide insights into new approaches for drug discovery.
Collapse
|
14
|
Santhosh R, Chandrasekaran P, Michael D, Rangachari K, Bankoti N, Jeyakanthan J, Sekar K. ACMS: a database of alternate conformations found in the atoms of main and side chains of protein structures. J Appl Crystallogr 2019. [DOI: 10.1107/s1600576719006447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
Proteins are usually dynamic biological macromolecules, thereby exhibiting a large number of conformational ensembles which influence the association with their neighbours and interacting partners. Most of the side-chain atoms and a few main-chain atoms of the high-resolution crystal structures deposited in the Protein Data Bank adopt alternate conformations. This kind of conformational behaviour prompted the authors to explore the relationship, if any, between the alternate conformations and the function of the protein molecule. Thus, a knowledge base of the alternate conformations of the main- and side-chain atoms of protein structures has been developed. It provides a detailed description of the alternate conformations of various residues for more than 60 000 high-resolution crystal structures. The proposed knowledge base is very user friendly and has various flexible options. The knowledge base will be updated periodically and can be accessed at http://iris.physics.iisc.ac.in/acms.
Collapse
|
15
|
Patra S, Anders C, Schummel PH, Winter R. Antagonistic effects of natural osmolyte mixtures and hydrostatic pressure on the conformational dynamics of a DNA hairpin probed at the single-molecule level. Phys Chem Chem Phys 2018; 20:13159-13170. [DOI: 10.1039/c8cp00907d] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Osmolyte mixtures from deep sea organisms are able to rescue nucleic acids from pressure-induced unfolding.
Collapse
Affiliation(s)
- Satyajit Patra
- Physical Chemistry I – Biophysical Chemistry
- Faculty of Chemistry and Chemical Biology
- TU Dortmund University
- D-44227 Dortmund
- Germany
| | - Christian Anders
- Physical Chemistry I – Biophysical Chemistry
- Faculty of Chemistry and Chemical Biology
- TU Dortmund University
- D-44227 Dortmund
- Germany
| | - Paul Hendrik Schummel
- Physical Chemistry I – Biophysical Chemistry
- Faculty of Chemistry and Chemical Biology
- TU Dortmund University
- D-44227 Dortmund
- Germany
| | - Roland Winter
- Physical Chemistry I – Biophysical Chemistry
- Faculty of Chemistry and Chemical Biology
- TU Dortmund University
- D-44227 Dortmund
- Germany
| |
Collapse
|
16
|
Tong H, Qi D, Guan X, Jiang G, Liao Z, Zhang X, Chen P, Li N, Wu M. c-Abl tyrosine kinase regulates neutrophil crawling behavior under fluid shear stress via Rac/PAK/LIMK/cofilin signaling axis. J Cell Biochem 2017; 119:2806-2817. [PMID: 29058761 DOI: 10.1002/jcb.26453] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 10/17/2017] [Indexed: 12/13/2022]
Abstract
The excessive recruitment and improper activation of polymorphonuclear neutrophils (PMNs) often induces serious injury of host tissues, leading to inflammatory disorders. Therefore, to understand the molecular mechanism on neutrophil recruitment possesses essential pathological and physiological importance. In this study, we found that physiological shear stress induces c-Abl kinase activation in neutrophils, and c-Abl kinase inhibitor impaired neutrophil crawling behavior on ICAM-1. We further identified Vav1 was a downstream effector phosphorylated at Y174 and Y267. Once activated, c-Abl kinase regulated the activity of Vav1, which further affected Rac1/PAK1/LIMK1/cofilin signaling pathway. Here, we demonstrate a novel signaling function and critical role of c-Abl kinase during neutrophil crawling under physiological shear by regulating Vav1. These findings provide a promising treatment strategy for inflammation-related disease by inactivation of c-Abl kinase to restrict neutrophil recruitment.
Collapse
Affiliation(s)
- Haibin Tong
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China.,Jilin Provincial Key Laboratory of Molecular Geriatric Medicine, Life Science Research Center, Beihua University, Jilin, China
| | - Dake Qi
- Faculty of Medicine, Division of Biomedical Sciences, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Xingang Guan
- Jilin Provincial Key Laboratory of Molecular Geriatric Medicine, Life Science Research Center, Beihua University, Jilin, China
| | - Guiquan Jiang
- Jilin Provincial Key Laboratory of Molecular Geriatric Medicine, Life Science Research Center, Beihua University, Jilin, China
| | - Zhiyong Liao
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Xu Zhang
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Peichao Chen
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Nan Li
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Mingjiang Wu
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| |
Collapse
|
17
|
Xu Z, Gakhar L, Bain FE, Spies M, Fuentes EJ. The Tiam1 guanine nucleotide exchange factor is auto-inhibited by its pleckstrin homology coiled-coil extension domain. J Biol Chem 2017; 292:17777-17793. [PMID: 28882897 PMCID: PMC5663878 DOI: 10.1074/jbc.m117.799114] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 08/25/2017] [Indexed: 12/22/2022] Open
Abstract
T-cell lymphoma invasion and metastasis 1 (Tiam1) is a Dbl-family guanine nucleotide exchange factor (GEF) that specifically activates the Rho-family GTPase Rac1 in response to upstream signals, thereby regulating cellular processes including cell adhesion and migration. Tiam1 contains multiple domains, including an N-terminal pleckstrin homology coiled-coiled extension (PHn-CC-Ex) and catalytic Dbl homology and C-terminal pleckstrin homology (DH-PHc) domain. Previous studies indicate that larger fragments of Tiam1, such as the region encompassing the N-terminal to C-terminal pleckstrin homology domains (PHn-PHc), are auto-inhibited. However, the domains in this region responsible for inhibition remain unknown. Here, we show that the PHn-CC-Ex domain inhibits Tiam1 GEF activity by directly interacting with the catalytic DH-PHc domain, preventing Rac1 binding and activation. Enzyme kinetics experiments suggested that Tiam1 is auto-inhibited through occlusion of the catalytic site rather than by allostery. Small angle X-ray scattering and ensemble modeling yielded models of the PHn-PHc fragment that indicate it is in equilibrium between "open" and "closed" conformational states. Finally, single-molecule experiments support a model in which conformational sampling between the open and closed states of Tiam1 contributes to Rac1 dissociation. Our results highlight the role of the PHn-CC-Ex domain in Tiam1 GEF regulation and suggest a combinatorial model for GEF inhibition and activation of the Rac1 signaling pathway.
Collapse
Affiliation(s)
- Zhen Xu
- From the Department of Biochemistry
| | - Lokesh Gakhar
- From the Department of Biochemistry
- Protein Crystallography Facility, and
| | | | - Maria Spies
- From the Department of Biochemistry
- Holden Comprehensive Cancer Center, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - Ernesto J Fuentes
- From the Department of Biochemistry,
- Holden Comprehensive Cancer Center, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
18
|
Saleh T, Rossi P, Kalodimos CG. Atomic view of the energy landscape in the allosteric regulation of Abl kinase. Nat Struct Mol Biol 2017; 24:893-901. [PMID: 28945248 PMCID: PMC5745040 DOI: 10.1038/nsmb.3470] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 08/18/2017] [Indexed: 12/14/2022]
Abstract
The activity of protein kinases is often regulated in an intramolecular fashion by signaling domains, which feature several phosphorylation or protein-docking sites. How kinases integrate such distinct binding and signaling events to regulate their activities is unclear, especially in quantitative terms. We used NMR spectroscopy to show how structural elements within the Abl regulatory module (RM) synergistically generate a multilayered allosteric mechanism that enables Abl kinase to function as a finely tuned switch. We dissected the structure and energetics of the regulatory mechanism to precisely measure the effects of various activating or inhibiting stimuli on Abl kinase activity. The data provide a mechanistic basis explaining genetic observations and reveal a previously unknown activator region within Abl. Our findings show that drug-resistance mutations in the Abl RM exert their allosteric effect by promoting the activated state of Abl and not by decreasing the drug affinity for the kinase.
Collapse
Affiliation(s)
- Tamjeed Saleh
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.,Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Paolo Rossi
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.,Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Charalampos G Kalodimos
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.,Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
19
|
Boddicker RL, Razidlo GL, Feldman AL. Genetic alterations affecting GTPases and T-cell receptor signaling in peripheral T-cell lymphomas. Small GTPases 2017; 10:33-39. [PMID: 27898263 DOI: 10.1080/21541248.2016.1263718] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Peripheral T-cell lymphomas (PTCLs) are rare, heterogeneous tumors with poor response to standard therapy and few targeted treatments available. The identification of mutations in the T-cell receptor (TCR) signaling pathway that either directly or indirectly affect Ras- and Rho-family GTPases is an emerging theme across PTCL subtypes. This review summarizes the role of GTPases in TCR signaling and highlights the constellation of mutations in this pathway among PTCLs. In particular, focus is given to the functional impact of the mutations and opportunities for targeted therapy. These mutations include activating mutations and gene fusions involving the guanine nucleotide exchange factor, VAV1, as well as activating and dominant negative mutations in the GTPases KRAS and RHOA, respectively. In addition to mutations directly affecting the GTPase pathway, TCR signaling mutations indirectly affecting Ras- and Rho-family GTPases involving genes such as CD28, FYN, LCK, and PLCG1 are also reviewed.
Collapse
Affiliation(s)
- Rebecca L Boddicker
- a Department of Laboratory Medicine and Pathology , Mayo Clinic , Rochester , MN , USA
| | - Gina L Razidlo
- b Center for Basic Research in Digestive Diseases, Division of Gastroenterology & Hepatology, Mayo Clinic , Rochester , MN , USA.,c Department of Biochemistry and Molecular Biology , Mayo Clinic , Rochester , MN , USA
| | - Andrew L Feldman
- a Department of Laboratory Medicine and Pathology , Mayo Clinic , Rochester , MN , USA
| |
Collapse
|
20
|
Abstract
It is well-established that dynamics are central to protein function; their importance is implicitly acknowledged in the principles of the Monod, Wyman and Changeux model of binding cooperativity, which was originally proposed in 1965. Nowadays the concept of protein dynamics is formulated in terms of the energy landscape theory, which can be used to understand protein folding and conformational changes in proteins. Because protein dynamics are so important, a key to understanding protein function at the molecular level is to design experiments that allow their quantitative analysis. Nuclear magnetic resonance (NMR) spectroscopy is uniquely suited for this purpose because major advances in theory, hardware, and experimental methods have made it possible to characterize protein dynamics at an unprecedented level of detail. Unique features of NMR include the ability to quantify dynamics (i) under equilibrium conditions without external perturbations, (ii) using many probes simultaneously, and (iii) over large time intervals. Here we review NMR techniques for quantifying protein dynamics on fast (ps-ns), slow (μs-ms), and very slow (s-min) time scales. These techniques are discussed with reference to some major discoveries in protein science that have been made possible by NMR spectroscopy.
Collapse
|
21
|
Abstract
Nuclear magnetic resonance (NMR) spectroscopy provides a unique toolbox of experimental probes for studying dynamic processes on a wide range of timescales, ranging from picoseconds to milliseconds and beyond. Along with NMR hardware developments, recent methodological advancements have enabled the characterization of allosteric proteins at unprecedented detail, revealing intriguing aspects of allosteric mechanisms and increasing the proportion of the conformational ensemble that can be observed by experiment. Here, we present an overview of NMR spectroscopic methods for characterizing equilibrium fluctuations in free and bound states of allosteric proteins that have been most influential in the field. By combining NMR experimental approaches with molecular simulations, atomistic-level descriptions of the mechanisms by which allosteric phenomena take place are now within reach.
Collapse
Affiliation(s)
- Sarina Grutsch
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Sven Brüschweiler
- Department of Computational & Structural Biology, Max F. Perutz Laboratories, Campus Vienna Biocenter 5, Vienna, Austria
| | - Martin Tollinger
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
- * E-mail:
| |
Collapse
|
22
|
Abstract
Proteins with a modular architecture of multiple domains connected by linkers often exhibit diversity in the relative positions of domains, while the domain tertiary structure remains unchanged. The biological function of these modular proteins, or the regulation of their activity, depends on the variation in domain orientation and separation. Accordingly, careful characterization of interdomain motion and correlated fluctuations of multidomain systems is relevant for understanding the functional behavior of modular proteins. Molecular dynamics (MD) simulations provides a powerful approach to study these motions in atomic detail. Nevertheless, the common procedure for analyzing fluctuations from MD simulations after rigid-body alignment fails for multidomain proteins; it greatly overestimates correlated positional fluctuations in the presence of relative domain motion. We show here that expressing the atomic motions of a multidomain protein as a combination of displacement within the domain reference frame and motion of the relative domains correctly separates the internal motions to allow a useful description of correlated fluctuations. We illustrate the methodology of separating the domain fluctuations and local fluctuations by application to the tandem SH2 domains of human Syk protein kinase and by characterizing an effect of phosphorylation on the dynamics. Correlated motions are assessed from a distance covariance rather than the more common vector-coordinate covariance. The approach makes it possible to calculate the proper correlations in fluctuations internal to a domain as well as between domains.
Collapse
Affiliation(s)
- Amitava Roy
- Bioinformatics and Computational Biosciences Branch, Rocky Mountain Laboratories, NIAID, National Institutes of Health , Hamilton, Montana 59840, United States
| | | | | |
Collapse
|
23
|
Luong TQ, Kapoor S, Winter R. Pressure-A Gateway to Fundamental Insights into Protein Solvation, Dynamics, and Function. Chemphyschem 2015; 16:3555-71. [DOI: 10.1002/cphc.201500669] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Indexed: 01/11/2023]
Affiliation(s)
- Trung Quan Luong
- Department of Chemistry and Chemical Biology, Physical Chemistry; TU Dortmund University, Dortmund; Otto-Hahn-Str. 6 d-44221 Dortmund Germany
| | - Shobhna Kapoor
- Department of Chemistry and Chemical Biology, Physical Chemistry; TU Dortmund University, Dortmund; Otto-Hahn-Str. 6 d-44221 Dortmund Germany
| | - Roland Winter
- Department of Chemistry and Chemical Biology, Physical Chemistry; TU Dortmund University, Dortmund; Otto-Hahn-Str. 6 d-44221 Dortmund Germany
| |
Collapse
|
24
|
Cho KI, Orry A, Park SE, Ferreira PA. Targeting the cyclophilin domain of Ran-binding protein 2 (Ranbp2) with novel small molecules to control the proteostasis of STAT3, hnRNPA2B1 and M-opsin. ACS Chem Neurosci 2015; 6:1476-85. [PMID: 26030368 DOI: 10.1021/acschemneuro.5b00134] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cyclophilins are peptidyl cis-trans prolyl isomerases (PPIases), whose activity is typically inhibited by cyclosporine A (CsA), a potent immunosuppressor. Cyclophilins are also chaperones. Emerging evidence supports that cyclophilins present nonoverlapping PPIase and chaperone activities. The proteostasis of the disease-relevant substrates, signal transducer and activator of transcription 3 and 5 (STAT3/STAT5), heterogeneous nuclear ribonucleoprotein A2B1 (hnRNPA2B1), and M-opsin, is regulated by nonoverlapping chaperone and PPIase activities of the cyclophilin domain (CY) of Ranbp2, a multifunctional and modular scaffold that controls nucleocytoplasmic shuttling and proteostasis of selective substrates. Although highly homologous, CY and the archetypal cyclophilin A (CyPA) present distinct catalytic and CsA-binding activities owing to unique structural features between these cylophilins. We explored structural idiosyncrasies between CY and CyPA to screen in silico nearly 9 million small molecules (SM) against the CY PPIase pocket and identify SMs with selective bioactivity toward STAT3, hnRNPA2B1, or M-opsin proteostasis. We found three classes of SMs that enhance the cytokine-stimulated transcriptional activity of STAT3 without changing latent and activated STAT3 levels, down-regulate hnRNPA2B1 or M-opsin proteostasis, or a combination of these. Further, a SM that suppresses hnRNPA2B1 proteostasis also inhibits strongly and selectively the PPIase activity of CY. This study unravels chemical probes for multimodal regulation of CY of Ranbp2 and its substrates, and this regulation likely results in the allosterism stemming from the interconversion of conformational substates of cyclophilins. The results also demonstrate the feasibility of CY in drug discovery against disease-relevant substrates controlled by Ranbp2, and they open new opportunities for therapeutic interventions.
Collapse
Affiliation(s)
- Kyoung-in Cho
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Andrew Orry
- MolSoft LLC, San Diego, California 92121, United States
| | - Se Eun Park
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Paulo A. Ferreira
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina 27710, United States
- Department of Pathology, Duke University Medical Center, Durham, North Carolina 27710, United States
| |
Collapse
|
25
|
Structural basis for catalytically restrictive dynamics of a high-energy enzyme state. Nat Commun 2015; 6:7644. [PMID: 26138143 PMCID: PMC4506515 DOI: 10.1038/ncomms8644] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 05/27/2015] [Indexed: 12/02/2022] Open
Abstract
An emerging paradigm in enzymology is that transient high-energy structural states play crucial roles in enzymatic reaction cycles. Generally, these high-energy or ‘invisible' states cannot be studied directly at atomic resolution using existing structural and spectroscopic techniques owing to their low populations or short residence times. Here we report the direct NMR-based detection of the molecular topology and conformational dynamics of a catalytically indispensable high-energy state of an adenylate kinase variant. On the basis of matching energy barriers for conformational dynamics and catalytic turnover, it was found that the enzyme's catalytic activity is governed by its dynamic interconversion between the high-energy state and a ground state structure that was determined by X-ray crystallography. Our results show that it is possible to rationally tune enzymes' conformational dynamics and hence their catalytic power—a key aspect in rational design of enzymes catalysing novel reactions. Adenylate kinase (AdK) plays a key role in cellular energy homeostasis by catalysing the reversible magnesium-dependent formation of ADP from AMP and ATP. Here the authors present a detailed analysis of adenylate kinase's conformational dynamics and characterize a high-energy state of AdK indispensable for catalysis.
Collapse
|
26
|
Sinnige T, Weingarth M, Daniëls M, Boelens R, Bonvin AMJJ, Houben K, Baldus M. Conformational Plasticity of the POTRA 5 Domain in the Outer Membrane Protein Assembly Factor BamA. Structure 2015; 23:1317-24. [PMID: 26027731 DOI: 10.1016/j.str.2015.04.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 04/03/2015] [Accepted: 04/09/2015] [Indexed: 12/22/2022]
Abstract
BamA is the main component of the β-barrel assembly machinery (BAM) that folds and inserts outer membrane proteins in Gram-negative bacteria. Crystal structures have suggested that this process involves conformational changes in the transmembrane β-barrel of BamA that allow for lateral opening, as well as large overall rearrangements of its periplasmic POTRA domains. Here, we identify local dynamics of the BamA POTRA 5 domain by solution and solid-state nuclear magnetic resonance. The protein region undergoing conformational exchange is highly conserved and contains residues critical for interaction with BamD and correct β-barrel assembly in vivo. We show that mutations known to affect the latter processes influence the conformational equilibrium, suggesting that the plasticity of POTRA 5 is related to its interaction with BamD and possibly to substrate binding. Taken together, a view emerges in which local protein plasticity may be critically involved in the different stages of outer membrane protein folding and insertion.
Collapse
Affiliation(s)
- Tessa Sinnige
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Markus Weingarth
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Mark Daniëls
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Rolf Boelens
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Alexandre M J J Bonvin
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Klaartje Houben
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands.
| | - Marc Baldus
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands.
| |
Collapse
|
27
|
Wang X, Hills LB, Huang YH. Lipid and Protein Co-Regulation of PI3K Effectors Akt and Itk in Lymphocytes. Front Immunol 2015; 6:117. [PMID: 25821452 PMCID: PMC4358224 DOI: 10.3389/fimmu.2015.00117] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 03/02/2015] [Indexed: 12/21/2022] Open
Abstract
The phosphoinositide 3-kinase (PI 3-kinase, PI3K) pathway transduces signals critical for lymphocyte function. PI3K generates the phospholipid PIP3 at the plasma membrane to recruit proteins that contain pleckstrin homology (PH) domains – a conserved domain found in hundreds of mammalian proteins. PH domain–PIP3 interactions allow for rapid signal propagation and confer a spatial component to these signals. The kinases Akt and Itk are key PI3K effectors that bind PIP3 via their PH domains and mediate vital processes – such as survival, activation, and differentiation – in lymphocytes. Here, we review the roles and regulation of PI3K signaling in lymphocytes with a specific emphasis on Akt and Itk. We also discuss these and other PH domain-containing proteins as they relate more broadly to immune cell function. Finally, we highlight the emerging view of PH domains as multifunctional protein domains that often bind both lipid and protein substrates to exert their effects.
Collapse
Affiliation(s)
- Xinxin Wang
- California Institute for Biomedical Research , La Jolla, CA , USA
| | - Leonard Benjamin Hills
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth , Lebanon, NH , USA
| | - Yina Hsing Huang
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth , Lebanon, NH , USA ; Department of Pathology, Geisel School of Medicine at Dartmouth , Lebanon, NH , USA
| |
Collapse
|
28
|
Abstract
Intrinsically disordered proteins (IDPs) are important components of the cellular signalling machinery, allowing the same polypeptide to undertake different interactions with different consequences. IDPs are subject to combinatorial post-translational modifications and alternative splicing, adding complexity to regulatory networks and providing a mechanism for tissue-specific signalling. These proteins participate in the assembly of signalling complexes and in the dynamic self-assembly of membrane-less nuclear and cytoplasmic organelles. Experimental, computational and bioinformatic analyses combine to identify and characterize disordered regions of proteins, leading to a greater appreciation of their widespread roles in biological processes.
Collapse
|
29
|
Elazari-Shalom H, Shaked H, Esteban-Martin S, Salvatella X, Barda-Saad M, Chill JH. New insights into the role of the disordered WIP N-terminal domain revealed by NMR structural characterization. FEBS J 2015; 282:700-14. [DOI: 10.1111/febs.13174] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 12/04/2014] [Accepted: 12/09/2014] [Indexed: 02/06/2023]
Affiliation(s)
| | - Hadassa Shaked
- Department of Chemistry; Bar Ilan University; Ramat Gan Israel
| | - Santiago Esteban-Martin
- Joint BSC-CRG-IRB Research Programme in Computational Biology; Barcelona Supercomputing Center; Spain
| | - Xavier Salvatella
- Joint BSC-CRG-IRB Research Programme in Computational Biology; Institute for Research in Biomedicine IRB Barcelona; Spain
- ICREA; Barcelona Spain
| | - Mira Barda-Saad
- Mina and Everard Goodman Faculty of Life Sciences; Bar Ilan University; Ramat Gan Israel
| | - Jordan H. Chill
- Department of Chemistry; Bar Ilan University; Ramat Gan Israel
| |
Collapse
|
30
|
The importance of intrinsic order in a disordered protein ligand. Biophys J 2014; 106:1557-8. [PMID: 24739154 DOI: 10.1016/j.bpj.2014.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 03/07/2014] [Indexed: 01/09/2023] Open
|
31
|
Wu D, Jiao M, Zu S, Sollecito CC, Jimenez-Cowell K, Mold AJ, Kennedy RM, Wei Q. Intramolecular interactions between the Dbl homology (DH) domain and the carboxyl-terminal region of myosin II-interacting guanine nucleotide exchange factor (MyoGEF) act as an autoinhibitory mechanism for the regulation of MyoGEF functions. J Biol Chem 2014; 289:34033-48. [PMID: 25336641 DOI: 10.1074/jbc.m114.607267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have reported previously that nonmuscle myosin II-interacting guanine nucleotide exchange factor (MyoGEF) plays an important role in the regulation of cell migration and cytokinesis. Like many other guanine nucleotide exchange factors (GEFs), MyoGEF contains a Dbl homology (DH) domain and a pleckstrin homology domain. In this study, we provide evidence demonstrating that intramolecular interactions between the DH domain (residues 162-351) and the carboxyl-terminal region (501-790) of MyoGEF can inhibit MyoGEF functions. In vitro and in vivo pulldown assays showed that the carboxyl-terminal region (residues 501-790) of MyoGEF could interact with the DH domain but not with the pleckstrin homology domain. Expression of a MyoGEF carboxyl-terminal fragment (residues 501-790) decreased RhoA activation and suppressed actin filament formation in MDA-MB-231 breast cancer cells. Additionally, Matrigel invasion assays showed that exogenous expression of the MyoGEF carboxyl-terminal region decreased the invasion activity of MDA-MB-231 cells. Moreover, coimmunoprecipitation assays showed that phosphorylation of the MyoGEF carboxyl-terminal region by aurora B kinase interfered with the intramolecular interactions of MyoGEF. Furthermore, expression of the MyoGEF carboxyl-terminal region interfered with RhoA localization during cytokinesis and led to an increase in multinucleation. Together, our findings suggest that binding of the carboxyl-terminal region of MyoGEF to its DH domain acts as an autoinhibitory mechanism for the regulation of MyoGEF activation.
Collapse
Affiliation(s)
- Di Wu
- From the Department of Biological Sciences, Fordham University, Bronx, New York 10458
| | - Meng Jiao
- From the Department of Biological Sciences, Fordham University, Bronx, New York 10458
| | - Shicheng Zu
- From the Department of Biological Sciences, Fordham University, Bronx, New York 10458
| | | | - Kevin Jimenez-Cowell
- From the Department of Biological Sciences, Fordham University, Bronx, New York 10458
| | - Alexander J Mold
- From the Department of Biological Sciences, Fordham University, Bronx, New York 10458
| | - Ryan M Kennedy
- From the Department of Biological Sciences, Fordham University, Bronx, New York 10458
| | - Qize Wei
- From the Department of Biological Sciences, Fordham University, Bronx, New York 10458
| |
Collapse
|
32
|
Iversen L, Tu HL, Lin WC, Christensen SM, Abel SM, Iwig J, Wu HJ, Gureasko J, Rhodes C, Petit RS, Hansen SD, Thill P, Yu CH, Stamou D, Chakraborty AK, Kuriyan J, Groves JT. Molecular kinetics. Ras activation by SOS: allosteric regulation by altered fluctuation dynamics. Science 2014; 345:50-4. [PMID: 24994643 DOI: 10.1126/science.1250373] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Activation of the small guanosine triphosphatase H-Ras by the exchange factor Son of Sevenless (SOS) is an important hub for signal transduction. Multiple layers of regulation, through protein and membrane interactions, govern activity of SOS. We characterized the specific activity of individual SOS molecules catalyzing nucleotide exchange in H-Ras. Single-molecule kinetic traces revealed that SOS samples a broad distribution of turnover rates through stochastic fluctuations between distinct, long-lived (more than 100 seconds), functional states. The expected allosteric activation of SOS by Ras-guanosine triphosphate (GTP) was conspicuously absent in the mean rate. However, fluctuations into highly active states were modulated by Ras-GTP. This reveals a mechanism in which functional output may be determined by the dynamical spectrum of rates sampled by a small number of enzymes, rather than the ensemble average.
Collapse
Affiliation(s)
- Lars Iversen
- Howard Hughes Medical Institute, Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Hsiung-Lin Tu
- Howard Hughes Medical Institute, Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Wan-Chen Lin
- Howard Hughes Medical Institute, Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Sune M Christensen
- Howard Hughes Medical Institute, Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Steven M Abel
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
| | - Jeff Iwig
- Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Hung-Jen Wu
- Howard Hughes Medical Institute, Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jodi Gureasko
- Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Christopher Rhodes
- Department of Mechanical Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Rebecca S Petit
- Howard Hughes Medical Institute, Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Scott D Hansen
- Howard Hughes Medical Institute, Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Peter Thill
- Department of Chemistry, MIT, Cambridge, MA 02139, USA
| | - Cheng-Han Yu
- Mechanobiology Institute, National University of Singapore, Singapore
| | - Dimitrios Stamou
- Department of Chemistry and Nano-Science Center, University of Copenhagen, Copenhagen, Denmark
| | - Arup K Chakraborty
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA. Department of Chemistry, MIT, Cambridge, MA 02139, USA. Department of Biological Engineering, MIT, Cambridge, MA 02139, USA. Ragon Institute of Massachusetts General Hospital, MIT, and Harvard, Cambridge, MA 02139, USA. Department of Physics, MIT, Cambridge, MA 02139, USA. Institute for Medical Engineering and Science, MIT, Cambridge, MA 02139, USA
| | - John Kuriyan
- Howard Hughes Medical Institute, Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA. Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA. Physical Biosciences and Materials Sciences Divisions, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jay T Groves
- Howard Hughes Medical Institute, Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA. Mechanobiology Institute, National University of Singapore, Singapore. Physical Biosciences and Materials Sciences Divisions, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA. Berkeley Education Alliance for Research in Singapore, 1 Create Way, CREATE tower level 11, University Town, Singapore 138602.
| |
Collapse
|
33
|
Jakob U, Kriwacki R, Uversky VN. Conditionally and transiently disordered proteins: awakening cryptic disorder to regulate protein function. Chem Rev 2014; 114:6779-805. [PMID: 24502763 PMCID: PMC4090257 DOI: 10.1021/cr400459c] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Ursula Jakob
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-1048, United States
| | - Richard Kriwacki
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, United States
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Vladimir N. Uversky
- Department of Molecular Medicine, University of South Florida, Tampa, Florida 33612, United States
- Institute for Biological Instrumentation, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| |
Collapse
|
34
|
Cembran A, Kim J, Gao J, Veglia G. NMR mapping of protein conformational landscapes using coordinated behavior of chemical shifts upon ligand binding. Phys Chem Chem Phys 2014; 16:6508-18. [PMID: 24604024 PMCID: PMC4117682 DOI: 10.1039/c4cp00110a] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Proteins exist as an ensemble of conformers that are distributed on free energy landscapes resembling folding funnels. While the most stable conformers populate low energy basins, protein function is often carried out through low-populated conformational states that occupy high energy basins. Ligand binding shifts the populations of these states, changing the distribution of these conformers. Understanding how the equilibrium among the states is altered upon ligand binding, interaction with other binding partners, and/or mutations and post-translational modifications is of critical importance for explaining allosteric signaling in proteins. Here, we propose a statistical analysis of the linear trajectories of NMR chemical shifts (CONCISE, COordiNated ChemIcal Shifts bEhavior) for the interpretation of protein conformational equilibria. CONCISE enables one to quantitatively measure the population shifts associated with ligand titrations and estimate the degree of collectiveness of the protein residues' response to ligand binding, giving a concise view of the structural transitions. The combination of CONCISE with thermocalorimetric and kinetic data allows one to depict a protein's approximate conformational energy landscape. We tested this method with the catalytic subunit of cAMP-dependent protein kinase A, a ubiquitous enzyme that undergoes conformational transitions upon both nucleotide and pseudo-substrate binding. When complemented with chemical shift covariance analysis (CHESCA), this new method offers both collective response and residue-specific correlations for ligand binding to proteins.
Collapse
Affiliation(s)
- Alessandro Cembran
- Department of Biochemistry, Biophysics & Molecular Biology, University of Minnesota, 6-155 Jackson Hall, MN 55455, USA.
| | | | | | | |
Collapse
|
35
|
Razidlo GL, Schroeder B, Chen J, Billadeau DD, McNiven MA. Vav1 as a central regulator of invadopodia assembly. Curr Biol 2013; 24:86-93. [PMID: 24332539 DOI: 10.1016/j.cub.2013.11.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Revised: 09/20/2013] [Accepted: 11/04/2013] [Indexed: 01/08/2023]
Abstract
Invadopodia are protrusive structures used by tumor cells for degradation of the extracellular matrix to promote invasion [1]. Invadopodia formation and function are regulated by cytoskeletal-remodeling pathways and the oncogenic kinase Src. The guanine nucleotide exchange factor Vav1, which is an activator of Rho family GTPases, is ectopically expressed in many pancreatic cancers, where it promotes tumor cell survival and migration [2, 3]. We have now determined that Vav1 is also a potent regulator of matrix degradation by pancreatic tumor cells as depletion of Vav1 by siRNA-mediated knockdown inhibits the formation of invadopodia. This requires the exchange function of Vav1 toward the GTPase Cdc42, which is required for invadopodia assembly [4, 5]. In addition, we have determined that Src-mediated phosphorylation and activation of Vav1 are both required for, and, unexpectedly, sufficient for, invadopodia formation. Expression of Vav1 Y174F, which mimics its activated state, is a potent inducer of invadopodia formation through Cdc42, even in the absence of Src activation and phosphorylation of other Src substrates, such as cortactin. Thus, these data identify a novel mechanism by which Vav1 can enhance the tumorigenicity and invasive potential of cancer cells. These data suggest that Vav1 promotes the matrix-degrading processes underlying tumor cell migration and further, under conditions of ectopic Vav1 expression, that Vav1 is a central regulator and major driver of invasive matrix remodeling by pancreatic tumor cells.
Collapse
Affiliation(s)
- Gina L Razidlo
- Center for Basic Research in Digestive Diseases, Mayo Clinic, Rochester, MN 55905, USA
| | - Barbara Schroeder
- Center for Basic Research in Digestive Diseases, Mayo Clinic, Rochester, MN 55905, USA
| | - Jing Chen
- Center for Basic Research in Digestive Diseases, Mayo Clinic, Rochester, MN 55905, USA
| | - Daniel D Billadeau
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA; Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Mark A McNiven
- Center for Basic Research in Digestive Diseases, Mayo Clinic, Rochester, MN 55905, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
36
|
Tompa P. Multisteric Regulation by Structural Disorder in Modular Signaling Proteins: An Extension of the Concept of Allostery. Chem Rev 2013; 114:6715-32. [DOI: 10.1021/cr4005082] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Peter Tompa
- VIB Department of Structural
Biology, Vrije Universiteit Brussel, 1050 Brussels, Belgium
- Institute of Enzymology, Biological Research Center, Hungarian Academy
of Sciences, Budapest H-1113, Hungary
| |
Collapse
|
37
|
Al-Hashimi HM. NMR studies of nucleic acid dynamics. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2013; 237:191-204. [PMID: 24149218 PMCID: PMC3984477 DOI: 10.1016/j.jmr.2013.08.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 08/23/2013] [Indexed: 05/12/2023]
Abstract
Nucleic acid structures have to satisfy two diametrically opposite requirements; on one hand they have to adopt well-defined 3D structures that can be specifically recognized by proteins; on the other hand, their structures must be sufficiently flexible to undergo very large conformational changes that are required during key biochemical processes, including replication, transcription, and translation. How do nucleic acids introduce flexibility into their 3D structure without losing biological specificity? Here, I describe the development and application of NMR spectroscopic techniques in my laboratory for characterizing the dynamic properties of nucleic acids that tightly integrate a broad set of NMR measurements, including residual dipolar couplings, spin relaxation, and relaxation dispersion with sample engineering and computational approaches. This approach allowed us to obtain fundamental new insights into directional flexibility in nucleic acids that enable their structures to change in a very specific functional manner.
Collapse
Affiliation(s)
- Hashim M Al-Hashimi
- Department of Chemistry & Biophysics, University of Michigan, 930 North University Avenue, Ann Arbor, MI 48109-1055, USA.
| |
Collapse
|
38
|
Gutiérrez-Magdaleno G, Bello M, Portillo-Téllez MC, Rodríguez-Romero A, García-Hernández E. Ligand binding and self-association cooperativity of β-lactoglobulin. J Mol Recognit 2013; 26:67-75. [PMID: 23334914 DOI: 10.1002/jmr.2249] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 10/15/2012] [Accepted: 10/16/2012] [Indexed: 11/10/2022]
Abstract
Unlike most small globular proteins, lipocalins lack a compact hydrophobic core. Instead, they present a large central cavity that functions as the primary binding site for hydrophobic molecules. Not surprisingly, these proteins typically exhibit complex structural dynamics in solution, which is intricately modified by intermolecular recognition events. Although many lipocalins are monomeric, an increasing number of them have been proven to form oligomers. The coupling effects between self-association and ligand binding in these proteins are largely unknown. To address this issue, we have calorimetrically characterized the recognition of dodecyl sulfate by bovine β-lactoglobulin, which forms weak homodimers at neutral pH. A thermodynamic analysis based on coupled-equilibria revealed that dimerization exerts disparate effects on the ligand-binding capacity of β-lactoglobulin. Protein dimerization decreases ligand affinity (or, reciprocally, ligand binding promotes dimer dissociation). The two subunits in the dimer exhibit a positive, entropically driven cooperativity. To investigate the structural determinants of the interaction, the crystal structure of β-lactoglobulin bound to dodecyl sulfate was solved at 1.64 Å resolution.
Collapse
Affiliation(s)
- Gabriel Gutiérrez-Magdaleno
- Instituto de Química Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, México, DF 04630, México
| | | | | | | | | |
Collapse
|
39
|
Luo SC, Lou YC, Rajasekaran M, Chang YW, Hsiao CD, Chen C. Structural basis of a physical blockage mechanism for the interaction of response regulator PmrA with connector protein PmrD from Klebsiella pneumoniae. J Biol Chem 2013; 288:25551-25561. [PMID: 23861396 PMCID: PMC3757216 DOI: 10.1074/jbc.m113.481978] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
In bacteria, the two-component system is the most prevalent for sensing and transducing environmental signals into the cell. The PmrA-PmrB two-component system, responsible for sensing external stimuli of high Fe(3+) and mild acidic conditions, can control the genes involved in lipopolysaccharide modification and polymyxin resistance in pathogens. In Klebsiella pneumoniae, the small basic connector protein PmrD protects phospho-PmrA and prolongs the expression of PmrA-activated genes. We previously determined the phospho-PmrA recognition mode of PmrD. However, how PmrA interacts with PmrD and prevents its dephosphorylation remains unknown. To address this question, we solved the x-ray crystal structure of the N-terminal receiver domain of BeF3(-)-activated PmrA (PmrA(N)) at 1.70 Å. With this structure, we applied the data-driven docking method based on NMR chemical shift perturbation to generate the complex model of PmrD-PmrA(N), which was further validated by site-directed spin labeling experiments. In the complex model, PmrD may act as a blockade to prevent phosphatase from contacting with the phosphorylation site on PmrA.
Collapse
Affiliation(s)
| | | | | | - Yi-Wei Chang
- Molecular Biology, Academia Sinica, Taipei 115, Taiwan and
| | | | - Chinpan Chen
- From the Institutes of Biomedical Sciences and ,Agricultural Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan, To whom correspondence should be addressed: Institute of Biomedical Sciences, Academia Sinica, 128 Academia Rd., Section 2, Taipei 115, Taiwan. Tel.: 886-2-2652-3035; Fax: 886-2-2788-7641; E-mail:
| |
Collapse
|
40
|
Cracking the molecular origin of intrinsic tyrosine kinase activity through analysis of pathogenic gain-of-function mutations. Cell Rep 2013; 4:376-84. [PMID: 23871672 PMCID: PMC3752781 DOI: 10.1016/j.celrep.2013.06.025] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 05/13/2013] [Accepted: 06/14/2013] [Indexed: 01/07/2023] Open
Abstract
The basal (ligand-independent) kinase activity of receptor tyrosine kinases (RTKs) promotes trans-phosphorylation on activation loop tyrosines upon ligand-induced receptor dimerization, thus upregulating intrinsic kinase activity and triggering intracellular signaling. To understand the molecular determinants of intrinsic kinase activity, we used X-ray crystallography and NMR spectroscopy to analyze pathogenic FGF receptor mutants with gradations in gain-of-function activity. These structural analyses revealed a "two-state" dynamic equilibrium model whereby the kinase toggles between an "inhibited," structurally rigid ground state and a more dynamic and heterogeneous active state. The pathogenic mutations have different abilities to shift this equilibrium toward the active state. The increase in the fractional population of FGF receptors in the active state correlates with the degree of gain-of-function activity and clinical severity. Our data demonstrate that the fractional population of RTKs in the active state determines intrinsic kinase activity and underscore how a slight increase in the active population of kinases can have grave consequences for human health.
Collapse
|
41
|
|
42
|
Abstract
Small GTPases use GDP/GTP alternation to actuate a variety of functional switches that are pivotal for cell dynamics. The GTPase switch is turned on by GEFs, which stimulate dissociation of the tightly bound GDP, and turned off by GAPs, which accelerate the intrinsically sluggish hydrolysis of GTP. For Ras, Rho, and Rab GTPases, this switch incorporates a membrane/cytosol alternation regulated by GDIs and GDI-like proteins. The structures and core mechanisms of representative members of small GTPase regulators from most families have now been elucidated, illuminating their general traits combined with scores of unique features. Recent studies reveal that small GTPase regulators have themselves unexpectedly sophisticated regulatory mechanisms, by which they process cellular signals and build up specific cell responses. These mechanisms include multilayered autoinhibition with stepwise release, feedback loops mediated by the activated GTPase, feed-forward signaling flow between regulators and effectors, and a phosphorylation code for RhoGDIs. The flipside of these highly integrated functions is that they make small GTPase regulators susceptible to biochemical abnormalities that are directly correlated with diseases, notably a striking number of missense mutations in congenital diseases, and susceptible to bacterial mimics of GEFs, GAPs, and GDIs that take command of small GTPases in infections. This review presents an overview of the current knowledge of these many facets of small GTPase regulation.
Collapse
Affiliation(s)
- Jacqueline Cherfils
- Laboratoire d’Enzymologie et Biochimie Structurales, Centre National de la Recherche Scientifique, Centre deRecherche de Gif, Gif-sur-Yvette, France
| | | |
Collapse
|
43
|
Drögemüller J, Stegmann CM, Mandal A, Steiner T, Burmann BM, Gottesman ME, Wöhrl BM, Rösch P, Wahl MC, Schweimer K. An autoinhibited state in the structure of Thermotoga maritima NusG. Structure 2013; 21:365-75. [PMID: 23415559 DOI: 10.1016/j.str.2012.12.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 11/19/2012] [Accepted: 12/21/2012] [Indexed: 01/05/2023]
Abstract
NusG is a conserved regulatory protein interacting with RNA polymerase (RNAP) and other proteins to form multicomponent complexes that modulate transcription. The crystal structure of Thermotoga maritima NusG (TmNusG) shows a three-domain architecture, comprising well-conserved amino-terminal (NTD) and carboxy-terminal (CTD) domains with an additional, species-specific domain inserted into the NTD. NTD and CTD directly contact each other, occluding a surface of the NTD for binding to RNAP and a surface on the CTD interacting either with transcription termination factor Rho or transcription antitermination factor NusE. NMR spectroscopy confirmed the intramolecular NTD-CTD interaction up to the optimal growth temperature of Thermotoga maritima. The domain interaction involves a dynamic equilibrium between open and closed states and contributes significantly to the overall fold stability of the protein. Wild-type TmNusG and deletion variants could not replace endogenous Escherichia coli NusG, suggesting that the NTD-CTD interaction of TmNusG represents an autoinhibited state.
Collapse
Affiliation(s)
- Johanna Drögemüller
- Lehrstuhl Biopolymere und Forschungszentrum für Biomakromoleküle, Universität Bayreuth, Universitätsstrasse 30, Bayreuth, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Structure and intrinsic disorder in protein autoinhibition. Structure 2013; 21:332-41. [PMID: 23375259 DOI: 10.1016/j.str.2012.12.013] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 12/10/2012] [Accepted: 12/24/2012] [Indexed: 12/13/2022]
Abstract
Autoinhibition plays a significant role in the regulation of many proteins. By analyzing autoinhibited proteins, we demonstrate that these proteins are enriched in intrinsic disorder because of the properties of their inhibitory modules (IMs). A comparison of autoinhibited proteins with structured and intrinsically disordered IMs revealed that in the latter group (1) multiple phosphorylation sites are highly abundant; (2) splice variants occur in greater number than in their structured cousins; and (3) activation is often associated with changes in secondary structure in the IM. Analyses of families of autoinhibited proteins revealed that the levels of disorder in IMs can vary significantly throughout homologous proteins, whereas residues located at the interfaces between the IMs and inhibited domains are conserved. Our findings suggest that intrinsically disordered IMs provide advantages over structured ones that are likely to be exploited in the fine-tuning of the equilibrium between active and inactive states of autoinhibited proteins.
Collapse
|
45
|
Stollar EJ, Lin H, Davidson AR, Forman-Kay JD. Differential dynamic engagement within 24 SH3 domain: peptide complexes revealed by co-linear chemical shift perturbation analysis. PLoS One 2012; 7:e51282. [PMID: 23251481 PMCID: PMC3520974 DOI: 10.1371/journal.pone.0051282] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 10/31/2012] [Indexed: 11/18/2022] Open
Abstract
There is increasing evidence for the functional importance of multiple dynamically populated states within single proteins. However, peptide binding by protein-protein interaction domains, such as the SH3 domain, has generally been considered to involve the full engagement of peptide to the binding surface with minimal dynamics and simple methods to determine dynamics at the binding surface for multiple related complexes have not been described. We have used NMR spectroscopy combined with isothermal titration calorimetry to comprehensively examine the extent of engagement to the yeast Abp1p SH3 domain for 24 different peptides. Over one quarter of the domain residues display co-linear chemical shift perturbation (CCSP) behavior, in which the position of a given chemical shift in a complex is co-linear with the same chemical shift in the other complexes, providing evidence that each complex exists as a unique dynamic rapidly inter-converting ensemble. The extent the specificity determining sub-surface of AbpSH3 is engaged as judged by CCSP analysis correlates with structural and thermodynamic measurements as well as with functional data, revealing the basis for significant structural and functional diversity amongst the related complexes. Thus, CCSP analysis can distinguish peptide complexes that may appear identical in terms of general structure and percent peptide occupancy but have significant local binding differences across the interface, affecting their ability to transmit conformational change across the domain and resulting in functional differences.
Collapse
Affiliation(s)
- Elliott J. Stollar
- Program in Molecular Structure and Function, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- * E-mail: (EJS); (JFK)
| | - Hong Lin
- Program in Molecular Structure and Function, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Alan R. Davidson
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Julie D. Forman-Kay
- Program in Molecular Structure and Function, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- * E-mail: (EJS); (JFK)
| |
Collapse
|
46
|
Proteasome allostery as a population shift between interchanging conformers. Proc Natl Acad Sci U S A 2012; 109:E3454-62. [PMID: 23150576 DOI: 10.1073/pnas.1213640109] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protein degradation plays a critical role in cellular homeostasis, in regulating the cell cycle, and in the generation of peptides that are used in the immune response. The 20S proteasome core particle (CP), a barrel-like structure consisting of four heptameric protein rings stacked axially on top of each other, is central to this process. CP function is controlled by activator complexes that bind 75 Å away from sites catalyzing proteolysis, and biochemical data are consistent with an allosteric mechanism by which binding is communicated to distal active sites. However, little structural evidence has emerged from the high-resolution images of the CP. Using methyl TROSY NMR spectroscopy, we demonstrate that in solution, the CP interconverts between multiple conformations whose relative populations are shifted on binding of the 11S activator or mutation of residues that contact activators. These conformers differ in contiguous regions of structure that connect activator binding to the CP active sites, and changes in their populations lead to differences in substrate proteolysis patterns. Moreover, various active site modifications result in conformational changes to the activator binding site by modulating the relative populations of these same CP conformers. This distribution is also affected by the binding of a small-molecule allosteric inhibitor of proteolysis, chloroquine, suggesting an important avenue in the development of therapeutics for proteasome inhibition.
Collapse
|
47
|
Affiliation(s)
- Dmitry M Korzhnev
- Department of Molecular, Microbial and Structural Biology, University of Connecticut Health Center, Farmington, CT 06030, USA.
| |
Collapse
|
48
|
Abstract
The visualization of RNA conformational changes has provided fundamental insights into how regulatory RNAs carry out their biological functions. The RNA structural transitions that have been characterized to date involve long-lived species that can be captured by structure characterization techniques. Here, we report the Nuclear Magnetic Resonance visualization of RNA transitions towards invisible ‘excited states’ (ES), which exist in too little abundance (2–13%) and for too short periods of time (45–250 μs) to allow structural characterization by conventional techniques. Transitions towards ESs result in localized rearrangements in base-pairing that alter building block elements of RNA architecture, including helix-junction-helix motifs and apical loops. The ES can inhibit function by sequestering residues involved in recognition and signaling or promote ATP-independent strand exchange. Thus, RNAs do not adopt a single conformation, but rather exist in rapid equilibrium with alternative ESs, which can be stabilized by cellular cues to affect functional outcomes.
Collapse
|
49
|
Protein activity regulation by conformational entropy. Nature 2012; 488:236-40. [PMID: 22801505 DOI: 10.1038/nature11271] [Citation(s) in RCA: 418] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2012] [Accepted: 05/31/2012] [Indexed: 12/11/2022]
Abstract
How the interplay between protein structure and internal dynamics regulates protein function is poorly understood. Often, ligand binding, post-translational modifications and mutations modify protein activity in a manner that is not possible to rationalize solely on the basis of structural data. It is likely that changes in the internal motions of proteins have a major role in regulating protein activity, but the nature of their contributions remains elusive, especially in quantitative terms. Here we show that changes in conformational entropy can determine whether protein-ligand interactions will occur, even among protein complexes with identical binding interfaces. We have used NMR spectroscopy to determine the changes in structure and internal dynamics that are elicited by the binding of DNA to several variants of the catabolite activator protein (CAP) that differentially populate the inactive and active DNA-binding domain states. We found that the CAP variants have markedly different affinities for DNA, despite the CAP−DNA-binding interfaces being essentially identical in the various complexes. Combined with thermodynamic data, the results show that conformational entropy changes can inhibit the binding of CAP variants that are structurally poised for optimal DNA binding or can stimulate the binding activity of CAP variants that only transiently populate the DNA-binding-domain active state. Collectively, the data show how changes in fast internal dynamics (conformational entropy) and slow internal dynamics (energetically excited conformational states) can regulate binding activity in a way that cannot be predicted on the basis of the protein's ground-state structure.
Collapse
|
50
|
|