1
|
Valli D, Ooi SA, Kaya I, Thomassen AB, Chaudhary H, Weidner T, Andrén PE, Maj M. Cryo-Electron Microscopy Provides Mechanistic Insights into Solution-Dependent Polymorphism and Cross-Aggregation Phenomena of the Human and Rat Islet Amyloid Polypeptides. Biochemistry 2025; 64:2583-2595. [PMID: 40417836 DOI: 10.1021/acs.biochem.5c00042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2025]
Abstract
Inhibitors targeting amyloids formed by the human Islet Amyloid Polypeptide (hIAPP) are promising therapeutic candidates for type 2 diabetes. Peptide formulations derived from the nonamyloidogenic rat IAPP (rIAPP) sequence are currently used as hIAPP mimetics to support insulin therapy. rIAPP itself acts as a peptide inhibitor; yet, the structural-level consequences of such inhibition, particularly its impact on amyloid polymorphism, have not been studied in detail. Here, we conduct coaggregation experiments with varying rIAPP-to-hIAPP concentration ratios and employ high-resolution cryo-electron microscopy (Cryo-EM) to elucidate the polymorphism of the resulting fibril structures. Our results demonstrate that the polymorphism of hIAPP amyloids is highly sensitive to the electrostatic environment, which can be modulated by buffer composition, the concentration of the inhibitor, and cosolvents such as hexafluoroisopropanol (HFIP). Under native conditions, rIAPP associates with hIAPP but does not cross-aggregate, resulting in fibrils primarily composed of hIAPP. Significant inhibition is observed at relatively high concentrations of rIAPP. However, trace amounts of HFIP disrupt this inhibition, leading to increased fibril concentrations due to the formation of cross-seeded products composed of both hIAPP and rIAPP, as evidenced by mass spectrometry and two-dimensional infrared (2D IR) spectroscopy. These findings highlight the critical role of experimental conditions, particularly the electrostatic environment, in modulating amyloid polymorphism, cross-seeding, and inhibition. By providing structural insights into these processes, this study advances our understanding of peptide aggregation and offers valuable guidance for the rational design of more effective therapeutic inhibitors targeting hIAPP-related amyloidosis.
Collapse
Affiliation(s)
- Dylan Valli
- Department of Chemistry - Ångström Laboratory, Uppsala University, Lägerhyddsvägen 1, 751 20 Uppsala, Sweden
| | - Saik Ann Ooi
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 7B, 413 90 Gothenburg, Sweden
| | - Ibrahim Kaya
- Department of Pharmaceutical Biosciences, Spatial Mass Spectrometry, Science for Life Laboratory, Uppsala University, BMC 591, 75124 Uppsala, Sweden
| | - Asger Berg Thomassen
- Department of Chemistry, Aarhus University, Langelandsgade 140, Aarhus C 8000, Denmark
| | - Himanshu Chaudhary
- Department of Chemistry - Ångström Laboratory, Uppsala University, Lägerhyddsvägen 1, 751 20 Uppsala, Sweden
| | - Tobias Weidner
- Department of Chemistry, Aarhus University, Langelandsgade 140, Aarhus C 8000, Denmark
| | - Per E Andrén
- Department of Pharmaceutical Biosciences, Spatial Mass Spectrometry, Science for Life Laboratory, Uppsala University, BMC 591, 75124 Uppsala, Sweden
| | - Michał Maj
- Department of Chemistry - Ångström Laboratory, Uppsala University, Lägerhyddsvägen 1, 751 20 Uppsala, Sweden
| |
Collapse
|
2
|
Jena S, Subham K, Kalra H, Jha S. Multimeric interacting interface of biologically synthesized zinc oxide nanoparticle corona efficiently sequesters α-synuclein against protein fibrillation. Biomater Sci 2025; 13:3336-3353. [PMID: 40332135 DOI: 10.1039/d5bm00143a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Parkinson's disease (PD) is characterized by the loss of dopaminergic neurons along with the accumulation of amyloid plaques with alpha-synuclein (αS) as the major constituent. αS is an intrinsically disordered protein with the potential to undergo a cascade of structural transitions from a soluble disordered conformation to ordered cross-β-sheet-rich insoluble amyloid fibrils. Small molecules like polyphenols and peptides with anti-amyloidogenic potential can mitigate fibrillation in vitro but fail in vivo owing to poor bioavailability. To overcome this problem, a platform that simultaneously enhances the bioavailability of the mitigators and efficiently sequesters αS monomers against amyloidosis is needed. Accordingly, herein, the sequestering potential of surface-moderated zinc oxide nanoparticles was explored; in silico and in vitro studies showed that the moderated nano-interfaces efficiently sequestered αS in amorphous aggregates, which were termed as flocs. Moreover, GC-MS-based analysis of the bio-nano corona highlighted the rationale for efficient sequestering of αS monomers against amyloidosis by the biologically synthesized zinc oxide nanoparticle compared with other nanoparticle surfaces. Thus, this work exemplifies the multimeric interacting interface as a platform to efficiently sequester the αS protein and simultaneously enhance the bioavailability of the phytochemicals.
Collapse
Affiliation(s)
- Sonali Jena
- Department of Life Science, National Institute of Technology Rourkela, Odisha, 769008, India.
| | - Kumari Subham
- Department of Life Science, National Institute of Technology Rourkela, Odisha, 769008, India.
| | - Harshit Kalra
- Department of Life Science, National Institute of Technology Rourkela, Odisha, 769008, India.
| | - Suman Jha
- Department of Life Science, National Institute of Technology Rourkela, Odisha, 769008, India.
| |
Collapse
|
3
|
Choudhury S, Dasmahapatra AK. Destabilisation of Alzheimer's amyloid-β protofibrils by Baicalein: mechanistic insights from all-atom molecular dynamics simulations. Mol Divers 2025; 29:2445-2461. [PMID: 39379662 DOI: 10.1007/s11030-024-11001-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/24/2024] [Indexed: 10/10/2024]
Abstract
Alzheimer's disease (AD) is the most common form of dementia and the fifth leading cause of death globally. Aggregation and deposition of neurotoxic Aβ fibrils in the neural tissues of the brain is a key hallmark in AD pathogenesis. Destabilisation studies of the amyloid-peptide by various natural molecules are highly relevant due to their neuroprotective and therapeutic potential for AD. We performed molecular dynamics (MD) simulation to investigate the destabilisation mechanism of amyloidogenic protofilament intermediate by Baicalein (BCL), a naturally occurring flavonoid. We found that the BCL molecule formed strong hydrophobic contacts with non-polar residues, specifically F19, A21, V24, and I32 of Chain A and B of the pentameric protofibril. Upon binding, it competed with the native hydrophobic contacts of the Aβ protein. BCL loosened the tight packing of the hydrophobic core by disrupting the hydrogen bonds and the prominent D23-K28 inter-chain salt bridges of the protofibril. The decrease in the structural stability of Aβ protofibrils was confirmed by the increased RMSD, radius of gyration, solvent accessible surface area (SASA), and reduced β-sheet content. PCA indicated that the presence of the BCL molecule intensified protofibril motions, particularly affecting residues in Chain A and B regions. Our findings propose that BCL would be a potent destabiliser of Aβ protofilament, and may be considered as a therapeutic agent in treating AD.
Collapse
Affiliation(s)
- Sadika Choudhury
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Ashok Kumar Dasmahapatra
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
4
|
Morando MA, D'Alessandro V, Spinello A, Sollazzo M, Monaca E, Sabbatella R, Volpe MC, Gervaso F, Polini A, Mizielinska S, Alfano C. Epigallocatechin-3-gallate binds tandem RNA recognition motifs of TDP-43 and inhibits its aggregation. Sci Rep 2025; 15:17879. [PMID: 40404809 PMCID: PMC12098689 DOI: 10.1038/s41598-025-02035-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 05/09/2025] [Indexed: 05/24/2025] Open
Abstract
Transactive response DNA-binding Protein 43 (TDP-43) aggregation is a key pathological feature in Amyotrophic Lateral Sclerosis and related neurodegenerative diseases. This study investigates the inhibitory effects of Epigallocatechin-3-gallate (EGCG), a polyphenol found in green tea, on TDP-43 aggregation. Using a combination of fluorescence assays, NMR spectroscopy, and computational modeling, we demonstrate that Epigallocatechin-3-gallate significantly delays the nucleation phase of TDP-43 aggregation process, thus inhibiting the formation of TDP-43 aggregates in vitro. Additionally, we proved a direct interaction of the compound with the RNA recognition motifs of TDP-43 and modeled the mechanism of interaction. Our findings reveal that EGCG stabilizes the RRM domains, counteracting aggregation by interfering with the early stages of the amyloidogenic pathway. Furthermore, EGCG's stability under experimental conditions was ensured using reducing agents, highlighting the importance of maintaining its reduced form for reproducible results. These insights underscore the therapeutic potential of EGCG in TDP-43 proteinopathies and provide a foundation for developing targeted treatments for ALS and related disorders.
Collapse
Affiliation(s)
- Maria Agnese Morando
- Structural Biology and Biophysics Unit, Fondazione Ri.MED, 90133, Palermo, Italy
| | - Vito D'Alessandro
- Structural Biology and Biophysics Unit, Fondazione Ri.MED, 90133, Palermo, Italy
- Department of Mathematics and Physics "E. De Giorgi", University of Salento, 73100, Lecce, Italy
| | - Angelo Spinello
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90028, Palermo, Italy
| | - Martina Sollazzo
- Structural Biology and Biophysics Unit, Fondazione Ri.MED, 90133, Palermo, Italy
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90028, Palermo, Italy
| | - Elisa Monaca
- Structural Biology and Biophysics Unit, Fondazione Ri.MED, 90133, Palermo, Italy
| | - Raffaele Sabbatella
- Structural Biology and Biophysics Unit, Fondazione Ri.MED, 90133, Palermo, Italy
| | | | - Francesca Gervaso
- CNR Nanotec-Institute of Nanotechnology, Campus Ecotekne, 73100, Lecce, Italy
| | - Alessandro Polini
- CNR Nanotec-Institute of Nanotechnology, Campus Ecotekne, 73100, Lecce, Italy
| | - Sarah Mizielinska
- UK Dementia Research Institute at King's College London, London, UK
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Caterina Alfano
- Structural Biology and Biophysics Unit, Fondazione Ri.MED, 90133, Palermo, Italy.
| |
Collapse
|
5
|
Praveen A, Dougnon G, Matsui H. Exploring α-Syn's Functions Through Ablation Models: Physiological and Pathological Implications. Cell Mol Neurobiol 2025; 45:44. [PMID: 40389720 PMCID: PMC12089638 DOI: 10.1007/s10571-025-01560-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 05/07/2025] [Indexed: 05/21/2025]
Abstract
A significant advancement in neurodegenerative research was the discovery that α-synuclein (α-Syn/SNCA) plays a part in the pathophysiology of Parkinson's disease (PD). Decades later, the protein's significant impacts on various brain disorders are still being extensively explored. In disease conditions, α-Syn misfolds and forms abnormal aggregates that accumulate in neurons, thus triggering various organellar dysfunctions and ultimately neurodegeneration. These misfolded forms are highly heterogeneous and vary significantly among different synucleinopathies, such as PD, Multiple System Atrophy, or Dementia with Lewy bodies. Though initially believed to be exclusively localized in the brain, numerous pieces of evidence suggest that α-Syn functions transcend the central nervous system, with roles in peripheral functions, such as modulation of immune responses, hematopoiesis, and gastrointestinal regulation. Here, we aim to provide a detailed compilation of cellular functions and pathological phenotypes that are altered upon attenuation of α-Syn function in vitro and in vivo and explore the effects of SNCA gene silencing in healthy and disease states using cellular and animal models.
Collapse
Affiliation(s)
- Anjali Praveen
- Department of Neuroscience of Disease, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Godfried Dougnon
- Department of Neuroscience of Disease, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Hideaki Matsui
- Department of Neuroscience of Disease, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan.
| |
Collapse
|
6
|
Stalder P, Serdiuk T, Ghosh D, Fleischmann Y, Ait-Bouziad N, Quast JP, Malinovska L, Ouared A, Davranche A, Haenseler W, Boudou C, Tsika E, Stöhr J, Melki R, Riek R, de Souza N, Picotti P. An approach to characterize mechanisms of action of anti-amyloidogenic compounds in vitro and in situ. NPJ Parkinsons Dis 2025; 11:122. [PMID: 40348747 PMCID: PMC12065871 DOI: 10.1038/s41531-025-00966-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 04/14/2025] [Indexed: 05/14/2025] Open
Abstract
Amyloid aggregation is associated with neurodegenerative disease and its modulation is a focus of drug development. We developed a chemical proteomics pipeline to probe the mechanism of action of anti-amyloidogenic compounds. Our approach identifies putative interaction sites with high resolution, can probe compound interactions with specific target conformations and directly in cell and brain extracts, and identifies off-targets. We analysed interactions of six anti-amyloidogenic compounds and the amyloid binder Thioflavin T with different conformations of the Parkinson's disease protein α-Synuclein and tested specific compounds in cell or brain lysates. AC Immune compound 2 interacted with α-Synuclein in vitro, in intact neurons and in neuronal lysates, reduced neuronal α-Synuclein levels in a seeded model, and had protective effects. EGCG, Baicalein, ThT and doxycycline interacted with α-Synuclein in vitro but not substantially in cell lysates, with many additional putative targets, underscoring the importance of testing compounds in situ. Our pipeline will enable screening of compounds against any amyloidogenic proteins in cell and patient brain extracts and mechanistic studies of compound action.
Collapse
Affiliation(s)
- P Stalder
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - T Serdiuk
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - D Ghosh
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Y Fleischmann
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - N Ait-Bouziad
- AC Immune SA, EPFL Innovation Park, Lausanne, Switzerland
| | - J-P Quast
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - L Malinovska
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - A Ouared
- AC Immune SA, EPFL Innovation Park, Lausanne, Switzerland
| | - A Davranche
- AC Immune SA, EPFL Innovation Park, Lausanne, Switzerland
| | - W Haenseler
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - C Boudou
- AC Immune SA, EPFL Innovation Park, Lausanne, Switzerland
- Department of Cell Physiology and Metabolism, Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - E Tsika
- AC Immune SA, EPFL Innovation Park, Lausanne, Switzerland
| | - J Stöhr
- AC Immune SA, EPFL Innovation Park, Lausanne, Switzerland
- AbbVie Neuroscience Discovery, Cambridge, MA, USA
| | - R Melki
- Institut François Jacob, (MIRCen), CEA and Laboratory of Neurodegenerative Diseases, CNRS, Fontenay-Aux-Roses, France
| | - R Riek
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - N de Souza
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - P Picotti
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
7
|
Amin MA, Zehravi M, Sweilam SH, Shatu MM, Durgawale TP, Qureshi MS, Durgapal S, Haque MA, Vodeti R, Panigrahy UP, Ahmad I, Khan SL, Emran TB. Neuroprotective potential of epigallocatechin gallate in Neurodegenerative Diseases: Insights into molecular mechanisms and clinical Relevance. Brain Res 2025; 1860:149693. [PMID: 40350140 DOI: 10.1016/j.brainres.2025.149693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 05/08/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025]
Abstract
Neurodegenerative diseases (NDs) such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis pose significant challenges due to their complex pathophysiology and lack of effective treatments. Green tea, rich in the epigallocatechin gallate (EGCG) polyphenolic component, has demonstrated potential as a neuroprotective agent with numerous medicinal applications. EGCG effectively reduces tau and Aβ aggregation in ND models, promotes autophagy, and targets key signaling pathways like Nrf2-ARE, NF-κB, and MAPK. This review explores the molecular processes that underlie EGCG's neuroprotective properties, including its ability to regulate mitochondrial dysfunction, oxidative stress, neuroinflammation, and protein misfolding. Clinical research indicates that EGCG may enhance cognitive and motor abilities, potentially inhibiting disease progression despite absorption and dose optimization limitations. The substance has been proven to slow the amyloidogenic process, prevent protein aggregation, decrease amyloid cytotoxicity, inhibit fibrillogenesis, and restructure fibrils for synergistic therapeutic effects. The review highlights the potential of EGCG as a natural, multi-targeted strategy for NDs but emphasizes the need for further clinical trials to enhance its therapeutic efficacy.
Collapse
Affiliation(s)
- Md Al Amin
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka 1216, Bangladesh.
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy, College of Dentistry & Pharmacy, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia.
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City, Cairo 11829, Egypt
| | - Mst Maharunnasa Shatu
- Department of Botany, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Trupti Pratik Durgawale
- Department of Pharmaceutical Chemistry, Krishna Institute of Pharmacy, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, Maharashtra 415539, India
| | - Mohammad Shamim Qureshi
- Department of Pharmacognosy & Phytochemistry, Anwarul Uloom College of Pharmacy, New Mallepally, Hyderabad 500001, India
| | - Sumit Durgapal
- Department of Pharmaceutics, Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Premnagar, Dehradun 248007, Uttarakhand, India
| | | | | | - Uttam Prasad Panigrahy
- Faculty of Pharmaceutical Science, Assam down town University, Sankar Madhab Path, Gandhi Nagar, Panikhaiti, Guwahati, Assam, India
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Sharuk L Khan
- Department of Pharmaceutical Chemistry, N.B.S. Institute of Pharmacy, Ausa 413520, Maharashtra, India
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka 1216, Bangladesh.
| |
Collapse
|
8
|
Akhtar A, Singh P, Admane N, Grover A. Parishin C modulates the amyloid transformation of alpha-synuclein protein by apparently interacting with the NAC domain. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2025; 1873:141076. [PMID: 40345607 DOI: 10.1016/j.bbapap.2025.141076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 04/02/2025] [Accepted: 04/29/2025] [Indexed: 05/11/2025]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder marked by the gradual deterioration of dopaminergic neurons in the brain and the presence of Lewy bodies (LB) within the remaining affected neurons, comprised of α-synuclein protein aggregates. Herein, we report a novel amyloid inhibitory potential of Parishin C on the amyloid transformation of the α-synuclein protein. Our studies involving computational screening and REMD simulation analysis revealed a strong interaction between Parishin C and the non-amyloid component (NAC domain), a known aggregation-prone region of the α-synuclein protein. Thioflavin T fluorescence assay demonstrated the inhibitory effect of Parishin C on amyloid transformation kinetics of α-synuclein, where even at the lowest concentration of Parishin C there was a 72 % reduction in the ThT maxima. ANS binding assay further revealed its ability to alter the surface hydrophobicity of the protein. An extensive evaluation using biophysical techniques indicated that Parishin C effectively prevented the formation of mature fibrillar species and promoted the formation of lower order aggregates with reduced cross-β-sheet signatures compared to the native α-synuclein aggregates. Collectively, our research highlights Parishin C's potential as a structural blueprint for developing new therapeutic compounds aimed at preventing the amyloidogenic transition in Parkinson's disease and related disorders.
Collapse
Affiliation(s)
- Almas Akhtar
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Payal Singh
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Nikita Admane
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Abhinav Grover
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
9
|
Manchanda A, Goyal B. Inhibitory mechanism of lithospermic acid on the fibrillation of type 2 diabetes associated islet amyloid polypeptide. J Mol Graph Model 2025; 136:108972. [PMID: 39919485 DOI: 10.1016/j.jmgm.2025.108972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 01/21/2025] [Accepted: 01/29/2025] [Indexed: 02/09/2025]
Abstract
The abnormal fibrillation of a 37-residue peptide hormone human islet amyloid polypeptide (hIAPP) is linked with type 2 diabetes (T2D). Pang et al. depicted a prominent role of lithospermic acid (LA) in blocking hIAPP fibrillation and alleviating the hIAPP aggregates-induced cytotoxicity. LA is a polyphenolic compound present in extra virgin olive oil with therapeutic properties. Despite its notable inhibitory effect on hIAPP fibrillation, the inhibition mechanism remains unclear. Here, molecular dynamics (MD) simulations have been utilized to shed light on the putative binding mechanism and inhibitory mechanism of LA against hIAPP fibrillation. The molecular docking predicted favourable binding (-7.1 kcal/mol) of LA with hIAPP. Interestingly, LA increases the helix content in hIAPP and blocks the conformational transition to the aggregation-competent conformations. The conformational clustering and hydrogen bond analyses depicted that LA formed hydrogen bonds with Asn21 of hIAPP, which play an important role in hIAPP aggregation. LA binds favourably to hIAPP (ΔGbinding = -49.62 ± 3.34 kcal/mol) with a major contribution from the van der Waals interactions. The MD simulations highlighted that LA dramatically interfered with the intrapeptide interactions and inhibited sampling of aggregation-competent β-sheet conformations in hIAPP via hydrogen bonds through its hydroxyl groups, van der Waals interactions with hIAPP residues, thus blocking hIAPP aggregation to β-sheet rich cytotoxic fibrillar aggregates. The MD simulations illuminated specific interactions between hIAPP and LA, which will benefit in developing new chemical entities against hIAPP fibrillation.
Collapse
Affiliation(s)
- Anisha Manchanda
- Department of Chemistry & Biochemistry, Thapar Institute of Engineering & Technology, Patiala, 147004, Punjab, India
| | - Bhupesh Goyal
- Department of Chemistry & Biochemistry, Thapar Institute of Engineering & Technology, Patiala, 147004, Punjab, India.
| |
Collapse
|
10
|
Gao JM, Li WB, Yi Y, Wei JJ, Gong MX, Pan BB, Su XC, Pan YC, Guo DS, Gong QH. α-Synuclein targeted therapy with multiple pathological improvement for Parkinson's disease by macrocyclic amphiphile nanomedicine. Biomaterials 2025; 322:123378. [PMID: 40319681 DOI: 10.1016/j.biomaterials.2025.123378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 04/12/2025] [Accepted: 04/25/2025] [Indexed: 05/07/2025]
Abstract
The toxic species formed by the pathological aggregation of α-synuclein (α-Syn) is one of the core pathogenic mechanisms in Parkinson's disease, leading to mitochondrial dysfunction, oxidative stress and ultimately degeneration and loss of dopaminergic neurons. Developing effective inhibitors targeting α-Syn fibrillization critically requires the simultaneous achievement of (1) strong and selective binding of α-Syn for efficient disintegration of fibrils, as well as (2) robust transmembrane capability for efficient cellular uptake. Herein, the co-assembly of guanidinium-modified calixarene (GCA) and cyclodextrin (CD), termed GCA-CD, is screened fully accommodating these conditions. GCA-CD binds tightly and selectively towards α-Syn, thereby effectively inhibiting α-Syn aggregation and disintegrating its fibrils, meanwhile the guanidinium of GCA can additionally improve the transmembrane capability of the co-assembly. In vivo investigations demonstrate that the GCA-CD nanomedicine significantly rescues motor deficits and nigrostriatal degeneration of PD-like rats by decreasing the content of α-Syn as well as restoring mitochondrial dysfunction and suppressing oxidative stress. Astonishingly, transcriptome analysis further reveals the role of GCA-CD in dampening cuproptosis through inhibiting FDX1/LIAS signaling pathway, highlighting the multifaceted therapeutic effects of the co-assembly in PD. The findings in this study underscore the comprehensive exposition on the actual function mechanisms of the therapeutic agents, thereby providing valuable insights for informing material design.
Collapse
Affiliation(s)
- Jian-Mei Gao
- School of Pharmacy, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
| | - Wen-Bo Li
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China; Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
| | - Yang Yi
- School of Pharmacy, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
| | - Jia-Jia Wei
- School of Pharmacy, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
| | - Miao-Xian Gong
- School of Pharmacy, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
| | - Bin-Bin Pan
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China
| | - Xun-Cheng Su
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China
| | - Yu-Chen Pan
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China; Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China.
| | - Dong-Sheng Guo
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China; Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China.
| | - Qi-Hai Gong
- School of Pharmacy, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China.
| |
Collapse
|
11
|
Jain G, Trombetta-Lima M, Matlahov I, Ribas HT, Chen T, Parlato R, Portale G, Dolga AM, van der Wel PCA. Inhibitor-based modulation of huntingtin aggregation mechanisms mitigates fibril-induced cellular stress. Nat Commun 2025; 16:3588. [PMID: 40234398 PMCID: PMC12000517 DOI: 10.1038/s41467-025-58691-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 03/31/2025] [Indexed: 04/17/2025] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder in which mutated fragments of the huntingtin protein (Htt) undergo misfolding and aggregation. Since aggregated proteins can cause cellular stress and cytotoxicity, there is an interest in the development of small molecule aggregation inhibitors as potential modulators of HD pathogenesis. Here, we study how a polyphenol modulates the aggregation mechanism of huntingtin exon 1 (HttEx1) even at sub-stoichiometric ratios. Sub-stoichiometric amounts of curcumin impacted the primary and/or secondary nucleation events, extending the pre-aggregation lag phase. Remarkably, the disrupted aggregation process changed both the aggregate structure and its cell metabolic properties. When administered to neuronal cells, the 'break-through' protein aggregates induced significantly reduced cellular stress compared to aggregates formed in absence of inhibitors. Structural analysis by electron microscopy, small angle X-ray scattering (SAXS), and solid-state NMR spectroscopy identified changes in the fibril structures, probing the flanking domains in the fuzzy coat and the fibril core. We propose that changes in the latter relate to the presence or absence of polyglutamine (polyQ) β-hairpin structures. Our findings highlight multifaceted consequences of small molecule inhibitors that modulate the protein misfolding landscape, with potential implications for treatment strategies in HD and other amyloid disorders.
Collapse
Affiliation(s)
- Greeshma Jain
- Zernike Institute for Advanced Materials, Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands
| | - Marina Trombetta-Lima
- Department of Molecular Pharmacology, Faculty of Science and Engineering, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Groningen, The Netherlands
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Irina Matlahov
- Zernike Institute for Advanced Materials, Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands
| | - Hennrique Taborda Ribas
- Department of Molecular Pharmacology, Faculty of Science and Engineering, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Groningen, The Netherlands
- Graduate Program in Biochemistry Sciences, Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Tingting Chen
- Department of Molecular Pharmacology, Faculty of Science and Engineering, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Groningen, The Netherlands
| | - Raffaella Parlato
- Zernike Institute for Advanced Materials, Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands
| | - Giuseppe Portale
- Zernike Institute for Advanced Materials, Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands
| | - Amalia M Dolga
- Department of Molecular Pharmacology, Faculty of Science and Engineering, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Groningen, The Netherlands.
| | - Patrick C A van der Wel
- Zernike Institute for Advanced Materials, Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
12
|
Hussain MK, Ahmad M, Khatoon S, Khan MV, Azmi S, Arshad M, Ahamad S, Saquib M. Phytomolecules as Alzheimer's therapeutics: A comprehensive review. Eur J Med Chem 2025; 288:117401. [PMID: 39999743 DOI: 10.1016/j.ejmech.2025.117401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025]
Abstract
Alzheimer's disease (AD) is a leading neurodegenerative disorder recognized by progressive cognitive decline and behavioral changes. The pathology of AD is characterized by the accumulation of amyloid-β (Aβ) plaques and the hyperphosphorylation of tau protein, which leads to synaptic loss and subsequent neurodegeneration. Additional contributors to disease progression include metabolic, vascular, and inflammatory factors. Glycogen synthase kinase-3β (GSK-3β) is also implicated, as it plays a crucial role in tau phosphorylation and the progression of neurodegeneration. This review provides a comprehensive analysis of various phytomolecules and their potential to target multiple aspects of AD pathology. We examined natural products from diverse classes, including stilbenes, flavonoids, phenolic acids, alkaloids, coumarins, terpenoids, chromenes, cannabinoids, chalcones, phloroglucinols, and polycyclic polyprenylated acylphloroglucinols (PPAPs). The key mechanisms of action of these phytomolecules include modulating tau protein dynamics to reduce aggregation, inhibiting acetylcholinesterase (AChE) to maintain neurotransmitter levels and enhance cognitive function, and inhibiting β-secretase (BACE1) to decrease Aβ production. Additionally, some phytomolecules were found to influence GSK-3β activity, thereby impacting tau phosphorylation and neurodegeneration. By addressing multiple targets, Aβ production, tau hyperphosphorylation, AChE activity, and GSK-3β, these natural products offer a promising multi-targeted approach to AD therapy. This review highlights their potential to develop effective treatments that not only mitigate core pathological features but also manage the complex, multifactorial aspects of AD progression.
Collapse
Affiliation(s)
- Mohd Kamil Hussain
- Department of Chemistry, Govt Raza P.G. College, M.J.P Rohilkahand University, Rampur, Bareilly, 244901, India.
| | - Moazzam Ahmad
- Defence Research & Development Organization, Selection Centre East, Prayagraj, 211001, India
| | | | - Mohsin Vahid Khan
- Department of Biosciences, Integral University, Lucknow, 226026, India
| | - Sarfuddin Azmi
- Scientific Research Center, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Md Arshad
- Department of Zoology, Aligarh Muslim University, Aligarh, 202002, India
| | - Shakir Ahamad
- Department of Chemistry, Aligarh Muslim University, Aligarh, 202002, India.
| | - Mohammad Saquib
- Department of Chemistry, University of Allahabad, Prayagraj (Allahabad), 211002, India; Department of Chemistry, G. R. P. B. Degree College, P. R. S. University, Prayagraj (Allahabad), 211010, UP, India.
| |
Collapse
|
13
|
Tagliaferro G, Davighi MG, Clemente F, Turchi F, Schiavina M, Matassini C, Goti A, Morrone A, Pierattelli R, Cardona F, Felli IC. Evidence of α-Synuclein/Glucocerebrosidase Dual Targeting by Iminosugar Derivatives. ACS Chem Neurosci 2025; 16:1251-1257. [PMID: 40079830 PMCID: PMC11969434 DOI: 10.1021/acschemneuro.4c00618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 03/07/2025] [Accepted: 03/07/2025] [Indexed: 03/15/2025] Open
Abstract
Intrinsically disordered proteins (IDPs) are highly flexible molecules often linked to the onset of incurable diseases. Despite their great therapeutic potential, IDPs are often considered as undruggable because they lack defined binding pockets, which constitute the basis of drug discovery approaches. However, small molecules that interact with the intrinsically disordered state of α-synuclein, the protein linked to Parkinson's disease (PD), were recently identified and shown to act as chemical chaperones. Glucocerebrosidase (GCase) is an enzyme crucially involved in PD, since mutations that code for GCase are among the most frequent genetic risk factors for PD. Following the "dual-target" approach, stating that one carefully designed molecule can, in principle, interfere with more than one target, we identified a pharmacological chaperone for GCase that interacts with the intrinsically disordered monomeric form of α-synuclein. This result opens novel avenues to be explored in the search for molecules that act on dual targets, in particular, with challenging targets such as IDPs.
Collapse
Affiliation(s)
- Giuseppe Tagliaferro
- Department
of Chemistry “Ugo Schiff” (DICUS), University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy
- Magnetic
Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, FI, Italy
| | - Maria Giulia Davighi
- Department
of Chemistry “Ugo Schiff” (DICUS), University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy
| | - Francesca Clemente
- Department
of Chemistry “Ugo Schiff” (DICUS), University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy
| | - Filippo Turchi
- Department
of Chemistry “Ugo Schiff” (DICUS), University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy
- Magnetic
Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, FI, Italy
| | - Marco Schiavina
- Department
of Chemistry “Ugo Schiff” (DICUS), University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy
- Magnetic
Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, FI, Italy
| | - Camilla Matassini
- Department
of Chemistry “Ugo Schiff” (DICUS), University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy
| | - Andrea Goti
- Department
of Chemistry “Ugo Schiff” (DICUS), University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy
| | - Amelia Morrone
- Laboratory
of Molecular Genetics of Neurometabolic Diseases, Neuroscience Department, Meyer Children’s Hospital, IRCCS, Viale Pieraccini 24, 50139 Firenze, Italy
- Department
of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Viale Pieraccini 24, 50139 Firenze, Italy
| | - Roberta Pierattelli
- Department
of Chemistry “Ugo Schiff” (DICUS), University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy
- Magnetic
Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, FI, Italy
| | - Francesca Cardona
- Department
of Chemistry “Ugo Schiff” (DICUS), University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy
| | - Isabella C. Felli
- Department
of Chemistry “Ugo Schiff” (DICUS), University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy
- Magnetic
Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, FI, Italy
| |
Collapse
|
14
|
Almeida ZL, Vaz DC, Brito RMM. Morphological and Molecular Profiling of Amyloid-β Species in Alzheimer's Pathogenesis. Mol Neurobiol 2025; 62:4391-4419. [PMID: 39446217 PMCID: PMC11880078 DOI: 10.1007/s12035-024-04543-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024]
Abstract
Alzheimer's disease (AD) is the most common form of dementia around the world (~ 65%). Here, we portray the neuropathology of AD, biomarkers, and classification of amyloid plaques (diffuse, non-cored, dense core, compact). Tau pathology and its involvement with Aβ plaques and cell death are discussed. Amyloid cascade hypotheses, aggregation mechanisms, and molecular species formed in vitro and in vivo (on- and off-pathways) are described. Aβ42/Aβ40 monomers, dimers, trimers, Aβ-derived diffusible ligands, globulomers, dodecamers, amylospheroids, amorphous aggregates, protofibrils, fibrils, and plaques are characterized (structure, size, morphology, solubility, toxicity, mechanistic steps). An update on AD-approved drugs by regulatory agencies, along with new Aβ-based therapies, is presented. Beyond prescribing Aβ plaque disruptors, cholinergic agonists, or NMDA receptor antagonists, other therapeutic strategies (RNAi, glutaminyl cyclase inhibitors, monoclonal antibodies, secretase modulators, Aβ aggregation inhibitors, and anti-amyloid vaccines) are already under clinical trials. New drug discovery approaches based on "designed multiple ligands", "hybrid molecules", or "multitarget-directed ligands" are also being put forward and may contribute to tackling this highly debilitating and fatal form of human dementia.
Collapse
Affiliation(s)
- Zaida L Almeida
- Chemistry Department and Coimbra Chemistry Centre - Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535, Coimbra, Portugal.
| | - Daniela C Vaz
- Chemistry Department and Coimbra Chemistry Centre - Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535, Coimbra, Portugal.
- School of Health Sciences, Polytechnic Institute of Leiria, 2411-901, Leiria, Portugal.
- LSRE-LCM, Laboratory of Separation and Reaction Engineering and Laboratory of Catalysis and Materials, Leiria, 2411-901, Portugal.
- ALiCE - Associate Laboratory in Chemical Engineering, University of Porto, 4200-465, Porto, Portugal.
| | - Rui M M Brito
- Chemistry Department and Coimbra Chemistry Centre - Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535, Coimbra, Portugal.
| |
Collapse
|
15
|
Zhao Y, Zhao B. Protection of Green Tea Polyphenols against Neurodegenerative Diseases: Evidence and Possible Mechanisms. J Nutr 2025; 155:1077-1088. [PMID: 39956389 DOI: 10.1016/j.tjnut.2025.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/07/2025] [Accepted: 02/11/2025] [Indexed: 02/18/2025] Open
Abstract
Aging is a major risk factor for neurodegenerative diseases. With aging of the global population, the prevalence of neurodegenerative diseases, such as Alzheimer's disease (AD) and Parkinson's disease (PD), has increased worldwide. Unfortunately, the available therapeutic options for these neurodegenerative diseases are limited, most of which only provide symptomatic relief and have potentially serious side effects. Epidemiological studies have shown that green tea consumption is associated with a lower prevalence of cognitive decline and decreased risk of AD and PD, providing an attractive preventive and therapeutic option. Polyphenols are major bioactive components in green tea, which contribute to the beneficial effects of green tea. Accumulating data suggest that green tea polyphenols (GTPs) have neuroprotective properties that inhibit the pathological development of neurodegenerative diseases; however, the underlying mechanisms are not yet completely understood. This paper reviews both in vitro and in vivo evidence that demonstrates the neuroprotective effects of GTPs against neurodegenerative diseases, with the main focus on AD and PD, and summarizes the possible molecular mechanisms by which GTPs impede the progression of neurodegeneration. In particular, this review highlights the modulation of GTPs on the common mechanisms involved in pathogenesis of neurodegenerative diseases, including oxidative stress-mediated neuronal toxicity, impaired proteostasis, and metal ion dyshomeostasis. The potential of using GTPs in the intervention of neurodegenerative diseases is also discussed, hopefully, providing useful insights into novel preventive and therapeutic strategies for these diseases.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Bioengineering, Harbin Institute of Technology, Weihai, China
| | - Baolu Zhao
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
16
|
Regmi D, Haque S, Karim MRU, Stanic A, Du D. Inhibition of amyloid formation of prion fragment (106-128) by polyphenolic compounds. Biochim Biophys Acta Gen Subj 2025; 1869:130778. [PMID: 39988109 DOI: 10.1016/j.bbagen.2025.130778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 02/14/2025] [Accepted: 02/18/2025] [Indexed: 02/25/2025]
Abstract
Prion diseases are characterized by the self-association and amyloid formation of misfolded prion proteins. Developing effective inhibitors of protein aggregation is critical for therapeutic intervention. In this study, we systematically evaluated a range of polyphenolic compounds as potential inhibitors of amyloid fibril formation of PrP(106-128), a prion fragment crucially involved in prion aggregation and propagation. Our findings demonstrate that the basic aromatic backbone structure of flavone alone is insufficient to inhibit PrP(106-128) amyloid formation. Remarkably, flavone molecules containing adjacent hydroxyl groups on the phenolic B or A ring efficiently inhibited PrP(106-128) fibrillization, whereas compounds lacking vicinal hydroxyl groups were less effective in inhibiting amyloid formation. Epigallocatechin-3-gallate (EGCG) was one of the most potent inhibitors found in this study, with the gallate moiety playing an active role in the inhibitory function. Our findings indicate a structure-dependent inhibition activity of the phenolic small molecules, where the number and positioning of hydroxyl groups on the phenyl ring play a pivotal role in inhibiting the aggregation of the peptide. The auto-oxidation of the catechol or pyrogallol moieties to form quinone structures, followed by their reaction with amino acid side chains of the peptide to form covalent adducts, likely account for the inhibitory activity of these phenolic compounds on PrP(106-128) amyloidogenesis. These results will help the design of novel polyphenolic molecules with optimized structural features as potent inhibitors of amyloid formation of both PrP(106-128) and the full-length prion proteins.
Collapse
Affiliation(s)
- Deepika Regmi
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Seymour Haque
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Md Raza Ul Karim
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Aleksander Stanic
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Deguo Du
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL 33431, USA.
| |
Collapse
|
17
|
Li X, Bi L, Zhang S, Xu Q, Xia W, Tao Y, Wu S, Li Y, Le W, Kang W, Li D, Sun B, Liu C. Single-Molecule Insight Into α-Synuclein Fibril Structure and Mechanics Modulated by Chemical Compounds. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2416721. [PMID: 39951335 PMCID: PMC11984887 DOI: 10.1002/advs.202416721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Indexed: 04/12/2025]
Abstract
α-Syn fibrils, a key pathological hallmark of Parkinson's disease, is closely associated with disease initiation and progression. Several small molecules are found to bind or dissolve α-syn fibrils, offering potential therapeutic applications. Here, an innovative optical tweezers-based, fluorescence-combined approach is developed to probe the mechanical characteristics of α-syn fibrils at the single-molecule level. When subjected to axial stretching, local deformation within α-syn fibrils appeared at forces above 50 pN. These structural alternations occurred stepwise and are irreversible, suggesting unfolding of individual α-syn molecules or subdomains. Additionally, α-syn fibrils exhibits high heterogeneity in lateral disruption, with rupture force ranging from 50 to 500 pN. The impact of different compounds on the structure and mechanical features of α-syn fibrils is further examined. Notably, epigallocatechin gallate (EGCG) generally attenuates the rupture force of fibrils by wedging into the N-terminal polar groove and induces fibril dissociation. Conversely, copper chlorophyllin A (CCA) attaches to four different sites wrapping around the fibril core, reinforcing the stability of the fibril against rupture forces. The work offers an effective method for characterizing single-fibril properties and bridges compound-induced structural alternations with mechanical response. These insights are valuable for understanding amyloid fibril mechanics and their regulation by small molecules.
Collapse
Affiliation(s)
- Xiang Li
- Bio‐X InstitutesKey Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education)Shanghai Jiao Tong UniversityShanghai200030China
- Zhangjiang Institute for Advanced StudyShanghai Jiao Tong UniversityShanghai201203China
| | - Lulu Bi
- School of Life Science and TechnologyShanghaiTech UniversityShanghai201210China
| | - Shenqing Zhang
- Bio‐X InstitutesKey Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education)Shanghai Jiao Tong UniversityShanghai200030China
- Zhangjiang Institute for Advanced StudyShanghai Jiao Tong UniversityShanghai201203China
| | - Qianhui Xu
- Interdisciplinary Research Center on Biology and ChemistryShanghai Institute of Organic ChemistryChinese Academy of SciencesShanghai201210China
- University of the Chinese Academy of SciencesChinese Academy of SciencesBeijing100049China
| | - Wencheng Xia
- Interdisciplinary Research Center on Biology and ChemistryShanghai Institute of Organic ChemistryChinese Academy of SciencesShanghai201210China
- University of the Chinese Academy of SciencesChinese Academy of SciencesBeijing100049China
| | - Youqi Tao
- Bio‐X InstitutesKey Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education)Shanghai Jiao Tong UniversityShanghai200030China
- Zhangjiang Institute for Advanced StudyShanghai Jiao Tong UniversityShanghai201203China
| | - Shaojuan Wu
- School of Life Science and TechnologyShanghaiTech UniversityShanghai201210China
| | - Yanan Li
- School of Life Science and TechnologyShanghaiTech UniversityShanghai201210China
| | - Weidong Le
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu HospitalShanghai201318China
| | - Wenyan Kang
- Department of Neurology and Institute of NeurologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Dan Li
- Bio‐X InstitutesKey Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education)Shanghai Jiao Tong UniversityShanghai200030China
- Zhangjiang Institute for Advanced StudyShanghai Jiao Tong UniversityShanghai201203China
| | - Bo Sun
- School of Life Science and TechnologyShanghaiTech UniversityShanghai201210China
| | - Cong Liu
- Interdisciplinary Research Center on Biology and ChemistryShanghai Institute of Organic ChemistryChinese Academy of SciencesShanghai201210China
- State Key Laboratory of Chemical BiologyShanghai Institute of Organic ChemistryChinese Academy of SciencesShanghai200032China
- Shanghai Academy of Natural Sciences (SANS)Fudan UniversityShanghai200433China
| |
Collapse
|
18
|
Zhytniakivska O, Chaturvedi T, Thomsen MH. Plant-Based Inhibitors of Protein Aggregation. Biomolecules 2025; 15:481. [PMID: 40305223 PMCID: PMC12025044 DOI: 10.3390/biom15040481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 03/21/2025] [Accepted: 03/24/2025] [Indexed: 05/02/2025] Open
Abstract
The assembly of amyloidogenic proteins and peptides into toxic oligomeric and fibrillar aggregates is closely connected to the onset and progression of more than 50 protein diseases, such as Alzheimer's disease, Parkinson's disease, prion disease, and type 2 diabetes, to name only a few. Considerable research efforts at identifying the therapeutic strategies against these maladies are currently focused on preventing and inhibiting pathogenic protein aggregation by various agents. Plant-based extracts and compounds have emerged as promising sources of potential inhibitors due to their dual role as nutraceuticals as part of healthy diets and as specific pharmaceuticals when administered at higher concentrations. In recent decades, several plant extracts and plant-extracted compounds have shown potential to modulate protein aggregation. An ever-growing body of research on plant-based amyloid inhibitors requires a detail analysis of existing data to identify potential knowledge gaps. This review summarizes the recent progress in amyloid inhibition using 17 flavonoids, 11 polyphenolic non-flavonoid compounds, 23 non-phenolic inhibitors, and 59 plant extracts, with the main emphasis on directly modulating the fibrillation of four amyloid proteins, namely amyloid-β peptide, microtubule-associated protein tau, α-synuclein, and human islet amyloid polypeptide.
Collapse
Affiliation(s)
- Olha Zhytniakivska
- AAU Energy, Aalborg University, Niels Bohrs Vej 8, 6700 Esbjerg, Denmark
- Department of Medical Physics and Biomedical Nanotechnologies, V.N. Karazin Kharkiv National University, Svobody Sq. 4, 61022 Kharkiv, Ukraine
| | - Tanmay Chaturvedi
- AAU Energy, Aalborg University, Niels Bohrs Vej 8, 6700 Esbjerg, Denmark
| | | |
Collapse
|
19
|
Chatterjee S, Kumar K, Kumar P, Thakur AK, Misra SK. Disruption of fibrillar assemblies of L-phenylalanine using polyphenol-passivated nanocarbon as a potential therapeutic strategy against phenylketonuria. Org Biomol Chem 2025; 23:2620-2624. [PMID: 39957365 DOI: 10.1039/d4ob01559b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
One of the pathological manifestations of phenylketonuria (PKU) is the formation of fibrillar assemblies of the aromatic amino acid L-phenylalanine at pathological concentrations. As a possible therapeutic strategy for PKU, we introduce a nanocarbon system passivated with polyphenol gallic acid (CNPGA), which has the ability to disrupt and inhibit the formation of fibrillar assemblies. The CNPGA was prepared using a rapid and facile microwave-assisted one-pot method from an aqueous solution of sucrose and gallic acid and fully characterized using UV-Vis, FT-IR, XRD, XPS, TEM, zeta potential and DLS measurements. The CNPGA-mediated inhibition and disruption of L-phenylalanine fibrils was examined using a thioflavin T (ThT) assay. The change in the conformation of the fibrils upon CNPGA treatment was assessed by means of circular dichroism spectroscopy. Visual analysis of the rupture of fibrillar assemblies was performed using SEM. Finally, the biocompatibility of CNPGA was evaluated in two normal cell lines, HaCaT (human epidermal keratinocyte cell line) and Vero (African green monkey kidney cell line) cells.
Collapse
Affiliation(s)
- Subir Chatterjee
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology Kanpur, Kalyanpur, Kanpur, UP 208016, India.
| | - Krishan Kumar
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology Kanpur, Kalyanpur, Kanpur, UP 208016, India.
| | - Piyush Kumar
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology Kanpur, Kalyanpur, Kanpur, UP 208016, India.
| | - Ashwani K Thakur
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology Kanpur, Kalyanpur, Kanpur, UP 208016, India.
- The Mehta Family centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kalyanpur, Kanpur, UP 208016, India
- CoE in Diagnosis GSMST, Indian Institute of Technology Kanpur, Kalyanpur, Kanpur, UP 208016, India
| | - Santosh K Misra
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology Kanpur, Kalyanpur, Kanpur, UP 208016, India.
- The Mehta Family centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kalyanpur, Kanpur, UP 208016, India
- CoE in Diagnosis GSMST, Indian Institute of Technology Kanpur, Kalyanpur, Kanpur, UP 208016, India
| |
Collapse
|
20
|
Akhtar A, Singh P, Admane N, Grover A. Salvianolic acid B prevents the amyloid transformation of A53T mutant of α-synuclein. Biophys Chem 2025; 318:107379. [PMID: 39693815 DOI: 10.1016/j.bpc.2024.107379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 11/22/2024] [Accepted: 12/08/2024] [Indexed: 12/20/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder involving the progressive loss of dopaminergic neurons in the substantia nigra pars compacta triggered by the accumulation of amyloid aggregates of α-synuclein protein. This study investigates the potential of Salvianolic Acid B (SalB), a water-soluble polyphenol derived from Salvia miltiorrhiza Bunge, in modulating the aggregation of the A53T mutant of α-synuclein (A53T Syn). This mutation is associated with rapid aggregation and a higher rate of protofibril formation in early-onset familial PD. Computational and experimental approaches demonstrated Sal-B effectively prevents the amyloid fibrillation of A53T Syn by interacting with the N-terminal region and NAC domain. Sal-B particularly associates with the KTKEGV motif and NACore segment of A53T Syn by hydrophobic and hydrogen bonding interactions. Replica exchange molecular dynamics (REMD) simulations indicated that Sal-B reduces intramolecular hydrogen bonding and structural transitions into β-sheet rich conformations, thereby lowering the aggregation propensity of A53T Syn. Systematic analysis conducted using biophysical techniques and high-end microscopy has demonstrated significant inhibition in the amyloid transformation of A53T Syn corroborated by a 92 % decrease in ThT maxima at 100 μM Sal-B concentration and microscopic techniques validated the absence of mature fibrillar amyloids. DLS data revealed heterogeneous particle sizes, supporting the formation of smaller unstructured aggregates. These findings underscore Sal-B as a promising therapeutic candidate for PD and related synucleinopathies, warranting further investigation in cellular and animal models to advance potential treatments and early intervention strategies.
Collapse
Affiliation(s)
- Almas Akhtar
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Payal Singh
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Nikita Admane
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Abhinav Grover
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
21
|
Shibata S, Noguchi-Shinohara M, Shima A, Ozaki T, Usui Y, Taki Y, Uchida K, Honda T, Hata J, Ohara T, Mikami T, Maeda T, Mimura M, Nakashima K, Iga JI, Takebayashi M, Ninomiya T, Ono K. Green tea consumption and cerebral white matter lesions in community-dwelling older adults without dementia. NPJ Sci Food 2025; 9:2. [PMID: 39774601 PMCID: PMC11707279 DOI: 10.1038/s41538-024-00364-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
This study investigated the association between green tea or coffee consumption with cerebral white matter lesions and hippocampal and total brain volumes among 8766 community-dwelling participants recruited from the Japan Prospective Studies Collaboration for Aging and Dementia between 2016 and 2018. A Food Frequency Questionnaire was used to assess green tea and coffee consumption, whereas brain magnetic resonance imaging was performed to assess cerebral white matter lesions, hippocampal volume, and total brain volume. Multivariable-adjusted analysis revealed significant correlations between fewer cerebral white matter lesions and higher green tea consumption, whereas no significant differences were found between green tea consumption and hippocampal or total brain volume. Regarding coffee consumption, no significant differences were observed in cerebral white matter lesions or hippocampal or total brain volumes. Hence, higher green tea consumption was associated with fewer cerebral white matter lesions, suggesting that it may be useful in preventing dementia.
Collapse
Affiliation(s)
- Shutaro Shibata
- Department of Neurology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Moeko Noguchi-Shinohara
- Department of Neurology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan.
| | - Ayano Shima
- Department of Neurology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Taro Ozaki
- Department of Neurology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Yuta Usui
- Department of Neurology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Yasuyuki Taki
- Department of Aging Research and Geriatric Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Kazuhiro Uchida
- Department of Nutritional Sciences, Nakamura Gakuen University, Fukuoka, Japan
| | - Takanori Honda
- Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Center for Cohort Studies, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Jun Hata
- Center for Cohort Studies, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Health Care Administration and Management, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomoyuki Ohara
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tatsuya Mikami
- Department of Preemptive Medicine, Innovation Center for Health Promotion, Graduate School of Medicine, Hirosaki University, Aomori, Japan
| | - Tetsuya Maeda
- Division of Neurology and Gerontology, Department of Internal Medicine, School of Medicine, Iwate Medical University, Iwate, Japan
| | - Masaru Mimura
- Center for Preventive Medicine, Keio University, Tokyo, Japan
| | | | - Jun-Ichi Iga
- Department of Neuropsychiatry, Ehime University Graduate School of Medicine, Ehime University, Ehime, Japan
| | - Minoru Takebayashi
- Faculty of Life Sciences, Department of Neuropsychiatry, Kumamoto University, Kumamoto, Japan
| | - Toshiharu Ninomiya
- Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Center for Cohort Studies, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kenjiro Ono
- Department of Neurology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan.
| |
Collapse
|
22
|
Jeon S, Jeon Y, Lim JY, Kim Y, Cha B, Kim W. Emerging regulatory mechanisms and functions of biomolecular condensates: implications for therapeutic targets. Signal Transduct Target Ther 2025; 10:4. [PMID: 39757214 DOI: 10.1038/s41392-024-02070-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/01/2024] [Accepted: 11/06/2024] [Indexed: 01/07/2025] Open
Abstract
Cells orchestrate their processes through complex interactions, precisely organizing biomolecules in space and time. Recent discoveries have highlighted the crucial role of biomolecular condensates-membrane-less assemblies formed through the condensation of proteins, nucleic acids, and other molecules-in driving efficient and dynamic cellular processes. These condensates are integral to various physiological functions, such as gene expression and intracellular signal transduction, enabling rapid and finely tuned cellular responses. Their ability to regulate cellular signaling pathways is particularly significant, as it requires a careful balance between flexibility and precision. Disruption of this balance can lead to pathological conditions, including neurodegenerative diseases, cancer, and viral infections. Consequently, biomolecular condensates have emerged as promising therapeutic targets, with the potential to offer novel approaches to disease treatment. In this review, we present the recent insights into the regulatory mechanisms by which biomolecular condensates influence intracellular signaling pathways, their roles in health and disease, and potential strategies for modulating condensate dynamics as a therapeutic approach. Understanding these emerging principles may provide valuable directions for developing effective treatments targeting the aberrant behavior of biomolecular condensates in various diseases.
Collapse
Affiliation(s)
- Soyoung Jeon
- Department of Life Science, University of Seoul, Seoul, South Korea
| | - Yeram Jeon
- Department of Life Science, University of Seoul, Seoul, South Korea
| | - Ji-Youn Lim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, South Korea
| | - Yujeong Kim
- Department of Life Science, University of Seoul, Seoul, South Korea
| | - Boksik Cha
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, South Korea.
| | - Wantae Kim
- Department of Life Science, University of Seoul, Seoul, South Korea.
| |
Collapse
|
23
|
Wang Z, Wei J, Zhang X, Ji H, Fu S, Gao Z, Li H. Nitration of Tyr37 alters the aggregation pathway of hIAPP and enhances its cytotoxicity. Int J Biol Macromol 2025; 286:138367. [PMID: 39643176 DOI: 10.1016/j.ijbiomac.2024.138367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
The amyloid aggregation of hIAPP and the increased level of oxidative stress are closely related to the occurrence and development of type 2 diabetes (T2D). Protein tyrosine nitration is a common post-translational modification under oxidative stress conditions. We previously found that tyrosine nitrated hIAPP (3-NT-hIAPP) has higher cytotoxicity than wild type hIAPP. In order to further elucidate the mechanism by which tyrosine nitration enhances the toxicity of hIAPP, we systematically studied the effect of tyrosine nitration on hIAPP aggregation and its impact on INS-1 cells. Collective experimental data from ThT, RLS, DLS, zeta potentials, Bis-ANS, 1H NMR, TEM, dye leakage and hemolysis confirmed that tyrosine nitration accelerates hIAPP aggregation, consistent with tyrosine nitration reducing hIAPP zeta potential, but 3-NT-hIAPP mainly undergoes an off-pathway aggregation to form amorphous aggregates, even in the presence of POPC/POPG LUVs. Further, our results confirmed that the most toxic species are the small amorphous aggregates formed by 3-NT-hIAPP, which is more stable and toxic than hIAPP oligomers. Collectively, these data suggest that tyrosine nitration can increase cytotoxicity of hIAPP by modulating its amyloidogenicity. This study provides new support for the fact that oxidative stress promotes the development of T2D from the view of nitrative stress.
Collapse
Affiliation(s)
- Zhilong Wang
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, PR China
| | - Jingjing Wei
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, PR China
| | - Xuan Zhang
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, PR China
| | - Haoran Ji
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, PR China
| | - Shitao Fu
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, PR China
| | - Zhonghong Gao
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, PR China.
| | - Hailing Li
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, PR China.
| |
Collapse
|
24
|
Panneerselvam DS, Kanakaraja A, Sakthivelu M, Gopinath SCB, Raman P. A Comprehensive Review of Therapeutic Compounds from Plants for Neurodegenerative Diseases. Curr Med Chem 2025; 32:1887-1933. [PMID: 38367263 DOI: 10.2174/0109298673272435231204072922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/28/2023] [Accepted: 10/27/2023] [Indexed: 02/19/2024]
Abstract
Neurodegenerative diseases (NDDs) comprise a large number of disorders that affects the structure and functions of the nervous system. The major cause of various neurodegenerative diseases includes protein aggregation, oxidative stress and inflammation. Over the last decade, there has been a gradual inclination in neurological research in order to find drugs that can prevent, slow down, or treat these diseases. The most common NDDs are Alzheimer's, Parkinson's, and Huntington's illnesses, which claims the lives of 6.8 million people worldwide each year and it is expected to rise by 7.1%. The focus on alternative medicine, particularly plant-based products, has grown significantly in recent years. Plants are considered as a good source of biologically active molecules and hence phytochemical screening of plants will pave way for the discovering new drugs. Neurodegeneration has been linked to oxidative stress, either as a direct cause or as a side effect of other variables. Therefore, it has been proposed that the use of antioxidants to combat cellular oxidative stress within the nervous system may be a viable therapeutic strategy for neurological illnesses. In order to prevent and treat NDDs, this review article covers the therapeutic compounds/ metabolites from plants with the neuroprotective role. However, these exhibit other beneficial molecular functions in addition to antioxidative activity, making them a potential application in the management or prevention of neurodegenerative disorders. Further, it gives the insights to the future researchers about considering the peptide based therapeutics through various mechanisms for delaying or curing neurodegenerative diseases.
Collapse
Affiliation(s)
- Dhaya Shankaran Panneerselvam
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - Abinaya Kanakaraja
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - Meenakumari Sakthivelu
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - Subash C B Gopinath
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis, Arau 02600, Perlis, Malaysia
- Institute Nano Electronic Engineering, Universiti Malaysia Perlis, Arau 02600, Perlis, Malaysia
- Center for Excellence for Micro System Technology (MiCTEC), Universiti Malaysia Perlis, Arau 02600, Perlis, Malaysia
- Department of Computer Science and Engineering, Faculty of Science and Information Technology, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Pachaiappan Raman
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| |
Collapse
|
25
|
Younis M, Ogbu I, Kalra DK. Optimizing drug therapies in cardiac amyloidosis. Pharmacol Ther 2025; 265:108758. [PMID: 39586360 DOI: 10.1016/j.pharmthera.2024.108758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 11/27/2024]
Abstract
Cardiac amyloidosis (CA) is a form of infiltrative, restrictive cardiomyopathy that presents a diagnostic and therapeutic challenge in clinical practice. Historically, it has led to poor prognosis due to limited treatment options. However, advancements in disease awareness, diagnostic tools, and management approaches have led to the beginning of an era characterized by earlier diagnosis and a broader range of treatments. This article examines the advances in treating the two primary forms of cardiac amyloidosis: transthyretin cardiac amyloidosis (ATTR-CA) and light chain mediated cardiac amyloidosis (AL-CA). It highlights therapies for ATTR-CA that focus on interrupting the process of amyloid fibril formation. These therapies include transthyretin stabilizers, gene silencers, and monoclonal antibodies, which have shown the potential to improve patient outcomes and survival rates significantly. As of this writing, tafamidis is the sole Food and Drug Administration (FDA)--approved drug for ATTR-CA; however, experts anticipate several other drugs will gain approval within 1-2 years. Treatment strategies for AL-CA typically involve chemotherapy to inhibit the clonal cell type responsible for excessive AL amyloid fibril production. The prognosis for both types of amyloidosis primarily depends on how much the heart is affected, with most deaths occurring due to progressive heart failure. Effective care for CA patients requires collaboration among specialists from multiple disciplines, such as heart failure cardiology, electrophysiology, hematology/oncology, nephrology, neurology, pharmacology, and palliative care.
Collapse
Affiliation(s)
- Mohamed Younis
- Division of Cardiology, University of Louisville Hospital, Louisville, KY, United States of America
| | - Ikechukwu Ogbu
- Division of Cardiology, University of Louisville Hospital, Louisville, KY, United States of America
| | - Dinesh K Kalra
- Division of Cardiology, University of Louisville Hospital, Louisville, KY, United States of America.
| |
Collapse
|
26
|
Teramoto M, Eshak ES, Iso H. Green tea and health outcomes including cardiovascular disease, cancer, and dementia. TEA IN HEALTH AND DISEASE PREVENTION 2025:783-790. [DOI: 10.1016/b978-0-443-14158-4.00057-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
27
|
Hassan MN, Ahmad A, Hussain M, Gupta S, Khan HY, Aziz T, Khan RH. Exploring Cimetidine as a Potential Therapeutic Attenuator against Amyloid Formation in Parkinson's Disease: Spectroscopic and Microscopic Insights into Alpha-Synuclein and Human Insulin. ACS Chem Neurosci 2024; 15:4517-4532. [PMID: 39628315 DOI: 10.1021/acschemneuro.4c00588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024] Open
Abstract
Neurodegenerative diseases, notably Alzheimer's and Parkinson's, hallmark their progression through the formation of amyloid aggregates resulting from misfolding. While current therapeutics alleviate symptoms, they do not impede disease onset. In this context, repurposing existing drugs stands as a viable therapeutic strategy. Our study determines the antihistamine drug Cimetidine's potential as an inhibitor using diverse spectroscopic and microscopic methods on alpha-synuclein and human insulin amyloid formation, unveiling its efficacy. The thioflavin T (ThT) assay illustrated a dose-dependent reduction in amyloid formation with escalating concentrations of Cimetidine. Notably, the antihistamine drug maintained a helical structure and showed no significant conformational changes in the secondary structure. Confocal microscopy validated fewer fibrils in the Cimetidine-treated samples. Remarkably, Cimetidine interacted with pre-existing fibrils, leading to their disintegration. Further analyses (ThT, circular dichroism, and dynamic light scattering) showcased the conversion of fibrils into smaller aggregates upon Cimetidine addition. These findings signify the potential of this antihistamine drug as a plausible therapeutic option for Parkinson's disease. This study may open avenues for deeper investigations and possible therapeutic developments, emphasizing Cimetidine's promising role in mitigating neurodegenerative diseases like Parkinson's.
Collapse
Affiliation(s)
- Md Nadir Hassan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, Uttar Pradesh 202001, India
| | - Azeem Ahmad
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, Uttar Pradesh 202001, India
| | - Murtaza Hussain
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, Uttar Pradesh 202001, India
| | - Suhani Gupta
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, Uttar Pradesh 202001, India
| | - Huzaifa Yasir Khan
- Department of Chemistry, Aligarh Muslim University, Aligarh, Uttar Pradesh 202001, India
| | - Tariq Aziz
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, Uttar Pradesh 202001, India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, Uttar Pradesh 202001, India
| |
Collapse
|
28
|
Menon S, Adhikari S, Mondal J. An integrated machine learning approach delineates an entropic expansion mechanism for the binding of a small molecule to α-synuclein. eLife 2024; 13:RP97709. [PMID: 39693390 DOI: 10.7554/elife.97709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024] Open
Abstract
The mis-folding and aggregation of intrinsically disordered proteins (IDPs) such as α-synuclein (αS) underlie the pathogenesis of various neurodegenerative disorders. However, targeting αS with small molecules faces challenges due to the lack of defined ligand-binding pockets in its disordered structure. Here, we implement a deep artificial neural network-based machine learning approach, which is able to statistically distinguish the fuzzy ensemble of conformational substates of αS in neat water from those in aqueous fasudil (small molecule of interest) solution. In particular, the presence of fasudil in the solvent either modulates pre-existing states of αS or gives rise to new conformational states of αS, akin to an ensemble-expansion mechanism. The ensembles display strong conformation-dependence in residue-wise interaction with the small molecule. A thermodynamic analysis indicates that small-molecule modulates the structural repertoire of αS by tuning protein backbone entropy, however entropy of the water remains unperturbed. Together, this study sheds light on the intricate interplay between small molecules and IDPs, offering insights into entropic modulation and ensemble expansion as key biophysical mechanisms driving potential therapeutics.
Collapse
Affiliation(s)
- Sneha Menon
- Tata Institute of Fundamental Research, Hyderabad, India
| | | | | |
Collapse
|
29
|
Shabnam, Bhat R. Flavones Suppress Aggregation and Amyloid Fibril Formation of Human Lysozyme under Macromolecular Crowding Conditions. Biochemistry 2024; 63:3194-3212. [PMID: 39385522 DOI: 10.1021/acs.biochem.4c00362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The crowded milieu of a biological cell significantly impacts protein aggregation and interactions. Understanding the effects of macromolecular crowding on the aggregation and fibrillation of amyloidogenic proteins is crucial for the treatment of many amyloid-related disorders. Most in vitro studies of protein amyloid formation and its inhibition by small molecules are conducted in dilute buffers, which do not mimic the complexity of the cellular environment. In this study, we used PEGs to simulate macromolecular crowding and examined the inhibitory effects of flavones DHF, baicalein, and luteolin on human lysozyme (HuL) aggregation at pH 2. Naturally occurring flavones have been effective inhibitors of amyloid formation in some proteins. Our findings indicate that while flavones inhibit HuL aggregation and fibrillation in dilute buffer solutions, complete inhibition is observed with a combination of flavones and PEGs, as shown by ThT fluorescence, light scattering, TEM, and AFM studies. The species formed in the presence of PEG 8000 and flavones were less hydrophobic, less toxic, and α-helix-rich compared to control samples, which were hydrophobic and β-sheet-rich, as demonstrated by ANS hydrophobicity, MTT assay, and CD spectroscopy. Fluorescence titration studies of flavones with HuL showed a significant increase in binding constant values under crowding conditions. These findings highlight the importance of macromolecular crowding in modulating protein aggregation and amyloid inhibition. Further studies using disease-causing mutants of HuL and other amyloidogenic proteins are needed to explore the role of macromolecular crowding in small-molecule-mediated modulation and inhibition of protein aggregation and amyloid formation.
Collapse
Affiliation(s)
- Shabnam
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 100067, India
| | - Rajiv Bhat
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 100067, India
| |
Collapse
|
30
|
Zhang H, Kang L, Bhutto RA, Fan Y, Yi J. Formation of pea protein amyloid-like nanofibrils-derived hydrogels mediated by epigallocatechin gallate. Food Chem 2024; 459:140381. [PMID: 38991441 DOI: 10.1016/j.foodchem.2024.140381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/24/2024] [Accepted: 07/05/2024] [Indexed: 07/13/2024]
Abstract
This study investigated the interaction between pea protein amyloid-like nanofibril and epigallocatechin gallate, constructed and characterized the novel pea protein nanofibrils-derived hydrogel mediated by epigallocatechin gallate, and researched the functionalities of the hydrogel. Epigallocatechin gallate remodeled the structure of pea protein nanofibrils, and a stable and strong hydrogel was formed at a relatively low protein concentration (4.5%). Additionally, the hydrogels exhibited various surface structures and hydrogel properties dependent on the mass ratio. Strongest gel strength (51 g) was attained at 0.25 epigallocatechin gallate/pea protein nanofibrils mass ratio. Whereas, the hydrogels exhibited the highest water holding capacity (87%) at 0.05 mass ratio. The primary driving forces in the formation and maintaining of the hydrogels were hydrophobic interactions and ionic bonds. Progressive rise of β-sheet content of pea protein nanofibrils occurred increasing epigallocatechin gallate concentration. This hydrogel holds great potential for applications in food processing, targeted delivery of nutraceuticals and biomedicine.
Collapse
Affiliation(s)
- Hailing Zhang
- Shenzhen Key Laboratory of Food Macromolecules Science and Processing, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ling Kang
- Shenzhen Key Laboratory of Food Macromolecules Science and Processing, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Rizwan Ahmed Bhutto
- Shenzhen Key Laboratory of Food Macromolecules Science and Processing, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yuting Fan
- School of Public Health, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Jiang Yi
- Shenzhen Key Laboratory of Food Macromolecules Science and Processing, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
31
|
Riegelman E, Xue K, Wang JS, Tang L. Therapeutic potential of green tea catechins on the development of Parkinson's disease symptoms in a transgenic A53T mouse model. Nutr Neurosci 2024:1-17. [PMID: 39612295 DOI: 10.1080/1028415x.2024.2427753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
Objectives: This study aimed to evaluate the effects of green tea catechins on the prevention of Parkinson's disease neurobehavioral symptoms and α-synuclein blood plasma concentration in a hemizygous transgenic A53T mouse model.Methods: Thirty 6-month-old male mice were randomly assigned to three groups (n = 10/group): control, low-dose, and high-dose, receiving green tea polyphenol (GTP) treatment in their drinking water at 0%, 0.5%, and 1.5%, respectively, over a 90-day period. The efficacy of ad libitum dosing was assessed by analyzing the bioaccumulation of tea catechins in urine samples collected from metabolic cages on days 0, 30, 60, and 90, using LC/Q-TOF analysis. PD-related behavioral impairments were measured with open field and rotarod performance tests on days 0, 45, and 90. On day 90, plasma α-synuclein levels were analyzed via enzyme-linked immunosorbent assay (ELISA) to assess treatment effects.Results: Circulating tea catechin metabolites were detected in treated groups by day 30, with levels progressively increasing through day 90. By day 90, control mice exhibited significant deficits in rotarod performance, while both low- and high-dose groups maintained or improved their maximum time on the rotarod. Open field testing indicated reduced anxiety-related behavior in control mice compared to treated groups. ELISA analysis revealed significantly lower circulating α-synuclein levels in high-dose mice compared to controls.Conclusion: Our findings indicate that sustained administration of tea catechins significantly reduces circulating α-synuclein levels in blood plasma, improves motor coordination in a dose-dependent manner, and modulates anxiety-related behaviors in a PD mouse model.
Collapse
Affiliation(s)
- Elizabeth Riegelman
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, USA
| | - Kathy Xue
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, USA
| | - Jia-Sheng Wang
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, USA
| | - Lili Tang
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, USA
| |
Collapse
|
32
|
Sidoryk-Węgrzynowicz M, Adamiak K, Strużyńska L. Targeting Protein Misfolding and Aggregation as a Therapeutic Perspective in Neurodegenerative Disorders. Int J Mol Sci 2024; 25:12448. [PMID: 39596513 PMCID: PMC11595158 DOI: 10.3390/ijms252212448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
The abnormal deposition and intercellular propagation of disease-specific protein play a central role in the pathogenesis of many neurodegenerative disorders. Recent studies share the common observation that the formation of protein oligomers and subsequent pathological filaments is an essential step for the disease. Synucleinopathies such as Parkinson's disease (PD), dementia with Lewy bodies (DLB) or multiple system atrophy (MSA) are neurodegenerative diseases characterized by the aggregation of the α-synucleinprotein in neurons and/or in oligodendrocytes (glial cytoplasmic inclusions), neuronal loss, and astrogliosis. A similar mechanism of protein Tau-dependent neurodegeneration is a major feature of tauopathies, represented by Alzheimer's disease (AD), corticobasal degeneration (CBD), progressive supranuclear palsy (PSP), and Pick's disease (PD). The specific inhibition of the protein misfolding and their interneuronal spreading represents a promising therapeutic strategy against both disease pathology and progression. The most recent research focuses on finding potential applications targeting the pathological forms of proteins responsible for neurodegeneration. This review highlights the mechanisms relevant to protein-dependent neurodegeneration based on the most common disorders and describes current therapeutic approaches targeting protein misfolding and aggregation.
Collapse
Affiliation(s)
- Marta Sidoryk-Węgrzynowicz
- Laboratory of Pathoneurochemistry, Department of Neurochemistry, Mossakowski Medical Research Institute, 02-106 Warsaw, Poland; (K.A.); (L.S.)
| | | | | |
Collapse
|
33
|
Neaz S, Alam MM, Imran AB. Advancements in cyclodextrin-based controlled drug delivery: Insights into pharmacokinetic and pharmacodynamic profiles. Heliyon 2024; 10:e39917. [PMID: 39553547 PMCID: PMC11567044 DOI: 10.1016/j.heliyon.2024.e39917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/27/2024] [Accepted: 10/28/2024] [Indexed: 11/19/2024] Open
Abstract
This article discusses and summarizes some fascinating outcomes and applications of cyclodextrins (CDs) and their derivatives in drug delivery. These applications include the administration of protein, peptide medications, and gene delivery. Several innovative drug delivery systems, including NPs, microspheres, microcapsules, and liposomes, are designed with the help of CD, which is highlighted in this article. The use of these compounds as excipients in medicine formulation is reviewed, in addition to their well-known effects on drug solubility and dissolution, as well as their bioavailability, safety, and stability. Furthermore, the article focuses on many factors that influence the development of inclusion complexes, as having this information is necessary to manage these diverse materials effectively. An overview of the commercial availability, regulatory status, and patent status of CDs for pharmaceutical formulation is also presented. Due to the fact that CDs can discover new uses in drug delivery consistently, it is predicted that they will solve a wide range of issues related to the distribution of a variety of unique medications through various delivery channels.
Collapse
Affiliation(s)
- Sharif Neaz
- Department of Chemistry, Bangladesh University of Engineering and Technology (BUET), Dhaka, 1000, Bangladesh
| | - Md Mahbub Alam
- Department of Chemistry, Bangladesh University of Engineering and Technology (BUET), Dhaka, 1000, Bangladesh
| | - Abu Bin Imran
- Department of Chemistry, Bangladesh University of Engineering and Technology (BUET), Dhaka, 1000, Bangladesh
| |
Collapse
|
34
|
Kalmouni M, Oh Y, Alata W, Magzoub M. Designed Cell-Penetrating Peptide Constructs for Inhibition of Pathogenic Protein Self-Assembly. Pharmaceutics 2024; 16:1443. [PMID: 39598566 PMCID: PMC11597747 DOI: 10.3390/pharmaceutics16111443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024] Open
Abstract
Peptides possess a number of pharmacologically desirable properties, including greater chemical diversity than other biomolecule classes and the ability to selectively bind to specific targets with high potency, as well as biocompatibility, biodegradability, and ease and low cost of production. Consequently, there has been considerable interest in developing peptide-based therapeutics, including amyloid inhibitors. However, a major hindrance to the successful therapeutic application of peptides is their poor delivery to target tissues, cells or subcellular organelles. To overcome these issues, recent efforts have focused on engineering cell-penetrating peptide (CPP) antagonists of amyloidogenesis, which combine the attractive intrinsic properties of peptides with potent therapeutic effects (i.e., inhibition of amyloid formation and the associated cytotoxicity) and highly efficient delivery (to target tissue, cells, and organelles). This review highlights some promising CPP constructs designed to target amyloid aggregation associated with a diverse range of disorders, including Alzheimer's disease, transmissible spongiform encephalopathies (or prion diseases), Parkinson's disease, and cancer.
Collapse
Affiliation(s)
| | | | | | - Mazin Magzoub
- Biology Program, Division of Science, New York University Abu Dhabi, Saadiyat Island Campus, Abu Dhabi P.O. Box 129188, United Arab Emirates; (Y.O.)
| |
Collapse
|
35
|
Ahanger IA, Dar TA. Small molecule modulators of alpha-synuclein aggregation and toxicity: Pioneering an emerging arsenal against Parkinson's disease. Ageing Res Rev 2024; 101:102538. [PMID: 39389237 DOI: 10.1016/j.arr.2024.102538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/12/2024]
Abstract
Parkinson's disease (PD) is primarily characterized by loss of dopaminergic neurons in the substantia nigra pars compacta region of the brain and accumulation of aggregated forms of alpha-synuclein (α-Syn), an intrinsically disordered protein, in the form of Lewy Bodies and Lewy Neurites. Substantial evidences point to the aggregated/fibrillar forms of α-Syn as a central event in PD pathogenesis, underscoring the modulation of α-Syn aggregation as a promising strategy for PD treatment. Consequently, numerous anti-aggregation agents, spanning from small molecules to polymers, have been scrutinized for their potential to mitigate α-Syn aggregation and its associated toxicity. Among these, small molecule modulators like osmoprotectants, polyphenols, cellular metabolites, metals, and peptides have emerged as promising candidates with significant potential in PD management. This article offers a comprehensive overview of the effects of these small molecule modulators on the aggregation propensity and associated toxicity of α-Syn and its PD-associated mutants. It serves as a valuable resource for identifying and developing potent, non-invasive, non-toxic, and highly specific small molecule-based therapeutic arsenal for combating PD. Additionally, it raises pertinent questions aimed at guiding future research endeavours in the field of α-Syn aggregation remodelling.
Collapse
Affiliation(s)
- Ishfaq Ahmad Ahanger
- Department of Clinical Biochemistry, University of Kashmir, Srinagar, Jammu and Kashmir 190006, India.
| | - Tanveer Ali Dar
- Department of Clinical Biochemistry, University of Kashmir, Srinagar, Jammu and Kashmir 190006, India.
| |
Collapse
|
36
|
So M, Ono M, Oogai S, Kondo M, Yamazaki K, Nachtegael C, Hamajima H, Mutoh R, Kato M, Kawate H, Oki T, Kawata Y, Kumamoto S, Tokui N, Takei T, Shimizu K, Inoue A, Yamamoto N, Unoki M, Tanabe K, Nakashima K, Sasaki H, Hojo H, Nagata Y, Suetake I. Inhibitory effects of extracts from Eucalyptus gunnii on α-synuclein amyloid fibrils. Biosci Biotechnol Biochem 2024; 88:1289-1298. [PMID: 39169473 DOI: 10.1093/bbb/zbae114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 08/10/2024] [Indexed: 08/23/2024]
Abstract
Amyloid fibril formation is associated with various amyloidoses, including neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. Despite the numerous studies on the inhibition of amyloid formation, the prevention and treatment of a majority of amyloid-related disorders are still challenging. In this study, we investigated the effects of various plant extracts on amyloid formation of α-synuclein. We found that the extracts from Eucalyptus gunnii are able to inhibit amyloid formation, and to disaggregate preformed fibrils, in vitro. The extract itself did not lead to cell damage. In the extract, miquelianin, which is a glycosylated form of quercetin and has been detected in the plasma and the brain, was identified and assessed to have a moderate inhibitory activity, compared to the effects of ellagic acid and quercetin, which are strong inhibitors for amyloid formation. The properties of miquelianin provide insights into the mechanisms controlling the assembly of α-synuclein in the brain.
Collapse
Affiliation(s)
- Masatomo So
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- Institute for Protein Research, Osaka University, Osaka, Japan
| | - Misaki Ono
- Department of Nutritional Sciences, Faculty of Nutritional Sciences, Nakamura Gakuen University, Fukuoka, Japan
| | - Shigeki Oogai
- Saga Food & Cosmetic Laboratory, Saga Prefectural Industrial Innovation Center, Saga, Japan
| | - Minako Kondo
- ARFS, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Kaede Yamazaki
- Saga Food & Cosmetic Laboratory, Saga Prefectural Industrial Innovation Center, Saga, Japan
| | - Charlotte Nachtegael
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles-Vrije Universiteit Brussel, Brussels, Belgium
- Machine Learning Group, Université Libre de Bruxelles, Brussels, Belgium
| | - Hiroshi Hamajima
- Saga Food & Cosmetic Laboratory, Saga Prefectural Industrial Innovation Center, Saga, Japan
| | - Risa Mutoh
- Department of Applied Physics, Faculty of Science, Fukuoka University, Fukuoka, Japan
| | - Masaki Kato
- Department of Nutritional Sciences, Faculty of Nutritional Sciences, Nakamura Gakuen University, Fukuoka, Japan
- Graduate School of Nutritional Sciences, Nakamura Gakuen University, Fukuoka, Japan
| | - Hisaya Kawate
- Department of Nutritional Sciences, Faculty of Nutritional Sciences, Nakamura Gakuen University, Fukuoka, Japan
- Graduate School of Nutritional Sciences, Nakamura Gakuen University, Fukuoka, Japan
| | - Tomoyuki Oki
- Department of Nutritional Sciences, Faculty of Nutritional Sciences, Nakamura Gakuen University, Fukuoka, Japan
- Graduate School of Nutritional Sciences, Nakamura Gakuen University, Fukuoka, Japan
| | - Yasushi Kawata
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori, Japan
| | - Shiho Kumamoto
- Department of Nutritional Sciences, Faculty of Nutritional Sciences, Nakamura Gakuen University, Fukuoka, Japan
| | - Noritaka Tokui
- Department of Nutritional Sciences, Faculty of Nutritional Sciences, Nakamura Gakuen University, Fukuoka, Japan
- Graduate School of Nutritional Sciences, Nakamura Gakuen University, Fukuoka, Japan
- Institute of Preventive and Medical Dietetics, Nakamura Gakuen University, Fukuoka, Japan
| | - Toshiki Takei
- Institute for Protein Research, Osaka University, Osaka, Japan
| | - Kuniyoshi Shimizu
- Department of Agro-Environmental Sciences, Kyushu University, Fukuoka, Japan
| | - Akio Inoue
- Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Naoki Yamamoto
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Motoko Unoki
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kenichi Tanabe
- Department of Nutritional Sciences, Faculty of Nutritional Sciences, Nakamura Gakuen University, Fukuoka, Japan
- Graduate School of Nutritional Sciences, Nakamura Gakuen University, Fukuoka, Japan
- Institute of Preventive and Medical Dietetics, Nakamura Gakuen University, Fukuoka, Japan
| | - Kinichi Nakashima
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroyuki Sasaki
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Hironobu Hojo
- Institute for Protein Research, Osaka University, Osaka, Japan
| | - Yasuo Nagata
- Saga Food & Cosmetic Laboratory, Saga Prefectural Industrial Innovation Center, Saga, Japan
| | - Isao Suetake
- Institute for Protein Research, Osaka University, Osaka, Japan
- Department of Nutritional Sciences, Faculty of Nutritional Sciences, Nakamura Gakuen University, Fukuoka, Japan
- Graduate School of Nutritional Sciences, Nakamura Gakuen University, Fukuoka, Japan
- Institute of Preventive and Medical Dietetics, Nakamura Gakuen University, Fukuoka, Japan
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| |
Collapse
|
37
|
Uversky VN. How to drug a cloud? Targeting intrinsically disordered proteins. Pharmacol Rev 2024; 77:PHARMREV-AR-2023-001113. [PMID: 39433443 DOI: 10.1124/pharmrev.124.001113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 10/03/2024] [Accepted: 10/15/2024] [Indexed: 10/23/2024] Open
Abstract
Biologically active proteins/regions without stable structure (i.e., intrinsically disordered proteins and regions (IDPs and IDRs)) are commonly found in all proteomes. They have a unique functional repertoire that complements the functionalities of ordered proteins and domains. IDPs/IDRs are multifunctional promiscuous binders capable of folding at interaction with specific binding partners on a template- or context-dependent manner, many of which undergo liquid-liquid phase separation, leading to the formation of membrane-less organelles and biomolecular condensates. Many of them are frequently related to the pathogenesis of various human diseases. All this defines IDPs/IDRs as attractive targets for the development of novel drugs. However, their lack of unique structures, multifunctionality, binding promiscuity, and involvement in unusual modes of action preclude direct use of traditional structure-based drug design approaches for targeting IDPs/IDRs, and make disorder-based drug discovery for these "protein clouds" challenging. Despite all these complexities there is continuing progress in the design of small molecules affecting IDPs/IDRs. This article describes the major structural features of IDPs/IDRs and the peculiarities of the disorder-based functionality. It also discusses the roles of IDPs/IDRs in various pathologies, and shows why the approaches elaborated for finding drugs targeting ordered proteins cannot be directly used for the intrinsic disorder-based drug design, and introduces some novel methodologies suitable for these purposes. Finally, it emphasizes that regardless of their multifunctionality, binding promiscuity, lack of unique structures, and highly dynamic nature, "protein clouds" are principally druggable. Significance Statement Intrinsically disordered proteins and regions are highly abundant in nature, have multiple important biological functions, are commonly involved in the pathogenesis of a multitude of human diseases, and are therefore considered as very attractive drug targets. Although dealing with these unstructured multifunctional protein/regions is a challenging task, multiple innovative approaches have been designed to target them by small molecules.
Collapse
|
38
|
Zhang S, Xiang H, Tao Y, Li J, Zeng S, Xu Q, Xiao H, Lv S, Song C, Cheng Y, Li M, Zhu Z, Zhang S, Sun B, Li D, Xiang S, Tan L, Liu C. Inhibitor Development for α-Synuclein Fibril's Disordered Region to Alleviate Parkinson's Disease Pathology. J Am Chem Soc 2024; 146:28282-28295. [PMID: 39327912 DOI: 10.1021/jacs.4c08869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
The amyloid fibrils of α-synuclein (α-syn) are crucial in the pathology of Parkinson's disease (PD), with the intrinsically disordered region (IDR) of its C-terminal playing a key role in interacting with receptors like LAG3 and RAGE, facilitating pathological neuronal spread and inflammation. In this study, we identified Givinostat (GS) as an effective inhibitor that disrupts the interaction of α-syn fibrils with receptors such as LAG3 and RAGE through high-throughput screening. By exploring the structure-activity relationship and optimizing GS, we developed several lead compounds, including GSD-16-24. Utilizing solution-state and solid-state NMR, along with cryo-EM techniques, we demonstrated that GSD-16-24 binds directly to the C-terminal IDR of α-syn monomer and fibril, preventing the fibril from binding to the receptors. Furthermore, GSD-16-24 significantly inhibits the association of α-syn fibrils with membrane receptors, thereby reducing neuronal propagation and pro-inflammatory effects of α-syn fibrils. Our findings introduce a novel approach to mitigate the pathological effects of α-syn fibrils by targeting their IDR with small molecules, offering potential leads for the development of clinical drugs to treat PD.
Collapse
Affiliation(s)
- Shenqing Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 201203, China
| | - Huaijiang Xiang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Shijingshan District, Beijing 100049, China
| | - Youqi Tao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 201203, China
| | - Juan Li
- MOE Key Lab for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026 Anhui, China
| | - Shuyi Zeng
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 201203, China
| | - Qianhui Xu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Shijingshan District, Beijing 100049, China
| | - Haonan Xiao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 201203, China
| | - Shiran Lv
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Shijingshan District, Beijing 100049, China
| | - Caiwei Song
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Shijingshan District, Beijing 100049, China
| | - Yan Cheng
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Martin Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 201203, China
| | - Zeyun Zhu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Shengnan Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Bo Sun
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Dan Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 201203, China
| | - ShengQi Xiang
- MOE Key Lab for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026 Anhui, China
| | - Li Tan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
39
|
Li B, Dettmer U. Interactions of alpha-synuclein with membranes in Parkinson's disease: Mechanisms and therapeutic strategies. Neurobiol Dis 2024; 201:106646. [PMID: 39181187 PMCID: PMC11760337 DOI: 10.1016/j.nbd.2024.106646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/30/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024] Open
Abstract
Parkinson's disease (PD), the second most common neurodegenerative disease worldwide, is marked by the presence of Lewy bodies and Lewy neurites, neuronal lesions containing large amounts of the synaptic protein alpha-synuclein (αS). While the underlying mechanisms of disease progression in PD remain unclear, increasing evidence supports the importance of interactions between αS and cellular membranes in PD pathology. Therefore, understanding the αS-membrane interplay in health and disease is crucial for the development of therapeutic strategies. In this review, we (1) discuss key scenarios of pathological αS-membrane interactions; (2) present in detail therapeutic strategies explicitly reported to modify αS-membrane interactions; and (3) introduce additional therapeutic strategies that may involve aspects of interfering with αS-membrane interaction. This way, we aim to provide a holistic perspective on this important aspect of disease-modifying strategies for PD and other α-synucleinopathies.
Collapse
Affiliation(s)
- Baoyi Li
- Wycombe Abbey, Buckinghamshire HP11 1PE, UK
| | - Ulf Dettmer
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
40
|
Gonçalves PB, Sodero ACR, Cordeiro Y. Natural products targeting amyloid-β oligomer neurotoxicity in Alzheimer's disease. Eur J Med Chem 2024; 276:116684. [PMID: 39032401 DOI: 10.1016/j.ejmech.2024.116684] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/07/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024]
Abstract
Alzheimer's disease (AD) constitutes a major global health issue, characterized by progressive neurodegeneration and cognitive impairment, for which no curative treatment is currently available. Current therapeutic approaches are focused on symptom management, highlighting the critical need for disease-modifying therapy. The hallmark pathology of AD involves the aggregation and accumulation of amyloid-β (Aβ) peptides in the brain. Consequently, drug discovery efforts in recent decades have centered on the Aβ aggregation cascade, which includes the transition of monomeric Aβ peptides into toxic oligomers and, ultimately, mature fibrils. Historically, anti-Aβ strategies focused on the clearance of amyloid fibrils using monoclonal antibodies. However, substantial evidence has highlighted the critical role of Aβ oligomers (AβOs) in AD pathogenesis. Soluble AβOs are now recognized as more toxic than fibrils, directly contributing to synaptic impairment, neuronal damage, and the onset of AD. Targeting AβOs has emerged as a promising therapeutic approach to mitigate cognitive decline in AD. Natural products (NPs) have demonstrated promise against AβO neurotoxicity through various mechanisms, including preventing AβO formation, enhancing clearance mechanisms, or converting AβOs into non-toxic species. Understanding the mechanisms by which anti-AβO NPs operate is useful for developing disease-modifying treatments for AD. In this review, we explore the role of NPs in mitigating AβO neurotoxicity for AD drug discovery, summarizing key evidence from biophysical methods, cellular assays, and animal models. By discussing how NPs modulate AβO neurotoxicity across various experimental systems, we aim to provide valuable insights into novel therapeutic strategies targeting AβOs in AD.
Collapse
Affiliation(s)
| | | | - Yraima Cordeiro
- Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, 21949-900, Brazil
| |
Collapse
|
41
|
Gao W, Dong Q, Wu X, Wang Y, Li J, Zhang Q, Lu F, Liu F. Bifunctional Inhibitor Lentinan Inhibits Fibrillogenesis of Amyloid-β Protein and α-Synuclein and Alleviates Their Cytotoxicity: In Vitro and In Vivo Studies. ACS Chem Neurosci 2024; 15:3437-3448. [PMID: 39264814 DOI: 10.1021/acschemneuro.4c00164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024] Open
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) are the two most common neurodegenerative diseases in the world. Misfolding of β-amyloid (Aβ) and α-synuclein (α-syn) and subsequent fibril formation are closely associated with the pathogenesis of AD and PD, respectively. Lentinan is a natural product commonly used in medicine and dietary supplements. It has potential antitumor, anti-inflammatory, and antiviral effects, but the underlying mechanism of its action on AD and PD remains unclear. In this study, lentinan inhibited the formation of Aβ and α-syn fibers in a dose-dependent manner and disrupted their mature fibers. Lentinan inhibited the conversion of Aβ and α-syn conformations to β-sheet-rich conformations. Additionally, lentinan protected Caenorhabditis elegans against damage caused by the accumulation of Aβ and α-syn aggregation and prolonged their lifespan. Notably, the beneficial effects of lentinan in AD and PD mice were also demonstrated, including ameliorating the cognitive and memory impairments in AD mice and behavioral deficits in PD mice. Finally, molecular interactions between lentinan and Aβ/α-syn pentamers were also explored using molecular docking.
Collapse
Affiliation(s)
- Wen Gao
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, P. R. China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, P. R. China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Qinchen Dong
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, P. R. China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, P. R. China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Xinni Wu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, P. R. China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, P. R. China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Yang Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, P. R. China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, P. R. China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Jinbi Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, P. R. China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, P. R. China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Qingfu Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, P. R. China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, P. R. China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, P. R. China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, P. R. China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Fufeng Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, P. R. China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, P. R. China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| |
Collapse
|
42
|
Meshram VD, Balaji R, Saravanan P, Subbamanda Y, Deeksha W, Bajpai A, Joshi H, Bhargava A, Patel BK. Computational Insights Into the Mechanism of EGCG's Binding and Inhibition of the TDP-43 Aggregation. Chem Biol Drug Des 2024; 104:e14640. [PMID: 39380150 DOI: 10.1111/cbdd.14640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/07/2024] [Accepted: 09/24/2024] [Indexed: 10/10/2024]
Abstract
Misfolding and aggregation of TAR DNA-binding protein, TDP-43, is linked to devastating proteinopathies such as ALS. Therefore, targeting TDP-43's aggregation is significant for therapeutics. Recently, green tea polyphenol, EGCG, was observed to promote non-toxic TDP-43 oligomer formation disallowing TDP-43 aggregation. Here, we investigated if the anti-aggregation effect of EGCG is mediated via EGCG's binding to TDP-43. In silico molecular docking and molecular dynamics (MD) simulation suggest a strong binding of EGCG with TDP-43's aggregation-prone C-terminal domain (CTD). Three replicas, each having 800 ns MD simulation of the EGCG-TDP-43-CTD complex, yielded a high negative binding free energy (ΔG) inferring a stable complex formation. Simulation snapshots show that EGCG forms close and long-lasting contacts with TDP-43's Phe-313 and Ala-341 residues, which were previously identified for monomer recruitment in CTD's aggregation. Notably, stable physical interactions between TDP-43 and EGCG were also detected in vitro using TTC staining and isothermal titration calorimetry which revealed a high-affinity binding site of EGCG on TDP-43 (Kd, 7.8 μM; ΔG, -6.9 kcal/mol). Additionally, TDP-43 co-incubated with EGCG was non-cytotoxic when added to HEK293 cells. In summary, EGCG's binding to TDP-43 and blocking of residues important for aggregation can be a possible mechanism of its anti-aggregation effects on TDP-43.
Collapse
Affiliation(s)
- Vini D Meshram
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, India
| | - Ramkumar Balaji
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, India
| | - Preethi Saravanan
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, India
| | - Yashashwini Subbamanda
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, India
| | - Waghela Deeksha
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, India
| | - Akarsh Bajpai
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, India
| | - Himanshu Joshi
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, India
| | - Anamika Bhargava
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, India
| | - Basant K Patel
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, India
| |
Collapse
|
43
|
Flores N, Rivillas-Acevedo L, Caballero J, Melo F, Caballero L, Areche C, Fuentealba D, Aguilar F, Cornejo A. Rosmarinic acid turned α-syn oligomers into non-toxic species preserving microtubules in Raw 264.7 cells. Bioorg Chem 2024; 151:107669. [PMID: 39067421 DOI: 10.1016/j.bioorg.2024.107669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder worldwide, and the therapeutic is focused on several approaches including the inhibition of fibril formation by small compounds, avoiding the formation of cytotoxic oligomers. Thus, we decided to explore the capacity of compounds carrying catechol moieties to inhibit the progression of α-synuclein. Overall, the compounds rosmarinic acid (1), carnosic acid (2), carnosol (3), epiisorosmanol (4), and rosmanol (5) avoid the progression of fibril formation assessed by Thiofavine T (ThT), and atomic force microscopy images showed that morphology is influenced for the actions of compounds over fibrillization. Moreover, ITC experiments showed a Kd varying from 28 to 51 µM, the ΔG showed that the reaction between compounds and α-syn is spontaneous, and ΔH is associated with an exothermic reaction, suggesting the interactions of hydrogen bonds among compounds and α-syn. Docking experiments reinforce this idea showing the intermolecular interactions are mostly hydrogen bonding within the sites 2, 9, and 3/13 of α-synuclein, and compounds 1 and 5. Thus, compound 1, rosmarinic acid, interestingly interacts better with site 9 through catechol and Lysines. In cultured Raw 264. 7 cells, the presence of compounds showed that most of them can promote cell differentiation, especially rosmarinic acid, and rosmanol, both preserving tubulin cytoskeleton. However, once we evaluated whether or not the aggregates pre-treated with compounds could prevent the disruption of microtubules of Raw 264.7 cells, only pre-treated aggregates with rosmarinic acid prevented the disruption of the cytoskeleton. Altogether, we showed that especially rosmarinic acid not only inhibits α-syn but stabilizes the remaining aggregates turning them into not-toxic to Raw 264.7 cells suggesting a main role in cell survival and antigen processing in response to external α-syn aggregates.
Collapse
Affiliation(s)
- Nicolás Flores
- Departamento de Tecnología Médica, Universidad Andrés Bello, Echaurren 183, Santiago, Chile
| | - Lina Rivillas-Acevedo
- Centro de Investigación En Dinámica Celular, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, C.P. 60209 Cuernavaca, Morelos. México
| | - Julio Caballero
- Center for Bioinformatics and Molecular Modelling, Faculty of Engineering, University of Talca 2 Norte 685, 3465548 Talca, Chile
| | - Francisco Melo
- Departamento de Física. Universidad de Santiago Avenida Ecuador 3493, 9170124, Chile; Center for Soft Matter Research, SMAT-C, Usach, Avenida Bernardo ÓHiggins 3363 Estación Central, Santiago, Chile
| | - Leonardo Caballero
- Departamento de Física. Universidad de Santiago Avenida Ecuador 3493, 9170124, Chile; Center for Soft Matter Research, SMAT-C, Usach, Avenida Bernardo ÓHiggins 3363 Estación Central, Santiago, Chile
| | - Carlos Areche
- Department of Chemistry, Faculty of Sciences., University of Chile, Las Palmeras 3425, Ñuñoa, 7800003 Santiago, Chile
| | - Denis Fuentealba
- Laboratorio de Química Supramolecular Y Fotobiología, Departamento de Química Física, Escuela DeQuímica, Facultad de Química Y de Farmacia, Pontificia Universidad Católica de Chile Macul, 7820436 Santiago, Chile
| | - Felipe Aguilar
- Departamento de Ciencias Naturales Y Tecnología, Universidad de Aysén, Obispo Vielmo 62, Coyhaique, Chile
| | - Alberto Cornejo
- Departamento de Tecnología Médica, Universidad Andrés Bello, Echaurren 183, Santiago, Chile.
| |
Collapse
|
44
|
Antevska A, Hess KA, Long CC, Walker EJ, Jang JH, DeSoto RJ, Lazar Cantrell KL, Buchanan LE, Do TD. Deciphering the Molecular Dance: Exploring the Dynamic Interplay Between Mouse Insulin B9-23 Peptides and their Variants. Biochemistry 2024; 63:2245-2256. [PMID: 39222658 DOI: 10.1021/acs.biochem.4c00217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Type 1 diabetes results from the autoimmune destruction of pancreatic insulin-producing β-cells, primarily targeted by autoreactive T cells that recognize insulin B9-23 peptides as antigens. Using drift tube ion mobility spectrometry-mass spectrometry, transmission electron microscopy, and two-dimensional infrared spectroscopy, we characterized mouse insulin 1 B9-23 (Ins1 B9-23), insulin 2 B9-23 (Ins2 B9-23), along with two of their mutants, Ins2 B9-23 Y16A and Ins2 B9-23 C19S. Our findings indicate that Ins1 B9-23 and the Ins2 Y16A mutant exhibit rapid fibril formation, whereas Ins2 B9-23 and the Ins2 C19S mutant show slower fibrillization and a structural rearrangement from globular protofibrils to fibrillar aggregates. These differences in aggregation behaviors also manifest in interactions with (-)epigallocatechin gallate (EGCG), a canonical amyloid inhibitor. EGCG effectively disrupts the fibrils formed by Ins1 B9-23 and the Y16A mutant. However, it proves ineffective in preventing fibril formation of Ins2 B9-23 and the C19S mutant. These results establish a strong correlation between the aggregation behaviors of these peptides and their divergent effects on anti-islet autoimmunity.
Collapse
Affiliation(s)
- Aleksandra Antevska
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Kayla A Hess
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Connor C Long
- Department of Biochemistry, Cellular, and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Ethan J Walker
- Department of Chemistry, Westmont College, Santa Barbara, California 93108, United States
| | - Joshua H Jang
- Department of Chemistry, Westmont College, Santa Barbara, California 93108, United States
| | - Riellie J DeSoto
- Department of Chemistry, Westmont College, Santa Barbara, California 93108, United States
| | | | - Lauren E Buchanan
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Thanh D Do
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
45
|
Palmioli A, Airoldi C. An NMR Toolkit to Probe Amyloid Oligomer Inhibition in Neurodegenerative Diseases: From Ligand Screening to Dissecting Binding Topology and Mechanisms of Action. Chempluschem 2024; 89:e202400243. [PMID: 38712695 DOI: 10.1002/cplu.202400243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/08/2024]
Abstract
The aggregation of amyloid peptides and proteins into toxic oligomers is a hallmark of neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Machado-Joseph's disease, and transmissible spongiform encephalopathies. Inhibition of amyloid oligomers formation and interactions with biological counterparts, as well as the triggering of non-toxic amorphous aggregates, are strategies towards preventive interventions against these pathologies. NMR spectroscopy addresses the need for structural characterization of amyloid proteins and their aggregates, their binding to inhibitors, and rapid screening of compound libraries for ligand identification. Here we briefly discuss the solution experiments constituting the NMR spectroscopist's toolkit and provide examples of their application.
Collapse
Affiliation(s)
- Alessandro Palmioli
- Department of Biotechnology and Biosciences, University of Milano - Bicocca, P.zza della Scienza 2, 20126, Milan, Italy
| | - Cristina Airoldi
- Department of Biotechnology and Biosciences, University of Milano - Bicocca, P.zza della Scienza 2, 20126, Milan, Italy
| |
Collapse
|
46
|
Xie S, Liang Y, Song Y, Li T, Jia J. Repurposing Anidulafungin for Alzheimer's Disease via Fragment-Based Drug Discovery. ACS Chem Neurosci 2024; 15:2995-3008. [PMID: 39096284 PMCID: PMC11342299 DOI: 10.1021/acschemneuro.4c00150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/19/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024] Open
Abstract
The misfolding and aggregation of beta-amyloid (Aβ) peptides have been implicated as key pathogenic events in the early stages of Alzheimer's disease (AD). Inhibiting Aβ aggregation represents a potential disease-modifying therapeutic approach to AD treatment. Previous studies have identified various molecules that inhibit Aβ aggregation, some of which share common chemical substructures (fragments) that may be key to their inhibitory activity. Employing fragment-based drug discovery (FBDD) methods may facilitate the identification of these fragments, which can subsequently be used to screen new inhibitors and provide leads for further drug development. In this study, we used an in silico FBDD approach to identify 17 fragment clusters that are significantly enriched among Aβ aggregation inhibitors. These fragments were then used to screen anti-infective agents, a promising drug class for repurposing against amyloid aggregation. This screening process identified 16 anti-infective drugs, 5 of which were chosen for further investigation. Among the 5 candidates, anidulafungin, an antifungal compound, showed high efficacy in inhibiting Aβ aggregation in vitro. Kinetic analysis revealed that anidulafungin selectively blocks the primary nucleation step of Aβ aggregation, substantially delaying Aβ fibril formation. Cell viability assays demonstrated that anidulafungin can reduce the toxicity of oligomeric Aβ on BV2 microglia cells. Molecular docking simulations predicted that anidulafungin interacted with various Aβ species, including monomers, oligomers, and fibrils, potentially explaining its activity against Aβ aggregation and toxicity. This study suggests that anidulafungin is a potential drug to be repurposed for AD, and FBDD is a promising approach for discovering drugs to combat Aβ aggregation.
Collapse
Affiliation(s)
- Siqi Xie
- Innovation
Center for Neurological Disorders and Department of Neurology, Xuanwu
Hospital, Capital Medical University, National
Clinical Research Center for Geriatric Diseases, Beijing 100053, P. R. China
| | - Yumei Liang
- Innovation
Center for Neurological Disorders and Department of Neurology, Xuanwu
Hospital, Capital Medical University, National
Clinical Research Center for Geriatric Diseases, Beijing 100053, P. R. China
| | - Yang Song
- Innovation
Center for Neurological Disorders and Department of Neurology, Xuanwu
Hospital, Capital Medical University, National
Clinical Research Center for Geriatric Diseases, Beijing 100053, P. R. China
| | - Tingting Li
- Innovation
Center for Neurological Disorders and Department of Neurology, Xuanwu
Hospital, Capital Medical University, National
Clinical Research Center for Geriatric Diseases, Beijing 100053, P. R. China
| | - Jianping Jia
- Innovation
Center for Neurological Disorders and Department of Neurology, Xuanwu
Hospital, Capital Medical University, National
Clinical Research Center for Geriatric Diseases, Beijing 100053, P. R. China
- Beijing
Key Laboratory of Geriatric Cognitive Disorders, Beijing 100053, P. R. China
- Clinical
Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing 100053, P. R. China
- Center
of Alzheimer’s Disease, Beijing Institute of Brain Disorders,
Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100053, P. R. China
- Key
Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing 100053, P. R. China
| |
Collapse
|
47
|
Sangar D, Hill E, Jack K, Batchelor M, Mistry B, Ribes JM, Jackson GS, Mead S, Bieschke J. Syntaxin-6 delays prion protein fibril formation and prolongs the presence of toxic aggregation intermediates. eLife 2024; 13:e83320. [PMID: 39109999 PMCID: PMC11377041 DOI: 10.7554/elife.83320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 07/20/2024] [Indexed: 09/06/2024] Open
Abstract
Prions replicate via the autocatalytic conversion of cellular prion protein (PrPC) into fibrillar assemblies of misfolded PrP. While this process has been extensively studied in vivo and in vitro, non-physiological reaction conditions of fibril formation in vitro have precluded the identification and mechanistic analysis of cellular proteins, which may alter PrP self-assembly and prion replication. Here, we have developed a fibril formation assay for recombinant murine and human PrP (23-231) under near-native conditions (NAA) to study the effect of cellular proteins, which may be risk factors or potential therapeutic targets in prion disease. Genetic screening suggests that variants that increase syntaxin-6 expression in the brain (gene: STX6) are risk factors for sporadic Creutzfeldt-Jakob disease. Analysis of the protein in NAA revealed, counterintuitively, that syntaxin-6 is a potent inhibitor of PrP fibril formation. It significantly delayed the lag phase of fibril formation at highly sub-stoichiometric molar ratios. However, when assessing toxicity of different aggregation time points to primary neurons, syntaxin-6 prolonged the presence of neurotoxic PrP species. Electron microscopy and super-resolution fluorescence microscopy revealed that, instead of highly ordered fibrils, in the presence of syntaxin-6 PrP formed less-ordered aggregates containing syntaxin-6. These data strongly suggest that the protein can directly alter the initial phase of PrP self-assembly and, uniquely, can act as an 'anti-chaperone', which promotes toxic aggregation intermediates by inhibiting fibril formation.
Collapse
Affiliation(s)
- Daljit Sangar
- MRC Prion Unit at UCL, Institute of Prion DiseasesLondonUnited Kingdom
| | - Elizabeth Hill
- MRC Prion Unit at UCL, Institute of Prion DiseasesLondonUnited Kingdom
| | - Kezia Jack
- MRC Prion Unit at UCL, Institute of Prion DiseasesLondonUnited Kingdom
| | - Mark Batchelor
- MRC Prion Unit at UCL, Institute of Prion DiseasesLondonUnited Kingdom
| | - Beenaben Mistry
- MRC Prion Unit at UCL, Institute of Prion DiseasesLondonUnited Kingdom
| | - Juan M Ribes
- MRC Prion Unit at UCL, Institute of Prion DiseasesLondonUnited Kingdom
| | - Graham S Jackson
- MRC Prion Unit at UCL, Institute of Prion DiseasesLondonUnited Kingdom
| | - Simon Mead
- MRC Prion Unit at UCL, Institute of Prion DiseasesLondonUnited Kingdom
| | - Jan Bieschke
- MRC Prion Unit at UCL, Institute of Prion DiseasesLondonUnited Kingdom
| |
Collapse
|
48
|
Zampar S, Di Gregorio SE, Grimmer G, Watts JC, Ingelsson M. "Prion-like" seeding and propagation of oligomeric protein assemblies in neurodegenerative disorders. Front Neurosci 2024; 18:1436262. [PMID: 39161653 PMCID: PMC11330897 DOI: 10.3389/fnins.2024.1436262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/17/2024] [Indexed: 08/21/2024] Open
Abstract
Intra- or extracellular aggregates of proteins are central pathogenic features in most neurodegenerative disorders. The accumulation of such proteins in diseased brains is believed to be the end-stage of a stepwise aggregation of misfolded monomers to insoluble cross-β fibrils via a series of differently sized soluble oligomers/protofibrils. Several studies have shown how α-synuclein, amyloid-β, tau and other amyloidogenic proteins can act as nucleating particles and thereby share properties with misfolded forms, or strains, of the prion protein. Although the roles of different protein assemblies in the respective aggregation cascades remain unclear, oligomers/protofibrils are considered key pathogenic species. Numerous observations have demonstrated their neurotoxic effects and a growing number of studies have indicated that they also possess seeding properties, enabling their propagation within cellular networks in the nervous system. The seeding behavior of oligomers differs between the proteins and is also affected by various factors, such as size, shape and epitope presentation. Here, we are providing an overview of the current state of knowledge with respect to the "prion-like" behavior of soluble oligomers for several of the amyloidogenic proteins involved in neurodegenerative diseases. In addition to providing new insight into pathogenic mechanisms, research in this field is leading to novel diagnostic and therapeutic opportunities for neurodegenerative diseases.
Collapse
Affiliation(s)
- Silvia Zampar
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Sonja E. Di Gregorio
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Gustavo Grimmer
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Joel C. Watts
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Martin Ingelsson
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Public Health/Geriatrics, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
49
|
Bolat E, Sarıtaş S, Duman H, Eker F, Akdaşçi E, Karav S, Witkowska AM. Polyphenols: Secondary Metabolites with a Biological Impression. Nutrients 2024; 16:2550. [PMID: 39125431 PMCID: PMC11314462 DOI: 10.3390/nu16152550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Polyphenols are natural compounds which are plant-based bioactive molecules, and have been the subject of growing interest in recent years. Characterized by multiple varieties, polyphenols are mostly found in fruits and vegetables. Currently, many diseases are waiting for a cure or a solution to reduce their symptoms. However, drug or other chemical strategies have limitations for using a treatment agent or still detection tool of many diseases, and thus researchers still need to investigate preventive or improving treatment. Therefore, it is of interest to elucidate polyphenols, their bioactivity effects, supplementation, and consumption. The disadvantage of polyphenols is that they have a limited bioavailability, although they have multiple beneficial outcomes with their bioactive roles. In this context, several different strategies have been developed to improve bioavailability, particularly liposomal and nanoparticles. As nutrition is one of the most important factors in improving health, the inclusion of plant-based molecules in the daily diet is significant and continues to be enthusiastically researched. Nutrition, which is important for individuals of all ages, is the key to the bioactivity of polyphenols.
Collapse
Affiliation(s)
- Ecem Bolat
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Canakkale 17000, Türkiye; (E.B.); (S.S.); (H.D.); (F.E.); (E.A.)
| | - Sümeyye Sarıtaş
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Canakkale 17000, Türkiye; (E.B.); (S.S.); (H.D.); (F.E.); (E.A.)
| | - Hatice Duman
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Canakkale 17000, Türkiye; (E.B.); (S.S.); (H.D.); (F.E.); (E.A.)
| | - Furkan Eker
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Canakkale 17000, Türkiye; (E.B.); (S.S.); (H.D.); (F.E.); (E.A.)
| | - Emir Akdaşçi
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Canakkale 17000, Türkiye; (E.B.); (S.S.); (H.D.); (F.E.); (E.A.)
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Canakkale 17000, Türkiye; (E.B.); (S.S.); (H.D.); (F.E.); (E.A.)
| | - Anna Maria Witkowska
- Department of Food Biotechnology, Bialystok Medical University, 15-089 Bialystok, Poland
| |
Collapse
|
50
|
Srivastava T, Tyagi D, Fatima S, Sathyan MTV, Raj R, Sharma A, Chaturvedi M, Sinha M, Shishodia SK, Kumar D, Sharma SK, Shankar J, Satish A, Priya S. A natural small molecule-mediated inhibition of alpha-synuclein aggregation leads to neuroprotection in Caenorhabditis elegans. J Neurochem 2024; 168:1640-1654. [PMID: 37429595 DOI: 10.1111/jnc.15907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 05/16/2023] [Accepted: 06/04/2023] [Indexed: 07/12/2023]
Abstract
Small molecules are being explored intensively for their applications as therapeutic molecules in the management of metabolic and neurological disorders. The natural small molecules can inhibit protein aggregation and underlying cellular pathogenesis of neurodegenerative diseases involving multi-factorial mechanisms of action. Certain natural small molecular inhibitors of pathogenic protein aggregation are highly efficient and have shown promising therapeutic potential. In the present study, Shikonin (SHK), a natural plant-based naphthoquinone has been investigated for its aggregation inhibition activity against α-synuclein (α-syn) and the neuroprotective potential in Caenorhabditis elegans (C. elegans). SHK significantly inhibited aggregation of α-syn at sub-stochiometric concentrations, delayed the linear lag phase and growth kinetics of seeded and unseeded α-syn aggregation. The binding of SHK to the C-terminus of α-syn maintained α-helical and disordered secondary structures with reduced beta-sheet content and complexity of aggregates. Further, in C. elegans transgenic PD models, SHK significantly reduced α-syn aggregation, improved locomotor activity and prevented dopaminergic (DA) neuronal degeneration, indicating the neuroprotective role of SHK. The present study highlights the potential of natural small molecules in the prevention of protein aggregation that may further be explored for their therapeutic efficacy in the management of protein aggregation and neurodegenerative diseases.
Collapse
Affiliation(s)
- Tulika Srivastava
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Divya Tyagi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Ecotoxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India
| | - Siraj Fatima
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Malur Thirumalesh Vishnu Sathyan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Ecotoxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India
| | - Ritu Raj
- Department of Advanced Spectroscopy and Imaging, Centre of Biomedical Research (CBMR), Lucknow, India
| | - Aniket Sharma
- Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India
- Department of Animal Science, College of Agriculture and Natural Sciences, University of Wyoming, Laramie, Wyoming, USA
| | - Minal Chaturvedi
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Meetali Sinha
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Computational Toxicology Facility, Toxicoinformatics Research Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR) Vishvigyan Bhawan, Lucknow, India
| | - Sonia Kumari Shishodia
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, India
- University Institute of Biotechnology (UIBT), Chandigarh University, Mohali, India
| | - Dinesh Kumar
- Department of Advanced Spectroscopy and Imaging, Centre of Biomedical Research (CBMR), Lucknow, India
| | - Sandeep K Sharma
- Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India
| | - Jata Shankar
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, India
| | - Aruna Satish
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Ecotoxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India
| | - Smriti Priya
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|