1
|
Abdullah HQ, Levanon NL, Perach M, Grupper M, Ziv T, Lewinson O. When less is more: Counterintuitive stoichiometries and cellular abundances are essential for ABC transporters' function. SCIENCE ADVANCES 2025; 11:eadq7470. [PMID: 40397753 PMCID: PMC12094219 DOI: 10.1126/sciadv.adq7470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 04/16/2025] [Indexed: 05/23/2025]
Abstract
Prokaryotes acquire essential nutrients primarily through adenosine triphosphate-binding cassette (ABC) importers, consisting of an adenosine triphosphatase, a permease, and a substrate-binding protein. These importers are highly underrepresented in proteomic databases, limiting our knowledge about their cellular copy numbers, component stoichiometry, and the mechanistic implications of these parameters. We developed a tailored proteomic approach to compile the most comprehensive dataset to date of the Escherichia coli "ABC importome." Functional assays and analyses of deletion strains revealed mechanistic features linking molecular mechanisms to cellular abundances, colocalization, and component stoichiometries. We observed four to five orders of magnitude variation in import system abundances, with copy numbers tuned to nutrient hierarchies essential for growth. Abundances of substrate-binding proteins are unrelated to their substrate binding affinities but are tightly yet inversely correlated with their interaction affinity with permeases. Counterintuitive component stoichiometries are crucial for function, offering insights into the design principles of multicomponent protein systems, potentially extending beyond ABC importers.
Collapse
Affiliation(s)
- Hiba Qasem Abdullah
- Department of Molecular Microbiology, Bruce and Ruth Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Nurit Livnat Levanon
- Department of Molecular Microbiology, Bruce and Ruth Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Michal Perach
- Department of Molecular Microbiology, Bruce and Ruth Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Moti Grupper
- Infectious Disease Unit, Rambam Health Care Campus, Haifa, Israel
| | - Tamar Ziv
- Smoler Proteomics Center, Technion-Israel Institute of Technology, Haifa, Israel
| | - Oded Lewinson
- Department of Molecular Microbiology, Bruce and Ruth Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
2
|
Duman O, Kuznetsova A, Levanon NL, Grupper M, Ersoy AA, Acar B, Kessel A, Ben‐Tal N, Lewinson O, Haliloglu T. Computational and experimental mapping of the allosteric network of two manganese ABC transporters. Protein Sci 2025; 34:e70039. [PMID: 39887508 PMCID: PMC11779740 DOI: 10.1002/pro.70039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 12/27/2024] [Accepted: 01/07/2025] [Indexed: 02/01/2025]
Abstract
Transition metals (e.g., Fe2/3+, Zn2+, Mn2+) are essential enzymatic cofactors in all organisms. Their environmental scarcity led to the evolution of high-affinity uptake systems. Our research focuses on two bacterial manganese ABC importers, Streptococcus pneumoniae PsaBC and Bacillus anthracis MntBC, both critical for virulence. Both importers share a similar homodimeric structure, where each protomer comprises a transmembrane domain (TMD) linked to a cytoplasmic nucleotide-binding domain (NBD). Due to their size and slow turnover rates, the utility of conventional molecular simulation approaches to reveal functional dynamics is limited. Thus, we employed a novel, computationally efficient method integrating Gaussian Network Models (GNM) with information theory Transfer Entropy (TE) calculations. Our calculations are in remarkable agreement with previous functional studies. Furthermore, based on the calculations, we generated 10 point-mutations and experimentally tested their effects, finding excellent concordance between computational predictions and experimental results. We identified "allosteric hotspots" in both transporters, in the transmembrane translocation pathway, at the coupling helices linking the TMDs and NBDs, and in the ATP binding sites. In both PsaBC and MntBC, we observed bi-directional information flow between the two TMDs, with minimal allosteric transmission to the NBDs. Conversely, the NBDs exhibited almost no NBD-NBD allosteric crosstalk but showed pronounced information flow from the NBD of one protomer towards the TMD of the other protomer. This unique allosteric "footprint" distinguishes ABC importers of transition metals from other members of the ABC transporter superfamily establishing them as a distinct functional class. This study offers the first comprehensive insight into the conformational dynamics of these vital virulence determinants, providing potential avenues for developing urgently needed novel antibacterial agents.
Collapse
Affiliation(s)
- Ozge Duman
- Department of Chemical EngineeringBogazici UniversityIstanbulTurkey
- Polymer Research CenterBogazici UniversityIstanbulTurkey
| | - Anastasiya Kuznetsova
- Department of Molecular MicrobiologyBruce and Ruth Rappaport Faculty of Medicine, Technion‐Israel Institute of TechnologyHaifaIsrael
| | - Nurit Livnat Levanon
- Department of Molecular MicrobiologyBruce and Ruth Rappaport Faculty of Medicine, Technion‐Israel Institute of TechnologyHaifaIsrael
| | - Moti Grupper
- Infectious Disease UnitRambam Health Care CampusHaifaIsrael
| | - Akarun Ayca Ersoy
- Department of Chemical EngineeringBogazici UniversityIstanbulTurkey
- Polymer Research CenterBogazici UniversityIstanbulTurkey
| | - Burcin Acar
- Polymer Research CenterBogazici UniversityIstanbulTurkey
| | - Amit Kessel
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life SciencesTel‐Aviv UniversityTel‐AvivIsrael
| | - Nir Ben‐Tal
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life SciencesTel‐Aviv UniversityTel‐AvivIsrael
| | - Oded Lewinson
- Department of Molecular MicrobiologyBruce and Ruth Rappaport Faculty of Medicine, Technion‐Israel Institute of TechnologyHaifaIsrael
| | - Turkan Haliloglu
- Department of Chemical EngineeringBogazici UniversityIstanbulTurkey
- Polymer Research CenterBogazici UniversityIstanbulTurkey
| |
Collapse
|
3
|
Berner B, Daoutsali G, Melén E, Remper N, Weszelovszká E, Rothnie A, Hedfalk K. Successful strategies for expression and purification of ABC transporters. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2025; 1867:184401. [PMID: 39537006 DOI: 10.1016/j.bbamem.2024.184401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
ATP-binding cassette (ABC) transporters are proteins responsible for active transport of various compounds, from small ions to macromolecules, across membranes. Proteins from this superfamily also pump drugs out of the cell resulting in multidrug resistance. Based on the cellular functions of ABC-transporters they are commonly associated with diseases like cancer and cystic fibrosis. To understand the molecular mechanism of this critical family of integral membrane proteins, structural characterization is a powerful tool which in turn requires successful recombinant production of stable and functional protein in good yields. In this review we have used high resolution structures of ABC transporters as a measure of successful protein production and summarized strategies for prokaryotic and eukaryotic proteins, respectively. In general, Escherichia coli is the most frequently used host for production of prokaryotic ABC transporters while human embryonic kidney 293 (HEK293) cells are the preferred host system for eukaryotic proteins. Independent of origin, at least two-steps of purification were required after solubilization in the most used detergent DDM. The purification tag was frequently cleaved off before structural characterization using cryogenic electron microscopy, or crystallization and X-ray analysis for prokaryotic proteins.
Collapse
Affiliation(s)
- Bea Berner
- Department and Chemistry and Molecular Biology, Gothenburg University, Box 462, 405 30 Göteborg, Sweden
| | - Georgia Daoutsali
- Department and Chemistry and Molecular Biology, Gothenburg University, Box 462, 405 30 Göteborg, Sweden
| | - Emilia Melén
- Department and Chemistry and Molecular Biology, Gothenburg University, Box 462, 405 30 Göteborg, Sweden
| | - Natália Remper
- Department and Chemistry and Molecular Biology, Gothenburg University, Box 462, 405 30 Göteborg, Sweden
| | - Emma Weszelovszká
- Department and Chemistry and Molecular Biology, Gothenburg University, Box 462, 405 30 Göteborg, Sweden
| | - Alice Rothnie
- College of Health and Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK.
| | - Kristina Hedfalk
- Department and Chemistry and Molecular Biology, Gothenburg University, Box 462, 405 30 Göteborg, Sweden.
| |
Collapse
|
4
|
HOW SS, CHIENG S, NATHAN S, LAM SD. ATP-binding cassette (ABC) transporters: structures and roles in bacterial pathogenesis. J Zhejiang Univ Sci B 2024; 26:58-75. [PMID: 39815611 PMCID: PMC11735909 DOI: 10.1631/jzus.b2300641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/17/2023] [Indexed: 10/22/2024]
Abstract
Adenosine triphosphate (ATP)-binding cassette (ABC) transporter systems are divided into importers and exporters that facilitate the movement of diverse substrate molecules across the lipid bilayer, against the concentration gradient. These transporters comprise two highly conserved nucleotide-binding domains (NBDs) and two transmembrane domains (TMDs). Unlike ABC exporters, prokaryotic ABC importers require an additional substrate-binding protein (SBP) as a recognition site for specific substrate translocation. The discovery of a large number of ABC systems in bacterial pathogens revealed that these transporters are crucial for the establishment of bacterial infections. The existing literature has highlighted the roles of ABC transporters in bacterial growth, pathogenesis, and virulence. These roles include importing essential nutrients required for a variety of cellular processes and exporting outer membrane-associated virulence factors and antimicrobial substances. This review outlines the general structures and classification of ABC systems to provide a comprehensive view of the activities and roles of ABC transporters associated with bacterial virulence and pathogenesis during infection.
Collapse
|
5
|
Li Y, Han S, Gao H. Heme homeostasis and its regulation by hemoproteins in bacteria. MLIFE 2024; 3:327-342. [PMID: 39359680 PMCID: PMC11442138 DOI: 10.1002/mlf2.12120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/08/2024] [Accepted: 02/23/2024] [Indexed: 10/04/2024]
Abstract
Heme is an important cofactor and a regulatory molecule involved in various physiological processes in virtually all living cellular organisms, and it can also serve as the primary iron source for many bacteria, particularly pathogens. However, excess heme is cytotoxic to cells. In order to meet physiological needs while preventing deleterious effects, bacteria have evolved sophisticated cellular mechanisms to maintain heme homeostasis. Recent advances in technologies have shaped our understanding of the molecular mechanisms that govern the biological processes crucial to heme homeostasis, including synthesis, acquisition, utilization, degradation, trafficking, and efflux, as well as their regulation. Central to these mechanisms is the regulation of the heme, by the heme, and for the heme. In this review, we present state-of-the-art findings covering the biochemical, physiological, and structural characterization of important, newly identified hemoproteins/systems involved in heme homeostasis.
Collapse
Affiliation(s)
- Yingxi Li
- Institute of Microbiology and College of Life SciencesZhejiang UniversityHangzhouChina
| | - Sirui Han
- Institute of Microbiology and College of Life SciencesZhejiang UniversityHangzhouChina
| | - Haichun Gao
- Institute of Microbiology and College of Life SciencesZhejiang UniversityHangzhouChina
| |
Collapse
|
6
|
Marson NA, Gallio AE, Mandal SK, Laskowski RA, Raven EL. In silico prediction of heme binding in proteins. J Biol Chem 2024; 300:107250. [PMID: 38569935 PMCID: PMC11101860 DOI: 10.1016/j.jbc.2024.107250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/11/2024] [Accepted: 03/26/2024] [Indexed: 04/05/2024] Open
Abstract
The process of heme binding to a protein is prevalent in almost all forms of life to control many important biological properties, such as O2-binding, electron transfer, gas sensing or to build catalytic power. In these cases, heme typically binds tightly (irreversibly) to a protein in a discrete heme binding pocket, with one or two heme ligands provided most commonly to the heme iron by His, Cys or Tyr residues. Heme binding can also be used as a regulatory mechanism, for example in transcriptional regulation or ion channel control. When used as a regulator, heme binds more weakly, with different heme ligations and without the need for a discrete heme pocket. This makes the characterization of heme regulatory proteins difficult, and new approaches are needed to predict and understand the heme-protein interactions. We apply a modified version of the ProFunc bioinformatics tool to identify heme-binding sites in a test set of heme-dependent regulatory proteins taken from the Protein Data Bank and AlphaFold models. The potential heme binding sites identified can be easily visualized in PyMol and, if necessary, optimized with RosettaDOCK. We demonstrate that the methodology can be used to identify heme-binding sites in proteins, including in cases where there is no crystal structure available, but the methodology is more accurate when the quality of the structural information is high. The ProFunc tool, with the modification used in this work, is publicly available at https://www.ebi.ac.uk/thornton-srv/databases/profunc and can be readily adopted for the examination of new heme binding targets.
Collapse
Affiliation(s)
- Noa A Marson
- School of Chemistry, University of Bristol, Bristol, UK
| | | | | | - Roman A Laskowski
- European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Wellcome Trust Genome Campus, Cambridge, UK
| | - Emma L Raven
- School of Chemistry, University of Bristol, Bristol, UK.
| |
Collapse
|
7
|
Hopp MT, Holze J, Lauber F, Holtkamp L, Rathod DC, Miteva MA, Prestes EB, Geyer M, Manoury B, Merle NS, Roumenina LT, Bozza MT, Weindl G, Imhof D. Insights into the molecular basis and mechanism of heme-triggered TLR4 signalling: The role of heme-binding motifs in TLR4 and MD2. Immunology 2024; 171:181-197. [PMID: 37885279 DOI: 10.1111/imm.13708] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 10/06/2023] [Indexed: 10/28/2023] Open
Abstract
Haemolytic disorders, such as sickle cell disease, are accompanied by the release of high amounts of labile heme into the intravascular compartment resulting in the induction of proinflammatory and prothrombotic complications in affected patients. In addition to the relevance of heme-regulated proteins from the complement and blood coagulation systems, activation of the TLR4 signalling pathway by heme was ascribed a crucial role in the progression of these pathological processes. Heme binding to the TLR4-MD2 complex has been proposed recently, however, essential mechanistic information of the processes at the molecular level, such as heme-binding kinetics, the heme-binding capacity and the respective heme-binding sites (HBMs) is still missing. We report the interaction of TLR4, MD2 and the TLR4-MD2 complex with heme and the consequences thereof by employing biochemical, spectroscopic, bioinformatic and physiologically relevant approaches. Heme binding occurs transiently through interaction with up to four HBMs in TLR4, two HBMs in MD2 and at least four HBMs in their complex. Functional studies highlight that mutations of individual HBMs in TLR4 preserve full receptor activation by heme, suggesting that heme interacts with TLR4 through different binding sites independently of MD2. Furthermore, we confirm and extend the major role of TLR4 for heme-mediated cytokine responses in human immune cells.
Collapse
Affiliation(s)
- Marie-T Hopp
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, Bonn, Germany
- Department of Chemistry, Institute of Integrated Natural Sciences, University of Koblenz, Koblenz, Germany
| | - Janine Holze
- Pharmacology and Toxicology, Pharmaceutical Institute, University of Bonn, Bonn, Germany
| | - Felicitas Lauber
- Pharmacology and Toxicology, Pharmaceutical Institute, University of Bonn, Bonn, Germany
| | - Laura Holtkamp
- Pharmacology and Toxicology, Pharmaceutical Institute, University of Bonn, Bonn, Germany
| | - Dhruv C Rathod
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, Bonn, Germany
| | - Maria A Miteva
- CNRS UMR 8038 CiTCoM, Université de Paris, Faculté de Pharmacie de Paris, Paris, France
- INSERM U 1268 Medicinal Chemistry and Translational Research, Paris, France
| | - Elisa B Prestes
- Laboratório de Inflamação e Imunidade, Departamento de Imunologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Matthias Geyer
- Institute of Structural Biology, University of Bonn, Bonn, Germany
| | - Bénédicte Manoury
- Institut Necker Enfants Malades, INSERM U1151-CNRS UMR8253, Université Paris Cité, Faculté de médecine Necker, Paris, France
| | - Nicolas S Merle
- Centre de Recherche des Cordeliers, UMR_S 1138, INSERM, Paris, France
- Centre de Recherche des Cordeliers, Sorbonne Universités, Paris, France
- Centre de Recherche des Cordeliers, Université Paris Descartes, Paris, France
| | - Lubka T Roumenina
- Centre de Recherche des Cordeliers, UMR_S 1138, INSERM, Paris, France
- Centre de Recherche des Cordeliers, Sorbonne Universités, Paris, France
- Centre de Recherche des Cordeliers, Université Paris Descartes, Paris, France
| | - Marcelo T Bozza
- Laboratório de Inflamação e Imunidade, Departamento de Imunologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Günther Weindl
- Pharmacology and Toxicology, Pharmaceutical Institute, University of Bonn, Bonn, Germany
| | - Diana Imhof
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, Bonn, Germany
| |
Collapse
|
8
|
Keith AD, Sawyer EB, Choy DCY, Xie Y, Biggs GS, Klein OJ, Brear PD, Wales DJ, Barker PD. Combining experiment and energy landscapes to explore anaerobic heme breakdown in multifunctional hemoproteins. Phys Chem Chem Phys 2024; 26:695-712. [PMID: 38053511 DOI: 10.1039/d3cp03897a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
To survive, many pathogens extract heme from their host organism and break down the porphyrin scaffold to sequester the Fe2+ ion via a heme oxygenase. Recent studies have revealed that certain pathogens can anaerobically degrade heme. Our own research has shown that one such pathway proceeds via NADH-dependent heme degradation, which has been identified in a family of hemoproteins from a range of bacteria. HemS, from Yersinia enterocolitica, is the main focus of this work, along with HmuS (Yersinia pestis), ChuS (Escherichia coli) and ShuS (Shigella dysenteriae). We combine experiments, Energy Landscape Theory, and a bioinformatic investigation to place these homologues within a wider phylogenetic context. A subset of these hemoproteins are known to bind certain DNA promoter regions, suggesting not only that they can catalytically degrade heme, but that they are also involved in transcriptional modulation responding to heme flux. Many of the bacterial species responsible for these hemoproteins (including those that produce HemS, ChuS and ShuS) are known to specifically target oxygen-depleted regions of the gastrointestinal tract. A deeper understanding of anaerobic heme breakdown processes exploited by these pathogens could therefore prove useful in the development of future strategies for disease prevention.
Collapse
Affiliation(s)
- Alasdair D Keith
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
| | - Elizabeth B Sawyer
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
| | - Desmond C Y Choy
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
| | - Yuhang Xie
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
| | - George S Biggs
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
| | - Oskar James Klein
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
| | - Paul D Brear
- Department of Biochemistry, University of Cambridge, Sanger Building, Cambridge CB2 1GA, UK
| | - David J Wales
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
| | - Paul D Barker
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
| |
Collapse
|
9
|
Liu H, Wei Z, Li J, Liu X, Zhu L, Wang Y, Wang T, Li C, Shen X. A Yersinia T6SS Effector YezP Engages the Hemin Uptake Receptor HmuR and ZnuABC for Zn 2+ Acquisition. Appl Environ Microbiol 2023; 89:e0024023. [PMID: 37338394 PMCID: PMC10370319 DOI: 10.1128/aem.00240-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/25/2023] [Indexed: 06/21/2023] Open
Abstract
Metal ions are essential nutrients for all life forms, and restriction of metal ion availability is an effective host defense against bacterial infection. Meanwhile, bacterial pathogens have developed equally effective means to secure their metal ion supply. The enteric pathogen Yersinia pseudotuberculosis was found to uptake zinc using the T6SS4 effector YezP, which is essential for Zn2+ acquisition and bacterial survival under oxidative stress. However, the mechanism of this zinc uptake pathway has not been fully elucidated. Here, we identified the hemin uptake receptor HmuR for YezP, which can mediate import of Zn2+ into the periplasm by the YezP-Zn2+ complex and demonstrated that YezP functions extracellularly. This study also confirmed that the ZnuCB transporter is the inner membrane transporter for Zn2+ from the periplasm to cytoplasm. Overall, our results reveal the complete T6SS/YezP/HmuR/ZnuABC pathway, wherein multiple systems are coupled to support zinc uptake by Y. pseudotuberculosis under oxidative stress. IMPORTANCE Identifying the transporters involved in import of metal ions under normal physiological growth conditions in bacterial pathogens will clarify its pathogenic mechanism. Y. pseudotuberculosis YPIII, a common foodborne pathogen that infects animals and humans, uptake zinc via the T6SS4 effector YezP. However, the outer and inner transports involved in Zn2+ acquisition remain unknown. The important outcomes of this study are the identification of the hemin uptake receptor HmuR and inner membrane transporter ZnuCB that import Zn2+ into the cytoplasm via the YezP-Zn2+ complex, and elucidation of the complete Zn2+ acquisition pathway consisting of T6SS, HmuRSTUV, and ZnuABC, thereby providing a comprehensive view of T6SS-mediated ion transport and its functions.
Collapse
Affiliation(s)
- Hai Liu
- Qingyang Longfeng Sponge City Construction Management & Operation Co., Ltd, Qingyang, Gansu, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhiyan Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Jiali Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Xingyu Liu
- State Key Laboratory of Geological Processes and Mineral Resources, Institute of Earth Sciences, China University of Geosciences, Beijing, China
| | - Lingfang Zhu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Yao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Tietao Wang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Changfu Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Xihui Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
10
|
McGregor AK, Chan ACK, Schroeder MD, Do LTM, Saini G, Murphy MEP, Wolthers KR. A new member of the flavodoxin superfamily from Fusobacterium nucleatum that functions in heme trafficking and reduction of anaerobilin. J Biol Chem 2023; 299:104902. [PMID: 37302554 PMCID: PMC10404700 DOI: 10.1016/j.jbc.2023.104902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/18/2023] [Accepted: 05/24/2023] [Indexed: 06/13/2023] Open
Abstract
Fusobacterium nucleatum is an opportunistic oral pathogen that is associated with various cancers. To fulfill its essential need for iron, this anaerobe will express heme uptake machinery encoded at a single genetic locus. The heme uptake operon includes HmuW, a class C radical SAM-dependent methyltransferase that degrades heme anaerobically to release Fe2+ and a linear tetrapyrrole called anaerobilin. The last gene in the operon, hmuF encodes a member of the flavodoxin superfamily of proteins. We discovered that HmuF and a paralog, FldH, bind tightly to both FMN and heme. The structure of Fe3+-heme-bound FldH (1.6 Å resolution) reveals a helical cap domain appended to the ⍺/β core of the flavodoxin fold. The cap creates a hydrophobic binding cleft that positions the heme planar to the si-face of the FMN isoalloxazine ring. The ferric heme iron is hexacoordinated to His134 and a solvent molecule. In contrast to flavodoxins, FldH and HmuF do not stabilize the FMN semiquinone but instead cycle between the FMN oxidized and hydroquinone states. We show that heme-loaded HmuF and heme-loaded FldH traffic heme to HmuW for degradation of the protoporphyrin ring. Both FldH and HmuF then catalyze multiple reductions of anaerobilin through hydride transfer from the FMN hydroquinone. The latter activity eliminates the aromaticity of anaerobilin and the electrophilic methylene group that was installed through HmuW turnover. Hence, HmuF provides a protected path for anaerobic heme catabolism, offering F. nucleatum a competitive advantage in the colonization of anoxic sites of the human body.
Collapse
Affiliation(s)
| | - Anson C K Chan
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Megan D Schroeder
- Department of Chemistry, University of British Columbia, Kelowna, Canada
| | - Long T M Do
- Department of Chemistry, University of British Columbia, Kelowna, Canada
| | - Gurpreet Saini
- Department of Chemistry, University of British Columbia, Kelowna, Canada
| | - Michael E P Murphy
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Kirsten R Wolthers
- Department of Chemistry, University of British Columbia, Kelowna, Canada.
| |
Collapse
|
11
|
De Gaetano GV, Lentini G, Famà A, Coppolino F, Beninati C. Antimicrobial Resistance: Two-Component Regulatory Systems and Multidrug Efflux Pumps. Antibiotics (Basel) 2023; 12:965. [PMID: 37370284 DOI: 10.3390/antibiotics12060965] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
The number of multidrug-resistant bacteria is rapidly spreading worldwide. Among the various mechanisms determining resistance to antimicrobial agents, multidrug efflux pumps play a noteworthy role because they export extraneous and noxious substrates from the inside to the outside environment of the bacterial cell contributing to multidrug resistance (MDR) and, consequently, to the failure of anti-infective therapies. The expression of multidrug efflux pumps can be under the control of transcriptional regulators and two-component systems (TCS). TCS are a major mechanism by which microorganisms sense and reply to external and/or intramembrane stimuli by coordinating the expression of genes involved not only in pathogenic pathways but also in antibiotic resistance. In this review, we describe the influence of TCS on multidrug efflux pump expression and activity in some Gram-negative and Gram-positive bacteria. Taking into account the strict correlation between TCS and multidrug efflux pumps, the development of drugs targeting TCS, alone or together with already discovered efflux pump inhibitors, may represent a beneficial strategy to contribute to the fight against growing antibiotic resistance.
Collapse
Affiliation(s)
| | - Germana Lentini
- Department of Human Pathology, University of Messina, 98124 Messina, Italy
| | - Agata Famà
- Department of Human Pathology, University of Messina, 98124 Messina, Italy
| | - Francesco Coppolino
- Department of Biomedical, Dental and Imaging Sciences, University of Messina, 98124 Messina, Italy
| | - Concetta Beninati
- Department of Human Pathology, University of Messina, 98124 Messina, Italy
- Scylla Biotech Srl, 98124 Messina, Italy
| |
Collapse
|
12
|
Chetri S. The culmination of multidrug-resistant efflux pumps vs. meager antibiotic arsenal era: Urgent need for an improved new generation of EPIs. Front Microbiol 2023; 14:1149418. [PMID: 37138605 PMCID: PMC10149990 DOI: 10.3389/fmicb.2023.1149418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 03/13/2023] [Indexed: 05/05/2023] Open
Abstract
Efflux pumps function as an advanced defense system against antimicrobials by reducing the concentration of drugs inside the bacteria and extruding the substances outside. Various extraneous substances, including antimicrobials, toxic heavy metals, dyes, and detergents, have been removed by this protective barrier composed of diverse transporter proteins found in between the cell membrane and the periplasm within the bacterial cell. In this review, multiple efflux pump families have been analytically and widely outlined, and their potential applications have been discussed in detail. Additionally, this review also discusses a variety of biological functions of efflux pumps, including their role in the formation of biofilms, quorum sensing, their survivability, and the virulence in bacteria, and the genes/proteins associated with efflux pumps have also been explored for their potential relevance to antimicrobial resistance and antibiotic residue detection. A final discussion centers around efflux pump inhibitors, particularly those derived from plants.
Collapse
|
13
|
Shisaka Y, Shoji O. Bridging the gap: Unveiling novel functions of a bacterial haem-acquisition protein capturing diverse synthetic porphyrinoids. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
14
|
Structural basis for heme detoxification by an ATP-binding cassette-type efflux pump in gram-positive pathogenic bacteria. Proc Natl Acad Sci U S A 2022; 119:e2123385119. [PMID: 35767641 PMCID: PMC9271180 DOI: 10.1073/pnas.2123385119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Bacterial pathogens acquire heme from the host hemoglobin as an iron nutrient for their virulence and proliferation in blood. Concurrently, they encounter cytotoxic-free heme that escapes the heme-acquisition process. To overcome this toxicity, many gram-positive bacteria employ an ATP-binding cassette heme-dedicated efflux pump, HrtBA in the cytoplasmic membranes. Although genetic analyses have suggested that HrtBA expels heme from the bacterial membranes, the molecular mechanism of heme efflux remains elusive due to the lack of protein studies. Here, we show the biochemical properties and crystal structures of Corynebacterium diphtheriae HrtBA, alone and in complex with heme or an ATP analog, and we reveal how HrtBA extracts heme from the membrane and releases it. HrtBA consists of two cytoplasmic HrtA ATPase subunits and two transmembrane HrtB permease subunits. A heme-binding site is formed in the HrtB dimer and is laterally accessible to heme in the outer leaflet of the membrane. The heme-binding site captures heme from the membrane using a glutamate residue of either subunit as an axial ligand and sequesters the heme within the rearranged transmembrane helix bundle. By ATP-driven HrtA dimerization, the heme-binding site is squeezed to extrude the bound heme. The mechanism sheds light on the detoxification of membrane-bound heme in this bacterium.
Collapse
|
15
|
Saha I, Chakraborty S, Agarwal S, Mukherjee P, Ghosh B, Dasgupta J. Mechanistic insights of ABC importer HutCD involved in heme internalization by Vibrio cholerae. Sci Rep 2022; 12:7152. [PMID: 35504999 PMCID: PMC9065009 DOI: 10.1038/s41598-022-11213-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 03/24/2022] [Indexed: 11/10/2022] Open
Abstract
Heme internalization by pathogenic bacteria inside a human host to accomplish the requirement of iron for important cellular processes is of paramount importance. Despite this, the mechanism of heme import by the ATP-binding-cassette (ABC) transporter HutCD in Vibrio cholerae remains unexplored. We have performed biochemical studies on ATPase HutD and its mutants, along with molecular modelling, docking and unbiased all-atom MD simulations on lipid-solvated models of permease-ATPase complex HutCD. The results demonstrated mechanisms of ATP binding/hydrolysis and trapped transient and global conformational changes in HutCD, necessary for heme internalization. ATPase HutD forms a dimer, independent of the permease HutC. Each HutD monomer canonically binds ATP in a 1:1 stoichiometry. MD simulations demonstrated that a rotational motion of HutC dimer occurs synchronously with the inter-dimeric D-loop interactions of HutDs. F151 of TM4–TM5 loop of HutC, packs with ATP and Y15 of HutD, initiating ‘cytoplasmic gate opening’ which mimics an ‘outward-facing’ to ‘inward-facing’ conformational switching upon ATP hydrolysis. The simulation on ‘inward-facing’ HutCD culminates to an ‘occluded’ state. The simulation on heme-docked HutCD indicated that the event of heme release occurs in ATP-free ‘inward-facing’ state. Gradual conformational changes of the TM5 helices of HutC towards the ‘occluded’ state facilitate ejection of heme.
Collapse
Affiliation(s)
- Indrila Saha
- Department of Biotechnology, St. Xavier's College (Autonomous), 30, Mother Teresa Sarani, Kolkata, 700016, India
| | - Shrestha Chakraborty
- Department of Biotechnology, St. Xavier's College (Autonomous), 30, Mother Teresa Sarani, Kolkata, 700016, India
| | - Shubhangi Agarwal
- Department of Biotechnology, St. Xavier's College (Autonomous), 30, Mother Teresa Sarani, Kolkata, 700016, India.,Weill Cornell Medicine, Department of Anesthesiology, 1300 York Ave, New York, NY, 10065, USA
| | - Peeali Mukherjee
- Department of Biotechnology, St. Xavier's College (Autonomous), 30, Mother Teresa Sarani, Kolkata, 700016, India
| | - Biplab Ghosh
- Macromolecular Crystallography Section, Beamline Development & Application Section, Bhabha Atomic Research Center, Trombay, Mumbai, 400085, India.
| | - Jhimli Dasgupta
- Department of Biotechnology, St. Xavier's College (Autonomous), 30, Mother Teresa Sarani, Kolkata, 700016, India.
| |
Collapse
|
16
|
Aller SG, Segrest JP. The regulatory domains of the lipid exporter ABCA1 form domain swapped latches. PLoS One 2022; 17:e0262746. [PMID: 35120130 PMCID: PMC8815970 DOI: 10.1371/journal.pone.0262746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/04/2022] [Indexed: 12/19/2022] Open
Abstract
ABCA1 and ABCA4 are enigmatic because they transport substrates in opposite directions yet share >50% amino acid identity. ABCA4 imports lipid conjugates but ABCA1 exports lipids. Both hydrolyze ATP to drive transport, and both contain cytoplasmic regulatory domains (RDs) following nucleotide-binding domains (NBDs) in the primary structure. The tertiary structures of several ABC importers, including ABCA4, show that each RD forms a domain-swapped latch that locks onto the opposing RD and holds the NBDs close together. Crucially, sequences encoding the RDs and their bridges are among the most conserved in the entire ABC-A subfamily. In the original cryo-EM structure of ABCA1, the RDs were modeled without crossover. After close inspection of that cryo-EM density map and the recent structure of ABCA4, we propose that the RDs of ABCA1 also form a domain-swapped latch. A refined ABCA1 model containing latches exhibited significantly improved overall protein geometry. Critically, the conserved crossover sequence leading to the RD-domain swap is directly supported by the original cryo-EM density map of ABCA1 and appears to have been overlooked. Our refined ABCA1 model suggests the possibility that ABCA1, despite being an exporter, has highly restrained NBDs that suggest a transport mechanism that is distinct from 'alternating access'.
Collapse
Affiliation(s)
- Stephen G. Aller
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Jere P. Segrest
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States of America
| |
Collapse
|
17
|
Mendez DL, Lowder EP, Tillman DE, Sutherland MC, Collier AL, Rau MJ, Fitzpatrick JA, Kranz RG. Cryo-EM of CcsBA reveals the basis for cytochrome c biogenesis and heme transport. Nat Chem Biol 2022; 18:101-108. [PMID: 34931065 PMCID: PMC8712405 DOI: 10.1038/s41589-021-00935-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/22/2021] [Indexed: 01/09/2023]
Abstract
Although the individual structures and respiratory functions of cytochromes are well studied, the structural basis for their assembly, including transport of heme for attachment, are unknown. We describe cryo-electron microscopy (cryo-EM) structures of CcsBA, a bifunctional heme transporter and cytochrome c (cyt c) synthase. Models built from the cryo-EM densities show that CcsBA is trapped with heme in two conformations, herein termed the closed and open states. The closed state has heme located solely at a transmembrane (TM) site, with a large periplasmic domain oriented such that access of heme to the cytochrome acceptor is denied. The open conformation contains two heme moieties, one in the TM-heme site and another in an external site (P-heme site). The presence of heme in the periplasmic site at the base of a chamber induces a large conformational shift that exposes the heme for reaction with apocytochrome c (apocyt c). Consistent with these structures, in vivo and in vitro cyt c synthase studies suggest a mechanism for transfer of the periplasmic heme to cytochrome.
Collapse
Affiliation(s)
- Deanna L. Mendez
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - Ethan P. Lowder
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - Dustin E. Tillman
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - Molly C. Sutherland
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - Andrea L. Collier
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - Michael J. Rau
- Washington University Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - James A.J. Fitzpatrick
- Washington University Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO 63110, USA.,Departments of Cell Biology & Physiology and Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Robert G. Kranz
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA,Corresponding author is Robert G. Kranz:
| |
Collapse
|
18
|
Hu W, Zheng H. Cryo-EM reveals unique structural features of the FhuCDB Escherichia coli ferrichrome importer. Commun Biol 2021; 4:1383. [PMID: 34887516 PMCID: PMC8660799 DOI: 10.1038/s42003-021-02916-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 11/24/2021] [Indexed: 11/11/2022] Open
Abstract
As one of the most elegant biological processes developed in bacteria, the siderophore-mediated iron uptake demands the action of specific ATP-binding cassette (ABC) importers. Although extensive studies have been done on various ABC importers, the molecular basis of these iron-chelated-siderophore importers are still not fully understood. Here, we report the structure of a ferrichrome importer FhuCDB from Escherichia coli at 3.4 Å resolution determined by cryo electron microscopy. The structure revealed a monomeric membrane subunit of FhuB with a substrate translocation pathway in the middle. In the pathway, there were unique arrangements of residues, especially layers of methionines. Important residues found in the structure were interrogated by mutagenesis and functional studies. Surprisingly, the importer’s ATPase activity was decreased upon FhuD binding, which deviated from the current understanding about bacterial ABC importers. In summary, to the best of our knowledge, these studies not only reveal a new structural twist in the type II ABC importer subfamily, but also provide biological insights in the transport of iron-chelated siderophores. Wenxin Hu et al. use cryo-EM and biochemical assays to describe the functional activity and structure of the ferrichrome importer, FhuCDB in E. coli. Their results provide further insight on the mechanism of siderophore transport in bacteria.
Collapse
Affiliation(s)
- Wenxin Hu
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, USA
| | - Hongjin Zheng
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, USA.
| |
Collapse
|
19
|
Tie Y, Zhu W, Zhang C, Yin L, Zhang Y, Liu L, Yuan H. Identification of Two Myrosinases from a Leclercia adecarboxylata Strain and Investigation of Its Tolerance Mechanism to Glucosinolate Hydrolysate. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14151-14164. [PMID: 34806371 DOI: 10.1021/acs.jafc.1c05285] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Glucosinolates (GSLs), secondary metabolites synthesized by cruciferous plants, can be hydrolyzed by myrosinase into compounds, such as isothiocyanates (ITCs), with various bioactivities. Thus, myrosinase plays an important role in the utilization of GSLs. We isolated a bacterial strain, which was identified as Leclercia adecarboxylata, from the rhizosphere soil of rape seedlings and identified two myrosinase genes and an ITC hydrolase gene. Both myrosinases are intracellular and have 658 amino acid residues. Via molecular docking and chemical modification assays investigating the active sites of the myrosinases, arginine was found to be essential for their catalytic activity. Transcriptomic analysis of the response to sinigrin revealed significant up-regulation of some genes involved in allyl-ITC detoxification, with metallo-β-lactamase 3836 having the highest fold change. Thus, we discovered two myrosinases from L. adecarboxylata and demonstrated that the mechanism of tolerance of the bacterium to allyl-ITC likely involved metallo-β-lactamase activity.
Collapse
Affiliation(s)
- Yu Tie
- Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, Yibin University, Yibin 644000, China
| | - Wenyou Zhu
- Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, Yibin University, Yibin 644000, China
| | - Chao Zhang
- Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, Yibin University, Yibin 644000, China
| | - Liguo Yin
- Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, Yibin University, Yibin 644000, China
| | - Yalin Zhang
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin 644000, China
| | - Linpei Liu
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China
| | - Huawei Yuan
- Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, Yibin University, Yibin 644000, China
| |
Collapse
|
20
|
Extracellular haem utilization by the opportunistic pathogen Pseudomonas aeruginosa and its role in virulence and pathogenesis. Adv Microb Physiol 2021; 79:89-132. [PMID: 34836613 DOI: 10.1016/bs.ampbs.2021.07.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Iron is an essential micronutrient for all bacteria but presents a significant challenge given its limited bioavailability. Furthermore, iron's toxicity combined with the need to maintain iron levels within a narrow physiological range requires integrated systems to sense, regulate and transport a variety of iron complexes. Most bacteria encode systems to chelate and transport ferric iron (Fe3+) via siderophore receptor mediated uptake or via cytoplasmic energy dependent transport systems. Pathogenic bacteria have further lowered the barrier to iron acquisition by employing systems to utilize haem as a source of iron. Haem, a lipophilic and toxic molecule, presents a significant challenge for transport into the cell. As such pathogenic bacteria have evolved sophisticated cell surface signaling (CSS) and transport systems to sense and obtain haem from the host. Once internalized haem is cleaved by both oxidative and non-oxidative mechanisms to release iron. Herein we summarize our current understanding of the mechanism of haem sensing, uptake and utilization in Pseudomonas aeruginosa, its role in pathogenesis and virulence, and the potential of these systems as antimicrobial targets.
Collapse
|
21
|
Kuznetsova A, Masrati G, Vigonsky E, Livnat-Levanon N, Rose J, Grupper M, Baloum A, Yang JG, Rees DC, Ben-Tal N, Lewinson O. Titratable transmembrane residues and a hydrophobic plug are essential for manganese import via the Bacillus anthracis ABC transporter MntBC-A. J Biol Chem 2021; 297:101087. [PMID: 34416234 PMCID: PMC8487065 DOI: 10.1016/j.jbc.2021.101087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 11/07/2022] Open
Abstract
All extant life forms require trace transition metals (e.g., Fe2/3+, Cu1/2+, and Mn2+) to survive. However, as these are environmentally scarce, organisms have evolved sophisticated metal uptake machineries. In bacteria, high-affinity import of transition metals is predominantly mediated by ABC transporters. During bacterial infection, sequestration of metal by the host further limits the availability of these ions, and accordingly, bacterial ABC transporters (importers) of metals are key virulence determinants. However, the structure–function relationships of these metal transporters have not been fully elucidated. Here, we used metal-sensitivity assays, advanced structural modeling, and enzymatic assays to study the ABC transporter MntBC-A, a virulence determinant of the bacterial human pathogen Bacillus anthracis. We find that despite its broad metal-recognition profile, MntBC-A imports only manganese, whereas zinc can function as a high-affinity inhibitor of MntBC-A. Computational analysis shows that the transmembrane metal permeation pathway is lined with six titratable residues that can coordinate the positively charged metal, and mutagenesis studies show that they are essential for manganese transport. Modeling suggests that access to these titratable residues is blocked by a ladder of hydrophobic residues, and ATP-driven conformational changes open and close this hydrophobic seal to permit metal binding and release. The conservation of this arrangement of titratable and hydrophobic residues among ABC transporters of transition metals suggests a common mechanism. These findings advance our understanding of transmembrane metal recognition and permeation and may aid the design and development of novel antibacterial agents.
Collapse
Affiliation(s)
- Anastasiya Kuznetsova
- Department of Molecular Microbiology and the Rappaport Institute for Medical Sciences, Faculty of Medicine, The Technion-Israel Institute of Technology, Haifa, Israel
| | - Gal Masrati
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Elena Vigonsky
- Department of Molecular Microbiology and the Rappaport Institute for Medical Sciences, Faculty of Medicine, The Technion-Israel Institute of Technology, Haifa, Israel
| | - Nurit Livnat-Levanon
- Department of Molecular Microbiology and the Rappaport Institute for Medical Sciences, Faculty of Medicine, The Technion-Israel Institute of Technology, Haifa, Israel
| | - Jessica Rose
- Department of Molecular Microbiology and the Rappaport Institute for Medical Sciences, Faculty of Medicine, The Technion-Israel Institute of Technology, Haifa, Israel
| | - Moti Grupper
- Infectious Disease Unit, Rambam Health Care Campus, Haifa, Israel
| | - Adan Baloum
- Department of Molecular Microbiology and the Rappaport Institute for Medical Sciences, Faculty of Medicine, The Technion-Israel Institute of Technology, Haifa, Israel
| | - Janet G Yang
- Department of Chemistry, University of San Francisco, San Francisco, California, USA
| | - Douglas C Rees
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, USA
| | - Nir Ben-Tal
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Oded Lewinson
- Department of Molecular Microbiology and the Rappaport Institute for Medical Sciences, Faculty of Medicine, The Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
22
|
Neville SL, Sjöhamn J, Watts JA, MacDermott-Opeskin H, Fairweather SJ, Ganio K, Carey Hulyer A, McGrath AP, Hayes AJ, Malcolm TR, Davies MR, Nomura N, Iwata S, O'Mara ML, Maher MJ, McDevitt CA. The structural basis of bacterial manganese import. SCIENCE ADVANCES 2021; 7:eabg3980. [PMID: 34362732 PMCID: PMC8346216 DOI: 10.1126/sciadv.abg3980] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 06/10/2021] [Indexed: 05/23/2023]
Abstract
Metal ions are essential for all forms of life. In prokaryotes, ATP-binding cassette (ABC) permeases serve as the primary import pathway for many micronutrients including the first-row transition metal manganese. However, the structural features of ionic metal transporting ABC permeases have remained undefined. Here, we present the crystal structure of the manganese transporter PsaBC from Streptococcus pneumoniae in an open-inward conformation. The type II transporter has a tightly closed transmembrane channel due to "extracellular gating" residues that prevent water permeation or ion reflux. Below these residues, the channel contains a hitherto unreported metal coordination site, which is essential for manganese translocation. Mutagenesis of the extracellular gate perturbs manganese uptake, while coordination site mutagenesis abolishes import. These structural features are highly conserved in metal-specific ABC transporters and are represented throughout the kingdoms of life. Collectively, our results define the structure of PsaBC and reveal the features required for divalent cation transport.
Collapse
Affiliation(s)
- Stephanie L Neville
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jennie Sjöhamn
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Jacinta A Watts
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | | | - Stephen J Fairweather
- Research School of Chemistry, Australian National University, Canberra, ACT, Australia
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Katherine Ganio
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Alex Carey Hulyer
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Aaron P McGrath
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Andrew J Hayes
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Tess R Malcolm
- School of Chemistry and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Mark R Davies
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Norimichi Nomura
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - So Iwata
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Research Acceleration Program, Membrane Protein Crystallography Project, Japan Science and Technology Agency, Kyoto, Japan
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, Japan
| | - Megan L O'Mara
- Research School of Chemistry, Australian National University, Canberra, ACT, Australia
| | - Megan J Maher
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia.
- School of Chemistry and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Christopher A McDevitt
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
23
|
Xiao H, Zheng Y, Ma L, Tian L, Sun Q. Clinically-Relevant ABC Transporter for Anti-Cancer Drug Resistance. Front Pharmacol 2021; 12:648407. [PMID: 33953682 PMCID: PMC8089384 DOI: 10.3389/fphar.2021.648407] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/16/2021] [Indexed: 02/04/2023] Open
Abstract
Multiple drug resistance (MDR), referring to the resistance of cancer cells to a broad spectrum of structurally and mechanistically unrelated drugs across membranes, severely impairs the response to chemotherapy and leads to chemotherapy failure. Overexpression of ATP binding cassette (ABC) transporters is a major contributing factor resulting in MDR, which can recognize and mediate the efflux of diverse drugs from cancer cells, thereby decreasing intracellular drug concentration. Therefore, modulators of ABC transporter could be used in combination with standard chemotherapeutic anticancer drugs to augment the therapeutic efficacy. This review summarizes the recent advances of important cancer-related ABC transporters, focusing on their physiological functions, structures, and the development of new compounds as ABC transporter inhibitors.
Collapse
Affiliation(s)
- Huan Xiao
- State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yongcheng Zheng
- State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Lingling Ma
- State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Lili Tian
- Department of Anesthesiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Qiu Sun
- State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| |
Collapse
|
24
|
Bradley JM, Svistunenko DA, Wilson MT, Hemmings AM, Moore GR, Le Brun NE. Bacterial iron detoxification at the molecular level. J Biol Chem 2021; 295:17602-17623. [PMID: 33454001 PMCID: PMC7762939 DOI: 10.1074/jbc.rev120.007746] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 10/07/2020] [Indexed: 01/18/2023] Open
Abstract
Iron is an essential micronutrient, and, in the case of bacteria, its availability is commonly a growth-limiting factor. However, correct functioning of cells requires that the labile pool of chelatable "free" iron be tightly regulated. Correct metalation of proteins requiring iron as a cofactor demands that such a readily accessible source of iron exist, but overaccumulation results in an oxidative burden that, if unchecked, would lead to cell death. The toxicity of iron stems from its potential to catalyze formation of reactive oxygen species that, in addition to causing damage to biological molecules, can also lead to the formation of reactive nitrogen species. To avoid iron-mediated oxidative stress, bacteria utilize iron-dependent global regulators to sense the iron status of the cell and regulate the expression of proteins involved in the acquisition, storage, and efflux of iron accordingly. Here, we survey the current understanding of the structure and mechanism of the important members of each of these classes of protein. Diversity in the details of iron homeostasis mechanisms reflect the differing nutritional stresses resulting from the wide variety of ecological niches that bacteria inhabit. However, in this review, we seek to highlight the similarities of iron homeostasis between different bacteria, while acknowledging important variations. In this way, we hope to illustrate how bacteria have evolved common approaches to overcome the dual problems of the insolubility and potential toxicity of iron.
Collapse
Affiliation(s)
- Justin M Bradley
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, United Kingdom.
| | | | - Michael T Wilson
- School of Life Sciences, University of Essex, Colchester, United Kingdom
| | - Andrew M Hemmings
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, United Kingdom; Centre for Molecular and Structural Biochemistry, School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Geoffrey R Moore
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, United Kingdom
| | - Nick E Le Brun
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, United Kingdom.
| |
Collapse
|
25
|
Choi CC, Ford RC. ATP binding cassette importers in eukaryotic organisms. Biol Rev Camb Philos Soc 2021; 96:1318-1330. [PMID: 33655617 DOI: 10.1111/brv.12702] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 02/21/2021] [Accepted: 02/23/2021] [Indexed: 11/28/2022]
Abstract
ATP-binding cassette (ABC) transporters are ubiquitous across all realms of life. Dogma suggests that bacterial ABC transporters include both importers and exporters, whilst eukaryotic members of this family are solely exporters, implying that ABC import function was lost during evolution. This view is being challenged, for example energy-coupling factor (ECF)-type ABC importers appear to fulfil important roles in both algae and plants where they form the ABCI sub-family. Herein we discuss whether bacterial Type I and Type II ABC importers also made the transition into extant eukaryotes. Various studies suggest that Type I importers exist in algae and the liverwort family of primitive non-vascular plants, but not in higher plants. The existence of eukaryotic Type II importers is also supported: a transmembrane protein homologous to vitamin B12 import system transmembrane protein (BtuC), hemin transport system transmembrane protein (HmuU) and high-affinity zinc uptake system membrane protein (ZnuB) is present in the Cyanophora paradoxa genome. This protein has homologs within the genomes of red algae. Furthermore, its candidate nucleotide-binding domain (NBD) shows closest similarity to other bacterial Type II importer NBDs such as BtuD. Functional studies suggest that Type I importers have roles in maintaining sulphate levels in the chloroplast, whilst Type II importers probably act as importers of Mn2+ or Zn2+ , as inferred by comparisons with bacterial homologs. Possible explanations for the presence of these transporters in simple plants, but not in other eukaryotic organisms, are considered. In order to utilise the existing nomenclature for eukaryotic ABC proteins, we propose that eukaryotic Type I and II importers be classified as ABCJ and ABCK transporters, respectively.
Collapse
Affiliation(s)
- Cheri C Choi
- Faculty of Biology Medicine and Health, School of Biological Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PL, U.K.,Department of Biology, University of York, York, YO10 5DD, U.K
| | - Robert C Ford
- Faculty of Biology Medicine and Health, School of Biological Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PL, U.K
| |
Collapse
|
26
|
Abstract
Zinc is an essential nutrient for the virulence of bacterial pathogens such as Streptococcus pneumoniae. Many Gram-positive bacteria use a two-domain lipoprotein for zinc acquisition, but how this class of metal-recruiting proteins acquire zinc and interact with the uptake machinery has remained poorly defined. Zinc is an essential element in all domains of life. Nonetheless, how prokaryotes achieve selective acquisition of zinc from the extracellular environment remains poorly understood. Here, we elucidate a novel mechanism for zinc-binding in AdcA, a solute-binding protein of Streptococcus pneumoniae. Crystal structure analyses reveal the two-domain organization of the protein and show that only the N-terminal domain (AdcAN) is necessary for zinc import. Zinc binding induces only minor changes in the global protein conformation of AdcA and stabilizes a highly mobile loop within the AdcAN domain. This loop region, which is conserved in zinc-specific solute-binding proteins, facilitates closure of the AdcAN binding site and is crucial for zinc acquisition. Collectively, these findings elucidate the structural and functional basis of selective zinc uptake in prokaryotes.
Collapse
|
27
|
Srikant S. Evolutionary history of ATP-binding cassette proteins. FEBS Lett 2020; 594:3882-3897. [PMID: 33145769 DOI: 10.1002/1873-3468.13985] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/01/2020] [Accepted: 10/15/2020] [Indexed: 12/11/2022]
Abstract
ATP-binding cassette (ABC) proteins are found in every sequenced genome and evolved deep in the phylogenetic tree of life. ABC proteins form one of the largest homologous protein families, with most being involved in substrate transport across biological membranes, and a few cytoplasmic members regulating in essential processes like translation. The predominant ABC protein classification scheme is derived from human members, but the increasing number of fully sequenced genomes permits to reevaluate this paradigm in the light of the evolutionary history the ABC-protein superfamily. As we study the diversity of substrates, mechanisms, and physiological roles of ABC proteins, knowledge of the evolutionary relationships highlights similarities and differences that can be attributed to specific branches in protein divergence. While alignments and trees built on natural sequence variation account for the evolutionary divergence of ABC proteins, high-throughput experiments and next-generation sequencing creating experimental sequence variation are instrumental in identifying functional constraints. The combination of natural and experimentally produced sequence variation allows a broader and more rational study of the function and physiological roles of ABC proteins.
Collapse
Affiliation(s)
- Sriram Srikant
- Department of Biology, Massachusetts Institute of Technology
| |
Collapse
|
28
|
Kroll T, Prescher M, Smits SHJ, Schmitt L. Structure and Function of Hepatobiliary ATP Binding Cassette Transporters. Chem Rev 2020; 121:5240-5288. [PMID: 33201677 DOI: 10.1021/acs.chemrev.0c00659] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The liver is beyond any doubt the most important metabolic organ of the human body. This function requires an intensive crosstalk within liver cellular structures, but also with other organs. Membrane transport proteins are therefore of upmost importance as they represent the sensors and mediators that shuttle signals from outside to the inside of liver cells and/or vice versa. In this review, we summarize the known literature of liver transport proteins with a clear emphasis on functional and structural information on ATP binding cassette (ABC) transporters, which are expressed in the human liver. These primary active membrane transporters form one of the largest families of membrane proteins. In the liver, they play an essential role in for example bile formation or xenobiotic export. Our review provides a state of the art and comprehensive summary of the current knowledge of hepatobiliary ABC transporters. Clearly, our knowledge has improved with a breath-taking speed over the last few years and will expand further. Thus, this review will provide the status quo and will lay the foundation for new and exciting avenues in liver membrane transporter research.
Collapse
Affiliation(s)
- Tim Kroll
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Martin Prescher
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Sander H J Smits
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany.,Center for Structural Studies, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| |
Collapse
|
29
|
de Boer M, Cordes T, Poolman B. Kinetic Modelling of Transport Inhibition by Substrates in ABC Importers. J Mol Biol 2020; 432:5565-5576. [PMID: 32800784 DOI: 10.1016/j.jmb.2020.08.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/05/2020] [Accepted: 08/09/2020] [Indexed: 12/11/2022]
Abstract
Prokaryotic ATP-binding cassette (ABC) importers require a substrate-binding protein (SBP) for the capture and delivery of the cognate substrate to the transmembrane domain (TMD) of the transporter. Various biochemical compounds have been identified that bind to the SBP but are not transported. The mechanistic basis for the "non-cognate" substrates not being transported differs. Some non-cognate substrates fail to trigger the appropriate conformational change in the SBP, resulting in loss of affinity for the TMD or the inability to allosterically activate transport. In another mechanism, the SBP cannot release the bound non-cognate substrate. Here, we used rate equations to derive the steady-state transport rate of cognate substrates of an ABC importer and investigated how non-cognate substrates influence this rate. We found that under limiting non-cognate substrate concentrations, the transport rate remains unaltered for each of the mechanisms. In contrast, at saturating substrate and SBP concentrations, the effect of the non-cognate substrate depends heavily on the respective mechanism. For instance, the transport rate becomes zero when the non-cognate substrate cannot be released by the SBP. Yet it remains unaffected when substrate release is possible but the SBP cannot dock onto the TMDs. Our work shows how the different mechanisms of substrate inhibition impact the transport kinetics, which is relevant for understanding and manipulating solute fluxes and hence the propagation of cells in nutritionally complex milieus.
Collapse
Affiliation(s)
- Marijn de Boer
- Molecular Microscopy Research Group, Zernike Institute for Advanced Materials, University of Groningen, Groningen, the Netherlands; Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands.
| | - Thorben Cordes
- Molecular Microscopy Research Group, Zernike Institute for Advanced Materials, University of Groningen, Groningen, the Netherlands; Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr, 2-4, 82152 Planegg-Martinsried, Germany
| | - Bert Poolman
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
30
|
Sabrialabed S, Yang JG, Yariv E, Ben-Tal N, Lewinson O. Substrate recognition and ATPase activity of the E. coli cysteine/cystine ABC transporter YecSC-FliY. J Biol Chem 2020; 295:5245-5256. [PMID: 32144203 PMCID: PMC7170509 DOI: 10.1074/jbc.ra119.012063] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/03/2020] [Indexed: 12/20/2022] Open
Abstract
Sulfur is essential for biological processes such as amino acid biogenesis, iron-sulfur cluster formation, and redox homeostasis. To acquire sulfur-containing compounds from the environment, bacteria have evolved high-affinity uptake systems, predominant among which is the ABC transporter family. Theses membrane-embedded enzymes use the energy of ATP hydrolysis for transmembrane transport of a wide range of biomolecules against concentration gradients. Three distinct bacterial ABC import systems of sulfur-containing compounds have been identified, but the molecular details of their transport mechanism remain poorly characterized. Here we provide results from a biochemical analysis of the purified Escherichia coli YecSC-FliY cysteine/cystine import system. We found that the substrate-binding protein FliY binds l-cystine, l-cysteine, and d-cysteine with micromolar affinities. However, binding of the l- and d-enantiomers induced different conformational changes of FliY, where the l- enantiomer-substrate-binding protein complex interacted more efficiently with the YecSC transporter. YecSC had low basal ATPase activity that was moderately stimulated by apo FliY, more strongly by d-cysteine-bound FliY, and maximally by l-cysteine- or l-cystine-bound FliY. However, at high FliY concentrations, YecSC reached maximal ATPase rates independent of the presence or nature of the substrate. These results suggest that FliY exists in a conformational equilibrium between an open, unliganded form that does not bind to the YecSC transporter and closed, unliganded and closed, liganded forms that bind this transporter with variable affinities but equally stimulate its ATPase activity. These findings differ from previous observations for similar ABC transporters, highlighting the extent of mechanistic diversity in this large protein family.
Collapse
Affiliation(s)
- Siwar Sabrialabed
- Department of Biochemistry and the Rappaport Institute for Medical Sciences, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Janet G Yang
- Department of Chemistry, University of San Francisco, San Francisco, California 94117
| | - Elon Yariv
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6139001, Israel
| | - Nir Ben-Tal
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6139001, Israel
| | - Oded Lewinson
- Department of Biochemistry and the Rappaport Institute for Medical Sciences, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel.
| |
Collapse
|
31
|
Wang Z, Hu W, Zheng H. Pathogenic siderophore ABC importer YbtPQ adopts a surprising fold of exporter. SCIENCE ADVANCES 2020; 6:eaay7997. [PMID: 32076651 PMCID: PMC7002159 DOI: 10.1126/sciadv.aay7997] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/22/2019] [Indexed: 05/05/2023]
Abstract
To fight for essential metal ions, human pathogens secrete virulence-associated siderophores and retake the metal-chelated siderophores through a subfamily of adenosine triphosphate (ATP)-binding cassette (ABC) importer, whose molecular mechanisms are completely unknown. We have determined multiple structures of the yersiniabactin importer YbtPQ from uropathogenic Escherichia coli (UPEC) at inward-open conformation in both apo and substrate-bound states by cryo-electron microscopy. YbtPQ does not adopt any known fold of ABC importers but surprisingly adopts the fold of type IV ABC exporters. To our knowledge, it is the first time an exporter fold of ABC importer has been reported. We have also observed two unique features in YbtPQ: unwinding of a transmembrane helix in YbtP upon substrate release and tightly associated nucleotide-binding domains without bound nucleotides. Together, our study suggests that siderophore ABC importers have a distinct transport mechanism and should be classified as a separate subfamily of ABC importers.
Collapse
|
32
|
Soni DK, Dubey SK, Bhatnagar R. ATP-binding cassette (ABC) import systems of Mycobacterium tuberculosis: target for drug and vaccine development. Emerg Microbes Infect 2020; 9:207-220. [PMID: 31985348 PMCID: PMC7034087 DOI: 10.1080/22221751.2020.1714488] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Nutrient procurement specifically from nutrient-limiting environment is essential for pathogenic bacteria to survive and/or persist within the host. Long-term survival or persistent infection is one of the main reasons for the overuse of antibiotics, and contributes to the development and spread of antibiotic resistance. Mycobacterium tuberculosis is known for long-term survival within the host, and develops multidrug resistance. Before and during infection, the pathogen encounters various harsh environmental conditions. To cope up with such nutrient-limiting conditions, it is crucial to uptake essential nutrients such as ions, sugars, amino acids, peptides, and metals, necessary for numerous vital biological activities. Among the various types of transporters, ATP-binding cassette (ABC) importers are essentially unique to bacteria, accessible as drug targets without penetrating the cytoplasmic membrane, and offer an ATP-dependent gateway into the cell by mimicking substrates of the importer and designing inhibitors against substrate-binding proteins, ABC importers endeavour for the development of successful drug candidates and antibiotics. Alternatively, the production of antibodies against substrate-binding proteins could lead to vaccine development. In this review, we will emphasize the role of M. tuberculosis ABC importers for survival and virulence within the host. Furthermore, we will elucidate their unique characteristics to discover emerging therapies to combat tuberculosis.
Collapse
Affiliation(s)
- Dharmendra Kumar Soni
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Suresh Kumar Dubey
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Rakesh Bhatnagar
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
33
|
Bacterial ABC transporters of iron containing compounds. Res Microbiol 2019; 170:345-357. [DOI: 10.1016/j.resmic.2019.10.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/15/2019] [Accepted: 10/15/2019] [Indexed: 11/20/2022]
|
34
|
Mitra A, Ko YH, Cingolani G, Niederweis M. Heme and hemoglobin utilization by Mycobacterium tuberculosis. Nat Commun 2019; 10:4260. [PMID: 31534126 PMCID: PMC6751184 DOI: 10.1038/s41467-019-12109-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 08/21/2019] [Indexed: 12/31/2022] Open
Abstract
Iron is essential for growth of Mycobacterium tuberculosis (Mtb), but most iron in the human body is stored in heme within hemoglobin. Here, we demonstrate that the substrate-binding protein DppA of the inner membrane Dpp transporter is required for heme and hemoglobin utilization by Mtb. The 1.27 Å crystal structure of DppA shows a tetrapeptide bound in the protein core and a large solvent-exposed crevice for heme binding. Mutation of arginine 179 in this cleft eliminates heme binding to DppA and prevents heme utilization by Mtb. The outer membrane proteins PPE36 and PPE62 are also required for heme and hemoglobin utilization, indicating that these pathways converge at the cell surface of Mtb. Albumin, the most abundant blood protein, binds heme specifically and bypasses the requirements for PPE36, PPE62 and Dpp. Thus, our study reveals albumin-dependent and -independent heme uptake pathways, highlighting the importance of iron acquisition from heme for Mtb.
Collapse
Affiliation(s)
- Avishek Mitra
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street South, Birmingham, AL, 35294, USA
| | - Ying-Hui Ko
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 233S. 10th Street, Philadelphia, PA, 19107, USA
| | - Gino Cingolani
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 233S. 10th Street, Philadelphia, PA, 19107, USA. .,Institute of Biomembranes and Bioenergetics, National Research Council, Via Amendola 165/A, 70126, Bari, Italy.
| | - Michael Niederweis
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street South, Birmingham, AL, 35294, USA.
| |
Collapse
|
35
|
Abstract
Infections arising from multidrug-resistant pathogenic bacteria are spreading rapidly throughout the world and threaten to become untreatable. The origins of resistance are numerous and complex, but one underlying factor is the capacity of bacteria to rapidly export drugs through the intrinsic activity of efflux pumps. In this Review, we describe recent advances that have increased our understanding of the structures and molecular mechanisms of multidrug efflux pumps in bacteria. Clinical and laboratory data indicate that efflux pumps function not only in the drug extrusion process but also in virulence and the adaptive responses that contribute to antimicrobial resistance during infection. The emerging picture of the structure, function and regulation of efflux pumps suggests opportunities for countering their activities.
Collapse
|
36
|
Tamura K, Sugimoto H, Shiro Y, Sugita Y. Chemo-Mechanical Coupling in the Transport Cycle of a Heme ABC Transporter. J Phys Chem B 2019; 123:7270-7281. [PMID: 31362510 DOI: 10.1021/acs.jpcb.9b04356] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The heme importer from pathogenic bacteria is a member of the ATP-binding cassette (ABC) transporter family, which uses the energy of ATP-binding and hydrolysis for extensive conformational changes. Previous studies have indicated that conformational changes after heme translocation are triggered by ATP-binding to nucleotide binding domains (NBDs) and then, in turn, induce conformational transitions of the transmembrane domains (TMDs). In this study, we applied a template-based iterative all-atom molecular dynamics (MD) simulation to predict the ATP-bound outward-facing conformation of the Burkholderia cenocepacia heme importer BhuUV-T. The resulting model showed a stable conformation of the TMD with the cytoplasmic gate in the closed state and the periplasmic gate in the open state. Furthermore, targeted MD simulation predicted the intermediate structure of an occluded form (Occ) with bound ATP, in which both ends of the heme translocation channel are closed. The MD simulation of the predicted Occ revealed that Ser147 on the ABC signature motifs (LSGG[Q/E]) of NBDs occasionally flips and loses the active conformation required for ATP-hydrolysis. The flipping motion was found to be coupled to the inter-NBD distance. Our results highlight the functional significance of the signature motif of ABC transporters in regulation of ATPase and chemo-mechanical coupling mechanism.
Collapse
Affiliation(s)
- Koichi Tamura
- Computational Biophysics Research Team , RIKEN Center for Computational Science , 6-7-1 minatojima-Minamimachi, Chuo-ku , Kobe , Hyogo 650-0047 , Japan
| | - Hiroshi Sugimoto
- Graduate School of Life Science , University of Hyogo , 3-2-1 Kouto, Kamigori , Ako , Hyogo 678-1297 , Japan.,Synchrotron Radiation Life Science Instrumentation Team , RIKEN SPring-8 Center , 1-1-1 Kouto , Sayo , Hyogo 679-5148 , Japan
| | - Yoshitsugu Shiro
- Graduate School of Life Science , University of Hyogo , 3-2-1 Kouto, Kamigori , Ako , Hyogo 678-1297 , Japan
| | - Yuji Sugita
- Computational Biophysics Research Team , RIKEN Center for Computational Science , 6-7-1 minatojima-Minamimachi, Chuo-ku , Kobe , Hyogo 650-0047 , Japan.,Theoretical Molecular Science Laboratory , RIKEN Cluster for Pioneering Research , 2-1 Hirosawa , Wako , Saitama 351-0198 , Japan.,Laboratory for Biomolecular Function Simulation , RIKEN Center for Biosystems Dynamics Research , 6-7-1 minatojima-Minamimachi, Chuo-ku , Kobe , Hyogo 650-0047 , Japan
| |
Collapse
|
37
|
Richard KL, Kelley BR, Johnson JG. Heme Uptake and Utilization by Gram-Negative Bacterial Pathogens. Front Cell Infect Microbiol 2019; 9:81. [PMID: 30984629 PMCID: PMC6449446 DOI: 10.3389/fcimb.2019.00081] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/08/2019] [Indexed: 02/06/2023] Open
Abstract
Iron is a transition metal utilized by nearly all forms of life for essential cellular processes, such as DNA synthesis and cellular respiration. During infection by bacterial pathogens, the host utilizes various strategies to sequester iron in a process termed, nutritional immunity. To circumvent these defenses, Gram-negative pathogens have evolved numerous mechanisms to obtain iron from heme. In this review we outline the systems that exist in several Gram-negative pathogens that are associated with heme transport and utilization, beginning with hemolysis and concluding with heme degradation. In addition, Gram-negative pathogens must also closely regulate the intracellular concentrations of iron and heme, since high levels of iron can lead to the generation of toxic reactive oxygen species. As such, we also provide several examples of regulatory pathways that control heme utilization, showing that co-regulation with other cellular processes is complex and often not completely understood.
Collapse
Affiliation(s)
- Kaylie L Richard
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States
| | - Brittni R Kelley
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States
| | - Jeremiah G Johnson
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
38
|
de Boer M, Gouridis G, Vietrov R, Begg SL, Schuurman-Wolters GK, Husada F, Eleftheriadis N, Poolman B, McDevitt CA, Cordes T. Conformational and dynamic plasticity in substrate-binding proteins underlies selective transport in ABC importers. eLife 2019; 8:44652. [PMID: 30900991 PMCID: PMC6450668 DOI: 10.7554/elife.44652] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/22/2019] [Indexed: 12/20/2022] Open
Abstract
Substrate-binding proteins (SBPs) are associated with ATP-binding cassette importers and switch from an open to a closed conformation upon substrate binding, providing specificity for transport. We investigated the effect of substrates on the conformational dynamics of six SBPs and the impact on transport. Using single-molecule FRET, we reveal an unrecognized diversity of plasticity in SBPs. We show that a unique closed SBP conformation does not exist for transported substrates. Instead, SBPs sample a range of conformations that activate transport. Certain non-transported ligands leave the structure largely unaltered or trigger a conformation distinct from that of transported substrates. Intriguingly, in some cases, similar SBP conformations are formed by both transported and non-transported ligands. In this case, the inability for transport arises from slow opening of the SBP or the selectivity provided by the translocator. Our results reveal the complex interplay between ligand-SBP interactions, SBP conformational dynamics and substrate transport.
Collapse
Affiliation(s)
- Marijn de Boer
- Molecular Microscopy Research Group, Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - Giorgos Gouridis
- Molecular Microscopy Research Group, Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands.,Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany.,Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Ruslan Vietrov
- Department of Biochemistry, Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Groningen, The Netherlands.,Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - Stephanie L Begg
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Gea K Schuurman-Wolters
- Department of Biochemistry, Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Groningen, The Netherlands.,Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - Florence Husada
- Molecular Microscopy Research Group, Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - Nikolaos Eleftheriadis
- Molecular Microscopy Research Group, Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - Bert Poolman
- Department of Biochemistry, Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Groningen, The Netherlands.,Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - Christopher A McDevitt
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia.,Research Centre for Infectious Diseases, School of Biological Sciences, The University of Adelaide, Adelaide, Australia
| | - Thorben Cordes
- Molecular Microscopy Research Group, Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands.,Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| |
Collapse
|
39
|
Agarwal S, Dey S, Ghosh B, Biswas M, Dasgupta J. Mechanistic basis of vitamin B12 and cobinamide salvaging by the Vibrio species. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:140-151. [DOI: 10.1016/j.bbapap.2018.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/31/2018] [Accepted: 11/16/2018] [Indexed: 12/17/2022]
|
40
|
Hoffmann B, Elbahnsi A, Lehn P, Décout JL, Pietrucci F, Mornon JP, Callebaut I. Combining theoretical and experimental data to decipher CFTR 3D structures and functions. Cell Mol Life Sci 2018; 75:3829-3855. [PMID: 29779042 PMCID: PMC11105360 DOI: 10.1007/s00018-018-2835-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 05/04/2018] [Accepted: 05/07/2018] [Indexed: 12/15/2022]
Abstract
Cryo-electron microscopy (cryo-EM) has recently provided invaluable experimental data about the full-length cystic fibrosis transmembrane conductance regulator (CFTR) 3D structure. However, this experimental information deals with inactive states of the channel, either in an apo, quiescent conformation, in which nucleotide-binding domains (NBDs) are widely separated or in an ATP-bound, yet closed conformation. Here, we show that 3D structure models of the open and closed forms of the channel, now further supported by metadynamics simulations and by comparison with the cryo-EM data, could be used to gain some insights into critical features of the conformational transition toward active CFTR forms. These critical elements lie within membrane-spanning domains but also within NBD1 and the N-terminal extension, in which conformational plasticity is predicted to occur to help the interaction with filamin, one of the CFTR cellular partners.
Collapse
Affiliation(s)
- Brice Hoffmann
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, IRD, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, 75005, Paris, France
- Iktos, Paris, France
| | - Ahmad Elbahnsi
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, IRD, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, 75005, Paris, France
| | - Pierre Lehn
- INSERM U1078, SFR ScInBioS, Université de Bretagne Occidentale, Brest, France
| | | | - Fabio Pietrucci
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, IRD, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, 75005, Paris, France
| | - Jean-Paul Mornon
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, IRD, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, 75005, Paris, France.
| | - Isabelle Callebaut
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, IRD, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, 75005, Paris, France
| |
Collapse
|
41
|
Yang M, Livnat Levanon N, Acar B, Aykac Fas B, Masrati G, Rose J, Ben-Tal N, Haliloglu T, Zhao Y, Lewinson O. Single-molecule probing of the conformational homogeneity of the ABC transporter BtuCD. Nat Chem Biol 2018; 14:715-722. [PMID: 29915236 DOI: 10.1038/s41589-018-0088-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 05/15/2018] [Indexed: 02/07/2023]
Abstract
ATP-binding cassette (ABC) transporters use the energy of ATP hydrolysis to move molecules through cellular membranes. They are directly linked to human diseases, cancer multidrug resistance, and bacterial virulence. Very little is known of the conformational dynamics of ABC transporters, especially at the single-molecule level. Here, we combine single-molecule spectroscopy and a novel molecular simulation approach to investigate the conformational dynamics of the ABC transporter BtuCD. We observe a single dominant population of molecules in each step of the transport cycle and tight coupling between conformational transitions and ligand binding. We uncover transient conformational changes that allow substrate to enter the transporter. This is followed by a 'squeezing' motion propagating from the extracellular to the intracellular side of the translocation cavity. This coordinated sequence of events provides a mechanism for the unidirectional transport of vitamin B12 by BtuCD.
Collapse
Affiliation(s)
- Min Yang
- National Laboratory of Macromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Nurit Livnat Levanon
- Department of Biochemistry and the Rappaport Institute for Medical Sciences, Faculty of Medicine, The Technion-Israel Institute of Technology, Haifa, Israel
| | - Burçin Acar
- Department of Chemical Engineering and Polymer Research Center, Bogazici University, Istanbul, Turkey
| | - Burcu Aykac Fas
- Department of Chemical Engineering and Polymer Research Center, Bogazici University, Istanbul, Turkey
| | - Gal Masrati
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Jessica Rose
- Department of Biochemistry and the Rappaport Institute for Medical Sciences, Faculty of Medicine, The Technion-Israel Institute of Technology, Haifa, Israel
| | - Nir Ben-Tal
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.
| | - Turkan Haliloglu
- Department of Chemical Engineering and Polymer Research Center, Bogazici University, Istanbul, Turkey.
| | - Yongfang Zhao
- National Laboratory of Macromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Oded Lewinson
- Department of Biochemistry and the Rappaport Institute for Medical Sciences, Faculty of Medicine, The Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
42
|
Protein Linkers Provide Limits on the Domain Interactions in the ABC Importer GlnPQ and Determine the Rate of Transport. J Mol Biol 2018; 430:1249-1262. [PMID: 29486154 DOI: 10.1016/j.jmb.2018.02.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/13/2018] [Accepted: 02/14/2018] [Indexed: 01/28/2023]
Abstract
GlnPQ is an ATP-binding cassette importer with a unique domain organization and intricate transport behavior. The protein has two extracytoplamic substrate-binding domains (SBDs) per membrane subunit, each with different specificity for amino acids and different spacing to the translocator domain. We determined the effect of the length and structure of the linkers, which connect the SBDs to each other and to the membrane-embedded translocator domain, on the transport by GlnPQ. We reveal that varying the linker length impacts transport in a dual manner that depends on the conformational dynamics of the SBD. Varying the linker length not only changes the time for the SBD to find the translocator (docking) but also changes the probability to release the substrate again, thus altering the transport efficiency. On the basis of the experimental data and mathematical modeling, we calculate the docking efficiency as function of linker length and lifetime of the closed conformation. Importantly, not only linker length but also features in the sequence are important for efficient delivery of substrate from SBD to the translocator. We show that the linkers provide a platform for SBD docking and are not merely flexible structures.
Collapse
|
43
|
North RA, Horne CR, Davies JS, Remus DM, Muscroft-Taylor AC, Goyal P, Wahlgren WY, Ramaswamy S, Friemann R, Dobson RCJ. "Just a spoonful of sugar...": import of sialic acid across bacterial cell membranes. Biophys Rev 2017; 10:219-227. [PMID: 29222808 DOI: 10.1007/s12551-017-0343-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 11/13/2017] [Indexed: 12/24/2022] Open
Abstract
Eukaryotic cell surfaces are decorated with a complex array of glycoconjugates that are usually capped with sialic acids, a large family of over 50 structurally distinct nine-carbon amino sugars, the most common member of which is N-acetylneuraminic acid. Once made available through the action of neuraminidases, bacterial pathogens and commensals utilise host-derived sialic acid by degrading it for energy or repurposing the sialic acid onto their own cell surface to camouflage the bacterium from the immune system. A functional sialic acid transporter has been shown to be essential for the uptake of sialic acid in a range of human bacterial pathogens and important for host colonisation and persistence. Here, we review the state-of-play in the field with respect to the molecular mechanisms by which these bio-nanomachines transport sialic acids across bacterial cell membranes.
Collapse
Affiliation(s)
- Rachel A North
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, P.O. Box 4800, Christchurch, 8140, New Zealand
| | - Christopher R Horne
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, P.O. Box 4800, Christchurch, 8140, New Zealand
| | - James S Davies
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, P.O. Box 4800, Christchurch, 8140, New Zealand
| | - Daniela M Remus
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, P.O. Box 4800, Christchurch, 8140, New Zealand
| | - Andrew C Muscroft-Taylor
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, P.O. Box 4800, Christchurch, 8140, New Zealand
| | - Parveen Goyal
- Department of Chemistry and Molecular Biology, Biochemistry and Structural Biology, University of Gothenburg, Box 462, 40530, Gothenburg, Sweden.,Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Box 440, 40530, Gothenburg, Sweden
| | - Weixiao Yuan Wahlgren
- Department of Chemistry and Molecular Biology, Biochemistry and Structural Biology, University of Gothenburg, Box 462, 40530, Gothenburg, Sweden.,Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Box 440, 40530, Gothenburg, Sweden
| | - S Ramaswamy
- The Institute for Stem Cell Biology and Regenerative Medicine (InStem), G.K.V.K. Post Office, Bangalore, Karnataka, 560065, India
| | - Rosmarie Friemann
- Department of Chemistry and Molecular Biology, Biochemistry and Structural Biology, University of Gothenburg, Box 462, 40530, Gothenburg, Sweden. .,Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Box 440, 40530, Gothenburg, Sweden.
| | - Renwick C J Dobson
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, P.O. Box 4800, Christchurch, 8140, New Zealand. .,Bio21 Molecular Science and Biotechnology Institute, Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
44
|
Naoe Y, Nakamura N, Rahman MM, Tosha T, Nagatoishi S, Tsumoto K, Shiro Y, Sugimoto H. Structural basis for binding and transfer of heme in bacterial heme-acquisition systems. Proteins 2017; 85:2217-2230. [PMID: 28913898 DOI: 10.1002/prot.25386] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 08/21/2017] [Accepted: 09/11/2017] [Indexed: 01/10/2023]
Abstract
Periplasmic heme-binding proteins (PBPs) in Gram-negative bacteria are components of the heme acquisition system. These proteins shuttle heme across the periplasmic space from outer membrane receptors to ATP-binding cassette (ABC) heme importers located in the inner-membrane. In the present study, we characterized the structures of PBPs found in the pathogen Burkholderia cenocepacia (BhuT) and in the thermophile Roseiflexus sp. RS-1 (RhuT) in the heme-free and heme-bound forms. The conserved motif, in which a well-conserved Tyr interacts with the nearby Arg coordinates on heme iron, was observed in both PBPs. The heme was recognized by its surroundings in a variety of manners including hydrophobic interactions and hydrogen bonds, which was confirmed by isothermal titration calorimetry. Furthermore, this study of 3 forms of BhuT allowed the first structural comparison and showed that the heme-binding cleft of BhuT adopts an "open" state in the heme-free and 2-heme-bound forms, and a "closed" state in the one-heme-bound form with unique conformational changes. Such a conformational change might adjust the interaction of the heme(s) with the residues in PBP and facilitate the transfer of the heme into the translocation channel of the importer.
Collapse
Affiliation(s)
- Youichi Naoe
- Biometal Science Laboratory, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo, 679-5148, Japan
| | - Nozomi Nakamura
- Biometal Science Laboratory, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo, 679-5148, Japan.,Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako, Hyogo, 678-1297, Japan
| | - Md Mahfuzur Rahman
- Biometal Science Laboratory, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo, 679-5148, Japan.,Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako, Hyogo, 678-1297, Japan
| | - Takehiko Tosha
- Biometal Science Laboratory, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo, 679-5148, Japan
| | - Satoru Nagatoishi
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8656, Japan
| | - Kouhei Tsumoto
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8656, Japan.,Laboratory of Medical Proteomics, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Yoshitsugu Shiro
- Biometal Science Laboratory, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo, 679-5148, Japan.,Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako, Hyogo, 678-1297, Japan
| | - Hiroshi Sugimoto
- Biometal Science Laboratory, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo, 679-5148, Japan.,Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako, Hyogo, 678-1297, Japan
| |
Collapse
|
45
|
Qasem-Abdullah H, Perach M, Livnat-Levanon N, Lewinson O. ATP binding and hydrolysis disrupt the high-affinity interaction between the heme ABC transporter HmuUV and its cognate substrate-binding protein. J Biol Chem 2017; 292:14617-14624. [PMID: 28710276 DOI: 10.1074/jbc.m117.779975] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 07/10/2017] [Indexed: 12/17/2022] Open
Abstract
Using the energy of ATP hydrolysis, ABC transporters catalyze the trans-membrane transport of molecules. In bacteria, these transporters partner with a high-affinity substrate-binding protein (SBP) to import essential micronutrients. ATP binding by Type I ABC transporters (importers of amino acids, sugars, peptides, and small ions) stabilizes the interaction between the transporter and the SBP, thus allowing transfer of the substrate from the latter to the former. In Type II ABC transporters (importers of trace elements, e.g. vitamin B12, heme, and iron-siderophores) the role of ATP remains debatable. Here we studied the interaction between the Yersinia pestis ABC heme importer (HmuUV) and its partner substrate-binding protein (HmuT). Using real-time surface plasmon resonance experiments and interaction studies in membrane vesicles, we find that in the absence of ATP the transporter and the SBP tightly bind. Substrate in excess inhibits this interaction, and ATP binding by the transporter completely abolishes it. To release the stable docked SBP from the transporter hydrolysis of ATP is required. Based on these results we propose a mechanism for heme acquisition by HmuUV-T where the substrate-loaded SBP docks to the nucleotide-free outward-facing conformation of the transporter. ATP binding leads to formation of an occluded state with the substrate trapped in the trans-membrane translocation cavity. Subsequent ATP hydrolysis leads to substrate delivery to the cytoplasm, release of the SBP, and resetting of the system. We propose that other Type II ABC transporters likely share the fundamentals of this mechanism.
Collapse
Affiliation(s)
- Hiba Qasem-Abdullah
- From the Department of Biochemistry, The Bruce and Ruth Rappaport Faculty of Medicine, The Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Michal Perach
- From the Department of Biochemistry, The Bruce and Ruth Rappaport Faculty of Medicine, The Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Nurit Livnat-Levanon
- From the Department of Biochemistry, The Bruce and Ruth Rappaport Faculty of Medicine, The Technion-Israel Institute of Technology, Haifa 31096, Israel
| | | |
Collapse
|
46
|
Abstract
Iron is an essential micronutrient for both microbes and humans alike. For well over half a century we have known that this element, in particular, plays a pivotal role in health and disease and, most especially, in shaping host-pathogen interactions. Intracellular iron concentrations serve as a critical signal in regulating the expression not only of high-affinity iron acquisition systems in bacteria, but also of toxins and other noted virulence factors produced by some major human pathogens. While we now are aware of many strategies that the host has devised to sequester iron from invading microbes, there are as many if not more sophisticated mechanisms by which successful pathogens overcome nutritional immunity imposed by the host. This review discusses some of the essential components of iron sequestration and scavenging mechanisms of the host, as well as representative Gram-negative and Gram-positive pathogens, and highlights recent advances in the field. Last, we address how the iron acquisition strategies of pathogenic bacteria may be exploited for the development of novel prophylactics or antimicrobials.
Collapse
|
47
|
Structure of the human multidrug transporter ABCG2. Nature 2017; 546:504-509. [PMID: 28554189 DOI: 10.1038/nature22345] [Citation(s) in RCA: 324] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/06/2017] [Indexed: 12/12/2022]
Abstract
ABCG2 is a constitutively expressed ATP-binding cassette (ABC) transporter that protects many tissues against xenobiotic molecules. Its activity affects the pharmacokinetics of commonly used drugs and limits the delivery of therapeutics into tumour cells, thus contributing to multidrug resistance. Here we present the structure of human ABCG2 determined by cryo-electron microscopy, providing the first high-resolution insight into a human multidrug transporter. We visualize ABCG2 in complex with two antigen-binding fragments of the human-specific, inhibitory antibody 5D3 that recognizes extracellular loops of the transporter. We observe two cholesterol molecules bound in the multidrug-binding pocket that is located in a central, hydrophobic, inward-facing translocation pathway between the transmembrane domains. Combined with functional in vitro analyses, our results suggest a multidrug recognition and transport mechanism of ABCG2, rationalize disease-causing single nucleotide polymorphisms and the allosteric inhibition by the 5D3 antibody, and provide the structural basis of cholesterol recognition by other G-subfamily ABC transporters.
Collapse
|
48
|
Structure of the MacAB-TolC ABC-type tripartite multidrug efflux pump. Nat Microbiol 2017; 2:17070. [PMID: 28504659 PMCID: PMC5447821 DOI: 10.1038/nmicrobiol.2017.70] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 04/03/2017] [Indexed: 02/02/2023]
Abstract
The MacA-MacB-TolC assembly of Escherichia coli is a transmembrane machine that spans the cell envelope and actively extrudes substrates, including macrolide antibiotics and polypeptide virulence factors. These transport processes are energized by the ATPase MacB, a member of the ATP-binding cassette (ABC) superfamily. We present an electron cryo-microscopy structure of the ABC-type tripartite assembly at near-atomic resolution. A hexamer of the periplasmic protein MacA bridges between a TolC trimer in the outer membrane and a MacB dimer in the inner membrane, generating a quaternary structure with a central channel for substrate translocation. A gating ring found in MacA is proposed to act as a one-way valve in substrate transport. The MacB structure features an atypical transmembrane domain with a closely packed dimer interface and a periplasmic opening that is the likely portal for substrate entry from the periplasm, with subsequent displacement through an allosteric transport mechanism.
Collapse
|
49
|
Abstract
Iron is essential for the survival of most bacteria but presents a significant challenge given its limited bioavailability. Furthermore, the toxicity of iron combined with the need to maintain physiological iron levels within a narrow concentration range requires sophisticated systems to sense, regulate, and transport iron. Most bacteria have evolved mechanisms to chelate and transport ferric iron (Fe3+) via siderophore receptor systems, and pathogenic bacteria have further lowered this barrier by employing mechanisms to utilize the host's hemoproteins. Once internalized, heme is cleaved by both oxidative and nonoxidative mechanisms to release iron. Heme, itself a lipophilic and toxic molecule, presents a significant challenge for transport into the cell. As such, pathogenic bacteria have evolved sophisticated cell surface signaling and transport systems to obtain heme from the host. In this review, we summarize the structure and function of the heme-sensing and transport systems of pathogenic bacteria and the potential of these systems as antimicrobial targets.
Collapse
Affiliation(s)
- Weiliang Huang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201;
| | - Angela Wilks
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201;
| |
Collapse
|
50
|
Agarwal S, Dey S, Ghosh B, Biswas M, Dasgupta J. Structure and dynamics of Type III periplasmic proteins VcFhuD and VcHutB reveal molecular basis of their distinctive ligand binding properties. Sci Rep 2017; 7:42812. [PMID: 28216648 PMCID: PMC5316997 DOI: 10.1038/srep42812] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 01/13/2017] [Indexed: 12/20/2022] Open
Abstract
Molecular mechanisms of xenosiderophore and heme acquisitions using periplasmic binding protein (PBP) dependent ATP-binding cassette transporters to scavenge the essential nutrient iron are elusive yet in Vibrio cholerae. Our current study delineates the structures, dynamics and ligand binding properties of two Type III PBPs of V. cholerae, VcFhuD and VcHutB. Through crystal structures and fluorescence quenching studies we demonstrate unique features of VcFhuD to bind both hydroxamate and catecholate type xenosiderophores. Like E. coli FhuD, VcFhuD binds ferrichrome and ferri-desferal using conserved Tryptophans and R102. However, unlike EcFhuD, slightly basic ligand binding pocket of VcFhuD could favour ferri-enterobactin binding with plausible participation of R203, along with R102, like it happens in catecholate binding PBPs. Structural studies coupled with spectrophotometric and native PAGE analysis indicated parallel binding of two heme molecules to VcHutB in a pH dependent manner, while mutational analysis established the relative importance of Y65 and H164 in heme binding. MD simulation studies exhibited an unforeseen inter-lobe swinging motion in Type III PBPs, magnitude of which is inversely related to the packing of the linker helix with its neighboring helices. Small inter-lobe movement in VcFhuD or dramatic twisting in VcHutB is found to influence ligand binding.
Collapse
Affiliation(s)
- Shubhangi Agarwal
- Department of Biotechnology, St. Xavier's College, 30 Park Street, Kolkata 700016, India
| | - Sanjay Dey
- Department of Biotechnology, St. Xavier's College, 30 Park Street, Kolkata 700016, India
| | - Biplab Ghosh
- High Pressure &Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Maitree Biswas
- Department of Biotechnology, St. Xavier's College, 30 Park Street, Kolkata 700016, India
| | - Jhimli Dasgupta
- Department of Biotechnology, St. Xavier's College, 30 Park Street, Kolkata 700016, India
| |
Collapse
|