1
|
Mboukou A, Rajendra V, Messmer S, Mandl TC, Catala M, Tisné C, Jantsch MF, Barraud P. Dimerization of ADAR1 modulates site-specificity of RNA editing. Nat Commun 2024; 15:10051. [PMID: 39572551 PMCID: PMC11582362 DOI: 10.1038/s41467-024-53777-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 10/15/2024] [Indexed: 11/24/2024] Open
Abstract
Adenosine-to-inosine editing is catalyzed by adenosine deaminases acting on RNA (ADARs) in double-stranded RNA (dsRNA) regions. Although three ADARs exist in mammals, ADAR1 is responsible for the vast majority of the editing events and acts on thousands of sites in the human transcriptome. ADAR1 has been proposed to form a stable homodimer and dimerization is suggested to be important for editing activity. In the absence of a structural basis for the dimerization of ADAR1, and without a way to prevent dimer formation, the effect of dimerization on enzyme activity or site specificity has remained elusive. Here, we report on the structural analysis of the third double-stranded RNA-binding domain of ADAR1 (dsRBD3), which reveals stable dimer formation through a large inter-domain interface. Exploiting these structural insights, we engineered an interface-mutant disrupting ADAR1-dsRBD3 dimerization. Notably, dimerization disruption did not abrogate ADAR1 editing activity but intricately affected editing efficiency at selected sites. This suggests a complex role for dimerization in the selection of editing sites by ADARs, and makes dimerization a potential target for modulating ADAR1 editing activity.
Collapse
Affiliation(s)
- Allegra Mboukou
- Expression génétique microbienne, Université Paris Cité, CNRS, Institut de biologie physico-chimique, Paris, France
| | - Vinod Rajendra
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Serafina Messmer
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Therese C Mandl
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Marjorie Catala
- Expression génétique microbienne, Université Paris Cité, CNRS, Institut de biologie physico-chimique, Paris, France
| | - Carine Tisné
- Expression génétique microbienne, Université Paris Cité, CNRS, Institut de biologie physico-chimique, Paris, France
| | - Michael F Jantsch
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria.
| | - Pierre Barraud
- Expression génétique microbienne, Université Paris Cité, CNRS, Institut de biologie physico-chimique, Paris, France.
| |
Collapse
|
2
|
Chen YT, Tsai HJ, Kan CH, Ma CP, Chen HW, Chang IYF, Liu H, Wu CC, Chu WY, Wu YC, Chang KP, Yu JS, Tan BCM. Noncanonical formation of SNX5 gene-derived circular RNA regulates cancer growth. Cell Death Dis 2024; 15:599. [PMID: 39155279 PMCID: PMC11330969 DOI: 10.1038/s41419-024-06980-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/04/2024] [Accepted: 08/06/2024] [Indexed: 08/20/2024]
Abstract
Oral squamous cell carcinoma (OSCC) is a prevalent cancer worldwide, exhibiting unique regional prevalence. Despite advancements in diagnostics and therapy, the 5-year survival rate for patients has seen limited improvement. A deeper understanding of OSCC pathogenesis, especially its molecular underpinnings, is essential for improving detection, prevention, and treatment. In this context, noncoding RNAs, such as circular RNAs (circRNAs), have gained recognition as crucial regulators and potential biomarkers in OSCC progression. Our study highlights the discovery of previously uncharacterized circRNAs, including a SNX5 gene-derived circRNA, circSNX5, through deep sequencing of OSCC patient tissue transcriptomes. We established circSNX5's tumor-specific expression and its strong correlation with patient survival using structure-specific and quantitative PCR analyses. In vitro and in vivo experiments underscored circSNX5 RNA's regulatory role in cancer growth and metastasis. Further, our omics profiling and functional assays revealed that ADAM10 is a critical effector in circSNX5-mediated cancer progression, with circSNX5 maintaining ADAM10 expression by sponging miR-323. This novel circRNA-miRNA-mRNA regulatory axis significantly contributes to oral cancer progression and malignancy. Moreover, we discovered that circSNX5 RNA is produced via noncanonical sequential back-splicing of pre-mRNA, a process negatively regulated by the RNA-binding protein STAU1. This finding adds a new dimension to our understanding of exonic circRNA biogenesis in the eukaryotic transcriptome. Collectively, our findings offer a detailed mechanistic dissection and functional interpretation of a novel circRNA, shedding light on the role of the noncoding transcriptome in cancer biology and potentially paving the way for innovative therapeutic strategies.
Collapse
Affiliation(s)
- Yi-Tung Chen
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, 333, Taiwan
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Hui-Ju Tsai
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Chia-Hua Kan
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Chung-Pei Ma
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Hui-Wen Chen
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Ian Yi-Feng Chang
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, 333, Taiwan
- Department of Neurosurgery, Lin-Kou Medical Center, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan
- Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan
| | - Hsuan Liu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, 333, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
- Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
- Division of Colon and Rectal Surgery, Lin-Kou Medical Center, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan
| | - Chih-Ching Wu
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Wei-Yun Chu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Ya-Chun Wu
- Asia American International Academy, New Taipei City, Taiwan
| | - Kai-Ping Chang
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, 333, Taiwan
- Department of Otolaryngology-Head & Neck Surgery, Lin-Kou Medical Center, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan
| | - Jau-Song Yu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, 333, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
- Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Bertrand Chin-Ming Tan
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan.
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan.
- Department of Neurosurgery, Lin-Kou Medical Center, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan.
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan, 333, Taiwan.
| |
Collapse
|
3
|
Zhao R, Huang S, Li J, Gu A, Fu M, Hua W, Mao Y, Lei QY, Lu B, Wen W. Excessive STAU1 condensate drives mTOR translation and autophagy dysfunction in neurodegeneration. J Cell Biol 2024; 223:e202311127. [PMID: 38913026 PMCID: PMC11194678 DOI: 10.1083/jcb.202311127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/20/2024] [Accepted: 05/03/2024] [Indexed: 06/25/2024] Open
Abstract
The double-stranded RNA-binding protein Staufen1 (STAU1) regulates a variety of physiological and pathological events via mediating RNA metabolism. STAU1 overabundance was observed in tissues from mouse models and fibroblasts from patients with neurodegenerative diseases, accompanied by enhanced mTOR signaling and impaired autophagic flux, while the underlying mechanism remains elusive. Here, we find that endogenous STAU1 forms dynamic cytoplasmic condensate in normal and tumor cell lines, as well as in mouse Huntington's disease knockin striatal cells. STAU1 condensate recruits target mRNA MTOR at its 5'UTR and promotes its translation both in vitro and in vivo, and thus enhanced formation of STAU1 condensate leads to mTOR hyperactivation and autophagy-lysosome dysfunction. Interference of STAU1 condensate normalizes mTOR levels, ameliorates autophagy-lysosome function, and reduces aggregation of pathological proteins in cellular models of neurodegenerative diseases. These findings highlight the importance of balanced phase separation in physiological processes, suggesting that modulating STAU1 condensate may be a strategy to mitigate the progression of neurodegenerative diseases with STAU1 overabundance.
Collapse
Affiliation(s)
- Ruiqian Zhao
- Department of Neurosurgery, Huashan Hospital, The Shanghai Key Laboratory of Medical Epigenetics, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Shijing Huang
- Department of Neurosurgery, Huashan Hospital, The Shanghai Key Laboratory of Medical Epigenetics, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jingyu Li
- Department of Neurosurgery, Huashan Hospital, The Shanghai Key Laboratory of Medical Epigenetics, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Aihong Gu
- Department of Neurosurgery, Huashan Hospital, The Shanghai Key Laboratory of Medical Epigenetics, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Minjie Fu
- Department of Neurosurgery, Huashan Hospital, The Shanghai Key Laboratory of Medical Epigenetics, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wei Hua
- Department of Neurosurgery, Huashan Hospital, The Shanghai Key Laboratory of Medical Epigenetics, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, The Shanghai Key Laboratory of Medical Epigenetics, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Qun-Ying Lei
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Boxun Lu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, New Cornerstone Science Laboratory, School of Life Sciences, Fudan University, Shanghai, China
| | - Wenyu Wen
- Department of Neurosurgery, Huashan Hospital, The Shanghai Key Laboratory of Medical Epigenetics, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Ashley CN, Broni E, Miller WA. ADAR Family Proteins: A Structural Review. Curr Issues Mol Biol 2024; 46:3919-3945. [PMID: 38785511 PMCID: PMC11120146 DOI: 10.3390/cimb46050243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
This review aims to highlight the structures of ADAR proteins that have been crucial in the discernment of their functions and are relevant to future therapeutic development. ADAR proteins can correct or diversify genetic information, underscoring their pivotal contribution to protein diversity and the sophistication of neuronal networks. ADAR proteins have numerous functions in RNA editing independent roles and through the mechanisms of A-I RNA editing that continue to be revealed. Provided is a detailed examination of the ADAR family members-ADAR1, ADAR2, and ADAR3-each characterized by distinct isoforms that offer both structural diversity and functional variability, significantly affecting RNA editing mechanisms and exhibiting tissue-specific regulatory patterns, highlighting their shared features, such as double-stranded RNA binding domains (dsRBD) and a catalytic deaminase domain (CDD). Moreover, it explores ADARs' extensive roles in immunity, RNA interference, and disease modulation, demonstrating their ambivalent nature in both the advancement and inhibition of diseases. Through this comprehensive analysis, the review seeks to underline the potential of targeting ADAR proteins in therapeutic strategies, urging continued investigation into their biological mechanisms and health implications.
Collapse
Affiliation(s)
- Carolyn N. Ashley
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA; (C.N.A.); (E.B.)
| | - Emmanuel Broni
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA; (C.N.A.); (E.B.)
| | - Whelton A. Miller
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA; (C.N.A.); (E.B.)
- Department of Molecular Pharmacology & Neuroscience, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
| |
Collapse
|
5
|
Yang Z, Zhou J, Li Z, Guo J, Fang L, Xiao X, Xiao S. Identification of whole-cell dsRNA-binding proteins by phase separation. RNA Biol 2024; 21:32-45. [PMID: 39115224 PMCID: PMC11312991 DOI: 10.1080/15476286.2024.2386498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/19/2024] [Accepted: 07/25/2024] [Indexed: 08/11/2024] Open
Abstract
Interactions between double-stranded RNA (dsRNA) and proteins play an important role in cellular homeostasis by regulating the editing, stability, and splicing of intracellular RNA. The identification of dsRNA-binding proteins (dsRBPs) is key; however, it has long been challenging to purify dsRBPs from cells. In this study, we developed a novel method, dsRBPC (dsRNA-binding protein capture), to purify cellular dsRBPs based on classic phase separation purification procedures. A global dsRNA-binding proteome of LLC-PK1 cells was obtained, and we identified 1326 dsRBPs, including 1303 putative novel dsRBPs. Functional analyses suggested that these enriched dsRBPs are mainly associated with rRNA processing, RNA splicing, transcriptional regulation, and nucleocytoplasmic transport. We also found that the ARM (armadillo/beta-catenin-like repeats) motif is a previously unknown dsRNA-binding domain, as demonstrated by biochemical experiments. Collectively, this study provides a useful approach for dsRBP identification and the discovery of a global dsRNA-binding proteome to comprehensively map the dsRNA - protein interaction network.
Collapse
Affiliation(s)
- Zhixiang Yang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Junwei Zhou
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Zhuang Li
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Jiahui Guo
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Liurong Fang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Xun Xiao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Shaobo Xiao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
6
|
Gonzalez Quesada Y, Bonnet-Magnaval F, DesGroseillers L. Phosphomimicry on STAU1 Serine 20 Impairs STAU1 Posttranscriptional Functions and Induces Apoptosis in Human Transformed Cells. Int J Mol Sci 2022; 23:ijms23137344. [PMID: 35806349 PMCID: PMC9266326 DOI: 10.3390/ijms23137344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 12/22/2022] Open
Abstract
Staufen 1 (STAU1) is an RNA-binding protein that is essential in untransformed cells. In cancer cells, it is rather STAU1 overexpression that impairs cell proliferation. In this paper, we show that a modest increase in STAU1 expression in cancer cells triggers apoptosis as early as 12 h post-transfection and impairs proliferation in non-apoptotic cells for several days. Interestingly, a mutation that mimics the phosphorylation of STAU1 serine 20 is sufficient to cause these phenotypes, indicating that serine 20 is at the heart of the molecular mechanism leading to apoptosis. Mechanistically, phosphomimicry on serine 20 alters the ability of STAU1 to regulate translation and the decay of STAU1-bound mRNAs, indicating that the posttranscriptional regulation of mRNAs by STAU1 controls the balance between proliferation and apoptosis. Unexpectedly, the expression of RBD2S20D, the N-terminal 88 amino acids with no RNA-binding activity, is sufficient to induce apoptosis via alteration, in trans, of the posttranscriptional functions of endogenous STAU1. These results suggest that STAU1 is a sensor that controls the balance between cell proliferation and apoptosis, and, therefore, may be considered as a novel therapeutic target against cancer.
Collapse
|
7
|
Arzalluz-Luque A, Salguero P, Tarazona S, Conesa A. acorde unravels functionally interpretable networks of isoform co-usage from single cell data. Nat Commun 2022; 13:1828. [PMID: 35383181 PMCID: PMC8983708 DOI: 10.1038/s41467-022-29497-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 03/16/2022] [Indexed: 12/13/2022] Open
Abstract
Alternative splicing (AS) is a highly-regulated post-transcriptional mechanism known to modulate isoform expression within genes and contribute to cell-type identity. However, the extent to which alternative isoforms establish co-expression networks that may be relevant in cellular function has not been explored yet. Here, we present acorde, a pipeline that successfully leverages bulk long reads and single-cell data to confidently detect alternative isoform co-expression relationships. To achieve this, we develop and validate percentile correlations, an innovative approach that overcomes data sparsity and yields accurate co-expression estimates from single-cell data. Next, acorde uses correlations to cluster co-expressed isoforms into a network, unraveling cell type-specific alternative isoform usage patterns. By selecting same-gene isoforms between these clusters, we subsequently detect and characterize genes with co-differential isoform usage (coDIU) across cell types. Finally, we predict functional elements from long read-defined isoforms and provide insight into biological processes, motifs, and domains potentially controlled by the coordination of post-transcriptional regulation. The code for acorde is available at https://github.com/ConesaLab/acorde .
Collapse
Affiliation(s)
- Angeles Arzalluz-Luque
- Department of Applied Statistics, Operations Research and Quality, Universitat Politècnica de València, Valencia, Spain
- Institute for Integrative Systems Biology (CSIC-UV), Spanish National Research Council, Paterna, Valencia, Spain
| | - Pedro Salguero
- Department of Applied Statistics, Operations Research and Quality, Universitat Politècnica de València, Valencia, Spain
| | - Sonia Tarazona
- Department of Applied Statistics, Operations Research and Quality, Universitat Politècnica de València, Valencia, Spain.
| | - Ana Conesa
- Institute for Integrative Systems Biology (CSIC-UV), Spanish National Research Council, Paterna, Valencia, Spain.
- Microbiology and Cell Sciences Department, Institute for Food and Agricultural Research, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
8
|
Almasi S, Jasmin BJ. The multifunctional RNA-binding protein Staufen1: an emerging regulator of oncogenesis through its various roles in key cellular events. Cell Mol Life Sci 2021; 78:7145-7160. [PMID: 34633481 PMCID: PMC8629789 DOI: 10.1007/s00018-021-03965-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/19/2021] [Accepted: 09/29/2021] [Indexed: 12/19/2022]
Abstract
The double-stranded multifunctional RNA-binding protein (dsRBP) Staufen was initially discovered in insects as a regulator of mRNA localization. Later, its mammalian orthologs have been described in different organisms, including humans. Two human orthologues of Staufen, named Staufen1 (STAU1) and Staufen2 (STAU2), share some structural and functional similarities. However, given their different spatio-temporal expression patterns, each of these orthologues plays distinct roles in cells. In the current review, we focus on the role of STAU1 in cell functions and cancer development. Since its discovery, STAU1 has mostly been studied for its involvement in various aspects of RNA metabolism. Given the pivotal role of RNA metabolism within cells, recent studies have explored the mechanistic impact of STAU1 in a wide variety of cell functions ranging from cell growth to cell death, as well as in various disease states. In particular, there has been increasing attention on the role of STAU1 in neuromuscular disorders, neurodegeneration, and cancer. Here, we provide an overview of the current knowledge on the role of STAU1 in RNA metabolism and cell functions. We also highlight the link between STAU1-mediated control of cellular functions and cancer development, progression, and treatment. Hence, our review emphasizes the potential of STAU1 as a novel biomarker and therapeutic target for cancer diagnosis and treatment, respectively.
Collapse
Affiliation(s)
- Shekoufeh Almasi
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Bernard J Jasmin
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
- The Eric J. Poulin Centre for Neuromuscular Diseases, Faculty of Medicine, University of Ottawa, Ottawa, K1H 8M5, Canada.
| |
Collapse
|
9
|
Park SW, Yu KL, Bae JH, Kim GN, Kim HI, You JC. Investigation of the effect of Staufen1 overexpression on the HIV-1 virus production. BMB Rep 2021. [PMID: 34353428 PMCID: PMC8633522 DOI: 10.5483/bmbrep.2021.54.11.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study, we investigated how Staufen1 influences the HIV-1 production. The overexpression of Staufen1 increased virus production without any negative affect on the viral infectivity. This increase was not caused by transcriptional activation; but by influencing post-transcriptional steps. Using multiple Gag protein derivatives, we confirmed that the zinc-finger domains of the HIV-1 nucleocapsid (NC) are important for its interaction with Staufen1. We also found that Staufen1 colocalized in stress granules with the mature form of the HIV-1 NC protein.
Collapse
Affiliation(s)
- Seong-won Park
- National Research Laboratory of Molecular Virology, Department of Pathology, School of Medicine, The Catholic University of Korea, Seoul 63071, Korea
| | - Kyung-Lee Yu
- National Research Laboratory of Molecular Virology, Department of Pathology, School of Medicine, The Catholic University of Korea, Seoul 63071, Korea
| | - Jun-Hyun Bae
- National Research Laboratory of Molecular Virology, Department of Pathology, School of Medicine, The Catholic University of Korea, Seoul 63071, Korea
| | - Ga-Na Kim
- National Research Laboratory of Molecular Virology, Department of Pathology, School of Medicine, The Catholic University of Korea, Seoul 63071, Korea
| | - Hae-In Kim
- National Research Laboratory of Molecular Virology, Department of Pathology, School of Medicine, The Catholic University of Korea, Seoul 63071, Korea
| | - Ji Chang You
- National Research Laboratory of Molecular Virology, Department of Pathology, School of Medicine, The Catholic University of Korea, Seoul 63071, Korea
| |
Collapse
|
10
|
Bonnet-Magnaval F, DesGroseillers L. The Staufen1-dependent cell cycle regulon or how a misregulated RNA-binding protein leads to cancer. Biol Rev Camb Philos Soc 2021; 96:2192-2208. [PMID: 34018319 DOI: 10.1111/brv.12749] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 12/12/2022]
Abstract
In recent years, an increasing number of reports have linked the RNA-binding protein Staufen1 (STAU1) to the control of cell decision making. In non-transformed cells, STAU1 balances the expression of messenger RNA (mRNA) regulons that regulate differentiation and well-ordered cell division. Misregulation of STAU1 expression and/or functions changes the fragile balance in the expression of pro- and anti-proliferative and apoptotic genes and favours a novel equilibrium that supports cell proliferation and cancer development. The misregulation of STAU1 functions causes multiple coordinated modest effects in the post-transcriptional regulation of many RNA targets that code for cell cycle regulators, leading to dramatic consequences at the cellular level. The new tumorigenic equilibrium in STAU1-mediated gene regulation observed in cancer cells can be further altered by a slight increase in STAU1 expression that favours expression of pro-apoptotic genes and cell death. The STAU1-dependent cell cycle regulon is a good model to study how abnormal expression of an RNA-binding protein promotes cell growth and provides an advantageous selection of malignant cells in the first step of cancer development.
Collapse
Affiliation(s)
- Florence Bonnet-Magnaval
- Département de biochimie et médecine moléculaire, Faculté de médecine, Université de Montréal, 2900 Édouard Montpetit, Montréal, QC, H3T 1J4, Canada
| | - Luc DesGroseillers
- Département de biochimie et médecine moléculaire, Faculté de médecine, Université de Montréal, 2900 Édouard Montpetit, Montréal, QC, H3T 1J4, Canada
| |
Collapse
|
11
|
Zhang X, Li P, Zhong H, Yang F, Liu F, Yedid G, Zeng Y. Extending the L1 region in canonical double-stranded RNA-binding domains impairs their functions. Acta Biochim Biophys Sin (Shanghai) 2021; 53:463-471. [PMID: 33751023 DOI: 10.1093/abbs/gmab014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Indexed: 12/24/2022] Open
Abstract
A large number of proteins involved in RNA metabolism possess a double-stranded RNA-binding domain (dsRBD), whose sequence variations and functional versatilities are still being recognized. All dsRBDs have a similar structural fold: α1-L1-β1-L2-β2-L3-β3-L4-α2 (α represents an α-helix, β a β-sheet, and L a loop conformation between the well-defined secondary structures). Our recent work revealed that the dsRBD in Drosha, which is involved in animal microRNA (miRNA) biogenesis, differs from other dsRBDs by containing a short insertion in its L1 region and that this insertion is important for Drosha function. We asked why the same insertion is excluded in all other dsRBDs and proposed that a longer L1 may be detrimental to their functions. In this study, to test this hypothesis, we inserted the Drosha sequence into several well-known dsRBDs from various organisms. Gel mobility shift assay demonstrated that L1 extension invariably reduced RNA binding by these dsRBDs. In addition, such a mutation in Dicer, another protein involved in miRNA biogenesis, impaired Dicer's ability to process miRNAs, which led to de-repression of reporter expression, in human cells. Taken together, our results add to the growing appreciation of the diversity in dsRBDs and suggest that dsRBDs have intricate structures and functions that are sensitive to perturbations in the L1 region.
Collapse
Affiliation(s)
- Xiaoxiao Zhang
- Department of Zoology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Peng Li
- Department of Zoology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Huanhuan Zhong
- Department of Zoology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Fanming Yang
- Department of Zoology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Fanzhou Liu
- Department of Zoology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Gabriel Yedid
- Department of Zoology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yan Zeng
- Department of Zoology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
12
|
May JP, Simon AE. Targeting of viral RNAs by Upf1-mediated RNA decay pathways. Curr Opin Virol 2020; 47:1-8. [PMID: 33341474 DOI: 10.1016/j.coviro.2020.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 12/25/2022]
Abstract
Viral RNAs are susceptible to co-translational RNA decay pathways mediated by the RNA helicase Upstream frameshift 1 (Upf1). Upf1 is a key component in nonsense-mediated decay (NMD), Staufen1-mediated mRNA decay (SMD), and structure-mediated RNA decay (SRD) pathways, among others. Diverse families of viruses have features that predispose them to Upf1 targeting, but have evolved means to escape decay through the action of cis-acting or trans-acting viral factors. Studies aimed at understanding how viruses are subjected to and circumvent NMD have increased our understanding of NMD target selection of host mRNAs. This review focuses on the knowledge gained from studying NMD in viral systems as well as related Upf1-dependent pathways and how these pathways restrict virus replication.
Collapse
Affiliation(s)
- Jared P May
- Department of Cell and Molecular Biology and Biochemistry, School of Biological and Chemical Sciences, University of Missouri-Kansas City, Kansas City, MO 64110, USA.
| | - Anne E Simon
- Department of Cell Biology and Molecular Genetics, University of Maryland - College Park, College Park, MD, USA.
| |
Collapse
|
13
|
Zheng D, Cho H, Wang W, Rambout X, Tian B, Maquat LE. 3'READS + RIP defines differential Staufen1 binding to alternative 3'UTR isoforms and reveals structures and sequence motifs influencing binding and polysome association. RNA (NEW YORK, N.Y.) 2020; 26:1621-1636. [PMID: 32796083 PMCID: PMC7566578 DOI: 10.1261/rna.076133.120] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
Staufen1 (STAU1) is an RNA-binding protein (RBP) that interacts with double-stranded RNA structures and has been implicated in regulating different aspects of mRNA metabolism. Previous studies have indicated that STAU1 interacts extensively with RNA structures in coding regions (CDSs) and 3'-untranslated regions (3'UTRs). In particular, duplex structures formed within 3'UTRs by inverted-repeat Alu elements (IRAlus) interact with STAU1 through its double-stranded RNA-binding domains (dsRBDs). Using 3' region extraction and deep sequencing coupled to ribonucleoprotein immunoprecipitation (3'READS + RIP), together with reanalyzing previous STAU1 binding and RNA structure data, we delineate STAU1 interactions transcriptome-wide, including binding differences between alternative polyadenylation (APA) isoforms. Consistent with previous reports, RNA structures are dominant features for STAU1 binding to CDSs and 3'UTRs. Overall, relative to short 3'UTR counterparts, longer 3'UTR isoforms of genes have stronger STAU1 binding, most likely due to a higher frequency of RNA structures, including specific IRAlus sequences. Nevertheless, a sizable fraction of genes express transcripts showing the opposite trend, attributable to AU-rich sequences in their alternative 3'UTRs that may recruit antagonistic RBPs and/or destabilize RNA structures. Using STAU1-knockout cells, we show that strong STAU1 binding to mRNA 3'UTRs generally enhances polysome association. However, IRAlus generally have little impact on STAU1-mediated polysome association despite having strong interactions with the protein. Taken together, our work reveals complex interactions of STAU1 with its cognate RNA substrates. Our data also shed light on distinct post-transcriptional fates for the widespread APA isoforms in mammalian cells.
Collapse
Affiliation(s)
- Dinghai Zheng
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, Newark, New Jersey 07103, USA
| | - Hana Cho
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642, USA
- Center for RNA Biology, University of Rochester, Rochester, New York 14642, USA
| | - Wei Wang
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, Newark, New Jersey 07103, USA
| | - Xavier Rambout
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642, USA
- Center for RNA Biology, University of Rochester, Rochester, New York 14642, USA
| | - Bin Tian
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, Newark, New Jersey 07103, USA
- Program in Gene Expression and Regulation, and Center for Systems and Computational Biology, Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| | - Lynne E Maquat
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642, USA
- Center for RNA Biology, University of Rochester, Rochester, New York 14642, USA
| |
Collapse
|
14
|
Tatosyan KA, Zinevich LS, Demin DE, Schwartz AM. Functional Characteristics of Long Noncoding RNAs Containing Sequences of Mobile Genetic Elements. Mol Biol 2020. [DOI: 10.1134/s0026893320050106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Liu S, Li B, Liang Q, Liu A, Qu L, Yang J. Classification and function of RNA-protein interactions. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 11:e1601. [PMID: 32488992 DOI: 10.1002/wrna.1601] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 04/15/2020] [Accepted: 04/29/2020] [Indexed: 12/11/2022]
Abstract
Almost all RNAs need to interact with proteins to fully exert their functions, and proteins also bind to RNAs to act as regulators. It has now become clear that RNA-protein interactions play important roles in many biological processes among organisms. Despite the great progress that has been made in the field, there is still no precise classification system for RNA-protein interactions, which makes it challenging to further decipher the functions and mechanisms of these interactions. In this review, we propose four different categories of RNA-protein interactions according to their basic characteristics: RNA motif-dependent RNA-protein interactions, RNA structure-dependent RNA-protein interactions, RNA modification-dependent RNA-protein interactions, and RNA guide-based RNA-protein interactions. Moreover, the integration of different types of RNA-protein interactions and the regulatory factors implicated in these interactions are discussed. Furthermore, we emphasize the functional diversity of these four types of interactions in biological processes and disease development and assess emerging trends in this exciting research field. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Processing > RNA Editing and Modification.
Collapse
Affiliation(s)
- Shurong Liu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Bin Li
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qiaoxia Liang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Anrui Liu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Lianghu Qu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jianhua Yang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| |
Collapse
|
16
|
Yadav DK, Zigáčková D, Zlobina M, Klumpler T, Beaumont C, Kubíčková M, Vaňáčová Š, Lukavsky PJ. Staufen1 reads out structure and sequence features in ARF1 dsRNA for target recognition. Nucleic Acids Res 2020; 48:2091-2106. [PMID: 31875226 PMCID: PMC7038937 DOI: 10.1093/nar/gkz1163] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/22/2019] [Accepted: 12/05/2019] [Indexed: 12/13/2022] Open
Abstract
Staufen1 (STAU1) is a dsRNA binding protein mediating mRNA transport and localization, translational control and STAU1-mediated mRNA decay (SMD). The STAU1 binding site (SBS) within human ADP-ribosylation factor1 (ARF1) 3′UTR binds STAU1 and this downregulates ARF1 cytoplasmic mRNA levels by SMD. However, how STAU1 recognizes specific mRNA targets is still under debate. Our structure of the ARF1 SBS–STAU1 complex uncovers target recognition by STAU1. STAU1 dsRNA binding domain (dsRBD) 4 interacts with two pyrimidines and one purine from the minor groove side via helix α1, the β1–β2 loop anchors the dsRBD at the end of the dsRNA and lysines in helix α2 bind to the phosphodiester backbone from the major groove side. STAU1 dsRBD3 displays the same binding mode with specific recognition of one guanine base. Mutants disrupting minor groove recognition of ARF1 SBS affect in vitro binding and reduce SMD in vivo. Our data thus reveal how STAU1 recognizes minor groove features in dsRNA relevant for target selection.
Collapse
Affiliation(s)
- Deepak Kumar Yadav
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, 62500, Brno, Czech Republic
| | - Dagmar Zigáčková
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, 62500, Brno, Czech Republic
| | - Maria Zlobina
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, 62500, Brno, Czech Republic
| | - Tomáš Klumpler
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, 62500, Brno, Czech Republic
| | - Christelle Beaumont
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, 62500, Brno, Czech Republic
| | - Monika Kubíčková
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, 62500, Brno, Czech Republic
| | - Štěpánka Vaňáčová
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, 62500, Brno, Czech Republic
| | - Peter J Lukavsky
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, 62500, Brno, Czech Republic
| |
Collapse
|
17
|
Visentin S, Cannone G, Doutch J, Harris G, Gleghorn ML, Clifton L, Smith BO, Spagnolo L. A multipronged approach to understanding the form and function of hStaufen protein. RNA (NEW YORK, N.Y.) 2020; 26:265-277. [PMID: 31852734 PMCID: PMC7025507 DOI: 10.1261/rna.072595.119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 12/09/2019] [Indexed: 05/09/2023]
Abstract
Staufen is a dsRNA-binding protein involved in many aspects of RNA regulation, such as mRNA transport, Staufen-mediated mRNA decay and the regulation of mRNA translation. It is a modular protein characterized by the presence of conserved consensus amino acid sequences that fold into double-stranded RNA binding domains (RBDs) as well as degenerated RBDs that are instead involved in protein-protein interactions. The variety of biological processes in which Staufen participates in the cell suggests that this protein associates with many diverse RNA targets, some of which have been identified experimentally. Staufen binding mediates the recruitment of effectors via protein-protein and protein-RNA interactions. The structural determinants of a number of these interactions, as well as the structure of full-length Staufen, remain unknown. Here, we present the first solution structure models for full-length hStaufen155, showing that its domains are arranged as beads-on-a-string connected by flexible linkers. In analogy with other nucleic acid-binding proteins, this could underpin Stau1 functional plasticity.
Collapse
Affiliation(s)
- Silvia Visentin
- Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow G12 8QQ, United Kingdom
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JQ, United Kingdom
- ISIS Pulsed Neutron and Muon Source, Science and Technology Facilities Council (STFC), Rutherford Appleton Laboratory, Didcot OX11 OQX, United Kingdom
| | - Giuseppe Cannone
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JQ, United Kingdom
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - James Doutch
- ISIS Pulsed Neutron and Muon Source, Science and Technology Facilities Council (STFC), Rutherford Appleton Laboratory, Didcot OX11 OQX, United Kingdom
| | - Gemma Harris
- Research Complex at Harwell, Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot OX11 0FA, United Kingdom
| | - Michael L Gleghorn
- School of Chemistry and Materials Science, College of Science, Rochester Institute of Technology, Rochester, New York 14623, USA
| | - Luke Clifton
- ISIS Pulsed Neutron and Muon Source, Science and Technology Facilities Council (STFC), Rutherford Appleton Laboratory, Didcot OX11 OQX, United Kingdom
| | - Brian O Smith
- Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Laura Spagnolo
- Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| |
Collapse
|
18
|
Maquat LE. Short interspersed nuclear element (SINE)-mediated post-transcriptional effects on human and mouse gene expression: SINE-UP for active duty. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190344. [PMID: 32075563 DOI: 10.1098/rstb.2019.0344] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Primate-specific Alu short interspersed nuclear elements (SINEs) and rodent-specific B and ID (B/ID) SINEs are non-autonomous and generally non-coding retrotransposons that have been copied and pasted into the respective genomes so as to constitute what is estimated to be a remarkable 13% and 8% of those genomes. In the context of messenger RNAs (mRNAs), those residing within 3'-untranslated regions (3'UTRs) can influence mRNA export from the nucleus to the cytoplasm, mRNA translation and/or mRNA decay via proteins with which they associate either individually or base-paired in cis or in trans with a partially complementary SINE. Each of these influences impinges on the primary function of mRNA, which is to serve as a template for protein synthesis. This review describes how human cells have used 3'UTR Alu elements to mediate post-transcriptional gene regulation and also describes examples of convergent evolution between human and mouse 3'UTR SINEs. This article is part of a discussion meeting issue 'Crossroads between transposons and gene regulation'.
Collapse
Affiliation(s)
- Lynne E Maquat
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.,Center for RNA Biology, University of Rochester, Rochester, NY, USA
| |
Collapse
|
19
|
Jeong K, Ryu I, Park J, Hwang HJ, Ha H, Park Y, Oh ST, Kim YK. Staufen1 and UPF1 exert opposite actions on the replacement of the nuclear cap-binding complex by eIF4E at the 5' end of mRNAs. Nucleic Acids Res 2019; 47:9313-9328. [PMID: 31361897 PMCID: PMC6753478 DOI: 10.1093/nar/gkz643] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 07/11/2019] [Accepted: 07/16/2019] [Indexed: 01/31/2023] Open
Abstract
Newly synthesized mRNAs are exported from the nucleus to cytoplasm with a 5′-cap structure bound by the nuclear cap-binding complex (CBC). During or after export, the CBC should be properly replaced by cytoplasmic cap-binding protein eIF4E for efficient protein synthesis. Nonetheless, little is known about how the replacement takes place. Here, we show that double-stranded RNA-binding protein staufen1 (STAU1) promotes efficient replacement by facilitating an association between the CBC–importin α complex and importin β. Our transcriptome-wide analyses and artificial tethering experiments also reveal that the replacement occurs more efficiently when an mRNA associates with STAU1. This event is inhibited by a key nonsense-mediated mRNA decay factor, UPF1, which directly interacts with STAU1. Furthermore, we find that cellular apoptosis that is induced by ionizing radiation is accompanied by inhibition of the replacement via increased association between STAU1 and hyperphosphorylated UPF1. Altogether, our data highlight the functional importance of STAU1 and UPF1 in the course of the replacement of the CBC by eIF4E, adding a previously unappreciated layer of post-transcriptional gene regulation.
Collapse
Affiliation(s)
- Kwon Jeong
- Creative Research Initiatives Center for Molecular Biology of Translation, Korea University, Seoul 02841, Republic of Korea.,Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Incheol Ryu
- Creative Research Initiatives Center for Molecular Biology of Translation, Korea University, Seoul 02841, Republic of Korea.,Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Joori Park
- Creative Research Initiatives Center for Molecular Biology of Translation, Korea University, Seoul 02841, Republic of Korea.,Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Hyun Jung Hwang
- Creative Research Initiatives Center for Molecular Biology of Translation, Korea University, Seoul 02841, Republic of Korea.,Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Hongseok Ha
- Creative Research Initiatives Center for Molecular Biology of Translation, Korea University, Seoul 02841, Republic of Korea.,Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Yeonkyoung Park
- Creative Research Initiatives Center for Molecular Biology of Translation, Korea University, Seoul 02841, Republic of Korea.,Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Sang Taek Oh
- Creative Research Initiatives Center for Molecular Biology of Translation, Korea University, Seoul 02841, Republic of Korea.,Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Yoon Ki Kim
- Creative Research Initiatives Center for Molecular Biology of Translation, Korea University, Seoul 02841, Republic of Korea.,Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
20
|
Insights into the assembly and architecture of a Staufen-mediated mRNA decay (SMD)-competent mRNP. Nat Commun 2019; 10:5054. [PMID: 31699982 PMCID: PMC6838198 DOI: 10.1038/s41467-019-13080-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 10/18/2019] [Indexed: 02/07/2023] Open
Abstract
The mammalian Staufen proteins (Stau1 and Stau2) mediate degradation of mRNA containing complex secondary structures in their 3’-untranslated region (UTR) through a pathway known as Staufen-mediated mRNA decay (SMD). This pathway also involves the RNA helicase UPF1, which is best known for its role in the nonsense-mediated mRNA decay (NMD) pathway. Here we present a biochemical reconstitution of the recruitment and activation of UPF1 in context of the SMD pathway. We demonstrate the involvement of UPF2, a core NMD factor and a known activator of UPF1, in SMD. UPF2 acts as an adaptor between Stau1 and UPF1, stimulates the catalytic activity of UPF1 and plays a central role in the formation of an SMD-competent mRNP. Our study elucidates the molecular mechanisms of SMD and points towards extensive cross-talk between UPF1-mediated mRNA decay pathways in cells. The Staufen proteins recognize secondary structures in 3’-untranslated regions in mRNA transcripts and induce degradation of these mRNAs with the help of the RNA helicase UPF1. Here the authors report that the nonsense-mediated mRNA decay factor UPF2 mediates the interaction between Stau1 and UPF1 in Staufen-mediated mRNA decay.
Collapse
|
21
|
Heber S, Gáspár I, Tants JN, Günther J, Moya SMF, Janowski R, Ephrussi A, Sattler M, Niessing D. Staufen2-mediated RNA recognition and localization requires combinatorial action of multiple domains. Nat Commun 2019; 10:1659. [PMID: 30971701 PMCID: PMC6477676 DOI: 10.1038/s41467-019-09655-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 03/20/2019] [Indexed: 11/08/2022] Open
Abstract
Throughout metazoans, Staufen (Stau) proteins are core factors of mRNA localization particles. They consist of three to four double-stranded RNA binding domains (dsRBDs) and a C-terminal dsRBD-like domain. Mouse Staufen2 (mStau2)-like Drosophila Stau (dmStau) contains four dsRBDs. Existing data suggest that only dsRBDs 3-4 are necessary and sufficient for mRNA binding. Here, we show that dsRBDs 1 and 2 of mStau2 bind RNA with similar affinities and kinetics as dsRBDs 3 and 4. While RNA binding by these tandem domains is transient, all four dsRBDs recognize their target RNAs with high stability. Rescue experiments in Drosophila oocytes demonstrate that mStau2 partially rescues dmStau-dependent mRNA localization. In contrast, a rescue with mStau2 bearing RNA-binding mutations in dsRBD1-2 fails, confirming the physiological relevance of our findings. In summary, our data show that the dsRBDs 1-2 play essential roles in the mRNA recognition and function of Stau-family proteins of different species.
Collapse
Affiliation(s)
- Simone Heber
- Institute of Pharmaceutical Biotechnology, 89081 Ulm University, Ulm, Germany
- Institute of Structural Biology, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Imre Gáspár
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117, Heidelberg, Germany
- Institute of Molecular Biotechnology, 1030, Vienna, Austria
| | - Jan-Niklas Tants
- Center for Integrated Protein Science Munich at Chair of Biomolecular NMR Spectroscopy, Department Chemistry, Technische Universität München, 85747, Garching, Germany
| | - Johannes Günther
- Center for Integrated Protein Science Munich at Chair of Biomolecular NMR Spectroscopy, Department Chemistry, Technische Universität München, 85747, Garching, Germany
| | - Sandra M Fernandez Moya
- Biomedical Center Munich, Department of Cell Biology, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
| | - Robert Janowski
- Institute of Structural Biology, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Anne Ephrussi
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117, Heidelberg, Germany
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Zentrum München, 85764, Neuherberg, Germany
- Center for Integrated Protein Science Munich at Chair of Biomolecular NMR Spectroscopy, Department Chemistry, Technische Universität München, 85747, Garching, Germany
| | - Dierk Niessing
- Institute of Pharmaceutical Biotechnology, 89081 Ulm University, Ulm, Germany.
- Institute of Structural Biology, Helmholtz Zentrum München, 85764, Neuherberg, Germany.
| |
Collapse
|
22
|
Elbarbary RA, Maquat LE. Evaluating the susceptibility of AGO2-loaded microRNAs to degradation by nucleases in vitro. Methods 2019; 152:18-22. [PMID: 29777751 PMCID: PMC6240400 DOI: 10.1016/j.ymeth.2018.05.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 05/10/2018] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) comprise a class of small non-coding RNAs that regulate the stability and/or translatability of most protein-coding transcripts. Steady-state levels of mature miRNAs can be controlled through mechanisms that influence their biogenesis and/or decay rates. Pathways that mediate mature miRNA decay are less well understood than those that mediate miRNA biogenesis. We recently described Tudor-staphylococcal/micrococcal-like nuclease (TSN)-mediated miRNA decay (TumiD) as a cellular pathway that promotes the sequence-specific endonucleolytic decay of miRNAs that harbor a CA and/or UA dinucleotide. Here, we describe an in vitro assay for evaluating the susceptibility of AGO2-loaded miRNAs to degradation by different classes of nucleases. This in vitro approach can be used to complement in vivo studies that aim to identify novel miRNA decay factors.
Collapse
Affiliation(s)
- Reyad A Elbarbary
- Department of Orthopaedics and Rehabilitation, Penn State University, College of Medicine, Hershey, PA 17033-0850, USA; Department of Biochemistry and Molecular Biology, Penn State University, College of Medicine, Hershey, PA 17033-0850, USA.
| | - Lynne E Maquat
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA; Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA.
| |
Collapse
|
23
|
Lazzaretti D, Bandholz-Cajamarca L, Emmerich C, Schaaf K, Basquin C, Irion U, Bono F. The crystal structure of Staufen1 in complex with a physiological RNA sheds light on substrate selectivity. Life Sci Alliance 2018; 1:e201800187. [PMID: 30456389 PMCID: PMC6238398 DOI: 10.26508/lsa.201800187] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/03/2018] [Accepted: 10/05/2018] [Indexed: 01/29/2023] Open
Abstract
Combination of in vitro and in vivo data show that RNA sequence influences Staufen target recognition and that protein–RNA base contacts are required for Staufen function in Drosophila. During mRNA localization, RNA-binding proteins interact with specific structured mRNA localization motifs. Although several such motifs have been identified, we have limited structural information on how these interact with RNA-binding proteins. Staufen proteins bind structured mRNA motifs through dsRNA-binding domains (dsRBD) and are involved in mRNA localization in Drosophila and mammals. We solved the structure of two dsRBDs of human Staufen1 in complex with a physiological dsRNA sequence. We identified interactions between the dsRBDs and the RNA sugar–phosphate backbone and direct contacts of conserved Staufen residues to RNA bases. Mutating residues mediating nonspecific backbone interactions only affected Staufen function in Drosophila when in vitro binding was severely reduced. Conversely, residues involved in base-directed interactions were required in vivo even when they minimally affected in vitro binding. Our work revealed that Staufen can read sequence features in the minor groove of dsRNA and suggests that these influence target selection in vivo.
Collapse
Affiliation(s)
| | | | | | - Kristina Schaaf
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Claire Basquin
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Uwe Irion
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Fulvia Bono
- Max Planck Institute for Developmental Biology, Tübingen, Germany.,Living Systems Institute, University of Exeter, Exeter, UK
| |
Collapse
|
24
|
Elbarbary RA, Miyoshi K, Myers JR, Du P, Ashton JM, Tian B, Maquat LE. Tudor-SN-mediated endonucleolytic decay of human cell microRNAs promotes G 1/S phase transition. Science 2018; 356:859-862. [PMID: 28546213 DOI: 10.1126/science.aai9372] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 11/16/2016] [Accepted: 04/21/2017] [Indexed: 12/22/2022]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression. The pathways that mediate mature miRNA decay are less well understood than those that mediate miRNA biogenesis. We found that functional miRNAs are degraded in human cells by the endonuclease Tudor-SN (TSN). In vitro, recombinant TSN initiated the decay of both protein-free and Argonaute 2-loaded miRNAs via endonucleolytic cleavage at CA and UA dinucleotides, preferentially at scissile bonds located more than five nucleotides away from miRNA ends. Cellular targets of TSN-mediated decay defined using microRNA sequencing followed this rule. Inhibiting TSN-mediated miRNA decay by CRISPR-Cas9 knockout of TSN inhibited cell cycle progression by up-regulating a cohort of miRNAs that down-regulates mRNAs that encode proteins critical for the G1-to-S phase transition. Our study indicates that targeting TSN nuclease activity could inhibit pathological cell proliferation.
Collapse
Affiliation(s)
- Reyad A Elbarbary
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA.,Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA
| | - Keita Miyoshi
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA.,Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA
| | - Jason R Myers
- Genomics Research Center, University of Rochester, Rochester, NY 14642, USA
| | - Peicheng Du
- Office of Advanced Research Computing, Rutgers University, Piscataway, NJ 08854, USA
| | - John M Ashton
- Genomics Research Center, University of Rochester, Rochester, NY 14642, USA
| | - Bin Tian
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Lynne E Maquat
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA. .,Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA.,Department of Oncology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| |
Collapse
|
25
|
Heyam A, Coupland CE, Dégut C, Haley RA, Baxter NJ, Jakob L, Aguiar PM, Meister G, Williamson MP, Lagos D, Plevin MJ. Conserved asymmetry underpins homodimerization of Dicer-associated double-stranded RNA-binding proteins. Nucleic Acids Res 2017; 45:12577-12584. [PMID: 29045748 PMCID: PMC5716075 DOI: 10.1093/nar/gkx928] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 10/09/2017] [Indexed: 11/14/2022] Open
Abstract
Double-stranded RNA-binding domains (dsRBDs) are commonly found in modular proteins that interact with RNA. Two varieties of dsRBD exist: canonical Type A dsRBDs interact with dsRNA, while non-canonical Type B dsRBDs lack RNA-binding residues and instead interact with other proteins. In higher eukaryotes, the microRNA biogenesis enzyme Dicer forms a 1:1 association with a dsRNA-binding protein (dsRBP). Human Dicer associates with HIV TAR RNA-binding protein (TRBP) or protein activator of PKR (PACT), while Drosophila Dicer-1 associates with Loquacious (Loqs). In each case, the interaction involves a region of the protein that contains a Type B dsRBD. All three dsRBPs are reported to homodimerize, with the Dicer-binding region implicated in self-association. We report that these dsRBD homodimers display structural asymmetry and that this unusual self-association mechanism is conserved from flies to humans. We show that the core dsRBD is sufficient for homodimerization and that mutation of a conserved leucine residue abolishes self-association. We attribute differences in the self-association properties of Loqs, TRBP and PACT to divergence of the composition of the homodimerization interface. Modifications that make TRBP more like PACT enhance self-association. These data are examined in the context of miRNA biogenesis and the protein/protein interaction properties of Type B dsRBDs.
Collapse
Affiliation(s)
- Alex Heyam
- Department of Biology, University of York, York, YO10 5DD, UK
| | | | - Clément Dégut
- Department of Biology, University of York, York, YO10 5DD, UK
| | - Ruth A Haley
- Department of Biology, University of York, York, YO10 5DD, UK
| | - Nicola J Baxter
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Leonhard Jakob
- Biochemistry Center Regensburg (BZR), Laboratory for RNA Biology, University of Regensburg, 93053 Regensburg, Germany
| | - Pedro M Aguiar
- Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Gunter Meister
- Biochemistry Center Regensburg (BZR), Laboratory for RNA Biology, University of Regensburg, 93053 Regensburg, Germany
| | - Michael P Williamson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Dimitris Lagos
- Centre for Immunology and Infection, Department of Biology and Hull York Medical School, University of York, Wentworth Way, York, YO10 5DD, UK
| | | |
Collapse
|
26
|
Kim JY, Deglincerti A, Jaffrey SR. A Staufen1-mediated decay pathway influences the local transcriptome in axons. ACTA ACUST UNITED AC 2017; 5:e1414016. [PMID: 29416957 DOI: 10.1080/21690731.2017.1414016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 11/28/2017] [Indexed: 12/23/2022]
Abstract
Local translation is critical for diverse aspects of neuronal function, including mediating responses of elongating axons to guidance cues and other signaling molecules. A major determinant of the protein synthetic capacity of axons and growth cones is the specific set of mRNAs that are trafficked to these sites. However, recently it has become clear that the axonal transcriptome can also be shaped by local RNA degradation mechanisms, such as nonsense-mediated decay. Here we show that Staufen1-mediated decay can also occur within axons and mediate degradation of specific axonal transcripts. We show that Staufen1 and Upf1, which function together in Staufen1-mediated decay, are localized in growth cones. Selective depletion of Staufen1 from neurons results in a complex pattern of transcriptional alterations, with a subset of transcripts showing increased expression and increased RNA half-life consistent with their regulation by Staufen1-mediated decay. Additionally, we show certain transcripts, such as Rac1, are regulated by Staufen1 within axons and growth cones. The functional significance of Staufen1 in growth cones is supported by morphological alterations in growth cones following Staufen1 knockdown. Together these data point to Staufen1-mediated decay as a novel mechanism to control mRNA expression levels in axons and growth cones through local RNA degradation.
Collapse
Affiliation(s)
- Ju Youn Kim
- Department of Pharmacology, Weill-Cornell Medical College, Cornell University, New York, NY, USA
| | - Alessia Deglincerti
- Department of Pharmacology, Weill-Cornell Medical College, Cornell University, New York, NY, USA
| | - Samie R Jaffrey
- Department of Pharmacology, Weill-Cornell Medical College, Cornell University, New York, NY, USA
| |
Collapse
|
27
|
UPF1 Governs Synaptic Plasticity through Association with a STAU2 RNA Granule. J Neurosci 2017; 37:9116-9131. [PMID: 28821679 DOI: 10.1523/jneurosci.0088-17.2017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 07/13/2017] [Accepted: 08/07/2017] [Indexed: 10/19/2022] Open
Abstract
Neuronal mRNAs can be packaged in reversibly stalled polysome granules before their transport to distant synaptic locales. Stimulation of synaptic metabotropic glutamate receptors (mGluRs) reactivates translation of these particular mRNAs to produce plasticity-related protein; a phenomenon exhibited during mGluR-mediated LTD. This form of plasticity is deregulated in Fragile X Syndrome, a monogenic form of autism in humans, and understanding the stalling and reactivation mechanism could reveal new approaches to therapies. Here, we demonstrate that UPF1, known to stall peptide release during nonsense-mediated RNA decay, is critical for assembly of stalled polysomes in rat hippocampal neurons derived from embryos of either sex. Moreover, UPF1 and its interaction with the RNA binding protein STAU2 are necessary for proper transport and local translation from a prototypical RNA granule substrate and for mGluR-LTD in hippocampal neurons. These data highlight a new, neuronal role for UPF1, distinct from its RNA decay functions, in regulating transport and/or translation of mRNAs that are critical for synaptic plasticity.SIGNIFICANCE STATEMENT The elongation and/or termination steps of mRNA translation are emerging as important control points in mGluR-LTD, a form of synaptic plasticity that is compromised in a severe monogenic form of autism, Fragile X Syndrome. Deciphering the molecular mechanisms controlling this type of plasticity may thus open new therapeutic opportunities. Here, we describe a new role for the ATP-dependent helicase UPF1 and its interaction with the RNA localization protein STAU2 in mediating mGluR-LTD through the regulation of mRNA translation complexes stalled at the level of elongation and/or termination.
Collapse
|
28
|
Chen LL, Yang L. ALU ternative Regulation for Gene Expression. Trends Cell Biol 2017; 27:480-490. [DOI: 10.1016/j.tcb.2017.01.002] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 12/14/2016] [Accepted: 01/05/2017] [Indexed: 12/23/2022]
|
29
|
ADAR1 controls apoptosis of stressed cells by inhibiting Staufen1-mediated mRNA decay. Nat Struct Mol Biol 2017; 24:534-543. [PMID: 28436945 PMCID: PMC5461201 DOI: 10.1038/nsmb.3403] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 03/27/2017] [Indexed: 01/10/2023]
Abstract
Both p150 and p110 isoforms of ADAR1 convert adenosine to inosine in double-stranded RNA (dsRNA). ADAR1p150 suppresses the dsRNA sensing mechanism that activates MDA5-MAVS-IFN signaling in the cytoplasm. In contrast, the biological function of the ADAR1p110 isoform, usually located in the nucleus, remains largely unknown. Here we show that stress-activated phosphorylation of ADAR1p110 by MKK6-p38-MSK MAP kinases promotes its binding to Exportin-5 and export from the nucleus. Once translocated to the cytoplasm, ADAR1p110 suppresses apoptosis of stressed cells by protecting many anti-apoptotic gene transcripts that contain 3′UTR dsRNA structures primarily made from inverted Alu repeats. ADAR1p110 competitively inhibits binding of Staufen1 to the 3′UTR dsRNAs and antagonizes the Staufen1-mediated mRNA decay. Our studies revealed a new stress response mechanism, in which human ADAR1p110 and Staufen1 regulate surveillance of a set of mRNAs required for survival of stressed cells.
Collapse
|
30
|
Oakes E, Anderson A, Cohen-Gadol A, Hundley HA. Adenosine Deaminase That Acts on RNA 3 (ADAR3) Binding to Glutamate Receptor Subunit B Pre-mRNA Inhibits RNA Editing in Glioblastoma. J Biol Chem 2017; 292:4326-4335. [PMID: 28167531 DOI: 10.1074/jbc.m117.779868] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 02/05/2017] [Indexed: 01/08/2023] Open
Abstract
RNA editing is a cellular process that precisely alters nucleotide sequences, thus regulating gene expression and generating protein diversity. Over 60% of human transcripts undergo adenosine to inosine RNA editing, and editing is required for normal development and proper neuronal function of animals. Editing of one adenosine in the transcript encoding the glutamate receptor subunit B, glutamate receptor ionotropic AMPA 2 (GRIA2), modifies a codon, replacing the genomically encoded glutamine (Q) with arginine (R); thus this editing site is referred to as the Q/R site. Editing at the Q/R site of GRIA2 is essential, and reduced editing of GRIA2 transcripts has been observed in patients suffering from glioblastoma. In glioblastoma, incorporation of unedited GRIA2 subunits leads to a calcium-permeable glutamate receptor, which can promote cell migration and tumor invasion. In this study, we identify adenosine deaminase that acts on RNA 3 (ADAR3) as an important regulator of Q/R site editing, investigate its mode of action, and detect elevated ADAR3 expression in glioblastoma tumors compared with adjacent brain tissue. Overexpression of ADAR3 in astrocyte and astrocytoma cell lines inhibits RNA editing at the Q/R site of GRIA2 Furthermore, the double-stranded RNA binding domains of ADAR3 are required for repression of RNA editing. As the Q/R site of GRIA2 is specifically edited by ADAR2, we suggest that ADAR3 directly competes with ADAR2 for binding to GRIA2 transcript, inhibiting RNA editing, as evidenced by the direct binding of ADAR3 to the GRIA2 pre-mRNA. Finally, we provide evidence that both ADAR2 and ADAR3 expression contributes to the relative level of GRIA2 editing in tumors from patients suffering from glioblastoma.
Collapse
Affiliation(s)
| | - Ashley Anderson
- Medical Sciences Program, Indiana University, Bloomington, Indiana 47405 and
| | - Aaron Cohen-Gadol
- Department of Neurological Surgery, Goodman Campbell Brain and Spine, Indianapolis, Indiana 46202
| | - Heather A Hundley
- Medical Sciences Program, Indiana University, Bloomington, Indiana 47405 and
| |
Collapse
|
31
|
Zealy RW, Wrenn SP, Davila S, Min KW, Yoon JH. microRNA-binding proteins: specificity and function. WILEY INTERDISCIPLINARY REVIEWS-RNA 2017; 8. [DOI: 10.1002/wrna.1414] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 12/14/2016] [Accepted: 12/20/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Richard W. Zealy
- Department of Biochemistry and Molecular Biology, College of Medicine; Medical University of South Carolina; Charleston SC USA
| | - Samuel P. Wrenn
- Department of Biochemistry and Molecular Biology, College of Medicine; Medical University of South Carolina; Charleston SC USA
| | - Sylvia Davila
- Department of Biochemistry and Molecular Biology, College of Medicine; Medical University of South Carolina; Charleston SC USA
| | - Kyung-Won Min
- Department of Biochemistry and Molecular Biology, College of Medicine; Medical University of South Carolina; Charleston SC USA
| | - Je-Hyun Yoon
- Department of Biochemistry and Molecular Biology, College of Medicine; Medical University of South Carolina; Charleston SC USA
| |
Collapse
|
32
|
Ninomiya K, Ohno M, Kataoka N. Dendritic transport element of human arc mRNA confers RNA degradation activity in a translation-dependent manner. Genes Cells 2016; 21:1263-1269. [DOI: 10.1111/gtc.12439] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 08/22/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Kensuke Ninomiya
- Institute for Virus Research; Kyoto University; Shogo-in Kawaharacho 53 Sakyo-ku Kyoto 606-8507 Japan
- Institute for Genetic Medicine; Hokkaido University; Kita-15 Nishi-7 Kita-ku Sapporo 060-0815 Japan
| | - Mutsuhito Ohno
- Institute for Virus Research; Kyoto University; Shogo-in Kawaharacho 53 Sakyo-ku Kyoto 606-8507 Japan
| | - Naoyuki Kataoka
- Institute for Virus Research; Kyoto University; Shogo-in Kawaharacho 53 Sakyo-ku Kyoto 606-8507 Japan
- Medical Innovation Center; Laboratory for Malignancy Control Research; Kyoto University; Shogo-in Kawaharacho 53 Sakyo-ku Kyoto 606-8507 Japan
- Departments of Applied Animal Sciences and Applied Biological Chemistry; Laboratory of Cell Regulation; Graduate School of Agriculture and Life Sciences, The University of Tokyo; Yayoi 1-1-1 Bunkyo-ku Tokyo 113-8657 Japan
| |
Collapse
|
33
|
Bondy-Chorney E, Crawford Parks TE, Ravel-Chapuis A, Jasmin BJ, Côté J. Staufen1s role as a splicing factor and a disease modifier in Myotonic Dystrophy Type I. Rare Dis 2016; 4:e1225644. [PMID: 27695661 PMCID: PMC5027583 DOI: 10.1080/21675511.2016.1225644] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 06/23/2016] [Accepted: 08/11/2016] [Indexed: 12/19/2022] Open
Abstract
In a recent issue of PLOS Genetics, we reported that the double-stranded RNA-binding protein, Staufen1, functions as a disease modifier in the neuromuscular disorder Myotonic Dystrophy Type I (DM1). In this work, we demonstrated that Staufen1 regulates the alternative splicing of exon 11 of the human Insulin Receptor, a highly studied missplicing event in DM1, through Alu elements located in an intronic region. Furthermore, we found that Staufen1 overexpression regulates numerous alternative splicing events, potentially resulting in both positive and negative effects in DM1. Here, we discuss our major findings and speculate on the details of the mechanisms by which Staufen1 could regulate alternative splicing, in both normal and DM1 conditions. Finally, we highlight the importance of disease modifiers, such as Staufen1, in the DM1 pathology in order to understand the complex disease phenotype and for future development of new therapeutic strategies.
Collapse
Affiliation(s)
- Emma Bondy-Chorney
- Department of Cellular and Molecular Medicine, University of Ottawa, Center for Neuromuscular Disease , Ottawa, Ontario, Canada
| | - Tara E Crawford Parks
- Department of Cellular and Molecular Medicine, University of Ottawa, Center for Neuromuscular Disease , Ottawa, Ontario, Canada
| | - Aymeric Ravel-Chapuis
- Department of Cellular and Molecular Medicine, University of Ottawa, Center for Neuromuscular Disease , Ottawa, Ontario, Canada
| | - Bernard J Jasmin
- Department of Cellular and Molecular Medicine, University of Ottawa, Center for Neuromuscular Disease , Ottawa, Ontario, Canada
| | - Jocelyn Côté
- Department of Cellular and Molecular Medicine, University of Ottawa, Center for Neuromuscular Disease , Ottawa, Ontario, Canada
| |
Collapse
|
34
|
Noncoding RNAs in the regulation of skeletal muscle biology in health and disease. J Mol Med (Berl) 2016; 94:853-66. [PMID: 27377406 DOI: 10.1007/s00109-016-1443-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 05/11/2016] [Accepted: 06/20/2016] [Indexed: 12/22/2022]
Abstract
Skeletal muscle is composed of multinucleated myofibers that arise from the fusion of myoblasts during development. Skeletal muscle is essential for various body functions such as maintaining posture, locomotion, breathing, and metabolism. Skeletal muscle undergoes remarkable adaptations in response to environmental stimuli leading to atrophy or hypertrophy. Moreover, degeneration of skeletal muscle is a common feature in a number of muscular disorders including muscular dystrophy. Emerging evidence suggests that noncoding RNAs, such as microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), are critical for skeletal muscle physiology. Several miRNAs and lncRNAs have now been found to control skeletal muscle development and regeneration. Noncoding RNAs also play an important role in the regulation of skeletal muscle mass in adults. Furthermore, aberrant expression of miRNAs and lncRNAs has been observed in several muscular disorders. In this article, we discuss the mechanisms of action of miRNAs and lncRNAs in skeletal muscle formation, growth, regeneration, and disease. We further highlight potential therapeutic strategies for utilizing noncoding RNAs to improve skeletal muscle function.
Collapse
|
35
|
Clavel M, Pélissier T, Montavon T, Tschopp MA, Pouch-Pélissier MN, Descombin J, Jean V, Dunoyer P, Bousquet-Antonelli C, Deragon JM. Evolutionary history of double-stranded RNA binding proteins in plants: identification of new cofactors involved in easiRNA biogenesis. PLANT MOLECULAR BIOLOGY 2016; 91:131-47. [PMID: 26858002 DOI: 10.1007/s11103-016-0448-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 02/03/2016] [Indexed: 05/27/2023]
Abstract
In this work, we retrace the evolutionary history of plant double-stranded RNA binding proteins (DRBs), a group of non-catalytic factors containing one or more double-stranded RNA binding motif (dsRBM) that play important roles in small RNA biogenesis and functions. Using a phylogenetic approach, we show that multiple dsRBM DRBs are systematically composed of two different types of dsRBMs evolving under different constraints and likely fulfilling complementary functions. In vascular plants, four distinct clades of multiple dsRBM DRBs are always present with the exception of Brassicaceae species, that do not possess member of the newly identified clade we named DRB6. We also identified a second new and highly conserved DRB family (we named DRB7) whose members possess a single dsRBM that shows concerted evolution with the most C-terminal dsRBM domain of the Dicer-like 4 (DCL4) proteins. Using a BiFC approach, we observed that Arabidopsis thaliana DRB7.2 (AtDRB7.2) can directly interact with AtDRB4 but not with AtDCL4 and we provide evidence that both AtDRB7.2 and AtDRB4 participate in the epigenetically activated siRNAs pathway.
Collapse
Affiliation(s)
- Marion Clavel
- UMR5096 LGDP, Université de Perpignan Via Domitia, 58 Avenue Paul Alduy, 66860, Perpignan Cedex, France
- CNRS UMR5096 LGDP, Perpignan Cedex, France
| | - Thierry Pélissier
- UMR 6293 CNRS - INSERM U1103 - GreD, Clermont Université, 24 avenue des Landais, B.P. 80026, 63171, Aubière Cedex, France
| | - Thomas Montavon
- Institut de Biologie Moléculaire des Plantes du CNRS, UPR2357, Université de Strasbourg, Strasbourg Cedex, France
| | - Marie-Aude Tschopp
- Department of Biology LFW D17/D18, ETH Zürich, Universitätsstrasse 2, 8092, Zurich, Switzerland
| | - Marie-Noëlle Pouch-Pélissier
- UMR 6293 CNRS - INSERM U1103 - GreD, Clermont Université, 24 avenue des Landais, B.P. 80026, 63171, Aubière Cedex, France
| | - Julie Descombin
- UMR5096 LGDP, Université de Perpignan Via Domitia, 58 Avenue Paul Alduy, 66860, Perpignan Cedex, France
- CNRS UMR5096 LGDP, Perpignan Cedex, France
| | - Viviane Jean
- UMR5096 LGDP, Université de Perpignan Via Domitia, 58 Avenue Paul Alduy, 66860, Perpignan Cedex, France
- CNRS UMR5096 LGDP, Perpignan Cedex, France
| | - Patrice Dunoyer
- Institut de Biologie Moléculaire des Plantes du CNRS, UPR2357, Université de Strasbourg, Strasbourg Cedex, France
| | - Cécile Bousquet-Antonelli
- UMR5096 LGDP, Université de Perpignan Via Domitia, 58 Avenue Paul Alduy, 66860, Perpignan Cedex, France
- CNRS UMR5096 LGDP, Perpignan Cedex, France
| | - Jean-Marc Deragon
- UMR5096 LGDP, Université de Perpignan Via Domitia, 58 Avenue Paul Alduy, 66860, Perpignan Cedex, France.
- CNRS UMR5096 LGDP, Perpignan Cedex, France.
| |
Collapse
|
36
|
Abstract
Transposable elements (TEs) are both a boon and a bane to eukaryotic organisms, depending on where they integrate into the genome and how their sequences function once integrated. We focus on two types of TEs: long interspersed elements (LINEs) and short interspersed elements (SINEs). LINEs and SINEs are retrotransposons; that is, they transpose via an RNA intermediate. We discuss how LINEs and SINEs have expanded in eukaryotic genomes and contribute to genome evolution. An emerging body of evidence indicates that LINEs and SINEs function to regulate gene expression by affecting chromatin structure, gene transcription, pre-mRNA processing, or aspects of mRNA metabolism. We also describe how adenosine-to-inosine editing influences SINE function and how ongoing retrotransposition is countered by the body's defense mechanisms.
Collapse
Affiliation(s)
- Reyad A Elbarbary
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA. Center for RNA Biology, University of Rochester, Rochester, NY, USA
| | - Bronwyn A Lucas
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA. Center for RNA Biology, University of Rochester, Rochester, NY, USA
| | - Lynne E Maquat
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA. Center for RNA Biology, University of Rochester, Rochester, NY, USA. Department of Oncology, Wilmot Cancer Institute, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
37
|
Bou-Nader C, Pecqueur L, Bregeon D, Kamah A, Guérineau V, Golinelli-Pimpaneau B, Guimarães BG, Fontecave M, Hamdane D. An extended dsRBD is required for post-transcriptional modification in human tRNAs. Nucleic Acids Res 2015; 43:9446-56. [PMID: 26429968 PMCID: PMC4627097 DOI: 10.1093/nar/gkv989] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 09/19/2015] [Indexed: 12/25/2022] Open
Abstract
In tRNA, dihydrouridine is a conserved modified base generated by the post-transcriptional reduction of uridine. Formation of dihydrouridine 20, located in the D-loop, is catalyzed by dihydrouridine synthase 2 (Dus2). Human Dus2 (HsDus2) expression is upregulated in lung cancers, offering a growth advantage throughout its ability to interact with components of the translation apparatus and inhibit apoptosis. Here, we report the crystal structure of the individual domains of HsDus2 and their functional characterization. HsDus2 is organized into three major modules. The N-terminal catalytic domain contains the flavin cofactor involved in the reduction of uridine. The second module is the conserved α-helical domain known as the tRNA binding domain in HsDus2 homologues. It is connected via a flexible linker to an unusual extended version of a dsRNA binding domain (dsRBD). Enzymatic assays and yeast complementation showed that the catalytic domain binds selectively NADPH but cannot reduce uridine in the absence of the dsRBD. While in Dus enzymes from bacteria, plants and fungi, tRNA binding is essentially achieved by the α-helical domain, we showed that in HsDus2 this function is carried out by the dsRBD. This is the first reported case of a tRNA-modifying enzyme carrying a dsRBD used to bind tRNAs.
Collapse
Affiliation(s)
- Charles Bou-Nader
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, France, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Ludovic Pecqueur
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, France, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Damien Bregeon
- Sorbonne Universités, UPMC Univ. Paris 06, IBPS, UMR8256, Biology of Aging and Adaptation, F-75005 Paris, France
| | - Amina Kamah
- Université de Lille-Nord de France, CNRS UMR 8576, Institut Fédératif de Recherches 147, Villeneuve d'Ascq, France
| | - Vincent Guérineau
- Institut de Chimie des Substances Naturelles, Centre de Recherche de Gif, CNRS, 1 avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Béatrice Golinelli-Pimpaneau
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, France, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Beatriz G Guimarães
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, 91190 Gif-sur-Yvette, France
| | - Marc Fontecave
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, France, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Djemel Hamdane
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, France, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
| |
Collapse
|
38
|
The structural basis of Miranda-mediated Staufen localization during Drosophila neuroblast asymmetric division. Nat Commun 2015; 6:8381. [PMID: 26423004 PMCID: PMC4600727 DOI: 10.1038/ncomms9381] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 08/17/2015] [Indexed: 12/27/2022] Open
Abstract
During the asymmetric division of Drosophila neuroblasts (NBs), the scaffold Miranda (Mira) coordinates the subcellular distribution of cell-fate determinants including Staufen (Stau) and segregates them into the ganglion mother cells (GMCs). Here we show the fifth double-stranded RNA (dsRNA)-binding domain (dsRBD5) of Stau is necessary and sufficient for binding to a coiled-coil region of Mira cargo-binding domain (CBD). The crystal structure of Mira514–595/Stau dsRBD5 complex illustrates that Mira forms an elongated parallel coiled-coil dimer, and two dsRBD5 symmetrically bind to the Mira dimer through their exposed β-sheet faces, revealing a previously unrecognized protein interaction mode for dsRBDs. We further demonstrate that the Mira–Stau dsRBD5 interaction is responsible for the asymmetric localization of Stau during Drosophila NB asymmetric divisions. Finally, we find the CBD-mediated dimer assembly is likely a common requirement for Mira to recognize and translocate other cargos including brain tumour (Brat). The scaffold protein Miranda is required for the asymmetric segregation of the RNA binding protein Staufen to ganglion mother cells during Drosophila neuroblast division. Jia et al. map the interaction between these proteins and present a crystal structure of the interacting domains.
Collapse
|
39
|
Wang X, Vukovic L, Koh HR, Schulten K, Myong S. Dynamic profiling of double-stranded RNA binding proteins. Nucleic Acids Res 2015; 43:7566-76. [PMID: 26184879 PMCID: PMC4551942 DOI: 10.1093/nar/gkv726] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 07/03/2015] [Indexed: 01/13/2023] Open
Abstract
Double-stranded (ds) RNA is a key player in numerous biological activities in cells, including RNA interference, anti-viral immunity and mRNA transport. The class of proteins responsible for recognizing dsRNA is termed double-stranded RNA binding proteins (dsRBP). However, little is known about the molecular mechanisms underlying the interaction between dsRBPs and dsRNA. Here we examined four human dsRBPs, ADAD2, TRBP, Staufen 1 and ADAR1 on six dsRNA substrates that vary in length and secondary structure. We combined single molecule pull-down (SiMPull), single molecule protein-induced fluorescence enhancement (smPIFE) and molecular dynamics (MD) simulations to investigate the dsRNA-dsRBP interactions. Our results demonstrate that despite the highly conserved dsRNA binding domains, the dsRBPs exhibit diverse substrate specificities and dynamic properties when in contact with different RNA substrates. While TRBP and ADAR1 have a preference for binding simple duplex RNA, ADAD2 and Staufen1 display higher affinity to highly structured RNA substrates. Upon interaction with RNA substrates, TRBP and Staufen1 exhibit dynamic sliding whereas two deaminases ADAR1 and ADAD2 mostly remain immobile when bound. MD simulations provide a detailed atomic interaction map that is largely consistent with the affinity differences observed experimentally. Collectively, our study highlights the diverse nature of substrate specificity and mobility exhibited by dsRBPs that may be critical for their cellular function.
Collapse
Affiliation(s)
- Xinlei Wang
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA Institute for Genomic Biology, University of Illinois, 1206 W. Gregory St,. Urbana, IL 61801, USA
| | - Lela Vukovic
- Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Hye Ran Koh
- Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA Institute for Genomic Biology, University of Illinois, 1206 W. Gregory St,. Urbana, IL 61801, USA Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Klaus Schulten
- Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA Biophysics and Computational Biology, University of Illinois, 1110 W. Green St., Urbana, IL 61801, USA
| | - Sua Myong
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA Institute for Genomic Biology, University of Illinois, 1206 W. Gregory St,. Urbana, IL 61801, USA Biophysics and Computational Biology, University of Illinois, 1110 W. Green St., Urbana, IL 61801, USA
| |
Collapse
|
40
|
Heyam A, Lagos D, Plevin M. Dissecting the roles of TRBP and PACT in double-stranded RNA recognition and processing of noncoding RNAs. WILEY INTERDISCIPLINARY REVIEWS. RNA 2015; 6:271-89. [PMID: 25630541 PMCID: PMC7169789 DOI: 10.1002/wrna.1272] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 10/08/2014] [Accepted: 10/09/2014] [Indexed: 12/27/2022]
Abstract
HIV TAR RNA-binding protein (TRBP) and Protein Activator of PKR (PACT) are double-stranded (ds) RNA-binding proteins that participate in both small regulatory RNA biogenesis and the response to viral dsRNA. Despite considerable progress toward understanding the structure-function relationship of TRBP and PACT, their specific roles in these seemingly distinct cellular pathways remain unclear. Both proteins are composed of three copies of the double-stranded RNA-binding domain, two of which interact with dsRNA, while the C-terminal copy mediates protein-protein interactions. PACT and TRBP are found in a complex with the endonuclease Dicer and facilitate processing of immature microRNAs. Their precise contribution to the Dicing step has not yet been defined: possibilities include precursor recruitment, rearrangement of dsRNA within the complex, loading the processed microRNA into the RNA-induced silencing complex, and distinguishing different classes of small dsRNA. TRBP and PACT also interact with the viral dsRNA sensors retinoic acid-inducible gene I (RIG-I) and double-stranded RNA-activated protein kinase (PKR). Current models suggest that PACT enables RIG-I to detect a wider range of viral dsRNAs, while TRBP and PACT exert opposing regulatory effects on PKR. Here, the evidence that implicates TRBP and PACT in regulatory RNA processing and viral dsRNA sensing is reviewed and discussed in the context of their molecular structure. The broader implications of a link between microRNA biogenesis and the innate antiviral response pathway are also considered.
Collapse
MESH Headings
- Amino Acid Sequence
- Carboxypeptidases/chemistry
- Carboxypeptidases/metabolism
- Carboxypeptidases/physiology
- Models, Genetic
- Models, Molecular
- Molecular Sequence Data
- Protein Structure, Tertiary
- RNA, Double-Stranded/chemistry
- RNA, Double-Stranded/immunology
- RNA, Double-Stranded/metabolism
- RNA, Untranslated/metabolism
- RNA, Viral/chemistry
- RNA, Viral/immunology
- RNA, Viral/metabolism
- RNA-Binding Proteins/chemistry
- RNA-Binding Proteins/metabolism
- RNA-Binding Proteins/physiology
- Ribonuclease III/chemistry
- Ribonuclease III/metabolism
- Ribonuclease III/physiology
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Alex Heyam
- Department of Biology, University of York, York, UK
| | | | | |
Collapse
|
41
|
Wilson RC, Tambe A, Kidwell MA, Noland CL, Schneider CP, Doudna JA. Dicer-TRBP complex formation ensures accurate mammalian microRNA biogenesis. Mol Cell 2014; 57:397-407. [PMID: 25557550 DOI: 10.1016/j.molcel.2014.11.030] [Citation(s) in RCA: 200] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 10/24/2014] [Accepted: 11/25/2014] [Indexed: 12/19/2022]
Abstract
RNA-mediated gene silencing in human cells requires the accurate generation of ∼22 nt microRNAs (miRNAs) from double-stranded RNA substrates by the endonuclease Dicer. Although the phylogenetically conserved RNA-binding proteins TRBP and PACT are known to contribute to this process, their mode of Dicer binding and their genome-wide effects on miRNA processing have not been determined. We solved the crystal structure of the human Dicer-TRBP interface, revealing the structural basis of the interaction. Interface residues conserved between TRBP and PACT show that the proteins bind to Dicer in a similar manner and by mutual exclusion. Based on the structure, a catalytically active Dicer that cannot bind TRBP or PACT was designed and introduced into Dicer-deficient mammalian cells, revealing selective defects in guide strand selection. These results demonstrate the role of Dicer-associated RNA binding proteins in maintenance of gene silencing fidelity.
Collapse
Affiliation(s)
- Ross C Wilson
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Akshay Tambe
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Mary Anne Kidwell
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Cameron L Noland
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Catherine P Schneider
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Jennifer A Doudna
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA; Department of Chemistry, University of California, Berkeley, CA 94720, USA; Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| |
Collapse
|
42
|
Gleghorn ML, Maquat LE. 'Black sheep' that don't leave the double-stranded RNA-binding domain fold. Trends Biochem Sci 2014; 39:328-40. [PMID: 24954387 DOI: 10.1016/j.tibs.2014.05.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 05/19/2014] [Accepted: 05/19/2014] [Indexed: 12/28/2022]
Abstract
The canonical double-stranded RNA (dsRNA)-binding domain (dsRBD) is composed of an α1-β1-β2-β3-α2 secondary structure that folds in three dimensions to recognize dsRNA. Recently, structural and functional studies of divergent dsRBDs revealed adaptations that include intra- and/or intermolecular protein interactions, sometimes in the absence of detectable dsRNA-binding ability. We describe here how discrete dsRBD components can accommodate pronounced amino-acid sequence changes while maintaining the core fold. We exemplify the growing importance of divergent dsRBDs in mRNA decay by discussing Dicer, Staufen (STAU)1 and 2, trans-activation responsive RNA-binding protein (TARBP)2, protein activator of protein kinase RNA-activated (PKR) (PACT), DiGeorge syndrome critical region (DGCR)8, DEAH box helicase proteins (DHX) 9 and 30, and dsRBD-like fold-containing proteins that have ribosome-related functions. We also elaborate on the computational limitations to discovering yet-to-be-identified divergent dsRBDs.
Collapse
Affiliation(s)
- Michael L Gleghorn
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA; Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA
| | - Lynne E Maquat
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA; Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA.
| |
Collapse
|
43
|
A bimodular nuclear localization signal assembled via an extended double-stranded RNA-binding domain acts as an RNA-sensing signal for transportin 1. Proc Natl Acad Sci U S A 2014; 111:E1852-61. [PMID: 24753571 DOI: 10.1073/pnas.1323698111] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The human RNA-editing enzyme adenosine deaminase acting on RNA (ADAR1) carries a unique nuclear localization signal (NLS) that overlaps one of its double-stranded RNA-binding domains (dsRBDs). This dsRBD-NLS is recognized by the nuclear import receptor transportin 1 (Trn1; also called karyopherin-β2) in an RNA-sensitive manner. Most Trn1 cargos bear a well-characterized proline-tyrosine-NLS, which is missing from the dsRBD-NLS. Here, we report the structure of the dsRBD-NLS, which reveals an unusual dsRBD fold extended by an additional N-terminal α-helix that brings the N- and C-terminal flanking regions in close proximity. We demonstrate experimentally that the atypical ADAR1-NLS is bimodular and is formed by the combination of the two flexible fragments flanking the folded domain. The intervening dsRBD acts only as an RNA-sensing scaffold, allowing the two NLS modules to be properly positioned for interacting with Trn1. We also provide a structural model showing how Trn1 can recognize the dsRBD-NLS and how dsRNA binding can interfere with Trn1 binding.
Collapse
|
44
|
Staufen1 senses overall transcript secondary structure to regulate translation. Nat Struct Mol Biol 2013; 21:26-35. [PMID: 24336223 PMCID: PMC4605437 DOI: 10.1038/nsmb.2739] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 11/19/2013] [Indexed: 12/31/2022]
Abstract
Human Staufen1 (Stau1) is a double-stranded RNA (dsRNA)-binding protein implicated in multiple post-transcriptional gene-regulatory processes. Here we combined RNA immunoprecipitation in tandem (RIPiT) with RNase footprinting, formaldehyde cross-linking, sonication-mediated RNA fragmentation and deep sequencing to map Staufen1-binding sites transcriptome wide. We find that Stau1 binds complex secondary structures containing multiple short helices, many of which are formed by inverted Alu elements in annotated 3' untranslated regions (UTRs) or in 'strongly distal' 3' UTRs. Stau1 also interacts with actively translating ribosomes and with mRNA coding sequences (CDSs) and 3' UTRs in proportion to their GC content and propensity to form internal secondary structure. On mRNAs with high CDS GC content, higher Stau1 levels lead to greater ribosome densities, thus suggesting a general role for Stau1 in modulating translation elongation through structured CDS regions. Our results also indicate that Stau1 regulates translation of transcription-regulatory proteins.
Collapse
|
45
|
mRNA-mRNA duplexes that autoelicit Staufen1-mediated mRNA decay. Nat Struct Mol Biol 2013; 20:1214-20. [PMID: 24056942 PMCID: PMC3947523 DOI: 10.1038/nsmb.2664] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 08/08/2013] [Indexed: 12/28/2022]
Abstract
We report a new mechanism by which human mRNAs crosstalk: an Alu element in the 3'-untranslated region (3' UTR) of one mRNA can base-pair with a partially complementary Alu element in the 3' UTR of a different mRNA thereby creating a Staufen1 (STAU1)-binding site (SBS). STAU1 binding to a 3' UTR SBS was previously shown to trigger STAU1-mediated mRNA decay (SMD) by directly recruiting the ATP-dependent RNA helicase UPF1, which is also a key factor in the mechanistically related nonsense-mediated mRNA decay (NMD) pathway. In the case of a 3' UTR SBS created via mRNA–mRNA base-pairing, we show that SMD targets both mRNAs in the duplex provided that both mRNAs are translated. If only one mRNA is translated, then it alone is targeted for SMD. We demonstrate the importance of mRNA–mRNA-triggered SMD to the processes of cell migration and invasion.
Collapse
|
46
|
Abstract
The human genome encodes several thousand long non-protein coding transcripts>200 nucleotides in length, a subset of which were shown to play important roles in regulation of gene expression. We recently identified TINCR, a lncRNA required for induction of key differentiation genes in epidermal tissue, including genes mutated in human skin diseases characterized by disrupted epidermal barrier formation. High-throughput analyses of TINCR RNA- and protein-interactomes revealed TINCR interaction with differentiation mRNAs as well as the Staufen1 protein. TINCR, together with Staufen1, seems to stabilize a subset of mRNAs required for epidermal differentiation. Here, we discuss the emerging roles of Staufen1 and TINCR in the regulation of mammalian cell differentiation mediated by interaction with target mRNAs. We consider a role for TINCR as an epithelial-specific guide for targeting the Staufen1 protein to specific mRNAs, reflecting the increasing complexity of gene regulatory processes in mammalian cells and tissue.
Collapse
Affiliation(s)
- Markus Kretz
- Institute of Biochemistry, Genetics and Microbiology; University of Regensburg; Regensburg, Germany
| |
Collapse
|
47
|
Laver JD, Li X, Ancevicius K, Westwood JT, Smibert CA, Morris QD, Lipshitz HD. Genome-wide analysis of Staufen-associated mRNAs identifies secondary structures that confer target specificity. Nucleic Acids Res 2013; 41:9438-60. [PMID: 23945942 PMCID: PMC3814352 DOI: 10.1093/nar/gkt702] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Despite studies that have investigated the interactions of double-stranded RNA-binding proteins like Staufen with RNA in vitro, how they achieve target specificity in vivo remains uncertain. We performed RNA co-immunoprecipitations followed by microarray analysis to identify Staufen-associated mRNAs in early Drosophila embryos. Analysis of the localization and functions of these transcripts revealed a number of potentially novel roles for Staufen. Using computational methods, we identified two sequence features that distinguish Staufen’s target transcripts from non-targets. First, these Drosophila transcripts, as well as those human transcripts bound by human Staufen1 and 2, have 3′ untranslated regions (UTRs) that are 3–4-fold longer than unbound transcripts. Second, the 3′UTRs of Staufen-bound transcripts are highly enriched for three types of secondary structures. These structures map with high precision to previously identified Staufen-binding regions in Drosophila bicoid and human ARF1 3′UTRs. Our results provide the first systematic genome-wide analysis showing how a double-stranded RNA-binding protein achieves target specificity.
Collapse
Affiliation(s)
- John D Laver
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8, Department of Cell & Systems Biology, University of Toronto at Mississauga, 3359 Mississauga Road, Mississauga, Ontario, Canada L5L 1C6, Department of Biology, University of Toronto at Mississauga, 3359 Mississauga Road, Mississauga, Ontario, Canada L5L 1C6, Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8 and Banting and Best Department of Medical Research, Terrence Donnelly Centre for Cellular and Biomolecular Research, 160 College Street, Toronto, Ontario, Canada M5S 3E1
| | | | | | | | | | | | | |
Collapse
|
48
|
Elbarbary RA, Li W, Tian B, Maquat LE. STAU1 binding 3' UTR IRAlus complements nuclear retention to protect cells from PKR-mediated translational shutdown. Genes Dev 2013; 27:1495-510. [PMID: 23824540 PMCID: PMC3713430 DOI: 10.1101/gad.220962.113] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 05/29/2013] [Indexed: 11/24/2022]
Abstract
For a number of human genes that encode transcripts containing inverted repeat Alu elements (IRAlus) within their 3' untranslated region (UTR), product mRNA is efficiently exported to the cytoplasm when the IRAlus, which mediate nuclear retention, are removed by alternative polyadenylation. Here we report a new mechanism that promotes gene expression by targeting mRNAs that maintain their 3' UTR IRAlus: Binding of the dsRNA-binding protein Staufen1 (STAU1) to 3' UTR IRAlus inhibits nuclear retention so as to augment the nuclear export of 3' UTR IRAlus-containing mRNAs (IRAlus mRNAs). Moreover, we found that 3' UTR IRAlus-bound STAU1 enhances 3' UTR IRAlus mRNA translation by precluding protein kinase R (PKR) binding, which obviates PKR activation, eukaryotic translation initiation factor 2α (eIF2α) phosphorylation, and repression of global cell translation. Thus, STAU1 binding to 3' UTR IRAlus functions along with 3' UTR IRAlus-mediated nuclear retention to suppress the shutdown of cellular translation triggered by PKR binding to endogenous cytoplasmic dsRNAs. We also show that a changing STAU1/PKR ratio contributes to myogenesis via effects on the 3' UTR IRAlus of mRNA encoding the microRNA-binding protein LIN28.
Collapse
Affiliation(s)
- Reyad A. Elbarbary
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry
- Center for RNA Biology, University of Rochester, Rochester, New York 14642, USA
| | - Wencheng Li
- Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry of New Jersey–New Jersey Medical School, Newark, New Jersey 07101, USA
| | - Bin Tian
- Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry of New Jersey–New Jersey Medical School, Newark, New Jersey 07101, USA
| | - Lynne E. Maquat
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry
- Center for RNA Biology, University of Rochester, Rochester, New York 14642, USA
| |
Collapse
|
49
|
The intertwining of transposable elements and non-coding RNAs. Int J Mol Sci 2013; 14:13307-28. [PMID: 23803660 PMCID: PMC3742188 DOI: 10.3390/ijms140713307] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 06/05/2013] [Accepted: 06/05/2013] [Indexed: 12/15/2022] Open
Abstract
Growing evidence shows a close association of transposable elements (TE) with non-coding RNAs (ncRNA), and a significant number of small ncRNAs originate from TEs. Further, ncRNAs linked with TE sequences participate in a wide-range of regulatory functions. Alu elements in particular are critical players in gene regulation and molecular pathways. Alu sequences embedded in both long non-coding RNAs (lncRNA) and mRNAs form the basis of targeted mRNA decay via short imperfect base-pairing. Imperfect pairing is prominent in most ncRNA/target RNA interactions and found throughout all biological kingdoms. The piRNA-Piwi complex is multifunctional, but plays a major role in protection against invasion by transposons. This is an RNA-based genetic immune system similar to the one found in prokaryotes, the CRISPR system. Thousands of long intergenic non-coding RNAs (lincRNAs) are associated with endogenous retrovirus LTR transposable elements in human cells. These TEs can provide regulatory signals for lincRNA genes. A surprisingly large number of long circular ncRNAs have been discovered in human fibroblasts. These serve as "sponges" for miRNAs. Alu sequences, encoded in introns that flank exons are proposed to participate in RNA circularization via Alu/Alu base-pairing. Diseases are increasingly found to have a TE/ncRNA etiology. A single point mutation in a SINE/Alu sequence in a human long non-coding RNA leads to brainstem atrophy and death. On the other hand, genomic clusters of repeat sequences as well as lncRNAs function in epigenetic regulation. Some clusters are unstable, which can lead to formation of diseases such as facioscapulohumeral muscular dystrophy. The future may hold more surprises regarding diseases associated with ncRNAs andTEs.
Collapse
|
50
|
Park E, Maquat LE. Staufen-mediated mRNA decay. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 4:423-35. [PMID: 23681777 DOI: 10.1002/wrna.1168] [Citation(s) in RCA: 160] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 03/28/2013] [Accepted: 03/28/2013] [Indexed: 12/26/2022]
Abstract
Staufen1 (STAU1)-mediated mRNA decay (SMD) is an mRNA degradation process in mammalian cells that is mediated by the binding of STAU1 to a STAU1-binding site (SBS) within the 3'-untranslated region (3'-UTR) of target mRNAs. During SMD, STAU1, a double-stranded (ds) RNA-binding protein, recognizes dsRNA structures formed either by intramolecular base pairing of 3'-UTR sequences or by intermolecular base pairing of 3'-UTR sequences with a long-noncoding RNA (lncRNA) via partially complementary Alu elements. Recently, STAU2, a paralog of STAU1, has also been reported to mediate SMD. Both STAU1 and STAU2 interact directly with the ATP-dependent RNA helicase UPF1, a key SMD factor, enhancing its helicase activity to promote effective SMD. Moreover, STAU1 and STAU2 form homodimeric and heterodimeric interactions via domain-swapping. Because both SMD and the mechanistically related nonsense-mediated mRNA decay (NMD) employ UPF1; SMD and NMD are competitive pathways. Competition contributes to cellular differentiation processes, such as myogenesis and adipogenesis, placing SMD at the heart of various physiologically important mechanisms.
Collapse
Affiliation(s)
- Eonyoung Park
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, Center for RNA Biology, University of Rochester, Rochester, NY, USA
| | | |
Collapse
|