1
|
Kim HS, Roche B, Bhattacharjee S, Todeschini L, Chang AY, Hammell C, Verdel A, Martienssen RA. Clr4 SUV39H1 ubiquitination and non-coding RNA mediate transcriptional silencing of heterochromatin via Swi6 phase separation. Nat Commun 2024; 15:9384. [PMID: 39477922 PMCID: PMC11526040 DOI: 10.1038/s41467-024-53417-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 10/02/2024] [Indexed: 11/02/2024] Open
Abstract
Transcriptional silencing by RNAi paradoxically relies on transcription, but how the transition from transcription to silencing is achieved has remained unclear. The Cryptic Loci Regulator complex (CLRC) in Schizosaccharomyces pombe is a cullin-ring E3 ligase required for silencing that is recruited by RNAi. We found that the E2 ubiquitin conjugating enzyme Ubc4 interacts with CLRC and mono-ubiquitinates the histone H3K9 methyltransferase Clr4SUV39H1, promoting the transition from co-transcriptional gene silencing (H3K9me2) to transcriptional gene silencing (H3K9me3). Ubiquitination of Clr4 occurs in an intrinsically disordered region (Clr4IDR), which undergoes liquid droplet formation in vitro, along with Swi6HP1 the effector of transcriptional gene silencing. Our data suggests that phase separation is exquisitely sensitive to non-coding RNA (ncRNA) which promotes self-association of Clr4, chromatin association, and di-, but not tri- methylation instead. Ubc4-CLRC also targets the transcriptional co-activator Bdf2BRD4, down-regulating centromeric transcription and small RNA (sRNA) production. The deubiquitinase Ubp3 counteracts both activities.
Collapse
Affiliation(s)
- Hyun-Soo Kim
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 11724, USA
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, 11724, USA
| | - Benjamin Roche
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 11724, USA
- University of North Dakota, School of Medicine & Health Sciences, 1301 N Columbia Rd. Stop 9037, Grand Forks, ND, 58202, USA
| | | | - Leila Todeschini
- Institute for Advanced Biosciences, UMR InsermU1209/CNRS5309/UGA, University of Grenoble Alpes, Grenoble, France
| | - An-Yun Chang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 11724, USA
| | | | - André Verdel
- Institute for Advanced Biosciences, UMR InsermU1209/CNRS5309/UGA, University of Grenoble Alpes, Grenoble, France
| | - Robert A Martienssen
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 11724, USA.
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, 11724, USA.
| |
Collapse
|
2
|
Sherazi SAM, Abbasi A, Jamil A, Uzair M, Ikram A, Qamar S, Olamide AA, Arshad M, Fried PJ, Ljubisavljevic M, Wang R, Bashir S. Molecular hallmarks of long non-coding RNAs in aging and its significant effect on aging-associated diseases. Neural Regen Res 2023; 18:959-968. [PMID: 36254975 PMCID: PMC9827784 DOI: 10.4103/1673-5374.355751] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/23/2022] [Accepted: 08/08/2022] [Indexed: 01/11/2023] Open
Abstract
Aging is linked to the deterioration of many physical and cognitive abilities and is the leading risk factor for Alzheimer's disease. The growing aging population is a significant healthcare problem globally that researchers must investigate to better understand the underlying aging processes. Advances in microarrays and sequencing techniques have resulted in deeper analyses of diverse essential genomes (e.g., mouse, human, and rat) and their corresponding cell types, their organ-specific transcriptomes, and the tissue involved in aging. Traditional gene controllers such as DNA- and RNA-binding proteins significantly influence such programs, causing the need to sort out long non-coding RNAs, a new class of powerful gene regulatory elements. However, their functional significance in the aging process and senescence has yet to be investigated and identified. Several recent researchers have associated the initiation and development of senescence and aging in mammals with several well-reported and novel long non-coding RNAs. In this review article, we identified and analyzed the evolving functions of long non-coding RNAs in cellular processes, including cellular senescence, aging, and age-related pathogenesis, which are the major hallmarks of long non-coding RNAs in aging.
Collapse
Affiliation(s)
- Syed Aoun Mehmood Sherazi
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University, Islamabad, Pakistan
| | - Asim Abbasi
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA
| | - Abdullah Jamil
- Department of Pharmacology, Government College University, Faisalabad, Pakistan
| | - Mohammad Uzair
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University, Islamabad, Pakistan
| | - Ayesha Ikram
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Shanzay Qamar
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | | | - Muhammad Arshad
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University, Islamabad, Pakistan
| | - Peter J. Fried
- Department of Neurology, Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Beth Israel Deaconess Medical Center (KS 158), Harvard Medical School, Boston, MA, USA
| | - Milos Ljubisavljevic
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ran Wang
- Department of Psychiatry, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
- Mental Health Institute of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Shahid Bashir
- Neuroscience Center, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| |
Collapse
|
3
|
Kuzdere T, Flury V, Schalch T, Iesmantavicius V, Hess D, Bühler M. Differential phosphorylation of Clr4 SUV39H by Cdk1 accompanies a histone H3 methylation switch that is essential for gametogenesis. EMBO Rep 2022; 24:e55928. [PMID: 36408846 PMCID: PMC9827552 DOI: 10.15252/embr.202255928] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/18/2022] [Accepted: 10/27/2022] [Indexed: 11/22/2022] Open
Abstract
Methylation of histone H3 at lysine 9 (H3K9) is a hallmark of heterochromatin that plays crucial roles in gene silencing, genome stability, and chromosome segregation. In Schizosaccharomyces pombe, Clr4 mediates both di- and tri-methylation of H3K9. Although H3K9 methylation has been intensely studied in mitotic cells, its role during sexual differentiation remains unclear. Here, we map H3K9 methylation genome-wide during meiosis and show that constitutive heterochromatin temporarily loses H3K9me2 and becomes H3K9me3 when cells commit to meiosis. Cells lacking the ability to tri-methylate H3K9 exhibit meiotic chromosome segregation defects. Finally, the H3K9 methylation switch is accompanied by differential phosphorylation of Clr4 by the cyclin-dependent kinase Cdk1. Our results suggest that a conserved master regulator of the cell cycle controls the specificity of an H3K9 methyltransferase to prevent ectopic H3K9 methylation and to ensure faithful gametogenesis.
Collapse
Affiliation(s)
- Tahsin Kuzdere
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland,University of BaselBaselSwitzerland
| | - Valentin Flury
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland,University of BaselBaselSwitzerland
| | - Thomas Schalch
- Department of Molecular and Cell Biology, Leicester Institute of Structural and Chemical BiologyUniversity of LeicesterLeicesterUK
| | | | - Daniel Hess
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
| | - Marc Bühler
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland,University of BaselBaselSwitzerland
| |
Collapse
|
4
|
Gong W, Li Y, Xian J, Yang L, Wang Y, Zhang X, Zhou Y, Wang X, Qiao G, Chen C, Datta S, Gao X, Lu J, Qiu F. Long non-coding RNA LSAMP-1 is down-regulated in non-small cell lung cancer and predicts a poor prognosis. Cancer Cell Int 2022; 22:181. [PMID: 35524253 PMCID: PMC9074231 DOI: 10.1186/s12935-022-02592-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 04/18/2022] [Indexed: 12/05/2022] Open
Abstract
Background Long noncoding RNAs (lncRNAs) are emerging as master regulators for gene expression and thus play a vital role in human tumorigenesis and progression. But the involvement of novel lncRNAs in non-small cell lung cancer (NSCLC) remains largely unelucidated. Methods A total of 170 NSCLC and their adjacent non-tumor tissues were enrolled to detect the expression of Lnc-LSAMP-1 by RT-qPCR. The effects of Lnc-LSAMP-1 on cell proliferation, migration, invasion and drug-sensitivity were determined by in vitro and in vivo experiments. The proteins that interact with Lnc-LSAMP-1were confirmed by RNA pull-down assay. RNA-sequencing were used to identify the potential targets of Lnc-LSAMP-1 in NSCLC. Results We found that Lnc-LSAMP-1 was significantly down-regulated in 170 cases of NSCLC tissues when compared to their adjacent non-cancerous tissues. Loss expression of Lnc-LSAMP-1 was notably correlated with unfavorable prognosis of NSCLC patients. The ectopic expression of Lnc-LSAMP-1 drastically inhibited lung cancer cell proliferation, viability, invasion and migration ability, arrested cell cycle and facilitated apoptosis. Chemotherapy sensitization experiments showed that over-expressed Lnc-LSAMP-1 enhanced the inhibition of cell proliferation induced by TKI. Mechanistically, Lnc-LSAMP-1-LSAMP formed a complex which could protect the degradation of LSAMP gene, and thus exerted crucial roles in NSCLC progression and TKI targeted treatment. Conclusions Consequently, our findings highlight the function and prognostic value of Lnc-LSAMP-1 in NSCLC and provide potential novel therapeutic targets and prognostic biomarkers for patients with NSCLC. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02592-0.
Collapse
Affiliation(s)
- Wei Gong
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, 151 Yanjiangxi Road, Guangzhou, 510120, China.,The School of Public Health, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, 511436, China.,Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, and Guangdong Key Laboratory of Urology, Guangzhou, Guangdong, China
| | - Yinyan Li
- The School of Public Health, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, 511436, China
| | - Jianfeng Xian
- The School of Public Health, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, 511436, China
| | - Lei Yang
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, 151 Yanjiangxi Road, Guangzhou, 510120, China.,The School of Public Health, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, 511436, China
| | - Yuanyuan Wang
- The School of Public Health, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, 511436, China
| | - Xin Zhang
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, 151 Yanjiangxi Road, Guangzhou, 510120, China
| | - Yifeng Zhou
- Department of Genetics, Medical College of Soochow University, 1 Shizi Road, Suzhou, 215123, China
| | - Xinhua Wang
- School of Public Health, Heping Development Zone, Gansu University of Chinese Medicine. No.1, Chinese Medicine Road, Lanzhou, 730101, Gansu Province, China
| | - Guibin Qiao
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Cuiyi Chen
- Third People's Hospital of Dongguan City, Dongguan, 523326, China
| | - Soham Datta
- The School of Public Health, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, 511436, China
| | - Xincheng Gao
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, 151 Yanjiangxi Road, Guangzhou, 510120, China.,Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, and Guangdong Key Laboratory of Urology, Guangzhou, Guangdong, China
| | - Jiachun Lu
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, 151 Yanjiangxi Road, Guangzhou, 510120, China. .,The School of Public Health, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, 511436, China.
| | - Fuman Qiu
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, 151 Yanjiangxi Road, Guangzhou, 510120, China. .,The School of Public Health, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, 511436, China.
| |
Collapse
|
5
|
Jiang P, Yin Y, Wu Y, Sun Z. Silencing of long non-coding RNA SNHG15 suppresses proliferation, migration and invasion of pancreatic cancer cells by regulating the microRNA-345-5p/RAB27B axis. Exp Ther Med 2021; 22:1273. [PMID: 34594410 DOI: 10.3892/etm.2021.10708] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 06/16/2021] [Indexed: 12/11/2022] Open
Abstract
Pancreatic cancer (PC) is the seventh most common cause of cancer-associated mortality worldwide. The current study aimed to investigate the function and molecular mechanism underlying long non-coding (lnc)RNA SNHG15 in PC tissues and cells. Relative expression levels of lncRNA SNHG15, miR-345-5p and RAB27B in PC cells and tissues were examined by performing reverse transcription-quantitative PCR. The association between SNHG15, miR-345-5p and RAB27B was validated using a Dual-luciferase reporter assay. Proliferation, invasion and migration of PC cells were analysed by conducting MTT, wound healing and Transwell assays. Western blotting was performed to detect the relative expression of the RAB27B protein. The relative expression level of lncRNA SNHG15 and RAB27B was elevated, but that of miR-345-5p was decreased in PC. Silencing of SNHG15 suppressed the proliferation, invasion and migration of PC cells in vitro and suppressed tumour growth in xenograft mice in vivo. miR-345-5p was the target gene of SNHG15 and suppressed cell proliferation, migration and invasion in PC. Furthermore, miR-345-5p targeted RAB27B. The use of miR-345-5p inhibitor or overexpression of RAB27B reversed the suppressive effect of the small interfering RNA si-SNHG15-1 exerted on the proliferation, invasion and migration of PC cells. Silencing of SNHG15 inhibited the proliferation, invasion and migration of PC cells by mediating the miR-345-5p/RAB27B axis, thereby implying its potential as a prognostic marker and target for PC therapy.
Collapse
Affiliation(s)
- Pengfei Jiang
- Department of Gastroenterology, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Youmin Yin
- Department of Endocrinology, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Yan Wu
- Health Management Center, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Zhaoli Sun
- Department of Endocrinology, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| |
Collapse
|
6
|
Jampala P, Garhewal A, Lodha M. Functions of long non-coding RNA in Arabidopsis thaliana. PLANT SIGNALING & BEHAVIOR 2021; 16:1925440. [PMID: 33980126 PMCID: PMC8281000 DOI: 10.1080/15592324.2021.1925440] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
A major part of the eukaryotic genome is transcribed into non-coding RNAs (ncRNAs) having no protein coding potential. ncRNAs which are longer than 200 nucleotides are categorized as long non coding RNAs (lncRNAs). Most lncRNAs are induced as a consequence of various environmental and developmental cues. Among plants, the functions of lncRNAs are best studied in Arabidopsis thaliana. In this review, we highlight the important functional roles of various lncRNAs during different stages of Arabidopsis life cycle and their response to environmental changes. These lncRNAs primarily govern processes such as flowering, seed germination, stress response, light- and auxin-regulated development, and RNA-dependent DNA methylation (RdDM). Major challenge is to differentiate between functional and cryptic transcripts. Genome editing, large scale RNAi and computational approaches may help to identify and characterize novel functional lncRNAs in Arabidopsis.
Collapse
Affiliation(s)
- Preethi Jampala
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | | | - Mukesh Lodha
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
- CONTACT Mukesh Lodha CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Habsiguda500007, India
| |
Collapse
|
7
|
Zhang HR, Wu SY, Fu ZX. LncRNA-cCSC1 promotes cell proliferation of colorectal cancer through sponging miR-124-3p and upregulating CD44. Biochem Biophys Res Commun 2021; 557:228-235. [PMID: 33887588 DOI: 10.1016/j.bbrc.2021.04.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 04/06/2021] [Indexed: 01/03/2023]
Abstract
LncRNA-cCSC1 is highly expressed in colorectal cancer (CRC). The study was designed to evaluate the function and mechanism of lncRNA-cCSC1 in cell proliferation of CRC. RT-PCR was used to measure the expression levels of lncRNA-cCSC1 in CRC cell lines. CCK-8, colony formation, EdU staining, flow cytometry and Western blot were performed to examine the effect of interference with lncRNA-cCSC1 expression on cell proliferation. miR-124-3p and the target genes of miR-124-3p were investigated using bioinformatics analysis and verified by dual-luciferase reporter, RT-PCR and Western blot. Rescue experiments were carried out to confirm the role of miR-124-3p in cell proliferation of CRC. Our results showed that cell proliferation of CRC was promoted by lncRNA-cCSC1 upregulation and inhibited by lncRNA-cCSC1 downregulation. In addition, miR-124-3p is predicted to be the target of lncRNA-cCSC1 and is negatively correlated with lncRNA-cCSC1. Moreover, the addition of miR-124-3p mimics or inhibitor reversed the effects induced by lncRNA-cCSC1 overexpression or silencing on cell proliferation of CRC. Additionally, lncRNA-cCSC1 regulated the expression level of CD44, a target gene of miR-124-3p. Finally, we studied the effects of the lncRNA-cCSC1/miR-124-3p axis on CD44. These results indicate that lncRNA-cCSC1 promotes cell proliferation of CRC through sponging miR-124-3p and upregulating CD44.
Collapse
Affiliation(s)
- Hai-Rong Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Shi-Yong Wu
- Department of Vascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Zhong-Xue Fu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
8
|
The role of microRNA-338-3p in cancer: growth, invasion, chemoresistance, and mediators. Life Sci 2021; 268:119005. [PMID: 33421526 DOI: 10.1016/j.lfs.2020.119005] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/25/2020] [Accepted: 12/29/2020] [Indexed: 12/14/2022]
Abstract
Cancer still remains as one of the leading causes of death worldwide. Metastasis and proliferation are abnormally increased in cancer cells that subsequently, mediate resistance of cancer cells to different therapies such as radio-, chemo- and immune-therapy. MicroRNAs (miRNAs) are endogenous short non-coding RNAs that can regulate expression of target genes at post-transcriptional level and capable of interaction with mRNA-coding genes. Vital biological mechanisms including apoptosis, migration and differentiation are modulated by these small molecules. MiRNAs are key players in regulating cancer proliferation and metastasis as well as cancer therapy response. MiRNAs can function as both tumor-suppressing and tumor-promoting factors. In the present review, regulatory impact of miRNA-338-3p on cancer growth and migration is discussed. This new emerging miRNA can regulate response of cancer cells to chemotherapy and radiotherapy. It seems that miRNA-338-3p has dual role in cancer chemotherapy, acting as tumor-promoting or tumor-suppressor factor. Experiments reveal anti-tumor activity of miRNA-338-3p in cancer. Hence, increasing miRNA-338-3p expression is of importance in effective cancer therapy. Long non-coding RNAs, circular RNAs and hypoxia are potential upstream mediators of miRNA-338-3p in cancer. Anti-tumor agents including baicalin and arbutin can promote expression of miRNA-338-3p in suppressing cancer progression. These topics are discussed to shed some light on function of miRNA-338-3p in cancer cells.
Collapse
|
9
|
Yang J, Xu QC, Wang ZY, Lu X, Pan LK, Wu J, Wang C. Integrated Analysis of an lncRNA-Associated ceRNA Network Reveals Potential Biomarkers for Hepatocellular Carcinoma. J Comput Biol 2020; 28:330-344. [PMID: 33185458 DOI: 10.1089/cmb.2019.0250] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a common malignant tumor worldwide. In this study, we aimed to explore the potential biomarkers and key regulatory pathways related to HCC using integrated bioinformatic analysis and validation. The microarray data of GSE12717 and GSE54238 were downloaded from the Gene Expression Omnibus database. A competing endogenous RNA (ceRNA) network was constructed based on potential long-noncoding RNA (lncRNA)-microRNA (miRNA)-mRNA interactions. A total of 191 mRNAs, 8 miRNAs, and 5 lncRNAs were selected to construct the ceRNA network. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were used to predict their biological functions. The PI3K-Akt signaling pathway was significantly enriched. Kaplan-Meier survival analysis based on the Gene Expression Profiling Interactive Analysis (GEPIA) database was conducted for the weighted mRNAs and lncRNAs. The results showed that SRC, GMPS, CDK2, FEN1, EZH2, ZWINT, MTHFD1L, GINS2, and MAPKAPK5-AS1 were significantly upregulated in tumor tissues. The relative expression levels of these genes were significantly upregulated in HCC patients based on the StarBase database. For further validation, the expression levels of these genes were detected by real-time quantitative reverse transcription-polymerase chain reaction in 20 HCC tumor tissues and paired paracancerous tissues. Receiver operating characteristic analysis revealed that CDK2, MTHFD1L, SRC, ZWINT, and MAPKAPK5-AS1 had significant diagnostic value in HCC, but further studies are needed to explore their mechanisms in HCC.
Collapse
Affiliation(s)
- Jie Yang
- Department of Emergency Surgery, The Second People's Hospital of Wuhu, Wuhu, China
| | - Qing-Chun Xu
- Department of Emergency Surgery, The Second People's Hospital of Wuhu, Wuhu, China
| | - Zhen-Yu Wang
- Department of Emergency Surgery, The Second People's Hospital of Wuhu, Wuhu, China
| | - Xun Lu
- Department of Emergency Surgery, The Second People's Hospital of Wuhu, Wuhu, China
| | - Liu-Kui Pan
- Department of Emergency Surgery, The Second People's Hospital of Wuhu, Wuhu, China
| | - Jun Wu
- Department of Emergency Surgery, The Second People's Hospital of Wuhu, Wuhu, China
| | - Chen Wang
- Department of Emergency Surgery, The Second People's Hospital of Wuhu, Wuhu, China
| |
Collapse
|
10
|
Dai W, Dai JL, Tang MH, Ye MS, Fang S. lncRNA-SNHG15 accelerates the development of hepatocellular carcinoma by targeting miR-490-3p/ histone deacetylase 2 axis. World J Gastroenterol 2019; 25:5789-5799. [PMID: 31636472 PMCID: PMC6801192 DOI: 10.3748/wjg.v25.i38.5789] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/30/2019] [Accepted: 09/13/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) has become a great threat for people's health. Many long noncoding RNAs are involved in the pathogenesis of HCC. SNHG15, as a tissue specific long noncoding RNAs, has been studied in many human cancers, except HCC. AIM To explore the regulatory mechanism of SNHG15 in HCC. METHODS In the present research, 101 HCC patient samples, two HCC cell lines and one normal liver cell line were used. RT-qPCR and Western blot analysis were applied to detect SNHG15, miR-490-3p and histone deacetylase 2 (HDAC2) expression. The regulatory mechanism of SNHG15 was investigated using CCK-8, Transwell and luciferase reporter assays. RESULTS Our research showed that up-regulation of SNHG15 was found in HCC and was related to aggressive behaviors in HCC patients. Moreover, knockdown of SNHG15 restrained HCC cell proliferation, migration and invasion. In addition, SNHG15 served as a molecular sponge for miR-490-3p. Further, miR-490-3p directly targets HDAC2. HDAC2 was involved in HCC progression by interacting with the SNHG15/miR-490-3p axis. CONCLUSION In conclusion, long noncoding RNA SNHG15 promotes HCC progression by mediating the miR-490-3p/HDAC2 axis in HCC.
Collapse
Affiliation(s)
- Wei Dai
- Department of Hepatobiliary Surgery, the Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, Guangdong Province, China
| | - Jia-Liang Dai
- Department of Hepatobiliary Surgery, the Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, Guangdong Province, China
| | - Mao-Hua Tang
- Department of Infectious Disease, the Second Affiliated Hospital of Guangdong Medical University, Zhanjiang 524003, Guangdong Province, China
| | - Mu-Shi Ye
- Department of Surgery, the Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, Guangdong Province, China
| | - Shuo Fang
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, Guangdong Province, China
- Li KaShing Faculty of Medicine, the University of Hong Kong, Hong Kong, China
| |
Collapse
|
11
|
Jang SM, Kauzlaric A, Quivy JP, Pontis J, Rauwel B, Coluccio A, Offner S, Duc J, Turelli P, Almouzni G, Trono D. KAP1 facilitates reinstatement of heterochromatin after DNA replication. Nucleic Acids Res 2019; 46:8788-8802. [PMID: 29955894 PMCID: PMC6158507 DOI: 10.1093/nar/gky580] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 06/25/2018] [Indexed: 12/30/2022] Open
Abstract
During cell division, maintenance of chromatin features from the parental genome requires their proper establishment on its newly synthetized copy. The loss of epigenetic marks within heterochromatin, typically enriched in repetitive elements, endangers genome stability and permits chromosomal rearrangements via recombination. However, how histone modifications associated with heterochromatin are maintained across mitosis remains poorly understood. KAP1 is known to act as a scaffold for a repressor complex that mediates local heterochromatin formation, and was previously demonstrated to play an important role during DNA repair. Accordingly, we investigated a putative role for this protein in the replication of heterochromatic regions. We first found that KAP1 associates with several DNA replication factors including PCNA, MCM3 and MCM6. We then observed that these interactions are promoted by KAP1 phosphorylation on serine 473 during S phase. Finally, we could demonstrate that KAP1 forms a complex with PCNA and the histone-lysine methyltransferase Suv39h1 to reinstate heterochromatin after DNA replication.
Collapse
Affiliation(s)
- Suk Min Jang
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 19, 1015 Lausanne, Switzerland
| | - Annamaria Kauzlaric
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 19, 1015 Lausanne, Switzerland
| | - Jean-Pierre Quivy
- Institut Curie, Centre de Recherche, Paris 75248, France.,Centre National de la Recherche Scientifique (CNRS), UMR3664, Paris 75248, France.,Equipe Labellisée Ligue contre le Cancer, UMR3664, Paris 75248, France.,Université Pierre et Marie Curie (UPMC), UMR3664, Paris 75248, France.,Sorbonne University, PSL, Paris 75005, France
| | - Julien Pontis
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 19, 1015 Lausanne, Switzerland
| | - Benjamin Rauwel
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 19, 1015 Lausanne, Switzerland
| | - Andrea Coluccio
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 19, 1015 Lausanne, Switzerland
| | - Sandra Offner
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 19, 1015 Lausanne, Switzerland
| | - Julien Duc
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 19, 1015 Lausanne, Switzerland
| | - Priscilla Turelli
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 19, 1015 Lausanne, Switzerland
| | - Geneviève Almouzni
- Institut Curie, Centre de Recherche, Paris 75248, France.,Centre National de la Recherche Scientifique (CNRS), UMR3664, Paris 75248, France.,Equipe Labellisée Ligue contre le Cancer, UMR3664, Paris 75248, France.,Université Pierre et Marie Curie (UPMC), UMR3664, Paris 75248, France.,Sorbonne University, PSL, Paris 75005, France
| | - Didier Trono
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 19, 1015 Lausanne, Switzerland
| |
Collapse
|
12
|
Liu W, Xu J, Zhang C. Clinical usefulness of gastric adenocarcinoma predictive long intergenic noncoding RNA in human malignancies: A meta-analysis. Pathol Res Pract 2019; 215:152387. [DOI: 10.1016/j.prp.2019.03.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/21/2019] [Accepted: 03/15/2019] [Indexed: 01/31/2023]
|
13
|
Li M, Bian Z, Jin G, Zhang J, Yao S, Feng Y, Wang X, Yin Y, Fei B, You Q, Huang Z. LncRNA-SNHG15 enhances cell proliferation in colorectal cancer by inhibiting miR-338-3p. Cancer Med 2019; 8:2404-2413. [PMID: 30945457 PMCID: PMC6536931 DOI: 10.1002/cam4.2105] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/29/2019] [Accepted: 03/06/2019] [Indexed: 12/23/2022] Open
Abstract
The incidence and death rate of colorectal cancer (CRC) is very high, which brings great need to understand the early molecular events of CRC. These studies demonstrate that long noncoding RNA (lncRNA) plays an important role in the occurrence and development of human cancer. Small nucleolar RNA host gene 15 (SNHG15) was recently identified as a cancer-related lncRNA. In this study, we aimed to evaluate the function and mechanism of SNHG15 in CRC. The expression of SNHG15 was detected by quantitative RT-PCR (qRT-PCR) in CRC tissues and matched noncancerous tissues (NCTs). CCK-8 assay, colony formation assay, flow cytometric analysis, and nude mouse xenograft mode were used to examine the tumor-promoting function of SNHG15 in vitro and in vivo. The binding relationship between SNHG15, miR-338-3p and the target genes of miR-338-3p were screened and identified by databases, qRT-PCR, dual luciferase reporter assay and western blot. Our results showed that SNHG15 was up-regulated in CRC tissues compared with paired NCTs (P < 0.0001). High level of SNHG15 expression predicted poor prognosis of CRC (P = 0.0051). SNHG15 overexpression could promote cell proliferation and inhibit cell apoptosis. Animal experiments showed that up-regulation of SNHG15 promoted tumor growth in vivo. The results of mechanism experiments showed that SNHG15 could bind to miR-338-3p and block its inhibition on the expression and activity of FOS or RAB14. In conclusion SNHG15 promotes cell proliferation through SNHG15/miR-338-3p/FOS-RAB14 axis in CRC.
Collapse
Affiliation(s)
- Min Li
- Wuxi Cancer InstituteAffiliated Hospital of Jiangnan UniversityWuxiJiangsuChina
- Cancer Epigenetics ProgramWuxi School of MedicineJiangnan UniversityWuxiJiangsuChina
- Pharmacy DepartmentWuxi 9th People's Hospital Affiliated to Soochow UniversityWuxiJiangsuChina
| | - Zehua Bian
- Wuxi Cancer InstituteAffiliated Hospital of Jiangnan UniversityWuxiJiangsuChina
| | - Guoying Jin
- Wuxi Cancer InstituteAffiliated Hospital of Jiangnan UniversityWuxiJiangsuChina
| | - Jia Zhang
- Wuxi Cancer InstituteAffiliated Hospital of Jiangnan UniversityWuxiJiangsuChina
| | - Surui Yao
- Wuxi Cancer InstituteAffiliated Hospital of Jiangnan UniversityWuxiJiangsuChina
| | - Yuyang Feng
- Cancer Epigenetics ProgramWuxi School of MedicineJiangnan UniversityWuxiJiangsuChina
| | - Xue Wang
- Cancer Epigenetics ProgramWuxi School of MedicineJiangnan UniversityWuxiJiangsuChina
| | - Yuan Yin
- Wuxi Cancer InstituteAffiliated Hospital of Jiangnan UniversityWuxiJiangsuChina
| | - Bojian Fei
- Department of Surgical OncologyAffiliated Hospital of Jiangnan UniversityWuxiJiangsuChina
| | - Qingjun You
- Wuxi Cancer InstituteAffiliated Hospital of Jiangnan UniversityWuxiJiangsuChina
| | - Zhaohui Huang
- Wuxi Cancer InstituteAffiliated Hospital of Jiangnan UniversityWuxiJiangsuChina
- Cancer Epigenetics ProgramWuxi School of MedicineJiangnan UniversityWuxiJiangsuChina
| |
Collapse
|
14
|
Chen S, Chen Y, Qian Q, Wang X, Chang Y, Ju S, Xu Y, Zhang C, Qin N, Ding H, Gu Y, Han J, Wang C, Zhang E, Hu Z. Gene amplification derived a cancer-testis long noncoding RNA PCAT6 regulates cell proliferation and migration in hepatocellular carcinoma. Cancer Med 2019; 8:3017-3025. [PMID: 30968586 PMCID: PMC6558594 DOI: 10.1002/cam4.2141] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/16/2019] [Accepted: 03/17/2019] [Indexed: 12/17/2022] Open
Abstract
Our previous work demonstrated cancer-testis (CT) genes as a new source of candidate driver of cancer. Recently, mounting evidence indicates that long noncoding RNAs (lncRNAs) with CT expression pattern could play a pivotal role in cancer biology. Here, we characterized a conserved CT long noncoding RNA (CT-lncRNA), PCAT6, which is expressed exclusively in the testis and is reactivated in liver hepatocellular carcinoma (LIHC) tissues due to the highly frequent amplification. The expression in LIHC was correlated with clinical prognosis in TCGA data. Knockdown of PCAT6 could inhibit cell proliferation and migration in hepatocellular carcinoma (LIHC) cells. Gene set enrichment analysis (GSEA) based on coexpression network revealed that PCAT6 was involved in similar cilium-related pathways in the testis and LIHC tissues. However, PCAT6 was mainly positively correlated with gametogenesis-related pathways in the testis but was coexpressed with mitotic cell cycle genes in LIHC. Together, our data demonstrated that CT-lncRNA PCAT6 represents the similarity and difference between tumorigenesis and gametogenesis. The CT expression pattern and important role in LIHC oncogenesis make PCAT6 an ideal target for LIHC diagnosis and therapy.
Collapse
Affiliation(s)
- Shuaizhou Chen
- Department of Epidemiology and Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yao Chen
- Department of Epidemiology and Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qufei Qian
- Department of Epidemiology and Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xuewei Wang
- Department of Epidemiology and Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yuting Chang
- Department of Epidemiology and Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Sihan Ju
- Department of Epidemiology and Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yide Xu
- Department of Epidemiology and Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Chang Zhang
- Department of Epidemiology and Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Na Qin
- Department of Epidemiology and Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Hui Ding
- Department of Epidemiology and Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Yayun Gu
- Department of Epidemiology and Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Jing Han
- Department of Epidemiology and Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Cheng Wang
- Department of Epidemiology and Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Bioinformatics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Erbao Zhang
- Department of Epidemiology and Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Zhibin Hu
- Department of Epidemiology and Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
15
|
Kindgren P, Ard R, Ivanov M, Marquardt S. Transcriptional read-through of the long non-coding RNA SVALKA governs plant cold acclimation. Nat Commun 2018; 9:4561. [PMID: 30385760 PMCID: PMC6212407 DOI: 10.1038/s41467-018-07010-6] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 10/10/2018] [Indexed: 02/08/2023] Open
Abstract
Most DNA in the genomes of higher organisms does not encode proteins, yet much is transcribed by RNA polymerase II (RNAPII) into long non-coding RNAs (lncRNAs). The biological significance of most lncRNAs is largely unclear. Here, we identify a lncRNA (SVALKA) in a cold-sensitive region of the Arabidopsis genome. Mutations in SVALKA affect CBF1 expression and freezing tolerance. RNAPII read-through transcription of SVALKA results in a cryptic lncRNA overlapping CBF1 on the antisense strand, termed asCBF1. Our molecular dissection reveals that CBF1 is suppressed by RNAPII collision stemming from the SVALKA-asCBF1 lncRNA cascade. The SVALKA-asCBF1 cascade provides a mechanism to tightly control CBF1 expression and timing that could be exploited to maximize freezing tolerance with mitigated fitness costs. Our results provide a compelling example of local gene regulation by lncRNA transcription having a profound impact on the ability of plants to appropriately acclimate to challenging environmental conditions. The function of most lncRNA is unknown. Here, the authors show that transcriptional read-through at the Arabidopsis SVALKA locus produces a cryptic lncRNA that overlaps with the neighboring cold-responsive CBF1 gene and limits CBF1 expression via an RNA polymerase II collision-based mechanism.
Collapse
Affiliation(s)
- Peter Kindgren
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Bulowsvej 34, Frederiksberg, 1871, Denmark
| | - Ryan Ard
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Bulowsvej 34, Frederiksberg, 1871, Denmark
| | - Maxim Ivanov
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Bulowsvej 34, Frederiksberg, 1871, Denmark
| | - Sebastian Marquardt
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Bulowsvej 34, Frederiksberg, 1871, Denmark.
| |
Collapse
|
16
|
The Conserved RNA Binding Cyclophilin, Rct1, Regulates Small RNA Biogenesis and Splicing Independent of Heterochromatin Assembly. Cell Rep 2018. [PMID: 28636937 DOI: 10.1016/j.celrep.2017.05.086] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
RNAi factors and their catalytic activities are essential for heterochromatin assembly in S. pombe. This has led to the idea that siRNAs can promote H3K9 methylation by recruiting the cryptic loci regulator complex (CLRC), also known as recombination in K complex (RIKC), to the nucleation site. The conserved RNA-binding protein Rct1 (AtCyp59/SIG-7) interacts with splicing factors and RNA polymerase II. Here we show that Rct1 promotes processing of pericentromeric transcripts into siRNAs via the RNA recognition motif. Surprisingly, loss of siRNA in rct1 mutants has no effect on H3K9 di- or tri-methylation, resembling other splicing mutants, suggesting that post-transcriptional gene silencing per se is not required to maintain heterochromatin. Splicing of the Argonaute gene is also defective in rct1 mutants and contributes to loss of silencing but not to loss of siRNA. Our results suggest that Rct1 guides transcripts to the RNAi machinery by promoting splicing of elongating non-coding transcripts.
Collapse
|
17
|
Berry S, Rosa S, Howard M, Bühler M, Dean C. Disruption of an RNA-binding hinge region abolishes LHP1-mediated epigenetic repression. Genes Dev 2017; 31:2115-2120. [PMID: 29212661 PMCID: PMC5749160 DOI: 10.1101/gad.305227.117] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 11/07/2017] [Indexed: 12/24/2022]
Abstract
In this study, Berry et al. investigated the functions of the different domains of LIKE HETEROCHROMATIN PROTEIN 1 (LHP1) in Arabidopsis. They show that LHP1 binds RNA in vitro through the intrinsically disordered hinge region and show that both the hinge region and H3K27me3 recognition facilitate LHP1 localization and H3K27me3 maintenance. Epigenetic maintenance of gene repression is essential for development. Polycomb complexes are central to this memory, but many aspects of the underlying mechanism remain unclear. LIKE HETEROCHROMATIN PROTEIN 1 (LHP1) binds Polycomb-deposited H3K27me3 and is required for repression of many Polycomb target genes in Arabidopsis. Here we show that LHP1 binds RNA in vitro through the intrinsically disordered hinge region. By independently perturbing the RNA-binding hinge region and H3K27me3 (trimethylation of histone H3 at Lys27) recognition, we found that both facilitate LHP1 localization and H3K27me3 maintenance. Disruption of the RNA-binding hinge region also prevented formation of subnuclear foci, structures potentially important for epigenetic repression.
Collapse
Affiliation(s)
- Scott Berry
- John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Stefanie Rosa
- Institute of Biochemistry and Biology, University of Potsdam, DE-14476 Potsdam-Golm, Germany
| | | | - Marc Bühler
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | | |
Collapse
|
18
|
Suhren JH, Noto T, Kataoka K, Gao S, Liu Y, Mochizuki K. Negative Regulators of an RNAi-Heterochromatin Positive Feedback Loop Safeguard Somatic Genome Integrity in Tetrahymena. Cell Rep 2017; 18:2494-2507. [PMID: 28273462 PMCID: PMC5357732 DOI: 10.1016/j.celrep.2017.02.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 12/22/2016] [Accepted: 02/06/2017] [Indexed: 11/05/2022] Open
Abstract
RNAi-mediated positive feedback loops are pivotal for the maintenance of heterochromatin, but how they are downregulated at heterochromatin-euchromatin borders is not well understood. In the ciliated protozoan Tetrahymena, heterochromatin is formed exclusively on the sequences that are removed from the somatic genome by programmed DNA elimination, and an RNAi-mediated feedback loop is important for assembling heterochromatin on the eliminated sequences. In this study, we show that the heterochromatin protein 1 (HP1)-like protein Coi6p, its interaction partners Coi7p and Lia5p, and the histone demethylase Jmj1p are crucial for confining the production of small RNAs and the formation of heterochromatin to the eliminated sequences. The loss of Coi6p, Coi7p, or Jmj1p causes ectopic DNA elimination. The results provide direct evidence for the existence of a dedicated mechanism that counteracts a positive feedback loop between RNAi and heterochromatin at heterochromatin-euchromatin borders to maintain the integrity of the somatic genome. The HP1-like protein Coi6p confines small RNA and heterochromatin formation Two Coi6p-binding proteins and the histone demethylase Jmj1p likely act with Coi6p Coi6p and Jmj1p are important for preventing ectopic DNA elimination Suppression of RNAi-heterochromatin feedback loop maintains somatic genome integrity
Collapse
Affiliation(s)
- Jan H Suhren
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, 1030 Vienna, Austria
| | - Tomoko Noto
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, 1030 Vienna, Austria; Institute of Human Genetics, CNRS-University of Montpellier UMR9002, 34396 Montpellier, France
| | - Kensuke Kataoka
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, 1030 Vienna, Austria
| | - Shan Gao
- Pathology Department, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yifan Liu
- Pathology Department, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kazufumi Mochizuki
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, 1030 Vienna, Austria; Institute of Human Genetics, CNRS-University of Montpellier UMR9002, 34396 Montpellier, France.
| |
Collapse
|
19
|
Latrasse D, Jégu T, Li H, de Zelicourt A, Raynaud C, Legras S, Gust A, Samajova O, Veluchamy A, Rayapuram N, Ramirez-Prado JS, Kulikova O, Colcombet J, Bigeard J, Genot B, Bisseling T, Benhamed M, Hirt H. MAPK-triggered chromatin reprogramming by histone deacetylase in plant innate immunity. Genome Biol 2017; 18:131. [PMID: 28683804 PMCID: PMC5501531 DOI: 10.1186/s13059-017-1261-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 06/19/2017] [Indexed: 01/22/2023] Open
Abstract
Background Microbial-associated molecular patterns activate several MAP kinases, which are major regulators of the innate immune response in Arabidopsis thaliana that induce large-scale changes in gene expression. Here, we determine whether microbial-associated molecular pattern-triggered gene expression involves modifications at the chromatin level. Results Histone acetylation and deacetylation are major regulators of microbial-associated molecular pattern-triggered gene expression and implicate the histone deacetylase HD2B in the reprogramming of defence gene expression and innate immunity. The MAP kinase MPK3 directly interacts with and phosphorylates HD2B, thereby regulating the intra-nuclear compartmentalization and function of the histone deacetylase. Conclusions By studying a number of gene loci that undergo microbial-associated molecular pattern-dependent activation or repression, our data reveal a mechanistic model for how protein kinase signaling directly impacts chromatin reprogramming in plant defense. Electronic supplementary material The online version of this article (doi:10.1186/s13059-017-1261-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- David Latrasse
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Sud, University of Evry, University Paris-Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, Batiment 630, 91405, Orsay, France
| | - Teddy Jégu
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Sud, University of Evry, University Paris-Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, Batiment 630, 91405, Orsay, France
| | - Huchen Li
- Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
| | - Axel de Zelicourt
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Cécile Raynaud
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Sud, University of Evry, University Paris-Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, Batiment 630, 91405, Orsay, France
| | - Stéphanie Legras
- Plateforme Biopuces et séquençage, IGBMC, 1 rue Laurent Fries Parc d'Innovation, 67400, Illkirch, France
| | - Andrea Gust
- Center for Plant Molecular Biology, University of Tübingen, Auf der Morgenstelle 32, 72076, Tübingen, Germany
| | - Olga Samajova
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Alaguraj Veluchamy
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Naganand Rayapuram
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Juan Sebastian Ramirez-Prado
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Olga Kulikova
- Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
| | - Jean Colcombet
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Sud, University of Evry, University Paris-Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, Batiment 630, 91405, Orsay, France
| | - Jean Bigeard
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Sud, University of Evry, University Paris-Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, Batiment 630, 91405, Orsay, France
| | - Baptiste Genot
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Sud, University of Evry, University Paris-Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, Batiment 630, 91405, Orsay, France
| | - Ton Bisseling
- Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
| | - Moussa Benhamed
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Sud, University of Evry, University Paris-Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, Batiment 630, 91405, Orsay, France.,Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Heribert Hirt
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Sud, University of Evry, University Paris-Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, Batiment 630, 91405, Orsay, France. .,Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
20
|
Flury V, Georgescu PR, Iesmantavicius V, Shimada Y, Kuzdere T, Braun S, Bühler M. The Histone Acetyltransferase Mst2 Protects Active Chromatin from Epigenetic Silencing by Acetylating the Ubiquitin Ligase Brl1. Mol Cell 2017. [PMID: 28648780 PMCID: PMC5526834 DOI: 10.1016/j.molcel.2017.05.026] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Faithful propagation of functionally distinct chromatin states is crucial for maintaining cellular identity, and its breakdown can lead to diseases such as cancer. Whereas mechanisms that sustain repressed states have been intensely studied, regulatory circuits that protect active chromatin from inactivating signals are not well understood. Here we report a positive feedback loop that preserves the transcription-competent state of RNA polymerase II-transcribed genes. We found that Pdp3 recruits the histone acetyltransferase Mst2 to H3K36me3-marked chromatin. Thereby, Mst2 binds to all transcriptionally active regions genome-wide. Besides acetylating histone H3K14, Mst2 also acetylates Brl1, a component of the histone H2B ubiquitin ligase complex. Brl1 acetylation increases histone H2B ubiquitination, which positively feeds back on transcription and prevents ectopic heterochromatin assembly. Our work uncovers a molecular pathway that secures epigenome integrity and highlights the importance of opposing feedback loops for the partitioning of chromatin into transcriptionally active and inactive states.
Collapse
Affiliation(s)
- Valentin Flury
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; University of Basel, Petersplatz 10, 4003 Basel, Switzerland
| | - Paula Raluca Georgescu
- Biomedical Center Munich, Physiological Chemistry, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 82152 Planegg-Martinsried, Germany
| | - Vytautas Iesmantavicius
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; University of Basel, Petersplatz 10, 4003 Basel, Switzerland
| | - Yukiko Shimada
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; University of Basel, Petersplatz 10, 4003 Basel, Switzerland
| | - Tahsin Kuzdere
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Sigurd Braun
- Biomedical Center Munich, Physiological Chemistry, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 82152 Planegg-Martinsried, Germany.
| | - Marc Bühler
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; University of Basel, Petersplatz 10, 4003 Basel, Switzerland.
| |
Collapse
|
21
|
Johnson WL, Straight AF. RNA-mediated regulation of heterochromatin. Curr Opin Cell Biol 2017; 46:102-109. [PMID: 28614747 PMCID: PMC5729926 DOI: 10.1016/j.ceb.2017.05.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 05/16/2017] [Accepted: 05/22/2017] [Indexed: 02/09/2023]
Abstract
The formation of condensed, transcriptionally repressed heterochromatin is essential for controlling gene expression throughout development, silencing parasitic DNA elements, and for genome stability and inheritance. Cells employ diverse mechanisms for controlling heterochromatin states through proteins that modify DNA and histones. An emerging theme is that chromatin-associated RNAs play important roles in regulating heterochromatin proteins by controlling their initial recruitment to chromatin, their stable association with chromatin, their spread along chromatin, or their enzymatic activity. Major challenges for the field include not only identifying regulatory RNAs, but understanding the underlying biochemical mechanisms for how RNAs associate with chromatin, the specificity of interactions between heterochromatin proteins and RNA, and how these binding events manifest in cells to orchestrate RNA-mediated regulation of heterochromatin.
Collapse
Affiliation(s)
- Whitney L Johnson
- Department of Biochemistry, Stanford University Medical School, Stanford, CA 94305, United States
| | - Aaron F Straight
- Department of Biochemistry, Stanford University Medical School, Stanford, CA 94305, United States.
| |
Collapse
|
22
|
Liu YW, Xia R, Lu K, Xie M, Yang F, Sun M, De W, Wang C, Ji G. LincRNAFEZF1-AS1 represses p21 expression to promote gastric cancer proliferation through LSD1-Mediated H3K4me2 demethylation. Mol Cancer 2017; 16:39. [PMID: 28209170 PMCID: PMC5314465 DOI: 10.1186/s12943-017-0588-9] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 01/13/2017] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Although the prognosis of gastric cancer patients have a favorable progression, there are some patients with unusual patterns of locoregional and systemic recurrence. Therefore, a better understanding of early molecular events of the disease is needed. Current evidences demonstrate that long noncoding RNAs (lncRNAs) may be an important class of functional regulators involved in human gastric cancers development. Our previous studies suggest that HOTAIR contributes to gastric cancer development, and the overexpression of HOTAIR predicts a poor prognosis. In this study, we investigated the characteristic of the LncRNA FEZF1-AS1 in gastric cancer. METHODS QRT-PCR was used to detect the expression of FEZF1-AS1 in gastric cancer tissues and cells. MTT assays, clonogenic survival assays and nude mouse xenograft model were used to examine the tumorigenesis function of FEZF1-AS1 in vitro and in vivo. Bioinformatics analysis were used to select downstream target genes of FEZF1-AS1. Cell cycle analysis, ChIP, RIP,RNA Pulldown assays were examined to dissect molecular mechanisms. RESULTS In this study, we reported that FEZF1-AS1, a 2564 bp RNA, was overexpressed in gastric cancer, and upregulated FEZF1-AS1 expression indicated larger tumor size and higher clinical stage; additional higher expression of FEZF1-AS1 predicted poor prognosis. Further experiments revealed that knockdown FEZF1-AS1 significantly inhibited gastric cancer cells proliferation by inducing G1 arrest and apoptosis, whereas endogenous expression FEZF1-AS1 promoted cell growth. Additionally, RIP assay and RNA-pulldown assay evidenced that FEZF1-AS1 could epigenetically repress the expression of P21 via binding with LSD1, the first discovered demethylase. ChIP assays demonstrated that LSD1 could directly bind to the promoter of P21, inducing H3K4me2 demethylation. CONCLUSION In summary, these data demonstrated that FEZF1-AS1 could act as an "oncogene" for gastric cancer partly through suppressing P21 expression; FEZF1-AS1 may be served as a candidate prognostic biomarker and target for new therapies of gastric cancer patients.
Collapse
Affiliation(s)
- Yan-Wen Liu
- Department of Oncology, Zhongda Hospital, Medical School, Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Rui Xia
- Department of Laboratory, Affiliated Chest Hospital of southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Kai Lu
- Department of surgery, Affiliated the second hospital of Bengbu Medical College, Lianyungang, jiangsu, People's Republic of China
| | - Min Xie
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Fen Yang
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Ming Sun
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Wei De
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China.
| | - Cailian Wang
- Department of Oncology, Zhongda Hospital, Medical School, Southeast University, Nanjing, Jiangsu, People's Republic of China.
| | - Guozhong Ji
- Department of Gastroenterology Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China.
| |
Collapse
|
23
|
Toteva T, Mason B, Kanoh Y, Brøgger P, Green D, Verhein-Hansen J, Masai H, Thon G. Establishment of expression-state boundaries by Rif1 and Taz1 in fission yeast. Proc Natl Acad Sci U S A 2017; 114:1093-1098. [PMID: 28096402 PMCID: PMC5293076 DOI: 10.1073/pnas.1614837114] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Shelterin component Rif1 has emerged as a global regulator of the replication-timing program in all eukaryotes examined to date, possibly by modulating the 3D-organization of the genome. In fission yeast a second Shelterin component, Taz1, might share similar functions. Here, we identified unexpected properties for Rif1 and Taz1 by conducting high-throughput genetic screens designed to identify cis- and trans-acting factors capable of creating heterochromatin-euchromatin boundaries in fission yeast. The preponderance of cis-acting elements identified in the screens originated from genomic loci bound by Taz1 and associated with origins of replication whose firing is repressed by Taz1 and Rif1. Boundary formation and gene silencing by these elements required Taz1 and Rif1 and coincided with altered replication timing in the region. Thus, small chromosomal elements sensitive to Taz1 and Rif1 (STAR) could simultaneously regulate gene expression and DNA replication over a large domain, at the edge of which they established a heterochromatin-euchromatin boundary. Taz1, Rif1, and Rif1-associated protein phosphatases Sds21 and Dis2 were each sufficient to establish a boundary when tethered to DNA. Moreover, efficient boundary formation required the amino-terminal domain of the Mcm4 replicative helicase onto which the antagonistic activities of the replication-promoting Dbf4-dependent kinase and Rif1-recruited phosphatases are believed to converge to control replication origin firing. Altogether these observations provide an insight into a coordinated control of DNA replication and organization of the genome into expression domains.
Collapse
Affiliation(s)
- Tea Toteva
- Department of Biology, BioCenter, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Bethany Mason
- Department of Biology, BioCenter, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Yutaka Kanoh
- Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamkitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Peter Brøgger
- Department of Biology, BioCenter, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Daniel Green
- Department of Biology, BioCenter, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Janne Verhein-Hansen
- Department of Biology, BioCenter, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Hisao Masai
- Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamkitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Geneviève Thon
- Department of Biology, BioCenter, University of Copenhagen, 2200 Copenhagen N, Denmark;
| |
Collapse
|
24
|
Böhmdorfer G, Sethuraman S, Rowley MJ, Krzyszton M, Rothi MH, Bouzit L, Wierzbicki AT. Long non-coding RNA produced by RNA polymerase V determines boundaries of heterochromatin. eLife 2016; 5. [PMID: 27779094 PMCID: PMC5079748 DOI: 10.7554/elife.19092] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 10/06/2016] [Indexed: 01/10/2023] Open
Abstract
RNA-mediated transcriptional gene silencing is a conserved process where small RNAs target transposons and other sequences for repression by establishing chromatin modifications. A central element of this process are long non-coding RNAs (lncRNA), which in Arabidopsis thaliana are produced by a specialized RNA polymerase known as Pol V. Here we show that non-coding transcription by Pol V is controlled by preexisting chromatin modifications located within the transcribed regions. Most Pol V transcripts are associated with AGO4 but are not sliced by AGO4. Pol V-dependent DNA methylation is established on both strands of DNA and is tightly restricted to Pol V-transcribed regions. This indicates that chromatin modifications are established in close proximity to Pol V. Finally, Pol V transcription is preferentially enriched on edges of silenced transposable elements, where Pol V transcribes into TEs. We propose that Pol V may play an important role in the determination of heterochromatin boundaries. DOI:http://dx.doi.org/10.7554/eLife.19092.001
Collapse
Affiliation(s)
- Gudrun Böhmdorfer
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, United States
| | - Shriya Sethuraman
- Bioinformatics Graduate Program, University of Michigan, Ann Arbor, United States
| | - M Jordan Rowley
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, United States
| | - Michal Krzyszton
- Faculty of Biology, Institute of Genetics and Biotechnology, University of Warsaw, Warsaw, Poland
| | - M Hafiz Rothi
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, United States
| | - Lilia Bouzit
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, United States
| | - Andrzej T Wierzbicki
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, United States
| |
Collapse
|
25
|
Gonzalez-Sandoval A, Gasser SM. Mechanism of chromatin segregation to the nuclear periphery in C. elegans embryos. WORM 2016; 5:e1190900. [PMID: 27695653 DOI: 10.1080/21624054.2016.1190900] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 05/06/2016] [Accepted: 05/13/2016] [Indexed: 10/21/2022]
Abstract
In eukaryotic organisms, gene regulation occurs in the context of chromatin. In the interphase nucleus, euchromatin and heterochromatin occupy distinct space during cell differentiation, with heterochromatin becoming enriched at the nuclear and nucleolar peripheries. This organization is thought to fine-tune gene expression. To elucidate the mechanisms that govern this level of genome organization, screens were carried out in C. elegans which monitored the loss of heterochromatin sequestration at the nuclear periphery. This led to the identification of a novel chromodomain protein, CEC-4 (Caenorhabditis elegans chromodomain protein 4) that mediates the anchoring of H3K9 methylation-bearing chromatin at the nuclear periphery in early to mid-stage embryos. Surprisingly, the loss of CEC-4 does not derepress genes found in heterochromatic domains, nor does it affect differentiation under standard laboratory conditions. On the other hand, CEC-4 contributes to the efficiency with which muscle differentiation is induced following ectopic expression of the master regulator, HLH-1. This is one of the first phenotypes specifically attributed to the ablation of heterochromatin anchoring.
Collapse
Affiliation(s)
- Adriana Gonzalez-Sandoval
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland; Faculty of Natural Sciences, University of Basel, Basel, Switzerland
| | - Susan M Gasser
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland; Faculty of Natural Sciences, University of Basel, Basel, Switzerland
| |
Collapse
|
26
|
Verrier L, Taglini F, Barrales RR, Webb S, Urano T, Braun S, Bayne EH. Global regulation of heterochromatin spreading by Leo1. Open Biol 2016; 5:rsob.150045. [PMID: 25972440 PMCID: PMC4450266 DOI: 10.1098/rsob.150045] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Heterochromatin plays important roles in eukaryotic genome regulation. However, the repressive nature of heterochromatin combined with its propensity to self-propagate necessitates robust mechanisms to contain heterochromatin within defined boundaries and thus prevent silencing of expressed genes. Here we show that loss of the PAF complex (PAFc) component Leo1 compromises chromatin boundaries, resulting in invasion of heterochromatin into flanking euchromatin domains. Similar effects are seen upon deletion of other PAFc components, but not other factors with related functions in transcription-associated chromatin modification, indicating a specific role for PAFc in heterochromatin regulation. Loss of Leo1 results in reduced levels of H4K16 acetylation at boundary regions, while tethering of the H4K16 acetyltransferase Mst1 to boundary chromatin suppresses heterochromatin spreading in leo1Δ cells, suggesting that Leo1 antagonises heterochromatin spreading by promoting H4K16 acetylation. Our findings reveal a previously undescribed role for PAFc in regulating global heterochromatin distribution.
Collapse
Affiliation(s)
- Laure Verrier
- Institute of Cell Biology, University of Edinburgh, Edinburgh, UK
| | | | - Ramon R Barrales
- Butenandt Institute of Physiological Chemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Shaun Webb
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Takeshi Urano
- Department of Biochemistry, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Sigurd Braun
- Butenandt Institute of Physiological Chemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | | |
Collapse
|
27
|
Harr JC, Gonzalez-Sandoval A, Gasser SM. Histones and histone modifications in perinuclear chromatin anchoring: from yeast to man. EMBO Rep 2016; 17:139-55. [PMID: 26792937 PMCID: PMC4783997 DOI: 10.15252/embr.201541809] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 12/21/2015] [Indexed: 01/01/2023] Open
Abstract
It is striking that within a eukaryotic nucleus, the genome can assume specific spatiotemporal distributions that correlate with the cell's functional states. Cell identity itself is determined by distinct sets of genes that are expressed at a given time. On the level of the individual gene, there is a strong correlation between transcriptional activity and associated histone modifications. Histone modifications act by influencing the recruitment of non-histone proteins and by determining the level of chromatin compaction, transcription factor binding, and transcription elongation. Accumulating evidence also shows that the subnuclear position of a gene or domain correlates with its expression status. Thus, the question arises whether this spatial organization results from or determines a gene's chromatin status. Although the association of a promoter with the inner nuclear membrane (INM) is neither necessary nor sufficient for repression, the perinuclear sequestration of heterochromatin is nonetheless conserved from yeast to man. How does subnuclear localization influence gene expression? Recent work argues that the common denominator between genome organization and gene expression is the modification of histones and in some cases of histone variants. This provides an important link between local chromatin structure and long-range genome organization in interphase cells. In this review, we will evaluate how histones contribute to the latter, and discuss how this might help to regulate genes crucial for cell differentiation.
Collapse
Affiliation(s)
- Jennifer C Harr
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Adriana Gonzalez-Sandoval
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland Faculty of Natural Sciences, University of Basel, Basel, Switzerland
| | - Susan M Gasser
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland Faculty of Natural Sciences, University of Basel, Basel, Switzerland
| |
Collapse
|
28
|
Yang JX, Rastetter RH, Wilhelm D. Non-coding RNAs: An Introduction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 886:13-32. [PMID: 26659485 DOI: 10.1007/978-94-017-7417-8_2] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
For many years the main role of RNA, it addition to the housekeeping functions of for example tRNAs and rRNAs, was believed to be a messenger between the genes encoded on the DNA and the functional units of the cell, the proteins. This changed drastically with the identification of the first small non-coding RNA, termed microRNA, some 20 years ago. This discovery opened the field of regulatory RNAs with no or little protein-coding potential. Since then many new classes of regulatory non-coding RNAs, including endogenous small interfering RNAs (endo-siRNAs), PIWI-associated RNAs (piRNAs), and long non-coding RNAs, have been identified and we have made amazing progress in elucidating their expression, biogenesis, mechanisms and mode of action, and function in many, if not all, biological processes. In this chapter we provide an introduction about the current knowledge of the main classes of non-coding RNAs, what is know about their biogenesis and mechanism of function.
Collapse
Affiliation(s)
- Jennifer X Yang
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Raphael H Rastetter
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Dagmar Wilhelm
- Department of Anatomy and Neuroscience, The University of Melbourne, Medical Building (181) Grattan Street, Parkville, VIC, 3800, Australia.
| |
Collapse
|
29
|
Taylor DH, Chu ETJ, Spektor R, Soloway PD. Long non-coding RNA regulation of reproduction and development. Mol Reprod Dev 2015; 82:932-56. [PMID: 26517592 PMCID: PMC4762656 DOI: 10.1002/mrd.22581] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 09/03/2015] [Indexed: 12/13/2022]
Abstract
Noncoding RNAs (ncRNAs) have long been known to play vital roles in eukaryotic gene regulation. Studies conducted over a decade ago revealed that maturation of spliced, polyadenylated coding mRNA occurs by reactions involving small nuclear RNAs and small nucleolar RNAs; mRNA translation depends on activities mediated by transfer RNAs and ribosomal RNAs, subject to negative regulation by micro RNAs; transcriptional competence of sex chromosomes and some imprinted genes is regulated in cis by ncRNAs that vary by species; and both small-interfering RNAs and piwi-interacting RNAs bound to Argonaute-family proteins regulate post-translational modifications on chromatin and local gene expression states. More recently, gene-regulating noncoding RNAs have been identified, such as long intergenic and long noncoding RNAs (collectively referred to as lncRNAs)--a class totaling more than 100,000 transcripts in humans, which include some of the previously mentioned RNAs that regulate dosage compensation and imprinted gene expression. Here, we provide an overview of lncRNA activities, and then review the role of lncRNAs in processes vital to reproduction, such as germ cell specification, sex determination and gonadogenesis, sex hormone responses, meiosis, gametogenesis, placentation, non-genetic inheritance, and pathologies affecting reproductive tissues. Results from many species are presented to illustrate the evolutionarily conserved processes lncRNAs are involved in.
Collapse
Affiliation(s)
- David H. Taylor
- Field of Genetics, Genomics and Development, Cornell University, Ithaca, New York
| | - Erin Tsi-Jia Chu
- Field of Comparative Biomedical Sciences, Cornell University, Ithaca, New York
| | - Roman Spektor
- Field of Genetics, Genomics and Development, Cornell University, Ithaca, New York
| | - Paul D. Soloway
- Field of Genetics, Genomics and Development, Cornell University, Ithaca, New York
- Field of Comparative Biomedical Sciences, Cornell University, Ithaca, New York
- Division of Nutritional Sciences, Cornell University, Ithaca, New York
| |
Collapse
|
30
|
Francia S. Non-Coding RNA: Sequence-Specific Guide for Chromatin Modification and DNA Damage Signaling. Front Genet 2015; 6:320. [PMID: 26617633 PMCID: PMC4643122 DOI: 10.3389/fgene.2015.00320] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 10/09/2015] [Indexed: 12/19/2022] Open
Abstract
Chromatin conformation shapes the environment in which our genome is transcribed into RNA. Transcription is a source of DNA damage, thus it often occurs concomitantly to DNA damage signaling. Growing amounts of evidence suggest that different types of RNAs can, independently from their protein-coding properties, directly affect chromatin conformation, transcription and splicing, as well as promote the activation of the DNA damage response (DDR) and DNA repair. Therefore, transcription paradoxically functions to both threaten and safeguard genome integrity. On the other hand, DNA damage signaling is known to modulate chromatin to suppress transcription of the surrounding genetic unit. It is thus intriguing to understand how transcription can modulate DDR signaling while, in turn, DDR signaling represses transcription of chromatin around the DNA lesion. An unexpected player in this field is the RNA interference (RNAi) machinery, which play roles in transcription, splicing and chromatin modulation in several organisms. Non-coding RNAs (ncRNAs) and several protein factors involved in the RNAi pathway are well known master regulators of chromatin while only recent reports show their involvement in DDR. Here, we discuss the experimental evidence supporting the idea that ncRNAs act at the genomic loci from which they are transcribed to modulate chromatin, DDR signaling and DNA repair.
Collapse
Affiliation(s)
- Sofia Francia
- IFOM - FIRC Institute of Molecular Oncology Milan, Italy ; Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche Pavia, Italy
| |
Collapse
|
31
|
Sadeghi L, Prasad P, Ekwall K, Cohen A, Svensson JP. The Paf1 complex factors Leo1 and Paf1 promote local histone turnover to modulate chromatin states in fission yeast. EMBO Rep 2015; 16:1673-87. [PMID: 26518661 PMCID: PMC4687421 DOI: 10.15252/embr.201541214] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 10/05/2015] [Indexed: 11/21/2022] Open
Abstract
The maintenance of open and repressed chromatin states is crucial for the regulation of gene expression. To study the genes involved in maintaining chromatin states, we generated a random mutant library in Schizosaccharomyces pombe and monitored the silencing of reporter genes inserted into the euchromatic region adjacent to the heterochromatic mating type locus. We show that Leo1–Paf1 [a subcomplex of the RNA polymerase II‐associated factor 1 complex (Paf1C)] is required to prevent the spreading of heterochromatin into euchromatin by mapping the heterochromatin mark H3K9me2 using high‐resolution genomewide ChIP (ChIP–exo). Loss of Leo1–Paf1 increases heterochromatin stability at several facultative heterochromatin loci in an RNAi‐independent manner. Instead, deletion of Leo1 decreases nucleosome turnover, leading to heterochromatin stabilization. Our data reveal that Leo1–Paf1 promotes chromatin state fluctuations by enhancing histone turnover.
Collapse
Affiliation(s)
- Laia Sadeghi
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Punit Prasad
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Karl Ekwall
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Amikam Cohen
- Department of Microbiology and Molecular Genetics, IMRIC The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - J Peter Svensson
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
32
|
Hoffman CS, Wood V, Fantes PA. An Ancient Yeast for Young Geneticists: A Primer on the Schizosaccharomyces pombe Model System. Genetics 2015; 201:403-23. [PMID: 26447128 PMCID: PMC4596657 DOI: 10.1534/genetics.115.181503] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The fission yeast Schizosaccharomyces pombe is an important model organism for the study of eukaryotic molecular and cellular biology. Studies of S. pombe, together with studies of its distant cousin, Saccharomyces cerevisiae, have led to the discovery of genes involved in fundamental mechanisms of transcription, translation, DNA replication, cell cycle control, and signal transduction, to name but a few processes. However, since the divergence of the two species approximately 350 million years ago, S. pombe appears to have evolved less rapidly than S. cerevisiae so that it retains more characteristics of the common ancient yeast ancestor, causing it to share more features with metazoan cells. This Primer introduces S. pombe by describing the yeast itself, providing a brief description of the origins of fission yeast research, and illustrating some genetic and bioinformatics tools used to study protein function in fission yeast. In addition, a section on some key differences between S. pombe and S. cerevisiae is included for readers with some familiarity with budding yeast research but who may have an interest in developing research projects using S. pombe.
Collapse
Affiliation(s)
- Charles S Hoffman
- Biology Department, Boston College, Chestnut Hill, Massachusetts 02467
| | - Valerie Wood
- Cambridge Systems Biology Centre and Department of Biochemistry, University of Cambridge, CB2 1GA Cambridge, United Kingdom
| | - Peter A Fantes
- School of Biological Sciences, College of Science and Engineering, University of Edinburgh EH9 3JR Edinburgh, United Kingdom
| |
Collapse
|
33
|
Abstract
Genome-wide association studies of complex physiological traits and diseases consistently found that associated genetic factors, such as allelic polymorphisms or DNA mutations, only explained a minority of the expected heritable fraction. This discrepancy is known as “missing heritability”, and its underlying factors and molecular mechanisms are not established. Epigenetic programs may account for a significant fraction of the “missing heritability.” Epigenetic modifications, such as DNA methylation and chromatin assembly states, reflect the high plasticity of the genome and contribute to stably alter gene expression without modifying genomic DNA sequences. Consistent components of complex traits, such as those linked to human stature/height, fertility, and food metabolism or to hereditary defects, have been shown to respond to environmental or nutritional condition and to be epigenetically inherited. The knowledge acquired from epigenetic genome reprogramming during development, stem cell differentiation/de-differentiation, and model organisms is today shedding light on the mechanisms of (a) mitotic inheritance of epigenetic traits from cell to cell, (b) meiotic epigenetic inheritance from generation to generation, and (c) true transgenerational inheritance. Such mechanisms have been shown to include incomplete erasure of DNA methylation, parental effects, transmission of distinct RNA types (mRNA, non-coding RNA, miRNA, siRNA, piRNA), and persistence of subsets of histone marks.
Collapse
Affiliation(s)
- Marco Trerotola
- Unit of Cancer Pathology, CeSI, Foundation University 'G. d'Annunzio', Chieti, Italy.
| | - Valeria Relli
- Unit of Cancer Pathology, CeSI, Foundation University 'G. d'Annunzio', Chieti, Italy.
| | - Pasquale Simeone
- Unit of Cancer Pathology, CeSI, Foundation University 'G. d'Annunzio', Chieti, Italy.
| | - Saverio Alberti
- Unit of Cancer Pathology, CeSI, Foundation University 'G. d'Annunzio', Chieti, Italy. .,Department of Neuroscience, Imaging and Clinical Sciences, Unit of Physiology and Physiopathology, 'G. d'Annunzio' University, Chieti, Italy.
| |
Collapse
|
34
|
Grammatikakis I, Panda AC, Abdelmohsen K, Gorospe M. Long noncoding RNAs(lncRNAs) and the molecular hallmarks of aging. Aging (Albany NY) 2015; 6:992-1009. [PMID: 25543668 PMCID: PMC4298369 DOI: 10.18632/aging.100710] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
During aging, progressive deleterious changes increase the risk of disease and death. Prominent molecular hallmarks of aging are genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, cellular senescence, stem cell exhaustion, and altered intercellular communication. Long noncoding RNAs (lncRNAs) play important roles in a wide range of biological processes, including age-related diseases like cancer, cardiovascular pathologies, and neurodegenerative disorders. Evidence is emerging that lncRNAs influence the molecular processes that underlie age-associated phenotypes. Here, we review our current understanding of lncRNAs that control the development of aging traits.
Collapse
Affiliation(s)
- Ioannis Grammatikakis
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, NIH, Baltimore, MD 21224, USA
| | - Amaresh C Panda
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, NIH, Baltimore, MD 21224, USA
| | - Kotb Abdelmohsen
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, NIH, Baltimore, MD 21224, USA
| | - Myriam Gorospe
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, NIH, Baltimore, MD 21224, USA
| |
Collapse
|
35
|
Berry S, Dean C. Environmental perception and epigenetic memory: mechanistic insight through FLC. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:133-48. [PMID: 25929799 PMCID: PMC4691321 DOI: 10.1111/tpj.12869] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 04/13/2015] [Accepted: 04/20/2015] [Indexed: 05/18/2023]
Abstract
Chromatin plays a central role in orchestrating gene regulation at the transcriptional level. However, our understanding of how chromatin states are altered in response to environmental and developmental cues, and then maintained epigenetically over many cell divisions, remains poor. The floral repressor gene FLOWERING LOCUS C (FLC) in Arabidopsis thaliana is a useful system to address these questions. FLC is transcriptionally repressed during exposure to cold temperatures, allowing studies of how environmental conditions alter expression states at the chromatin level. FLC repression is also epigenetically maintained during subsequent development in warm conditions, so that exposure to cold may be remembered. This memory depends on molecular complexes that are highly conserved among eukaryotes, making FLC not only interesting as a paradigm for understanding biological decision-making in plants, but also an important system for elucidating chromatin-based gene regulation more generally. In this review, we summarize our understanding of how cold temperature induces a switch in the FLC chromatin state, and how this state is epigenetically remembered. We also discuss how the epigenetic state of FLC is reprogrammed in the seed to ensure a requirement for cold exposure in the next generation.
Collapse
Affiliation(s)
- Scott Berry
- John Innes Centre, Norwich Research ParkNorwich, NR4 7UH, UK
| | - Caroline Dean
- John Innes Centre, Norwich Research ParkNorwich, NR4 7UH, UK
- * For correspondence (e-mail )
| |
Collapse
|
36
|
Burger K, Gullerova M. Swiss army knives: non-canonical functions of nuclear Drosha and Dicer. Nat Rev Mol Cell Biol 2015; 16:417-30. [DOI: 10.1038/nrm3994] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
37
|
The lncRNA Firre anchors the inactive X chromosome to the nucleolus by binding CTCF and maintains H3K27me3 methylation. Genome Biol 2015; 16:52. [PMID: 25887447 PMCID: PMC4391730 DOI: 10.1186/s13059-015-0618-0] [Citation(s) in RCA: 206] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 02/23/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In mammals, X chromosome genes are present in one copy in males and two in females. To balance the dosage of X-linked gene expression between the sexes, one of the X chromosomes in females is silenced. X inactivation is initiated by upregulation of the lncRNA (long non-coding RNA) Xist and recruitment of specific chromatin modifiers. The inactivated X chromosome becomes heterochromatic and visits a specific nuclear compartment adjacent to the nucleolus. RESULTS Here, we show a novel role for the lncRNA Firre in anchoring the inactive mouse X chromosome and preserving one of its main epigenetic features, H3K27me3. Similar to Dxz4, Firre is X-linked and expressed from a macrosatellite repeat locus associated with a cluster of CTCF and cohesin binding sites, and is preferentially located adjacent to the nucleolus. CTCF binding present initially in both male and female mouse embryonic stem cells is lost from the active X during development. Knockdown of Firre disrupts perinucleolar targeting and H3K27me3 levels in mouse fibroblasts, demonstrating a role in maintenance of an important epigenetic feature of the inactive X chromosome. No X-linked gene reactivation is seen after Firre knockdown; however, a compensatory increase in the expression of chromatin modifier genes implicated in X silencing is observed. Further experiments in female embryonic stem cells suggest that Firre does not play a role in X inactivation onset. CONCLUSIONS The X-linked lncRNA Firre helps to position the inactive X chromosome near the nucleolus and to preserve one of its main epigenetic features.
Collapse
|
38
|
Wang J, Lawry ST, Cohen AL, Jia S. Chromosome boundary elements and regulation of heterochromatin spreading. Cell Mol Life Sci 2014; 71:4841-52. [PMID: 25192661 PMCID: PMC4234687 DOI: 10.1007/s00018-014-1725-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 08/27/2014] [Accepted: 08/29/2014] [Indexed: 11/29/2022]
Abstract
Chromatin is generally classified as euchromatin or heterochromatin, each with distinct histone modifications, compaction levels, and gene expression patterns. Although the proper formation of heterochromatin is essential for maintaining genome integrity and regulating gene expression, heterochromatin can also spread into neighboring regions in a sequence-independent manner, leading to the inactivation of genes. Because the distance of heterochromatin spreading is stochastic, the formation of boundaries, which block the spreading of heterochromatin, is critical for maintaining stable gene expression patterns. Here we review the current understanding of the mechanisms underlying heterochromatin spreading and boundary formation.
Collapse
Affiliation(s)
- Jiyong Wang
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | | | | | | |
Collapse
|
39
|
Antisense COOLAIR mediates the coordinated switching of chromatin states at FLC during vernalization. Proc Natl Acad Sci U S A 2014; 111:16160-5. [PMID: 25349421 DOI: 10.1073/pnas.1419030111] [Citation(s) in RCA: 320] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) have been proposed to play important roles in gene regulation. However, their importance in epigenetic silencing and how specificity is determined remain controversial. We have investigated the cold-induced epigenetic switching mechanism involved in the silencing of Arabidopsis thaliana Flowering Locus C (FLC), which occurs during vernalization. Antisense transcripts, collectively named COOLAIR, are induced by prolonged cold before the major accumulation of histone 3 lysine 27 trimethylation (H3K27me3), characteristic of Polycomb silencing. We have found that COOLAIR is physically associated with the FLC locus and accelerates transcriptional shutdown of FLC during cold exposure. Removal of COOLAIR disrupted the synchronized replacement of H3K36 methylation with H3K27me3 at the intragenic FLC nucleation site during the cold. Consistently, genetic analysis showed COOLAIR and Polycomb complexes work independently in the cold-dependent silencing of FLC. Our data reveal a role for lncRNA in the coordinated switching of chromatin states that occurs during epigenetic regulation.
Collapse
|
40
|
Hu Y, Wang J, Qian J, Kong X, Tang J, Wang Y, Chen H, Hong J, Zou W, Chen Y, Xu J, Fang JY. Long Noncoding RNA GAPLINC Regulates CD44-Dependent Cell Invasiveness and Associates with Poor Prognosis of Gastric Cancer. Cancer Res 2014; 74:6890-902. [PMID: 25277524 DOI: 10.1158/0008-5472.can-14-0686] [Citation(s) in RCA: 221] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Ye Hu
- State Key Laboratory for Oncogenes and Related Genes; Division of Gastroenterology and Hepatology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jilin Wang
- State Key Laboratory for Oncogenes and Related Genes; Division of Gastroenterology and Hepatology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jin Qian
- Shanghai Institute of Digestive Disease, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai, China
| | - Xuan Kong
- State Key Laboratory for Oncogenes and Related Genes; Division of Gastroenterology and Hepatology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jieting Tang
- State Key Laboratory for Oncogenes and Related Genes; Division of Gastroenterology and Hepatology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingchao Wang
- State Key Laboratory for Oncogenes and Related Genes; Division of Gastroenterology and Hepatology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haoyan Chen
- Shanghai Institute of Digestive Disease, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai, China
| | - Jie Hong
- Shanghai Institute of Digestive Disease, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai, China
| | - Weiping Zou
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Yingxuan Chen
- State Key Laboratory for Oncogenes and Related Genes; Division of Gastroenterology and Hepatology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Xu
- State Key Laboratory for Oncogenes and Related Genes; Division of Gastroenterology and Hepatology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jing-Yuan Fang
- State Key Laboratory for Oncogenes and Related Genes; Division of Gastroenterology and Hepatology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
41
|
Role of epigenetics in expression of recombinant proteins from mammalian cells. ACTA ACUST UNITED AC 2014. [DOI: 10.4155/pbp.14.47] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
42
|
Kapusta A, Feschotte C. Volatile evolution of long noncoding RNA repertoires: mechanisms and biological implications. Trends Genet 2014; 30:439-52. [PMID: 25218058 PMCID: PMC4464757 DOI: 10.1016/j.tig.2014.08.004] [Citation(s) in RCA: 212] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 08/15/2014] [Accepted: 08/16/2014] [Indexed: 02/08/2023]
Abstract
Thousands of genes encoding long noncoding RNAs (lncRNAs) have been identified in all vertebrate genomes thus far examined. The list of lncRNAs partaking in arguably important biochemical, cellular, and developmental activities is steadily growing. However, it is increasingly clear that lncRNA repertoires are subject to weak functional constraint and rapid turnover during vertebrate evolution. We discuss here some of the factors that may explain this apparent paradox, including relaxed constraint on sequence to maintain lncRNA structure/function, extensive redundancy in the regulatory circuits in which lncRNAs act, as well as adaptive and non-adaptive forces such as genetic drift. We explore the molecular mechanisms promoting the birth and rapid evolution of lncRNA genes, with an emphasis on the influence of bidirectional transcription and transposable elements, two pervasive features of vertebrate genomes. Together these properties reveal a remarkably dynamic and malleable noncoding transcriptome which may represent an important source of robustness and evolvability.
Collapse
Affiliation(s)
- Aurélie Kapusta
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| | - Cédric Feschotte
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| |
Collapse
|
43
|
Cohen AL, Jia S. Noncoding RNAs and the borders of heterochromatin. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 5:835-47. [PMID: 25044367 DOI: 10.1002/wrna.1249] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 04/30/2014] [Accepted: 05/21/2014] [Indexed: 11/08/2022]
Abstract
Eukaryotic genomes contain long stretches of repetitive DNA sequences, which are the preferred sites for the assembly of heterochromatin structures. The formation of heterochromatin results in highly condensed chromosomal domains that limit the accessibility of DNA to the transcription and recombination machinery to maintain genome stability. Heterochromatin has the tendency to spread, and the formation of boundaries that block heterochromatin spreading is required to maintain stable gene expression patterns. Recent work has suggested that noncoding RNAs (ncRNAs) are involved in regulating boundary formation in addition to their well-established roles in chromatin regulation. Here, we present a review of our current understanding of the involvement of ncRNA at the boundaries of heterochromatin, highlighting their mechanisms of action in different settings.
Collapse
Affiliation(s)
- Allison L Cohen
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | | |
Collapse
|
44
|
Chadwick BP, Scott KC. Molecular versatility: the many faces and functions of noncoding RNA. Chromosome Res 2014; 21:555-9. [PMID: 24281974 DOI: 10.1007/s10577-013-9397-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Brian P Chadwick
- Department of Biological Science, Florida State University, King 3076, Tallahassee, FL, 32306-4295, USA,
| | | |
Collapse
|
45
|
Joh RI, Palmieri CM, Hill IT, Motamedi M. Regulation of histone methylation by noncoding RNAs. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:1385-94. [PMID: 24954181 DOI: 10.1016/j.bbagrm.2014.06.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 05/30/2014] [Accepted: 06/09/2014] [Indexed: 12/19/2022]
Abstract
Cells can adapt to their environment and develop distinct identities by rewiring their transcriptional networks to regulate the output of key biological pathways without concomitant mutations to the underlying genes. These alterations, called epigenetic changes, persist stably through mitotic or, in some instances, meiotic cell divisions. In eukaryotes, heritable changes to chromatin structure are a prominent, but not exclusive, mechanism by which epigenetic changes are mediated. These changes are initiated by sequence-specific events, which trigger a cascade of molecular interactions resulting in feedback mechanisms, alterations in chromatin structure, histone posttranslational modifications (PTMs), and ultimately establishment of distinct transcriptional states. In recent years, advances in next generation sequencing have led to the discovery of several novel classes of noncoding RNAs (ncRNAs). In addition to their well-established cytoplasmic roles in posttranscriptional regulation of gene expression, ncRNAs have emerged as key regulators of epigenetic changes via chromatin-dependent mechanisms in organisms ranging from yeast to man. They function by affecting chromatin structure, histone PTMs, and the recruitment of transcriptional activating or repressing complexes. Among histone PTMs, lysine methylation serves as the binding substrate for the recruitment of key protein complexes involved in the regulation of genome architecture, stability, and gene expression. In this review, we will outline the known mechanisms by which ncRNAs of different origins regulate histone methylation, and in doing so contribute to a variety of genome regulatory functions in eukaryotes.
Collapse
Affiliation(s)
- Richard I Joh
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School,149 13th Street, Charlestown, MA 02129, USA
| | - Christina M Palmieri
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School,149 13th Street, Charlestown, MA 02129, USA
| | - Ian T Hill
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School,149 13th Street, Charlestown, MA 02129, USA; PhD Program in Biological and Biomedical Sciences, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Mo Motamedi
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School,149 13th Street, Charlestown, MA 02129, USA.
| |
Collapse
|
46
|
Clark BS, Blackshaw S. Long non-coding RNA-dependent transcriptional regulation in neuronal development and disease. Front Genet 2014; 5:164. [PMID: 24936207 PMCID: PMC4047558 DOI: 10.3389/fgene.2014.00164] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 05/18/2014] [Indexed: 01/17/2023] Open
Abstract
Comprehensive analysis of the mammalian transcriptome has revealed that long non-coding RNAs (lncRNAs) may make up a large fraction of cellular transcripts. Recent years have seen a surge of studies aimed at functionally characterizing the role of lncRNAs in development and disease. In this review, we discuss new findings implicating lncRNAs in controlling development of the central nervous system (CNS). The evolution of the higher vertebrate brain has been accompanied by an increase in the levels and complexities of lncRNAs expressed within the developing nervous system. Although a limited number of CNS-expressed lncRNAs are now known to modulate the activity of proteins important for neuronal differentiation, the function of the vast majority of neuronal-expressed lncRNAs is still unknown. Topics of intense current interest include the mechanism by which CNS-expressed lncRNAs might function in epigenetic and transcriptional regulation during neuronal development, and how gain and loss of function of individual lncRNAs contribute to neurological diseases.
Collapse
Affiliation(s)
- Brian S Clark
- Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - Seth Blackshaw
- Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine Baltimore, MD, USA ; Department of Ophthalmology, Johns Hopkins University School of Medicine Baltimore, MD, USA ; Department of Neurology, Johns Hopkins University School of Medicine Baltimore, MD, USA ; Center for High-Throughput Biology, Johns Hopkins University School of Medicine Baltimore, MD, USA ; Institute for Cell Engineering, Johns Hopkins University School of Medicine Baltimore, MD, USA
| |
Collapse
|
47
|
Hiragami-Hamada K, Fischle W. RNAs - physical and functional modulators of chromatin reader proteins. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:737-42. [PMID: 24704208 DOI: 10.1016/j.bbagrm.2014.03.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 03/21/2014] [Accepted: 03/24/2014] [Indexed: 11/25/2022]
Abstract
The regulatory role of histone modifications with respect to the structure and function of chromatin is well known. Proteins and protein complexes establishing, erasing and binding these marks have been extensively studied. RNAs have only recently entered the picture of epigenetic regulation with the discovery of a vast number of long non-coding RNAs. Fast growing evidence suggests that such RNAs influence all aspects of histone modification biology. Here, we focus exclusively on the emerging functional interplay between RNAs and proteins that bind histone modifications. We discuss recent findings of reciprocally positive and negative regulations as well as summarize the current insights into the molecular mechanism directing these interactions. This article is part of a Special Issue entitled: Molecular mechanisms of histone modification function.
Collapse
Affiliation(s)
- Kyoko Hiragami-Hamada
- Laboratory of Chromatin Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Wolfgang Fischle
- Laboratory of Chromatin Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany.
| |
Collapse
|
48
|
Centromeric histone H2B monoubiquitination promotes noncoding transcription and chromatin integrity. Nat Struct Mol Biol 2014; 21:236-43. [PMID: 24531659 DOI: 10.1038/nsmb.2776] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 01/22/2014] [Indexed: 01/06/2023]
Abstract
Functional centromeres are essential for proper cell division. Centromeres are established largely by epigenetic processes resulting in incorporation of the histone H3 variant CENP-A. Here, we demonstrate the direct involvement of H2B monoubiquitination, mediated by RNF20 in humans or Brl1 in Schizosaccharomyces pombe, in centromeric chromatin maintenance. Monoubiquinated H2B (H2Bub1) is needed for this maintenance, promoting noncoding transcription, centromere integrity and accurate chromosomal segregation. A transient pulse of centromeric H2Bub1 leads to RNA polymerase II-mediated transcription of the centromere's central domain, coupled to decreased H3 stability. H2Bub1-deficient cells have centromere cores that, despite their intact centromeric heterochromatin barriers, exhibit characteristics of heterochromatin, such as silencing histone modifications, reduced nucleosome turnover and reduced levels of transcription. In the H2Bub1-deficient cells, centromere functionality is hampered, thus resulting in unequal chromosome segregation. Therefore, centromeric H2Bub1 is essential for maintaining active centromeric chromatin.
Collapse
|
49
|
Morlando M, Ballarino M, Fatica A, Bozzoni I. The role of long noncoding RNAs in the epigenetic control of gene expression. ChemMedChem 2014; 9:505-10. [PMID: 24488863 DOI: 10.1002/cmdc.201300569] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Indexed: 12/14/2022]
Abstract
Recent advances in the methodologies employed to deeply analyse the complexity of transcriptomes have unveiled the existence of a new class of transcripts, long noncoding RNAs (lncRNAs). A significant amount of effort has been dedicated to the study of lncRNAs, and a large body of evidence now exists indicating their relevant role in different regulatory steps of gene expression. Given the role of epigenetics in disease development and progression, this Minireview focuses on lncRNAs involved in epigenetic control and provides an overview of the mechanisms used to guide epigenetic-modifying complexes to adjacent (cis-acting) or independent (trans-acting) genomic loci. Furthermore, it describes the activities of these transcripts in controlling the formation and spreading of heterochromatin domains. Just as other RNA molecules have found therapeutic application, though much remains to be elucidated about the structure and function of these lncRNAs, they too could hold potential as biomarkers, targets, and therapeutic agents.
Collapse
Affiliation(s)
- Mariangela Morlando
- Dept. of Biology and Biotechnology Charles Darwin; Institute of Molecular Biology and Pathology (IBPM), Sapienza University of Rome, P.le A. Moro 5, 00185 Rome (Italy)
| | | | | | | |
Collapse
|
50
|
|