1
|
Corin A, Nora EP, Ramani V. Beyond genomic weaving: molecular roles for CTCF outside cohesin loop extrusion. Curr Opin Genet Dev 2025; 90:102298. [PMID: 39709822 DOI: 10.1016/j.gde.2024.102298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/22/2024] [Accepted: 11/29/2024] [Indexed: 12/24/2024]
Abstract
CCCTC-binding factor (CTCF) is a key regulator of 3D genome organization and transcriptional activity. Beyond its well-characterized role in facilitating cohesin-mediated loop extrusion, CTCF exhibits several cohesin-independent activities relevant to chromatin structure and various nuclear processes. These functions include patterning of nucleosome arrangement and chromatin accessibility through interactions with ATP-dependent chromatin remodelers. In addition to influencing transcription, DNA replication, and DNA repair in ways that are separable from its role in loop extrusion, CTCF also interacts with RNA and contributes to RNA splicing and condensation of transcriptional activators. Here, we review recent insight into cohesin-independent activities of CTCF, highlighting its multifaceted roles in chromatin biology and transcriptional regulation.
Collapse
Affiliation(s)
- Aaron Corin
- Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute for Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Elphège P Nora
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA; Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA; Chan-Zuckerberg Biohub, San Francisco, CA, USA.
| | - Vijay Ramani
- Gladstone Institute for Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
2
|
Ren J, Guo Z, Qi Y, Zhang Z, Liu L. Prediction of YY1 loop anchor based on multi-omics features. Methods 2024; 232:96-106. [PMID: 39521361 DOI: 10.1016/j.ymeth.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 10/22/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
The three-dimensional structure of chromatin is crucial for the regulation of gene expression. YY1 promotes enhancer-promoter interactions in a manner analogous to CTCF-mediated chromatin interactions. However, little is known about which YY1 binding sites can form loop anchors. In this study, the LightGBM model was used to predict YY1-loop anchors by integrating multi-omics data. Due to the large imbalance in the number of positive and negative samples, we use AUPRC to reflect the quality of the classifier. The results show that the LightGBM model exhibits strong predictive performance (AUPRC≥0.93). To verify the robustness of the model, the dataset was divided into training and test sets at a 4:1 ratio. The results show that the model performs well for YY1-loop anchor prediction on both the training and independent test sets. Additionally, we ranked the importance of the features and found that the formation of YY1-loop anchors is primarily influenced by the co-binding of transcription factors CTCF, SMC3, and RAD21, as well as histone modifications and sequence context.
Collapse
Affiliation(s)
- Jun Ren
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China; School of Mathematics and Statistics, Hainan Normal University, Haikou, China
| | - Zhiling Guo
- Beidahuang Industry Group General Hospital, Harbin, China
| | - Yixuan Qi
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China; School of Mathematics and Statistics, Hainan Normal University, Haikou, China; School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Zheng Zhang
- Computer Science and Information Systems, Murray State University, Murray, USA
| | - Li Liu
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China.
| |
Collapse
|
3
|
Stoler-Barak L, Schmiedel D, Sarusi-Portuguez A, Rogel A, Blecher-Gonen R, Haimon Z, Stopka T, Shulman Z. SMARCA5-mediated chromatin remodeling is required for germinal center formation. J Exp Med 2024; 221:e20240433. [PMID: 39297882 PMCID: PMC11413417 DOI: 10.1084/jem.20240433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/19/2024] [Accepted: 08/15/2024] [Indexed: 09/26/2024] Open
Abstract
The establishment of long-lasting immunity against pathogens is facilitated by the germinal center (GC) reaction, during which B cells increase their antibody affinity and differentiate into antibody-secreting cells (ASC) and memory cells. These events involve modifications in chromatin packaging that orchestrate the profound restructuring of gene expression networks that determine cell fate. While several chromatin remodelers were implicated in lymphocyte functions, less is known about SMARCA5. Here, using ribosomal pull-down for analyzing translated genes in GC B cells, coupled with functional experiments in mice, we identified SMARCA5 as a key chromatin remodeler in B cells. While the naive B cell compartment remained unaffected following conditional depletion of Smarca5, effective proliferation during B cell activation, immunoglobulin class switching, and as a result GC formation and ASC differentiation were impaired. Single-cell multiomic sequencing analyses revealed that SMARCA5 is crucial for facilitating the transcriptional modifications and genomic accessibility of genes that support B cell activation and differentiation. These findings offer novel insights into the functions of SMARCA5, which can be targeted in various human pathologies.
Collapse
Affiliation(s)
- Liat Stoler-Barak
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Dominik Schmiedel
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Avital Sarusi-Portuguez
- Mantoux Bioinformatics Institute of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Adi Rogel
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ronnie Blecher-Gonen
- The Crown Genomics Institute of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Zhana Haimon
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Tomas Stopka
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Ziv Shulman
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
4
|
Wu ML, Wheeler K, Silasi R, Lupu F, Griffin CT. Endothelial Chromatin-Remodeling Enzymes Regulate the Production of Critical ECM Components During Murine Lung Development. Arterioscler Thromb Vasc Biol 2024; 44:1784-1798. [PMID: 38868942 PMCID: PMC11624602 DOI: 10.1161/atvbaha.124.320881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/29/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND The chromatin-remodeling enzymes BRG1 (brahma-related gene 1) and CHD4 (chromodomain helicase DNA-binding protein 4) independently regulate the transcription of genes critical for vascular development, but their coordinated impact on vessels in late-stage embryos has not been explored. METHODS In this study, we genetically deleted endothelial Brg1 and Chd4 in mixed background mice (Brg1fl/fl;Chd4fl/fl;VE-Cadherin-Cre), and littermates that were negative for Cre recombinase were used as controls. Tissues were analyzed by immunostaining, immunoblot, and flow cytometry. Quantitative reverse transcription polymerase chain reaction was used to determine gene expression, and chromatin immunoprecipitation revealed gene targets of BRG1 and CHD4 in cultured endothelial cells. RESULTS We found Brg1/Chd4 double mutants grew normally but died soon after birth with small and compact lungs. Despite having normal cellular composition, distal air sacs of the mutant lungs displayed diminished ECM (extracellular matrix) components and TGFβ (transforming growth factor-β) signaling, which typically promotes ECM synthesis. Transcripts for collagen- and elastin-related genes and the TGFβ ligand Tgfb1 were decreased in mutant lung endothelial cells, but genetic deletion of endothelial Tgfb1 failed to recapitulate the small lungs and ECM defects seen in Brg1/Chd4 mutants. We instead found several ECM genes to be direct targets of BRG1 and CHD4 in cultured endothelial cells. CONCLUSIONS Collectively, our data highlight essential roles for endothelial chromatin-remodeling enzymes in promoting ECM deposition in the distal lung tissue during the saccular stage of embryonic lung development.
Collapse
Affiliation(s)
- Meng-Ling Wu
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Kate Wheeler
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Robert Silasi
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Florea Lupu
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Courtney T. Griffin
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
5
|
Schwaiger M, Mohn F, Bühler M, Kaaij LJT. guidedNOMe-seq quantifies chromatin states at single allele resolution for hundreds of custom regions in parallel. BMC Genomics 2024; 25:732. [PMID: 39075377 PMCID: PMC11288131 DOI: 10.1186/s12864-024-10625-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/15/2024] [Indexed: 07/31/2024] Open
Abstract
Since the introduction of next generation sequencing technologies, the field of epigenomics has evolved rapidly. However, most commonly used assays are enrichment-based methods and thus only semi-quantitative. Nucleosome occupancy and methylome sequencing (NOMe-seq) allows for quantitative inference of chromatin states with single locus resolution, but this requires high sequencing depth and is therefore prohibitively expensive to routinely apply to organisms with large genomes. To overcome this limitation, we introduce guidedNOMe-seq, where we combine NOMe profiling with large scale sgRNA synthesis and Cas9-mediated region-of-interest (ROI) liberation. To facilitate quantitative comparisons between multiple samples, we additionally develop an R package to standardize differential analysis of any type of NOMe-seq data. We extensively benchmark guidedNOMe-seq in a proof-of-concept study, dissecting the interplay of ChAHP and CTCF on chromatin. In summary we present a cost-effective, scalable, and customizable target enrichment extension to the existing NOMe-seq protocol allowing genome-scale quantification of nucleosome occupancy and transcription factor binding at single allele resolution.
Collapse
Affiliation(s)
- Michaela Schwaiger
- Friedrich Miescher Institute for Biomedical Research, Basel, 4056, Switzerland
- Swiss Institute of Bioinformatics, Basel, 4056, Switzerland
| | - Fabio Mohn
- Friedrich Miescher Institute for Biomedical Research, Basel, 4056, Switzerland
| | - Marc Bühler
- Friedrich Miescher Institute for Biomedical Research, Basel, 4056, Switzerland
- University of Basel, Basel, 4003, Switzerland
| | - Lucas J T Kaaij
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, 3584 CG, The Netherlands.
| |
Collapse
|
6
|
Ahel J, Pandey A, Schwaiger M, Mohn F, Basters A, Kempf G, Andriollo A, Kaaij L, Hess D, Bühler M. ChAHP2 and ChAHP control diverse retrotransposons by complementary activities. Genes Dev 2024; 38:554-568. [PMID: 38960717 PMCID: PMC11293393 DOI: 10.1101/gad.351769.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/07/2024] [Indexed: 07/05/2024]
Abstract
Retrotransposon control in mammals is an intricate process that is effectuated by a broad network of chromatin regulatory pathways. We previously discovered ChAHP, a protein complex with repressive activity against short interspersed element (SINE) retrotransposons that is composed of the transcription factor ADNP, chromatin remodeler CHD4, and HP1 proteins. Here we identify ChAHP2, a protein complex homologous to ChAHP, in which ADNP is replaced by ADNP2. ChAHP2 is predominantly targeted to endogenous retroviruses (ERVs) and long interspersed elements (LINEs) via HP1β-mediated binding of H3K9 trimethylated histones. We further demonstrate that ChAHP also binds these elements in a manner mechanistically equivalent to that of ChAHP2 and distinct from DNA sequence-specific recruitment at SINEs. Genetic ablation of ADNP2 alleviates ERV and LINE1 repression, which is synthetically exacerbated by additional depletion of ADNP. Together, our results reveal that the ChAHP and ChAHP2 complexes function to control both nonautonomous and autonomous retrotransposons by complementary activities, further adding to the complexity of mammalian transposon control.
Collapse
Affiliation(s)
- Josip Ahel
- Friedrich Miescher Institute for Biomedical Research, Basel 4056, Switzerland
| | - Aparna Pandey
- Friedrich Miescher Institute for Biomedical Research, Basel 4056, Switzerland
| | - Michaela Schwaiger
- Friedrich Miescher Institute for Biomedical Research, Basel 4056, Switzerland
- Swiss Institute of Bioinformatics, Basel 4056, Switzerland
| | - Fabio Mohn
- Friedrich Miescher Institute for Biomedical Research, Basel 4056, Switzerland
| | - Anja Basters
- Friedrich Miescher Institute for Biomedical Research, Basel 4056, Switzerland
| | - Georg Kempf
- Friedrich Miescher Institute for Biomedical Research, Basel 4056, Switzerland
| | - Aude Andriollo
- Friedrich Miescher Institute for Biomedical Research, Basel 4056, Switzerland
- University of Basel, Basel 4003, Switzerland
| | - Lucas Kaaij
- Friedrich Miescher Institute for Biomedical Research, Basel 4056, Switzerland
| | - Daniel Hess
- Friedrich Miescher Institute for Biomedical Research, Basel 4056, Switzerland
| | - Marc Bühler
- Friedrich Miescher Institute for Biomedical Research, Basel 4056, Switzerland;
- University of Basel, Basel 4003, Switzerland
| |
Collapse
|
7
|
Saotome M, Poduval D, Grimm SA, Nagornyuk A, Gunarathna S, Shimbo T, Wade P, Takaku M. Genomic transcription factor binding site selection is edited by the chromatin remodeling factor CHD4. Nucleic Acids Res 2024; 52:3607-3622. [PMID: 38281186 PMCID: PMC11039999 DOI: 10.1093/nar/gkae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 12/19/2023] [Accepted: 01/04/2024] [Indexed: 01/30/2024] Open
Abstract
Biologically precise enhancer licensing by lineage-determining transcription factors enables activation of transcripts appropriate to biological demand and prevents deleterious gene activation. This essential process is challenged by the millions of matches to most transcription factor binding motifs present in many eukaryotic genomes, leading to questions about how transcription factors achieve the exquisite specificity required. The importance of chromatin remodeling factors to enhancer activation is highlighted by their frequent mutation in developmental disorders and in cancer. Here, we determine the roles of CHD4 in enhancer licensing and maintenance in breast cancer cells and during cellular reprogramming. In unchallenged basal breast cancer cells, CHD4 modulates chromatin accessibility. Its depletion leads to redistribution of transcription factors to previously unoccupied sites. During cellular reprogramming induced by the pioneer factor GATA3, CHD4 activity is necessary to prevent inappropriate chromatin opening. Mechanistically, CHD4 promotes nucleosome positioning over GATA3 binding motifs to compete with transcription factor-DNA interaction. We propose that CHD4 acts as a chromatin proof-reading enzyme that prevents unnecessary gene expression by editing chromatin binding activities of transcription factors.
Collapse
Affiliation(s)
- Mika Saotome
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, USA
| | - Deepak B Poduval
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, USA
| | - Sara A Grimm
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Aerica Nagornyuk
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, USA
| | - Sakuntha Gunarathna
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, USA
| | - Takashi Shimbo
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Paul A Wade
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Motoki Takaku
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, USA
| |
Collapse
|
8
|
Patty BJ, Hainer SJ. Widespread impact of nucleosome remodelers on transcription at cis-regulatory elements. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.12.589208. [PMID: 38659863 PMCID: PMC11042195 DOI: 10.1101/2024.04.12.589208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Nucleosome remodeling complexes and other regulatory factors work in concert to build a chromatin environment that directs the expression of a distinct set of genes in each cell using cis-regulatory elements (CREs), such as promoters and enhancers, that drive transcription of both mRNAs and CRE-associated non-coding RNAs (ncRNAs). Two classes of CRE-associated ncRNAs include upstream antisense RNAs (uaRNAs), which are transcribed divergently from a shared mRNA promoter, and enhancer RNAs (eRNAs), which are transcribed bidirectionally from active enhancers. The complicated network of CRE regulation by nucleosome remodelers remains only partially explored, with a focus on a select, limited number of remodelers. We endeavored to elucidate a remodeler-based regulatory network governing CRE-associated transcription (mRNA, eRNA, and uaRNA) in murine embryonic stem (ES) cells to test the hypothesis that many SNF2-family nucleosome remodelers collaborate to regulate the coding and non-coding transcriptome via alteration of underlying nucleosome architecture. Using depletion followed by transient transcriptome sequencing (TT-seq), we identified thousands of misregulated mRNAs and CRE-associated ncRNAs across the remodelers examined, identifying novel contributions by understudied remodelers in the regulation of coding and noncoding transcription. Our findings suggest that mRNA and eRNA transcription are coordinately co-regulated, while mRNA and uaRNAs sharing a common promoter are independently regulated. Subsequent mechanistic studies suggest that while remodelers SRCAP and CHD8 modulate transcription through classical mechanisms such as transcription factors and histone variants, a broad set of remodelers including SMARCAL1 indirectly contribute to transcriptional regulation through maintenance of genomic stability and proper Integrator complex localization. This study systematically examines the contribution of SNF2-remodelers to the CRE-associated transcriptome, identifying at least two classes for remodeler action.
Collapse
Affiliation(s)
- Benjamin J. Patty
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA USA
| | - Sarah J. Hainer
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA USA
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA USA
| |
Collapse
|
9
|
Niederhuber MJ, Leatham-Jensen M, McKay DJ. The SWI/SNF nucleosome remodeler constrains enhancer activity during Drosophila wing development. Genetics 2024; 226:iyad196. [PMID: 37949841 PMCID: PMC10847718 DOI: 10.1093/genetics/iyad196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/05/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023] Open
Abstract
Chromatin remodeling is central to the dynamic changes in gene expression that drive cell fate determination. During development, the sets of enhancers that are accessible for use change globally as cells transition between stages. While transcription factors and nucleosome remodelers are known to work together to control enhancer accessibility, it is unclear how the short stretches of DNA that they individually unmask yield the kilobase-sized accessible regions characteristic of active enhancers. Here, we performed a genetic screen to investigate the role of nucleosome remodelers in control of dynamic enhancer activity. We find that the Drosophila Switch/Sucrose Non-Fermenting complex, BAP, is required for repression of a temporally dynamic enhancer, brdisc. Contrary to expectations, we find that the BAP-specific subunit Osa is dispensable for mediating changes in chromatin accessibility between the early and late stages of wing development. Instead, we find that Osa is required to constrain the levels of brdisc activity when the enhancer is normally active. Genome-wide profiling reveals that Osa directly binds brdisc as well as thousands of other developmentally dynamic regulatory sites, including multiple genes encoding components and targets of the Notch signaling pathway. Transgenic reporter analyses demonstrate that Osa is required for activation and for constraint of different sets of target enhancers in the same cells. Moreover, Osa loss results in hyperactivation of the Notch ligand Delta and development of ectopic sensory structures patterned by Notch signaling early in development. Together, these findings indicate that proper constraint of enhancer activity is necessary for regulation of dose-dependent developmental events.
Collapse
Affiliation(s)
- Matthew J Niederhuber
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mary Leatham-Jensen
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Daniel J McKay
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
10
|
Ho PJ, Kweon J, Blumensaadt LA, Neely AE, Kalika E, Leon DB, Oh S, Stringer CWP, Lloyd SM, Ren Z, Bao X. Multi-omics integration identifies cell-state-specific repression by PBRM1-PIAS1 cooperation. CELL GENOMICS 2024; 4:100471. [PMID: 38190100 PMCID: PMC10794847 DOI: 10.1016/j.xgen.2023.100471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 10/24/2023] [Accepted: 11/30/2023] [Indexed: 01/09/2024]
Abstract
PBRM1 is frequently mutated in cancers of epithelial origin. How PBRM1 regulates normal epithelial homeostasis, prior to cancer initiation, remains unclear. Here, we show that PBRM1's gene regulatory roles differ drastically between cell states, leveraging human skin epithelium (epidermis) as a research platform. In progenitors, PBRM1 predominantly functions to repress terminal differentiation to sustain progenitors' regenerative potential; in the differentiation state, however, PBRM1 switches toward an activator. Between these two cell states, PBRM1 retains its genomic binding but associates with differential interacting proteins. Our targeted screen identified the E3 SUMO ligase PIAS1 as a key interactor. PIAS1 co-localizes with PBRM1 on chromatin to directly repress differentiation genes in progenitors, and PIAS1's chromatin binding drastically diminishes in differentiation. Furthermore, SUMOylation contributes to PBRM1's repressive function in progenitor maintenance. Thus, our findings highlight PBRM1's cell-state-specific regulatory roles influenced by its protein interactome despite its stable chromatin binding.
Collapse
Affiliation(s)
- Patric J Ho
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Junghun Kweon
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Laura A Blumensaadt
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Amy E Neely
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Elizabeth Kalika
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Daniel B Leon
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Sanghyon Oh
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Cooper W P Stringer
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Sarah M Lloyd
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Ziyou Ren
- Department of Dermatology, Northwestern University, Chicago, IL 60611, USA
| | - Xiaomin Bao
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA; Department of Dermatology, Northwestern University, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
11
|
Dunjić M, Jonas F, Yaakov G, More R, Mayshar Y, Rais Y, Orenbuch AH, Cheng S, Barkai N, Stelzer Y. Histone exchange sensors reveal variant specific dynamics in mouse embryonic stem cells. Nat Commun 2023; 14:3791. [PMID: 37365167 DOI: 10.1038/s41467-023-39477-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 06/15/2023] [Indexed: 06/28/2023] Open
Abstract
Eviction of histones from nucleosomes and their exchange with newly synthesized or alternative variants is a central epigenetic determinant. Here, we define the genome-wide occupancy and exchange pattern of canonical and non-canonical histone variants in mouse embryonic stem cells by genetically encoded exchange sensors. While exchange of all measured variants scales with transcription, we describe variant-specific associations with transcription elongation and Polycomb binding. We found considerable exchange of H3.1 and H2B variants in heterochromatin and repeat elements, contrasting the occupancy and little exchange of H3.3 in these regions. This unexpected association between H3.3 occupancy and exchange of canonical variants is also evident in active promoters and enhancers, and further validated by reduced H3.1 dynamics following depletion of H3.3-specific chaperone, HIRA. Finally, analyzing transgenic mice harboring H3.1 or H3.3 sensors demonstrates the vast potential of this system for studying histone exchange and its impact on gene expression regulation in vivo.
Collapse
Affiliation(s)
- Marko Dunjić
- Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Felix Jonas
- Department of Molecular Genetics, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Gilad Yaakov
- Department of Molecular Genetics, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Roye More
- Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Yoav Mayshar
- Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Yoach Rais
- Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | | | - Saifeng Cheng
- Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Naama Barkai
- Department of Molecular Genetics, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Yonatan Stelzer
- Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001, Rehovot, Israel.
| |
Collapse
|
12
|
Shi W, Scialdone AP, Emerson JI, Mei L, Wasson LK, Davies HA, Seidman CE, Seidman JG, Cook JG, Conlon FL. Missense Mutation in Human CHD4 Causes Ventricular Noncompaction by Repressing ADAMTS1. Circ Res 2023; 133:48-67. [PMID: 37254794 PMCID: PMC10284140 DOI: 10.1161/circresaha.122.322223] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 05/02/2023] [Accepted: 05/05/2023] [Indexed: 06/01/2023]
Abstract
BACKGROUND Left ventricular noncompaction (LVNC) is a prevalent cardiomyopathy associated with excessive trabeculation and thin compact myocardium. Patients with LVNC are vulnerable to cardiac dysfunction and at high risk of sudden death. Although sporadic and inherited mutations in cardiac genes are implicated in LVNC, understanding of the mechanisms responsible for human LVNC is limited. METHODS We screened the complete exome sequence database of the Pediatrics Cardiac Genomics Consortium and identified a cohort with a de novo CHD4 (chromodomain helicase DNA-binding protein 4) proband, CHD4M202I, with congenital heart defects. We engineered a humanized mouse model of CHD4M202I (mouse CHD4M195I). Histological analysis, immunohistochemistry, flow cytometry, transmission electron microscopy, and echocardiography were used to analyze cardiac anatomy and function. Ex vivo culture, immunopurification coupled with mass spectrometry, transcriptional profiling, and chromatin immunoprecipitation were performed to deduce the mechanism of CHD4M195I-mediated ventricular wall defects. RESULTS CHD4M195I/M195I mice developed biventricular hypertrabeculation and noncompaction and died at birth. Proliferation of cardiomyocytes was significantly increased in CHD4M195I hearts, and the excessive trabeculation was associated with accumulation of ECM (extracellular matrix) proteins and a reduction of ADAMTS1 (ADAM metallopeptidase with thrombospondin type 1 motif 1), an ECM protease. We rescued the hyperproliferation and hypertrabeculation defects in CHD4M195I hearts by administration of ADAMTS1. Mechanistically, the CHD4M195I protein showed augmented affinity to endocardial BRG1 (SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily A, member 4). This enhanced affinity resulted in the failure of derepression of Adamts1 transcription such that ADAMTS1-mediated trabeculation termination was impaired. CONCLUSIONS Our study reveals how a single mutation in the chromatin remodeler CHD4, in mice or humans, modulates ventricular chamber maturation and that cardiac defects associated with the missense mutation CHD4M195I can be attenuated by the administration of ADAMTS1.
Collapse
Affiliation(s)
- Wei Shi
- Department of Biology and Genetics, McAllister Heart Institute (W.S., A.P.S., J.I.E., H.A.D., F.L.C.), the University of North Carolina at Chapel Hill
| | - Angel P. Scialdone
- Department of Biology and Genetics, McAllister Heart Institute (W.S., A.P.S., J.I.E., H.A.D., F.L.C.), the University of North Carolina at Chapel Hill
| | - James I. Emerson
- Department of Biology and Genetics, McAllister Heart Institute (W.S., A.P.S., J.I.E., H.A.D., F.L.C.), the University of North Carolina at Chapel Hill
| | - Liu Mei
- Department of Biochemistry & Biophysics (L.M., J.G.C.), the University of North Carolina at Chapel Hill
| | - Lauren K. Wasson
- Department of Genetics, Harvard Medical School, Boston, MA (L.K.W., C.E.S., J.G.S.)
- Howard Hughes Medical Institute, Chevy Chase, MD (L.K.W., C.E.S.)
| | - Haley A. Davies
- Department of Biology and Genetics, McAllister Heart Institute (W.S., A.P.S., J.I.E., H.A.D., F.L.C.), the University of North Carolina at Chapel Hill
| | - Christine E. Seidman
- Department of Genetics, Harvard Medical School, Boston, MA (L.K.W., C.E.S., J.G.S.)
- Howard Hughes Medical Institute, Chevy Chase, MD (L.K.W., C.E.S.)
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, MA (C.E.S.)
| | - Jonathan G. Seidman
- Department of Biochemistry & Biophysics (L.M., J.G.C.), the University of North Carolina at Chapel Hill
- Department of Genetics, Harvard Medical School, Boston, MA (L.K.W., C.E.S., J.G.S.)
| | - Jeanette G. Cook
- Department of Biology and Genetics, McAllister Heart Institute (W.S., A.P.S., J.I.E., H.A.D., F.L.C.), the University of North Carolina at Chapel Hill
- Department of Biochemistry & Biophysics (L.M., J.G.C.), the University of North Carolina at Chapel Hill
- Lineberger Comprehensive Cancer Center (F.L.C.), the University of North Carolina at Chapel Hill
- Department of Genetics, Harvard Medical School, Boston, MA (L.K.W., C.E.S., J.G.S.)
- Howard Hughes Medical Institute, Chevy Chase, MD (L.K.W., C.E.S.)
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, MA (C.E.S.)
| | - Frank L. Conlon
- Department of Biology and Genetics, McAllister Heart Institute (W.S., A.P.S., J.I.E., H.A.D., F.L.C.), the University of North Carolina at Chapel Hill
- Lineberger Comprehensive Cancer Center (F.L.C.), the University of North Carolina at Chapel Hill
| |
Collapse
|
13
|
Zhang D, Zhang C, Zhu Y, Xie H, Yue C, Li M, Wei W, Peng Y, Yin G, Guo Y, Guan Y. Recruitment of transcription factor ETS1 to activated accessible regions promotes the transcriptional program of cilia genes. Nucleic Acids Res 2023:gkad506. [PMID: 37326025 PMCID: PMC10359609 DOI: 10.1093/nar/gkad506] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 05/25/2023] [Accepted: 06/01/2023] [Indexed: 06/17/2023] Open
Abstract
Defects in cilia genes, which are critical for cilia formation and function, can cause complicated ciliopathy syndromes involving multiple organs and tissues; however, the underlying regulatory mechanisms of the networks of cilia genes in ciliopathies remain enigmatic. Herein, we have uncovered the genome-wide redistribution of accessible chromatin regions and extensive alterations of expression of cilia genes during Ellis-van Creveld syndrome (EVC) ciliopathy pathogenesis. Mechanistically, the distinct EVC ciliopathy-activated accessible regions (CAAs) are shown to positively regulate robust changes in flanking cilia genes, which are a key requirement for cilia transcription in response to developmental signals. Moreover, a single transcription factor, ETS1, can be recruited to CAAs, leading to prominent chromatin accessibility reconstruction in EVC ciliopathy patients. In zebrafish, the collapse of CAAs driven by ets1 suppression subsequently causes defective cilia proteins, resulting in body curvature and pericardial oedema. Our results depict a dynamic landscape of chromatin accessibility in EVC ciliopathy patients, and uncover an insightful role for ETS1 in controlling the global transcriptional program of cilia genes by reprogramming the widespread chromatin state.
Collapse
Affiliation(s)
- Donghui Zhang
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Guangdong Medical University Zhanjiang Central Hospital, Zhanjiang 524045, PR China
| | - Chong Zhang
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Guangdong Medical University Zhanjiang Central Hospital, Zhanjiang 524045, PR China
| | - Yanmei Zhu
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Guangdong Medical University Zhanjiang Central Hospital, Zhanjiang 524045, PR China
| | - Haixia Xie
- Precision Clinical Laboratory, Central People's Hospital of Zhanjiang, Guangdong Medical University Zhanjiang Central Hospital, Zhanjiang 524045, PR China
| | - Caifeng Yue
- Precision Clinical Laboratory, Central People's Hospital of Zhanjiang, Guangdong Medical University Zhanjiang Central Hospital, Zhanjiang 524045, PR China
- Department of Laboratory Medicine, Central People's Hospital of Zhanjiang, Guangdong Medical University Zhanjiang Central Hospital, Zhanjiang 524045, PR China
| | - Mingfeng Li
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Guangdong Medical University Zhanjiang Central Hospital, Zhanjiang 524045, PR China
| | - Wenlu Wei
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Guangdong Medical University Zhanjiang Central Hospital, Zhanjiang 524045, PR China
| | - Yu Peng
- Pediatric Intensive Care Unit Central, People's Hospital of Zhanjiang, Guangdong Medical University Zhanjiang Central Hospital, Zhanjiang 524045, PR China
| | - Guibin Yin
- Department of Orthopedics, Central People's Hospital of Zhanjiang, Guangdong Medical University Zhanjiang Central Hospital, Zhanjiang 524045, PR China
| | - Yunmiao Guo
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Guangdong Medical University Zhanjiang Central Hospital, Zhanjiang 524045, PR China
| | - Yiting Guan
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Guangdong Medical University Zhanjiang Central Hospital, Zhanjiang 524045, PR China
| |
Collapse
|
14
|
Saotome M, Poduval DB, Grimm SA, Nagornyuk A, Gunarathna S, Shimbo T, Wade PA, Takaku M. Genomic transcription factor binding site selection is edited by the chromatin remodeling factor CHD4. RESEARCH SQUARE 2023:rs.3.rs-2587918. [PMID: 36993416 PMCID: PMC10055546 DOI: 10.21203/rs.3.rs-2587918/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Biologically precise enhancer licensing by lineage-determining transcription factors enables activation of transcripts appropriate to biological demand and prevents deleterious gene activation. This essential process is challenged by the millions of matches to most transcription factor binding motifs present in many eukaryotic genomes, leading to questions about how transcription factors achieve the exquisite specificity required. The importance of chromatin remodeling factors to enhancer activation is highlighted by their frequent mutation in developmental disorders and in cancer. Here we determine the roles of CHD4 to enhancer licensing and maintenance in breast cancer cells and during cellular reprogramming. In unchallenged basal breast cancer cells, CHD4 modulates chromatin accessibility at transcription factor binding sites; its depletion leads to altered motif scanning and redistribution of transcription factors to sites not previously occupied. During GATA3-mediated cellular reprogramming, CHD4 activity is necessary to prevent inappropriate chromatin opening and enhancer licensing. Mechanistically, CHD4 competes with transcription factor-DNA interaction by promoting nucleosome positioning over binding motifs. We propose that CHD4 acts as a chromatin proof-reading enzyme that prevents inappropriate gene expression by editing binding site selection by transcription factors.
Collapse
Affiliation(s)
- Mika Saotome
- Department of Biomedical Sciences, University of North Dakota School of Medicine, Grand Forks, ND 58202, USA
| | - Deepak Balakrishnan Poduval
- Department of Biomedical Sciences, University of North Dakota School of Medicine, Grand Forks, ND 58202, USA
| | - Sara A. Grimm
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Aerica Nagornyuk
- Department of Biomedical Sciences, University of North Dakota School of Medicine, Grand Forks, ND 58202, USA
| | - Sakuntha Gunarathna
- Department of Biomedical Sciences, University of North Dakota School of Medicine, Grand Forks, ND 58202, USA
| | - Takashi Shimbo
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
- Current address: StemRIM Institute of Regeneration-Inducing Medicine, Osaka University, Suita, Osaka, 5650871, Japan
| | - Paul A. Wade
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Motoki Takaku
- Department of Biomedical Sciences, University of North Dakota School of Medicine, Grand Forks, ND 58202, USA
| |
Collapse
|
15
|
Heterochromatin rewiring and domain disruption-mediated chromatin compaction during erythropoiesis. Nat Struct Mol Biol 2023; 30:463-474. [PMID: 36914797 DOI: 10.1038/s41594-023-00939-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 02/08/2023] [Indexed: 03/16/2023]
Abstract
Mammalian erythropoiesis involves progressive chromatin compaction and subsequent enucleation in terminal differentiation, but the mechanisms underlying the three-dimensional chromatin reorganization remain obscure. Here, we systematically analyze the higher-order chromatin in purified populations of primary human erythroblasts. Our results reveal that heterochromatin regions undergo substantial compression, with H3K9me3 markers relocalizing to the nuclear periphery and forming a significant number of long-range interactions, and that ~58% of the topologically associating domain (TAD) boundaries are disrupted, while certain TADs enriched for markers of the active transcription state and erythroid master regulators, GATA1 and KLF1, are selectively maintained during terminal erythropoiesis. Finally, we demonstrate that GATA1 is involved in safeguarding selected essential chromatin domains during terminal erythropoiesis. Our study therefore delineates the molecular characteristics of a development-driven chromatin compaction process, which reveals transcription competence as a key indicator of the selected domain maintenance to ensure appropriate gene expression during the extreme compaction of chromatin.
Collapse
|
16
|
Kreibich E, Krebs AR. Cofactors: a new layer of specificity to enhancer regulation. Trends Biochem Sci 2022; 47:993-995. [PMID: 35970663 DOI: 10.1016/j.tibs.2022.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 07/29/2022] [Indexed: 12/24/2022]
Abstract
Cofactors are essential effectors of the transcription control machinery. How this functionally diverse group of factors is used in the genome remains elusive. A recent study by Neumayr, Haberle et al. sheds light on this question, showing that enhancers depend on defined combinations of cofactors for their activation.
Collapse
Affiliation(s)
- Elisa Kreibich
- EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany; Faculty of Biosciences, Collaboration for Joint PhD Degree between EMBL and Heidelberg University, Heidelberg, Germany
| | - Arnaud R Krebs
- EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany.
| |
Collapse
|
17
|
Reske JJ, Wilson MR, Armistead B, Harkins S, Perez C, Hrit J, Adams M, Rothbart SB, Missmer SA, Fazleabas AT, Chandler RL. ARID1A-dependent maintenance of H3.3 is required for repressive CHD4-ZMYND8 chromatin interactions at super-enhancers. BMC Biol 2022; 20:209. [PMID: 36153585 PMCID: PMC9509632 DOI: 10.1186/s12915-022-01407-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 09/12/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND SWI/SNF (BAF) chromatin remodeling complexes regulate lineage-specific enhancer activity by promoting accessibility for diverse DNA-binding factors and chromatin regulators. Additionally, they are known to modulate the function of the epigenome through regulation of histone post-translational modifications and nucleosome composition, although the way SWI/SNF complexes govern the epigenome remains poorly understood. Here, we investigate the function of ARID1A, a subunit of certain mammalian SWI/SNF chromatin remodeling complexes associated with malignancies and benign diseases originating from the uterine endometrium. RESULTS Through genome-wide analysis of human endometriotic epithelial cells, we show that more than half of ARID1A binding sites are marked by the variant histone H3.3, including active regulatory elements such as super-enhancers. ARID1A knockdown leads to H3.3 depletion and gain of canonical H3.1/3.2 at ARID1A-bound active regulatory elements, and a concomitant redistribution of H3.3 toward genic elements. ARID1A interactions with the repressive chromatin remodeler CHD4 (NuRD) are associated with H3.3, and ARID1A is required for CHD4 recruitment to H3.3. ZMYND8 interacts with CHD4 to suppress a subset of ARID1A, CHD4, and ZMYND8 co-bound, H3.3+ H4K16ac+ super-enhancers near genes governing extracellular matrix, motility, adhesion, and epithelial-to-mesenchymal transition. Moreover, these gene expression alterations are observed in human endometriomas. CONCLUSIONS These studies demonstrate that ARID1A-containing BAF complexes are required for maintenance of the histone variant H3.3 at active regulatory elements, such as super-enhancers, and this function is required for the physiologically relevant activities of alternative chromatin remodelers.
Collapse
Affiliation(s)
- Jake J. Reske
- grid.17088.360000 0001 2150 1785Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503 USA
| | - Mike R. Wilson
- grid.17088.360000 0001 2150 1785Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503 USA
| | - Brooke Armistead
- grid.17088.360000 0001 2150 1785Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503 USA
| | - Shannon Harkins
- grid.17088.360000 0001 2150 1785Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503 USA
| | - Cristina Perez
- grid.17088.360000 0001 2150 1785Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503 USA
| | - Joel Hrit
- grid.251017.00000 0004 0406 2057Department of Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503 USA
| | - Marie Adams
- grid.251017.00000 0004 0406 2057Genomics Core Facility, Van Andel Research Institute, Grand Rapids, MI 49503 USA
| | - Scott B. Rothbart
- grid.251017.00000 0004 0406 2057Department of Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503 USA
| | - Stacey A. Missmer
- grid.17088.360000 0001 2150 1785Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503 USA ,grid.416230.20000 0004 0406 3236Department of Women’s Health, Spectrum Health System, Grand Rapids, MI 49341 USA
| | - Asgerally T. Fazleabas
- grid.17088.360000 0001 2150 1785Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503 USA ,grid.416230.20000 0004 0406 3236Department of Women’s Health, Spectrum Health System, Grand Rapids, MI 49341 USA
| | - Ronald L. Chandler
- grid.17088.360000 0001 2150 1785Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503 USA ,grid.251017.00000 0004 0406 2057Department of Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503 USA ,grid.416230.20000 0004 0406 3236Department of Women’s Health, Spectrum Health System, Grand Rapids, MI 49341 USA
| |
Collapse
|
18
|
Mattola S, Salokas K, Aho V, Mäntylä E, Salminen S, Hakanen S, Niskanen EA, Svirskaite J, Ihalainen TO, Airenne KJ, Kaikkonen-Määttä M, Parrish CR, Varjosalo M, Vihinen-Ranta M. Parvovirus nonstructural protein 2 interacts with chromatin-regulating cellular proteins. PLoS Pathog 2022; 18:e1010353. [PMID: 35395063 PMCID: PMC9020740 DOI: 10.1371/journal.ppat.1010353] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 04/20/2022] [Accepted: 03/15/2022] [Indexed: 11/28/2022] Open
Abstract
Autonomous parvoviruses encode at least two nonstructural proteins, NS1 and NS2. While NS1 is linked to important nuclear processes required for viral replication, much less is known about the role of NS2. Specifically, the function of canine parvovirus (CPV) NS2 has remained undefined. Here we have used proximity-dependent biotin identification (BioID) to screen for nuclear proteins that associate with CPV NS2. Many of these associations were seen both in noninfected and infected cells, however, the major type of interacting proteins shifted from nuclear envelope proteins to chromatin-associated proteins in infected cells. BioID interactions revealed a potential role for NS2 in DNA remodeling and damage response. Studies of mutant viral genomes with truncated forms of the NS2 protein suggested a change in host chromatin accessibility. Moreover, further studies with NS2 mutants indicated that NS2 performs functions that affect the quantity and distribution of proteins linked to DNA damage response. Notably, mutation in the splice donor site of the NS2 led to a preferred formation of small viral replication center foci instead of the large coalescent centers seen in wild-type infection. Collectively, our results provide insights into potential roles of CPV NS2 in controlling chromatin remodeling and DNA damage response during parvoviral replication. Parvoviruses are small, nonenveloped DNA viruses, that besides being noteworthy pathogens in many animal species, including humans, are also being developed as vectors for gene and cancer therapy. Canine parvovirus is an autonomously replicating parvovirus that encodes two nonstructural proteins, NS1 and NS2. NS1 is required for viral DNA replication and packaging, as well as gene expression. However, very little is known about the function of NS2. Our studies indicate that NS2 serves a previously undefined important function in chromatin modification and DNA damage responses. Therefore, it appears that although both NS1 and NS2 are needed for a productive infection they play very different roles in the process.
Collapse
Affiliation(s)
- Salla Mattola
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Kari Salokas
- Institute of Biotechnology and Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Vesa Aho
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Elina Mäntylä
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Sami Salminen
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Satu Hakanen
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Einari A. Niskanen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Julija Svirskaite
- Institute of Biotechnology and Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Teemu O. Ihalainen
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Kari J. Airenne
- Kuopio Center for Gene and Cell Therapy (KCT), Kuopio, Finland
| | | | - Colin R. Parrish
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, University of Cornell, Ithaca, New York, United States of America
| | - Markku Varjosalo
- Institute of Biotechnology and Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Maija Vihinen-Ranta
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
- * E-mail:
| |
Collapse
|
19
|
Varticovski L, Stavreva DA, McGowan A, Raziuddin R, Hager GL. Endocrine disruptors of sex hormone activities. Mol Cell Endocrinol 2022; 539:111415. [PMID: 34339825 PMCID: PMC8762672 DOI: 10.1016/j.mce.2021.111415] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/22/2021] [Accepted: 07/27/2021] [Indexed: 12/20/2022]
Abstract
Sex hormones, such as androgens, estrogens and progestins are naturally occurring compounds that tightly regulate endocrine systems in a variety of living organisms. Uncontrolled environmental exposure to these hormones or their biological and synthetic mimetics has been widely documented. Furthermore, water contaminants penetrate soil to affect flora, fauna and ultimately humans. Because endocrine systems evolved to respond to very small changes in hormone levels, the low levels found in the environment cannot be ignored. The combined actions of sex hormones with glucocorticoids and other nuclear receptors disruptors creates additional level of complexity including the newly described "dynamic assisted loading" mechanism. We reviewed the extensive literature pertaining to world-wide detection of these disruptors and created a detailed Table on the development and current status of methods used for their analysis.
Collapse
Affiliation(s)
- L Varticovski
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - D A Stavreva
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - A McGowan
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - R Raziuddin
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - G L Hager
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
20
|
Pecci A, Ogara MF, Sanz RT, Vicent GP. Choosing the right partner in hormone-dependent gene regulation: Glucocorticoid and progesterone receptors crosstalk in breast cancer cells. Front Endocrinol (Lausanne) 2022; 13:1037177. [PMID: 36407312 PMCID: PMC9672667 DOI: 10.3389/fendo.2022.1037177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022] Open
Abstract
Steroid hormone receptors (SHRs) belong to a large family of ligand-activated nuclear receptors that share certain characteristics and possess others that make them unique. It was thought for many years that the specificity of hormone response lay in the ligand. Although this may be true for pure agonists, the natural ligands as progesterone, corticosterone and cortisol present a broader effect by simultaneous activation of several SHRs. Moreover, SHRs share structural and functional characteristics that range from similarities between ligand-binding pockets to recognition of specific DNA sequences. These properties are clearly evident in progesterone (PR) and glucocorticoid receptors (GR); however, the biological responses triggered by each receptor in the presence of its ligand are different, and in some cases, even opposite. Thus, what confers the specificity of response to a given receptor is a long-standing topic of discussion that has not yet been unveiled. The levels of expression of each receptor, the differential interaction with coregulators, the chromatin accessibility as well as the DNA sequence of the target regions in the genome, are reliable sources of variability in hormone action that could explain the results obtained so far. Yet, to add further complexity to this scenario, it has been described that receptors can form heterocomplexes which can either compromise or potentiate the respective hormone-activated pathways with its possible impact on the pathological condition. In the present review, we summarized the state of the art of the functional cross-talk between PR and GR in breast cancer cells and we also discussed new paradigms of specificity in hormone action.
Collapse
Affiliation(s)
- Adali Pecci
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
- *Correspondence: Adali Pecci, ; Guillermo Pablo Vicent,
| | - María Florencia Ogara
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| | - Rosario T. Sanz
- Molecular Biology Institute of Barcelona, Consejo Superior de Investigaciones Científicas (IBMB-CSIC), Barcelona, Spain
| | - Guillermo Pablo Vicent
- Molecular Biology Institute of Barcelona, Consejo Superior de Investigaciones Científicas (IBMB-CSIC), Barcelona, Spain
- *Correspondence: Adali Pecci, ; Guillermo Pablo Vicent,
| |
Collapse
|
21
|
Han S, Lee H, Lee AJ, Kim SK, Jung I, Koh GY, Kim TK, Lee D. CHD4 Conceals Aberrant CTCF-Binding Sites at TAD Interiors by Regulating Chromatin Accessibility in Mouse Embryonic Stem Cells. Mol Cells 2021; 44:805-829. [PMID: 34764232 PMCID: PMC8627837 DOI: 10.14348/molcells.2021.0224] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 09/06/2021] [Indexed: 11/27/2022] Open
Abstract
CCCTC-binding factor (CTCF) critically contributes to 3D chromatin organization by determining topologically associated domain (TAD) borders. Although CTCF primarily binds at TAD borders, there also exist putative CTCF-binding sites within TADs, which are spread throughout the genome by retrotransposition. However, the detailed mechanism responsible for masking the putative CTCF-binding sites remains largely elusive. Here, we show that the ATP-dependent chromatin remodeler, chromodomain helicase DNA-binding 4 (CHD4), regulates chromatin accessibility to conceal aberrant CTCF-binding sites embedded in H3K9me3-enriched heterochromatic B2 short interspersed nuclear elements (SINEs) in mouse embryonic stem cells (mESCs). Upon CHD4 depletion, these aberrant CTCF-binding sites become accessible and aberrant CTCF recruitment occurs within TADs, resulting in disorganization of local TADs. RNA-binding intrinsically disordered domains (IDRs) of CHD4 are required to prevent this aberrant CTCF binding, and CHD4 is critical for the repression of B2 SINE transcripts. These results collectively reveal that a CHD4-mediated mechanism ensures appropriate CTCF binding and associated TAD organization in mESCs.
Collapse
Affiliation(s)
- Sungwook Han
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Hosuk Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
- Center for Vascular Research, Institute for Basic Sciences, Daejeon 34141, Korea
| | - Andrew J. Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Seung-Kyoon Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Inkyung Jung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Gou Young Koh
- Center for Vascular Research, Institute for Basic Sciences, Daejeon 34141, Korea
| | - Tae-Kyung Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Daeyoup Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| |
Collapse
|
22
|
Gamarra N, Narlikar GJ. Collaboration through chromatin: motors of transcription and chromatin structure. J Mol Biol 2021; 433:166876. [PMID: 33556407 PMCID: PMC8989640 DOI: 10.1016/j.jmb.2021.166876] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 01/09/2023]
Abstract
Packaging of the eukaryotic genome into chromatin places fundamental physical constraints on transcription. Clarifying how transcription operates within these constraints is essential to understand how eukaryotic gene expression programs are established and maintained. Here we review what is known about the mechanisms of transcription on chromatin templates. Current models indicate that transcription through chromatin is accomplished by the combination of an inherent nucleosome disrupting activity of RNA polymerase and the action of ATP-dependent chromatin remodeling motors. Collaboration between these two types of molecular motors is proposed to occur at all stages of transcription through diverse mechanisms. Further investigation of how these two motors combine their basic activities is essential to clarify the interdependent relationship between genome structure and transcription.
Collapse
Affiliation(s)
- Nathan Gamarra
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States; TETRAD Graduate Program, University of California, San Francisco, San Francisco, United States
| | - Geeta J Narlikar
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States.
| |
Collapse
|
23
|
Goodwin LR, Zapata G, Timpano S, Marenger J, Picketts DJ. Impaired SNF2L Chromatin Remodeling Prolongs Accessibility at Promoters Enriched for Fos/Jun Binding Sites and Delays Granule Neuron Differentiation. Front Mol Neurosci 2021; 14:680280. [PMID: 34295220 PMCID: PMC8290069 DOI: 10.3389/fnmol.2021.680280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 06/10/2021] [Indexed: 11/13/2022] Open
Abstract
Chromatin remodeling proteins utilize the energy from ATP hydrolysis to mobilize nucleosomes often creating accessibility for transcription factors within gene regulatory elements. Aberrant chromatin remodeling has diverse effects on neuroprogenitor homeostasis altering progenitor competence, proliferation, survival, or cell fate. Previous work has shown that inactivation of the ISWI genes, Smarca5 (encoding Snf2h) and Smarca1 (encoding Snf2l) have dramatic effects on brain development. Smarca5 conditional knockout mice have reduced progenitor expansion and severe forebrain hypoplasia, with a similar effect on the postnatal growth of the cerebellum. In contrast, Smarca1 mutants exhibited enlarged forebrains with delayed progenitor differentiation and increased neuronal output. Here, we utilized cerebellar granule neuron precursor (GNP) cultures from Smarca1 mutant mice (Ex6DEL) to explore the requirement for Snf2l on progenitor homeostasis. The Ex6DEL GNPs showed delayed differentiation upon plating that was not attributed to changes in the Sonic Hedgehog pathway but was associated with overexpression of numerous positive effectors of proliferation, including targets of Wnt activation. Transcriptome analysis identified increased expression of Fosb and Fosl2 while ATACseq experiments identified a large increase in chromatin accessibility at promoters many enriched for Fos/Jun binding sites. Nonetheless, the elevated proliferation index was transient and the Ex6DEL cultures initiated differentiation with a high concordance in gene expression changes to the wild type cultures. Genes specific to Ex6DEL differentiation were associated with an increased activation of the ERK signaling pathway. Taken together, this data provides the first indication of how Smarca1 mutations alter progenitor cell homeostasis and contribute to changes in brain size.
Collapse
Affiliation(s)
- Laura R Goodwin
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Gerardo Zapata
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Sara Timpano
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Jacob Marenger
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - David J Picketts
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.,Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
24
|
Launonen KM, Paakinaho V, Sigismondo G, Malinen M, Sironen R, Hartikainen JM, Laakso H, Visakorpi T, Krijgsveld J, Niskanen EA, Palvimo JJ. Chromatin-directed proteomics-identified network of endogenous androgen receptor in prostate cancer cells. Oncogene 2021; 40:4567-4579. [PMID: 34127815 PMCID: PMC8266679 DOI: 10.1038/s41388-021-01887-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/18/2021] [Accepted: 06/01/2021] [Indexed: 02/05/2023]
Abstract
Treatment of prostate cancer confronts resistance to androgen receptor (AR)-targeted therapies. AR-associated coregulators and chromatin proteins hold a great potential for novel therapy targets. Here, we employed a powerful chromatin-directed proteomics approach termed ChIP-SICAP to uncover the composition of chromatin protein network, the chromatome, around endogenous AR in castration resistant prostate cancer (CRPC) cells. In addition to several expected AR coregulators, the chromatome contained many nuclear proteins not previously associated with the AR. In the context of androgen signaling in CRPC cells, we further investigated the role of a known AR-associated protein, a chromatin remodeler SMARCA4 and that of SIM2, a transcription factor without a previous association with AR. To understand their role in chromatin accessibility and AR target gene expression, we integrated data from ChIP-seq, RNA-seq, ATAC-seq and functional experiments. Despite the wide co-occurrence of SMARCA4 and AR on chromatin, depletion of SMARCA4 influenced chromatin accessibility and expression of a restricted set of AR target genes, especially those involved in cell morphogenetic changes in epithelial-mesenchymal transition. The depletion also inhibited the CRPC cell growth, validating SMARCA4's functional role in CRPC cells. Although silencing of SIM2 reduced chromatin accessibility similarly, it affected the expression of a much larger group of androgen-regulated genes, including those involved in cellular responses to external stimuli and steroid hormone stimulus. The silencing also reduced proliferation of CRPC cells and tumor size in chick embryo chorioallantoic membrane assay, further emphasizing the importance of SIM2 in CRPC cells and pointing to the functional relevance of this potential prostate cancer biomarker in CRPC cells. Overall, the chromatome of AR identified in this work is an important resource for the field focusing on this important drug target.
Collapse
Affiliation(s)
- Kaisa-Mari Launonen
- Institute of Biomedicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Ville Paakinaho
- Institute of Biomedicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | | | - Marjo Malinen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - Reijo Sironen
- Institute of Clinical Medicine, Clinical Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland
- Department of Clinical Pathology, Kuopio University Hospital, Kuopio, Finland
| | - Jaana M Hartikainen
- Institute of Clinical Medicine, Clinical Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland
| | - Hanna Laakso
- Institute of Biomedicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tapio Visakorpi
- Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Centre, Tampere University Hospital, Tampere, Finland
- Fimlab Laboratories, Tampere, Finland
| | - Jeroen Krijgsveld
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg University, Medical Faculty, Heidelberg, Germany
| | - Einari A Niskanen
- Institute of Biomedicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jorma J Palvimo
- Institute of Biomedicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
25
|
Kargapolova Y, Rehimi R, Kayserili H, Brühl J, Sofiadis K, Zirkel A, Palikyras S, Mizi A, Li Y, Yigit G, Hoischen A, Frank S, Russ N, Trautwein J, van Bon B, Gilissen C, Laugsch M, Gusmao EG, Josipovic N, Altmüller J, Nürnberg P, Längst G, Kaiser FJ, Watrin E, Brunner H, Rada-Iglesias A, Kurian L, Wollnik B, Bouazoune K, Papantonis A. Overarching control of autophagy and DNA damage response by CHD6 revealed by modeling a rare human pathology. Nat Commun 2021; 12:3014. [PMID: 34021162 PMCID: PMC8140133 DOI: 10.1038/s41467-021-23327-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/15/2021] [Indexed: 12/18/2022] Open
Abstract
Members of the chromodomain-helicase-DNA binding (CHD) protein family are chromatin remodelers implicated in human pathologies, with CHD6 being one of its least studied members. We discovered a de novo CHD6 missense mutation in a patient clinically presenting the rare Hallermann-Streiff syndrome (HSS). We used genome editing to generate isogenic iPSC lines and model HSS in relevant cell types. By combining genomics with functional in vivo and in vitro assays, we show that CHD6 binds a cohort of autophagy and stress response genes across cell types. The HSS mutation affects CHD6 protein folding and impairs its ability to recruit co-remodelers in response to DNA damage or autophagy stimulation. This leads to accumulation of DNA damage burden and senescence-like phenotypes. We therefore uncovered a molecular mechanism explaining HSS onset via chromatin control of autophagic flux and genotoxic stress surveillance.
Collapse
Affiliation(s)
- Yulia Kargapolova
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
- Heart Center, University Hospital Cologne, Cologne, Germany.
| | - Rizwan Rehimi
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Cluster of Excellence Cellular Stress Responses in Age-associated Disorders (CECAD), University of Cologne, Cologne, Germany
| | - Hülya Kayserili
- Medical Genetics Department, Koç University School of Medicine, Istanbul, Turkey
| | - Joanna Brühl
- Institute of Molecular Biology and Tumor Research, Philipps-University Marburg, Marburg, Germany
| | | | - Anne Zirkel
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Spiros Palikyras
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Athanasia Mizi
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Yun Li
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Gökhan Yigit
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Alexander Hoischen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Stefan Frank
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Institute of Neurophysiology, University of Cologne, Cologne, Germany
- Bayer AG, Wuppertal, Germany
| | - Nicole Russ
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Institute of Neurophysiology, University of Cologne, Cologne, Germany
| | - Jonathan Trautwein
- Institute of Molecular Biology and Tumor Research, Philipps-University Marburg, Marburg, Germany
| | - Bregje van Bon
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Christian Gilissen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Magdalena Laugsch
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany
| | - Eduardo Gade Gusmao
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Natasa Josipovic
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Janine Altmüller
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Peter Nürnberg
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Gernot Längst
- Biochemistry Centre Regensburg (BRC), University of Regensburg, Regensburg, Germany
| | - Frank J Kaiser
- Institute of Human Genetics, University Hospital Essen, Essen, Germany
| | - Erwan Watrin
- Research Institute of Genetics and Development, Faculté de Médecine, Rennes, France
| | - Han Brunner
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alvaro Rada-Iglesias
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Cluster of Excellence Cellular Stress Responses in Age-associated Disorders (CECAD), University of Cologne, Cologne, Germany
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), University of Cantabria, Santander, Spain
| | - Leo Kurian
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Institute of Neurophysiology, University of Cologne, Cologne, Germany
| | - Bernd Wollnik
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells (MBExC), University of Göttingen, Göttingen, Germany
| | - Karim Bouazoune
- Institute of Molecular Biology and Tumor Research, Philipps-University Marburg, Marburg, Germany.
| | - Argyris Papantonis
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany.
| |
Collapse
|
26
|
Du J, Jing J, Yuan Y, Feng J, Han X, Chen S, Li X, Peng W, Xu J, Ho TV, Jiang X, Chai Y. Arid1a-Plagl1-Hh signaling is indispensable for differentiation-associated cell cycle arrest of tooth root progenitors. Cell Rep 2021; 35:108964. [PMID: 33826897 PMCID: PMC8132592 DOI: 10.1016/j.celrep.2021.108964] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 02/10/2021] [Accepted: 03/17/2021] [Indexed: 12/04/2022] Open
Abstract
Chromatin remodelers often show broad expression patterns in multiple cell types yet can elicit cell-specific effects in development and diseases. Arid1a binds DNA and regulates gene expression during tissue development and homeostasis. However, it is unclear how Arid1a achieves its functional specificity in regulating progenitor cells. Using the tooth root as a model, we show that loss of Arid1a impairs the differentiation-associated cell cycle arrest of tooth root progenitors through Hedgehog (Hh) signaling regulation, leading to shortened roots. Our data suggest that Plagl1, as a co-factor, endows Arid1a with its cell-type/spatial functional specificity. Furthermore, we show that loss of Arid1a leads to increased expression of Arid1b, which is also indispensable for odontoblast differentiation but is not involved in regulation of Hh signaling. This study expands our knowledge of the intricate interactions among chromatin remodelers, transcription factors, and signaling molecules during progenitor cell fate determination and lineage commitment.
Collapse
Affiliation(s)
- Jiahui Du
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA; Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Junjun Jing
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Yuan Yuan
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Jifan Feng
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Xia Han
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Shuo Chen
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Xiang Li
- Department of Physics, George Washington University, Washington, DC 20052, USA
| | - Weiqun Peng
- Department of Physics, George Washington University, Washington, DC 20052, USA
| | - Jian Xu
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Thach-Vu Ho
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Xinquan Jiang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
27
|
At the Crossroad of Gene Regulation and Genome Organization: Potential Roles for ATP-Dependent Chromatin Remodelers in the Regulation of CTCF-Mediated 3D Architecture. BIOLOGY 2021; 10:biology10040272. [PMID: 33801596 PMCID: PMC8066914 DOI: 10.3390/biology10040272] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/20/2021] [Accepted: 03/25/2021] [Indexed: 02/07/2023]
Abstract
Simple Summary The way DNA is packaged in the nucleus of a cell is important for when and how genes are expressed. There are many levels of packaging, and new techniques have revealed that long-range interactions are important for both promoting and restricting the transcription of genes. Some long-range interactions are mediated by physical loops in the genome where, like a rubber band, the ring-shaped cohesin complex loops sections of DNA bound by CCCTC-binding factor (CTCF). Both cohesin and CTCF act on DNA, and increasing evidence indicates that their function is inhibited by nucleosomes bound to the DNA. In this review, we summarize the current knowledge of how individual chromatin remodelers, which utilize ATP to move nucleosomes on DNA, facilitate or inhibit cohesin/CTCF-dependent looping interactions. Abstract In higher order organisms, the genome is assembled into a protein-dense structure called chromatin. Chromatin is spatially organized in the nucleus through hierarchical folding, which is tightly regulated both in cycling cells and quiescent cells. Assembly and folding are not one-time events in a cell’s lifetime; rather, they are subject to dynamic shifts to allow changes in transcription, DNA replication, or DNA damage repair. Chromatin is regulated at many levels, and recent tools have permitted the elucidation of specific factors involved in the maintenance and regulation of the three-dimensional (3D) genome organization. In this review/perspective, we aim to cover the potential, but relatively unelucidated, crosstalk between 3D genome architecture and the ATP-dependent chromatin remodelers with a specific focus on how the architectural proteins CTCF and cohesin are regulated by chromatin remodeling.
Collapse
|
28
|
Paakinaho V, Lempiäinen JK, Sigismondo G, Niskanen EA, Malinen M, Jääskeläinen T, Varjosalo M, Krijgsveld J, Palvimo J. SUMOylation regulates the protein network and chromatin accessibility at glucocorticoid receptor-binding sites. Nucleic Acids Res 2021; 49:1951-1971. [PMID: 33524141 PMCID: PMC7913686 DOI: 10.1093/nar/gkab032] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 01/07/2021] [Accepted: 01/12/2021] [Indexed: 12/13/2022] Open
Abstract
Glucocorticoid receptor (GR) is an essential transcription factor (TF), controlling metabolism, development and immune responses. SUMOylation regulates chromatin occupancy and target gene expression of GR in a locus-selective manner, but the mechanism of regulation has remained elusive. Here, we identify the protein network around chromatin-bound GR by using selective isolation of chromatin-associated proteins and show that the network is affected by receptor SUMOylation, with several nuclear receptor coregulators and chromatin modifiers preferring interaction with SUMOylation-deficient GR and proteins implicated in transcriptional repression preferring interaction with SUMOylation-competent GR. This difference is reflected in our chromatin binding, chromatin accessibility and gene expression data, showing that the SUMOylation-deficient GR is more potent in binding and opening chromatin at glucocorticoid-regulated enhancers and inducing expression of target loci. Blockage of SUMOylation by a SUMO-activating enzyme inhibitor (ML-792) phenocopied to a large extent the consequences of GR SUMOylation deficiency on chromatin binding and target gene expression. Our results thus show that SUMOylation modulates the specificity of GR by regulating its chromatin protein network and accessibility at GR-bound enhancers. We speculate that many other SUMOylated TFs utilize a similar regulatory mechanism.
Collapse
Affiliation(s)
- Ville Paakinaho
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | | | | | - Einari A Niskanen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Marjo Malinen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - Tiina Jääskeläinen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Markku Varjosalo
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Jeroen Krijgsveld
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg University, Medical Faculty, Heidelberg, Germany
| | - Jorma J Palvimo
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
29
|
Hoffmeister H, Fuchs A, Komives E, Groebner-Ferreira R, Strobl L, Nazet J, Heizinger L, Merkl R, Dove S, Längst G. Sequence and functional differences in the ATPase domains of CHD3 and SNF2H promise potential for selective regulability and drugability. FEBS J 2021; 288:4000-4023. [PMID: 33403747 DOI: 10.1111/febs.15699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/19/2020] [Accepted: 01/04/2021] [Indexed: 11/26/2022]
Abstract
Chromatin remodelers use the energy of ATP hydrolysis to regulate chromatin dynamics. Their impact for development and disease requires strict enzymatic control. Here, we address the differential regulability of the ATPase domain of hSNF2H and hCHD3, exhibiting similar substrate affinities and enzymatic activities. Both enzymes are comparably strongly inhibited in their ATP hydrolysis activity by the competitive ATPase inhibitor ADP. However, the nucleosome remodeling activity of SNF2H is more strongly affected than that of CHD3. Beside ADP, also IP6 inhibits the nucleosome translocation of both enzymes to varying degrees, following a competitive inhibition mode at CHD3, but not at SNF2H. Our observations are further substantiated by mutating conserved Q- and K-residues of ATPase domain motifs. The variants still bind both substrates and exhibit a wild-type similar, basal ATP hydrolysis. Apart from three CHD3 variants, none of the variants can translocate nucleosomes, suggesting for the first time that the basal ATPase activity of CHD3 is sufficient for nucleosome remodeling. Together with the ADP data, our results propose a more efficient coupling of ATP hydrolysis and remodeling in CHD3. This aspect correlates with findings that CHD3 nucleosome translocation is visible at much lower ATP concentrations than SNF2H. We propose sequence differences between the ATPase domains of both enzymes as an explanation for the functional differences and suggest that aa interactions, including the conserved Q- and K-residues distinctly regulate ATPase-dependent functions of both proteins. Our data emphasize the benefits of remodeler ATPase domains for selective drugability and/or regulability of chromatin dynamics.
Collapse
Affiliation(s)
- Helen Hoffmeister
- Department of Biochemistry, Genetics and Microbiology, Biochemistry III, University of Regensburg, Germany
| | - Andreas Fuchs
- Department of Biochemistry, Genetics and Microbiology, Biochemistry III, University of Regensburg, Germany
| | - Elizabeth Komives
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Regina Groebner-Ferreira
- Department of Biochemistry, Genetics and Microbiology, Biochemistry III, University of Regensburg, Germany
| | - Laura Strobl
- Department of Biochemistry, Genetics and Microbiology, Biochemistry III, University of Regensburg, Germany
| | - Julian Nazet
- Department of Biochemistry II, University of Regensburg, Germany
| | | | - Rainer Merkl
- Department of Biochemistry II, University of Regensburg, Germany
| | - Stefan Dove
- Department of Pharmaceutical and Medical Chemistry II, University of Regensburg, Germany
| | - Gernot Längst
- Department of Biochemistry, Genetics and Microbiology, Biochemistry III, University of Regensburg, Germany
| |
Collapse
|
30
|
Nucleosome Positioning and Spacing: From Mechanism to Function. J Mol Biol 2021; 433:166847. [PMID: 33539878 DOI: 10.1016/j.jmb.2021.166847] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 01/16/2021] [Accepted: 01/22/2021] [Indexed: 02/08/2023]
Abstract
Eukaryotes associate their genomes with histone proteins, forming nucleosome particles. Nucleosomes regulate and protect the genetic information. They often assemble into evenly spaced arrays of nucleosomes. These regular nucleosome arrays cover significant portions of the genome, in particular over genes. The presence of these evenly spaced nucleosome arrays is highly conserved throughout the entire eukaryotic domain. Here, we review the mechanisms behind the establishment of this primary structure of chromatin with special emphasis on the biogenesis of evenly spaced nucleosome arrays. We highlight the roles that transcription, nucleosome remodelers, DNA sequence, and histone density play towards the formation of evenly spaced nucleosome arrays and summarize our current understanding of their cellular functions. We end with key unanswered questions that remain to be explored to obtain an in-depth understanding of the biogenesis and function of the nucleosome landscape.
Collapse
|
31
|
Farcas AM, Nagarajan S, Cosulich S, Carroll JS. Genome-Wide Estrogen Receptor Activity in Breast Cancer. Endocrinology 2021; 162:bqaa224. [PMID: 33284960 PMCID: PMC7787425 DOI: 10.1210/endocr/bqaa224] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Indexed: 12/13/2022]
Abstract
The largest subtype of breast cancer is characterized by the expression and activity of the estrogen receptor alpha (ERalpha/ER). Although several effective therapies have significantly improved survival, the adaptability of cancer cells means that patients frequently stop responding or develop resistance to endocrine treatment. ER does not function in isolation and multiple associating factors have been reported to play a role in regulating the estrogen-driven transcriptional program. This review focuses on the dynamic interplay between some of these factors which co-occupy ER-bound regulatory elements, their contribution to estrogen signaling, and their possible therapeutic applications. Furthermore, the review illustrates how some ER association partners can influence and reprogram the genomic distribution of the estrogen receptor. As this dynamic ER activity enables cancer cell adaptability and impacts the clinical outcome, defining how this plasticity is determined is fundamental to our understanding of the mechanisms of disease progression.
Collapse
Affiliation(s)
- Anca M Farcas
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, UK
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Sankari Nagarajan
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | | | - Jason S Carroll
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
32
|
Orlando KA, Douglas AK, Abudu A, Wang Y, Tessier-Cloutier B, Su W, Peters A, Sherman LS, Moore R, Nguyen V, Negri GL, Colborne S, Morin GB, Kommoss F, Lang JD, Hendricks WP, Raupach EA, Pirrotte P, Huntsman DG, Trent JM, Parker JS, Raab JR, Weissman BE. Re-expression of SMARCA4/BRG1 in small cell carcinoma of ovary, hypercalcemic type (SCCOHT) promotes an epithelial-like gene signature through an AP-1-dependent mechanism. eLife 2020; 9:59073. [PMID: 33355532 PMCID: PMC7813545 DOI: 10.7554/elife.59073] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022] Open
Abstract
Small cell carcinoma of the ovary, hypercalcemic type (SCCOHT) is a rare and aggressive form of ovarian cancer. SCCOHT tumors have inactivating mutations in SMARCA4 (BRG1), one of the two mutually exclusive ATPases of the SWI/SNF chromatin remodeling complex. To address the role that BRG1 loss plays in SCCOHT tumorigenesis, we performed integrative multi-omic analyses in SCCOHT cell lines +/- BRG1 reexpression. BRG1 reexpression induced a gene and protein signature similar to an epithelial cell and gained chromatin accessibility sites correlated with other epithelial originating TCGA tumors. Gained chromatin accessibility and BRG1 recruited sites were strongly enriched for transcription-factor-binding motifs of AP-1 family members. Furthermore, AP-1 motifs were enriched at the promoters of highly upregulated epithelial genes. Using a dominant-negative AP-1 cell line, we found that both AP-1 DNA-binding activity and BRG1 reexpression are necessary for the gene and protein expression of epithelial genes. Our study demonstrates that BRG1 reexpression drives an epithelial-like gene and protein signature in SCCOHT cells that depends upon by AP-1 activity.
Collapse
Affiliation(s)
- Krystal Ann Orlando
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Amber K Douglas
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Aierken Abudu
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, United States
| | - Yemin Wang
- Department of Pathology and Laboratory Medicine, University of British Columbia and Department of Molecular Oncology, British Columbia Cancer Research Institute, Vancouver, Canada
| | - Basile Tessier-Cloutier
- Department of Pathology and Laboratory Medicine, University of British Columbia and Department of Molecular Oncology, British Columbia Cancer Research Institute, Vancouver, Canada.,Department of Molecular Oncology, British Columbia Cancer Research Institute, Vancouver, Canada
| | - Weiping Su
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, United States
| | - Alec Peters
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, United States
| | - Larry S Sherman
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, United States.,Department Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, United States
| | - Rayvon Moore
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Vinh Nguyen
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, United States.,Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Gian Luca Negri
- Michael Smith Genome Science Centre, British Columbia Cancer Research Institute, Vancouver, Canada
| | - Shane Colborne
- Michael Smith Genome Science Centre, British Columbia Cancer Research Institute, Vancouver, Canada
| | - Gregg B Morin
- Michael Smith Genome Science Centre, British Columbia Cancer Research Institute, Vancouver, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | | | - Jessica D Lang
- Division of Integrated Cancer Genomics, Translational Genomics Research Institute (TGen), Phoenix, United States
| | - William Pd Hendricks
- Division of Integrated Cancer Genomics, Translational Genomics Research Institute (TGen), Phoenix, United States
| | - Elizabeth A Raupach
- Division of Integrated Cancer Genomics, Translational Genomics Research Institute (TGen), Phoenix, United States
| | - Patrick Pirrotte
- Collaborative Center for Translational Mass Spectrometry, Translational Genomics Research Institute (TGen), Phoenix, United States
| | - David G Huntsman
- Department of Pathology and Laboratory Medicine, University of British Columbia and Department of Molecular Oncology, British Columbia Cancer Research Institute, Vancouver, Canada.,Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, Canada
| | - Jeffrey M Trent
- Division of Integrated Cancer Genomics, Translational Genomics Research Institute (TGen), Phoenix, United States
| | - Joel S Parker
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, United States.,Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Jesse R Raab
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, United States.,Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Bernard E Weissman
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, United States
| |
Collapse
|
33
|
Zhu T, Liao K, Zhou R, Xia C, Xie W. ATAC-seq with unique molecular identifiers improves quantification and footprinting. Commun Biol 2020; 3:675. [PMID: 33188264 PMCID: PMC7666144 DOI: 10.1038/s42003-020-01403-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 10/21/2020] [Indexed: 12/20/2022] Open
Abstract
ATAC-seq (Assay for Transposase-Accessible Chromatin with high-throughput sequencing) provides an efficient way to analyze nucleosome-free regions and has been applied widely to identify transcription factor footprints. Both applications rely on the accurate quantification of insertion events of the hyperactive transposase Tn5. However, due to the presence of the PCR amplification, it is impossible to accurately distinguish independently generated identical Tn5 insertion events from PCR duplicates using the standard ATAC-seq technique. Removing PCR duplicates based on mapping coordinates introduces increasing bias towards highly accessible chromatin regions. To overcome this limitation, we establish a UMI-ATAC-seq technique by incorporating unique molecular identifiers (UMIs) into standard ATAC-seq procedures. UMI-ATAC-seq can rescue about 20% of reads that are mistaken as PCR duplicates in standard ATAC-seq in our study. We demonstrate that UMI-ATAC-seq could more accurately quantify chromatin accessibility and significantly improve the sensitivity of identifying transcription factor footprints. An analytic pipeline is developed to facilitate the application of UMI-ATAC-seq, and it is available at https://github.com/tzhu-bio/UMI-ATAC-seq .
Collapse
Affiliation(s)
- Tao Zhu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070, Wuhan, China
| | - Keyan Liao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070, Wuhan, China
| | - Rongfang Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070, Wuhan, China
| | - Chunjiao Xia
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070, Wuhan, China
| | - Weibo Xie
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070, Wuhan, China.
- Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, 430070, Wuhan, China.
| |
Collapse
|
34
|
Patty BJ, Hainer SJ. Non-Coding RNAs and Nucleosome Remodeling Complexes: An Intricate Regulatory Relationship. BIOLOGY 2020; 9:E213. [PMID: 32784701 PMCID: PMC7465399 DOI: 10.3390/biology9080213] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/30/2020] [Accepted: 08/06/2020] [Indexed: 12/17/2022]
Abstract
Eukaryotic genomes are pervasively transcribed, producing both coding and non-coding RNAs (ncRNAs). ncRNAs are diverse and a critical family of biological molecules, yet much remains unknown regarding their functions and mechanisms of regulation. ATP-dependent nucleosome remodeling complexes, in modifying chromatin structure, play an important role in transcriptional regulation. Recent findings show that ncRNAs regulate nucleosome remodeler activities at many levels and that ncRNAs are regulatory targets of nucleosome remodelers. Further, a series of recent screens indicate this network of regulatory interactions is more expansive than previously appreciated. Here, we discuss currently described regulatory interactions between ncRNAs and nucleosome remodelers and contextualize their biological functions.
Collapse
Affiliation(s)
| | - Sarah J. Hainer
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA;
| |
Collapse
|
35
|
Goodman JV, Yamada T, Yang Y, Kong L, Wu DY, Zhao G, Gabel HW, Bonni A. The chromatin remodeling enzyme Chd4 regulates genome architecture in the mouse brain. Nat Commun 2020; 11:3419. [PMID: 32647123 PMCID: PMC7347877 DOI: 10.1038/s41467-020-17065-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 06/05/2020] [Indexed: 12/13/2022] Open
Abstract
The development and function of the brain require tight control of gene expression. Genome architecture is thought to play a critical regulatory role in gene expression, but the mechanisms governing genome architecture in the brain in vivo remain poorly understood. Here, we report that conditional knockout of the chromatin remodeling enzyme Chd4 in granule neurons of the mouse cerebellum increases accessibility of gene regulatory sites genome-wide in vivo. Conditional knockout of Chd4 promotes recruitment of the architectural protein complex cohesin preferentially to gene enhancers in granule neurons in vivo. Importantly, in vivo profiling of genome architecture reveals that conditional knockout of Chd4 strengthens interactions among developmentally repressed contact domains as well as genomic loops in a manner that tightly correlates with increased accessibility, enhancer activity, and cohesin occupancy at these sites. Collectively, our findings define a role for chromatin remodeling in the control of genome architecture organization in the mammalian brain.
Collapse
Affiliation(s)
- Jared V Goodman
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
- Medical Scientist Training Program, Washington University School of Medicine, St. Louis, MO, USA
| | - Tomoko Yamada
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
- Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - Yue Yang
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - Lingchun Kong
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Dennis Y Wu
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Guoyan Zhao
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Harrison W Gabel
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Azad Bonni
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
36
|
Loss of ISWI ATPase SMARCA5 (SNF2H) in Acute Myeloid Leukemia Cells Inhibits Proliferation and Chromatid Cohesion. Int J Mol Sci 2020; 21:ijms21062073. [PMID: 32197313 PMCID: PMC7139293 DOI: 10.3390/ijms21062073] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/11/2020] [Accepted: 03/16/2020] [Indexed: 01/27/2023] Open
Abstract
ISWI chromatin remodeling ATPase SMARCA5 (SNF2H) is a well-known factor for its role in regulation of DNA access via nucleosome sliding and assembly. SMARCA5 transcriptionally inhibits the myeloid master regulator PU.1. Upregulation of SMARCA5 was previously observed in CD34+ hematopoietic progenitors of acute myeloid leukemia (AML) patients. Since high levels of SMARCA5 are necessary for intensive cell proliferation and cell cycle progression of developing hematopoietic stem and progenitor cells in mice, we reasoned that removal of SMARCA5 enzymatic activity could affect the cycling or undifferentiated state of leukemic progenitor-like clones. Indeed, we observed that CRISPR/cas9-mediated SMARCA5 knockout in AML cell lines (S5KO) inhibited the cell cycle progression. We also observed that the SMARCA5 deletion induced karyorrhexis and nuclear budding as well as increased the ploidy, indicating its role in mitotic division of AML cells. The cytogenetic analysis of S5KO cells revealed the premature chromatid separation. We conclude that deleting SMARCA5 in AML blocks leukemic proliferation and chromatid cohesion.
Collapse
|
37
|
Stallcup MR, Poulard C. Gene-Specific Actions of Transcriptional Coregulators Facilitate Physiological Plasticity: Evidence for a Physiological Coregulator Code. Trends Biochem Sci 2020; 45:497-510. [PMID: 32413325 DOI: 10.1016/j.tibs.2020.02.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/24/2020] [Accepted: 02/10/2020] [Indexed: 01/14/2023]
Abstract
The actions of transcriptional coregulators are highly gene-specific, that is, each coregulator is required only for a subset of the genes regulated by a specific transcription factor. These coregulator-specific gene subsets often represent selected physiological responses among multiple pathways targeted by a transcription factor. Regulating the activity of a coregulator via post-translational modifications would thus affect only a subset of the transcription factor's physiological actions. Using the context of transcriptional regulation by steroid hormone receptors, this review focuses on gene-specific actions of coregulators and evidence linking individual coregulators with specific physiological pathways. Such evidence suggests that there is a 'physiological coregulator code', which represents a fertile area for future research with important clinical implications.
Collapse
Affiliation(s)
- Michael R Stallcup
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA90089-9176, USA.
| | - Coralie Poulard
- Université de Lyon, F-69000 Lyon, France; Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France; CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| |
Collapse
|
38
|
Trizzino M, Barbieri E, Petracovici A, Wu S, Welsh SA, Owens TA, Licciulli S, Zhang R, Gardini A. The Tumor Suppressor ARID1A Controls Global Transcription via Pausing of RNA Polymerase II. Cell Rep 2019; 23:3933-3945. [PMID: 29949775 DOI: 10.1016/j.celrep.2018.05.097] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/20/2018] [Accepted: 05/30/2018] [Indexed: 12/17/2022] Open
Abstract
AT-rich interactive domain-containing proteins 1A and 1B (ARID1A and ARID1B) are mutually exclusive subunits of the chromatin remodeler SWI/SNF. ARID1A is the most frequently mutated chromatin regulator across all cancers, and ovarian clear cell carcinoma (OCCC) carries the highest prevalence of ARID1A mutations (∼57%). Despite evidence implicating ARID1A in tumorigenesis, the mechanism remains elusive. Here, we demonstrate that ARID1A binds active regulatory elements in OCCC. Depletion of ARID1A represses RNA polymerase II (RNAPII) transcription but results in modest changes to accessibility. Specifically, pausing of RNAPII is severely impaired after loss of ARID1A. Compromised pausing results in transcriptional dysregulation of active genes, which is compensated by upregulation of ARID1B. However, a subset of ARID1A-dependent genes is not rescued by ARID1B, including many p53 and estrogen receptor (ESR1) targets. Our results provide insight into ARID1A-mediated tumorigenesis and unveil functions of SWI/SNF in modulating RNAPII dynamics.
Collapse
Affiliation(s)
- Marco Trizzino
- The Wistar Institute, Gene Expression and Regulation Program, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - Elisa Barbieri
- The Wistar Institute, Gene Expression and Regulation Program, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - Ana Petracovici
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Shuai Wu
- The Wistar Institute, Gene Expression and Regulation Program, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - Sarah A Welsh
- The Wistar Institute, Gene Expression and Regulation Program, 3601 Spruce Street, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Tori A Owens
- The Wistar Institute, Gene Expression and Regulation Program, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - Silvia Licciulli
- The Wistar Institute, Gene Expression and Regulation Program, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - Rugang Zhang
- The Wistar Institute, Gene Expression and Regulation Program, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - Alessandro Gardini
- The Wistar Institute, Gene Expression and Regulation Program, 3601 Spruce Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
39
|
Ho PJ, Lloyd SM, Bao X. Unwinding chromatin at the right places: how BAF is targeted to specific genomic locations during development. Development 2019; 146:146/19/dev178780. [PMID: 31570369 DOI: 10.1242/dev.178780] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The BAF (SWI/SNF) chromatin remodeling complex plays a crucial role in modulating spatiotemporal gene expression during mammalian development. Although its remodeling activity was characterized in vitro decades ago, the complex actions of BAF in vivo have only recently begun to be unraveled. In living cells, BAF only binds to and remodels a subset of genomic locations. This selectivity of BAF genomic targeting is crucial for cell-type specification and for mediating precise responses to environmental signals. Here, we provide an overview of the distinct molecular mechanisms modulating BAF chromatin binding, including its combinatory assemblies, DNA/histone modification-binding modules and post-translational modifications, as well as its interactions with proteins, RNA and lipids. This Review aims to serve as a primer for future studies to decode the actions of BAF in developmental processes.
Collapse
Affiliation(s)
- Patric J Ho
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Sarah M Lloyd
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Xiaomin Bao
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA .,Department of Dermatology, Northwestern University, Evanston, IL 60208, USA.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
40
|
Sathyan KM, McKenna BD, Anderson WD, Duarte FM, Core L, Guertin MJ. An improved auxin-inducible degron system preserves native protein levels and enables rapid and specific protein depletion. Genes Dev 2019; 33:1441-1455. [PMID: 31467088 PMCID: PMC6771385 DOI: 10.1101/gad.328237.119] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/18/2019] [Indexed: 12/16/2022]
Abstract
Rapid perturbation of protein function permits the ability to define primary molecular responses while avoiding downstream cumulative effects of protein dysregulation. The auxin-inducible degron (AID) system was developed as a tool to achieve rapid and inducible protein degradation in nonplant systems. However, tagging proteins at their endogenous loci results in chronic auxin-independent degradation by the proteasome. To correct this deficiency, we expressed the auxin response transcription factor (ARF) in an improved inducible degron system. ARF is absent from previously engineered AID systems but is a critical component of native auxin signaling. In plants, ARF directly interacts with AID in the absence of auxin, and we found that expression of the ARF PB1 (Phox and Bem1) domain suppresses constitutive degradation of AID-tagged proteins. Moreover, the rate of auxin-induced AID degradation is substantially faster in the ARF-AID system. To test the ARF-AID system in a quantitative and sensitive manner, we measured genome-wide changes in nascent transcription after rapidly depleting the ZNF143 transcription factor. Transcriptional profiling indicates that ZNF143 activates transcription in cis and regulates promoter-proximal paused RNA polymerase density. Rapidly inducible degradation systems that preserve the target protein's native expression levels and patterns will revolutionize the study of biological systems by enabling specific and temporally defined protein dysregulation.
Collapse
Affiliation(s)
- Kizhakke Mattada Sathyan
- Biochemistry and Molecular Genetics Department, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Brian D McKenna
- Biochemistry and Molecular Genetics Department, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Warren D Anderson
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Fabiana M Duarte
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Leighton Core
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Michael J Guertin
- Biochemistry and Molecular Genetics Department, University of Virginia, Charlottesville, Virginia 22908, USA.,Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia 22908, USA.,Cancer Center, University of Virginia, Charlottesville, Virginia 22908, USA
| |
Collapse
|
41
|
Sun Y, Miao N, Sun T. Detect accessible chromatin using ATAC-sequencing, from principle to applications. Hereditas 2019; 156:29. [PMID: 31427911 PMCID: PMC6696680 DOI: 10.1186/s41065-019-0105-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/12/2019] [Indexed: 02/07/2023] Open
Abstract
Background Chromatin accessibility is crucial for gene expression regulation in specific cells and in multiple biological processes. Assay for Transposase Accessible Chromatin with high-throughput sequencing (ATAC-seq) is an effective way to reveal chromatin accessibility at a genome-wide level. Through ATAC-seq, produced reads from a small number of cells reflect accessible regions that correspond to nucleosome positioning and transcription factor binding sites, due to probing hyperactive Tn5 transposase to DNA sequence. Conclusion In this review, we summarize both principle and features of ATAC-seq, highlight its applications in basic and clinical research. ATAC-seq has generated comprehensive chromatin accessible maps, and is becoming a powerful tool to understand dynamic gene expression regulation in stem cells, early embryos and tumors.
Collapse
Affiliation(s)
- Yuanyuan Sun
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, 668 Jimei Road, Xiamen, 361021 Fujian China
| | - Nan Miao
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, 668 Jimei Road, Xiamen, 361021 Fujian China
| | - Tao Sun
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, 668 Jimei Road, Xiamen, 361021 Fujian China
| |
Collapse
|
42
|
Meers MP, Janssens DH, Henikoff S. Pioneer Factor-Nucleosome Binding Events during Differentiation Are Motif Encoded. Mol Cell 2019; 75:562-575.e5. [PMID: 31253573 PMCID: PMC6697550 DOI: 10.1016/j.molcel.2019.05.025] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 04/30/2019] [Accepted: 05/15/2019] [Indexed: 12/12/2022]
Abstract
Although the in vitro structural and in vivo spatial characteristics of transcription factor (TF) binding are well defined, TF interactions with chromatin and other companion TFs during development are poorly understood. To analyze such interactions in vivo, we profiled several TFs across a time course of human embryonic stem cell differentiation and studied their interactions with nucleosomes and co-occurring TFs by enhanced chromatin occupancy (EChO), a computational strategy for classifying TF interactions with chromatin. EChO shows that multiple individual TFs can employ either direct DNA binding or "pioneer" nucleosome binding at different enhancer targets. Nucleosome binding is not exclusively confined to inaccessible chromatin but rather correlated with local binding of other TFs and degeneracy at key bases in the pioneer factor target motif responsible for direct DNA binding. Our strategy reveals a dynamic exchange of TFs at enhancers across developmental time that is aided by pioneer nucleosome binding.
Collapse
Affiliation(s)
- Michael P Meers
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N, Seattle, WA 98109, USA
| | - Derek H Janssens
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N, Seattle, WA 98109, USA
| | - Steven Henikoff
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N, Seattle, WA 98109, USA; Howard Hughes Medical Institute, USA.
| |
Collapse
|
43
|
Kubik S, Bruzzone MJ, Challal D, Dreos R, Mattarocci S, Bucher P, Libri D, Shore D. Opposing chromatin remodelers control transcription initiation frequency and start site selection. Nat Struct Mol Biol 2019; 26:744-754. [PMID: 31384063 DOI: 10.1038/s41594-019-0273-3] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 06/28/2019] [Indexed: 12/31/2022]
Abstract
Precise nucleosome organization at eukaryotic promoters is thought to be generated by multiple chromatin remodeler (CR) enzymes and to affect transcription initiation. Using an integrated analysis of chromatin remodeler binding and nucleosome occupancy following rapid remodeler depletion, we investigated the interplay between these enzymes and their impact on transcription in yeast. We show that many promoters are affected by multiple CRs that operate in concert or in opposition to position the key transcription start site (TSS)-associated +1 nucleosome. We also show that nucleosome movement after CR inactivation usually results from the activity of another CR and that in the absence of any remodeling activity, +1 nucleosomes largely maintain their positions. Finally, we present functional assays suggesting that +1 nucleosome positioning often reflects a trade-off between maximizing RNA polymerase recruitment and minimizing transcription initiation at incorrect sites. Our results provide a detailed picture of fundamental mechanisms linking promoter nucleosome architecture to transcription initiation.
Collapse
Affiliation(s)
- Slawomir Kubik
- Department of Molecular Biology and Institute of Genetics and Genomics of Geneva (iGE3), Geneva, Switzerland
| | - Maria Jessica Bruzzone
- Department of Molecular Biology and Institute of Genetics and Genomics of Geneva (iGE3), Geneva, Switzerland
| | - Drice Challal
- Institut Jacques Monod, CNRS-Université Paris Diderot, Paris, France
| | - René Dreos
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Stefano Mattarocci
- Department of Molecular Biology and Institute of Genetics and Genomics of Geneva (iGE3), Geneva, Switzerland
| | - Philipp Bucher
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Domenico Libri
- Institut Jacques Monod, CNRS-Université Paris Diderot, Paris, France
| | - David Shore
- Department of Molecular Biology and Institute of Genetics and Genomics of Geneva (iGE3), Geneva, Switzerland.
| |
Collapse
|
44
|
Johnson TA, Chereji RV, Stavreva DA, Morris SA, Hager GL, Clark DJ. Conventional and pioneer modes of glucocorticoid receptor interaction with enhancer chromatin in vivo. Nucleic Acids Res 2019; 46:203-214. [PMID: 29126175 PMCID: PMC5758879 DOI: 10.1093/nar/gkx1044] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 10/23/2017] [Indexed: 11/14/2022] Open
Abstract
Glucocorticoid hormone plays a major role in metabolism and disease. The hormone-bound glucocorticoid receptor (GR) binds to a specific set of enhancers in different cell types, resulting in unique patterns of gene expression. We have addressed the role of chromatin structure in GR binding by mapping nucleosome positions in mouse adenocarcinoma cells. Before hormone treatment, GR-enhancers exist in one of three chromatin states: (i) Nucleosome-depleted enhancers that are DNase I-hypersensitive, associated with the Brg1 chromatin remodeler and flanked by nucleosomes incorporating histone H2A.Z. (ii) Nucleosomal enhancers that are DNase I-hypersensitive, marked by H2A.Z and associated with Brg1. (iii) Nucleosomal enhancers that are inaccessible to DNase I, incorporate little or no H2A.Z and lack Brg1. Hormone-induced GR binding results in nucleosome shifts at all types of GR-enhancer, coinciding with increased recruitment of Brg1. We propose that nucleosome-depleted GR-enhancers are formed and maintained by other transcription factors which recruit Brg1 whereas, at nucleosomal enhancers, GR behaves like a pioneer factor, interacting with nucleosomal sites and recruiting Brg1 to remodel the chromatin.
Collapse
Affiliation(s)
- Thomas A Johnson
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Razvan V Chereji
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute for Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Diana A Stavreva
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Stephanie A Morris
- Office of Cancer Nanotechnology Research, Center for Strategic Scientific Initiatives, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Gordon L Hager
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - David J Clark
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute for Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
45
|
Zikmund T, Kokavec J, Turkova T, Savvulidi F, Paszekova H, Vodenkova S, Sedlacek R, Skoultchi AI, Stopka T. ISWI ATPase Smarca5 Regulates Differentiation of Thymocytes Undergoing β-Selection. THE JOURNAL OF IMMUNOLOGY 2019; 202:3434-3446. [PMID: 31068388 DOI: 10.4049/jimmunol.1801684] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 04/15/2019] [Indexed: 01/13/2023]
Abstract
Development of lymphoid progenitors requires a coordinated regulation of gene expression, DNA replication, and gene rearrangement. Chromatin-remodeling activities directed by SWI/SNF2 superfamily complexes play important roles in these processes. In this study, we used a conditional knockout mouse model to investigate the role of Smarca5, a member of the ISWI subfamily of such complexes, in early lymphocyte development. Smarca5 deficiency results in a developmental block at the DN3 stage of αβ thymocytes and pro-B stage of early B cells at which the rearrangement of Ag receptor loci occurs. It also disturbs the development of committed (CD73+) γδ thymocytes. The αβ thymocyte block is accompanied by massive apoptotic depletion of β-selected double-negative DN3 cells and premitotic arrest of CD4/CD8 double-positive cells. Although Smarca5-deficient αβ T cell precursors that survived apoptosis were able to undergo a successful TCRβ rearrangement, they exhibited a highly abnormal mRNA profile, including the persistent expression of CD44 and CD25 markers characteristic of immature cells. We also observed that the p53 pathway became activated in these cells and that a deficiency of p53 partially rescued the defect in thymus cellularity (in contrast to early B cells) of Smarca5-deficient mice. However, the activation of p53 was not primarily responsible for the thymocyte developmental defects observed in the Smarca5 mutants. Our results indicate that Smarca5 plays a key role in the development of thymocytes undergoing β-selection, γδ thymocytes, and also B cell progenitors by regulating the transcription of early differentiation programs.
Collapse
Affiliation(s)
- Tomas Zikmund
- BIOCEV, First Faculty of Medicine, Charles University, Vestec 25250, Czech Republic
| | - Juraj Kokavec
- BIOCEV, First Faculty of Medicine, Charles University, Vestec 25250, Czech Republic
| | - Tereza Turkova
- BIOCEV, First Faculty of Medicine, Charles University, Vestec 25250, Czech Republic
| | - Filipp Savvulidi
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague 12853, Czech Republic
| | - Helena Paszekova
- BIOCEV, First Faculty of Medicine, Charles University, Vestec 25250, Czech Republic
| | - Sona Vodenkova
- Institute of Experimental Medicine, Czech Academy of Sciences, Prague 14220, Czech Republic.,Third Faculty of Medicine, Charles University, Prague 10000, Czech Republic
| | - Radislav Sedlacek
- Czech Centre for Phenogenomics, Institute of Molecular Genetics, Czech Academy of Sciences, Vestec 25250, Czech Republic; and
| | - Arthur I Skoultchi
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx 10461, NY
| | - Tomas Stopka
- BIOCEV, First Faculty of Medicine, Charles University, Vestec 25250, Czech Republic;
| |
Collapse
|
46
|
Ren J, Finney R, Ni K, Cam M, Muegge K. The chromatin remodeling protein Lsh alters nucleosome occupancy at putative enhancers and modulates binding of lineage specific transcription factors. Epigenetics 2019; 14:277-293. [PMID: 30861354 PMCID: PMC6557562 DOI: 10.1080/15592294.2019.1582275] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 01/07/2019] [Accepted: 02/07/2019] [Indexed: 12/12/2022] Open
Abstract
Dynamic regulation of chromatin accessibility is a key feature of cellular differentiation during embryogenesis, but the precise factors that control access to chromatin remain largely unknown. Lsh/HELLS is critical for normal development and mutations of Lsh in human cause the ICF (Immune deficiency, Centromeric instability, Facial anomalies) syndrome, a severe immune disorder with multiple organ deficiencies. We report here that Lsh, previously known to regulate DNA methylation level, has a genome wide chromatin remodeling function. Using micrococcal nuclease (MNase)-seq analysis, we demonstrate that Lsh protects MNase accessibility at transcriptional regulatory regions characterized by DNase I hypersensitivity and certain histone 3 (H3) tail modifications associated with enhancers. Using an auxin-inducible degron system, allowing proteolytical degradation of Lsh, we show that Lsh mediated changes in nucleosome occupancy are independent of DNA methylation level and are characterized by reduced H3 occupancy. While Lsh mediated nucleosome occupancy prevents binding sites for transcription factors in wild type cells, depletion of Lsh leads to an increase in binding of ectopically expressed tissue specific transcription factors to their respective binding sites. Our data suggests that Lsh mediated chromatin remodeling can modulate nucleosome positioning at a subset of putative enhancers contributing to the preservation of cellular identity through regulation of accessibility.
Collapse
Affiliation(s)
- Jianke Ren
- Mouse Cancer Genetics Program, National Cancer Institute, Frederick, MD, USA
| | - Richard Finney
- CCR Collaborative Bioinformatics Resource, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Kai Ni
- Mouse Cancer Genetics Program, National Cancer Institute, Frederick, MD, USA
| | - Maggie Cam
- CCR Collaborative Bioinformatics Resource, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Kathrin Muegge
- Mouse Cancer Genetics Program, National Cancer Institute, Frederick, MD, USA
- Frederick National Laboratory for Cancer Research, Basic Science Program, Leidos Biomedical Research, Inc., Frederick, MD, USA
| |
Collapse
|
47
|
Giles KA, Gould CM, Du Q, Skvortsova K, Song JZ, Maddugoda MP, Achinger-Kawecka J, Stirzaker C, Clark SJ, Taberlay PC. Integrated epigenomic analysis stratifies chromatin remodellers into distinct functional groups. Epigenetics Chromatin 2019; 12:12. [PMID: 30755246 PMCID: PMC6371444 DOI: 10.1186/s13072-019-0258-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 02/05/2019] [Indexed: 12/19/2022] Open
Abstract
Background ATP-dependent chromatin remodelling complexes are responsible for establishing and maintaining the positions of nucleosomes. Chromatin remodellers are targeted to chromatin by transcription factors and non-coding RNA to remodel the chromatin into functional states. However, the influence of chromatin remodelling on shaping the functional epigenome is not well understood. Moreover, chromatin remodellers have not been extensively explored as a collective group across two-dimensional and three-dimensional epigenomic layers. Results Here, we have integrated the genome-wide binding profiles of eight chromatin remodellers together with DNA methylation, nucleosome positioning, histone modification and Hi-C chromosomal contacts to reveal that chromatin remodellers can be stratified into two functional groups. Group 1 (BRG1, SNF2H, CHD3 and CHD4) has a clear preference for binding at ‘actively marked’ chromatin and Group 2 (BRM, INO80, SNF2L and CHD1) for ‘repressively marked’ chromatin. We find that histone modifications and chromatin architectural features, but not DNA methylation, stratify the remodellers into these functional groups. Conclusions Our findings suggest that chromatin remodelling events are synchronous and that chromatin remodellers themselves should be considered simultaneously and not as individual entities in isolation or necessarily by structural similarity, as they are traditionally classified. Their coordinated function should be considered by preference for chromatin features in order to gain a more accurate and comprehensive picture of chromatin regulation. Electronic supplementary material The online version of this article (10.1186/s13072-019-0258-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Katherine A Giles
- Epigenetics Research, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia
| | - Cathryn M Gould
- Epigenetics Research, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia
| | - Qian Du
- Epigenetics Research, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia
| | - Ksenia Skvortsova
- Epigenetics Research, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia
| | - Jenny Z Song
- Epigenetics Research, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia
| | - Madhavi P Maddugoda
- Epigenetics Research, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia
| | - Joanna Achinger-Kawecka
- Epigenetics Research, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia.,St Vincent's Clinical School, UNSW Australia, Sydney, NSW, 2000, Australia
| | - Clare Stirzaker
- Epigenetics Research, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia.,St Vincent's Clinical School, UNSW Australia, Sydney, NSW, 2000, Australia
| | - Susan J Clark
- Epigenetics Research, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia.,St Vincent's Clinical School, UNSW Australia, Sydney, NSW, 2000, Australia
| | - Phillippa C Taberlay
- St Vincent's Clinical School, UNSW Australia, Sydney, NSW, 2000, Australia. .,School of Medicine, Collage of Health and Medicine, University of Tasmania, Hobart, TAS, 7000, Australia.
| |
Collapse
|
48
|
Schoberleitner I, Mutti A, Sah A, Wille A, Gimeno-Valiente F, Piatti P, Kharitonova M, Torres L, López-Rodas G, Liu JJ, Singewald N, Schwarzer C, Lusser A. Role for Chromatin Remodeling Factor Chd1 in Learning and Memory. Front Mol Neurosci 2019; 12:3. [PMID: 30728766 PMCID: PMC6351481 DOI: 10.3389/fnmol.2019.00003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 01/08/2019] [Indexed: 12/21/2022] Open
Abstract
Precise temporal and spatial regulation of gene expression in the brain is a prerequisite for cognitive processes such as learning and memory. Epigenetic mechanisms that modulate the chromatin structure have emerged as important regulators in this context. While posttranslational modification of histones or the modification of DNA bases have been examined in detail in many studies, the role of ATP-dependent chromatin remodeling factors (ChRFs) in learning- and memory-associated gene regulation has largely remained obscure. Here we present data that implicate the highly conserved chromatin assembly and remodeling factor Chd1 in memory formation and the control of immediate early gene (IEG) response in the hippocampus. We used various paradigms to assess short-and long-term memory in mice bearing a mutated Chd1 gene that gives rise to an N-terminally truncated protein. Our data demonstrate that the Chd1 mutation negatively affects long-term object recognition and short- and long-term spatial memory. We found that Chd1 regulates hippocampal expression of the IEG early growth response 1 (Egr1) and activity-regulated cytoskeleton-associated (Arc) but not cFos and brain derived neurotrophic factor (Bdnf), because the Chd1-mutation led to dysregulation of Egr1 and Arc expression in naive mice and in mice analyzed at different stages of object location memory (OLM) testing. Of note, Chd1 likely regulates Egr1 in a direct manner, because chromatin immunoprecipitation (ChIP) assays revealed enrichment of Chd1 upon stimulation at the Egr1 genomic locus in the hippocampus and in cultured cells. Together these data support a role for Chd1 as a critical regulator of molecular mechanisms governing memory-related processes, and they show that this function involves the N-terminal serine-rich region of the protein.
Collapse
Affiliation(s)
- Ines Schoberleitner
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Anna Mutti
- Department of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Anupam Sah
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Centre for Molecular Biosciences (CMBI), Leopold-Franzens University of Innsbruck, Innsbruck, Austria
| | - Alexandra Wille
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Francisco Gimeno-Valiente
- Institute of Health Research, INCLIVA, and Department of Biochemistry and Molecular Biology, University of Valencia, Valencia, Spain
| | - Paolo Piatti
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Maria Kharitonova
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Centre for Molecular Biosciences (CMBI), Leopold-Franzens University of Innsbruck, Innsbruck, Austria
| | - Luis Torres
- Institute of Health Research, INCLIVA, and Department of Biochemistry and Molecular Biology, University of Valencia, Valencia, Spain
| | - Gerardo López-Rodas
- Institute of Health Research, INCLIVA, and Department of Biochemistry and Molecular Biology, University of Valencia, Valencia, Spain
| | - Jeffrey J. Liu
- Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, Munich, Germany
| | - Nicolas Singewald
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Centre for Molecular Biosciences (CMBI), Leopold-Franzens University of Innsbruck, Innsbruck, Austria
| | - Christoph Schwarzer
- Department of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Alexandra Lusser
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
49
|
The Role of Nucleosomes in Epigenetic Gene Regulation. Clin Epigenetics 2019. [DOI: 10.1007/978-981-13-8958-0_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
50
|
Gatchalian J, Malik S, Ho J, Lee DS, Kelso TWR, Shokhirev MN, Dixon JR, Hargreaves DC. A non-canonical BRD9-containing BAF chromatin remodeling complex regulates naive pluripotency in mouse embryonic stem cells. Nat Commun 2018; 9:5139. [PMID: 30510198 PMCID: PMC6277444 DOI: 10.1038/s41467-018-07528-9] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 11/06/2018] [Indexed: 12/19/2022] Open
Abstract
The role of individual subunits in the targeting and function of the mammalian BRG1-associated factors (BAF) complex in embryonic stem cell (ESC) pluripotency maintenance has not yet been elucidated. Here we find that the Bromodomain containing protein 9 (BRD9) and Glioma tumor suppressor candidate region gene 1 (GLTSCR1) or its paralog GLTSCR1-like (GLTSCR1L) define a smaller, non-canonical BAF complex (GBAF complex) in mouse ESCs that is distinct from the canonical ESC BAF complex (esBAF). GBAF and esBAF complexes are targeted to different genomic features, with GBAF co-localizing with key regulators of naive pluripotency, which is consistent with its specific function in maintaining naive pluripotency gene expression. BRD9 interacts with BRD4 in a bromodomain-dependent fashion, which leads to the recruitment of GBAF complexes to chromatin, explaining the functional similarity between these epigenetic regulators. Together, our results highlight the biological importance of BAF complex heterogeneity in maintaining the transcriptional network of pluripotency. The BAF complex is a multi-subunit chromatin remodeling complex that plays important roles in transcription regulation. Here the authors provide evidence that BRD9 and GLTSCR1/BICRA or its paralog GLTSCR1-like/BICRAL define a non-canonical BAF complex that regulates naive pluripotency in mouse embryonic stem cells.
Collapse
Affiliation(s)
- Jovylyn Gatchalian
- Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Shivani Malik
- Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Josephine Ho
- Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Dong-Sung Lee
- Peptide Biology Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Timothy W R Kelso
- Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Maxim N Shokhirev
- Razavi Newman Integrative Genomics and Bioinformatics Core, Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Jesse R Dixon
- Peptide Biology Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Diana C Hargreaves
- Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd, La Jolla, CA, 92037, USA.
| |
Collapse
|