1
|
Spangler RK, Jonnalagadda K, Ward JD, Partch CL. A wrinkle in timers: evolutionary rewiring of conserved biological timekeepers. Trends Biochem Sci 2025; 50:344-355. [PMID: 39952882 DOI: 10.1016/j.tibs.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/16/2025] [Accepted: 01/21/2025] [Indexed: 02/17/2025]
Abstract
Biological timing mechanisms are intrinsic to all organisms, orchestrating the temporal coordination of biological events through complex genetic networks. Circadian rhythms and developmental timers utilize distinct timekeeping mechanisms. This review summarizes the molecular basis for circadian rhythms in mammals and Drosophila, and recent work leveraging these clocks to understand temporal regulation in Caenorhabditis elegans development. We describe the evolutionary connections between distinct timing mechanisms and discuss recent insights into the rewiring of core clock components in development. By integrating findings from circadian and developmental studies with biochemical and structural analyses of conserved components, we aim to illuminate the molecular basis of nematode timing mechanisms and highlight broader insights into biological timing across species.
Collapse
Affiliation(s)
- Rebecca K Spangler
- Department of Chemistry and Biochemistry, University of California - Santa Cruz, Santa Cruz, CA 95064, USA
| | - Keya Jonnalagadda
- Department of Molecular, Cell, and Developmental Biology, University of California - Santa Cruz, Santa Cruz, CA 95064, USA
| | - Jordan D Ward
- Department of Molecular, Cell, and Developmental Biology, University of California - Santa Cruz, Santa Cruz, CA 95064, USA
| | - Carrie L Partch
- Department of Chemistry and Biochemistry, University of California - Santa Cruz, Santa Cruz, CA 95064, USA; Center for Circadian Biology, University of California - Santa Diego, La Jolla, CA 92093, USA; Howard Hughes Medical Institute, University of California - Santa Cruz, Santa Cruz, CA 95064, USA.
| |
Collapse
|
2
|
Flores E, Acharya N, Castañeda CA, Sukenik S. Single-point mutations in disordered proteins: Linking sequence, ensemble, and function. Curr Opin Struct Biol 2025; 91:102987. [PMID: 39914051 DOI: 10.1016/j.sbi.2025.102987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 03/08/2025]
Abstract
Mutations in genomic DNA often result in single-point missense mutations in proteins. For folded proteins, the functional effect of these missense mutations can often be understood by their impact on structure. However, missense mutations in intrinsically disordered protein regions (IDRs) remain poorly understood. In IDRs, function can depend on the structural ensemble- the collection of accessible, interchanging conformations that is encoded in their amino acid sequence. We argue that, analogously to folded proteins, single-point mutations in IDRs can alter their structural ensemble, and consequently alter their biological function. To make this argument, we first provide experimental evidence from the literature showcasing how single-point missense mutations in IDRs affect their ensemble dimensions. Then, we use genomic data from patients to show that disease-linked missense mutations occurring in IDRs can, in many cases, significantly alter IDR structural ensembles. We hope this analysis prompts further study of disease-linked, single-point mutations in IDRs.
Collapse
Affiliation(s)
- Eduardo Flores
- Department of Chemistry and Biochemistry, UC Merced, United States
| | | | - Carlos A Castañeda
- Department of Chemistry, Syracuse University, United States; Department of Biology, Syracuse University, United States; Bioinspired Institute, Syracuse University, United States.
| | - Shahar Sukenik
- Department of Chemistry and Biochemistry, UC Merced, United States; Department of Chemistry, Syracuse University, United States; Bioinspired Institute, Syracuse University, United States.
| |
Collapse
|
3
|
Yin D, Zhong Z, Zeng F, Xu Z, Li J, Ren W, Yang G, Wang H, Xu S. Evolution of canonical circadian clock genes underlies unique sleep strategies of marine mammals for secondary aquatic adaptation. PLoS Genet 2025; 21:e1011598. [PMID: 40101169 PMCID: PMC11919277 DOI: 10.1371/journal.pgen.1011598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 01/28/2025] [Indexed: 03/20/2025] Open
Abstract
To satisfy the needs of sleeping underwater, marine mammals, including cetaceans, sirenians, and pinnipeds, have evolved an unusual form of sleep, known as unihemispheric slow-wave sleep (USWS), in which one brain hemisphere is asleep while the other is awake. All aquatic cetaceans have only evolved USWS without rapid eye movement (REM) sleep, whereas aquatic sirenians and amphibious pinnipeds display both bihemispheric slow-wave sleep (BSWS) and USWS, as well as REM sleep. However, the molecular genetic changes underlying USWS remain unknown. The present study investigated the evolution of eight canonical circadian genes and found that positive selection occurred mainly within cetacean lineages. Furthermore, convergent evolution was observed in lineages with USWS at three circadian clock genes. Remarkably, in vitro assays showed that cetacean-specific mutations increased the nuclear localization of zebrafish clocka, and enhanced the transcriptional activation activity of Clocka and Bmal1a. In vivo, transcriptome analysis showed that the overexpression of the cetacean-specific mutant clocka (clocka-mut) caused the upregulation of the wakefulness-promoting glutamatergic genes and the differential expression of multiple genes associated with sleep regulation. In contrast, the GABAergic and cholinergic pathways, which play important roles in promoting sleep, were downregulated in the bmal1a-mut-overexpressing zebrafish. Concordantly, sleep time of zebrafish overexpressing clocka-mut and bmal1a-mut were significantly less than the zebrafish overexpressing the wild-type genes, respectively. These findings support our hypothesis that canonical circadian clock genes may have evolved adaptively to enhance circadian regulation ability relating to sleep in cetaceans and, in turn, contribute to the formation of USWS.
Collapse
Affiliation(s)
- Daiqing Yin
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong, China
| | - Zhaomin Zhong
- Center for Circadian Clocks, Soochow University, Suzhou, Jiangsu, PR China
- School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, PR China
| | - Fan Zeng
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Zhikang Xu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jing Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Wenhua Ren
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Guang Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong, China
| | - Han Wang
- Center for Circadian Clocks, Soochow University, Suzhou, Jiangsu, PR China
- School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, PR China
| | - Shixia Xu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
4
|
Ricci CG, Philpott JM, Torgrimson MR, Freeberg AM, Narasimamurthy R, de Barros EP, Amaro R, Virshup DM, McCammon JA, Partch CL. Markovian State Models uncover Casein Kinase 1 dynamics that govern circadian period. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.17.633651. [PMID: 39896482 PMCID: PMC11785140 DOI: 10.1101/2025.01.17.633651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Circadian rhythms in mammals are tightly regulated through phosphorylation of Period (PER) proteins by Casein Kinase 1 (CK1, subtypes δ and ε). CK1 acts on at least two different regions of PER with opposing effects: phosphorylation of phosphodegron (pD) regions leads to PER degradation, while phosphorylation of the Familial Advanced Sleep Phase (FASP) region leads to PER stabilization. To investigate how substrate selectivity is encoded by the conformational dynamics of CK1, we performed a large set of independent molecular dynamics (MD) simulations of wildtype CK1 and the tau mutant (R178C) that biases kinase activity toward a pD. We used Markovian State Models (MSMs) to integrate the simulations into a single model of the conformational landscape of CK1 and used Gaussian accelerated molecular dynamics (GaMD) to build the first molecular model of CK1 and the unphosphorylated FASP motif. Together, these findings provide a mechanistic view of CK1, establishing how the activation loop acts as a key molecular switch to control substrate selectivity. We show that the tau mutant favors an alternative conformation of the activation loop and significantly accelerates the dynamics of CK1. This reshapes the binding cleft in a way that impairs FASP binding and would ultimately lead to PER destabilization and shorter circadian periods. Finally, we identified an allosteric pocket that could be targeted to bias this molecular switch. Our integrated approach offers a detailed model of CK1's conformational landscape and its relevance to normal, mutant, and druggable circadian timekeeping.
Collapse
Affiliation(s)
- Clarisse Gravina Ricci
- Department of Chemistry and Biochemistry, University of California San Diego, San Diego, California, United States
- Current address: D.E. Shaw Research, New York, New York, United States
| | - Jonathan M. Philpott
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California, United States
| | - Megan R. Torgrimson
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California, United States
| | - Alfred M. Freeberg
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California, United States
| | - Rajesh Narasimamurthy
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Emilia Pécora de Barros
- Department of Chemistry and Biochemistry, University of California San Diego, San Diego, California, United States
| | - Rommie Amaro
- Department of Chemistry and Biochemistry, University of California San Diego, San Diego, California, United States
| | - David M. Virshup
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, United States
| | - J. Andrew McCammon
- Department of Chemistry and Biochemistry, University of California San Diego, San Diego, California, United States
| | - Carrie L. Partch
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California, United States
- Center for Circadian Biology, University of California San Diego, San Diego, California, United States
- Howard Hughes Medical Institute, University of California Santa Cruz, Santa Cruz, California, United States
| |
Collapse
|
5
|
Zou S, Chen Q, Shen Z, Qin B, Zhu X, Lan Y. Update on the roles of regular daily rhythms in combating brain tumors. Eur J Pharmacol 2025; 986:177144. [PMID: 39571672 DOI: 10.1016/j.ejphar.2024.177144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/08/2024] [Accepted: 11/17/2024] [Indexed: 11/25/2024]
Abstract
An endogenous time-keeping system found in all kingdoms of life, the endogenous circadian clock, is the source of the essential cyclic change mechanism known as the circadian rhythm. The primary circadian clock that synchronizes peripheral circadian clocks to the proper phase is housed in the anterior hypothalamus's suprachiasmatic nuclei (SCN), which functions as a central pacemaker. According to many epidemiological studies, many cancer types, especially brain tumors, have shown evidence of dysregulated clock gene expression, and the connection between clock and brain tumors is highly specific. In some studies, it is reported that the treatment administered in the morning has been linked to prolonged survival for brain cancer patients, and drug sensitivity and gene expression in gliomas follow daily rhythms. These results suggest a relationship between the circadian rhythm and the onset and spread of brain tumors, while further accumulation of research evidence will be needed to establish definitely these positive outcomes as well as to determine the mechanism underlying them. Chronotherapy provides a means of harnessing current medicines to prolong patients' lifespans and improve their quality of life, indicating the significance of circadian rhythm in enhancing the design of future patient care and clinical trials. Moreover, it is implicated that chronobiological therapy target may provide a significant challenge that warrants extensive effort to achieve. This review examines evidence of the relationship of circadian rhythm with glioma molecular pathogenesis and summarizes the mechanisms and drugs implicated in this disease.
Collapse
Affiliation(s)
- Shuang Zou
- Department of Neurosurgery and Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qi Chen
- Interdisciplinary Institute for Medical Engineering, Fuzhou University, Fuzhou, China
| | - Zhiwei Shen
- Department of Neurosurgery and Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Bing Qin
- Department of Neurosurgery and Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiangdong Zhu
- Department of Neurosurgery and Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Yulong Lan
- Department of Neurosurgery and Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
6
|
Wang Z, Wang S, Bi Y, Boiti A, Zhang S, Vallone D, Lan X, Foulkes NS, Zhao H. Light-regulated microRNAs shape dynamic gene expression in the zebrafish circadian clock. PLoS Genet 2025; 21:e1011545. [PMID: 39777894 PMCID: PMC11750094 DOI: 10.1371/journal.pgen.1011545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 01/21/2025] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
A key property of the circadian clock is that it is reset by light to remain synchronized with the day-night cycle. An attractive model to explore light input to the circadian clock in vertebrates is the zebrafish. Circadian clocks in zebrafish peripheral tissues and even zebrafish-derived cell lines are entrainable by direct light exposure thus providing unique insight into the function and evolution of light regulatory pathways. Our previous work has revealed that light-induced gene transcription is a key step in the entrainment of the circadian clock as well as enabling the more general adaptation of zebrafish cells to sunlight exposure. However, considerable evidence points to post-transcriptional regulatory mechanisms, notably microRNAs (miRNAs), playing an essential role in shaping dynamic changes in mRNA levels. Therefore, does light directly impact the function of miRNAs? Are there light-regulated miRNAs and if so, which classes of mRNA do they target? To address these questions, we performed a complete sequencing analysis of light-induced changes in the zebrafish transcriptome, encompassing small non-coding RNAs as well as mRNAs. Importantly, we identified sets of light-regulated miRNAs, with many regulatory targets representing light-inducible mRNAs including circadian clock genes and genes involved in redox homeostasis. We subsequently focused on the light-responsive miR-204-3-3p and miR-430a-3p which are predicted to regulate the expression of cryptochrome genes (cry1a and cry1b). Luciferase reporter assays validated the target binding of miR-204-3-3p and miR-430a-3p to the 3'UTRs of cry1a and cry1b, respectively. Furthermore, treatment with mimics and inhibitors of these two miRNAs significantly affected the dynamic expression of their target genes but also other core clock components (clock1a, bmal1b, per1b, per2, per3), as well as the rhythmic locomotor activity of zebrafish larvae. Thus, our identification of light-responsive miRNAs reveals new intricacy in the multi-level regulation of the circadian clockwork by light.
Collapse
Affiliation(s)
- Zuo Wang
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, China
| | - Shuang Wang
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, China
| | - Yi Bi
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, China
- Institute of Biological and Chemical Systems, Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Alessandra Boiti
- Institute of Biological and Chemical Systems, Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Shengxiang Zhang
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, China
| | - Daniela Vallone
- Institute of Biological and Chemical Systems, Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Nicholas S. Foulkes
- Institute of Biological and Chemical Systems, Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Haiyu Zhao
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, China
| |
Collapse
|
7
|
Chen L, Cao X, Li Y, Liu M, Liu Y, Guan Y, Ruan J, Mao Z, Wang W, Yang HQ, Guo T. Photoexcited Cryptochrome 1 Interacts With SPCHLESS to Regulate Stomatal Development in Arabidopsis. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39253954 DOI: 10.1111/pce.15123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 08/06/2024] [Accepted: 08/14/2024] [Indexed: 09/11/2024]
Abstract
Stomata are epidermal openings that facilitate plant-atmosphere gas and water exchange during photosynthesis, respiration and water evaporation. SPEECHLESS (SPCH) is a master basic helix-loop-helix (bHLH) transcription factor that determines the initiation of stomatal development. It is known that blue light promotes stomatal development through the blue light photoreceptor cryptochromes (CRYs, CRY1 and CRY2). Whether CRYs regulate stomatal development through directly modulating SPCH is unknown. Here, we demonstrate by biochemical studies that CRY1 physically interacts with SPCH in a blue light-dependent manner. Genetic studies show that SPCH acts downstream of CRY1 to promote stomatal development in blue light. Furthermore, we show that CRY1 enhances the DNA-binding activity of SPCH and promotes the expression of its target genes in blue light. These results suggest that the mechanism by which CRY1 promotes stomatal development involves positive regulation of the DNA-binding activity of SPCH, which is likely mediated by blue light-induced CRY1-SPCH interaction. The precise regulation of SPCH DNA-binding activity by CRY1 may allow plants to optimize stomatal density and pattern according to ambient light conditions.
Collapse
Affiliation(s)
- Li Chen
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
- Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Xiaoli Cao
- School of Life Sciences, Fudan University, Shanghai, China
| | - Yupeng Li
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
- Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Minqing Liu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Yao Liu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Yan Guan
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
- Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Jiaqi Ruan
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Zhilei Mao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
- Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Wenxiu Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
- Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Hong-Quan Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
- Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Tongtong Guo
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
- Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, China
| |
Collapse
|
8
|
DeOliveira CC, Crane BR. A structural decryption of cryptochromes. Front Chem 2024; 12:1436322. [PMID: 39220829 PMCID: PMC11362059 DOI: 10.3389/fchem.2024.1436322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Cryptochromes (CRYs), which are signaling proteins related to DNA photolyases, play pivotal roles in sensory responses throughout biology, including growth and development, metabolic regulation, circadian rhythm entrainment and geomagnetic field sensing. This review explores the evolutionary relationships and functional diversity of cryptochromes from the perspective of their molecular structures. In general, CRY biological activities derive from their core structural architecture, which is based on a Photolyase Homology Region (PHR) and a more variable and functionally specific Cryptochrome C-terminal Extension (CCE). The α/β and α-helical domains within the PHR bind FAD, modulate redox reactive residues, accommodate antenna cofactors, recognize small molecules and provide conformationally responsive interaction surfaces for a range of partners. CCEs add structural complexity and divergence, and in doing so, influence photoreceptor reactivity and tailor function. Primary and secondary pockets within the PHR bind myriad moieties and collaborate with the CCEs to tune recognition properties and propagate chemical changes to downstream partners. For some CRYs, changes in homo and hetero-oligomerization couple to light-induced conformational changes, for others, changes in posttranslational modifications couple to cascades of protein interactions with partners and effectors. The structural exploration of cryptochromes underscores how a broad family of signaling proteins with close relationship to light-dependent enzymes achieves a wide range of activities through conservation of key structural and chemical properties upon which function-specific features are elaborated.
Collapse
Affiliation(s)
| | - Brian R. Crane
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, United States
| |
Collapse
|
9
|
Del Olmo M, Legewie S, Brunner M, Höfer T, Kramer A, Blüthgen N, Herzel H. Network switches and their role in circadian clocks. J Biol Chem 2024; 300:107220. [PMID: 38522517 PMCID: PMC11044057 DOI: 10.1016/j.jbc.2024.107220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 03/07/2024] [Accepted: 03/18/2024] [Indexed: 03/26/2024] Open
Abstract
Circadian rhythms are generated by complex interactions among genes and proteins. Self-sustained ∼24 h oscillations require negative feedback loops and sufficiently strong nonlinearities that are the product of molecular and network switches. Here, we review common mechanisms to obtain switch-like behavior, including cooperativity, antagonistic enzymes, multisite phosphorylation, positive feedback, and sequestration. We discuss how network switches play a crucial role as essential components in cellular circadian clocks, serving as integral parts of transcription-translation feedback loops that form the basis of circadian rhythm generation. The design principles of network switches and circadian clocks are illustrated by representative mathematical models that include bistable systems and negative feedback loops combined with Hill functions. This work underscores the importance of negative feedback loops and network switches as essential design principles for biological oscillations, emphasizing how an understanding of theoretical concepts can provide insights into the mechanisms generating biological rhythms.
Collapse
Affiliation(s)
- Marta Del Olmo
- Institute for Theoretical Biology, Humboldt Universität zu Berlin and Charité Universitätsmedizin Berlin, Berlin, Germany.
| | - Stefan Legewie
- Department of Systems Biology, Institute for Biomedical Genetics (IBMG), University of Stuttgart, Stuttgart, Germany; Stuttgart Research Center for Systems Biology (SRCSB), University of Stuttgart, Stuttgart, Germany
| | - Michael Brunner
- Biochemistry Center, Universität Heidelberg, Heidelberg, Germany
| | - Thomas Höfer
- Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), Universität Heidelberg, Heidelberg, Germany
| | - Achim Kramer
- Laboratory of Chronobiology, Institute for Medical Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Nils Blüthgen
- Institute for Theoretical Biology, Humboldt Universität zu Berlin and Charité Universitätsmedizin Berlin, Berlin, Germany; Institute of Pathology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Hanspeter Herzel
- Institute for Theoretical Biology, Humboldt Universität zu Berlin and Charité Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
10
|
Jankowski MS, Griffith D, Shastry DG, Pelham JF, Ginell GM, Thomas J, Karande P, Holehouse AS, Hurley JM. Disordered clock protein interactions and charge blocks turn an hourglass into a persistent circadian oscillator. Nat Commun 2024; 15:3523. [PMID: 38664421 PMCID: PMC11045787 DOI: 10.1038/s41467-024-47761-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Organismal physiology is widely regulated by the molecular circadian clock, a feedback loop composed of protein complexes whose members are enriched in intrinsically disordered regions. These regions can mediate protein-protein interactions via SLiMs, but the contribution of these disordered regions to clock protein interactions had not been elucidated. To determine the functionality of these disordered regions, we applied a synthetic peptide microarray approach to the disordered clock protein FRQ in Neurospora crassa. We identified residues required for FRQ's interaction with its partner protein FRH, the mutation of which demonstrated FRH is necessary for persistent clock oscillations but not repression of transcriptional activity. Additionally, the microarray demonstrated an enrichment of FRH binding to FRQ peptides with a net positive charge. We found that positively charged residues occurred in significant "blocks" within the amino acid sequence of FRQ and that ablation of one of these blocks affected both core clock timing and physiological clock output. Finally, we found positive charge clusters were a commonly shared molecular feature in repressive circadian clock proteins. Overall, our study suggests a mechanistic purpose for positive charge blocks and yielded insights into repressive arm protein roles in clock function.
Collapse
Affiliation(s)
- Meaghan S Jankowski
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Daniel Griffith
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Divya G Shastry
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Jacqueline F Pelham
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Garrett M Ginell
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Joshua Thomas
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Pankaj Karande
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
- Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Jennifer M Hurley
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
- Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
| |
Collapse
|
11
|
Zhou Q, Wang R, Su Y, Wang B, Zhang Y, Qin X. The molecular circadian rhythms regulating the cell cycle. J Cell Biochem 2024; 125:e30539. [PMID: 38372014 DOI: 10.1002/jcb.30539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/25/2024] [Accepted: 02/02/2024] [Indexed: 02/20/2024]
Abstract
The circadian clock controls the expression of a large proportion of protein-coding genes in mammals and can modulate a wide range of physiological processes. Recent studies have demonstrated that disruption or dysregulation of the circadian clock is involved in the development and progression of several diseases, including cancer. The cell cycle is considered to be the fundamental process related to cancer. Accumulating evidence suggests that the circadian clock can control the expression of a large number of genes related to the cell cycle. This article reviews the mechanism of cell cycle-related genes whose chromatin regulatory elements are rhythmically occupied by core circadian clock transcription factors, while their RNAs are rhythmically expressed. This article further reviews the identified oscillatory cell cycle-related genes in higher organisms such as baboons and humans. The potential functions of these identified genes in regulating cell cycle progression are also discussed. Understanding how the molecular clock controls the expression of cell cycle genes will be beneficial for combating and treating cancer.
Collapse
Affiliation(s)
- Qin Zhou
- Institute of Health Sciences and Technology, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui Province, China
| | - Ruohan Wang
- Institute of Health Sciences and Technology, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui Province, China
| | - Yunxia Su
- Institute of Health Sciences and Technology, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui Province, China
| | - Bowen Wang
- Institute of Health Sciences and Technology, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui Province, China
| | - Yunfei Zhang
- Modern Experiment Technology Center, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui Province, China
| | - Ximing Qin
- Institute of Health Sciences and Technology, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui Province, China
| |
Collapse
|
12
|
Chavan A, Heisler J, Chang YG, Golden SS, Partch CL, LiWang A. Protocols for in vitro reconstitution of the cyanobacterial circadian clock. Biopolymers 2024; 115:e23559. [PMID: 37421636 PMCID: PMC10772220 DOI: 10.1002/bip.23559] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/26/2023] [Accepted: 06/16/2023] [Indexed: 07/10/2023]
Abstract
Circadian clocks are intracellular systems that orchestrate metabolic processes in anticipation of sunrise and sunset by providing an internal representation of local time. Because the ~24-h metabolic rhythms they produce are important to health across diverse life forms there is growing interest in their mechanisms. However, mechanistic studies are challenging in vivo due to the complex, that is, poorly defined, milieu of live cells. Recently, we reconstituted the intact circadian clock of cyanobacteria in vitro. It oscillates autonomously and remains phase coherent for many days with a fluorescence-based readout that enables real-time observation of individual clock proteins and promoter DNA simultaneously under defined conditions without user intervention. We found that reproducibility of the reactions required strict adherence to the quality of each recombinant clock protein purified from Escherichia coli. Here, we provide protocols for preparing in vitro clock samples so that other labs can ask questions about how changing environments, like temperature, metabolites, and protein levels are reflected in the core oscillator and propagated to regulation of transcription, providing deeper mechanistic insights into clock biology.
Collapse
Affiliation(s)
- Archana Chavan
- Center for Circadian Biology, University of California – San Diego, La Jolla, CA 92093
- School of Natural Sciences, University of California – Merced, Merced, CA 95343
| | - Joel Heisler
- Center for Circadian Biology, University of California – San Diego, La Jolla, CA 92093
- School of Natural Sciences, University of California – Merced, Merced, CA 95343
| | - Yong-Gang Chang
- Center for Circadian Biology, University of California – San Diego, La Jolla, CA 92093
- School of Natural Sciences, University of California – Merced, Merced, CA 95343
| | - Susan S. Golden
- Center for Circadian Biology, University of California – San Diego, La Jolla, CA 92093
- Department of Molecular Biology, University of California – San Diego, La Jolla, CA 92093
| | - Carrie L. Partch
- Center for Circadian Biology, University of California – San Diego, La Jolla, CA 92093
- Department of Chemistry & Biochemistry, University of California – Santa Cruz, Santa Cruz, CA 95064
| | - Andy LiWang
- Center for Circadian Biology, University of California – San Diego, La Jolla, CA 92093
- School of Natural Sciences, University of California – Merced, Merced, CA 95343
- Department of Chemistry & Biochemistry, University of California – Merced, Merced, CA 95343
- Center for Cellular and Biomolecular Machines, University of California – Merced, Merced, CA 95343
| |
Collapse
|
13
|
Sharma D, Partch CL. PAS Dimerization at the Nexus of the Mammalian Circadian Clock. J Mol Biol 2024; 436:168341. [PMID: 37924861 PMCID: PMC11729053 DOI: 10.1016/j.jmb.2023.168341] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/23/2023] [Accepted: 10/29/2023] [Indexed: 11/06/2023]
Abstract
Circadian rhythms are genetically encoded molecular clocks for internal biological timekeeping. Organisms from single-cell bacteria to humans use these clocks to adapt to the external environment and synchronize their physiology and behavior to solar light/dark cycles. Although the proteins that constitute the molecular 'cogs' and give rise to circadian rhythms are now known, we still lack a detailed understanding of how these proteins interact to generate and sustain the ∼24-hour circadian clock. Structural studies have helped to expand the architecture of clock proteins and have revealed the abundance of the only well-defined structured regions in the mammalian clock called Per-ARNT-Sim (PAS) domains. PAS domains are modular, evolutionarily conserved sensory and signaling domains that typically mediate protein-protein interactions. In the mammalian circadian clock, PAS domains modulate homo and heterodimerization of several core clock proteins that assemble into transcription factors or repressors. This review will focus on the functional importance of the PAS domains in the circadian clock from a biophysical and biochemical standpoint and describe their roles in clock protein interactions and circadian timekeeping.
Collapse
Affiliation(s)
- Diksha Sharma
- Department of Chemistry and Biochemistry, University of California Santa Cruz, CA, United States
| | - Carrie L Partch
- Department of Chemistry and Biochemistry, University of California Santa Cruz, CA, United States; Center for Circadian Biology, University of California San Diego, CA, United States.
| |
Collapse
|
14
|
Moses D, Guadalupe K, Yu F, Flores E, Perez AR, McAnelly R, Shamoon NM, Kaur G, Cuevas-Zepeda E, Merg AD, Martin EW, Holehouse AS, Sukenik S. Structural biases in disordered proteins are prevalent in the cell. Nat Struct Mol Biol 2024; 31:283-292. [PMID: 38177684 PMCID: PMC10873198 DOI: 10.1038/s41594-023-01148-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 10/04/2023] [Indexed: 01/06/2024]
Abstract
Intrinsically disordered proteins and protein regions (IDPs) are prevalent in all proteomes and are essential to cellular function. Unlike folded proteins, IDPs exist in an ensemble of dissimilar conformations. Despite this structural plasticity, intramolecular interactions create sequence-specific structural biases that determine an IDP ensemble's three-dimensional shape. Such structural biases can be key to IDP function and are often measured in vitro, but whether those biases are preserved inside the cell is unclear. Here we show that structural biases in IDP ensembles found in vitro are recapitulated inside human-derived cells. We further reveal that structural biases can change in a sequence-dependent manner due to changes in the intracellular milieu, subcellular localization, and intramolecular interactions with tethered well-folded domains. We propose that the structural sensitivity of IDP ensembles can be leveraged for biological function, can be the underlying cause of IDP-driven pathology or can be used to design disorder-based biosensors and actuators.
Collapse
Affiliation(s)
- David Moses
- Department of Chemistry and Biochemistry, University of California, Merced, Merced, CA, USA
- Center for Cellular and Biomolecular Machines, University of California, Merced, Merced, CA, USA
| | - Karina Guadalupe
- Department of Chemistry and Biochemistry, University of California, Merced, Merced, CA, USA
- Center for Cellular and Biomolecular Machines, University of California, Merced, Merced, CA, USA
| | - Feng Yu
- Center for Cellular and Biomolecular Machines, University of California, Merced, Merced, CA, USA
- Quantitative and Systems Biology Program, University of California, Merced, Merced, CA, USA
| | - Eduardo Flores
- Department of Chemistry and Biochemistry, University of California, Merced, Merced, CA, USA
- Center for Cellular and Biomolecular Machines, University of California, Merced, Merced, CA, USA
| | - Anthony R Perez
- Department of Chemistry and Biochemistry, University of California, Merced, Merced, CA, USA
- Center for Cellular and Biomolecular Machines, University of California, Merced, Merced, CA, USA
| | - Ralph McAnelly
- Department of Chemistry and Biochemistry, University of California, Merced, Merced, CA, USA
| | - Nora M Shamoon
- Center for Cellular and Biomolecular Machines, University of California, Merced, Merced, CA, USA
- California State University, Stanislaus, Turlock, CA, USA
| | - Gagandeep Kaur
- Department of Chemistry and Biochemistry, University of California, Merced, Merced, CA, USA
| | | | - Andrea D Merg
- Department of Chemistry and Biochemistry, University of California, Merced, Merced, CA, USA
- Center for Cellular and Biomolecular Machines, University of California, Merced, Merced, CA, USA
| | - Erik W Martin
- Department of Structural Biology, St Jude Children's Research Hospital, Memphis, TN, USA
- Dewpoint Therapeutics, Boston, MA, USA
| | - Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Science and Engineering of Living Systems, Washington University in St. Louis, St. Louis, MO, USA
| | - Shahar Sukenik
- Department of Chemistry and Biochemistry, University of California, Merced, Merced, CA, USA.
- Center for Cellular and Biomolecular Machines, University of California, Merced, Merced, CA, USA.
- Quantitative and Systems Biology Program, University of California, Merced, Merced, CA, USA.
- Health Sciences Research Institute, University of California, Merced, Merced, CA, USA.
| |
Collapse
|
15
|
Daffern N, Radhakrishnan I. Per-ARNT-Sim (PAS) Domains in Basic Helix-Loop-Helix (bHLH)-PAS Transcription Factors and Coactivators: Structures and Mechanisms. J Mol Biol 2024; 436:168370. [PMID: 37992889 PMCID: PMC10922228 DOI: 10.1016/j.jmb.2023.168370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023]
Abstract
PAS domains are ubiquitous in biology. They perform critically important roles in sensing and transducing a wide variety of environmental signals, and through their ability to bind small-molecule ligands, have emerged as targets for therapeutic intervention. Here, we discuss our current understanding of PAS domain structure and function in the context of basic helix-loop-helix (bHLH)-PAS transcription factors and coactivators. Unlike the bHLH-PAS domains of transcription factors, those of the steroid receptor coactivator (SRC) family are poorly characterized. Recent progress for this family and for the broader bHLH-PAS proteins suggest that these domains are ripe for deeper structural and functional studies.
Collapse
Affiliation(s)
- Nicolas Daffern
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Ishwar Radhakrishnan
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
16
|
Zhao X, Huang S, Zhang P, Qiao X, Liu Y, Dong M, Yi Q, Wang L, Song L. A circadian clock protein cryptochrome inhibits the expression of inflammatory cytokines in Chinese mitten crab (Eriocheir sinensis). Int J Biol Macromol 2023; 253:126591. [PMID: 37659496 DOI: 10.1016/j.ijbiomac.2023.126591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/25/2023] [Accepted: 08/27/2023] [Indexed: 09/04/2023]
Abstract
Cryptochrome (Cry), as important flavoprotein, plays a key role in regulating the innate immune response, such as the release of inflammatory cytokines. In the present study, a cryptochrome homologue (EsCry) was identified from Chinese mitten crab Eriocheir sinensis, which contained a typical DNA photolyase domain, a FAD binding domain. The transcripts of EsCry were highly expressed at 11:00, and lowest at 3:00 within one day, while those of Interleukin enhancer binding factor (EsILF), Lipopolysaccharide-induced TNF-alpha factor (EsLITAF), Tumor necrosis factor (EsTNF) and Interleukin-16 (EsIL-16) showed a rhythm expression pattern contrary to EsCry. After EsCry was knocked down by dsEsCry injection, mRNA transcripts of Timeless (EsTim), Cycle (EsCyc), Circadian locomotor output cycles kaput (EsClock), Period (EsPer), and EsLITAF, EsTNF, EsILF, EsIL-16, as well as phosphorylation level of Dorsal significantly up-regulated. The transcripts of EsLITAF, EsTNF, EsILF, and EsIL-16 in EsCry-RNAi crabs significantly down-regulated after injection of NF-κB inhibitor. The interactions of EsCyc and EsCry, EsCyc and Dorsal were observed in vitro. These results indicated that EsCry negatively regulated the expression of the cytokine TNF and IL-16 via inhibiting their transcription factor LITAF and ILF through NF-κB signaling pathway, which provide evidences to better understand the circadian regulation mechanism of cytokine production in crabs.
Collapse
Affiliation(s)
- Xinyu Zhao
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Shu Huang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Southern Laboratory of Ocean Science and Engineering, Guangdong, Zhuhai 519000, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Peng Zhang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China
| | - Xue Qiao
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Yu Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China
| | - Miren Dong
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China
| | - Qilin Yi
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China; Southern Laboratory of Ocean Science and Engineering, Guangdong, Zhuhai 519000, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China.
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China; Southern Laboratory of Ocean Science and Engineering, Guangdong, Zhuhai 519000, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|
17
|
Xie P, Xie X, Ye C, Dean KM, Laothamatas I, Taufique SKT, Takahashi J, Yamazaki S, Xu Y, Liu Y. Mammalian circadian clock proteins form dynamic interacting microbodies distinct from phase separation. Proc Natl Acad Sci U S A 2023; 120:e2318274120. [PMID: 38127982 PMCID: PMC10756265 DOI: 10.1073/pnas.2318274120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
Liquid-liquid phase separation (LLPS) underlies diverse biological processes. Because most LLPS studies were performed in vitro using recombinant proteins or in cells that overexpress protein, the physiological relevance of LLPS for endogenous protein is often unclear. PERIOD, the intrinsically disordered domain-rich proteins, are central mammalian circadian clock components and interact with other clock proteins in the core circadian negative feedback loop. Different core clock proteins were previously shown to form large complexes. Circadian clock studies often rely on experiments that overexpress clock proteins. Here, we show that when Per2 transgene was stably expressed in cells, PER2 protein formed nuclear phosphorylation-dependent slow-moving LLPS condensates that recruited other clock proteins. Super-resolution microscopy of endogenous PER2, however, revealed formation of circadian-controlled, rapidly diffusing nuclear microbodies that were resistant to protein concentration changes, hexanediol treatment, and loss of phosphorylation, indicating that they are distinct from the LLPS condensates caused by protein overexpression. Surprisingly, only a small fraction of endogenous PER2 microbodies transiently interact with endogenous BMAL1 and CRY1, a conclusion that was confirmed in cells and in mice tissues, suggesting an enzyme-like mechanism in the circadian negative feedback process. Together, these results demonstrate that the dynamic interactions of core clock proteins are a key feature of mammalian circadian clock mechanism and the importance of examining endogenous proteins in LLPS and circadian clock studies.
Collapse
Affiliation(s)
- Pancheng Xie
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX75390
- Cambridge-Su Genomic Resource Center, Soochow University, Suzhou, Jiangsu215123, China
| | - Xiaowen Xie
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Congrong Ye
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Kevin M. Dean
- Lyda Hill Department of Bioinformatics and Cecil H. and Ida Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Isara Laothamatas
- HHMI, University of Texas Southwestern Medical Center, Dallas, TX75390-9111
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX75390-9111
| | - S. K. Tahajjul Taufique
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX75390-9111
- Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX75390-9111
| | - Joseph Takahashi
- HHMI, University of Texas Southwestern Medical Center, Dallas, TX75390-9111
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX75390-9111
| | - Shin Yamazaki
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX75390-9111
- Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX75390-9111
| | - Ying Xu
- Cambridge-Su Genomic Resource Center, Soochow University, Suzhou, Jiangsu215123, China
| | - Yi Liu
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX75390
| |
Collapse
|
18
|
Parlak GC, Baris I, Gul S, Kavakli IH. Functional characterization of the CRY2 circadian clock component variant p.Ser420Phe revealed a new degradation pathway for CRY2. J Biol Chem 2023; 299:105451. [PMID: 37951306 PMCID: PMC10731238 DOI: 10.1016/j.jbc.2023.105451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/13/2023] Open
Abstract
Cryptochromes (CRYs) are essential components of the circadian clock, playing a pivotal role as transcriptional repressors. Despite their significance, the precise mechanisms underlying CRYs' involvement in the circadian clock remain incompletely understood. In this study, we identified a rare CRY2 variant, p.Ser420Phe, from the 1000 Genomes Project and Ensembl database that is located in the functionally important coiled-coil-like helix (CC-helix) region. Functional characterization of this variant at the cellular level revealed that p.Ser420Phe CRY2 had reduced repression activity on CLOCK:BMAL1-driven transcription due to its reduced affinity to the core clock protein PER2 and defective translocation into the nucleus. Intriguingly, the CRY2 variant exhibited an unexpected resistance to degradation via the canonical proteasomal pathway, primarily due to the loss of interactions with E3 ligases (FBXL3 and FBXL21), which suggests Ser-420 of CRY2 is required for the interaction with E3 ligases. Further studies revealed that wild-type and CRY2 variants are degraded by the lysosomal-mediated degradation pathway, a mechanism not previously associated with CRY2. Surprisingly, our complementation study with Cry1-/-Cry2-/- double knockout mouse embryonic fibroblast cells indicated that the CRY2 variant caused a 7 h shorter circadian period length in contrast to the observed prolonged period length in CRY2-/- cell lines. In summary, this study reveals a hitherto unknown degradation pathway for CRY2, shedding new light on the regulation of circadian rhythm period length.
Collapse
Affiliation(s)
- Gizem Cagla Parlak
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkiye
| | - Ibrahim Baris
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkiye
| | - Seref Gul
- Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Beykoz, Turkiye
| | - Ibrahim Halil Kavakli
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkiye; Department of Chemical and Biological Engineering, Koc University, Istanbul, Turkiye.
| |
Collapse
|
19
|
Xie P, Xie X, Ye C, Dean KM, Laothamatas I, Taufique SKT, Takahashi J, Yamazaki S, Xu Y, Liu Y. Mammalian circadian clock proteins form dynamic interacting microbodies distinct from phase separation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.19.563153. [PMID: 37961341 PMCID: PMC10634710 DOI: 10.1101/2023.10.19.563153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Liquid-liquid phase separation (LLPS) underlies diverse biological processes. Because most LLPS studies were performed in vitro or in cells that overexpress protein, the physiological relevance of LLPS is unclear. PERIOD proteins are central mammalian circadian clock components and interact with other clock proteins in the core circadian negative feedback loop. Different core clock proteins were previously shown to form large complexes. Here we show that when transgene was stably expressed, PER2 formed nuclear phosphorylation-dependent LLPS condensates that recruited other clock proteins. Super-resolution microscopy of endogenous PER2, however, revealed formation of circadian-controlled, rapidly diffusing microbodies that were resistant to protein concentration changes, hexanediol treatment, and loss of phosphorylation, indicating that they are distinct from the LLPS condensates caused by overexpression. Surprisingly, only a small fraction of endogenous PER2 microbodies transiently interact with endogenous BMAL1 and CRY1, a conclusion that was confirmed in cells and in mice tissues, suggesting an enzyme-like mechanism in the circadian negative feedback process. Together, these results demonstrate that the dynamic interactions of core clock proteins is a key feature of mammalian circadian clock mechanism and the importance of examining endogenous proteins in LLPS and circadian studies.
Collapse
Affiliation(s)
- Pancheng Xie
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Cambridge-Su Genomic Resource Center, Soochow University; Suzhou, Jiangsu 215123, China
| | - Xiaowen Xie
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Congrong Ye
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kevin M. Dean
- Lyda Hill Department of Bioinformatics and Cecil H. and Ida Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Isara Laothamatas
- Department of Neuroscience and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, 75390-9111, USA
| | - S K Tahajjul Taufique
- Department of Neuroscience and Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas, 75390-9111, USA
| | - Joseph Takahashi
- Department of Neuroscience and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, 75390-9111, USA
| | - Shin Yamazaki
- Department of Neuroscience and Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas, 75390-9111, USA
| | - Ying Xu
- Cambridge-Su Genomic Resource Center, Soochow University; Suzhou, Jiangsu 215123, China
| | - Yi Liu
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
20
|
Halawani D, Wang Y, Ramakrishnan A, Estill M, He X, Shen L, Friedel RH, Zou H. Circadian clock regulator Bmal1 gates axon regeneration via Tet3 epigenetics in mouse sensory neurons. Nat Commun 2023; 14:5165. [PMID: 37620297 PMCID: PMC10449865 DOI: 10.1038/s41467-023-40816-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 08/11/2023] [Indexed: 08/26/2023] Open
Abstract
Axon regeneration of dorsal root ganglia (DRG) neurons after peripheral axotomy involves reconfiguration of gene regulatory circuits to establish regenerative gene programs. However, the underlying mechanisms remain unclear. Here, through an unbiased survey, we show that the binding motif of Bmal1, a central transcription factor of the circadian clock, is enriched in differentially hydroxymethylated regions (DhMRs) of mouse DRG after peripheral lesion. By applying conditional deletion of Bmal1 in neurons, in vitro and in vivo neurite outgrowth assays, as well as transcriptomic profiling, we demonstrate that Bmal1 inhibits axon regeneration, in part through a functional link with the epigenetic factor Tet3. Mechanistically, we reveal that Bmal1 acts as a gatekeeper of neuroepigenetic responses to axonal injury by limiting Tet3 expression and restricting 5hmC modifications. Bmal1-regulated genes not only concern axon growth, but also stress responses and energy homeostasis. Furthermore, we uncover an epigenetic rhythm of diurnal oscillation of Tet3 and 5hmC levels in DRG neurons, corresponding to time-of-day effect on axon growth potential. Collectively, our studies demonstrate that targeting Bmal1 enhances axon regeneration.
Collapse
Affiliation(s)
- Dalia Halawani
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yiqun Wang
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Orthopedics, Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
| | - Aarthi Ramakrishnan
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Molly Estill
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xijing He
- Department of Orthopedics, Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
- Department of Orthopedics, Xi'an International Medical Center Hospital, Xi'an, China
| | - Li Shen
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Roland H Friedel
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hongyan Zou
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
21
|
Michael AK, Stoos L, Crosby P, Eggers N, Nie XY, Makasheva K, Minnich M, Healy KL, Weiss J, Kempf G, Cavadini S, Kater L, Seebacher J, Vecchia L, Chakraborty D, Isbel L, Grand RS, Andersch F, Fribourgh JL, Schübeler D, Zuber J, Liu AC, Becker PB, Fierz B, Partch CL, Menet JS, Thomä NH. Cooperation between bHLH transcription factors and histones for DNA access. Nature 2023; 619:385-393. [PMID: 37407816 PMCID: PMC10338342 DOI: 10.1038/s41586-023-06282-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 06/02/2023] [Indexed: 07/07/2023]
Abstract
The basic helix-loop-helix (bHLH) family of transcription factors recognizes DNA motifs known as E-boxes (CANNTG) and includes 108 members1. Here we investigate how chromatinized E-boxes are engaged by two structurally diverse bHLH proteins: the proto-oncogene MYC-MAX and the circadian transcription factor CLOCK-BMAL1 (refs. 2,3). Both transcription factors bind to E-boxes preferentially near the nucleosomal entry-exit sites. Structural studies with engineered or native nucleosome sequences show that MYC-MAX or CLOCK-BMAL1 triggers the release of DNA from histones to gain access. Atop the H2A-H2B acidic patch4, the CLOCK-BMAL1 Per-Arnt-Sim (PAS) dimerization domains engage the histone octamer disc. Binding of tandem E-boxes5-7 at endogenous DNA sequences occurs through direct interactions between two CLOCK-BMAL1 protomers and histones and is important for circadian cycling. At internal E-boxes, the MYC-MAX leucine zipper can also interact with histones H2B and H3, and its binding is indirectly enhanced by OCT4 elsewhere on the nucleosome. The nucleosomal E-box position and the type of bHLH dimerization domain jointly determine the histone contact, the affinity and the degree of competition and cooperativity with other nucleosome-bound factors.
Collapse
Affiliation(s)
- Alicia K Michael
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Lisa Stoos
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Priya Crosby
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Nikolas Eggers
- Biomedical Center, Molecular Biology Division, Ludwig-Maximilians-Universität, Munich, Germany
| | - Xinyu Y Nie
- Department of Biology, Center for Biological Clock Research, Texas A&M University, College Station, TX, USA
| | - Kristina Makasheva
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Martina Minnich
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Kelly L Healy
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Joscha Weiss
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Georg Kempf
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Simone Cavadini
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Lukas Kater
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Jan Seebacher
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Luca Vecchia
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Deyasini Chakraborty
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Luke Isbel
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Ralph S Grand
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Florian Andersch
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Jennifer L Fribourgh
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Dirk Schübeler
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Johannes Zuber
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
- Medical University of Vienna, Vienna, Austria
| | - Andrew C Liu
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Peter B Becker
- Biomedical Center, Molecular Biology Division, Ludwig-Maximilians-Universität, Munich, Germany
| | - Beat Fierz
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Carrie L Partch
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Jerome S Menet
- Department of Biology, Center for Biological Clock Research, Texas A&M University, College Station, TX, USA
| | - Nicolas H Thomä
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.
| |
Collapse
|
22
|
Paula ABR, Resende LT, Jardim IABA, Portes AMO, Isoldi MC. The role of environmental signals in the expression of rhythmic cardiac proteins and their influence on cardiac pathologies. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 137:205-223. [PMID: 37709377 DOI: 10.1016/bs.apcsb.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
We know that numerous proteins expressed in the heart are influenced by environmental signals (such as light and diet), which cause either an increase or decrease in their expression. Cardiovascular health is sensitive to diet composition (macronutrient content), as well as the percentage of energy, frequency and regularity of meal intake during the 24-hour cycle, and the fasting period. Furthermore, light is an important synchronizer of the circadian clock and, in turn, of several physiological processes, among them cardiovascular physiology. In this chapter, we address the effects of these environmental cues and the known mechanisms that lead to this variation in protein expression in the heart, as well as cardiac function.
Collapse
Affiliation(s)
- Ana Beatriz Rezende Paula
- Laboratory of Cell Signaling, Research Center in Biological Science, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Bauxita, Ouro Preto, Brazil.
| | - Letícia Teresinha Resende
- Laboratory of Cell Signaling, Research Center in Biological Science, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Bauxita, Ouro Preto, Brazil
| | - Isabela Alcântara Barretto Araújo Jardim
- Laboratory of Cell Signaling, Research Center in Biological Science, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Bauxita, Ouro Preto, Brazil
| | - Alexandre Martins Oliveira Portes
- Laboratory of Cell Signaling, Research Center in Biological Science, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Bauxita, Ouro Preto, Brazil
| | - Mauro César Isoldi
- Laboratory of Cell Signaling, Research Center in Biological Science, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Bauxita, Ouro Preto, Brazil
| |
Collapse
|
23
|
Kwiatkowski ER, Schnytzer Y, Rosenthal JJC, Emery P. Behavioral circatidal rhythms require Bmal1 in Parhyale hawaiensis. Curr Biol 2023; 33:1867-1882.e5. [PMID: 36977416 PMCID: PMC10205697 DOI: 10.1016/j.cub.2023.03.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 02/20/2023] [Accepted: 03/06/2023] [Indexed: 03/29/2023]
Abstract
Organisms living in the intertidal zone are exposed to a particularly challenging environment. In addition to daily changes in light intensity and seasonal changes in photoperiod and weather patterns, they experience dramatic oscillations in environmental conditions due to the tides. To anticipate tides, and thus optimize their behavior and physiology, animals occupying intertidal ecological niches have acquired circatidal clocks. Although the existence of these clocks has long been known, their underlying molecular components have proven difficult to identify, in large part because of the lack of an intertidal model organism amenable to genetic manipulation. In particular, the relationship between the circatidal and circadian molecular clocks, and the possibility of shared genetic components, has been a long-standing question. Here, we introduce the genetically tractable crustacean Parhyale hawaiensis as a system for the study of circatidal rhythms. First, we show that P. hawaiensis exhibits robust 12.4-h rhythms of locomotion that can be entrained to an artificial tidal regimen and are temperature compensated. Using CRISPR-Cas9 genome editing, we then demonstrate that the core circadian clock gene Bmal1 is required for circatidal rhythms. Our results thus demonstrate that Bmal1 is a molecular link between circatidal and circadian clocks and establish P. hawaiensis as a powerful system to study the molecular mechanisms underlying circatidal rhythms and their entrainment.
Collapse
Affiliation(s)
- Erica R Kwiatkowski
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Yisrael Schnytzer
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan 5290002, Israel; The Eugene Bell Center, The Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Joshua J C Rosenthal
- The Eugene Bell Center, The Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Patrick Emery
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
24
|
Lee K, Lee C. Generation of CRISPR-Cas9-mediated knockin mutant models in mice and MEFs for studies of polymorphism in clock genes. Sci Rep 2023; 13:8109. [PMID: 37208532 DOI: 10.1038/s41598-023-35203-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 05/14/2023] [Indexed: 05/21/2023] Open
Abstract
The creation of mutant mice has been invaluable for advancing biomedical science, but is too time- and resource-intensive for investigating the full range of mutations and polymorphisms. Cell culture models are therefore an invaluable complement to mouse models, especially for cell-autonomous pathways like the circadian clock. In this study, we quantitatively assessed the use of CRISPR to create cell models in mouse embryonic fibroblasts (MEFs) as compared to mouse models. We generated two point mutations in the clock genes Per1 and Per2 in mice and in MEFs using the same sgRNAs and repair templates for HDR and quantified the frequency of the mutations by digital PCR. The frequency was about an order of magnitude higher in mouse zygotes compared to that in MEFs. However, the mutation frequency in MEFs was still high enough for clonal isolation by simple screening of a few dozen individual cells. The Per mutant cells that we generated provide important new insights into the role of the PAS domain in regulating PER phosphorylation, a key aspect of the circadian clock mechanism. Quantification of the mutation frequency in bulk MEF populations provides a valuable basis for optimizing CRISPR protocols and time/resource planning for generating cell models for further studies.
Collapse
Affiliation(s)
- Kwangjun Lee
- Program in Neuroscience, Department of Biomedical Sciences, College of Medicine, Florida State University, 1115 West Call Street, Tallahassee, FL, 32306, USA
| | - Choogon Lee
- Program in Neuroscience, Department of Biomedical Sciences, College of Medicine, Florida State University, 1115 West Call Street, Tallahassee, FL, 32306, USA.
| |
Collapse
|
25
|
Endogenous circadian reporters reveal functional differences of PERIOD paralogs and the significance of PERIOD:CK1 stable interaction. Proc Natl Acad Sci U S A 2023; 120:e2212255120. [PMID: 36724252 PMCID: PMC9962996 DOI: 10.1073/pnas.2212255120] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Adverse consequences from having a faulty circadian clock include compromised sleep quality and poor performance in the short-term, and metabolic diseases and cancer in the long-term. However, our understanding of circadian disorders is limited by the incompleteness of our molecular models and our dearth of defined mutant models. Because it would be prohibitively expensive to develop live animal models to study the full range of complicated clock mechanisms, we developed PER1-luc and PER2-luc endogenous circadian reporters in a validated clock cell model, U-2 OS, where the genome can be easily manipulated, and functional consequences of mutations can be accurately studied. When major clock genes were knocked out in these cells, circadian rhythms were modulated similarly compared with corresponding mutant mice, validating the platform for genetics studies. Using these reporter cells, we uncovered critical differences between two paralogs of PER. Although PER1 and PER2 are considered redundant and either one can serve as a pacemaker alone, they were dramatically different in biochemical parameters such as stability and phosphorylation kinetics. Consistently, circadian phase was dramatically different between PER1 and PER2 knockout reporter cells. We further showed that the stable binding of casein kinase1δ/ε to PER is not required for PER phosphorylation itself, but is critical for delayed timing of phosphorylation. Our system can be used as an efficient platform to study circadian disorders associated with pathogenic mutations and their underlying molecular mechanisms.
Collapse
|
26
|
Cao X, Wang L, Selby CP, Lindsey-Boltz LA, Sancar A. Analysis of mammalian circadian clock protein complexes over a circadian cycle. J Biol Chem 2023; 299:102929. [PMID: 36682495 PMCID: PMC9950529 DOI: 10.1016/j.jbc.2023.102929] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/22/2023] Open
Abstract
Circadian rhythmicity is maintained by a set of core clock proteins including the transcriptional activators CLOCK and BMAL1, and the repressors PER (PER1, PER2, and PER3), CRY (CRY1 and CRY2), and CK1δ. In mice, peak expression of the repressors in the early morning reduces CLOCK- and BMAL1-mediated transcription/translation of the repressors themselves. By late afternoon the repressors are largely depleted by degradation, and thereby their expression is reactivated in a cycle repeated every 24 h. Studies have characterized a variety of possible protein interactions and complexes associated with the function of this transcription-translation feedback loop. Our prior investigation suggested there were two circadian complexes responsible for rhythmicity, one containing CLOCK-BMAL and the other containing PER2, CRY1, and CK1δ. In this investigation, we acquired data from glycerol gradient centrifugation and gel filtration chromatography of mouse liver extracts obtained at different circadian times to further characterize circadian complexes. In addition, anti-PER2 and anti-CRY1 immunoprecipitates obtained from the same extracts were analyzed by liquid chromatography-tandem mass spectrometry to identify components of circadian complexes. Our results confirm the presence of discrete CLOCK-BMAL1 and PER-CRY-CK1δ complexes at the different circadian time points, provide masses of 255 and 707 kDa, respectively, for these complexes, and indicate that these complexes are composed principally of the core circadian proteins.
Collapse
Affiliation(s)
- Xuemei Cao
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Li Wang
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Christopher P Selby
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Laura A Lindsey-Boltz
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Aziz Sancar
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA.
| |
Collapse
|
27
|
Schurhoff N, Toborek M. Circadian rhythms in the blood-brain barrier: impact on neurological disorders and stress responses. Mol Brain 2023; 16:5. [PMID: 36635730 PMCID: PMC9835375 DOI: 10.1186/s13041-023-00997-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 01/03/2023] [Indexed: 01/14/2023] Open
Abstract
Circadian disruption has become more prevalent in society due to the increase in shift work, sleep disruption, blue light exposure, and travel via different time zones. The circadian rhythm is a timed transcription-translation feedback loop with positive regulators, BMAL1 and CLOCK, that interact with negative regulators, CRY and PER, to regulate both the central and peripheral clocks. This review highlights the functions of the circadian rhythm, specifically in the blood-brain barrier (BBB), during both healthy and pathological states. The BBB is a highly selective dynamic interface composed of CNS endothelial cells, astrocytes, pericytes, neurons, and microglia that form the neurovascular unit (NVU). Circadian rhythms modulate BBB integrity through regulating oscillations of tight junction proteins, assisting in functions of the NVU, and modulating transporter functions. Circadian disruptions within the BBB have been observed in stress responses and several neurological disorders, including brain metastasis, epilepsy, Alzheimer's disease, and Parkinson's disease. Further understanding of these interactions may facilitate the development of improved treatment options and preventative measures.
Collapse
Affiliation(s)
- Nicolette Schurhoff
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Suite 528, 1011 NW 15th Street, Miami, FL, 33155, USA
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Suite 528, 1011 NW 15th Street, Miami, FL, 33155, USA.
- Institute of Physiotherapy and Health Sciences, The Jerzy Kukuczka Academy of Physical Education, 40-065, Katowice, Poland.
| |
Collapse
|
28
|
Olejárová S, Moravčík R, Herichová I. 2.4 GHz Electromagnetic Field Influences the Response of the Circadian Oscillator in the Colorectal Cancer Cell Line DLD1 to miR-34a-Mediated Regulation. Int J Mol Sci 2022; 23:13210. [PMID: 36361993 PMCID: PMC9656412 DOI: 10.3390/ijms232113210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 10/15/2023] Open
Abstract
Radiofrequency electromagnetic fields (RF-EMF) exert pleiotropic effects on biological processes including circadian rhythms. miR-34a is a small non-coding RNA whose expression is modulated by RF-EMF and has the capacity to regulate clock gene expression. However, interference between RF-EMF and miR-34a-mediated regulation of the circadian oscillator has not yet been elucidated. Therefore, the present study was designed to reveal if 24 h exposure to 2.4 GHz RF-EMF influences miR-34a-induced changes in clock gene expression, migration and proliferation in colorectal cancer cell line DLD1. The effect of up- or downregulation of miR-34a on DLD1 cells was evaluated using real-time PCR, the scratch assay test and the MTS test. Administration of miR-34a decreased the expression of per2, bmal1, sirtuin1 and survivin and inhibited proliferation and migration of DLD1 cells. When miR-34a-transfected DLD1 cells were exposed to 2.4 GHz RF-EMF, an increase in cry1 mRNA expression was observed. The inhibitory effect of miR-34a on per2 and survivin was weakened and abolished, respectively. The effect of miR-34a on proliferation and migration was eliminated by RF-EMF exposure. In conclusion, RF-EMF strongly influenced regulation mediated by the tumour suppressor miR-34a on the peripheral circadian oscillator in DLD1 cells.
Collapse
Affiliation(s)
| | | | - Iveta Herichová
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University Bratislava, 842 15 Bratislava, Slovakia
| |
Collapse
|
29
|
The role of spatiotemporal organization and dynamics of clock complexes in circadian regulation. Curr Opin Cell Biol 2022; 78:102129. [PMID: 36126370 DOI: 10.1016/j.ceb.2022.102129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/26/2022] [Accepted: 08/19/2022] [Indexed: 01/31/2023]
Abstract
Circadian clocks are cell autonomous timekeepers that regulate ∼24-h oscillations in the expression of many genes and control rhythms in nearly all our behavior and physiology. Almost every cell in the human body has a molecular clock and networks of cells containing clock proteins orchestrate daily rhythms in many physiological processes, from sleep-wake cycles to metabolism to immunity. All eukaryotic circadian clocks are based on transcription-translation delayed negative feedback loops in which activation of core clock genes is negatively regulated by their cognate protein products. Our current understanding of circadian clocks has been accumulated from decades of genetic and biochemical experiments, however, what remains poorly understood is how clock proteins, genes, and mRNAs are spatiotemporally organized within live clock cells and how such subcellular organization affects circadian rhythms at the single cell level. Here, we review recent progress in understanding how clock proteins and genes are spatially organized within clock cells over the circadian cycle and the role of such organization in generating circadian rhythms and highlight open questions for future studies.
Collapse
|
30
|
Wang Z, Chen G. Insights about circadian clock in glioma: From molecular pathways to therapeutic drugs. CNS Neurosci Ther 2022; 28:1930-1941. [PMID: 36066207 PMCID: PMC9627379 DOI: 10.1111/cns.13966] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 02/06/2023] Open
Abstract
Glioma is characterized as the most aggressive brain tumor that occurred in the central nervous system. The circadian rhythm is an essential cyclic change system generated by the endogenous circadian clock. Current studies found that the circadian clock affects glioma pathophysiology. It is still controversial whether the circadian rhythm disruption is a cause or an effect of tumorigenesis. This review discussed the association between cell cycle and circadian clock and provided a prominent molecular theoretical basis for tumor therapy. We illustrated the external factors affecting the circadian clock including thermodynamics, hypoxia, post-translation, and microRNA, while the internal characteristics concerning the circadian clock in glioma involve stemness, metabolism, radiotherapy sensitivity, and chemotherapy sensitivity. We also summarized the molecular pathways and the therapeutic drugs involved in the glioma circadian rhythm. There are still many questions in this field waiting for further investigation. The results of glioma chronotherapy in sensitizing radiation therapy and chemotherapy have shown great therapeutic potential in improving clinical outcomes. These findings will help us further understand the characteristics of glioma pathophysiology.
Collapse
Affiliation(s)
- Zongqi Wang
- Department of Neurosurgery & Brain and Nerve Research LaboratoryThe First Affiliated Hospital of Soochow UniversitySuzhouChina,Institute of Stroke ResearchSoochow UniversitySuzhouChina
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research LaboratoryThe First Affiliated Hospital of Soochow UniversitySuzhouChina,Institute of Stroke ResearchSoochow UniversitySuzhouChina
| |
Collapse
|
31
|
Piersimoni L, Abd El Malek M, Bhatia T, Bender J, Brankatschk C, Calvo Sánchez J, Dayhoff GW, Di Ianni A, Figueroa Parra JO, Garcia-Martinez D, Hesselbarth J, Köppen J, Lauth LM, Lippik L, Machner L, Sachan S, Schmidt L, Selle R, Skalidis I, Sorokin O, Ubbiali D, Voigt B, Wedler A, Wei AAJ, Zorn P, Dunker AK, Köhn M, Sinz A, Uversky VN. Lighting up Nobel Prize-winning studies with protein intrinsic disorder. Cell Mol Life Sci 2022; 79:449. [PMID: 35882686 PMCID: PMC11072364 DOI: 10.1007/s00018-022-04468-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/18/2022] [Accepted: 07/04/2022] [Indexed: 11/03/2022]
Abstract
Intrinsically disordered proteins and regions (IDPs and IDRs) and their importance in biology are becoming increasingly recognized in biology, biochemistry, molecular biology and chemistry textbooks, as well as in current protein science and structural biology curricula. We argue that the sequence → dynamic conformational ensemble → function principle is of equal importance as the classical sequence → structure → function paradigm. To highlight this point, we describe the IDPs and/or IDRs behind the discoveries associated with 17 Nobel Prizes, 11 in Physiology or Medicine and 6 in Chemistry. The Nobel Laureates themselves did not always mention that the proteins underlying the phenomena investigated in their award-winning studies are in fact IDPs or contain IDRs. In several cases, IDP- or IDR-based molecular functions have been elucidated, while in other instances, it is recognized that the respective protein(s) contain IDRs, but the specific IDR-based molecular functions have yet to be determined. To highlight the importance of IDPs and IDRs as general principle in biology, we present here illustrative examples of IDPs/IDRs in Nobel Prize-winning mechanisms and processes.
Collapse
Affiliation(s)
- Lolita Piersimoni
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Marina Abd El Malek
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Twinkle Bhatia
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Julian Bender
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Christin Brankatschk
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Jaime Calvo Sánchez
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Guy W Dayhoff
- Department of Chemistry, College of Art and Sciences, University of South Florida, Tampa, FL, 33620, USA
| | - Alessio Di Ianni
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | | | - Dailen Garcia-Martinez
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Julia Hesselbarth
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Janett Köppen
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Luca M Lauth
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Laurin Lippik
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Lisa Machner
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Shubhra Sachan
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Lisa Schmidt
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Robin Selle
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Ioannis Skalidis
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Oleksandr Sorokin
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Daniele Ubbiali
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Bruno Voigt
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Alice Wedler
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Alan An Jung Wei
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Peter Zorn
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Alan Keith Dunker
- Department of Biochemistry and Molecular Biology, Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Marcel Köhn
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany.
| | - Andrea Sinz
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany.
| | - Vladimir N Uversky
- Department of Molecular Medicine, USF Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA.
| |
Collapse
|
32
|
An Y, Yuan B, Xie P, Gu Y, Liu Z, Wang T, Li Z, Xu Y, Liu Y. Decoupling PER phosphorylation, stability and rhythmic expression from circadian clock function by abolishing PER-CK1 interaction. Nat Commun 2022; 13:3991. [PMID: 35810166 PMCID: PMC9271041 DOI: 10.1038/s41467-022-31715-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 06/29/2022] [Indexed: 11/09/2022] Open
Abstract
Robust rhythms of abundances and phosphorylation profiles of PERIOD proteins were thought be the master rhythms that drive mammalian circadian clock functions. PER stability was proposed to be a major determinant of period length. In mammals, CK1 forms stable complexes with PER. Here we identify the PER residues essential for PER-CK1 interaction. In cells and in mice, their mutation abolishes PER phosphorylation and CLOCK hyperphosphorylation, resulting in PER stabilization, arrhythmic PER abundance and impaired negative feedback process, indicating that PER acts as the CK1 scaffold in circadian feedback mechanism. Surprisingly, the mutant mice exhibit robust short period locomotor activity and other physiological rhythms but low amplitude molecular rhythms. PER-CK1 interaction has two opposing roles in regulating CLOCK-BMAL1 activity. These results indicate that the circadian clock can function independently of PER phosphorylation and abundance rhythms due to another PER-CRY-dependent feedback mechanism and that period length can be uncoupled from PER stability.
Collapse
Affiliation(s)
- Yang An
- Model Animal Research Center, Nanjing University, 12 Xuefu Road, Pukou District, Nanjing, 210061, China.,Cambridge-Su Genomic Resource Center, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Baoshi Yuan
- Cambridge-Su Genomic Resource Center, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Pancheng Xie
- Cambridge-Su Genomic Resource Center, Soochow University, Suzhou, Jiangsu, 215123, China.,Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Yue Gu
- Cambridge-Su Genomic Resource Center, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Zhiwei Liu
- Cambridge-Su Genomic Resource Center, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Tao Wang
- Cambridge-Su Genomic Resource Center, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Zhihao Li
- Cambridge-Su Genomic Resource Center, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Ying Xu
- Cambridge-Su Genomic Resource Center, Soochow University, Suzhou, Jiangsu, 215123, China.
| | - Yi Liu
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
33
|
Protein interaction networks of the mammalian core clock proteins. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 131:207-233. [PMID: 35871891 DOI: 10.1016/bs.apcsb.2022.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Circadian rhythm is a 24-h cycle that regulates the biochemical and behavioral changes of organisms. It controls a wide range of functions, from gene expression to behavior, allowing organisms to anticipate daily changes in their environment. In mammals, circadian rhythm is generated by a complex transcriptional and translational feedback loop mechanism. The binding of CLOCK/BMAL1 heterodimer to the E-box of DNA located within the promoter region initiates transcription of clock control genes including the transcription of the other two core clock genes of Periods (Pers) and Cryptochromes (Crys). Then PERs and CRYs along with casein kinase 1ɛ/Δ translocate into the nucleus where they suppress CLOCK/BMAL1 transactivation and, in turn, clock-regulated gene expression. Various clock components must be operational to aid in their stabilization and period extension in circadian rhythm. In this review, we have highlighted the recent progress for the core clock interacting proteins to maintain and to stabilize circadian rhythm in mammals.
Collapse
|
34
|
Gao W, Li R, Ye M, Zhang L, Zheng J, Yang Y, Wei X, Zhao Q. The circadian clock has roles in mesenchymal stem cell fate decision. Stem Cell Res Ther 2022; 13:200. [PMID: 35578353 PMCID: PMC9109355 DOI: 10.1186/s13287-022-02878-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/26/2022] [Indexed: 02/08/2023] Open
Abstract
The circadian clock refers to the intrinsic biological rhythms of physiological functions and behaviours. It synergises with the solar cycle and has profound effects on normal metabolism and organismal fitness. Recent studies have suggested that the circadian clock exerts great influence on the differentiation of stem cells. Here, we focus on the close relationship between the circadian clock and mesenchymal stem cell fate decisions in the skeletal system. The underlying mechanisms include hormone signals and the activation and repression of different transcription factors under circadian regulation. Additionally, the clock interacts with epigenetic modifiers and non-coding RNAs and is even involved in chromatin remodelling. Although the specificity and safety of circadian therapy need to be further studied, the circadian regulation of stem cells can be regarded as a promising candidate for health improvement and disease prevention.
Collapse
Affiliation(s)
- Wenzhen Gao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Rong Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Meilin Ye
- Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, School and Hospital of Stomatology, Shandong University, Jinan, 250012, China
| | - Lanxin Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jiawen Zheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yuqing Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xiaoyu Wei
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Qing Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
35
|
Blanco JR, Verdugo-Sivianes EM, Amiama A, Muñoz-Galván S. The circadian rhythm of viruses and its implications on susceptibility to infection. Expert Rev Anti Infect Ther 2022; 20:1109-1117. [PMID: 35546444 DOI: 10.1080/14787210.2022.2072296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Circadian genes have an impact on multiple hormonal, metabolic, and immunological pathways and have recently been implicated in some infectious diseases. AREAS COVERED We review aspects related to the current knowledge about circadian rhythm and viral infections, their consequences, and the potential therapeutic options. EXPERT OPINION Expert opinion: In order to address a problem, it is necessary to know the topic in depth. Although in recent years there has been a growing interest in the role of circadian rhythms, many relevant questions remain to be resolved. Thus, the mechanisms linking the circadian machinery against viral infections are poorly understood. In a clear approach to personalized precision medicine, in order to treat a disease in the most appropriate phase of the circadian rhythm, and in order to achieve the optimal efficacy, it is highly recommended to carry out studies that improve the knowledge about the circadian rhythm.
Collapse
Affiliation(s)
- José-Ramon Blanco
- Servicio de Enfermedades Infecciosas, Hospital Universitario San Pedro, Logroño, Spain.,Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño, Spain
| | - Eva M Verdugo-Sivianes
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Sevilla, Spain.,CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Amiama
- Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño, Spain
| | - Sandra Muñoz-Galván
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Sevilla, Spain.,CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
36
|
Jeong EM, Song YM, Kim JK. Combined multiple transcriptional repression mechanisms generate ultrasensitivity and oscillations. Interface Focus 2022; 12:20210084. [PMID: 35450279 PMCID: PMC9010851 DOI: 10.1098/rsfs.2021.0084] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/24/2022] [Indexed: 12/14/2022] Open
Abstract
Transcriptional repression can occur via various mechanisms, such as blocking, sequestration and displacement. For instance, the repressors can hold the activators to prevent binding with DNA or can bind to the DNA-bound activators to block their transcriptional activity. Although the transcription can be completely suppressed with a single mechanism, multiple repression mechanisms are used together to inhibit transcriptional activators in many systems, such as circadian clocks and NF-κB oscillators. This raises the question of what advantages arise if seemingly redundant repression mechanisms are combined. Here, by deriving equations describing the multiple repression mechanisms, we find that their combination can synergistically generate a sharply ultrasensitive transcription response and thus strong oscillations. This rationalizes why the multiple repression mechanisms are used together in various biological oscillators. The critical role of such combined transcriptional repression for strong oscillations is further supported by our analysis of formerly identified mutations disrupting the transcriptional repression of the mammalian circadian clock. The hitherto unrecognized source of the ultrasensitivity, the combined transcriptional repressions, can lead to robust synthetic oscillators with a previously unachievable simple design.
Collapse
Affiliation(s)
- Eui Min Jeong
- Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- Biomedical Mathematics Group, Institute for Basic Science, Daejeon 34126, Republic of Korea
| | - Yun Min Song
- Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- Biomedical Mathematics Group, Institute for Basic Science, Daejeon 34126, Republic of Korea
| | - Jae Kyoung Kim
- Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- Biomedical Mathematics Group, Institute for Basic Science, Daejeon 34126, Republic of Korea
| |
Collapse
|
37
|
Liang C, Ke Q, Liu Z, Ren J, Zhang W, Hu J, Wang Z, Chen H, Xia K, Lai X, Wang Q, Yang K, Li W, Wu Z, Wang C, Yan H, Jiang X, Ji Z, Ma M, Long X, Wang S, Wang H, Sun H, Belmonte J, Qu J, Xiang A, Liu GH. BMAL1 moonlighting as a gatekeeper for LINE1 repression and cellular senescence in primates. Nucleic Acids Res 2022; 50:3323-3347. [PMID: 35286396 PMCID: PMC8989534 DOI: 10.1093/nar/gkac146] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/14/2022] [Accepted: 02/19/2022] [Indexed: 11/13/2022] Open
Abstract
Aging in humans is intricately linked with alterations in circadian rhythms concomitant with physiological decline and stem cell exhaustion. However, whether the circadian machinery directly regulates stem cell aging, especially in primates, remains poorly understood. In this study, we found that deficiency of BMAL1, the only non-redundant circadian clock component, results in an accelerated aging phenotype in both human and cynomolgus monkey mesenchymal progenitor cells (MPCs). Unexpectedly, this phenotype was mainly attributed to a transcription-independent role of BMAL1 in stabilizing heterochromatin and thus preventing activation of the LINE1-cGAS-STING pathway. In senescent primate MPCs, we observed decreased capacity of BMAL1 to bind to LINE1 and synergistic activation of LINE1 expression. Likewise, in the skin and muscle tissues from the BMAL1-deficient cynomolgus monkey, we observed destabilized heterochromatin and aberrant LINE1 transcription. Altogether, these findings uncovered a noncanonical role of BMAL1 in stabilizing heterochromatin to inactivate LINE1 that drives aging in primate cells.
Collapse
Affiliation(s)
- Chuqian Liang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Qiong Ke
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
- Department of Genetics and Cell Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Zunpeng Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Ren
- Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiqi Zhang
- Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianli Hu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zehua Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Chen
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Kai Xia
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Xingqiang Lai
- Cardiovascular Department, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518033, China
| | - Qiaoran Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kuan Yang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Li
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Zeming Wu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Wang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
- Department of Genetics and Cell Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Haoteng Yan
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Xiaoyu Jiang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhejun Ji
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Miyang Ma
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Long
- Division of Plastic Surgery, Peking Union Medical College Hospital, Beijing 100032, China
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- Chongqing Renji Hospital, University of Chinese Academy of Sciences, Chongqing 400062, China
| | - Huating Wang
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Hao Sun
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
| | | | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Andy Peng Xiang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| |
Collapse
|
38
|
Mathematical analysis of robustness of oscillations in models of the mammalian circadian clock. PLoS Comput Biol 2022; 18:e1008340. [PMID: 35302984 PMCID: PMC8979472 DOI: 10.1371/journal.pcbi.1008340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 04/04/2022] [Accepted: 02/25/2022] [Indexed: 11/23/2022] Open
Abstract
Circadian rhythms in a wide range of organisms are mediated by molecular mechanisms based on transcription-translation feedback. In this paper, we use bifurcation theory to explore mathematical models of genetic oscillators, based on Kim & Forger’s interpretation of the circadian clock in mammals. At the core of their models is a negative feedback loop whereby PER proteins (PER1 and PER2) bind to and inhibit their transcriptional activator, BMAL1. For oscillations to occur, the dissociation constant of the PER:BMAL1 complex, K^d, must be ≤ 0.04 nM, which is orders of magnitude smaller than a reasonable expectation of 1–10 nM for this protein complex. We relax this constraint by two modifications to Kim & Forger’s ‘single negative feedback’ (SNF) model: first, by introducing a multistep reaction chain for posttranscriptional modifications of Per mRNA and posttranslational phosphorylations of PER, and second, by replacing the first-order rate law for degradation of PER in the nucleus by a Michaelis-Menten rate law. These modifications increase the maximum allowable K^d to ~2 nM. In a third modification, we consider an alternative rate law for gene transcription to resolve an unrealistically large rate of Per2 transcription at very low concentrations of BMAL1. Additionally, we studied extensions of the SNF model to include a second negative feedback loop (involving REV-ERB) and a supplementary positive feedback loop (involving ROR). Contrary to Kim & Forger’s observations of these extended models, we find that, with our modifications, the supplementary positive feedback loop makes the oscillations more robust than observed in the models with one or two negative feedback loops. However, all three models are similarly robust when accounting for circadian rhythms (~24 h period) with K^d ≥ 1 nM. Our results provide testable predictions for future experimental studies. The circadian rhythm aligns bodily functions to the day/night cycle and is important for our health. The rhythm originates from an intracellular molecular clock mechanism that mediates rhythmic gene expression. It is long understood that transcriptional negative feedback with sufficient time delay is key to generating circadian oscillations. However, some of the most widely cited mathematical models for the circadian clock suffer from problems of parameter ‘fragilities’. That is, sustained oscillations are possible only for physically unrealistic parameter values. A recent model by Kim & Forger nicely incorporates the inhibitory binding of PER proteins to their transcription activator BMAL1, but oscillations in the Kim-Forger model require a binding affinity between PER and BMAL1 that is orders of magnitude larger than observed binding affinities of protein complexes. To rectify this problem, we make several physiologically credible modifications to the Kim-Forger model, which allow oscillations to occur with more realistic binding affinities. The modified model is further extended to explore the potential roles of supplementary feedback loops in the mammalian clock mechanism. Ultimately, accurate models of the circadian clock will provide better predictive tools for chronotherapy and chrono-pharmacology studies.
Collapse
|
39
|
Koch AA, Bagnall JS, Smyllie NJ, Begley N, Adamson AD, Fribourgh JL, Spiller DG, Meng QJ, Partch CL, Strimmer K, House TA, Hastings MH, Loudon ASI. Quantification of protein abundance and interaction defines a mechanism for operation of the circadian clock. eLife 2022; 11:73976. [PMID: 35285799 PMCID: PMC8983044 DOI: 10.7554/elife.73976] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
The mammalian circadian clock exerts control of daily gene expression through cycles of DNA binding. Here, we develop a quantitative model of how a finite pool of BMAL1 protein can regulate thousands of target sites over daily time scales. We used quantitative imaging to track dynamic changes in endogenous labelled proteins across peripheral tissues and the SCN. We determine the contribution of multiple rhythmic processes coordinating BMAL1 DNA binding, including cycling molecular abundance, binding affinities, and repression. We find nuclear BMAL1 concentration determines corresponding CLOCK through heterodimerisation and define a DNA residence time of this complex. Repression of CLOCK:BMAL1 is achieved through rhythmic changes to BMAL1:CRY1 association and high-affinity interactions between PER2:CRY1 which mediates CLOCK:BMAL1 displacement from DNA. Finally, stochastic modelling reveals a dual role for PER:CRY complexes in which increasing concentrations of PER2:CRY1 promotes removal of BMAL1:CLOCK from genes consequently enhancing ability to move to new target sites.
Collapse
Affiliation(s)
- Alex Ashton Koch
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - James S Bagnall
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Nicola J Smyllie
- Laboratory of Molecular Biology, Medical Research Council, Cambridge, United Kingdom
| | - Nicola Begley
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Antony D Adamson
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Jennifer L Fribourgh
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, United States
| | - David G Spiller
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Qing-Jun Meng
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Carrie L Partch
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, United States
| | - Korbinian Strimmer
- Department of Mathematics, University of Manchester, Manchester, United Kingdom
| | - Thomas A House
- Department of Mathematics, University of Manchester, Manchester, United Kingdom
| | - Michael H Hastings
- Laboratory of Molecular Biology, Medical Research Council, Cambridge, United Kingdom
| | - Andrew S I Loudon
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
40
|
Identification of novel small molecules targeting core clock proteins to regulate circadian rhythm. Curr Opin Chem Eng 2022. [DOI: 10.1016/j.coche.2021.100730] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
41
|
Quattrocelli M, Wintzinger M, Miz K, Levine DC, Peek CB, Bass J, McNally EM. Muscle mitochondrial remodeling by intermittent glucocorticoid drugs requires an intact circadian clock and muscle PGC1α. SCIENCE ADVANCES 2022; 8:eabm1189. [PMID: 35179955 PMCID: PMC8856622 DOI: 10.1126/sciadv.abm1189] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Exogenous glucocorticoids interact with the circadian clock, but little attention is paid to the timing of intake. We recently found that intermittent once-weekly prednisone improved nutrient oxidation in dystrophic muscle. Here, we investigated whether dosage time affected prednisone effects on muscle bioenergetics. In mice treated with once-weekly prednisone, drug dosing in the light-phase promoted nicotinamide adenine dinucleotide (NAD+) levels and mitochondrial function in wild-type muscle, while this response was lost with dark-phase dosing. These effects depended on a normal circadian clock since they were disrupted in muscle from [Brain and muscle Arnt-like protein-1 (Bmal1)]-knockout mice. The light-phase prednisone pulse promoted BMAL1-dependent glucocorticoid receptor recruitment on noncanonical targets, including Nampt and Ppargc1a [peroxisome proliferator-activated receptor-γ coactivator 1α (PGC1α)]. In mice with muscle-restricted inducible PGC1α ablation, bioenergetic stimulation by light-phase prednisone required PGC1α. These results demonstrate that glucocorticoid "chronopharmacology" for muscle bioenergetics requires an intact clock and muscle PGC1α activity.
Collapse
Affiliation(s)
- Mattia Quattrocelli
- Division of Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Michelle Wintzinger
- Division of Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Karen Miz
- Division of Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Daniel C. Levine
- Division of Endocrinology, Metabolism and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Clara Bien Peek
- Division of Endocrinology, Metabolism and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Joseph Bass
- Division of Endocrinology, Metabolism and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Elizabeth M. McNally
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
42
|
Minami Y, Yuan Y, Ueda HR. High-throughput Genetically Modified Animal Experiments Achieved by Next-generation Mammalian Genetics. J Biol Rhythms 2022; 37:135-151. [PMID: 35137623 DOI: 10.1177/07487304221075002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Animal models are essential tools for modern scientists to conduct biological experiments and investigate their hypotheses in vivo. However, for the past decade, raising the throughput of such animal experiments has been a great challenge. Conventionally, in vivo high-throughput assay was achieved through large-scale mutagen-driven forward genetic screening, which took years to find causal genes. In contrast, reverse genetics accelerated the causal gene identification process, but its throughput was also limited by 2 barriers, that is, the genome modification step and the time-consuming crossing step. Defined as genetics without crossing, next-generation genetics is able to produce gene-modified animals that can be analyzed at the founder generation (F0). This method is or can be accomplished through recent technological advances in gene editing and virus-based efficient gene modifications. Notably, next-generation genetics has accelerated the process of cross-species studies, and it will be a useful technique during animal experiments as it can provide genetic perturbation at an individual level without crossing. In this review, we begin by introducing the history of animal-based high-throughput analysis, with a specific focus on chronobiology. We then describe ways that gene modification efficiency during animal experiments was enhanced and why crossing remained a barrier to reaching higher efficiency. Moreover, we mention the Triple CRISPR as a critical technique for achieving next-generation genetics. Finally, we discuss the potential applications and limitations of next-generation mammalian genetics.
Collapse
Affiliation(s)
- Yoichi Minami
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yufei Yuan
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroki R Ueda
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Suita, Japan
| |
Collapse
|
43
|
TRITHORAX-dependent arginine methylation of HSP68 mediates circadian repression by PERIOD in the monarch butterfly. Proc Natl Acad Sci U S A 2022; 119:2115711119. [PMID: 35064085 PMCID: PMC8795551 DOI: 10.1073/pnas.2115711119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2021] [Indexed: 12/19/2022] Open
Abstract
Circadian repression drives the transcriptional feedback loops that keep circadian (∼24-h) time and synchronize an animal’s physiology and behavior to the daily environmental changes. Although PERIOD (PER) is known to initiate transcriptional repression by displacing the transcription activator CLOCK:BMAL1 from DNA, the underlying mechanism remains unknown. Using the monarch butterfly as a model harboring a simplified version of the mammalian circadian clock, we demonstrate that the binding of heat shock protein 68 (HSP68) to a region homologous to CLOCK mouse exon 19 is essential for CLK–PER interaction and PER repression. We further show that CLK–PER interaction and PER repression are promoted by the methylation of a single arginine methylation site (R45) on HSP68 via TRITHORAX catalytic activity. Transcriptional repression drives feedback loops that are central to the generation of circadian (∼24-h) rhythms. In mammals, circadian repression of circadian locomotor output cycles kaput, and brain and muscle ARNT-like 1 (CLOCK:BMAL1)-mediated transcription is provided by a complex formed by PERIOD (PER) and CRYPTOCHROME (CRY) proteins. PER initiates transcriptional repression by binding CLK:BMAL1, which ultimately results in their removal from DNA. Although PER’s ability to repress transcription is widely recognized, how PER binding triggers repression by removing CLK:BMAL1 from DNA is not known. Here, we use the monarch butterfly as a model system to address this problem because it harbors a simplified version of the CLK:BMAL1-activated circadian clock present in mammals. We report that an intact CLOCK mouse exon 19 homologous region (CLKe19r) and the histone methyltransferase TRITHORAX (TRX) are both necessary for monarch CLK:BMAL1-mediated transcriptional activation, CLK–PER interaction, and PER repression. Our results show that TRX catalytic activity is essential for CLK–PER interaction and PER repression via the methylation of a single arginine methylation site (R45) on heat shock protein 68 (HSP68). Our study reveals TRX and HSP68 as essential links between circadian activation and PER-mediated repression and suggests a potential conserved clock function for HSPs in eukaryotes.
Collapse
|
44
|
NF-κB modifies the mammalian circadian clock through interaction with the core clock protein BMAL1. PLoS Genet 2021; 17:e1009933. [PMID: 34807912 PMCID: PMC8648109 DOI: 10.1371/journal.pgen.1009933] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/06/2021] [Accepted: 11/07/2021] [Indexed: 11/19/2022] Open
Abstract
In mammals, the circadian clock coordinates cell physiological processes including inflammation. Recent studies suggested a crosstalk between these two pathways. However, the mechanism of how inflammation affects the clock is not well understood. Here, we investigated the role of the proinflammatory transcription factor NF-κB in regulating clock function. Using a combination of genetic and pharmacological approaches, we show that perturbation of the canonical NF-κB subunit RELA in the human U2OS cellular model altered core clock gene expression. While RELA activation shortened period length and dampened amplitude, its inhibition lengthened period length and caused amplitude phenotypes. NF-κB perturbation also altered circadian rhythms in the master suprachiasmatic nucleus (SCN) clock and locomotor activity behavior under different light/dark conditions. We show that RELA, like the clock repressor CRY1, repressed the transcriptional activity of BMAL1/CLOCK at the circadian E-box cis-element. Biochemical and biophysical analysis showed that RELA binds to the transactivation domain of BMAL1. These data support a model in which NF-kB competes with CRY1 and coactivator CBP/p300 for BMAL1 binding to affect circadian transcription. This is further supported by chromatin immunoprecipitation analysis showing that binding of RELA, BMAL1 and CLOCK converges on the E-boxes of clock genes. Taken together, these data support a significant role for NF-κB in directly regulating the circadian clock and highlight mutual regulation between the circadian and inflammatory pathways.
Collapse
|
45
|
Circadian Alterations Increase with Progression in a Patient-Derived Cell Culture Model of Breast Cancer. Clocks Sleep 2021; 3:598-608. [PMID: 34842634 PMCID: PMC8628750 DOI: 10.3390/clockssleep3040042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/10/2021] [Accepted: 10/28/2021] [Indexed: 01/20/2023] Open
Abstract
Circadian rhythm disruption can elicit the development of various diseases, including breast cancer. While studies have used cell lines to study correlations between altered circadian rhythms and cancer, these models have different genetic backgrounds and do not mirror the changes that occur with disease development. Isogenic cell models can recapitulate changes across cancer progression. Hence, in this study, a patient-derived breast cancer model, the 21T series, was used to evaluate changes to circadian oscillations of core clock protein transcription as cells progress from normal to malignant states. Three cell lines were used: H16N2 (normal breast epithelium), 21PT (atypical ductal hyperplasia), and 21MT-1 (invasive metastatic carcinoma). The cancerous cells are both HER2+. We assessed the transcriptional profiles of two core clock proteins, BMAL1 and PER2, which represent a positive and negative component of the molecular oscillator. In the normal H16N2 cells, both genes possessed rhythmic mRNA oscillations with close to standard periods and phases. However, in the cancerous cells, consistent changes were observed: both genes had periods that deviated farther from normal and did not have an anti-phase relationship. In the future, mechanistic studies should be undertaken to determine the oncogenic changes responsible for the circadian alterations found.
Collapse
|
46
|
Healy KL, Morris AR, Liu AC. Circadian Synchrony: Sleep, Nutrition, and Physical Activity. FRONTIERS IN NETWORK PHYSIOLOGY 2021; 1:732243. [PMID: 35156088 PMCID: PMC8830366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/20/2021] [Indexed: 11/11/2022]
Abstract
The circadian clock in mammals regulates the sleep/wake cycle and many associated behavioral and physiological processes. The cellular clock mechanism involves a transcriptional negative feedback loop that gives rise to circadian rhythms in gene expression with an approximately 24-h periodicity. To maintain system robustness, clocks throughout the body must be synchronized and their functions coordinated. In mammals, the master clock is located in the suprachiasmatic nucleus (SCN) of the hypothalamus. The SCN is entrained to the light/dark cycle through photic signal transduction and subsequent induction of core clock gene expression. The SCN in turn relays the time-of-day information to clocks in peripheral tissues. While the SCN is highly responsive to photic cues, peripheral clocks are more sensitive to non-photic resetting cues such as nutrients, body temperature, and neuroendocrine hormones. For example, feeding/fasting and physical activity can entrain peripheral clocks through signaling pathways and subsequent regulation of core clock genes and proteins. As such, timing of food intake and physical activity matters. In an ideal world, the sleep/wake and feeding/fasting cycles are synchronized to the light/dark cycle. However, asynchronous environmental cues, such as those experienced by shift workers and frequent travelers, often lead to misalignment between the master and peripheral clocks. Emerging evidence suggests that the resulting circadian disruption is associated with various diseases and chronic conditions that cause further circadian desynchrony and accelerate disease progression. In this review, we discuss how sleep, nutrition, and physical activity synchronize circadian clocks and how chronomedicine may offer novel strategies for disease intervention.
Collapse
Affiliation(s)
| | | | - Andrew C. Liu
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, FL, United States
| |
Collapse
|
47
|
Healy KL, Morris AR, Liu AC. Circadian Synchrony: Sleep, Nutrition, and Physical Activity. FRONTIERS IN NETWORK PHYSIOLOGY 2021; 1:732243. [PMID: 35156088 PMCID: PMC8830366 DOI: 10.3389/fnetp.2021.732243] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/20/2021] [Indexed: 08/01/2023]
Abstract
The circadian clock in mammals regulates the sleep/wake cycle and many associated behavioral and physiological processes. The cellular clock mechanism involves a transcriptional negative feedback loop that gives rise to circadian rhythms in gene expression with an approximately 24-h periodicity. To maintain system robustness, clocks throughout the body must be synchronized and their functions coordinated. In mammals, the master clock is located in the suprachiasmatic nucleus (SCN) of the hypothalamus. The SCN is entrained to the light/dark cycle through photic signal transduction and subsequent induction of core clock gene expression. The SCN in turn relays the time-of-day information to clocks in peripheral tissues. While the SCN is highly responsive to photic cues, peripheral clocks are more sensitive to non-photic resetting cues such as nutrients, body temperature, and neuroendocrine hormones. For example, feeding/fasting and physical activity can entrain peripheral clocks through signaling pathways and subsequent regulation of core clock genes and proteins. As such, timing of food intake and physical activity matters. In an ideal world, the sleep/wake and feeding/fasting cycles are synchronized to the light/dark cycle. However, asynchronous environmental cues, such as those experienced by shift workers and frequent travelers, often lead to misalignment between the master and peripheral clocks. Emerging evidence suggests that the resulting circadian disruption is associated with various diseases and chronic conditions that cause further circadian desynchrony and accelerate disease progression. In this review, we discuss how sleep, nutrition, and physical activity synchronize circadian clocks and how chronomedicine may offer novel strategies for disease intervention.
Collapse
|
48
|
Pearson JA, Voisey AC, Boest-Bjerg K, Wong FS, Wen L. Circadian Rhythm Modulation of Microbes During Health and Infection. Front Microbiol 2021; 12:721004. [PMID: 34512600 PMCID: PMC8430216 DOI: 10.3389/fmicb.2021.721004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 08/05/2021] [Indexed: 12/11/2022] Open
Abstract
Circadian rhythms, referring to 24-h daily oscillations in biological and physiological processes, can significantly regulate host immunity to pathogens, as well as commensals, resulting in altered susceptibility to disease development. Furthermore, vaccination responses to microbes have also shown time-of-day-dependent changes in the magnitude of protective immune responses elicited in the host. Thus, understanding host circadian rhythm effects on both gut bacteria and viruses during infection is important to minimize adverse effects on health and identify optimal times for therapeutic administration to maximize therapeutic success. In this review, we summarize the circadian modulations of gut bacteria, viruses and their interactions, both in health and during infection. We also discuss the importance of chronotherapy (i.e., time-specific therapy) as a plausible therapeutic administration strategy to enhance beneficial therapeutic responses.
Collapse
Affiliation(s)
- James Alexander Pearson
- Diabetes Research Group, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Alexander Christopher Voisey
- Diabetes Research Group, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Kathrine Boest-Bjerg
- Diabetes Research Group, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - F. Susan Wong
- Diabetes Research Group, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Li Wen
- Section of Endocrinology, Internal Medicine, School of Medicine, Yale University, New Haven, CT, United States
| |
Collapse
|
49
|
Xiao Y, Yuan Y, Jimenez M, Soni N, Yadlapalli S. Clock proteins regulate spatiotemporal organization of clock genes to control circadian rhythms. Proc Natl Acad Sci U S A 2021; 118:e2019756118. [PMID: 34234015 PMCID: PMC8285898 DOI: 10.1073/pnas.2019756118] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Circadian clocks regulate ∼24-h oscillations in gene expression, behavior, and physiology. While the genetic and molecular mechanisms of circadian rhythms are well characterized, what remains poorly understood are the intracellular dynamics of circadian clock components and how they affect circadian rhythms. Here, we elucidate how spatiotemporal organization and dynamics of core clock proteins and genes affect circadian rhythms in Drosophila clock neurons. Using high-resolution imaging and DNA-fluorescence in situ hybridization techniques, we demonstrate that Drosophila clock proteins (PERIOD and CLOCK) are organized into a few discrete foci at the nuclear envelope during the circadian repression phase and play an important role in the subnuclear localization of core clock genes to control circadian rhythms. Specifically, we show that core clock genes, period and timeless, are positioned close to the nuclear periphery by the PERIOD protein specifically during the repression phase, suggesting that subnuclear localization of core clock genes might play a key role in their rhythmic gene expression. Finally, we show that loss of Lamin B receptor, a nuclear envelope protein, leads to disruption of PER foci and per gene peripheral localization and results in circadian rhythm defects. These results demonstrate that clock proteins play a hitherto unexpected role in the subnuclear reorganization of core clock genes to control circadian rhythms, revealing how clocks function at the subcellular level. Our results further suggest that clock protein foci might regulate dynamic clustering and spatial reorganization of clock-regulated genes over the repression phase to control circadian rhythms in behavior and physiology.
Collapse
Affiliation(s)
- Yangbo Xiao
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Ye Yuan
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109
| | - Mariana Jimenez
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Neeraj Soni
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Swathi Yadlapalli
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109;
| |
Collapse
|
50
|
Abstract
Disruption of circadian rhythms increases the risk of several types of cancer. Mammalian cryptochromes (CRY1 and CRY2) are circadian transcriptional repressors that are related to DNA-repair enzymes. While CRYs lack DNA-repair activity, they modulate the transcriptional response to DNA damage, and CRY2 can promote SKP1 cullin 1-F-box (SCF)FBXL3-mediated ubiquitination of c-MYC and other targets. Here, we characterize five mutations in CRY2 observed in human cancers in The Cancer Genome Atlas. We demonstrate that two orthologous mutations of mouse CRY2 (D325H and S510L) accelerate the growth of primary mouse fibroblasts expressing high levels of c-MYC. Neither mutant affects steady-state levels of overexpressed c-MYC, and they have divergent impacts on circadian rhythms and on the ability of CRY2 to interact with SCFFBXL3 Unexpectedly, stable expression of either CRY2 D325H or of CRY2 S510L robustly suppresses P53 target-gene expression, suggesting that this may be a primary mechanism by which they influence cell growth.
Collapse
|