1
|
Chen RY, Liu YJ, Wang R, Yu J, Shi JJ, Yang GJ, Chen J. Fingerprint of ubiquitin coupled enzyme UBC13 in health and disease. Bioorg Chem 2025; 161:108524. [PMID: 40319811 DOI: 10.1016/j.bioorg.2025.108524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 04/16/2025] [Accepted: 04/24/2025] [Indexed: 05/07/2025]
Abstract
Ubiquitination is one of the most well-known post-translational modifications in eukaryotes. UBC13 is an E2 ubiquitin coupling enzyme, which interacts with different E3 ligases and exerts ubiquitination activity to assemble and synthesize lysine-63-linked (Lys63) ubiquitin strands, thus playing an important role in cell homeostasis, various diseases caused by inflammation, and the occurrence and development of cancer. In this paper, we review the structure and function of UBC13, summarize the diverse pathways it mediates, and discuss its involvement in bacterial and non-bacterial inflammatory diseases. Additionally, we explore UBC13's role in physiological damage repair mechanisms, cancer development, DNA damage repair, immune cell maturation, and function. Furthermore, We also elucidate the progress of the discovery of small molecule inhibitors targeting UBC13 and summarize their structure, which suggests that targeting UBC13 may be a potential disease treatment strategy.
Collapse
Affiliation(s)
- Ru-Yi Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Yan-Jun Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Ran Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Jing Yu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Jin-Jin Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, Zhejiang, China.
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, Zhejiang, China.
| |
Collapse
|
2
|
Maiwald SA, Schneider LA, Vollrath R, Liwocha J, Maletic MD, Swatek KN, Mulder MPC, Schulman BA. TRIP12 structures reveal HECT E3 formation of K29 linkages and branched ubiquitin chains. Nat Struct Mol Biol 2025:10.1038/s41594-025-01561-1. [PMID: 40419785 DOI: 10.1038/s41594-025-01561-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 04/10/2025] [Indexed: 05/28/2025]
Abstract
Regulation by ubiquitin depends on E3 ligases forging chains of specific topologies, yet the mechanisms underlying the generation of atypical linkages remain largely elusive. Here we utilize biochemistry, chemistry, and cryo-EM to define the catalytic architecture producing K29 linkages and K29/K48 branches for the human HECT E3 TRIP12. TRIP12 resembles a pincer. One pincer side comprises tandem ubiquitin-binding domains, engaging the proximal ubiquitin to direct its K29 towards the ubiquitylation active site, and selectively capturing a distal ubiquitin from a K48-linked chain. The opposite pincer side-the HECT domain-precisely juxtaposes the ubiquitins to be joined, further ensuring K29 linkage specificity. Comparison to the prior structure visualizing K48-linked chain formation by UBR5 reveals a similar mechanism shared by two human HECT enzymes: parallel features of the E3s, donor and acceptor ubiquitins configure the active site around the targeted lysine, with E3-specific domains buttressing the acceptor for linkage-specific polyubiquitylation.
Collapse
Affiliation(s)
- Samuel A Maiwald
- Department of Chemistry, School of Natural Sciences, Technical University of Munich, Garching, Germany
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Laura A Schneider
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
- ISREC, École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Ronnald Vollrath
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Joanna Liwocha
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
- Lyterian Therapeutics, South San Francisco, CA, USA
| | - Matthew D Maletic
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Kirby N Swatek
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Monique P C Mulder
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Brenda A Schulman
- Department of Chemistry, School of Natural Sciences, Technical University of Munich, Garching, Germany.
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany.
| |
Collapse
|
3
|
Wathan AJ, Deschene NM, Litz JM, Sumner I. The Lysine Deprotonation Mechanism in a Ubiquitin Conjugating Enzyme. J Phys Chem B 2025; 129:4962-4968. [PMID: 40353756 DOI: 10.1021/acs.jpcb.5c01486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Ubiquitination is a biochemical reaction in which a small protein, ubiquitin (Ub), is covalently linked to a lysine on a target protein. This type of post-translational modification can signal for protein degradation, DNA repair, or inflammation response. Ubiquitination is catalyzed by three families of enzymes: ubiquitin activating enzymes (E1), ubiquitin conjugating enzymes (E2), and ubiquitin ligases (E3). In this study, we focus on the chemical mechanism used by the E2 enzyme, Ubc13, which forms polyubiquitin chains by linking a substrate Ub to Lys63 on a target ubiquitin (Ub*). Initially, Ubc13 is covalently linked to the substrate Ub. Next, Lys63 in the Ub* is deprotonated, becomes an active nucleophile, and attacks the thioester bond in the Ubc13∼Ub conjugate. The deprotonation mechanism is not well understood. There are two, conserved nearby residues that may act as conjugate bases (Asp119 on Ubc13 and Glu64 on Ub*.) It is also hypothesized that the active site environment suppresses the lysine's pKa, favoring deprotonated lysine. We test these hypotheses by simulating both WT and mutant Ubc13 with constant pH molecular dynamics (CpHMD), which allows titratable residues to change their protonation states. In our simulations, we have five titratable residues, including Lys63, and we use these simulations to monitor the protonation states and to generate titration curves of lysine 63. We found that the pKa of Lys63 is highly dependent on its distance from the active site. Also, mutating Asp119 or Glu64 to Ala has little effect on the lysine pKa, indicating that neither residue acts as a generalized base. Finally, we note that mutating a structural residue (Asn79 to Ala) increases the lysine pKa, suggesting that alterations to the active site hydrogen bonding network can affect nucleophile activation.
Collapse
Affiliation(s)
- Alexis J Wathan
- Department of Science and Mathematics, Rochester Institute of Technology/NTID, Rochester, New York 14623, United States
| | - Nicole M Deschene
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, Virginia 22807, United States
| | - Joseph M Litz
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, Virginia 22807, United States
| | - Isaiah Sumner
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, Virginia 22807, United States
| |
Collapse
|
4
|
Wu X, Ai H, Mao J, Cai H, Liang LJ, Tong Z, Deng Z, Zheng Q, Liu L, Pan M. Structural visualization of HECT-type E3 ligase Ufd4 accepting and transferring ubiquitin to form K29/K48-branched polyubiquitination. Nat Commun 2025; 16:4313. [PMID: 40341121 PMCID: PMC12062229 DOI: 10.1038/s41467-025-59569-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 04/29/2025] [Indexed: 05/10/2025] Open
Abstract
The K29/K48-linked ubiquitination generated by the cooperative catalysis of E3 ligase Ufd4 and Ubr1 is an enhanced protein degradation signal, in which Ufd4 is responsible for introducing K29-linked ubiquitination to K48-linked ubiquitin chains to augment polyubiquitination. How HECT-E3 ligase Ufd4 mediates the ubiquitination event remains unclear. Here, we biochemically determine that Ufd4 preferentially catalyses K29-linked ubiquitination on K48-linked ubiquitin chains to generate K29/K48-branched ubiquitin chains and capture structural snapshots of Ub transfer cascades for Ufd4-mediated ubiquitination. The N-terminal ARM region and HECT domain C-lobe of Ufd4 are identified and characterized as key structural elements that together recruit K48-linked diUb and orient Lys29 of its proximal Ub to the active cysteine of Ufd4 for K29-linked branched ubiquitination. These structures not only provide mechanistic insights into the architecture of the Ufd4 complex but also provide structural visualization of branched ubiquitin chain formation by a HECT-type E3 ligase.
Collapse
Affiliation(s)
- Xiangwei Wu
- Institute of Translational Medicine, School of Pharmaceutical Sciences, School of Chemistry and Chemical Engineering, National Center for Translational Medicine (Shanghai), Shanghai Key Laboratory for Antibody-Drug Conjugates with Innovative Target, Shanghai Jiao Tong University, Shanghai, China
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Huasong Ai
- Institute of Translational Medicine, School of Pharmaceutical Sciences, School of Chemistry and Chemical Engineering, National Center for Translational Medicine (Shanghai), Shanghai Key Laboratory for Antibody-Drug Conjugates with Innovative Target, Shanghai Jiao Tong University, Shanghai, China
| | - Junxiong Mao
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Hongyi Cai
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Lu-Jun Liang
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Zebin Tong
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Zhiheng Deng
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Qingyun Zheng
- Institute of Translational Medicine, School of Pharmaceutical Sciences, School of Chemistry and Chemical Engineering, National Center for Translational Medicine (Shanghai), Shanghai Key Laboratory for Antibody-Drug Conjugates with Innovative Target, Shanghai Jiao Tong University, Shanghai, China.
| | - Lei Liu
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, China.
| | - Man Pan
- Institute of Translational Medicine, School of Pharmaceutical Sciences, School of Chemistry and Chemical Engineering, National Center for Translational Medicine (Shanghai), Shanghai Key Laboratory for Antibody-Drug Conjugates with Innovative Target, Shanghai Jiao Tong University, Shanghai, China.
- Center for Future Foods, Muyuan Laboratory, Zhengzhou, Henan Province, China.
| |
Collapse
|
5
|
Abaeva IS, Bulakhov AG, Hellen CUT, Pestova TV. The ribosome-associated quality control factor TCF25 imposes K48 specificity on Listerin-mediated ubiquitination of nascent chains by binding and specifically orienting the acceptor ubiquitin. Genes Dev 2025; 39:617-633. [PMID: 40169231 PMCID: PMC12047659 DOI: 10.1101/gad.352389.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 02/18/2025] [Indexed: 04/03/2025]
Abstract
Polypeptides arising from interrupted translation undergo proteasomal degradation by the ribosome-associated quality control (RQC) pathway. The ASC-1 complex splits stalled ribosomes into 40S subunits and nascent chain-tRNA-associated 60S subunits (60S RNCs). 60S RNCs associate with NEMF that promotes recruitment of the RING-type E3 ubiquitin (Ub) ligase Listerin (Ltn1 in yeast), which ubiquitinates nascent chains. RING-type E3s mediate the transfer of Ub directly from the E2∼Ub conjugate, implying that the specificity of Ub linkage is determined by the given E2. Listerin is most efficient when it is paired with promiscuous Ube2D E2s. We previously found that TCF25 (Rqc1 in yeast) can impose K48 specificity on Listerin paired with Ube2D E2s. To determine the mechanism of TCF25's action, we combined functional biochemical studies and AlphaFold3 modeling and now report that TCF25 specifically interacts with the RING domain of Listerin and the acceptor ubiquitin (UbA) and imposes K48 specificity by orienting UbA such that its K48 is directly positioned to attack the thioester bond of the Ube2D1∼Ub conjugate. We also found that TCF25 itself undergoes K48-specific ubiquitination by Listerin, suggesting a mechanism for the reported upregulation of Rqc1 in the absence of Ltn1 and the observed degradation of TCF25 by the proteasome in vivo.
Collapse
Affiliation(s)
- Irina S Abaeva
- Department of Cell Biology, State University of New York Downstate Health Sciences University, Brooklyn, New York 11203, USA
| | - Alexander G Bulakhov
- Department of Cell Biology, State University of New York Downstate Health Sciences University, Brooklyn, New York 11203, USA
| | - Christopher U T Hellen
- Department of Cell Biology, State University of New York Downstate Health Sciences University, Brooklyn, New York 11203, USA
| | - Tatyana V Pestova
- Department of Cell Biology, State University of New York Downstate Health Sciences University, Brooklyn, New York 11203, USA
| |
Collapse
|
6
|
Zhou X, Zhang H, Wang Y, Wang D, Lin Z, Zhang Y, Tang Y, Liu J, Yao YF, Zhang Y, Pan L. Shigella effector IpaH1.4 subverts host E3 ligase RNF213 to evade antibacterial immunity. Nat Commun 2025; 16:3099. [PMID: 40164614 PMCID: PMC11958729 DOI: 10.1038/s41467-025-58432-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 03/21/2025] [Indexed: 04/02/2025] Open
Abstract
Ubiquitination plays vital roles in modulating pathogen-host cell interactions. RNF213, a E3 ligase, can catalyze the ubiquitination of lipopolysaccharide (LPS) and is crucial for antibacterial immunity in mammals. Shigella flexneri, an LPS-containing pathogenic bacterium, has developed mechanisms to evade host antibacterial defenses during infection. However, the precise strategies by which S. flexneri circumvents RNF213-mediated antibacterial immunity remain poorly understood. Here, through comprehensive biochemical, structural and cellular analyses, we reveal that the E3 effector IpaH1.4 of S. flexneri can directly target human RNF213 via a specific interaction between the IpaH1.4 LRR domain and the RING domain of RNF213, and mediate the ubiquitination and proteasomal degradation of RNF213 in cells. Furthermore, we determine the cryo-EM structure of human RNF213 and the crystal structure of the IpaH1.4 LRR/RNF213 RING complex, elucidating the molecular mechanism underlying the specific recognition of RNF213 by IpaH1.4. Finally, our cell based functional assays demonstrate that the targeting of host RNF213 by IpaH1.4 promotes S. flexneri proliferation within infected cells. In summary, our work uncovers an unprecedented strategy employed by S. flexneri to subvert the key host immune factor RNF213, thereby facilitating bacterial proliferation during invasion.
Collapse
Affiliation(s)
- Xindi Zhou
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Huijing Zhang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Yaru Wang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
| | - Danni Wang
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiqiao Lin
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yuchao Zhang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yubin Tang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jianping Liu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yu-Feng Yao
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yixiao Zhang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
| | - Lifeng Pan
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China.
| |
Collapse
|
7
|
Kochańczyk T, Fishman M, Lima CD. Chemical Tools for Probing the Ub/Ubl Conjugation Cascades. Chembiochem 2025; 26:e202400659. [PMID: 39313481 PMCID: PMC11727022 DOI: 10.1002/cbic.202400659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 09/25/2024]
Abstract
Conjugation of ubiquitin (Ub) and structurally related ubiquitin-like proteins (Ubls), essential for many cellular processes, employs multi-step reactions orchestrated by specific E1, E2 and E3 enzymes. The E1 enzyme activates the Ub/Ubl C-terminus in an ATP-dependent process that results in the formation of a thioester linkage with the E1 active site cysteine. The thioester-activated Ub/Ubl is transferred to the active site of an E2 enzyme which then interacts with an E3 enzyme to promote conjugation to the target substrate. The E1-E2-E3 enzymatic cascades utilize labile intermediates, extensive conformational changes, and vast combinatorial diversity of short-lived protein-protein complexes to conjugate Ub/Ubl to various substrates in a regulated manner. In this review, we discuss various chemical tools and methods used to study the consecutive steps of Ub/Ubl activation and conjugation, which are often too elusive for direct studies. We focus on methods developed to probe enzymatic activities and capture and characterize stable mimics of the transient intermediates and transition states, thereby providing insights into fundamental mechanisms in the Ub/Ubl conjugation pathways.
Collapse
Affiliation(s)
- Tomasz Kochańczyk
- Structural Biology ProgramSloan Kettering Institute1275 York AvenueNew York, New York10065USA
| | - Michael Fishman
- Structural Biology ProgramSloan Kettering Institute1275 York AvenueNew York, New York10065USA
| | - Christopher D. Lima
- Structural Biology ProgramSloan Kettering Institute1275 York AvenueNew York, New York10065USA
- Howard Hughes Medical Institute1275 York AvenueNew York, New York10065USA
| |
Collapse
|
8
|
Swarnkar A, Leidner F, Rout AK, Ainatzi S, Schmidt CC, Becker S, Urlaub H, Griesinger C, Grubmüller H, Stein A. Determinants of chemoselectivity in ubiquitination by the J2 family of ubiquitin-conjugating enzymes. EMBO J 2024; 43:6705-6739. [PMID: 39533056 PMCID: PMC11649903 DOI: 10.1038/s44318-024-00301-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Ubiquitin-conjugating enzymes (E2) play a crucial role in the attachment of ubiquitin to proteins. Together with ubiquitin ligases (E3), they catalyze the transfer of ubiquitin (Ub) onto lysines with high chemoselectivity. A subfamily of E2s, including yeast Ubc6 and human Ube2J2, also mediates noncanonical modification of serines, but the structural determinants for this chemical versatility remain unknown. Using a combination of X-ray crystallography, molecular dynamics (MD) simulations, and reconstitution approaches, we have uncovered a two-layered mechanism that underlies this unique reactivity. A rearrangement of the Ubc6/Ube2J2 active site enhances the reactivity of the E2-Ub thioester, facilitating attack by weaker nucleophiles. Moreover, a conserved histidine in Ubc6/Ube2J2 activates a substrate serine by general base catalysis. Binding of RING-type E3 ligases further increases the serine selectivity inherent to Ubc6/Ube2J2, via an allosteric mechanism that requires specific positioning of the ubiquitin tail at the E2 active site. Our results elucidate how subtle structural modifications to the highly conserved E2 fold yield distinct enzymatic activity.
Collapse
Affiliation(s)
- Anuruti Swarnkar
- Research Group Membrane Protein Biochemistry, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
| | - Florian Leidner
- Department of Theoretical and Computational Biophysics, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
| | - Ashok K Rout
- Department of NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
- Institut für Chemie und Metabolomics, Universität zu Lübeck, 23562, Lübeck, Germany
| | - Sofia Ainatzi
- Research Group Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
| | - Claudia C Schmidt
- Research Group Membrane Protein Biochemistry, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
- ETH Zürich, Otto-Stern-Weg 3, 8093, Zürich, Switzerland
| | - Stefan Becker
- Department of NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
| | - Henning Urlaub
- Research Group Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
| | - Christian Griesinger
- Department of NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
| | - Helmut Grubmüller
- Department of Theoretical and Computational Biophysics, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
| | - Alexander Stein
- Research Group Membrane Protein Biochemistry, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany.
| |
Collapse
|
9
|
Abaeva IS, Bulakhov AG, Hellen CUT, Pestova TV. The ribosome-associated quality control factor TCF25 imposes K48 specificity on Listerin-mediated ubiquitination of nascent chains by binding and specifically orienting the acceptor ubiquitin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.17.618946. [PMID: 39464025 PMCID: PMC11507960 DOI: 10.1101/2024.10.17.618946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Polypeptides arising from interrupted translation undergo proteasomal degradation by the ribosome-associated quality control (RQC) pathway. The ASC-1 complex splits stalled ribosomes into 40S subunits and nascent chain-tRNA-associated 60S subunits (60S RNCs). 60S RNCs associate with NEMF that promotes recruitment of the RING-type E3 ubiquitin (Ub) ligase Listerin (Ltn1 in yeast), which ubiquitinates nascent chains. RING-type E3s mediate the transfer of Ub directly from the E2~Ub conjugate, implying that the specificity of Ub linkage is determined by the given E2. Listerin is most efficient when it is paired with promiscuous Ube2D E2s. We previously found that TCF25 (Rqc1 in yeast) can impose K48-specificity on Listerin paired with Ube2D E2s. To determine the mechanism of TCF25's action, we combined functional biochemical studies and AlphaFold3 modeling and now report that TCF25 specifically interacts with the RING domain of Listerin and the acceptor ubiquitin (UbA) and imposes K48-specificity by orienting UbA such that its K48 is directly positioned to attack the thioester bond of the Ube2D1~Ub conjugate. We also found that TCF25 itself undergoes K48-specific ubiquitination by Listerin suggesting a mechanism for the reported upregulation of Rqc1 in the absence of Ltn1 and the observed degradation of TCF25 by the proteasome in vivo.
Collapse
Affiliation(s)
- Irina S. Abaeva
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Alexander G. Bulakhov
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | | | - Tatyana V. Pestova
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| |
Collapse
|
10
|
Liu JCY, Ackermann L, Hoffmann S, Gál Z, Hendriks IA, Jain C, Morlot L, Tatham MH, McLelland GL, Hay RT, Nielsen ML, Brummelkamp T, Haahr P, Mailand N. Concerted SUMO-targeted ubiquitin ligase activities of TOPORS and RNF4 are essential for stress management and cell proliferation. Nat Struct Mol Biol 2024; 31:1355-1367. [PMID: 38649616 PMCID: PMC11402782 DOI: 10.1038/s41594-024-01294-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 03/26/2024] [Indexed: 04/25/2024]
Abstract
Protein SUMOylation provides a principal driving force for cellular stress responses, including DNA-protein crosslink (DPC) repair and arsenic-induced PML body degradation. In this study, using genome-scale screens, we identified the human E3 ligase TOPORS as a key effector of SUMO-dependent DPC resolution. We demonstrate that TOPORS promotes DPC repair by functioning as a SUMO-targeted ubiquitin ligase (STUbL), combining ubiquitin ligase activity through its RING domain with poly-SUMO binding via SUMO-interacting motifs, analogous to the STUbL RNF4. Mechanistically, TOPORS is a SUMO1-selective STUbL that complements RNF4 in generating complex ubiquitin landscapes on SUMOylated targets, including DPCs and PML, stimulating efficient p97/VCP unfoldase recruitment and proteasomal degradation. Combined loss of TOPORS and RNF4 is synthetic lethal even in unstressed cells, involving defective clearance of SUMOylated proteins from chromatin accompanied by cell cycle arrest and apoptosis. Our findings establish TOPORS as a STUbL whose parallel action with RNF4 defines a general mechanistic principle in crucial cellular processes governed by direct SUMO-ubiquitin crosstalk.
Collapse
Affiliation(s)
- Julio C Y Liu
- Protein Signaling Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Leena Ackermann
- Protein Signaling Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Saskia Hoffmann
- Protein Signaling Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Zita Gál
- Protein Signaling Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Ivo A Hendriks
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Charu Jain
- Protein Signaling Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Louise Morlot
- Protein Signaling Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Michael H Tatham
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Gian-Luca McLelland
- Division of Biochemistry, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ronald T Hay
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Michael Lund Nielsen
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Thijn Brummelkamp
- Division of Biochemistry, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Peter Haahr
- Division of Biochemistry, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
- Department of Cellular and Molecular Medicine, Center for Gene Expression, University of Copenhagen, Copenhagen, Denmark.
| | - Niels Mailand
- Protein Signaling Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark.
- Department of Cellular and Molecular Medicine, Center for Chromosome Stability, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
11
|
Mukhopadhyay U, Levantovsky S, Carusone TM, Gharbi S, Stein F, Behrends C, Bhogaraju S. A ubiquitin-specific, proximity-based labeling approach for the identification of ubiquitin ligase substrates. SCIENCE ADVANCES 2024; 10:eadp3000. [PMID: 39121224 PMCID: PMC11313854 DOI: 10.1126/sciadv.adp3000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/03/2024] [Indexed: 08/11/2024]
Abstract
Over 600 E3 ligases in humans execute ubiquitination of specific target proteins in a spatiotemporal manner to elicit desired signaling effects. Here, we developed a ubiquitin-specific proximity-based labeling method to selectively biotinylate substrates of a given ubiquitin ligase. By fusing the biotin ligase BirA and an Avi-tag variant to the candidate E3 ligase and ubiquitin, respectively, we were able to specifically enrich bona fide substrates of a ligase using a one-step streptavidin pulldown under denaturing conditions. We applied our method, which we named Ub-POD, to the really interesting new gene (RING) E3 ligase RAD18 and identified proliferating cell nuclear antigen and several other critical players in the DNA damage repair pathway. Furthermore, we successfully applied Ub-POD to the RING ubiquitin ligase tumor necrosis factor receptor-associated factor 6 and a U-box-type E3 ubiquitin ligase carboxyl terminus of Hsc70-interacting protein. We anticipate that our method could be widely adapted to all classes of ubiquitin ligases to identify substrates.
Collapse
Affiliation(s)
- Urbi Mukhopadhyay
- European Molecular Biology Laboratory, 71 avenue des Martyrs, 38042 Grenoble, France
| | - Sophie Levantovsky
- Munich Cluster for Systems Neurology, Medical Faculty, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Teresa Maria Carusone
- European Molecular Biology Laboratory, 71 avenue des Martyrs, 38042 Grenoble, France
| | - Sarah Gharbi
- European Molecular Biology Laboratory, 71 avenue des Martyrs, 38042 Grenoble, France
| | - Frank Stein
- Proteomics Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Christian Behrends
- Munich Cluster for Systems Neurology, Medical Faculty, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Sagar Bhogaraju
- European Molecular Biology Laboratory, 71 avenue des Martyrs, 38042 Grenoble, France
| |
Collapse
|
12
|
Hehl LA, Horn-Ghetko D, Prabu JR, Vollrath R, Vu DT, Pérez Berrocal DA, Mulder MPC, van der Heden van Noort GJ, Schulman BA. Structural snapshots along K48-linked ubiquitin chain formation by the HECT E3 UBR5. Nat Chem Biol 2024; 20:190-200. [PMID: 37620400 PMCID: PMC10830417 DOI: 10.1038/s41589-023-01414-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/30/2023] [Indexed: 08/26/2023]
Abstract
Ubiquitin (Ub) chain formation by homologous to E6AP C-terminus (HECT)-family E3 ligases regulates vast biology, yet the structural mechanisms remain unknown. We used chemistry and cryo-electron microscopy (cryo-EM) to visualize stable mimics of the intermediates along K48-linked Ub chain formation by the human E3, UBR5. The structural data reveal a ≈ 620 kDa UBR5 dimer as the functional unit, comprising a scaffold with flexibly tethered Ub-associated (UBA) domains, and elaborately arranged HECT domains. Chains are forged by a UBA domain capturing an acceptor Ub, with its K48 lured into the active site by numerous interactions between the acceptor Ub, manifold UBR5 elements and the donor Ub. The cryo-EM reconstructions allow defining conserved HECT domain conformations catalyzing Ub transfer from E2 to E3 and from E3. Our data show how a full-length E3, ubiquitins to be adjoined, E2 and intermediary products guide a feed-forward HECT domain conformational cycle establishing a highly efficient, broadly targeting, K48-linked Ub chain forging machine.
Collapse
Affiliation(s)
- Laura A Hehl
- Department of Chemistry, School of Natural Sciences, Technical University of Munich, Garching, Germany
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Daniel Horn-Ghetko
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - J Rajan Prabu
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Ronnald Vollrath
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - D Tung Vu
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - David A Pérez Berrocal
- Department of Cell and Chemical Biology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Monique P C Mulder
- Department of Cell and Chemical Biology, Leiden University Medical Centre, Leiden, the Netherlands
| | | | - Brenda A Schulman
- Department of Chemistry, School of Natural Sciences, Technical University of Munich, Garching, Germany.
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany.
| |
Collapse
|
13
|
Liwocha J, Li J, Purser N, Rattanasopa C, Maiwald S, Krist DT, Scott DC, Steigenberger B, Prabu JR, Schulman BA, Kleiger G. Mechanism of millisecond Lys48-linked poly-ubiquitin chain formation by cullin-RING ligases. Nat Struct Mol Biol 2024; 31:378-389. [PMID: 38326650 PMCID: PMC10873206 DOI: 10.1038/s41594-023-01206-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 12/21/2023] [Indexed: 02/09/2024]
Abstract
E3 ubiquitin ligases, in collaboration with E2 ubiquitin-conjugating enzymes, modify proteins with poly-ubiquitin chains. Cullin-RING ligase (CRL) E3s use Cdc34/UBE2R-family E2s to build Lys48-linked poly-ubiquitin chains to control an enormous swath of eukaryotic biology. Yet the molecular mechanisms underlying this exceptional linkage specificity and millisecond kinetics of poly-ubiquitylation remain unclear. Here we obtain cryogenic-electron microscopy (cryo-EM) structures that provide pertinent insight into how such poly-ubiquitin chains are forged. The CRL RING domain not only activates the E2-bound ubiquitin but also shapes the conformation of a distinctive UBE2R2 loop, positioning both the ubiquitin to be transferred and the substrate-linked acceptor ubiquitin within the active site. The structures also reveal how the ubiquitin-like protein NEDD8 uniquely activates CRLs during chain formation. NEDD8 releases the RING domain from the CRL, but unlike previous CRL-E2 structures, does not contact UBE2R2. These findings suggest how poly-ubiquitylation may be accomplished by many E2s and E3s.
Collapse
Affiliation(s)
- Joanna Liwocha
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Jerry Li
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Nicholas Purser
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Chutima Rattanasopa
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Samuel Maiwald
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - David T Krist
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Daniel C Scott
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Barbara Steigenberger
- Mass Spectrometry Core Facility, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - J Rajan Prabu
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Brenda A Schulman
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany.
| | - Gary Kleiger
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany.
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, NV, USA.
| |
Collapse
|
14
|
Han J, Mu Y, Huang J. Preserving genome integrity: The vital role of SUMO-targeted ubiquitin ligases. CELL INSIGHT 2023; 2:100128. [PMID: 38047137 PMCID: PMC10692494 DOI: 10.1016/j.cellin.2023.100128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 12/05/2023]
Abstract
Various post-translational modifications (PTMs) collaboratively fine-tune protein activities. SUMO-targeted ubiquitin E3 ligases (STUbLs) emerge as specialized enzymes that recognize SUMO-modified substrates through SUMO-interaction motifs and subsequently ubiquitinate them via the RING domain, thereby bridging the SUMO and ubiquitin signaling pathways. STUbLs participate in a wide array of molecular processes, including cell cycle regulation, DNA repair, replication, and mitosis, operating under both normal conditions and in response to challenges such as genotoxic stress. Their ability to catalyze various types of ubiquitin chains results in diverse proteolytic and non-proteolytic outcomes for target substrates. Importantly, STUbLs are strategically positioned in close proximity to SUMO proteases and deubiquitinases (DUBs), ensuring precise and dynamic control over their target proteins. In this review, we provide insights into the unique properties and indispensable roles of STUbLs, with a particular emphasis on their significance in preserving genome integrity in humans.
Collapse
Affiliation(s)
- Jinhua Han
- Institute of Geriatrics, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, 310030, Zhejiang, China
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Yanhua Mu
- National-Local Joint Engineering Research Center of Biodiagnosis & Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Jun Huang
- Institute of Geriatrics, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, 310030, Zhejiang, China
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| |
Collapse
|
15
|
Afsar M, Liu G, Jia L, Ruben EA, Nayak D, Sayyad Z, Bury PDS, Cano KE, Nayak A, Zhao XR, Shukla A, Sung P, Wasmuth EV, Gack MU, Olsen SK. Cryo-EM structures of Uba7 reveal the molecular basis for ISG15 activation and E1-E2 thioester transfer. Nat Commun 2023; 14:4786. [PMID: 37553340 PMCID: PMC10409785 DOI: 10.1038/s41467-023-39780-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/23/2023] [Indexed: 08/10/2023] Open
Abstract
ISG15 plays a crucial role in the innate immune response and has been well-studied due to its antiviral activity and regulation of signal transduction, apoptosis, and autophagy. ISG15 is a ubiquitin-like protein that is activated by an E1 enzyme (Uba7) and transferred to a cognate E2 enzyme (UBE2L6) to form a UBE2L6-ISG15 intermediate that functions with E3 ligases that catalyze conjugation of ISG15 to target proteins. Despite its biological importance, the molecular basis by which Uba7 catalyzes ISG15 activation and transfer to UBE2L6 is unknown as there is no available structure of Uba7. Here, we present cryo-EM structures of human Uba7 in complex with UBE2L6, ISG15 adenylate, and ISG15 thioester intermediate that are poised for catalysis of Uba7-UBE2L6-ISG15 thioester transfer. Our structures reveal a unique overall architecture of the complex compared to structures from the ubiquitin conjugation pathway, particularly with respect to the location of ISG15 thioester intermediate. Our structures also illuminate the molecular basis for Uba7 activities and for its exquisite specificity for ISG15 and UBE2L6. Altogether, our structural, biochemical, and human cell-based data provide significant insights into the functions of Uba7, UBE2L6, and ISG15 in cells.
Collapse
Affiliation(s)
- Mohammad Afsar
- Department of Biochemistry & Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - GuanQun Liu
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL, 34987, USA
| | - Lijia Jia
- Department of Biochemistry & Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Eliza A Ruben
- Department of Biochemistry & Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Digant Nayak
- Department of Biochemistry & Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Zuberwasim Sayyad
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL, 34987, USA
| | - Priscila Dos Santos Bury
- Department of Biochemistry & Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Kristin E Cano
- Department of Biochemistry & Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Anindita Nayak
- Department of Biochemistry & Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Xiang Ru Zhao
- Department of Biochemistry & Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Ankita Shukla
- Department of Biochemistry & Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Patrick Sung
- Department of Biochemistry & Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Elizabeth V Wasmuth
- Department of Biochemistry & Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Michaela U Gack
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL, 34987, USA
| | - Shaun K Olsen
- Department of Biochemistry & Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
| |
Collapse
|
16
|
Goffinont S, Coste F, Prieu-Serandon P, Mance L, Gaudon V, Garnier N, Castaing B, Suskiewicz MJ. Structural insights into the regulation of the human E2∼SUMO conjugate through analysis of its stable mimetic. J Biol Chem 2023; 299:104870. [PMID: 37247759 PMCID: PMC10404613 DOI: 10.1016/j.jbc.2023.104870] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/23/2023] [Indexed: 05/31/2023] Open
Abstract
Protein SUMOylation is a ubiquitylation-like post-translational modification (PTM) that is synthesized through an enzymatic cascade involving an E1 (SAE1:SAE2), an E2 (UBC9), and various E3 enzymes. In the final step of this process, the small ubiquitin-like modifier (SUMO) is transferred from the UBC9∼SUMO thioester onto a lysine residue of a protein substrate. This reaction can be accelerated by an E3 ligase. As the UBC9∼SUMO thioester is chemically unstable, a stable mimetic is desirable for structural studies of UBC9∼SUMO alone and in complex with a substrate and/or an E3 ligase. Recently, a strategy for generating a mimetic of the yeast E2∼SUMO thioester by mutating alanine 129 of Ubc9 to a lysine has been reported. Here, we reproduce and further investigate this approach using the human SUMOylation system and characterize the resulting mimetic of human UBC9∼SUMO1. We show that substituting lysine for alanine 129, but not for other active-site UBC9 residues, results in a UBC9 variant that is efficiently auto-SUMOylated. The auto-modification is dependent on cysteine 93 of UBC9, suggesting that it proceeds via this residue, through the same pathway as that for SUMOylation of substrates. The process is also partially dependent on aspartate 127 of UBC9 and accelerated by high pH, highlighting the importance of the substrate lysine protonation state for efficient SUMOylation. Finally, we present the crystal structure of the UBC9-SUMO1 molecule, which reveals the mimetic in an open conformation and its polymerization via the noncovalent SUMO-binding site on UBC9. Similar interactions could regulate UBC9∼SUMO in some cellular contexts.
Collapse
Affiliation(s)
| | - Franck Coste
- Centre de Biophysique Moléculaire (CBM), CNRS UPR, Orléans, France
| | | | - Lucija Mance
- Centre de Biophysique Moléculaire (CBM), CNRS UPR, Orléans, France
| | - Virginie Gaudon
- Centre de Biophysique Moléculaire (CBM), CNRS UPR, Orléans, France
| | - Norbert Garnier
- Centre de Biophysique Moléculaire (CBM), CNRS UPR, Orléans, France
| | | | | |
Collapse
|
17
|
Shi M, Zhao J, Zhang S, Huang W, Li M, Bai X, Zhang W, Zhang K, Chen X, Xiang S. Structural basis for the Rad6 activation by the Bre1 N-terminal domain. eLife 2023; 12:84157. [PMID: 36912886 PMCID: PMC10036116 DOI: 10.7554/elife.84157] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 03/10/2023] [Indexed: 03/14/2023] Open
Abstract
The mono-ubiquitination of the histone protein H2B (H2Bub1) is a highly conserved histone post-translational modification that plays critical roles in many fundamental processes. In yeast, this modification is catalyzed by the conserved Bre1-Rad6 complex. Bre1 contains a unique N-terminal Rad6-binding domain (RBD), how it interacts with Rad6 and contributes to the H2Bub1 catalysis is unclear. Here, we present crystal structure of the Bre1 RBD-Rad6 complex and structure-guided functional studies. Our structure provides a detailed picture of the interaction between the dimeric Bre1 RBD and a single Rad6 molecule. We further found that the interaction stimulates Rad6's enzymatic activity by allosterically increasing its active site accessibility and likely contribute to the H2Bub1 catalysis through additional mechanisms. In line with these important functions, we found that the interaction is crucial for multiple H2Bub1-regulated processes. Our study provides molecular insights into the H2Bub1 catalysis.
Collapse
Affiliation(s)
- Meng Shi
- Department of Biochemistry and Molecular Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Tianjin Medical University, Tianjin, China
| | - Jiaqi Zhao
- Department of Biochemistry and Molecular Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Tianjin Medical University, Tianjin, China
| | - Simin Zhang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Centre of Immunology and Metabolism, The Institute of Advanced Studies, Wuhan University, Wuhan, China
| | - Wei Huang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Tianjin Medical University, Tianjin, China
| | - Mengfei Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Centre of Immunology and Metabolism, The Institute of Advanced Studies, Wuhan University, Wuhan, China
| | - Xue Bai
- Department of Biochemistry and Molecular Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Tianjin Medical University, Tianjin, China
| | - Wenxue Zhang
- Department of Radiation Oncology, Tianjin Medical University General Hospital, Tianjin, China
| | - Kai Zhang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Tianjin Medical University, Tianjin, China
| | - Xuefeng Chen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Centre of Immunology and Metabolism, The Institute of Advanced Studies, Wuhan University, Wuhan, China
| | - Song Xiang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Tianjin Medical University, Tianjin, China
| |
Collapse
|
18
|
Middleton AJ, Day CL. From seeds to trees: how E2 enzymes grow ubiquitin chains. Biochem Soc Trans 2023; 51:353-362. [PMID: 36645006 PMCID: PMC9987950 DOI: 10.1042/bst20220880] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/17/2023]
Abstract
Modification of proteins by ubiquitin is a highly regulated process that plays a critical role in eukaryotes, from the construction of signalling platforms to the control of cell division. Aberrations in ubiquitin transfer are associated with many diseases, including cancer and neurodegenerative disorders. The ubiquitin machinery generates a rich code on substrate proteins, spanning from single ubiquitin modifications to polyubiquitin chains with diverse linkage types. Central to this process are the E2 enzymes, which often determine the exact nature of the ubiquitin code. The focus of this mini-review is on the molecular details of how E2 enzymes can initiate and grow ubiquitin chains. In particular, recent developments and biochemical breakthroughs that help explain how the degradative E2 enzymes, Ube2s, Ube2k, and Ube2r, generate complex ubiquitin chains with exquisite specificity will be discussed.
Collapse
Affiliation(s)
- Adam J. Middleton
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Catherine L. Day
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
19
|
Nyenhuis DA, Rajasekaran R, Watanabe S, Strub MP, Khan M, Powell M, Carter CA, Tjandra N. HECT domain interaction with ubiquitin binding sites on Tsg101-UEV controls HIV-1 egress, maturation, and infectivity. J Biol Chem 2023; 299:102901. [PMID: 36642186 PMCID: PMC9944984 DOI: 10.1016/j.jbc.2023.102901] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/15/2023] Open
Abstract
The HECT domain of HECT E3 ligases consists of flexibly linked N- and C-terminal lobes, with a ubiquitin (Ub) donor site on the C-lobe that is directly involved in substrate modification. HECT ligases also possess a secondary Ub binding site in the N-lobe, which is thought to play a role in processivity, specificity, or regulation. Here, we report the use of paramagnetic solution NMR to characterize a complex formed between the isolated HECT domain of neural precursor cell-expressed developmentally downregulated 4-1 and the ubiquitin E2 variant (UEV) domain of tumor susceptibility gene 101 (Tsg101). Both proteins are involved in endosomal trafficking, a process driven by Ub signaling, and are hijacked by viral pathogens for particle assembly; however, a direct interaction between them has not been described, and the mechanism by which the HECT E3 ligase contributes to pathogen formation has not been elucidated. We provide evidence for their association, consisting of multiple sites on the neural precursor cell-expressed developmentally downregulated 4-1 HECT domain and elements of the Tsg101 UEV domain involved in noncovalent ubiquitin binding. Furthermore, we show using an established reporter assay that HECT residues perturbed by UEV proximity define determinants of viral maturation and infectivity. These results suggest the UEV interaction is a determinant of HECT activity in Ub signaling. As the endosomal trafficking pathway is hijacked by several human pathogens for egress, the HECT-UEV interaction could represent a potential novel target for therapeutic intervention.
Collapse
Affiliation(s)
- David A. Nyenhuis
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Rohith Rajasekaran
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Susan Watanabe
- Department of Microbiology & Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Marie-Paule Strub
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Mahfuz Khan
- Department of Microbiology & Immunology, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Michael Powell
- Department of Microbiology & Immunology, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Carol A. Carter
- Department of Microbiology & Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA,For correspondence: Nico Tjandra; Carol A. Carter
| | - Nico Tjandra
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
20
|
Johnson JAK, Sumner I. On the Possibility That Bond Strain Is the Mechanism of RING E3 Activation in the E2-Catalyzed Ubiquitination Reaction. J Chem Inf Model 2022; 62:6475-6481. [PMID: 35671046 DOI: 10.1021/acs.jcim.2c00423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Ubiquitination is a type of post-translational modification wherein the small protein ubiquitin (Ub) is covalently bound to a lysine on a target protein. Ubiquitination can signal for several regulatory pathways including protein degradation. Ubiquitination occurs by a series of reactions catalyzed by three types of enzymes: ubiquitin activating enzymes, E1; ubiquitin conjugating enzymes, E2; and ubiquitin ligases, E3. E2 enzymes directly catalyze the transfer of Ub to the target protein─the RING E3 improves the efficiency. Prior to its transfer, Ub is covalently linked to the E2 via a thioester bond and the Ub∼E2 conjugate forms a quaternary complex with the RING E3. It is hypothesized that the RING E3 improves the catalytic efficiency of ubiquitination by placing the E2∼Ub conjugate in a "closed" position, which tensions and weakens the thioester bond. We interrogate this hypothesis by analyzing the strain on the thioester during molecular dynamics simulations of both open and closed E2∼Ub/E3 complexes. Our data indicate that the thioester is strained when the E2∼Ub conjugate is in the closed position. We also show that the amount of strain is consistent with the experimental rate enhancement caused by the RING E3. Finally, our simulations show that the closed configuration increases the populations of key hydrogen bonds in the E2∼Ub active site. This is consistent with another hypothesis stating that the RING E3 enhances reaction rates by preorganizing the substrates.
Collapse
Affiliation(s)
- Jay-Anne K Johnson
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, Virginia 22807, United States
| | - Isaiah Sumner
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, Virginia 22807, United States
| |
Collapse
|
21
|
Structural and functional asymmetry of RING trimerization controls priming and extension events in TRIM5α autoubiquitylation. Nat Commun 2022; 13:7104. [PMID: 36402777 PMCID: PMC9675739 DOI: 10.1038/s41467-022-34920-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 11/09/2022] [Indexed: 11/21/2022] Open
Abstract
TRIM5α is an E3 ubiquitin ligase of the TRIM family that binds to the capsids of primate immunodeficiency viruses and blocks viral replication after cell entry. Here we investigate how synthesis of K63-linked polyubiquitin is upregulated by transient proximity of three RING domains in honeycomb-like assemblies formed by TRIM5α on the surface of the retroviral capsid. Proximity of three RINGs creates an asymmetric arrangement, in which two RINGs form a catalytic dimer that activates E2-ubiquitin conjugates and the disordered N-terminus of the third RING acts as the substrate for N-terminal autoubiquitylation. RING dimerization is required for activation of the E2s that contribute to the antiviral function of TRIM5α, UBE2W and heterodimeric UBE2N/V2, whereas the proximity of the third RING enhances the rate of each of the two distinct steps in the autoubiquitylation process: the initial N-terminal monoubiquitylation (priming) of TRIM5α by UBE2W and the subsequent extension of the K63-linked polyubiquitin chain by UBE2N/V2. The mechanism we describe explains how recognition of infection-associated epitope patterns by TRIM proteins initiates polyubiquitin-mediated downstream events in innate immunity.
Collapse
|
22
|
Peter JJ, Magnussen HM, DaRosa PA, Millrine D, Matthews SP, Lamoliatte F, Sundaramoorthy R, Kopito RR, Kulathu Y. A non-canonical scaffold-type E3 ligase complex mediates protein UFMylation. EMBO J 2022; 41:e111015. [PMID: 36121123 PMCID: PMC9627666 DOI: 10.15252/embj.2022111015] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 11/09/2022] Open
Abstract
Protein UFMylation, i.e., post-translational modification with ubiquitin-fold modifier 1 (UFM1), is essential for cellular and endoplasmic reticulum homeostasis. Despite its biological importance, we have a poor understanding of how UFM1 is conjugated onto substrates. Here, we use a rebuilding approach to define the minimal requirements of protein UFMylation. We find that the reported cognate E3 ligase UFL1 is inactive on its own and instead requires the adaptor protein UFBP1 to form an active E3 ligase complex. Structure predictions suggest the UFL1/UFBP1 complex to be made up of winged helix (WH) domain repeats. We show that UFL1/UFBP1 utilizes a scaffold-type E3 ligase mechanism that activates the UFM1-conjugating E2 enzyme, UFC1, for aminolysis. Further, we characterize a second adaptor protein CDK5RAP3 that binds to and forms an integral part of the ligase complex. Unexpectedly, we find that CDK5RAP3 inhibits UFL1/UFBP1 ligase activity in vitro. Results from reconstituting ribosome UFMylation suggest that CDK5RAP3 functions as a substrate adaptor that directs UFMylation to the ribosomal protein RPL26. In summary, our reconstitution approach reveals the biochemical basis of UFMylation and regulatory principles of this atypical E3 ligase complex.
Collapse
Affiliation(s)
- Joshua J Peter
- Medical Research Council Protein Phosphorylation & Ubiquitylation Unit (MRC‐PPU), School of Life SciencesUniversity of DundeeDundeeUK
| | - Helge M Magnussen
- Medical Research Council Protein Phosphorylation & Ubiquitylation Unit (MRC‐PPU), School of Life SciencesUniversity of DundeeDundeeUK
| | - Paul A DaRosa
- Department of BiologyStanford UniversityStanfordCAUSA
| | - David Millrine
- Medical Research Council Protein Phosphorylation & Ubiquitylation Unit (MRC‐PPU), School of Life SciencesUniversity of DundeeDundeeUK
| | - Stephen P Matthews
- Medical Research Council Protein Phosphorylation & Ubiquitylation Unit (MRC‐PPU), School of Life SciencesUniversity of DundeeDundeeUK
| | - Frederic Lamoliatte
- Medical Research Council Protein Phosphorylation & Ubiquitylation Unit (MRC‐PPU), School of Life SciencesUniversity of DundeeDundeeUK
| | | | - Ron R Kopito
- Department of BiologyStanford UniversityStanfordCAUSA
| | - Yogesh Kulathu
- Medical Research Council Protein Phosphorylation & Ubiquitylation Unit (MRC‐PPU), School of Life SciencesUniversity of DundeeDundeeUK
| |
Collapse
|
23
|
Jing Y, Zuo C, Du YX, Mao J, Ding R, Zhang J, Liang LJ, Qu Q. Chemical tools for E3 ubiquitin ligase study. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
24
|
E2 ubiquitin-conjugating enzymes (UBCs): drivers of ubiquitin signalling in plants. Essays Biochem 2022; 66:99-110. [PMID: 35766526 DOI: 10.1042/ebc20210093] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 12/22/2022]
Abstract
Most research in the field of ubiquitination has focused on E3 ubiquitin ligases because they are the specificity determinants of the ubiquitination process. Nevertheless, E2s are responsible for the catalysis during ubiquitin transfer, and are therefore, at the heart of the ubiquitination process. Arabidopsis has 37 ubiquitin E2s with additional ones mediating the attachment of ubiquitin-like proteins (e.g. SUMO, Nedd8 and ATG8). Importantly, E2s largely determine the type of ubiquitin chain built, and therefore, the type of signal that decides over the fate of the modified protein, such as degradation by the proteasome (Lys48-linked ubiquitin chains) or relocalization (Lys63-linked ubiquitin chains). Moreover, new regulatory layers impinging on E2s activity, including post-translational modifications or cofactors, are emerging that highlight the importance of E2s.
Collapse
|
25
|
Nakasone MA, Majorek KA, Gabrielsen M, Sibbet GJ, Smith BO, Huang DT. Structure of UBE2K-Ub/E3/polyUb reveals mechanisms of K48-linked Ub chain extension. Nat Chem Biol 2022; 18:422-431. [PMID: 35027744 PMCID: PMC8964413 DOI: 10.1038/s41589-021-00952-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 11/30/2021] [Indexed: 01/03/2023]
Abstract
Ubiquitin (Ub) chain types govern distinct biological processes. K48-linked polyUb chains target substrates for proteasomal degradation, but the mechanism of Ub chain synthesis remains elusive due to the transient nature of Ub handover. Here, we present the structure of a chemically trapped complex of the E2 UBE2K covalently linked to donor Ub and acceptor K48-linked di-Ub, primed for K48-linked Ub chain synthesis by a RING E3. The structure reveals the basis for acceptor Ub recognition by UBE2K active site residues and the C-terminal Ub-associated (UBA) domain, to impart K48-linked Ub specificity and catalysis. Furthermore, the structure unveils multiple Ub-binding surfaces on the UBA domain that allow distinct binding modes for K48- and K63-linked Ub chains. This multivalent Ub-binding feature serves to recruit UBE2K to ubiquitinated substrates to overcome weak acceptor Ub affinity and thereby promote chain elongation. These findings elucidate the mechanism of processive K48-linked polyUb chain formation by UBE2K.
Collapse
Affiliation(s)
| | | | - Mads Gabrielsen
- Cancer Research UK Beatson Institute, Glasgow, UK
- MVLS Structural Biology and Biophysical Characterisation Facility, University of Glasgow, Glasgow, UK
| | | | - Brian O Smith
- Institute of Molecular Cell and System Biology, University of Glasgow, Glasgow, UK
| | - Danny T Huang
- Cancer Research UK Beatson Institute, Glasgow, UK.
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
26
|
Mechanistic insights into the multiple activities of the Rad5 family of enzymes. J Mol Biol 2022; 434:167581. [DOI: 10.1016/j.jmb.2022.167581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 11/18/2022]
|
27
|
Cotton TR, Cobbold SA, Bernardini JP, Richardson LW, Wang XS, Lechtenberg BC. Structural basis of K63-ubiquitin chain formation by the Gordon-Holmes syndrome RBR E3 ubiquitin ligase RNF216. Mol Cell 2021; 82:598-615.e8. [PMID: 34998453 DOI: 10.1016/j.molcel.2021.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 10/11/2021] [Accepted: 12/08/2021] [Indexed: 12/13/2022]
Abstract
An increasing number of genetic diseases are linked to deregulation of E3 ubiquitin ligases. Loss-of-function mutations in the RING-between-RING (RBR) family E3 ligase RNF216 (TRIAD3) cause Gordon-Holmes syndrome (GHS) and related neurodegenerative diseases. Functionally, RNF216 assembles K63-linked ubiquitin chains and has been implicated in regulation of innate immunity signaling pathways and synaptic plasticity. Here, we report crystal structures of key RNF216 reaction states including RNF216 in complex with ubiquitin and its reaction product, K63 di-ubiquitin. Our data provide a molecular explanation for chain-type specificity and reveal the molecular basis for disruption of RNF216 function by pathogenic GHS mutations. Furthermore, we demonstrate how RNF216 activity and chain-type specificity are regulated by phosphorylation and that RNF216 is allosterically activated by K63-linked di-ubiquitin. These molecular insights expand our understanding of RNF216 function and its role in disease and further define the mechanistic diversity of the RBR E3 ligase family.
Collapse
Affiliation(s)
- Thomas R Cotton
- Ubiquitin Signalling Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Simon A Cobbold
- Ubiquitin Signalling Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Jonathan P Bernardini
- Ubiquitin Signalling Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Lachlan W Richardson
- Ubiquitin Signalling Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Xiangyi S Wang
- Ubiquitin Signalling Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Bernhard C Lechtenberg
- Ubiquitin Signalling Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
28
|
Talreja J, Bauerfeld C, Wang X, Hafner M, Liu Y, Samavati L. MKP-1 modulates ubiquitination/phosphorylation of TLR signaling. Life Sci Alliance 2021; 4:e202101137. [PMID: 34580177 PMCID: PMC8500224 DOI: 10.26508/lsa.202101137] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 11/24/2022] Open
Abstract
Ubiquitination and phosphorylation are reversible posttranslational protein modifications regulating physiological and pathological processes. MAPK phosphatase (MKP)-1 regulates innate and adaptive immunity. The multifaceted roles of MKP-1 were attributed to dephosphorylation of p38 and JNK MAPKs. We show that the lack of MKP-1 modulates the landscape of ubiquitin ligases and deubiquitinase enzymes (DUBs). MKP-1-/- showed an aberrant regulation of several DUBs and increased expression of proteins and genes involved in IL-1/TLR signaling upstream of MAPK, including IL-1R1, IRAK1, TRAF6, phosphorylated TAK1, and an increased K63 polyubiquitination on TRAF6. Increased K63 polyubiquitination on TRAF6 was associated with an enhanced phosphorylated form of A20. Among abundant DUBs, ubiquitin-specific protease-13 (USP13), which cleaves polyubiquitin-chains on client proteins, was substantially enhanced in murine MKP-1-deficient BMDMs. An inhibitor of USP13 decreased the K63 polyubiquitination on TRAF6, TAK1 phosphorylation, IL-1β, and TNF-α induction in response to LPS in BMDMs. Our data show for the first time that MKP-1 modulates the ligase activity of TRAF6 through modulation of specific DUBs.
Collapse
Affiliation(s)
- Jaya Talreja
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Wayne State University School of Medicine and Detroit Medical Center, Detroit, MI, USA
| | - Christian Bauerfeld
- Department of Pediatrics, Division of Critical Care, Central Michigan University, Mount Pleasant, MI, USA
| | - Xiantao Wang
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Disease, National Institutes of Health, Bethesda, MD, USA
| | - Markus Hafner
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Disease, National Institutes of Health, Bethesda, MD, USA
| | - Yusen Liu
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Lobelia Samavati
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Wayne State University School of Medicine and Detroit Medical Center, Detroit, MI, USA
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
29
|
Yuan L, Yin P, Yan H, Zhong X, Ren C, Li K, Chin Heng B, Zhang W, Tong G. Single-cell transcriptome analysis of human oocyte ageing. J Cell Mol Med 2021; 25:6289-6303. [PMID: 34037315 PMCID: PMC8256362 DOI: 10.1111/jcmm.16594] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/18/2021] [Accepted: 04/13/2021] [Indexed: 12/11/2022] Open
Abstract
Oocyte ageing is a key bottleneck and intractable challenge for in vitro fertilization treatment of aged female patients. The underlying molecular mechanisms of human oocyte ageing remain to be elucidated. Hence, this study aims to investigate the key genes and relevant biological signalling pathways involved in human oocyte ageing. We isolated mRNA for single-cell RNA sequencing from MII human oocytes donated by patients undergoing intracytoplasmic sperm injection. Nine RNA-seq datasets were analyzed, which included 6 older patients(average 42.67±2.25 years) and 3 younger patients (average 25.67±2.08 years). 481 differentially expressed genes (DEGs) were identified, including 322 upregulated genes enriched in transcription, ubiquitination, epigenetic regulation, and cellular processes, and 159 downregulated genes enriched in ubiquitination, cell cycle, signalling pathway, and DNA repair. The STRING database was used to analyse protein-protein interactions, and the Cytoscape software was used to identify hub genes. From these DEGs, 17 hub genes were identified including 12 upregulated genes (UBE2C, UBC, CDC34, UBR1, KIF11, ASF1B, PRC1, ESPL1, GTSE1, EXO1, UBA1, KIF4A) and 5 downregulated genes (UBA52, UBE2V2, SKP1, CCNB1, MAD2L1). The significant key biological processes that are associated with these hub genes include ubiquitin-mediated proteolysis, ubiquitination-related pathways, oocyte meiosis, and cell cycle. Among these, UBE2C may play a crucial role in human oocyte ageing.
Collapse
Affiliation(s)
- Lihua Yuan
- Shuguang Clinical Medical CollegeShanghai University of Traditional Chinese MedicineShanghaiChina
- Center of Reproductive MedicineShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Ping Yin
- Center of Reproductive MedicineShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Hua Yan
- Center of Reproductive MedicineShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Xiufang Zhong
- Center of Reproductive MedicineShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Chunxia Ren
- Center of Reproductive MedicineShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Kai Li
- Center of Reproductive MedicineShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| | | | - Wuwen Zhang
- Center of Reproductive MedicineShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Guoqing Tong
- Center of Reproductive MedicineShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
30
|
Chang YC, Oram MK, Bielinsky AK. SUMO-Targeted Ubiquitin Ligases and Their Functions in Maintaining Genome Stability. Int J Mol Sci 2021; 22:ijms22105391. [PMID: 34065507 PMCID: PMC8161396 DOI: 10.3390/ijms22105391] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/14/2021] [Accepted: 05/16/2021] [Indexed: 02/06/2023] Open
Abstract
Small ubiquitin-like modifier (SUMO)-targeted E3 ubiquitin ligases (STUbLs) are specialized enzymes that recognize SUMOylated proteins and attach ubiquitin to them. They therefore connect the cellular SUMOylation and ubiquitination circuits. STUbLs participate in diverse molecular processes that span cell cycle regulated events, including DNA repair, replication, mitosis, and transcription. They operate during unperturbed conditions and in response to challenges, such as genotoxic stress. These E3 ubiquitin ligases modify their target substrates by catalyzing ubiquitin chains that form different linkages, resulting in proteolytic or non-proteolytic outcomes. Often, STUbLs function in compartmentalized environments, such as the nuclear envelope or kinetochore, and actively aid in nuclear relocalization of damaged DNA and stalled replication forks to promote DNA repair or fork restart. Furthermore, STUbLs reside in the same vicinity as SUMO proteases and deubiquitinases (DUBs), providing spatiotemporal control of their targets. In this review, we focus on the molecular mechanisms by which STUbLs help to maintain genome stability across different species.
Collapse
|
31
|
Crystal structures of an E1-E2-ubiquitin thioester mimetic reveal molecular mechanisms of transthioesterification. Nat Commun 2021; 12:2370. [PMID: 33888705 PMCID: PMC8062481 DOI: 10.1038/s41467-021-22598-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 03/18/2021] [Indexed: 01/07/2023] Open
Abstract
E1 enzymes function as gatekeepers of ubiquitin (Ub) signaling by catalyzing activation and transfer of Ub to tens of cognate E2 conjugating enzymes in a process called E1-E2 transthioesterification. The molecular mechanisms of transthioesterification and the overall architecture of the E1-E2-Ub complex during catalysis are unknown. Here, we determine the structure of a covalently trapped E1-E2-ubiquitin thioester mimetic. Two distinct architectures of the complex are observed, one in which the Ub thioester (Ub(t)) contacts E1 in an open conformation and another in which Ub(t) instead contacts E2 in a drastically different, closed conformation. Altogether our structural and biochemical data suggest that these two conformational states represent snapshots of the E1-E2-Ub complex pre- and post-thioester transfer, and are consistent with a model in which catalysis is enhanced by a Ub(t)-mediated affinity switch that drives the reaction forward by promoting productive complex formation or product release depending on the conformational state.
Collapse
|
32
|
Pluska L, Jarosch E, Zauber H, Kniss A, Waltho A, Bagola K, von Delbrück M, Löhr F, Schulman BA, Selbach M, Dötsch V, Sommer T. The UBA domain of conjugating enzyme Ubc1/Ube2K facilitates assembly of K48/K63-branched ubiquitin chains. EMBO J 2021; 40:e106094. [PMID: 33576509 PMCID: PMC7957398 DOI: 10.15252/embj.2020106094] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 12/22/2020] [Accepted: 01/05/2021] [Indexed: 12/23/2022] Open
Abstract
The assembly of a specific polymeric ubiquitin chain on a target protein is a key event in the regulation of numerous cellular processes. Yet, the mechanisms that govern the selective synthesis of particular polyubiquitin signals remain enigmatic. The homologous ubiquitin-conjugating (E2) enzymes Ubc1 (budding yeast) and Ube2K (mammals) exclusively generate polyubiquitin linked through lysine 48 (K48). Uniquely among E2 enzymes, Ubc1 and Ube2K harbor a ubiquitin-binding UBA domain with unknown function. We found that this UBA domain preferentially interacts with ubiquitin chains linked through lysine 63 (K63). Based on structural modeling, in vitro ubiquitination experiments, and NMR studies, we propose that the UBA domain aligns Ubc1 with K63-linked polyubiquitin and facilitates the selective assembly of K48/K63-branched ubiquitin conjugates. Genetic and proteomics experiments link the activity of the UBA domain, and hence the formation of this unusual ubiquitin chain topology, to the maintenance of cellular proteostasis.
Collapse
Affiliation(s)
- Lukas Pluska
- Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz AssociationBerlin‐BuchGermany
| | - Ernst Jarosch
- Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz AssociationBerlin‐BuchGermany
| | - Henrik Zauber
- Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz AssociationBerlin‐BuchGermany
| | - Andreas Kniss
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic ResonanceGoethe UniversityFrankfurt am MainGermany
| | - Anita Waltho
- Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz AssociationBerlin‐BuchGermany
| | - Katrin Bagola
- Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz AssociationBerlin‐BuchGermany
| | | | - Frank Löhr
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic ResonanceGoethe UniversityFrankfurt am MainGermany
| | - Brenda A Schulman
- Department of Molecular Machines and SignalingMax Planck Institute of BiochemistryMartinsriedGermany
| | - Matthias Selbach
- Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz AssociationBerlin‐BuchGermany
- Charité – Universitätsmedizin BerlinBerlinGermany
| | - Volker Dötsch
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic ResonanceGoethe UniversityFrankfurt am MainGermany
| | - Thomas Sommer
- Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz AssociationBerlin‐BuchGermany
- Institute for BiologyHumboldt‐Universität zu BerlinBerlinGermany
| |
Collapse
|
33
|
Kiss L, Clift D, Renner N, Neuhaus D, James LC. RING domains act as both substrate and enzyme in a catalytic arrangement to drive self-anchored ubiquitination. Nat Commun 2021; 12:1220. [PMID: 33619271 PMCID: PMC7900206 DOI: 10.1038/s41467-021-21443-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/26/2021] [Indexed: 12/24/2022] Open
Abstract
Attachment of ubiquitin (Ub) to proteins is one of the most abundant and versatile of all posttranslational modifications and affects outcomes in essentially all physiological processes. RING E3 ligases target E2 Ub-conjugating enzymes to the substrate, resulting in its ubiquitination. However, the mechanism by which a ubiquitin chain is formed on the substrate remains elusive. Here we demonstrate how substrate binding can induce a specific RING topology that enables self-ubiquitination. By analyzing a catalytically trapped structure showing the initiation of TRIM21 RING-anchored ubiquitin chain elongation, and in combination with a kinetic study, we illuminate the chemical mechanism of ubiquitin conjugation. Moreover, biochemical and cellular experiments show that the topology found in the structure can be induced by substrate binding. Our results provide insights into ubiquitin chain formation on a structural, biochemical and cellular level with broad implications for targeted protein degradation.
Collapse
Affiliation(s)
- Leo Kiss
- MRC Laboratory of Molecular Biology, Cambridge, UK.
| | - Dean Clift
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | | | - Leo C James
- MRC Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|
34
|
Khago D, Fucci IJ, Byrd RA. The Role of Conformational Dynamics in the Recognition and Regulation of Ubiquitination. Molecules 2020; 25:E5933. [PMID: 33333809 PMCID: PMC7765195 DOI: 10.3390/molecules25245933] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 11/23/2022] Open
Abstract
The ubiquitination pathway is central to many cell signaling and regulatory events. One of the intriguing aspects of the pathway is the combinatorial sophistication of substrate recognition and ubiquitin chain building determinations. The abundant structural and biological data portray several characteristic protein folds among E2 and E3 proteins, and the understanding of the combinatorial complexity that enables interaction with much of the human proteome is a major goal to developing targeted and selective manipulation of the pathway. With the commonality of some folds, there are likely other aspects that can provide differentiation and recognition. These aspects involve allosteric effects and conformational dynamics that can direct recognition and chain building processes. In this review, we will describe the current state of the knowledge for conformational dynamics across a wide timescale, address the limitations of present approaches, and illustrate the potential to make new advances in connecting dynamics with ubiquitination regulation.
Collapse
Affiliation(s)
| | | | - Robert Andrew Byrd
- Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, P.O. Box B, Building 538, Frederick, MD 21702-1201, USA; (D.K.); (I.J.F.)
| |
Collapse
|
35
|
Liwocha J, Krist DT, van der Heden van Noort GJ, Hansen FM, Truong VH, Karayel O, Purser N, Houston D, Burton N, Bostock MJ, Sattler M, Mann M, Harrison JS, Kleiger G, Ovaa H, Schulman BA. Linkage-specific ubiquitin chain formation depends on a lysine hydrocarbon ruler. Nat Chem Biol 2020; 17:272-279. [PMID: 33288957 PMCID: PMC7904580 DOI: 10.1038/s41589-020-00696-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 09/10/2020] [Accepted: 10/14/2020] [Indexed: 02/08/2023]
Abstract
Virtually all aspects of cell biology are regulated by a ubiquitin code
where distinct ubiquitin chain architectures guide the binding events and
itineraries of modified substrates. Various combinations of E2 and E3 enzymes
accomplish chain formation by forging isopeptide bonds between the C-terminus of
their transiently-linked donor ubiquitin and a specific nucleophilic amino acid
on the acceptor ubiquitin, yet it is unknown whether the fundamental feature of
most acceptors - the lysine side-chain - affects catalysis. Here, use of
synthetic ubiquitins with non-natural acceptor site replacements reveals that
the aliphatic side-chain specifying reactive amine geometry is a determinant of
the ubiquitin code, through unanticipated and complex reliance of many distinct
ubiquitin carrying enzymes on a canonical acceptor lysine.
Collapse
Affiliation(s)
- Joanna Liwocha
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - David T Krist
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany.,Carle Illinois College of Medicine, Champaign, IL, USA
| | - Gerbrand J van der Heden van Noort
- Oncode Institute and Department of Cell and Chemical Biology, Chemical Immunology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Fynn M Hansen
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Vinh H Truong
- Department of Chemistry, University of the Pacific, Stockton, CA, USA
| | - Ozge Karayel
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Nicholas Purser
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Daniel Houston
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Nicole Burton
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Mark J Bostock
- Biomolecular NMR and Center for Integrated Protein Science Munich at Department Chemie, Technical University of Munich, Garching, Germany.,Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Michael Sattler
- Biomolecular NMR and Center for Integrated Protein Science Munich at Department Chemie, Technical University of Munich, Garching, Germany.,Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Joseph S Harrison
- Department of Chemistry, University of the Pacific, Stockton, CA, USA
| | - Gary Kleiger
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, NV, USA.
| | - Huib Ovaa
- Oncode Institute and Department of Cell and Chemical Biology, Chemical Immunology, Leiden University Medical Centre, Leiden, the Netherlands.
| | - Brenda A Schulman
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany.
| |
Collapse
|
36
|
Lips C, Ritterhoff T, Weber A, Janowska MK, Mustroph M, Sommer T, Klevit RE. Who with whom: functional coordination of E2 enzymes by RING E3 ligases during poly-ubiquitylation. EMBO J 2020; 39:e104863. [PMID: 33015833 PMCID: PMC7667886 DOI: 10.15252/embj.2020104863] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 08/31/2020] [Accepted: 09/10/2020] [Indexed: 11/09/2022] Open
Abstract
Protein modification with poly-ubiquitin chains is a crucial process involved in a myriad of cellular pathways. Chain synthesis requires two steps: substrate modification with ubiquitin (priming) followed by repetitive ubiquitin-to-ubiquitin attachment (elongation). RING-type E3 ligases catalyze both reactions in collaboration with specific priming and elongating E2 enzymes. We provide kinetic insight into poly-ubiquitylation during protein quality control by showing that priming is the rate-determining step in protein degradation as directed by the yeast ERAD RING E3 ligases, Hrd1 and Doa10. Doa10 cooperates with the dedicated priming E2, Ubc6, while both E3s use Ubc7 for elongation. Here, we provide direct evidence that Hrd1 uses Ubc7 also for priming. We found that Ubc6 has an unusually high basal activity that does not require strong stimulation from an E3. Doa10 exploits this property to pair with Ubc6 over Ubc7 during priming. Our work not only illuminates the mechanisms of specific E2/E3 interplay in ERAD, but also offers a basis to understand how RING E3s may have properties that are tailored to pair with their preferred E2s.
Collapse
Affiliation(s)
- Christian Lips
- Max Delbrück‐Center for Molecular Medicine in the Helmholtz AssociationBerlin‐BuchGermany
| | - Tobias Ritterhoff
- Department of BiochemistrySchool of MedicineUniversity of WashingtonSeattleWAUSA
| | - Annika Weber
- Max Delbrück‐Center for Molecular Medicine in the Helmholtz AssociationBerlin‐BuchGermany
- Present address:
MRC Laboratory of Molecular BiologyCambridgeUK
| | - Maria K Janowska
- Department of BiochemistrySchool of MedicineUniversity of WashingtonSeattleWAUSA
| | - Mandy Mustroph
- Max Delbrück‐Center for Molecular Medicine in the Helmholtz AssociationBerlin‐BuchGermany
| | - Thomas Sommer
- Max Delbrück‐Center for Molecular Medicine in the Helmholtz AssociationBerlin‐BuchGermany
- Lady Davies Guest ProfessorTechnion‐Israel Institute of TechnologyHaifaIsrael
| | - Rachel E Klevit
- Department of BiochemistrySchool of MedicineUniversity of WashingtonSeattleWAUSA
| |
Collapse
|
37
|
Burge RJ, Damianou A, Wilkinson AJ, Rodenko B, Mottram JC. Leishmania differentiation requires ubiquitin conjugation mediated by a UBC2-UEV1 E2 complex. PLoS Pathog 2020; 16:e1008784. [PMID: 33108402 PMCID: PMC7647121 DOI: 10.1371/journal.ppat.1008784] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/06/2020] [Accepted: 09/10/2020] [Indexed: 12/27/2022] Open
Abstract
Post-translational modifications such as ubiquitination are important for orchestrating the cellular transformations that occur as the Leishmania parasite differentiates between its main morphological forms, the promastigote and amastigote. 2 E1 ubiquitin-activating (E1), 13 E2 ubiquitin-conjugating (E2), 79 E3 ubiquitin ligase (E3) and 20 deubiquitinating cysteine peptidase (DUB) genes can be identified in the Leishmania mexicana genome but, currently, little is known about the role of E1, E2 and E3 enzymes in this parasite. Bar-seq analysis of 23 E1, E2 and HECT/RBR E3 null mutants generated in promastigotes using CRISPR-Cas9 revealed numerous loss-of-fitness phenotypes in promastigote to amastigote differentiation and mammalian infection. The E2s UBC1/CDC34, UBC2 and UEV1 and the HECT E3 ligase HECT2 are required for the successful transformation from promastigote to amastigote and UBA1b, UBC9, UBC14, HECT7 and HECT11 are required for normal proliferation during mouse infection. Of all ubiquitination enzyme null mutants examined in the screen, Δubc2 and Δuev1 exhibited the most extreme loss-of-fitness during differentiation. Null mutants could not be generated for the E1 UBA1a or the E2s UBC3, UBC7, UBC12 and UBC13, suggesting these genes are essential in promastigotes. X-ray crystal structure analysis of UBC2 and UEV1, orthologues of human UBE2N and UBE2V1/UBE2V2 respectively, reveal a heterodimer with a highly conserved structure and interface. Furthermore, recombinant L. mexicana UBA1a can load ubiquitin onto UBC2, allowing UBC2-UEV1 to form K63-linked di-ubiquitin chains in vitro. Notably, UBC2 can cooperate in vitro with human E3s RNF8 and BIRC2 to form non-K63-linked polyubiquitin chains, showing that UBC2 can facilitate ubiquitination independent of UEV1, but association of UBC2 with UEV1 inhibits this ability. Our study demonstrates the dual essentiality of UBC2 and UEV1 in the differentiation and intracellular survival of L. mexicana and shows that the interaction between these two proteins is crucial for regulation of their ubiquitination activity and function. The post-translational modification of proteins is key for allowing Leishmania parasites to transition between the different life cycle stages that exist in its insect vector and mammalian host. In particular, components of the ubiquitin system are important for the transformation of Leishmania from its insect (promastigote) to mammalian (amastigote) stage and normal infection in mice. However, little is known about the role of the enzymes that generate ubiquitin modifications in Leishmania. Here we characterise 28 enzymes of the ubiquitination pathway and show that many are required for life cycle progression or mouse infection by this parasite. Two proteins, UBC2 and UEV1, were selected for further study based on their importance in the promastigote to amastigote transition. We demonstrate that UBC2 and UEV1 form a heterodimer capable of carrying out ubiquitination and that the structural basis for this activity is conserved between Leishmania, Saccharomyces cerevisiae and humans. We also show that the interaction of UBC2 with UEV1 alters the nature of the ubiquitination activity performed by UBC2. Overall, we demonstrate the important role that ubiquitination enzymes play in the life cycle and infection process of Leishmania and explore the biochemistry underlying UBC2 and UEV1 function.
Collapse
Affiliation(s)
- Rebecca J. Burge
- York Biomedical Research Institute and Department of Biology, University of York, United Kingdom
| | - Andreas Damianou
- York Biomedical Research Institute and Department of Biology, University of York, United Kingdom
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, United Kingdom
| | - Anthony J. Wilkinson
- York Biomedical Research Institute and York Structural Biology Laboratory, Department of Chemistry, University of York, United Kingdom
| | - Boris Rodenko
- UbiQ Bio BV, Amsterdam Science Park, the Netherlands
| | - Jeremy C. Mottram
- York Biomedical Research Institute and Department of Biology, University of York, United Kingdom
- * E-mail:
| |
Collapse
|
38
|
Murphy P, Xu Y, Rouse SL, Jaffray EG, Plechanovová A, Matthews SJ, Carlos Penedo J, Hay RT. Functional 3D architecture in an intrinsically disordered E3 ligase domain facilitates ubiquitin transfer. Nat Commun 2020; 11:3807. [PMID: 32733036 PMCID: PMC7393505 DOI: 10.1038/s41467-020-17647-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 07/13/2020] [Indexed: 12/18/2022] Open
Abstract
The human genome contains an estimated 600 ubiquitin E3 ligases, many of which are single-subunit E3s (ssE3s) that can bind to both substrate and ubiquitin-loaded E2 (E2~Ub). Within ssE3s structural disorder tends to be located in substrate binding and domain linking regions. RNF4 is a ssE3 ligase with a C-terminal RING domain and disordered N-terminal region containing SUMO Interactions Motifs (SIMs) required to bind SUMO modified substrates. Here we show that, although the N-terminal region of RNF4 bears no secondary structure, it maintains a compact global architecture primed for SUMO interaction. Segregated charged regions within the RNF4 N-terminus promote compaction, juxtaposing RING domain and SIMs to facilitate substrate ubiquitination. Mutations that induce a more extended shape reduce ubiquitination activity. Our result offer insight into a key step in substrate ubiquitination by a member of the largest ubiquitin ligase subtype and reveal how a defined architecture within a disordered region contributes to E3 ligase function.
Collapse
Affiliation(s)
- Paul Murphy
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, DD1 5EH, Dundee, UK
| | - Yingqi Xu
- Centre for Structural Biology, Department of Life Sciences, Imperial College London, SW7 2AZ, London, UK
| | - Sarah L Rouse
- Centre for Structural Biology, Department of Life Sciences, Imperial College London, SW7 2AZ, London, UK
| | - Ellis G Jaffray
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, DD1 5EH, Dundee, UK
| | - Anna Plechanovová
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, DD1 5EH, Dundee, UK
| | - Steve J Matthews
- Centre for Structural Biology, Department of Life Sciences, Imperial College London, SW7 2AZ, London, UK
| | - J Carlos Penedo
- Centre of Biophotonics, School of Physics and Astronomy, University of St. Andrews, KY16 9SS, St. Andrews, UK
- Biomedical Sciences Research Complex, School of Biology, University of St. Andrews, KY16 9ST, St. Andrews, UK
| | - Ronald T Hay
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, DD1 5EH, Dundee, UK.
| |
Collapse
|
39
|
Ibrahim AFM, Shen L, Tatham MH, Dickerson D, Prescott AR, Abidi N, Xirodimas DP, Hay RT. Antibody RING-Mediated Destruction of Endogenous Proteins. Mol Cell 2020; 79:155-166.e9. [PMID: 32454028 PMCID: PMC7332993 DOI: 10.1016/j.molcel.2020.04.032] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 03/20/2020] [Accepted: 04/27/2020] [Indexed: 01/05/2023]
Abstract
To understand gene function, the encoding DNA or mRNA transcript can be manipulated and the consequences observed. However, these approaches do not have a direct effect on the protein product of the gene, which is either permanently abrogated or depleted at a rate defined by the half-life of the protein. We therefore developed a single-component system that could induce the rapid degradation of the specific endogenous protein itself. A construct combining the RING domain of ubiquitin E3 ligase RNF4 with a protein-specific camelid nanobody mediates target destruction by the ubiquitin proteasome system, a process we describe as antibody RING-mediated destruction (ARMeD). The technique is highly specific because we observed no off-target protein destruction. Furthermore, bacterially produced nanobody-RING fusion proteins electroporated into cells induce degradation of target within minutes. With increasing availability of protein-specific nanobodies, this method will allow rapid and specific degradation of a wide range of endogenous proteins.
Collapse
Affiliation(s)
- Adel F M Ibrahim
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Linnan Shen
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Michael H Tatham
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - David Dickerson
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Alan R Prescott
- Dundee Imaging Facility, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Naima Abidi
- Cell Biology Research Centre of Montpellier, CNRS, UMR 5237, Montpellier, France
| | - Dimitris P Xirodimas
- Cell Biology Research Centre of Montpellier, CNRS, UMR 5237, Montpellier, France
| | - Ronald T Hay
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.
| |
Collapse
|
40
|
Shi W, Feng L, Dong S, Ning Z, Hua Y, Liu L, Chen Z, Meng Z. FBXL6 governs c-MYC to promote hepatocellular carcinoma through ubiquitination and stabilization of HSP90AA1. Cell Commun Signal 2020; 18:100. [PMID: 32576198 PMCID: PMC7310287 DOI: 10.1186/s12964-020-00604-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 05/29/2020] [Indexed: 12/31/2022] Open
Abstract
Background Heat shot protein 90 (HSP90) AA1 functions as an onco-protein to regulate the assembly, manipulation, folding and degradation of its client proteins, including c-MYC. However, little is known about the mechanism of HSP90AA1 regulation. Methods Transcriptome RNA-sequencing data of hepatocellular carcinoma (HCC) samples were used to detect the mRNA expression of FBXL6. Immunoprecipitation/Mass Spectrum (IP/MS) method was used to identify the interacting proteins of FBXL6. The co-immunoprecipitation assay was used to determine the interaction between FBXL6 and HSP90AA1. The in vivo ubiquitination assay was performed to determine the regulation of HSP90AA1 by FBXL6. Luciferase reporter and chromatin immunoprecipitation (ChIP) assays were used to determine the transcriptional regulation of FBXL6 by c-MYC. Immunohistochemical (IHC) staining was performed to study the correlation of FBXL6 and HSP90AA1 protein expression in 87 HCC samples. Cell counting and colony formation assays were implemented to detect the biological effects of FBXL6 on the growth of HCC cells in vitro. The effect of FBXL6 on HCC tumor growth in vivo was studied in a tumor xenograft model in mice. Results Here, we identified the orphan F-box protein FBXL6, a substrate recognition subunit of an SCF (Skp1-Cul1-F-box protein) complex, as the ubiquitin ligase for HSP90AA1. FBXL6 promoted K63-dependent ubiquitination of HSP90AA1 to stabilize it. Through analysis of the TCGA dataset, we found that FBXL6 was significantly increased in HCC tissues and positively correlated with c-MYC pathway. FBXL6 accumulation in HCC causes the stabilization and activation of c-MYC by preventing HSP90AA1 degradation. The activated c-MYC directly binds to the promoter region of FBXL6 to induce its mRNA expression. Conclusion Collectively, our data revealed an unknown FBXL6-HSP90AA1-c-MYC axis which might contribute to the oncogenesis of HCC, and we propose that inhibition of FBXL6 might represent an effective therapeutic strategy for HCC treatment. Video abstract
Collapse
Affiliation(s)
- Weidong Shi
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Collaborative Innovation Center for Cancer Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Lanyun Feng
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Collaborative Innovation Center for Cancer Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Shu Dong
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Collaborative Innovation Center for Cancer Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Zhouyu Ning
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Collaborative Innovation Center for Cancer Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yongqiang Hua
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Collaborative Innovation Center for Cancer Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Luming Liu
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Collaborative Innovation Center for Cancer Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Zhen Chen
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Collaborative Innovation Center for Cancer Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Zhiqiang Meng
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China. .,Collaborative Innovation Center for Cancer Medicine, Fudan University Shanghai Cancer Center, Shanghai, China.
| |
Collapse
|
41
|
Ubiquitylation-Mediated Fine-Tuning of DNA Double-Strand Break Repair. Cancers (Basel) 2020; 12:cancers12061617. [PMID: 32570875 PMCID: PMC7352447 DOI: 10.3390/cancers12061617] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 01/04/2023] Open
Abstract
The proper function of DNA repair is indispensable for eukaryotic cells since accumulation of DNA damages leads to genome instability and is a major cause of oncogenesis. Ubiquitylation and deubiquitylation play a pivotal role in the precise regulation of DNA repair pathways by coordinating the recruitment and removal of repair proteins at the damaged site. Here, we summarize the most important post-translational modifications (PTMs) involved in DNA double-strand break repair. Although we highlight the most relevant PTMs, we focus principally on ubiquitylation-related processes since these are the most robust regulatory pathways among those of DNA repair.
Collapse
|
42
|
Branigan E, Carlos Penedo J, Hay RT. Ubiquitin transfer by a RING E3 ligase occurs from a closed E2~ubiquitin conformation. Nat Commun 2020; 11:2846. [PMID: 32503993 PMCID: PMC7275055 DOI: 10.1038/s41467-020-16666-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 05/15/2020] [Indexed: 01/05/2023] Open
Abstract
Based on extensive structural analysis it was proposed that RING E3 ligases prime the E2~ubiquitin conjugate (E2~Ub) for catalysis by locking it into a closed conformation, where ubiquitin is folded back onto the E2 exposing the restrained thioester bond to attack by substrate nucleophile. However the proposal that the RING dependent closed conformation of E2~Ub represents the active form that mediates ubiquitin transfer has yet to be experimentally tested. To test this hypothesis we use single molecule Förster Resonance Energy Transfer (smFRET) to measure the conformation of a FRET labelled E2~Ub conjugate, which distinguishes between closed and alternative conformations. We describe a real-time FRET assay with a thioester linked E2~Ub conjugate to monitor single ubiquitination events and demonstrate that ubiquitin is transferred to substrate from the closed conformation. These findings are likely to be relevant to all RING E3 catalysed reactions ligating ubiquitin and other ubiquitin-like proteins (Ubls) to substrates.
Collapse
Affiliation(s)
- Emma Branigan
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - J Carlos Penedo
- Centre of Biophotonics, School of Physics and Astronomy, University of St. Andrews, St. Andrews, KY16 9SS, UK.
- Biomedical Sciences Research Complex, School of Biology, University of St. Andrews, St. Andrews, KY16 9ST, UK.
| | - Ronald T Hay
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK.
| |
Collapse
|
43
|
Renz C, Albanèse V, Tröster V, Albert TK, Santt O, Jacobs SC, Khmelinskii A, Léon S, Ulrich HD. Ubc13-Mms2 cooperates with a family of RING E3 proteins in budding yeast membrane protein sorting. J Cell Sci 2020; 133:jcs.244566. [PMID: 32265276 DOI: 10.1242/jcs.244566] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 03/23/2020] [Indexed: 12/25/2022] Open
Abstract
Polyubiquitin chains linked via lysine (K) 63 play an important role in endocytosis and membrane trafficking. Their primary source is the ubiquitin protein ligase (E3) Rsp5/NEDD4, which acts as a key regulator of membrane protein sorting. The heterodimeric ubiquitin-conjugating enzyme (E2), Ubc13-Mms2, catalyses K63-specific polyubiquitylation in genome maintenance and inflammatory signalling. In budding yeast, the only E3 proteins known to cooperate with Ubc13-Mms2 so far is a nuclear RING finger protein, Rad5, involved in the replication of damaged DNA. Here, we report a contribution of Ubc13-Mms2 to the sorting of membrane proteins to the yeast vacuole via the multivesicular body (MVB) pathway. In this context, Ubc13-Mms2 cooperates with Pib1, a FYVE-RING finger protein associated with internal membranes. Moreover, we identified a family of membrane-associated FYVE-(type)-RING finger proteins as cognate E3 proteins for Ubc13-Mms2 in several species, and genetic analysis indicates that the contribution of Ubc13-Mms2 to membrane trafficking in budding yeast goes beyond its cooperation with Pib1. Thus, our results widely implicate Ubc13-Mms2 as an Rsp5-independent source of K63-linked polyubiquitin chains in the regulation of membrane protein sorting.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Christian Renz
- Institute of Molecular Biology gGmbH (IMB), Ackermannweg 4, D-55128 Mainz, Germany
| | - Véronique Albanèse
- Institut Jacques Monod, UMR 7592 Centre National de la Recherche Scientifique/Université Paris-Diderot, Sorbonne Paris Cité, 75205 Paris Cedex 13, France
| | - Vera Tröster
- Institute of Molecular Biology gGmbH (IMB), Ackermannweg 4, D-55128 Mainz, Germany
| | - Thomas K Albert
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, D-35043 Marburg, Germany
| | - Olivier Santt
- Cancer Research UK London Research Institute, Clare Hall Laboratories, Blanche Lane, South Mimms EN6 3LD, UK
| | - Susan C Jacobs
- Cancer Research UK London Research Institute, Clare Hall Laboratories, Blanche Lane, South Mimms EN6 3LD, UK
| | - Anton Khmelinskii
- Institute of Molecular Biology gGmbH (IMB), Ackermannweg 4, D-55128 Mainz, Germany
| | - Sébastien Léon
- Institut Jacques Monod, UMR 7592 Centre National de la Recherche Scientifique/Université Paris-Diderot, Sorbonne Paris Cité, 75205 Paris Cedex 13, France
| | - Helle D Ulrich
- Institute of Molecular Biology gGmbH (IMB), Ackermannweg 4, D-55128 Mainz, Germany
| |
Collapse
|
44
|
Mathur S, Fletcher AJ, Branigan E, Hay RT, Virdee S. Photocrosslinking Activity-Based Probes for Ubiquitin RING E3 Ligases. Cell Chem Biol 2019; 27:74-82.e6. [PMID: 31859248 PMCID: PMC6963778 DOI: 10.1016/j.chembiol.2019.11.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/13/2019] [Accepted: 11/20/2019] [Indexed: 12/13/2022]
Abstract
Activity-based protein profiling is an invaluable technique for studying enzyme biology and facilitating the development of therapeutics. Ubiquitin E3 ligases (E3s) are one of the largest enzyme families and regulate a host of (patho)physiological processes. The largest subtype are the RING E3s of which there are >600 members. RING E3s have adaptor-like activity that can be subject to diverse regulatory mechanisms and have become attractive drug targets. Activity-based probes (ABPs) for measuring RING E3 activity do not exist. Here we re-engineer ubiquitin-charged E2 conjugating enzymes to produce photocrosslinking ABPs. We demonstrate activity-dependent profiling of two divergent cancer-associated RING E3s, RNF4 and c-Cbl, in response to their native activation signals. We also demonstrate profiling of endogenous RING E3 ligase activation in response to epidermal growth factor (EGF) stimulation. These photocrosslinking ABPs should advance E3 ligase research and the development of selective modulators against this important class of enzymes. Photoactivated activity-based probes developed for large class of ubiquitin E3 ligases ABPs are compatible with divergent RING E3 activation mechanisms Parallelized E3 profiling and detection of growth factor-induced E3 activation
Collapse
Affiliation(s)
- Sunil Mathur
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Scotland, UK
| | - Adam J Fletcher
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Scotland, UK
| | - Emma Branigan
- Division of Gene Regulation and Expression, University of Dundee, Scotland, UK
| | - Ronald T Hay
- Division of Gene Regulation and Expression, University of Dundee, Scotland, UK
| | - Satpal Virdee
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Scotland, UK.
| |
Collapse
|
45
|
Mohanty P, Agrata R, Habibullah BI, G S A, Das R. Deamidation disrupts native and transient contacts to weaken the interaction between UBC13 and RING-finger E3 ligases. eLife 2019; 8:49223. [PMID: 31638574 PMCID: PMC6874479 DOI: 10.7554/elife.49223] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 10/21/2019] [Indexed: 12/25/2022] Open
Abstract
The deamidase OspI from enteric bacteria Shigella flexneri deamidates a glutamine residue in the host ubiquitin-conjugating enzyme UBC13 and converts it to glutamate (Q100E). Consequently, its polyubiquitination activity in complex with the RING-finger ubiquitin ligase TRAF6 and the downstream NF-κB inflammatory response is silenced. The precise role of deamidation in silencing the UBC13/TRAF6 complex is unknown. We report that deamidation inhibits the interaction between UBC13 and TRAF6 RING-domain (TRAF6RING) by perturbing both the native and transient interactions. Deamidation creates a new intramolecular salt-bridge in UBC13 that competes with a critical intermolecular salt-bridge at the native UBC13/TRAF6RING interface. Moreover, the salt-bridge competition prevents transient interactions necessary to form a typical UBC13/RING complex. Repulsion between E100 and the negatively charged surface of RING also prevents transient interactions in the UBC13/RING complex. Our findings highlight a mechanism wherein a post-translational modification perturbs the conformation and stability of transient complexes to inhibit protein-protein association. Shigella is a highly infectious group of bacteria that attack the human digestive tract, causing severe and often deadly diarrhoea, especially in children. There is currently no vaccine to protect against the disease, and some strains are also now resistant to antibiotics. People get infected by eating or drinking contaminated foods and water. After passing through the stomach, Shigella invades and then multiplies in the lining of the intestine, eventually causing tissue damage and irritation. During this process, Shigella ‘hides’ from its host’s immune system by blocking how intestinal cells respond to infection. Normally, infected cells send out chemical signals that act like a call for help, attracting specialised immune cells to clear the infection. In intestinal cells, two proteins called UBC13 and TRAF6 work together to switch on this response. Specifically, TRAF6 needs to bind to UBC13 for the switch to turn on. Like many proteins, UBC13 is formed of thousands of atoms; some of these are organized in ‘functional groups’, a collection of atoms joined in a specific manner and with special chemical properties. During Shigella infection, the bacteria produce an enzyme that changes a single functional group (an amino group) at a specific location within UBC13 for a different one (an hydroxyl group). Previous research showed that this could stop the immune response in intestinal cells, but the mechanism remained unknown. Mohanty et al. therefore set out to determine exactly how a change of so few atoms could have such a dramatic effect. Biochemical studies using purified proteins revealed that Shigella’s alteration to UBC13 did not change its overall structure. However, the altered protein could no longer bind to its partner TRAF6. Theoretical analysis and computer simulations revealed that the normal binding process relies on a positively charged amino acid (one of the protein’s building blocks) in UBC13 and a negatively charged one in TRAF6 being attracted to each other. Shigella’s substitution, however, introduces a second negatively charged amino acid in UBC13. This ‘steals’ the positively charged amino acid that would normally interact with TRAF6: the electrical attraction between the two proteins is disrupted, and this stops them from binding. The work by Mohanty et al. reveals the exact mechanism Shigella uses to dampen its host’s immune response during infection. In the future, this knowledge could be used to develop more effective drugs that would help control outbreaks of diarrhoea.
Collapse
Affiliation(s)
- Priyesh Mohanty
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| | - Rashmi Agrata
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| | - Batul Ismail Habibullah
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| | - Arun G S
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| | - Ranabir Das
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| |
Collapse
|
46
|
Kiss L, Zeng J, Dickson CF, Mallery DL, Yang JC, McLaughlin SH, Boland A, Neuhaus D, James LC. A tri-ionic anchor mechanism drives Ube2N-specific recruitment and K63-chain ubiquitination in TRIM ligases. Nat Commun 2019; 10:4502. [PMID: 31582740 PMCID: PMC6776665 DOI: 10.1038/s41467-019-12388-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 08/30/2019] [Indexed: 12/20/2022] Open
Abstract
The cytosolic antibody receptor TRIM21 possesses unique ubiquitination activity that drives broad-spectrum anti-pathogen targeting and underpins the protein depletion technology Trim-Away. This activity is dependent on formation of self-anchored, K63-linked ubiquitin chains by the heterodimeric E2 enzyme Ube2N/Ube2V2. Here we reveal how TRIM21 facilitates ubiquitin transfer and differentiates this E2 from other closely related enzymes. A tri-ionic motif provides optimally distributed anchor points that allow TRIM21 to wrap an Ube2N~Ub complex around its RING domain, locking the closed conformation and promoting ubiquitin discharge. Mutation of these anchor points inhibits ubiquitination with Ube2N/Ube2V2, viral neutralization and immune signalling. We show that the same mechanism is employed by the anti-HIV restriction factor TRIM5 and identify spatially conserved ionic anchor points in other Ube2N-recruiting RING E3s. The tri-ionic motif is exclusively required for Ube2N but not Ube2D1 activity and provides a generic E2-specific catalysis mechanism for RING E3s.
Collapse
Affiliation(s)
- Leo Kiss
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Jingwei Zeng
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Claire F Dickson
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
- University of New South Wales, Sydney, NSW, Australia
| | - Donna L Mallery
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Ji-Chun Yang
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | | | - Andreas Boland
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
- Department of Molecular Biology, Science III, University of Geneva, Geneva, Switzerland
| | - David Neuhaus
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Leo C James
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|
47
|
Valleau D, Quaile AT, Cui H, Xu X, Evdokimova E, Chang C, Cuff ME, Urbanus ML, Houliston S, Arrowsmith CH, Ensminger AW, Savchenko A. Discovery of Ubiquitin Deamidases in the Pathogenic Arsenal of Legionella pneumophila. Cell Rep 2019; 23:568-583. [PMID: 29642013 DOI: 10.1016/j.celrep.2018.03.060] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 08/31/2017] [Accepted: 03/14/2018] [Indexed: 12/31/2022] Open
Abstract
Legionella pneumophila translocates the largest known arsenal of over 330 pathogenic factors, called "effectors," into host cells during infection, enabling L. pneumophila to establish a replicative niche inside diverse amebas and human macrophages. Here, we reveal that the L. pneumophila effectors MavC (Lpg2147) and MvcA (Lpg2148) are structural homologs of cycle inhibiting factor (Cif) effectors and that the adjacent gene, lpg2149, produces a protein that directly inhibits their activity. In contrast to canonical Cifs, both MavC and MvcA contain an insertion domain and deamidate the residue Gln40 of ubiquitin but not Gln40 of NEDD8. MavC and MvcA are functionally diverse, with only MavC interacting with the human E2-conjugating enzyme UBE2N (Ubc13). MavC deamidates the UBE2N∼Ub conjugate, disrupting Lys63 ubiquitination and dampening NF-κB signaling. Combined, our data reveal a molecular mechanism of host manipulation by pathogenic bacteria and highlight the complex regulatory mechanisms integral to L. pneumophila's pathogenic strategy.
Collapse
Affiliation(s)
- Dylan Valleau
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Andrew T Quaile
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Hong Cui
- The Hospital for Sick Children Research Institute and Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Xiaohui Xu
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Elena Evdokimova
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Changsoo Chang
- Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, IL, USA
| | - Marianne E Cuff
- Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, IL, USA
| | - Malene L Urbanus
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Scott Houliston
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada; Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada; Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Alexander W Ensminger
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Alexei Savchenko
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada; Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
48
|
Deol KK, Lorenz S, Strieter ER. Enzymatic Logic of Ubiquitin Chain Assembly. Front Physiol 2019; 10:835. [PMID: 31333493 PMCID: PMC6624479 DOI: 10.3389/fphys.2019.00835] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/17/2019] [Indexed: 12/12/2022] Open
Abstract
Protein ubiquitination impacts virtually every biochemical pathway in eukaryotic cells. The fate of a ubiquitinated protein is largely dictated by the type of ubiquitin modification with which it is decorated, including a large variety of polymeric chains. As a result, there have been intense efforts over the last two decades to dissect the molecular details underlying the synthesis of ubiquitin chains by ubiquitin-conjugating (E2) enzymes and ubiquitin ligases (E3s). In this review, we highlight these advances. We discuss the evidence in support of the alternative models of transferring one ubiquitin at a time to a growing substrate-linked chain (sequential addition model) versus transferring a pre-assembled ubiquitin chain (en bloc model) to a substrate. Against this backdrop, we outline emerging principles of chain assembly: multisite interactions, distinct mechanisms of chain initiation and elongation, optimal positioning of ubiquitin molecules that are ultimately conjugated to each other, and substrate-assisted catalysis. Understanding the enzymatic logic of ubiquitin chain assembly has important biomedical implications, as the misregulation of many E2s and E3s and associated perturbations in ubiquitin chain formation contribute to human disease. The resurgent interest in bifunctional small molecules targeting pathogenic proteins to specific E3s for polyubiquitination and subsequent degradation provides an additional incentive to define the mechanisms responsible for efficient and specific chain synthesis and harness them for therapeutic benefit.
Collapse
Affiliation(s)
- Kirandeep K Deol
- Department of Chemistry, University of Massachusetts, Amherst, MA, United States
| | - Sonja Lorenz
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Eric R Strieter
- Department of Chemistry, University of Massachusetts, Amherst, MA, United States.,Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, United States
| |
Collapse
|
49
|
Liess AKL, Kucerova A, Schweimer K, Yu L, Roumeliotis TI, Diebold M, Dybkov O, Sotriffer C, Urlaub H, Choudhary JS, Mansfeld J, Lorenz S. Autoinhibition Mechanism of the Ubiquitin-Conjugating Enzyme UBE2S by Autoubiquitination. Structure 2019; 27:1195-1210.e7. [PMID: 31230944 DOI: 10.1016/j.str.2019.05.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/01/2019] [Accepted: 05/17/2019] [Indexed: 12/16/2022]
Abstract
Ubiquitin-conjugating enzymes (E2s) govern key aspects of ubiquitin signaling. Emerging evidence suggests that the activities of E2s are modulated by posttranslational modifications; the structural underpinnings, however, are largely unclear. Here, we unravel the structural basis and mechanistic consequences of a conserved autoubiquitination event near the catalytic center of E2s, using the human anaphase-promoting complex/cyclosome-associated UBE2S as a model system. Crystal structures we determined of the catalytic ubiquitin carrier protein domain combined with MD simulations reveal that the active-site region is malleable, which permits an adjacent ubiquitin acceptor site, Lys+5, to be ubiquitinated intramolecularly. We demonstrate by NMR that the Lys+5-linked ubiquitin inhibits UBE2S by obstructing its reloading with ubiquitin. By immunoprecipitation, quantitative mass spectrometry, and siRNA-and-rescue experiments we show that Lys+5 ubiquitination of UBE2S decreases during mitotic exit but does not influence proteasomal turnover of this E2. These findings suggest that UBE2S activity underlies inherent regulation during the cell cycle.
Collapse
Affiliation(s)
- Anna K L Liess
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, 97080 Würzburg, Germany
| | - Alena Kucerova
- Cell Cycle, Biotechnology Center, Technische Universität Dresden, 01307 Dresden, Germany
| | | | - Lu Yu
- Functional Proteomics Group, The Institute of Cancer Research, London SW3 6JB, UK
| | | | - Mathias Diebold
- Institute of Pharmacy and Food Chemistry, University of Würzburg, 97074 Würzburg, Germany
| | - Olexandr Dybkov
- Department for Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, 37077 Göttingen, Germany
| | - Christoph Sotriffer
- Institute of Pharmacy and Food Chemistry, University of Würzburg, 97074 Würzburg, Germany
| | - Henning Urlaub
- Group for Bioanalytical Mass Spectrometry, Max Planck Institute for Biophysical Chemistry, Göttingen, 37077 Göttingen, Germany; Proteomics Service Facility, Georg-August-Universität, Göttingen, 37077 Göttingen, Germany
| | - Jyoti S Choudhary
- Functional Proteomics Group, The Institute of Cancer Research, London SW3 6JB, UK
| | - Jörg Mansfeld
- Cell Cycle, Biotechnology Center, Technische Universität Dresden, 01307 Dresden, Germany.
| | - Sonja Lorenz
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, 97080 Würzburg, Germany.
| |
Collapse
|
50
|
Jones WM, Davis AG, Wilson RH, Elliott KL, Sumner I. A conserved asparagine in a ubiquitin-conjugating enzyme positions the substrate for nucleophilic attack. J Comput Chem 2019; 40:1969-1977. [PMID: 31070815 DOI: 10.1002/jcc.25852] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/26/2019] [Accepted: 04/14/2019] [Indexed: 01/30/2023]
Abstract
The mechanism used by the ubiquitin-conjugating enzyme, Ubc13, to catalyze ubiquitination is probed with three computational techniques: Born-Oppenheimer molecular dynamics, single point quantum mechanics/molecular mechanics energies, and classical molecular dynamics. These simulations support a long-held hypothesis and show that Ubc13-catalyzed ubiquitination uses a stepwise, nucleophilic attack mechanism. Furthermore, they show that the first step-the formation of a tetrahedral, zwitterionic intermediate-is rate limiting. However, these simulations contradict another popular hypothesis that supposes that the negative charge on the intermediate is stabilized by a highly conserved asparagine (Asn79 in Ubc13). Instead, calculated reaction profiles of the N79A mutant illustrate how charge stabilization actually increases the barrier to product formation. Finally, an alternate role for Asn79 is suggested by simulations of wild-type, N79A, N79D, and H77A Ubc13: it stabilizes the motion of the electrophile prior to the reaction, positioning it for nucleophilic attack. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Walker M Jones
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, Virginia, 22807
| | - Aaron G Davis
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, Virginia, 22807
| | - R Hunter Wilson
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, Virginia, 22807
| | - Katherine L Elliott
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, Virginia, 22807
| | - Isaiah Sumner
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, Virginia, 22807
| |
Collapse
|