1
|
Kulkarni K, Walton RD, Chaigne S. Unlocking the potential of cardiac TRP channels using knockout mice models. Front Physiol 2025; 16:1585356. [PMID: 40313873 PMCID: PMC12043714 DOI: 10.3389/fphys.2025.1585356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Accepted: 04/07/2025] [Indexed: 05/03/2025] Open
Affiliation(s)
- Kanchan Kulkarni
- IHU Liryc, INSERM, U1045, CRCTB, University Bordeaux, Bordeaux, France
| | - Richard D. Walton
- IHU Liryc, INSERM, U1045, CRCTB, University Bordeaux, Bordeaux, France
| | - Sebastien Chaigne
- IHU Liryc, INSERM, U1045, CRCTB, University Bordeaux, Bordeaux, France
- CHU de Bordeaux, Cardiology, INSERM, U1045, CRCTB, Bordeaux, France
| |
Collapse
|
2
|
Zhang F, Mehta H, Choudhary HH, Islam R, Hanafy KA. TRPV4 Channel in Neurological Disease: from Molecular Mechanisms to Therapeutic Potential. Mol Neurobiol 2025; 62:3877-3891. [PMID: 39333347 PMCID: PMC11790740 DOI: 10.1007/s12035-024-04518-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/20/2024] [Indexed: 09/29/2024]
Abstract
Transient Receptor Potential Vanilloid 4 (TRPV4) is a non-selective cation channel with pivotal roles in various physiological processes, including osmosensitivity, mechanosensation, neuronal development, vascular tone regulation, and bone homeostasis in human bodies. Recent studies have made significant progress in understanding the structure and functional role of TRPV4, shedding light on its involvement in pathological processes, particularly in the realm of neurological diseases. Here, we aim to provide a comprehensive exploration of the multifaceted contributions of TRPV4 to neurological diseases, spanning its intricate molecular mechanisms to its potential as a target for therapeutic interventions. We delve into the structural and functional attributes of TRPV4, scrutinize its expression profile, and elucidate the possible mechanisms through which it participates in the pathogenesis of neurological disorders. Furthermore, we discussed recent years' progress in therapeutic strategies aimed at harnessing TRPV4 for the treatment of these diseases. These insights will provide a basis for understanding and designing modality-specific pharmacological agents to treat TRPV4-associated disorders.
Collapse
Affiliation(s)
- Feng Zhang
- Cooper Medical School at Rowan University, Camden, NJ, USA
- Cooper University Health Care, Camden, NJ, USA
- Center for Neuroinflammation at Cooper Medical School at Rowan University, Camden, NJ, USA
| | - Hritik Mehta
- Cooper Medical School at Rowan University, Camden, NJ, USA
- Cooper University Health Care, Camden, NJ, USA
- Center for Neuroinflammation at Cooper Medical School at Rowan University, Camden, NJ, USA
| | - Hadi Hasan Choudhary
- Cooper Medical School at Rowan University, Camden, NJ, USA
- Cooper University Health Care, Camden, NJ, USA
- Center for Neuroinflammation at Cooper Medical School at Rowan University, Camden, NJ, USA
| | - Rezwanul Islam
- Cooper Medical School at Rowan University, Camden, NJ, USA
- Cooper University Health Care, Camden, NJ, USA
- Center for Neuroinflammation at Cooper Medical School at Rowan University, Camden, NJ, USA
| | - Khalid A Hanafy
- Cooper Medical School at Rowan University, Camden, NJ, USA.
- Cooper University Health Care, Camden, NJ, USA.
- Center for Neuroinflammation at Cooper Medical School at Rowan University, Camden, NJ, USA.
- Cooper Neurological Institute Center for Neuroinflammation, Cooper Medical School at Rowan University, Camden, NJ, USA.
| |
Collapse
|
3
|
Catalina-Hernández È, López-Martín M, Masnou-Sánchez D, Martins M, Lorenz-Fonfria VA, Jiménez-Altayó F, Hellmich UA, Inada H, Alcaraz A, Furutani Y, Nonell-Canals A, Vázquez-Ibar JL, Domene C, Gaudet R, Perálvarez-Marín A. Experimental and computational biophysics to identify vasodilator drugs targeted at TRPV2 using agonists based on the probenecid scaffold. Comput Struct Biotechnol J 2024; 23:473-482. [PMID: 38261868 PMCID: PMC10796807 DOI: 10.1016/j.csbj.2023.12.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/20/2023] [Accepted: 12/23/2023] [Indexed: 01/25/2024] Open
Abstract
TRP channels are important pharmacological targets in physiopathology. TRPV2 plays distinct roles in cardiac and neuromuscular function, immunity, and metabolism, and is associated with pathologies like muscular dystrophy and cancer. However, TRPV2 pharmacology is unspecific and scarce at best. Using in silico similarity-based chemoinformatics we obtained a set of 270 potential hits for TRPV2 categorized into families based on chemical nature and similarity. Docking the compounds on available rat TRPV2 structures allowed the clustering of drug families in specific ligand binding sites. Starting from a probenecid docking pose in the piperlongumine binding site and using a Gaussian accelerated molecular dynamics approach we have assigned a putative probenecid binding site. In parallel, we measured the EC50 of 7 probenecid derivatives on TRPV2 expressed in Pichia pastoris using a novel medium-throughput Ca2+ influx assay in yeast membranes together with an unbiased and unsupervised data analysis method. We found that 4-(piperidine-1-sulfonyl)-benzoic acid had a better EC50 than probenecid, which is one of the most specific TRPV2 agonists to date. Exploring the TRPV2-dependent anti-hypertensive potential in vivo, we found that 4-(piperidine-1-sulfonyl)-benzoic acid shows a sex-biased vasodilator effect producing larger vascular relaxations in female mice. Overall, this study expands the pharmacological toolbox for TRPV2, a widely expressed membrane protein and orphan drug target.
Collapse
Affiliation(s)
- Èric Catalina-Hernández
- Unit of Biophysics, Dept. of Biochemistry and Molecular Biology, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Catalonia, Spain
- Institute of Neurosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Catalonia, Spain
| | - Mario López-Martín
- Unit of Biophysics, Dept. of Biochemistry and Molecular Biology, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Catalonia, Spain
- Institute of Neurosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Catalonia, Spain
| | - David Masnou-Sánchez
- Unit of Biophysics, Dept. of Biochemistry and Molecular Biology, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Catalonia, Spain
- Institute of Neurosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Catalonia, Spain
| | - Marco Martins
- Unit of Biophysics, Dept. of Biochemistry and Molecular Biology, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Catalonia, Spain
| | - Victor A. Lorenz-Fonfria
- Instituto de Ciencia Molecular, Universidad de Valencia, Catedrático José Beltrán-2, 46980 Paterna, Spain
| | - Francesc Jiménez-Altayó
- Institute of Neurosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Catalonia, Spain
- Department of Pharmacology, Toxicology and Therapeutics,Institute of Neurosciences, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Catalonia, Spain
| | - Ute A. Hellmich
- Friedrich Schiller University Jena, Faculty of Chemistry and Earth Sciences, Institute of Organic Chemistry & Macromolecular Chemistry, Humboldtstrasse 10, 07743 Jena, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University, Max-von-Laue Str. 9, 60438 Frankfurt, Germany
| | - Hitoshi Inada
- Department of Biochemistry & Cellular Biology National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8551, Japan
| | - Antonio Alcaraz
- Laboratory of Molecular Biophysics, Dept. of Physics, Universitat Jaume I, 12071 Castellón, Spain
| | - Yuji Furutani
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-Ku, Nagoya 466-8555, Japan
- Optobiotechnology Research Center, Nagoya Institute of Technology, Showa-Ku, Nagoya 466-8555, Japan
| | | | - Jose Luis Vázquez-Ibar
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Carmen Domene
- Dept. of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Rachelle Gaudet
- Dept of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Alex Perálvarez-Marín
- Unit of Biophysics, Dept. of Biochemistry and Molecular Biology, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Catalonia, Spain
- Institute of Neurosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Catalonia, Spain
| |
Collapse
|
4
|
Sánchez-Hernández R, Benítez-Angeles M, Hernández-Vega AM, Rosenbaum T. Recent advances on the structure and the function relationships of the TRPV4 ion channel. Channels (Austin) 2024; 18:2313323. [PMID: 38354101 PMCID: PMC10868539 DOI: 10.1080/19336950.2024.2313323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/18/2024] [Indexed: 02/16/2024] Open
Abstract
The members of the superfamily of Transient Receptor Potential (TRP) ion channels are physiologically important molecules that have been studied for many years and are still being intensively researched. Among the vanilloid TRP subfamily, the TRPV4 ion channel is an interesting protein due to its involvement in several essential physiological processes and in the development of various diseases. As in other proteins, changes in its function that lead to the development of pathological states, have been closely associated with modification of its regulation by different molecules, but also by the appearance of mutations which affect the structure and gating of the channel. In the last few years, some structures for the TRPV4 channel have been solved. Due to the importance of this protein in physiology, here we discuss the recent progress in determining the structure of the TRPV4 channel, which has been achieved in three species of animals (Xenopus tropicalis, Mus musculus, and Homo sapiens), highlighting conserved features as well as key differences among them and emphasizing the binding sites for some ligands that play crucial roles in its regulation.
Collapse
Affiliation(s)
- Raúl Sánchez-Hernández
- Departamento de Neurociencia Cognitiva, División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico, Mexico
| | - Miguel Benítez-Angeles
- Departamento de Neurociencia Cognitiva, División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico, Mexico
| | - Ana M. Hernández-Vega
- Departamento de Neurociencia Cognitiva, División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico, Mexico
| | - Tamara Rosenbaum
- Departamento de Neurociencia Cognitiva, División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico, Mexico
| |
Collapse
|
5
|
Fan J, Guo C, Liao D, Ke H, Lei J, Xie W, Tang Y, Tominaga M, Huang Z, Lei X. Structural Pharmacology of TRPV4 Antagonists. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401583. [PMID: 38659239 PMCID: PMC11220649 DOI: 10.1002/advs.202401583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/21/2024] [Indexed: 04/26/2024]
Abstract
The nonselective calcium-permeable Transient Receptor Potential Cation Channel Subfamily V Member4 (TRPV4) channel regulates various physiological activities. Dysfunction of TRPV4 is linked to many severe diseases, including edema, pain, gastrointestinal disorders, lung diseases, and inherited neurodegeneration. Emerging TRPV4 antagonists show potential clinical benefits. However, the molecular mechanisms of TRPV4 antagonism remain poorly understood. Here, cryo-electron microscopy (cryo-EM) structures of human TRPV4 are presented in-complex with two potent antagonists, revealing the detailed binding pockets and regulatory mechanisms of TRPV4 gating. Both antagonists bind to the voltage-sensing-like domain (VSLD) and stabilize the channel in closed states. These two antagonists induce TRPV4 to undergo an apparent fourfold to twofold symmetry transition. Moreover, it is demonstrated that one of the antagonists binds to the VSLD extended pocket, which differs from the canonical VSLD pocket. Complemented with functional and molecular dynamics simulation results, this study provides crucial mechanistic insights into TRPV4 regulation by small-molecule antagonists, which may facilitate future drug discovery targeting TRPV4.
Collapse
Affiliation(s)
- Junping Fan
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of EducationCollege of Chemistry and Molecular EngineeringPeking‐Tsinghua Center for Life SciencesPeking UniversityBeijing100871China
| | - Chang Guo
- State Key Laboratory of Natural and Biomimetic DrugsDepartment of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking University Health Science CenterBeijing100191China
| | | | - Han Ke
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of EducationCollege of Chemistry and Molecular EngineeringPeking‐Tsinghua Center for Life SciencesPeking UniversityBeijing100871China
| | - Jing Lei
- Division of Cell SignalingNational Institute for Physiological SciencesThermal Biology GroupExploratory Research Center on Life and Living SystemsNational Institutes of Natural SciencesOkazaki444‐8787Japan
| | - Wenjun Xie
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of EducationCollege of Chemistry and Molecular EngineeringPeking‐Tsinghua Center for Life SciencesPeking UniversityBeijing100871China
| | - Yuliang Tang
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of EducationCollege of Chemistry and Molecular EngineeringPeking‐Tsinghua Center for Life SciencesPeking UniversityBeijing100871China
| | - Makoto Tominaga
- Division of Cell SignalingNational Institute for Physiological SciencesThermal Biology GroupExploratory Research Center on Life and Living SystemsNational Institutes of Natural SciencesOkazaki444‐8787Japan
- Nagoya Advanced Research and Developmet CenterNagoya City UniversityNagoya467‐8601Japan
| | - Zhuo Huang
- State Key Laboratory of Natural and Biomimetic DrugsDepartment of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking University Health Science CenterBeijing100191China
| | - Xiaoguang Lei
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of EducationCollege of Chemistry and Molecular EngineeringPeking‐Tsinghua Center for Life SciencesPeking UniversityBeijing100871China
| |
Collapse
|
6
|
Lei J, Tominaga M. Unlocking the therapeutic potential of TRPV3: Insights into thermosensation, channel modulation, and skin homeostasis involving TRPV3. Bioessays 2024; 46:e2400047. [PMID: 38769699 DOI: 10.1002/bies.202400047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/22/2024]
Abstract
Recent insights reveal the significant role of TRPV3 in warmth sensation. A novel finding elucidated how thermosensation is affected by TRPV3 membrane abundance that is modulated by the transmembrane protein TMEM79. TRPV3 is a warmth-sensitive ion channel predominantly expressed in epithelial cells, particularly skin keratinocytes. Multiple studies investigated the roles of TRPV3 in cutaneous physiology and pathophysiology. TRPV3 activation by innocuous warm temperatures in keratinocytes highlights its significance in temperature sensation, but whether TRPV3 directly contributes to warmth sensations in vivo remains controversial. This review explores the electrophysiological and structural properties of TRPV3 and how modulators affect its intricate regulatory mechanisms. Moreover, we discuss the multifaceted involvement of TRPV3 in skin physiology and pathology, including barrier formation, hair growth, inflammation, and itching. Finally, we examine the potential of TRPV3 as a therapeutic target for skin diseases and highlight its diverse role in maintaining skin homeostasis.
Collapse
Affiliation(s)
- Jing Lei
- Division of Cell Signaling, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
- Thermal Biology Group, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Japan
- Department of Dermatology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Makoto Tominaga
- Division of Cell Signaling, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
- Thermal Biology Group, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Japan
- Thermal Biology Research Group, Nagoya Advanced Research and Development Center, Nagoya City University, Nagoya, Japan
| |
Collapse
|
7
|
Bonsignore G, Martinotti S, Ranzato E. Wound Repair and Ca 2+ Signalling Interplay: The Role of Ca 2+ Channels in Skin. Cells 2024; 13:491. [PMID: 38534335 PMCID: PMC10969298 DOI: 10.3390/cells13060491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/02/2024] [Accepted: 03/08/2024] [Indexed: 03/28/2024] Open
Abstract
The process of wound healing is intricate and tightly controlled, involving a number of different cellular and molecular processes. Numerous cellular functions, especially those related to wound healing, depend critically on calcium ions (Ca2+). Ca2+ channels are proteins involved in signal transduction and communication inside cells that allow calcium ions to pass through cell membranes. Key Ca2+ channel types involved in wound repair are described in this review.
Collapse
Affiliation(s)
- Gregorio Bonsignore
- Dipartimento di Scienze e Innovazione Tecnologica (DiSIT), University of Piemonte Orientale, 15121 Alessandria, Italy; (G.B.); (S.M.)
| | - Simona Martinotti
- Dipartimento di Scienze e Innovazione Tecnologica (DiSIT), University of Piemonte Orientale, 15121 Alessandria, Italy; (G.B.); (S.M.)
- SSD Laboratori di Ricerca—DAIRI, Azienda Ospedaliero-Universitaria SS. Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy
| | - Elia Ranzato
- Dipartimento di Scienze e Innovazione Tecnologica (DiSIT), University of Piemonte Orientale, 15121 Alessandria, Italy; (G.B.); (S.M.)
- SSD Laboratori di Ricerca—DAIRI, Azienda Ospedaliero-Universitaria SS. Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy
| |
Collapse
|
8
|
Li C, Zhao M, Liu X, Li Y, Xu B, Zhou L, Sun X, Sun W, Kang N, Ji Z, Li T, An H, Wang F, Wu C, Ye JY, Zhang JR, Wang Q, Zhao X, Li Z, Liu W. Ion channel TRPV2 is critical in enhancing B cell activation and function. J Exp Med 2024; 221:e20221042. [PMID: 38353705 PMCID: PMC10866685 DOI: 10.1084/jem.20221042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 11/28/2023] [Accepted: 01/22/2024] [Indexed: 02/16/2024] Open
Abstract
The function of transient receptor potential vanilloid (TRPV) cation channels governing B cell activation remains to be explored. We present evidence that TRPV2 is highly expressed in B cells and plays a crucial role in the formation of the B cell immunological synapse and B cell activation. Physiologically, TRPV2 expression level is positively correlated to influenza-specific antibody production and is low in newborns and seniors. Pathologically, a positive correlation is established between TRPV2 expression and the clinical manifestations of systemic lupus erythematosus (SLE) in adult and child SLE patients. Correspondingly, mice with deficient TRPV2 in B cells display impaired antibody responses following immunization. Mechanistically, the pore and N-terminal domains of TRPV2 are crucial for gating cation permeation and executing mechanosensation in B cells upon antigen stimulation. These processes synergistically contribute to membrane potential depolarization and cytoskeleton remodeling within the B cell immunological synapse, fostering efficient B cell activation. Thus, TRPV2 is critical in augmenting B cell activation and function.
Collapse
Affiliation(s)
- Cuifeng Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Institute for Immunology, China Ministry of Education Key Laboratory of Protein Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Meng Zhao
- State Key Laboratory of Membrane Biology, School of Life Sciences, Institute for Immunology, China Ministry of Education Key Laboratory of Protein Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Xiaohang Liu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Institute for Immunology, China Ministry of Education Key Laboratory of Protein Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Yuxin Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Institute for Immunology, China Ministry of Education Key Laboratory of Protein Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Bihua Xu
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, China
- Shenzhen Key Laboratory of Inflammatory and Immunology Diseases, Shenzhen, China
| | - Lina Zhou
- Department of Pediatric Research Institute, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, PR China
| | - Xiaolin Sun
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Wenbo Sun
- State Key Laboratory of Membrane Biology, School of Life Sciences, Institute for Immunology, China Ministry of Education Key Laboratory of Protein Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Na Kang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Institute for Immunology, China Ministry of Education Key Laboratory of Protein Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Zhenglin Ji
- State Key Laboratory of Membrane Biology, School of Life Sciences, Institute for Immunology, China Ministry of Education Key Laboratory of Protein Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Tong Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Institute for Immunology, China Ministry of Education Key Laboratory of Protein Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Haoran An
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Fei Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Chuan Wu
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jing-Ying Ye
- State Key Laboratory of Membrane Biology, School of Life Sciences, Institute for Immunology, China Ministry of Education Key Laboratory of Protein Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Jing-Ren Zhang
- Tsinghua-Peking Center for Life Sciences, Beijing, China
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Qingwen Wang
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, China
- Shenzhen Key Laboratory of Inflammatory and Immunology Diseases, Shenzhen, China
| | - Xiaodong Zhao
- Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, PR China
- Department of Rheumatology and Immunology, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Zhanguo Li
- Tsinghua-Peking Center for Life Sciences, Beijing, China
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Wanli Liu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Institute for Immunology, China Ministry of Education Key Laboratory of Protein Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| |
Collapse
|
9
|
Mӓnnikkӧ R, Kullmann DM. Structure-function and pharmacologic aspects of ion channels relevant to neurologic channelopathies. HANDBOOK OF CLINICAL NEUROLOGY 2024; 203:1-23. [PMID: 39174242 DOI: 10.1016/b978-0-323-90820-7.00009-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Ion channels are membrane proteins that allow the passage of ions across the membrane. They characteristically contain a pore where the selectivity of certain ion species is determined and gates that open and close the pore are found. The pore is often connected to additional domains or subunits that regulate its function. Channels are grouped into families based on their selectivity for specific ions and the stimuli that control channel opening and closing, such as voltage or ligands. Ion channels are fundamental to the electrical properties of excitable tissues. Dysfunction of channels can lead to abnormal electrical signaling of neurons and muscle cells, accompanied by clinical manifestations, known as channelopathies. Many naturally occurring toxins target ion channels and affect excitable cells where the channels are expressed. Furthermore, ion channels, as membrane proteins and key regulators of a number of physiologic functions, are an important target for drugs in clinical use. In this chapter, we give a general overview of the classification, genetics and structure-function features of the main ion channel families, and address some pharmacologic aspects relevant to neurologic channelopathies.
Collapse
Affiliation(s)
- Roope Mӓnnikkӧ
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.
| | - Dimitri M Kullmann
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.
| |
Collapse
|
10
|
Palchevskyi S, Czarnocki-Cieciura M, Vistoli G, Gervasoni S, Nowak E, Beccari AR, Nowotny M, Talarico C. Structure of human TRPM8 channel. Commun Biol 2023; 6:1065. [PMID: 37857704 PMCID: PMC10587237 DOI: 10.1038/s42003-023-05425-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/05/2023] [Indexed: 10/21/2023] Open
Abstract
TRPM8 is a non-selective cation channel permeable to both monovalent and divalent cations that is activated by multiple factors, such as temperature, voltage, pressure, and changes in osmolality. It is a therapeutic target for anticancer drug development, and its modulators can be utilized for several pathological conditions. Here, we present a cryo-electron microscopy structure of a human TRPM8 channel in the closed state that was solved at 2.7 Å resolution. Our structure comprises the most complete model of the N-terminal pre-melastatin homology region. We also visualized several lipids that are bound by the protein and modeled how the human channel interacts with icilin. Analyses of pore helices in available TRPM structures showed that all these structures can be grouped into different closed, desensitized and open state conformations based on the register of the pore helix S6 which positions particular amino acid residues at the channel constriction.
Collapse
Affiliation(s)
- Sergii Palchevskyi
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology in Warsaw, 02-109, Warsaw, Poland
- Cell Signalling Department, Institute of Molecular Biology and Genetics NASU, 03143, Kyiv, Ukraine
| | - Mariusz Czarnocki-Cieciura
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology in Warsaw, 02-109, Warsaw, Poland
| | - Giulio Vistoli
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Mangiagalli, 25, I-20133, Milano, Italy
| | - Silvia Gervasoni
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Mangiagalli, 25, I-20133, Milano, Italy
- Department of Physics, University of Cagliari, I-09042, Monserrato, Italy
| | - Elżbieta Nowak
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology in Warsaw, 02-109, Warsaw, Poland
| | - Andrea R Beccari
- Dompé Farmaceutici SpA, EXSCALATE, Via Tommaso De Amicis, 95, I-80131, Napoli, Italy
| | - Marcin Nowotny
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology in Warsaw, 02-109, Warsaw, Poland.
| | - Carmine Talarico
- Dompé Farmaceutici SpA, EXSCALATE, Via Tommaso De Amicis, 95, I-80131, Napoli, Italy.
| |
Collapse
|
11
|
Burns D, Venditti V, Potoyan DA. Temperature sensitive contact modes allosterically gate TRPV3. PLoS Comput Biol 2023; 19:e1011545. [PMID: 37831724 PMCID: PMC10599574 DOI: 10.1371/journal.pcbi.1011545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/25/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
TRPV Ion channels are sophisticated molecular sensors designed to respond to distinct temperature thresholds. The recent surge in cryo-EM structures has provided numerous insights into the structural rearrangements accompanying their opening and closing; however, the molecular mechanisms by which TRPV channels establish precise and robust temperature sensing remain elusive. In this work we employ molecular simulations, multi-ensemble contact analysis, graph theory, and machine learning techniques to reveal the temperature-sensitive residue-residue interactions driving allostery in TRPV3. We find that groups of residues exhibiting similar temperature-dependent contact frequency profiles cluster at specific regions of the channel. The dominant mode clusters on the ankyrin repeat domain and displays a linear melting trend while others display non-linear trends. These modes describe the residue-level temperature response patterns that underlie the channel's functional dynamics. With network analysis, we find that the community structure of the channel changes with temperature. And that a network of high centrality contacts connects distant regions of the protomer to the gate, serving as a means for the temperature-sensitive contact modes to allosterically regulate channel gating. Using a random forest model, we show that the contact states of specific temperature-sensitive modes are indeed predictive of the channel gate's state. Supporting the physical validity of these modes and networks are several residues identified with our analyses that are reported in literature to be functionally critical. Our results offer high resolution insight into thermo-TRP channel function and demonstrate the utility of temperature-sensitive contact analysis.
Collapse
Affiliation(s)
- Daniel Burns
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| | - Vincenzo Venditti
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| | - Davit A. Potoyan
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| |
Collapse
|
12
|
Sanganna Gari RR, Tagiltsev G, Pumroy RA, Jiang Y, Blackledge M, Moiseenkova-Bell VY, Scheuring S. Intrinsically disordered regions in TRPV2 mediate protein-protein interactions. Commun Biol 2023; 6:966. [PMID: 37736816 PMCID: PMC10516966 DOI: 10.1038/s42003-023-05343-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 09/11/2023] [Indexed: 09/23/2023] Open
Abstract
Transient receptor potential (TRP) ion channels are gated by diverse intra- and extracellular stimuli leading to cation inflow (Na+, Ca2+) regulating many cellular processes and initiating organismic somatosensation. Structures of most TRP channels have been solved. However, structural and sequence analysis showed that ~30% of the TRP channel sequences, mainly the N- and C-termini, are intrinsically disordered regions (IDRs). Unfortunately, very little is known about IDR 'structure', dynamics and function, though it has been shown that they are essential for native channel function. Here, we imaged TRPV2 channels in membranes using high-speed atomic force microscopy (HS-AFM). The dynamic single molecule imaging capability of HS-AFM allowed us to visualize IDRs and revealed that N-terminal IDRs were involved in intermolecular interactions. Our work provides evidence about the 'structure' of the TRPV2 IDRs, and that the IDRs may mediate protein-protein interactions.
Collapse
Affiliation(s)
| | - Grigory Tagiltsev
- Department of Anesthesiology, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Ruth A Pumroy
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute of Structural Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yining Jiang
- Department of Anesthesiology, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
- Biochemistry & Structural Biology, Cell & Developmental Biology, and Molecular Biology (BCMB) Program, Weill Cornell Graduate School of Biomedical Sciences, New York, USA
| | - Martin Blackledge
- Université Grenoble Alpes, Centre National de la Recherche Scientifique (CNRS), Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Institut de Biologie Structurale (IBS), 38000, Grenoble, France
| | - Vera Y Moiseenkova-Bell
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute of Structural Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Simon Scheuring
- Department of Anesthesiology, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA.
- Department of Physiology and Biophysics, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
13
|
Burns D, Venditti V, Potoyan DA. Temperature-Sensitive Contact Modes Allosterically Gate TRPV3. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.02.522497. [PMID: 36711981 PMCID: PMC9881879 DOI: 10.1101/2023.01.02.522497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
TRPV Ion channels are sophisticated molecular sensors designed to respond to distinct temperature thresholds. The recent surge in cryo-EM structures has provided numerous insights into the structural rearrangements accompanying their opening and closing; however, the molecular mechanisms by which TRPV channels establish precise and robust temperature sensing remain elusive. In this work we employ molecular simulations, multi-ensemble contact analysis, graph theory, and machine learning techniques to reveal the temperature-sensitive residue-residue interactions driving allostery in TRPV3. We find that groups of residues exhibiting similar temperature-dependent contact frequency profiles cluster at specific regions of the channel. The dominant mode clusters on the ankyrin repeat domain and displays a linear melting trend while others display non-linear trends. These modes describe the residue-level temperature response patterns that underlie the channel's functional dynamics. With network analysis, we find that the community structure of the channel changes with temperature. And that a network of high centrality contacts connects distant regions of the protomer to the gate, serving as a means for the temperature-sensitive contact modes to allosterically regulate channel gating. Using a random forest model, we show that the contact states of specific temperature-sensitive modes are indeed predictive of the channel gate's state. Supporting the physical validity of these modes and networks are several residues identified with our analyses that are reported in literature to be functionally critical. Our results offer high resolution insight into thermo-TRP channel function and demonstrate the utility of temperature-sensitive contact analysis.
Collapse
|
14
|
Zhang M, Ma Y, Ye X, Zhang N, Pan L, Wang B. TRP (transient receptor potential) ion channel family: structures, biological functions and therapeutic interventions for diseases. Signal Transduct Target Ther 2023; 8:261. [PMID: 37402746 DOI: 10.1038/s41392-023-01464-x] [Citation(s) in RCA: 164] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/26/2023] [Accepted: 04/25/2023] [Indexed: 07/06/2023] Open
Abstract
Transient receptor potential (TRP) channels are sensors for a variety of cellular and environmental signals. Mammals express a total of 28 different TRP channel proteins, which can be divided into seven subfamilies based on amino acid sequence homology: TRPA (Ankyrin), TRPC (Canonical), TRPM (Melastatin), TRPML (Mucolipin), TRPN (NO-mechano-potential, NOMP), TRPP (Polycystin), TRPV (Vanilloid). They are a class of ion channels found in numerous tissues and cell types and are permeable to a wide range of cations such as Ca2+, Mg2+, Na+, K+, and others. TRP channels are responsible for various sensory responses including heat, cold, pain, stress, vision and taste and can be activated by a number of stimuli. Their predominantly location on the cell surface, their interaction with numerous physiological signaling pathways, and the unique crystal structure of TRP channels make TRPs attractive drug targets and implicate them in the treatment of a wide range of diseases. Here, we review the history of TRP channel discovery, summarize the structures and functions of the TRP ion channel family, and highlight the current understanding of the role of TRP channels in the pathogenesis of human disease. Most importantly, we describe TRP channel-related drug discovery, therapeutic interventions for diseases and the limitations of targeting TRP channels in potential clinical applications.
Collapse
Affiliation(s)
- Miao Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- The Center for Microbes, Development and Health; Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yueming Ma
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xianglu Ye
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ning Zhang
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Lei Pan
- The Center for Microbes, Development and Health; Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China.
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Bing Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Center for Pharmaceutics Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai, 201203, China.
| |
Collapse
|
15
|
Pertusa M, Solorza J, Madrid R. Molecular determinants of TRPM8 function: key clues for a cool modulation. Front Pharmacol 2023; 14:1213337. [PMID: 37388453 PMCID: PMC10301734 DOI: 10.3389/fphar.2023.1213337] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 05/30/2023] [Indexed: 07/01/2023] Open
Abstract
Cold thermoreceptor neurons detect temperature drops with highly sensitive molecular machinery concentrated in their peripheral free nerve endings. The main molecular entity responsible for cold transduction in these neurons is the thermo-TRP channel TRPM8. Cold, cooling compounds such as menthol, voltage, and osmolality rises activate this polymodal ion channel. Dysregulation of TRPM8 activity underlies several physiopathological conditions, including painful cold hypersensitivity in response to axonal damage, migraine, dry-eye disease, overactive bladder, and several forms of cancer. Although TRPM8 could be an attractive target for treating these highly prevalent diseases, there is still a need for potent and specific modulators potentially suitable for future clinical trials. This goal requires a complete understanding of the molecular determinants underlying TRPM8 activation by chemical and physical agonists, inhibition by antagonists, and the modulatory mechanisms behind its function to guide future and more successful treatment strategies. This review recapitulates information obtained from different mutagenesis approaches that have allowed the identification of specific amino acids in the cavity comprised of the S1-S4 and TRP domains that determine modulation by chemical ligands. In addition, we summarize different studies revealing specific regions within the N- and C-terminus and the transmembrane domain that contribute to cold-dependent TRPM8 gating. We also highlight the latest milestone in the field: cryo-electron microscopy structures of TRPM8, which have provided a better comprehension of the 21 years of extensive research in this ion channel, shedding light on the molecular bases underlying its modulation, and promoting the future rational design of novel drugs to selectively regulate abnormal TRPM8 activity under pathophysiological conditions.
Collapse
Affiliation(s)
- María Pertusa
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile
| | - Jocelyn Solorza
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile
- Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, Talca, Chile
| | - Rodolfo Madrid
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile
| |
Collapse
|
16
|
Alipour M, Hajipour-Verdom B, Abdolmaleki P, Javan M. Molecular properties of Ca 2+ transport through TRPV2 channel: a molecular dynamics simulations study. J Biomol Struct Dyn 2023; 41:3892-3899. [PMID: 35382708 DOI: 10.1080/07391102.2022.2058615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 03/22/2022] [Indexed: 12/18/2022]
Abstract
TRPV channels are a category of nonselective cation channels that are activated by heat and ligands and permeate monovalent and divalent ions. The mechanism of Ca2+ transfer through TRPV2 channel is not well known. Here, we investigated the reaction coordination and energy fluctuation of Ca2+ transition in TRPV2 channel by steered molecular dynamics (SMD) simulations and potential of mean force (PMF) calculation. Results showed that electrostatic interactions between Ca2+ and residues of the first and second gates had main roles in ions transfer through the channel. Also, we recognized important amino acids in this path. Moreover, results indicated that enter and exit of calcium ions need to overcome barrier energies in the first and second gates.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mozhgan Alipour
- Faculty of Biological Sciences, Department of Biophysics, Tarbiat Modares University, Tehran, Iran
| | - Behnam Hajipour-Verdom
- Faculty of Biological Sciences, Department of Biophysics, Tarbiat Modares University, Tehran, Iran
| | - Parviz Abdolmaleki
- Faculty of Biological Sciences, Department of Biophysics, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Javan
- Faculty of Medical Sciences, Department of Physiology, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
17
|
Davis MJ, Earley S, Li YS, Chien S. Vascular mechanotransduction. Physiol Rev 2023; 103:1247-1421. [PMID: 36603156 PMCID: PMC9942936 DOI: 10.1152/physrev.00053.2021] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 01/07/2023] Open
Abstract
This review aims to survey the current state of mechanotransduction in vascular smooth muscle cells (VSMCs) and endothelial cells (ECs), including their sensing of mechanical stimuli and transduction of mechanical signals that result in the acute functional modulation and longer-term transcriptomic and epigenetic regulation of blood vessels. The mechanosensors discussed include ion channels, plasma membrane-associated structures and receptors, and junction proteins. The mechanosignaling pathways presented include the cytoskeleton, integrins, extracellular matrix, and intracellular signaling molecules. These are followed by discussions on mechanical regulation of transcriptome and epigenetics, relevance of mechanotransduction to health and disease, and interactions between VSMCs and ECs. Throughout this review, we offer suggestions for specific topics that require further understanding. In the closing section on conclusions and perspectives, we summarize what is known and point out the need to treat the vasculature as a system, including not only VSMCs and ECs but also the extracellular matrix and other types of cells such as resident macrophages and pericytes, so that we can fully understand the physiology and pathophysiology of the blood vessel as a whole, thus enhancing the comprehension, diagnosis, treatment, and prevention of vascular diseases.
Collapse
Affiliation(s)
- Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Scott Earley
- Department of Pharmacology, University of Nevada, Reno, Nevada
| | - Yi-Shuan Li
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
| | - Shu Chien
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
- Department of Medicine, University of California, San Diego, California
| |
Collapse
|
18
|
Wang Y. Multidisciplinary Advances Address the Challenges in Developing Drugs against Transient Receptor Potential Channels to Treat Metabolic Disorders. ChemMedChem 2023; 18:e202200562. [PMID: 36530131 DOI: 10.1002/cmdc.202200562] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/01/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
Transient receptor potential (TRP) channels are cation channels that regulate key physiological and pathological processes in response to a broad range of stimuli. Moreover, they systemically regulate the release of hormones, metabolic homeostasis, and complications of diabetes, which positions them as promising therapeutic targets to combat metabolic disorders. Nevertheless, there are significant challenges in the design of TRP ligands with high potency and durability. Herein we summarize the four challenges as hydrophobicity, selectivity, mono-target therapy, and interspecies discrepancy. We present 1134 TRP ligands with diversified modes of TRP-ligand interaction and provide a detailed discussion of the latest strategies, especially cryogenic electron microscopy (cryo-EM) and computational methods. We propose solutions to address the challenges with a critical analysis of advances in membrane partitioning, polypharmacology, biased agonism, and biochemical screening of transcriptional modulators. They are fueled by the breakthrough from cryo-EM, chemoinformatics and bioinformatics. The discussion is aimed to shed new light on designing next-generation drugs to treat obesity, diabetes and its complications, with optimal hydrophobicity, higher mode selectivity, multi-targeting and consistent activities between human and rodents.
Collapse
Affiliation(s)
- Yibing Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai, 200438, P. R. China.,Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai, 200438, P. R. China
| |
Collapse
|
19
|
Abstract
The ability to detect stimuli from the environment plays a pivotal role in our survival. The molecules that allow the detection of such signals include ion channels, which are proteins expressed in different cells and organs. Among these ion channels, the transient receptor potential (TRP) family responds to the presence of diverse chemicals, temperature, and osmotic changes, among others. This family of ion channels includes the TRPV or vanilloid subfamily whose members serve several physiological functions. Although these proteins have been studied intensively for the last two decades, owing to their structural and functional complexities, a number of controversies regarding their function still remain. Here, we discuss some salient features of their regulation in light of these controversies and outline some of the efforts pushing the field forward.
Collapse
Affiliation(s)
- Tamara Rosenbaum
- Department of Cognitive Neuroscience, Neuroscience Division, Institute for Cellular Physiology, National Autonomous University of Mexico, Coyoacán, México;
| | - León D Islas
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Coyoacán, México
| |
Collapse
|
20
|
Ernst M, Orabi EA, Stockbridge RB, Faraldo-Gómez JD, Robertson JL. Dimerization mechanism of an inverted-topology ion channel in membranes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.27.525942. [PMID: 36789410 PMCID: PMC9928038 DOI: 10.1101/2023.01.27.525942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Many ion channels are multi-subunit complexes with a polar permeation pathway at the oligomeric interface, but their mechanisms of assembly into functional, thermodynamically stable units within the membrane are largely unknown. Here we characterize the assembly of the inverted-topology, homodimeric fluoride channel Fluc, leveraging a known mutation, N43S, that weakens Na + binding to the dimer interface, thereby unlocking the complex. While single-channel recordings show Na + is required for activation, single-molecule photobleaching and bulk Förster Resonance Energy Transfer experiments in lipid bilayers demonstrate that N43S Fluc monomers and dimers exist in dynamic equilibrium, even without Na + . Molecular dynamics simulations indicate this equilibrium is dominated by a differential in the lipid-solvation energetics of monomer and dimer, which stems from hydrophobic exposure of the polar ion pathway in the monomer. These results suggest a model wherein membrane-associated forces induce channel assembly while subsequent factors, in this case Na + binding, result in channel activation. Teaser Membrane morphology energetics foster inverted-topology Fluc channels to form dimers, which then become active upon Na + binding.
Collapse
|
21
|
Gochman A, Tan X, Bae C, Chen H, Swartz KJ, Jara-Oseguera A. Cannabidiol sensitizes TRPV2 channels to activation by 2-APB. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.27.525817. [PMID: 36747846 PMCID: PMC9900902 DOI: 10.1101/2023.01.27.525817] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The cation-permeable TRPV2 channel is essential for cardiac and immune cells. Cannabidiol (CBD), a non-psychoactive cannabinoid of clinical relevance, is one of the few molecules known to activate TRPV2. Using the patch-clamp technique we discover that CBD can sensitize current responses of the rat TRPV2 channel to the synthetic agonist 2-aminoethoxydiphenyl borate (2- APB) by over two orders of magnitude, without sensitizing channels to activation by moderate (40 ⁰C) heat. Using cryo-EM we uncover a new small-molecule binding site in the pore domain of rTRPV2 that can be occupied by CBD in addition to a nearby CBD site that had already been reported. The TRPV1 and TRPV3 channels share >40% sequence identity with TRPV2 are also activated by 2-APB and CBD, but we only find a strong sensitizing effect of CBD on the response of mouse TRPV3 to 2-APB. Mutations at non-conserved positions between rTRPV2 and rTRPV1 in either the pore domain or the CBD sites failed to confer strong sensitization by CBD in mutant rTRPV1 channels. Together, our results indicate that CBD-dependent sensitization of TRPV2 channels engages multiple channel regions and possibly involves more than one CBD and 2-APB sites. The remarkably robust effect of CBD on TRPV2 and TRPV3 channels offers a promising new tool to both understand and overcome one of the major roadblocks in the study of these channels - their resilience to activation.
Collapse
Affiliation(s)
- Aaron Gochman
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892 USA,Current affiliation: Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Xiaofeng Tan
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892 USA
| | - Chanhyung Bae
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892 USA,Current affiliation: Janssen R&D, Biologics Discovery, Spring House, PA, USA
| | - Helen Chen
- Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, TX, 78712 USA
| | - Kenton J. Swartz
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892 USA
| | - Andrés Jara-Oseguera
- Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, TX, 78712 USA.,Corresponding author: Andrés Jara-Oseguera ()
| |
Collapse
|
22
|
Rosenbaum T, Morales-Lázaro SL. Regulation of ThermoTRP Channels by PIP2 and Cholesterol. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1422:245-277. [PMID: 36988884 DOI: 10.1007/978-3-031-21547-6_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Transient receptor potential (TRP) ion channels are proteins that are expressed by diverse tissues and that play pivotal functions in physiology. These channels are polymodal and are activated by several stimuli. Among TRPs, some members of this family of channels respond to changes in ambient temperature and are known as thermoTRPs. These proteins respond to heat or cold in the noxious range and some of them to temperatures considered innocuous, as well as to mechanical, osmotic, and/or chemical stimuli. In addition to this already complex ability to respond to different signals, the activity of these ion channels can be fine-tuned by lipids. Two lipids well known to modulate ion channel activity are phosphatidylinositol 4,5-bisphosphate (PIP2) and cholesterol. These lipids can either influence the function of these proteins through direct interaction by binding to a site in the structure of the ion channel or through indirect mechanisms, which can include modifying membrane properties, such as curvature and rigidity, by regulating their expression or by modulating the actions of other molecules or signaling pathways that affect the physiology of ion channels. Here, we summarize the key aspects of the regulation of thermoTRP channels by PIP2 and cholesterol.
Collapse
Affiliation(s)
- Tamara Rosenbaum
- Departamento de Neurociencia Cognitiva, División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| | - Sara L Morales-Lázaro
- Departamento de Neurociencia Cognitiva, División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
23
|
Abstract
This chapter explores the existing structural and functional studies on the endo-lysosomal channel TRPML1 and its analogs TRPML2, TRPML3. These channels represent the mucolipin subfamily of the TRP channel superfamily comprising important roles in sensory physiology, ion homeostasis, and signal transduction. Since 2016, numerous structures have been determined for all three members using either cryo-EM or X-ray crystallography. These studies along with recent functional analysis have considerably strengthened our knowledge on TRPML channels and its related endo-lysosomal function. This chapter, together with relevant reports in other chapters from this handbook, provides an informative and detailed tool to study the endo-lysosomal cation channels.
Collapse
Affiliation(s)
- Michael Fine
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Xiaochun Li
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
24
|
Structural mechanisms of TRPV2 modulation by endogenous and exogenous ligands. Nat Chem Biol 2023; 19:72-80. [PMID: 36163384 DOI: 10.1038/s41589-022-01139-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/10/2022] [Indexed: 12/31/2022]
Abstract
The transient receptor potential vanilloid 2 (TRPV2) ion channel is a polymodal receptor widely involved in many physiological and pathological processes. Despite many TRPV2 modulators being identified, whether and how TRPV2 is regulated by endogenous lipids remains elusive. Here, we report an endogenous cholesterol molecule inside the vanilloid binding pocket (VBP) of TRPV2, with a 'head down, tail up' configuration, resolved at 3.2 Å using cryo-EM. Cholesterol binding antagonizes ligand activation of TRPV2, which is removed from VBP by methyl-β-cyclodextrin (MβCD) as resolved at 2.9 Å. We also observed that estradiol (E2) potentiated TRPV2 activation by 2-aminoethoxydiphenyl borate (2-APB), a classic tool compound for TRP channels. Our cryo-EM structures (resolved at 2.8-3.3 Å) further suggest how E2 disturbed cholesterol binding and how 2-APB bound within the VBP with E2 or without both E2 and endogenous cholesterol, respectively. Therefore, our study has established the structural basis for ligand recognition of the inhibitory endogenous cholesterol and excitatory exogenous 2-APB in TRPV2.
Collapse
|
25
|
Atz K, Guba W, Grether U, Schneider G. Machine Learning and Computational Chemistry for the Endocannabinoid System. Methods Mol Biol 2023; 2576:477-493. [PMID: 36152211 DOI: 10.1007/978-1-0716-2728-0_39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Computational methods in medicinal chemistry facilitate drug discovery and design. In particular, machine learning methodologies have recently gained increasing attention. This chapter provides a structured overview of the current state of computational chemistry and its applications for the interrogation of the endocannabinoid system (ECS), highlighting methods in structure-based drug design, virtual screening, ligand-based quantitative structure-activity relationship (QSAR) modeling, and de novo molecular design. We emphasize emerging methods in machine learning and anticipate a forecast of future opportunities of computational medicinal chemistry for the ECS.
Collapse
Affiliation(s)
- Kenneth Atz
- ETH Zurich, Department of Chemistry and Applied Biosciences, Zurich, Switzerland
| | - Wolfgang Guba
- Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Uwe Grether
- Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland.
| | - Gisbert Schneider
- ETH Zurich, Department of Chemistry and Applied Biosciences, Zurich, Switzerland
- ETH Singapore SEC Ltd, Singapore, Singapore
| |
Collapse
|
26
|
Hadiatullah H, Zhang Y, Samurkas A, Xie Y, Sundarraj R, Zuilhof H, Qiao J, Yuchi Z. Recent progress in the structural study of ion channels as insecticide targets. INSECT SCIENCE 2022; 29:1522-1551. [PMID: 35575601 DOI: 10.1111/1744-7917.13032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 02/07/2022] [Accepted: 02/21/2022] [Indexed: 06/15/2023]
Abstract
Ion channels, many expressed in insect neural and muscular systems, have drawn huge attention as primary targets of insecticides. With the recent technical breakthroughs in structural biology, especially in cryo-electron microscopy (cryo-EM), many new high-resolution structures of ion channel targets, apo or in complex with insecticides, have been solved, shedding light on the molecular mechanism of action of the insecticides and resistance mutations. These structures also provide accurate templates for structure-based insecticide screening and rational design. This review summarizes the recent progress in the structural studies of 5 ion channel families: the ryanodine receptor (RyR), the nicotinic acetylcholine receptor (nAChR), the voltage-gated sodium channel (VGSC), the transient receptor potential (TRP) channel, and the ligand-gated chloride channel (LGCC). We address the selectivity of the channel-targeting insecticides by examining the conservation of key coordinating residues revealed by the structures. The possible resistance mechanisms are proposed based on the locations of the identified resistance mutations on the 3D structures of the target channels and their impacts on the binding of insecticides. Finally, we discuss how to develop "green" insecticides with a novel mode of action based on these high-resolution structures to overcome the resistance.
Collapse
Affiliation(s)
- Hadiatullah Hadiatullah
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Yongliang Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Arthur Samurkas
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- Laboratory of Organic Chemistry, Wageningen University & Research, Wageningen, The Netherlands
| | - Yunxuan Xie
- Department of Environmental Science, Tianjin University, Tianjin, China
| | - Rajamanikandan Sundarraj
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Han Zuilhof
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- Laboratory of Organic Chemistry, Wageningen University & Research, Wageningen, The Netherlands
| | - Jianjun Qiao
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Zhiguang Yuchi
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute & Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
27
|
The human TRPA1 intrinsic cold and heat sensitivity involves separate channel structures beyond the N-ARD domain. Nat Commun 2022; 13:6113. [PMID: 36253390 PMCID: PMC9576766 DOI: 10.1038/s41467-022-33876-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 10/04/2022] [Indexed: 12/24/2022] Open
Abstract
TRP channels sense temperatures ranging from noxious cold to noxious heat. Whether specialized TRP thermosensor modules exist and how they control channel pore gating is unknown. We studied purified human TRPA1 (hTRPA1) truncated proteins to gain insight into the temperature gating of hTRPA1. In patch-clamp bilayer recordings, ∆1-688 hTRPA1, without the N-terminal ankyrin repeat domain (N-ARD), was more sensitive to cold and heat, whereas ∆1-854 hTRPA1, also lacking the S1-S4 voltage sensing-like domain (VSLD), gained sensitivity to cold but lost its heat sensitivity. In hTRPA1 intrinsic tryptophan fluorescence studies, cold and heat evoked rearrangement of VSLD and the C-terminus domain distal to the transmembrane pore domain S5-S6 (CTD). In whole-cell electrophysiology experiments, replacement of the CTD located cysteines 1021 and 1025 with alanine modulated hTRPA1 cold responses. It is proposed that hTRPA1 CTD harbors cold and heat sensitive domains allosterically coupled to the S5-S6 pore region and the VSLD, respectively.
Collapse
|
28
|
Wiedemann C, Goretzki B, Merz ZN, Tebbe F, Schmitt P, Hellmich UA. Extent of intrinsic disorder and NMR chemical shift assignments of the distal N-termini from human TRPV1, TRPV2 and TRPV3 ion channels. BIOMOLECULAR NMR ASSIGNMENTS 2022; 16:289-296. [PMID: 35666427 PMCID: PMC9510099 DOI: 10.1007/s12104-022-10093-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
The mammalian Transient Receptor Potential Vanilloid (TRPV) channels are a family of six tetrameric ion channels localized at the plasma membrane. The group I members of the family, TRPV1 through TRPV4, are heat-activated and exhibit remarkable polymodality. The distal N-termini of group I TRPV channels contain large intrinsically disordered regions (IDRs), ranging from ~ 75 amino acids (TRPV2) to ~ 150 amino acids (TRPV4), the vast majority of which is invisible in the structural models published so far. These IDRs provide important binding sites for cytosolic partners, and their deletion is detrimental to channel activity and regulation. Recently, we reported the NMR backbone assignments of the distal TRPV4 N-terminus and noticed some discrepancies between the extent of disorder predicted solely based on protein sequence and from experimentally determined chemical shifts. Thus, for an analysis of the extent of disorder in the distal N-termini of all group I TRPV channels, we now report the NMR assignments for the human TRPV1, TRPV2 and TRPV3 IDRs.
Collapse
Affiliation(s)
- Christoph Wiedemann
- Faculty of Chemistry and Earth Sciences, Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstraße 10, 07743, Jena, Germany
| | - Benedikt Goretzki
- Faculty of Chemistry and Earth Sciences, Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstraße 10, 07743, Jena, Germany
- Centre for Biomolecular Magnetic Resonance (BMRZ), Goethe University, Max von Laue Str. 9, 60438, Frankfurt, Germany
| | - Zoe N Merz
- Faculty of Chemistry and Earth Sciences, Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstraße 10, 07743, Jena, Germany
| | - Frederike Tebbe
- Faculty of Chemistry and Earth Sciences, Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstraße 10, 07743, Jena, Germany
| | - Pauline Schmitt
- Department of Chemistry, Division Biochemistry, Johannes-Gutenberg-University Mainz, Johann-Joachim Becher-Weg 30, 55128, Mainz, Germany
| | - Ute A Hellmich
- Faculty of Chemistry and Earth Sciences, Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstraße 10, 07743, Jena, Germany.
- Centre for Biomolecular Magnetic Resonance (BMRZ), Goethe University, Max von Laue Str. 9, 60438, Frankfurt, Germany.
| |
Collapse
|
29
|
Bera K, Kiepas A, Zhang Y, Sun SX, Konstantopoulos K. The interplay between physical cues and mechanosensitive ion channels in cancer metastasis. Front Cell Dev Biol 2022; 10:954099. [PMID: 36158191 PMCID: PMC9490090 DOI: 10.3389/fcell.2022.954099] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Physical cues have emerged as critical influencers of cell function during physiological processes, like development and organogenesis, and throughout pathological abnormalities, including cancer progression and fibrosis. While ion channels have been implicated in maintaining cellular homeostasis, their cell surface localization often places them among the first few molecules to sense external cues. Mechanosensitive ion channels (MICs) are especially important transducers of physical stimuli into biochemical signals. In this review, we describe how physical cues in the tumor microenvironment are sensed by MICs and contribute to cancer metastasis. First, we highlight mechanical perturbations, by both solid and fluid surroundings typically found in the tumor microenvironment and during critical stages of cancer cell dissemination from the primary tumor. Next, we describe how Piezo1/2 and transient receptor potential (TRP) channels respond to these physical cues to regulate cancer cell behavior during different stages of metastasis. We conclude by proposing alternative mechanisms of MIC activation that work in tandem with cytoskeletal components and other ion channels to bestow cells with the capacity to sense, respond and navigate through the surrounding microenvironment. Collectively, this review provides a perspective for devising treatment strategies against cancer by targeting MICs that sense aberrant physical characteristics during metastasis, the most lethal aspect of cancer.
Collapse
Affiliation(s)
- Kaustav Bera
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, United States
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, United States
| | - Alexander Kiepas
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, United States
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, United States
- *Correspondence: Alexander Kiepas, ; Konstantinos Konstantopoulos,
| | - Yuqi Zhang
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, United States
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, United States
| | - Sean X. Sun
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, United States
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, United States
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, United States
- Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, MD, United States
| | - Konstantinos Konstantopoulos
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, United States
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, United States
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, United States
- Department of Oncology, The Johns Hopkins University, Baltimore, MD, United States
- *Correspondence: Alexander Kiepas, ; Konstantinos Konstantopoulos,
| |
Collapse
|
30
|
Xue H, Zhang M, Liu J, Wang J, Ren G. Cryo-electron tomography related radiation-damage parameters for individual-molecule 3D structure determination. Front Chem 2022; 10:889203. [PMID: 36110139 PMCID: PMC9468540 DOI: 10.3389/fchem.2022.889203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 07/13/2022] [Indexed: 11/28/2022] Open
Abstract
To understand the dynamic structure-function relationship of soft- and biomolecules, the determination of the three-dimensional (3D) structure of each individual molecule (nonaveraged structure) in its native state is sought-after. Cryo-electron tomography (cryo-ET) is a unique tool for imaging an individual object from a series of tilted views. However, due to radiation damage from the incident electron beam, the tolerable electron dose limits image contrast and the signal-to-noise ratio (SNR) of the data, preventing the 3D structure determination of individual molecules, especially at high-resolution. Although recently developed technologies and techniques, such as the direct electron detector, phase plate, and computational algorithms, can partially improve image contrast/SNR at the same electron dose, the high-resolution structure, such as tertiary structure of individual molecules, has not yet been resolved. Here, we review the cryo-electron microscopy (cryo-EM) and cryo-ET experimental parameters to discuss how these parameters affect the extent of radiation damage. This discussion can guide us in optimizing the experimental strategy to increase the imaging dose or improve image SNR without increasing the radiation damage. With a higher dose, a higher image contrast/SNR can be achieved, which is crucial for individual-molecule 3D structure. With 3D structures determined from an ensemble of individual molecules in different conformations, the molecular mechanism through their biochemical reactions, such as self-folding or synthesis, can be elucidated in a straightforward manner.
Collapse
Affiliation(s)
- Han Xue
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Meng Zhang
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Jianfang Liu
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Jianjun Wang
- Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Gang Ren
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| |
Collapse
|
31
|
Nadezhdin KD, Neuberger A, Sobolevsky AI. Structural snapshots of the mechanism of TRPV2 channel activation by small-molecule agonists. Cell Calcium 2022; 105:102607. [PMID: 35636151 DOI: 10.1016/j.ceca.2022.102607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 05/22/2022] [Indexed: 02/02/2023]
Abstract
Transient receptor potential (TRP) channels are polymodal sensors that play critical roles in various physiological processes in living organisms. These cation-permeable channels respond to a variety of physical and chemical stimuli, including cold and hot temperatures, acidic pH, and mechanical stress, often determining a sensory frontier of defense against hostile environments. Vanilloid (V) subfamily is the most studied category of TRP channels that includes six closely related members: highly calcium-selective TRPV5-6 and non-selective TRPV1-4. A remarkable feature of TRPV1-4 is their ability to sense heat, which makes them temperature-sensitive TRP channels or thermo-TRPs. TRPV channels are associated with a multitude of human diseases, including cancers, chronic pain, cardiovascular, neurological and nociceptive disorders. Despite the great clinical interest, pharmacology of TRPV channels remains largely undeveloped because of insufficient knowledge about the mechanisms of their regulation. For instance, activation of TRPV channels by small molecules or heat remains poorly understood. Numerous identified TRPV channel agonists, while effective in physiological experiments, appear limited in their ability to act in the conditions of structural biology experiments. In this regard, the recent study by Pumroy et al. [1] makes a significant contribution towards our understanding of TRPV2 structural dynamics that leads to opening of this channel in physiological conditions.
Collapse
Affiliation(s)
- Kirill D Nadezhdin
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Arthur Neuberger
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Alexander I Sobolevsky
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
| |
Collapse
|
32
|
Cantero MDR, Cantiello HF. Polycystin-2 (TRPP2): Ion channel properties and regulation. Gene 2022; 827:146313. [PMID: 35314260 DOI: 10.1016/j.gene.2022.146313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/19/2022] [Accepted: 02/08/2022] [Indexed: 12/01/2022]
Abstract
Polycystin-2 (TRPP2, PKD2, PC2) is the product of the PKD2 gene, whose mutations cause Autosomal Dominant Polycystic Kidney Disease (ADPKD). PC2 belongs to the superfamily of TRP (Transient Receptor Potential) proteins that generally function as Ca2+-permeable nonselective cation channels implicated in Ca2+ signaling. PC2 localizes to various cell domains with distinct functions that likely depend on interactions with specific channel partners. Functions include receptor-operated, nonselective cation channel activity in the plasma membrane, intracellular Ca2+ release channel activity in the endoplasmic reticulum (ER), and mechanosensitive channel activity in the primary cilium of renal epithelial cells. Here we summarize our current understanding of the properties of PC2 and how other transmembrane and cytosolic proteins modulate this activity, providing functional diversity and selective regulatory mechanisms to its role in the control of cellular Ca2+ homeostasis.
Collapse
Affiliation(s)
- María Del Rocío Cantero
- Laboratorio de Canales Iónicos, Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD, CONICET-UNSE), El Zanjón, Santiago del Estero 4206, Argentina.
| | - Horacio F Cantiello
- Laboratorio de Canales Iónicos, Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD, CONICET-UNSE), El Zanjón, Santiago del Estero 4206, Argentina
| |
Collapse
|
33
|
Van den Eynde C, Held K, Ciprietti M, De Clercq K, Kerselaers S, Marchand A, Chaltin P, Voets T, Vriens J. Loratadine, an antihistaminic drug, suppresses the proliferation of endometrial stromal cells by inhibition of TRPV2. Eur J Pharmacol 2022; 928:175086. [PMID: 35714693 DOI: 10.1016/j.ejphar.2022.175086] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 06/01/2022] [Accepted: 06/01/2022] [Indexed: 11/03/2022]
Abstract
The transient receptor potential (TRP) channel TRPV2 is widely expressed in a variety of different cell types and tissues. However, elucidating the exact biological functions of TRPV2 is significantly hampered by the lack of selective pharmacological tools to modulate channel activity in vitro and in vivo. This study aimed to identify new compounds that modify TRPV2 activity via the use of a plate-based calcium imaging approach to screen a drug repurposing library. Three antihistaminic drugs, loratadine, astemizole and clemizole were identified to reduce calcium-influx evoked by the TRPV2 agonist tetrahydrocannabivarin in HEK293 cells expressing murine TRPV2. Using single-cell calcium-microfluorimetry and whole-cell patch clamp recordings, we further confirmed that all three compounds induced a concentration-dependent block of TRPV2-mediated Ca2+ influx and whole-cell currents, with loratadine being the most potent antagonist of TRPV2. Moreover, this study demonstrated that loratadine was able to block both the human and mouse TRPV2 orthologs, without inhibiting the activity of other closely related members of the TRPV superfamily. Finally, loratadine inhibited TRPV2-dependent responses in a primary culture of mouse endometrial stromal cells and attenuated cell proliferation and migration in in vitro cell proliferation and wound healing assays. Taken together, our study revealed that the antihistaminic drugs loratadine, astemizole and clemizole target TRPV2 in a concentration-dependent manner. The identification of these antihistaminic drugs as blockers of TRPV2 may form a new starting point for the synthesis of more potent and selective TRPV2 antagonists, which could further lead to the unravelling of the physiological role of the channel.
Collapse
Affiliation(s)
- Charlotte Van den Eynde
- Laboratory of Endometrium, Endometriosis & Reproductive Medicine, Department of Development and Regeneration, KU Leuven, Herestraat 49 box 611, 3000, Leuven, Belgium; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain & Disease Research, Herestraat 49 box 802, 3000, Leuven, Belgium
| | - Katharina Held
- Laboratory of Endometrium, Endometriosis & Reproductive Medicine, Department of Development and Regeneration, KU Leuven, Herestraat 49 box 611, 3000, Leuven, Belgium; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain & Disease Research, Herestraat 49 box 802, 3000, Leuven, Belgium
| | - Martina Ciprietti
- Laboratory of Endometrium, Endometriosis & Reproductive Medicine, Department of Development and Regeneration, KU Leuven, Herestraat 49 box 611, 3000, Leuven, Belgium; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain & Disease Research, Herestraat 49 box 802, 3000, Leuven, Belgium
| | - Katrien De Clercq
- Laboratory of Endometrium, Endometriosis & Reproductive Medicine, Department of Development and Regeneration, KU Leuven, Herestraat 49 box 611, 3000, Leuven, Belgium; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain & Disease Research, Herestraat 49 box 802, 3000, Leuven, Belgium
| | - Sara Kerselaers
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain & Disease Research, Herestraat 49 box 802, 3000, Leuven, Belgium
| | - Arnaud Marchand
- CISTIM Leuven vzw, Gaston Geenslaan 2, 3001, Leuven, Heverlee, Belgium
| | - Patrick Chaltin
- CISTIM Leuven vzw, Gaston Geenslaan 2, 3001, Leuven, Heverlee, Belgium; Centre for Drug Design and Discovery (CD3), KU Leuven, Gaston Geenslaan 2, 3001, Leuven, Heverlee, Belgium
| | - Thomas Voets
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain & Disease Research, Herestraat 49 box 802, 3000, Leuven, Belgium
| | - Joris Vriens
- Laboratory of Endometrium, Endometriosis & Reproductive Medicine, Department of Development and Regeneration, KU Leuven, Herestraat 49 box 611, 3000, Leuven, Belgium.
| |
Collapse
|
34
|
Mo X, Pang P, Wang Y, Jiang D, Zhang M, Li Y, Wang P, Geng Q, Xie C, Du HN, Zhong B, Li D, Yao J. Tyrosine phosphorylation tunes chemical and thermal sensitivity of TRPV2 ion channel. eLife 2022; 11:78301. [PMID: 35686730 PMCID: PMC9282855 DOI: 10.7554/elife.78301] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/09/2022] [Indexed: 11/21/2022] Open
Abstract
Transient receptor potential vanilloid 2 (TRPV2) is a multimodal ion channel implicated in diverse physiopathological processes. Its important involvement in immune responses has been suggested such as in the macrophages’ phagocytosis process. However, the endogenous signaling cascades controlling the gating of TRPV2 remain to be understood. Here, we report that enhancing tyrosine phosphorylation remarkably alters the chemical and thermal sensitivities of TRPV2 endogenously expressed in rat bone marrow-derived macrophages and dorsal root ganglia (DRG) neurons. We identify that the protein tyrosine kinase JAK1 mediates TRPV2 phosphorylation at the molecular sites Tyr(335), Tyr(471), and Tyr(525). JAK1 phosphorylation is required for maintaining TRPV2 activity and the phagocytic ability of macrophages. We further show that TRPV2 phosphorylation is dynamically balanced by protein tyrosine phosphatase non-receptor type 1 (PTPN1). PTPN1 inhibition increases TRPV2 phosphorylation, further reducing the activation temperature threshold. Our data thus unveil an intrinsic mechanism where the phosphorylation/dephosphorylation dynamic balance sets the basal chemical and thermal sensitivity of TRPV2. Targeting this pathway will aid therapeutic interventions in physiopathological contexts. All the cells in our body have a membrane that separates their interior from the outside environment. However, studded across this barrier are numerous ion channels which allow the cell to sense and react to changes in its surroundings. This includes the ion channel TRPV2, which opens in response to mechanical pressure, certain chemical signals, or rising temperature levels. Many types of cell express TRPV2, including cells in the nervous system, muscle, and the immune system. However, despite being extensively studied, it is still not clear how TRPV2 opens and closes upon encountering high temperatures. In particular, previous work suggested that TRPV2 only responds when a cell’s surroundings reach around 52°C, which is a much higher temperature than cells inside our body normally encounter, even during a fever. To help resolve this mystery, Mo, Pang et al. studied TRPV2 in neurons responsible for sending sensory information and in immune cells called macrophages which had been extracted from rodents and grown in the laboratory. They found that when the cells were bathed in solutions containing magnesium ions, their TRPV2 channels were more sensitive to a number of different cues, including temperature. Further biochemical experiments showed that magnesium ions do not directly affect TRPV2, but increase the activity of another protein called JAK1. The magnesium ions caused JAK1 to attach specialized structures called phosphorylation tags to TRPV2. This modification (known as phosphorylation) made the channel more sensitive, allowing it to open in response to temperatures as low as 40°C. Mo, Pang et al. found that inhibiting JAK1 reduced the activity of TRPV2. Conversely, inhibiting the enzyme that removes the phosphorylation tags, called PTPN1, increased the channel’s activity. They also discovered that when JAK1 was blocked, macrophages were less able to ‘eat up’ bacteria, which is one of their main roles in the immune system. Taken together these experiments advance our understanding of how TRPV2 becomes active. The balance between the phosphorylation by JAK1 and the dephosphorylation by PTPN1 controls the temperature at which TRPV2 opens. Since TRPV2 contributes to several biological functions, including the development of the nervous system, the maintenance of heart muscles, and inflammation, these findings will be important to scientists in a broad range of fields.
Collapse
Affiliation(s)
- Xiaoyi Mo
- Department of Anesthesiology, Wuhan University, Wuhan, China
| | - Peiyuan Pang
- Department of Anesthesiology, Wuhan University, Wuhan, China
| | - Yulin Wang
- Department of Anesthesiology, Wuhan University, Wuhan, China
| | - Dexiang Jiang
- Department of Anesthesiology, Wuhan University, Wuhan, China
| | - Mengyu Zhang
- Department of Anesthesiology, Wuhan University, Wuhan, China
| | - Yang Li
- Department of Anesthesiology, Wuhan University, Wuhan, China
| | - Peiyu Wang
- Department of Anesthesiology, Wuhan University, Wuhan, China
| | - Qizhi Geng
- Department of Anesthesiology, Wuhan University, Wuhan, China
| | - Chang Xie
- Department of Anesthesiology, Wuhan University, Wuhan, China
| | - Hai-Ning Du
- Department of Anesthesiology, Wuhan University, Wuhan, China
| | - Bo Zhong
- Department of Anesthesiology, Wuhan University, Wuhan, China
| | - Dongdong Li
- Neuroscience Paris Seine, CNRS, INSERM, Sorbonne Université, Paris, France
| | - Jing Yao
- Department of Anesthesiology, Wuhan University, Wuhan, China
| |
Collapse
|
35
|
Pumroy RA, Protopopova AD, Fricke TC, Lange IU, Haug FM, Nguyen PT, Gallo PN, Sousa BB, Bernardes GJL, Yarov-Yarovoy V, Leffler A, Moiseenkova-Bell VY. Structural insights into TRPV2 activation by small molecules. Nat Commun 2022; 13:2334. [PMID: 35484159 PMCID: PMC9051106 DOI: 10.1038/s41467-022-30083-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/14/2022] [Indexed: 12/14/2022] Open
Abstract
Transient receptor potential vanilloid 2 (TRPV2) is involved in many critical physiological and pathophysiological processes, making it a promising drug target. Here we present cryo-electron microscopy (cryo-EM) structures of rat TRPV2 in lipid nanodiscs activated by 2-aminoethoxydiphenyl borate (2-APB) and propose a TRPV2-specific 2-ABP binding site at the interface of S5 of one monomer and the S4-S5 linker of the adjacent monomer. In silico docking and electrophysiological studies confirm the key role of His521 and Arg539 in 2-APB activation of TRPV2. Additionally, electrophysiological experiments show that the combination of 2-APB and cannabidiol has a synergetic effect on TRPV2 activation, and cryo-EM structures demonstrate that both drugs were able to bind simultaneously. Together, our cryo-EM structures represent multiple functional states of the channel, providing a native picture of TRPV2 activation by small molecules and a structural framework for the development of TRPV2-specific activators.
Collapse
Affiliation(s)
- Ruth A Pumroy
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Anna D Protopopova
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Tabea C Fricke
- Department of Anesthesiology and Intensive Care Medicine, Hannover Medical School, Hannover, 30625, Germany
| | - Iris U Lange
- Department of Anesthesiology and Intensive Care Medicine, Hannover Medical School, Hannover, 30625, Germany
| | - Ferdinand M Haug
- Department of Anesthesiology and Intensive Care Medicine, Hannover Medical School, Hannover, 30625, Germany
| | - Phuong T Nguyen
- Department of Physiology and Membrane Biology, University of California, Davis, CA, 95616, United States
| | - Pamela N Gallo
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Bárbara B Sousa
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028, Portugal
| | - Gonçalo J L Bernardes
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028, Portugal
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Vladimir Yarov-Yarovoy
- Department of Physiology and Membrane Biology, University of California, Davis, CA, 95616, United States
| | - Andreas Leffler
- Department of Anesthesiology and Intensive Care Medicine, Hannover Medical School, Hannover, 30625, Germany
| | - Vera Y Moiseenkova-Bell
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States.
| |
Collapse
|
36
|
Maltan L, Andova AM, Derler I. The Role of Lipids in CRAC Channel Function. Biomolecules 2022; 12:biom12030352. [PMID: 35327543 PMCID: PMC8944985 DOI: 10.3390/biom12030352] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/12/2022] [Accepted: 02/20/2022] [Indexed: 11/28/2022] Open
Abstract
The composition and dynamics of the lipid membrane define the physical properties of the bilayer and consequently affect the function of the incorporated membrane transporters, which also applies for the prominent Ca2+ release-activated Ca2+ ion channel (CRAC). This channel is activated by receptor-induced Ca2+ store depletion of the endoplasmic reticulum (ER) and consists of two transmembrane proteins, STIM1 and Orai1. STIM1 is anchored in the ER membrane and senses changes in the ER luminal Ca2+ concentration. Orai1 is the Ca2+-selective, pore-forming CRAC channel component located in the plasma membrane (PM). Ca2+ store-depletion of the ER triggers activation of STIM1 proteins, which subsequently leads to a conformational change and oligomerization of STIM1 and its coupling to as well as activation of Orai1 channels at the ER-PM contact sites. Although STIM1 and Orai1 are sufficient for CRAC channel activation, their efficient activation and deactivation is fine-tuned by a variety of lipids and lipid- and/or ER-PM junction-dependent accessory proteins. The underlying mechanisms for lipid-mediated CRAC channel modulation as well as the still open questions, are presented in this review.
Collapse
|
37
|
Tikhonov DB, Zhorov BS. P-Loop Channels: Experimental Structures, and Physics-Based and Neural Networks-Based Models. MEMBRANES 2022; 12:membranes12020229. [PMID: 35207150 PMCID: PMC8876033 DOI: 10.3390/membranes12020229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/09/2022] [Accepted: 02/09/2022] [Indexed: 01/27/2023]
Abstract
The superfamily of P-loop channels includes potassium, sodium, and calcium channels, as well as TRP channels and ionotropic glutamate receptors. A rapidly increasing number of crystal and cryo-EM structures have revealed conserved and variable elements of the channel structures. Intriguing differences are seen in transmembrane helices of channels, which may include π-helical bulges. The bulges reorient residues in the helices and thus strongly affect their intersegment contacts and patterns of ligand-sensing residues. Comparison of the experimental structures suggests that some π-bulges are dynamic: they may appear and disappear upon channel gating and ligand binding. The AlphaFold2 models represent a recent breakthrough in the computational prediction of protein structures. We compared some crystal and cryo-EM structures of P-loop channels with respective AlphaFold2 models. Folding of the regions, which are resolved experimentally, is generally similar to that predicted in the AlphaFold2 models. The models also reproduce some subtle but significant differences between various P-loop channels. However, patterns of π-bulges do not necessarily coincide in the experimental and AlphaFold2 structures. Given the importance of dynamic π-bulges, further studies involving experimental and theoretical approaches are necessary to understand the cause of the discrepancy.
Collapse
|
38
|
Gao R, Tan H, Li S, Ma S, Tang Y, Zhang K, Zhang Z, Fan Q, Yang J, Zhang XE, Li F. A prototype protein nanocage minimized from carboxysomes with gated oxygen permeability. Proc Natl Acad Sci U S A 2022; 119:e2104964119. [PMID: 35078933 PMCID: PMC8812686 DOI: 10.1073/pnas.2104964119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 11/18/2021] [Indexed: 12/12/2022] Open
Abstract
Protein nanocages (PNCs) in cells and viruses have inspired the development of self-assembling protein nanomaterials for various purposes. Despite the successful creation of artificial PNCs, the de novo design of PNCs with defined permeability remains challenging. Here, we report a prototype oxygen-impermeable PNC (OIPNC) assembled from the vertex protein of the β-carboxysome shell, CcmL, with quantum dots as the template via interfacial engineering. The structure of the cage was solved at the atomic scale by combined solid-state NMR spectroscopy and cryoelectron microscopy, showing icosahedral assembly of CcmL pentamers with highly conserved interpentamer interfaces. Moreover, a gating mechanism was established by reversibly blocking the pores of the cage with molecular patches. Thus, the oxygen permeability, which was probed by an oxygen sensor inside the cage, can be completely controlled. The CcmL OIPNC represents a PNC platform for oxygen-sensitive or oxygen-responsive storage, catalysis, delivery, sensing, etc.
Collapse
Affiliation(s)
- Ruimin Gao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Huan Tan
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
| | - Shanshan Li
- Key Laboratory for Cellular Dynamics, Ministry of Education, University of Science and Technology of China, Hefei 230027, People's Republic of China
- Department of Bioengineering, Stanford University, Stanford, CA 94305
| | - Shaojie Ma
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
| | - Yufu Tang
- Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, People's Republic of China
| | - Kaiming Zhang
- Key Laboratory for Cellular Dynamics, Ministry of Education, University of Science and Technology of China, Hefei 230027, People's Republic of China
- Department of Bioengineering, Stanford University, Stanford, CA 94305
| | - Zhiping Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
| | - Quli Fan
- Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, People's Republic of China
| | - Jun Yang
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China;
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
| | - Xian-En Zhang
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China;
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Feng Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China;
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
39
|
Cheng WWL, Arcario MJ, Petroff JT. Druggable Lipid Binding Sites in Pentameric Ligand-Gated Ion Channels and Transient Receptor Potential Channels. Front Physiol 2022; 12:798102. [PMID: 35069257 PMCID: PMC8777383 DOI: 10.3389/fphys.2021.798102] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/02/2021] [Indexed: 12/17/2022] Open
Abstract
Lipids modulate the function of many ion channels, possibly through direct lipid-protein interactions. The recent outpouring of ion channel structures by cryo-EM has revealed many lipid binding sites. Whether these sites mediate lipid modulation of ion channel function is not firmly established in most cases. However, it is intriguing that many of these lipid binding sites are also known sites for other allosteric modulators or drugs, supporting the notion that lipids act as endogenous allosteric modulators through these sites. Here, we review such lipid-drug binding sites, focusing on pentameric ligand-gated ion channels and transient receptor potential channels. Notable examples include sites for phospholipids and sterols that are shared by anesthetics and vanilloids. We discuss some implications of lipid binding at these sites including the possibility that lipids can alter drug potency or that understanding protein-lipid interactions can guide drug design. Structures are only the first step toward understanding the mechanism of lipid modulation at these sites. Looking forward, we identify knowledge gaps in the field and approaches to address them. These include defining the effects of lipids on channel function in reconstituted systems using asymmetric membranes and measuring lipid binding affinities at specific sites using native mass spectrometry, fluorescence binding assays, and computational approaches.
Collapse
Affiliation(s)
- Wayland W L Cheng
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, United States
| | - Mark J Arcario
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, United States
| | - John T Petroff
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
40
|
Cai R, Chen XZ. Roles of Intramolecular Interactions in the Regulation of TRP Channels. Rev Physiol Biochem Pharmacol 2022; 186:29-56. [PMID: 35882668 DOI: 10.1007/112_2022_74] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The transient receptor potential (TRP) channels, classified into six (-A, -V, -P, -C, -M, -ML, -N and -Y) subfamilies, are important membrane sensors and mediators of diverse stimuli including pH, light, mechano-force, temperature, pain, taste, and smell. The mammalian TRP superfamily of 28 members share similar membrane topology with six membrane-spanning helices (S1-S6) and cytosolic N-/C-terminus. Abnormal function or expression of TRP channels is associated with cancer, skeletal dysplasia, immunodeficiency, and cardiac, renal, and neuronal diseases. The majority of TRP members share common functional regulators such as phospholipid PIP2, 2-aminoethoxydiphenyl borate (2-APB), and cannabinoid, while other ligands are more specific, such as allyl isothiocyanate (TRPA1), vanilloids (TRPV1), menthol (TRPM8), ADP-ribose (TRPM2), and ML-SA1 (TRPML1). The mechanisms underlying the gating and regulation of TRP channels remain largely unclear. Recent advances in cryogenic electron microscopy provided structural insights into 19 different TRP channels which all revealed close proximity of the C-terminus with the N-terminus and intracellular S4-S5 linker. Further studies found that some highly conserved residues in these regions of TRPV, -P, -C and -M members mediate functionally critical intramolecular interactions (i.e., within one subunit) between these regions. This review provides an overview on (1) intramolecular interactions in TRP channels and their effect on channel function; (2) functional roles of interplays between PIP2 (and other ligands) and TRP intramolecular interactions; and (3) relevance of the ligand-induced modulation of intramolecular interaction to diseases.
Collapse
Affiliation(s)
- Ruiqi Cai
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, ON, Canada.,Department of Physiology, Membrane Protein Disease Research Group, University of Alberta, Edmonton, AB, Canada
| | - Xing-Zhen Chen
- Department of Physiology, Membrane Protein Disease Research Group, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
41
|
Song X, Li J, Tian M, Zhu H, Hu X, Zhang Y, Cao Y, Ye H, McCormick PJ, Zeng B, Fu Y, Duan J, Zhang J. Cryo-EM structure of mouse TRPML2 in lipid nanodiscs. J Biol Chem 2021; 298:101487. [PMID: 34915027 PMCID: PMC8808176 DOI: 10.1016/j.jbc.2021.101487] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 11/27/2022] Open
Abstract
In mammalians, transient receptor potential mucolipin ion channels (TRPMLs) exhibit variable permeability to cations such as Ca2+, Fe2+, Zn2+, and Na+, and can be activated by the phosphoinositide PI(3,5)P2 in the endolysosomal system. Loss or dysfunction of TRPMLs has been implicated in lysosomal storage disorders, infectious diseases, and metabolic diseases. TRPML2 has recently been identified as a mechanosensitive and hypotonicity-sensitive channel in endolysosomal organelles, which distinguishes it from TRPML1 and TRPML3. However, the molecular and gating mechanism of TRPML2 remains elusive. Here, we present the cryo-EM structure of the full-length mouse TRPML2 in lipid nanodiscs at 3.14 Å resolution. The TRPML2 homo-tetramer structure at pH 7.4 in the apo state reveals an inactive conformation and some unique features of the extracytosolic/luminal domain and voltage sensor-like domain that have implications for the ion-conducting pathway. This structure enables new comparisons between the different subgroups of TRPML channels with available structures and provides structural insights into the conservation and diversity of TRPML channels. These comparisons have broad implications for understanding a variety of molecular mechanisms of TRPMLs in different pH conditions, including with and without bound agonists and antagonists.
Collapse
Affiliation(s)
- Xiaojing Song
- School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Jian Li
- College of Pharmaceutical Sciences, Ganan Medical University, Ganzhou, 341000, China
| | - Miao Tian
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Huaiyi Zhu
- Human Aging Research Institute, School of Life Sciences, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Xiaohui Hu
- School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Yuting Zhang
- School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Yanru Cao
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Heyang Ye
- College of Pharmaceutical Sciences, Ganan Medical University, Ganzhou, 341000, China
| | - Peter J McCormick
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary, University of London, Charterhouse Square, London, United Kingdom
| | - Bo Zeng
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Yang Fu
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.
| | - Jingjing Duan
- Human Aging Research Institute, School of Life Sciences, Nanchang University, Nanchang, Jiangxi, 330031, China.
| | - Jin Zhang
- School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi, 330031, China.
| |
Collapse
|
42
|
Neuberger A, Nadezhdin KD, Zakharian E, Sobolevsky AI. Structural mechanism of TRPV3 channel inhibition by the plant-derived coumarin osthole. EMBO Rep 2021; 22:e53233. [PMID: 34472684 PMCID: PMC8567229 DOI: 10.15252/embr.202153233] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 11/09/2022] Open
Abstract
TRPV3, a representative of the vanilloid subfamily of TRP channels, is predominantly expressed in skin keratinocytes and has been implicated in cutaneous sensation and associated with numerous skin pathologies and cancers. TRPV3 is inhibited by the natural coumarin derivative osthole, an active ingredient of Cnidium monnieri, which has been used in traditional Chinese medicine for the treatment of a variety of human diseases. However, the structural basis of channel inhibition by osthole has remained elusive. Here we present cryo-EM structures of TRPV3 in complex with osthole, revealing two types of osthole binding sites in the transmembrane region of TRPV3 that coincide with the binding sites of agonist 2-APB. Osthole binding converts the channel pore into a previously unidentified conformation with a widely open selectivity filter and closed intracellular gate. Our structures provide insight into competitive inhibition of TRPV3 by osthole and can serve as a template for the design of osthole chemistry-inspired drugs targeting TRPV3-associated diseases.
Collapse
Affiliation(s)
- Arthur Neuberger
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Kirill D Nadezhdin
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Eleonora Zakharian
- Department of Cancer Biology & Pharmacology, University of Illinois College of Medicine, Peoria, IL, USA
| | - Alexander I Sobolevsky
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| |
Collapse
|
43
|
Zhang K, Julius D, Cheng Y. Structural snapshots of TRPV1 reveal mechanism of polymodal functionality. Cell 2021; 184:5138-5150.e12. [PMID: 34496225 DOI: 10.1016/j.cell.2021.08.012] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/28/2021] [Accepted: 08/11/2021] [Indexed: 11/16/2022]
Abstract
Many transient receptor potential (TRP) channels respond to diverse stimuli and conditionally conduct small and large cations. Such functional plasticity is presumably enabled by a uniquely dynamic ion selectivity filter that is regulated by physiological agents. What is currently missing is a "photo series" of intermediate structural states that directly address this hypothesis and reveal specific mechanisms behind such dynamic channel regulation. Here, we exploit cryoelectron microscopy (cryo-EM) to visualize conformational transitions of the capsaicin receptor, TRPV1, as a model to understand how dynamic transitions of the selectivity filter in response to algogenic agents, including protons, vanilloid agonists, and peptide toxins, permit permeation by small and large organic cations. These structures also reveal mechanisms governing ligand binding substates, as well as allosteric coupling between key sites that are proximal to the selectivity filter and cytoplasmic gate. These insights suggest a general framework for understanding how TRP channels function as polymodal signal integrators.
Collapse
Affiliation(s)
- Kaihua Zhang
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - David Julius
- Department of Physiology, University of California, San Francisco, San Francisco, CA, USA.
| | - Yifan Cheng
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
44
|
Islas LD. Closing in on the heat-activation mechanisms of TRPV channels. J Physiol 2021; 599:4733-4734. [PMID: 34569063 DOI: 10.1113/jp282347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Leon D Islas
- Department of Physiology, UNAM, School of Medicine, Mexico City, Mexico
| |
Collapse
|
45
|
Wang M, Sun Y, Li L, Wu P, Dkw O, Shi H. Calcium Channels: Noteworthy Regulators and Therapeutic Targets in Dermatological Diseases. Front Pharmacol 2021; 12:702264. [PMID: 34489697 PMCID: PMC8418299 DOI: 10.3389/fphar.2021.702264] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/02/2021] [Indexed: 02/05/2023] Open
Abstract
Dysfunctional skin barrier and impaired skin homeostasis may lead to or aggravate a series of dermatologic diseases. A large variety of biological events and bioactive molecules are involved in the process of skin wound healing and functional recovery. Calcium ions (Ca2+) released from intracellular stores as well as influx through plasma membrane are essential to skin function. Growing evidence suggests that calcium influx is mainly regulated by calcium-sensing receptors and channels, including voltage-gated, transient potential receptor, store-operated, and receptor-operated calcium channels, which not only maintain cellular Ca2+ homeostasis, but also participate in cell proliferation and skin cell homeostasis through Ca2+-sensitive proteins such as calmodulin (CaM). Furthermore, distinct types of Ca2+ channels not merely work separately, they may work concertedly to regulate cell function. In this review, we discussed different calcium-sensing receptors and channels, including voltage-gated, transient receptor potential, store-operated, and receptor-operated calcium channels, particularly focusing on their regulatory functions and inherent interactions as well as calcium channels-related reagents and drugs, which is expected to bridge basic research and clinical applications in dermatologic diseases.
Collapse
Affiliation(s)
- Min Wang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yaoxiang Sun
- Department of Clinical Laboratory, The Affiliated Yixing Hospital of Jiangsu University, Yixing, China
| | - Linli Li
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Peipei Wu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Ocansey Dkw
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine, Jiangsu University, Zhenjiang, China.,Directorate of University Health Services, University of Cape Coast, Cape Coast, Ghana
| | - Hui Shi
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
46
|
Canales Coutiño B, Mayor R. Reprint of: Mechanosensitive ion channels in cell migration. Cells Dev 2021; 168:203730. [PMID: 34456177 DOI: 10.1016/j.cdev.2021.203730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 11/18/2022]
Abstract
Cellular processes are initiated and regulated by different stimuli, including mechanical forces. Cell membrane mechanosensors represent the first step towards the conversion of mechanical stimuli to a biochemical or electrical response. Mechanosensitive (MS) ion channels form a growing family of ion gating channels that respond to direct physical force or plasma membrane deformations. A number of calcium (Ca2+) permeable MS channels are known to regulate the initiation, direction, and persistence of cell migration during development and tumour progression. While the evidence that links individual MS ion channels to cell migration is growing, a unified analysis of the molecular mechanisms regulated downstream of MS ion channel activation is lacking. In this review, we describe the MS ion channel families known to regulate cell migration. We discuss the molecular mechanisms that act downstream of MS ion channels with an emphasis on Ca2+ mediated processes. Finally, we propose the future directions and impact of MS ion channel activity in the field of cell migration.
Collapse
Affiliation(s)
- Brenda Canales Coutiño
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
47
|
Zhao Y, McVeigh BM, Moiseenkova-Bell VY. Structural Pharmacology of TRP Channels. J Mol Biol 2021; 433:166914. [PMID: 33676926 PMCID: PMC8338738 DOI: 10.1016/j.jmb.2021.166914] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 12/15/2022]
Abstract
Transient receptor potential (TRP) ion channels are a super-family of ion channels that mediate transmembrane cation flux with polymodal activation, ranging from chemical to physical stimuli. Furthermore, due to their ubiquitous expression and role in human diseases, they serve as potential pharmacological targets. Advances in cryo-EM TRP channel structural biology has revealed general, as well as diverse, architectural elements and regulatory sites among TRP channel subfamilies. Here, we review the endogenous and pharmacological ligand-binding sites of TRP channels and their regulatory mechanisms.
Collapse
Affiliation(s)
- Yaxian Zhao
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bridget M McVeigh
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Vera Y Moiseenkova-Bell
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
48
|
Endocannabinoid activation of the TRPV1 ion channel is distinct from activation by capsaicin. J Biol Chem 2021; 297:101022. [PMID: 34332978 PMCID: PMC8387766 DOI: 10.1016/j.jbc.2021.101022] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/25/2021] [Accepted: 07/28/2021] [Indexed: 11/21/2022] Open
Abstract
Transient receptor potential vanilloid 1 (TRPV1) ion channel serves as the detector for noxious temperature above 42 °C, pungent chemicals like capsaicin, and acidic extracellular pH. This channel has also been shown to function as an ionotropic cannabinoid receptor. Despite the solving of high-resolution three-dimensional structures of TRPV1, how endocannabinoids such as anandamide and N-arachidonoyl dopamine bind to and activate this channel remains largely unknown. Here we employed a combination of patch-clamp recording, site-directed mutagenesis, and molecular docking techniques to investigate how the endocannabinoids structurally bind to and open the TRPV1 ion channel. We found that these endocannabinoid ligands bind to the vanilloid-binding pocket of TRPV1 in the “tail-up, head-down” configuration, similar to capsaicin; however, there is a unique interaction with TRPV1 Y512 residue critical for endocannabinoid activation of TRPV1 channels. These data suggest that a differential structural mechanism is involved in TRPV1 activation by endocannabinoids compared with the classic agonist capsaicin.
Collapse
|
49
|
Computational Analysis of the Crystal and Cryo-EM Structures of P-Loop Channels with Drugs. Int J Mol Sci 2021; 22:ijms22158143. [PMID: 34360907 PMCID: PMC8348670 DOI: 10.3390/ijms22158143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 12/01/2022] Open
Abstract
The superfamily of P-loop channels includes various potassium channels, voltage-gated sodium and calcium channels, transient receptor potential channels, and ionotropic glutamate receptors. Despite huge structural and functional diversity of the channels, their pore-forming domain has a conserved folding. In the past two decades, scores of atomic-scale structures of P-loop channels with medically important drugs in the inner pore have been published. High structural diversity of these complexes complicates the comparative analysis of these structures. Here we 3D-aligned structures of drug-bound P-loop channels, compared their geometric characteristics, and analyzed the energetics of ligand-channel interactions. In the superimposed structures drugs occupy most of the sterically available space in the inner pore and subunit/repeat interfaces. Cationic groups of some drugs occupy vacant binding sites of permeant ions in the inner pore and selectivity-filter region. Various electroneutral drugs, lipids, and detergent molecules are seen in the interfaces between subunits/repeats. In many structures the drugs strongly interact with lipid and detergent molecules, but physiological relevance of such interactions is unclear. Some eukaryotic sodium and calcium channels have state-dependent or drug-induced π-bulges in the inner helices, which would be difficult to predict. The drug-induced π-bulges may represent a novel mechanism of gating modulation.
Collapse
|
50
|
Abstract
The transient receptor potential (TRP) channel superfamily consists of a large group of non-selective cation channels that serve as cellular sensors for a wide spectrum of physical and environmental stimuli. The 28 mammalian TRPs, categorized into six subfamilies, including TRPC (canonical), TRPV (vanilloid), TRPM (melastatin), TRPA (ankyrin), TRPML (mucolipin) and TRPP (polycystin), are widely expressed in different cells and tissues. TRPs exhibit a variety of unique features that not only distinguish them from other superfamilies of ion channels, but also confer diverse physiological functions. Located at the plasma membrane or in the membranes of intracellular organelles, TRPs are the cellular safeguards that sense various cell stresses and environmental stimuli and translate this information into responses at the organismal level. Loss- or gain-of-function mutations of TRPs cause inherited diseases and pathologies in different physiological systems, whereas up- or down-regulation of TRPs is associated with acquired human disorders. In this Cell Science at a Glance article and the accompanying poster, we briefly summarize the history of the discovery of TRPs, their unique features, recent advances in the understanding of TRP activation mechanisms, the structural basis of TRP Ca2+ selectivity and ligand binding, as well as potential roles in mammalian physiology and pathology.
Collapse
Affiliation(s)
- Lixia Yue
- Calhoun Cardiology Center, Department of Cell Biology, University of Connecticut School of Medicine (UConn Health), Farmington, CT 06030, USA
| | - Haoxing Xu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|