1
|
Duan H, Wang S, Shu WJ, Tong Y, Long HZ, Li G, Du HN, Zhao MJ. SETD3-mediated histidine methylation of MCM7 regulates DNA replication by facilitating chromatin loading of MCM. SCIENCE CHINA. LIFE SCIENCES 2025; 68:793-808. [PMID: 39455502 DOI: 10.1007/s11427-023-2600-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/19/2024] [Indexed: 10/28/2024]
Abstract
The minichromosome maintenance complex (MCM) DNA helicase is an important replicative factor during DNA replication. The proper chromatin loading of MCM is a key step to ensure replication initiation during S phase. Because replication initiation is regulated by multiple biological cues, additional changes to MCM may provide better understanding towards this event. Here, we report that histidine methyltransferase SETD3 promotes DNA replication in a manner dependent on enzymatic activity. Nascent-strand sequencing (NS-seq) shows that SETD3 regulates replication initiation, as depletion of SETD3 attenuates early replication origins firing. Biochemical studies reveal that SETD3 binds MCM mainly during S phase, which is required for the CDT1-mediated chromatin loading of MCM. This MCM loading relies on histidine-459 methylation (H459me) on MCM7 which is catalyzed by SETD3. Impairment of H459 methylation attenuates DNA synthesis and chromatin loading of MCM. Furthermore, we show that CDK2 phosphorylates SETD3 at Serine-21 during the G1/S phase, which is required for DNA replication and cell cycle progression. These findings demonstrate a novel mechanism by which SETD3 methylates MCM to regulate replication initiation.
Collapse
Affiliation(s)
- Hongguo Duan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Emergency Center, Zhongnan Hospital of Wuhan University, RNA Institute, Wuhan University, Wuhan, 430072, China
| | - Shuang Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Emergency Center, Zhongnan Hospital of Wuhan University, RNA Institute, Wuhan University, Wuhan, 430072, China
| | - Wen-Jie Shu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Emergency Center, Zhongnan Hospital of Wuhan University, RNA Institute, Wuhan University, Wuhan, 430072, China
| | - Yongjia Tong
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | | | - Guohong Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China
| | - Hai-Ning Du
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Emergency Center, Zhongnan Hospital of Wuhan University, RNA Institute, Wuhan University, Wuhan, 430072, China.
| | - Meng-Jie Zhao
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Emergency Center, Zhongnan Hospital of Wuhan University, RNA Institute, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
2
|
Wan B, Guan D, Li S, Chwat-Edelstein T, Zhao X. Mms22-Rtt107 axis attenuates the DNA damage checkpoint and the stability of the Rad9 checkpoint mediator. Nat Commun 2025; 16:311. [PMID: 39746913 PMCID: PMC11697250 DOI: 10.1038/s41467-024-54624-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 11/15/2024] [Indexed: 01/04/2025] Open
Abstract
The DNA damage checkpoint is a highly conserved signaling pathway induced by genotoxin exposure or endogenous genome stress. It alters many cellular processes such as arresting the cell cycle progression and increasing DNA repair capacities. However, cells can downregulate the checkpoint after prolonged stress exposure to allow continued growth and alternative repair. Strategies that can dampen the DNA damage checkpoint are not well understood. Here, we report that budding yeast employs a pathway composed of the scaffold protein Rtt107, its binding partner Mms22, and an Mms22-associated ubiquitin ligase complex to downregulate the DNA damage checkpoint. Mechanistically, this pathway promotes the proteasomal degradation of a key checkpoint factor, Rad9. Furthermore, Rtt107 binding to Mms22 helps to enrich the ubiquitin ligase complex on chromatin for targeting the chromatin-bound form of Rad9. Finally, we provide evidence that the Rtt107-Mms22 axis operates in parallel with the Rtt107-Slx4 axis, which displaces Rad9 from chromatin. We thus propose that Rtt107 enables a bifurcated "anti-Rad9" strategy to optimally downregulate the DNA damage checkpoint.
Collapse
Affiliation(s)
- Bingbing Wan
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Danying Guan
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Shibai Li
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tzippora Chwat-Edelstein
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Programs in Biochemistry, Cell, and Molecular Biology, Weill Cornell Graduate School of Medical Sciences, New York, NY, 10065, USA
| | - Xiaolan Zhao
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
3
|
Thu YM. Multifaceted roles of SUMO in DNA metabolism. Nucleus 2024; 15:2398450. [PMID: 39287196 PMCID: PMC11409511 DOI: 10.1080/19491034.2024.2398450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/16/2024] [Accepted: 08/26/2024] [Indexed: 09/19/2024] Open
Abstract
Sumoylation, a process in which SUMO (small ubiquitin like modifier) is conjugated to target proteins, emerges as a post-translational modification that mediates protein-protein interactions, protein complex assembly, and localization of target proteins. The coordinated actions of SUMO ligases, proteases, and SUMO-targeted ubiquitin ligases determine the net result of sumoylation. It is well established that sumoylation can somewhat promiscuously target proteins in groups as well as selectively target individual proteins. Through changing protein dynamics, sumoylation orchestrates multi-step processes in chromatin biology. Sumoylation influences various steps of mitosis, DNA replication, DNA damage repair, and pathways protecting chromosome integrity. This review highlights examples of SUMO-regulated nuclear processes to provide mechanistic views of sumoylation in DNA metabolism.
Collapse
Affiliation(s)
- Yee Mon Thu
- Department of Biology, Colby College, Waterville, ME, USA
| |
Collapse
|
4
|
Zhao X, Wan B, Guan D, Li S, Chwat-Edelstein T. The Mms22-Rtt107 axis dampens the DNA damage checkpoint by reducing the stability of the Rad9 checkpoint mediator. RESEARCH SQUARE 2024:rs.3.rs-4417144. [PMID: 38826278 PMCID: PMC11142307 DOI: 10.21203/rs.3.rs-4417144/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
The DNA damage checkpoint is a highly conserved signaling pathway induced by genotoxin exposure or endogenous genome stress. It alters many cellular processes such as arresting the cell cycle progression and increasing DNA repair capacities. However, cells can downregulate the checkpoint after prolonged stress exposure to allow continued growth and alternative repair. Strategies that can dampen the DNA damage checkpoint are not well understood. Here, we report that budding yeast employs a pathway composed of the scaffold protein Rtt107, its binding partner Mms22, and an Mms22-associated ubiquitin ligase complex to downregulate the DNA damage checkpoint. Mechanistically, this pathway promotes the proteasomal degradation of a key checkpoint factor, Rad9. Furthermore, Rtt107 binding to Mms22 helps to enrich the ubiquitin ligase complex on chromatin and target the chromatin-bound form of Rad9. Finally, we provide evidence that the Rtt107-Mms22 axis operates in parallel with the Rtt107-Slx4 axis, which displaces Rad9 from chromatin. We thus propose that Rtt107 enables a bifurcated "anti-Rad9" strategy to optimally downregulate the DNA damage checkpoint.
Collapse
Affiliation(s)
| | | | | | - Shibai Li
- Memorial Sloan Kettering Cancer Center
| | | |
Collapse
|
5
|
Radhakrishnan A, Gangopadhyay R, Sharma C, Kapardar RK, Sharma NK, Srivastav R. Unwinding Helicase MCM Functionality for Diagnosis and Therapeutics of Replication Abnormalities Associated with Cancer: A Review. Mol Diagn Ther 2024; 28:249-264. [PMID: 38530633 DOI: 10.1007/s40291-024-00701-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2024] [Indexed: 03/28/2024]
Abstract
The minichromosome maintenance (MCM) protein is a component of an active helicase that is essential for the initiation of DNA replication. Dysregulation of MCM functions contribute to abnormal cell proliferation and genomic instability. The interactions of MCM with cellular factors, including Cdc45 and GINS, determine the formation of active helicase and functioning of helicase. The functioning of MCM determines the fate of DNA replication and, thus, genomic integrity. This complex is upregulated in precancerous cells and can act as an important tool for diagnostic applications. The MCM protein complex can be an important broad-spectrum therapeutic target in various cancers. Investigations have supported the potential and applications of MCM in cancer diagnosis and its therapeutics. In this article, we discuss the physiological roles of MCM and its associated factors in DNA replication and cancer pathogenesis.
Collapse
Affiliation(s)
| | - Ritwik Gangopadhyay
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | | | | | - Nilesh Kumar Sharma
- Cancer and Translational Research Lab, Dr. DY Patil Biotechnology and Bioinformatics Institute, Dr. DY Patil Vidyapeeth, Pune, Maharashtra, India
| | - Rajpal Srivastav
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India.
- Department of Science and Technology, Ministry of Science and Technology, New Delhi, India.
| |
Collapse
|
6
|
Zhu L, Wang J. Quantifying Landscape-Flux via Single-Cell Transcriptomics Uncovers the Underlying Mechanism of Cell Cycle. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308879. [PMID: 38353329 DOI: 10.1002/advs.202308879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/23/2024] [Indexed: 04/25/2024]
Abstract
Recent developments in single-cell sequencing technology enable the acquisition of entire transcriptome data. Understanding the underlying mechanism and identifying the driving force of transcriptional regulation governing cell function directly from these data remains challenging. This study reconstructs a continuous vector field of the cell cycle based on discrete single-cell RNA velocity to quantify the single-cell global nonequilibrium dynamic landscape-flux. It reveals that large fluctuations disrupt the global landscape and genetic perturbations alter landscape-flux, thus identifying key genes in maintaining cell cycle dynamics and predicting associated functional effects. Additionally, it quantifies the fundamental energy cost of the cell cycle initiation and unveils that sustaining the cell cycle requires curl flux and dissipation to maintain the oscillatory phase coherence. This study enables the inference of the cell cycle gene regulatory networks directly from the single-cell transcriptomic data, including the feedback mechanisms and interaction intensity. This provides a golden opportunity to experimentally verify the landscape-flux theory and also obtain its associated quantifications. It also offers a unique framework for combining the landscape-flux theory and single-cell high-through sequencing experiments for understanding the underlying mechanisms of the cell cycle and can be extended to other nonequilibrium biological processes, such as differentiation development and disease pathogenesis.
Collapse
Affiliation(s)
- Ligang Zhu
- College of Physics, Jilin University, Changchun, 130021, P. R. China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Jin Wang
- Center for Theoretical Interdisciplinary Sciences, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, P. R. China
- Department of Chemistry, Physics and Astronomy, Stony Brook University, Stony Brook, NY, 11794, USA
| |
Collapse
|
7
|
Gasser SM, Stutz F. SUMO in the regulation of DNA repair and transcription at nuclear pores. FEBS Lett 2023; 597:2833-2850. [PMID: 37805446 DOI: 10.1002/1873-3468.14751] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/06/2023] [Accepted: 09/25/2023] [Indexed: 10/09/2023]
Abstract
Two related post-translational modifications, the covalent linkage of Ubiquitin and the Small Ubiquitin-related MOdifier (SUMO) to lysine residues, play key roles in the regulation of both DNA repair pathway choice and transcription. Whereas ubiquitination is generally associated with proteasome-mediated protein degradation, the impact of sumoylation has been more mysterious. In the cell nucleus, sumoylation effects are largely mediated by the relocalization of the modified targets, particularly in response to DNA damage. This is governed in part by the concentration of SUMO protease at nuclear pores [Melchior, F et al. (2003) Trends Biochem Sci 28, 612-618; Ptak, C and Wozniak, RW (2017) Adv Exp Med Biol 963, 111-126]. We review here the roles of sumoylation in determining genomic locus positioning relative to the nuclear envelope and to nuclear pores, to facilitate repair and regulate transcription.
Collapse
Affiliation(s)
- Susan M Gasser
- Department of Fundamental Microbiology, University of Lausanne, Switzerland
- ISREC Foundation, Agora Cancer Research Center, Lausanne, Switzerland
| | - Françoise Stutz
- Department of Molecular and Cellular Biology, University of Geneva, Switzerland
| |
Collapse
|
8
|
Cheng X, Yang W, Lin W, Mei F. Paradoxes of Cellular SUMOylation Regulation: A Role of Biomolecular Condensates? Pharmacol Rev 2023; 75:979-1006. [PMID: 37137717 PMCID: PMC10441629 DOI: 10.1124/pharmrev.122.000784] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 05/05/2023] Open
Abstract
Protein SUMOylation is a major post-translational modification essential for maintaining cellular homeostasis. SUMOylation has long been associated with stress responses as a diverse array of cellular stress signals are known to trigger rapid alternations in global protein SUMOylation. In addition, while there are large families of ubiquitination enzymes, all small ubiquitin-like modifiers (SUMOs) are conjugated by a set of enzymatic machinery comprising one heterodimeric SUMO-activating enzyme, a single SUMO-conjugating enzyme, and a small number of SUMO protein ligases and SUMO-specific proteases. How a few SUMOylation enzymes specifically modify thousands of functional targets in response to diverse cellular stresses remains an enigma. Here we review recent progress toward understanding the mechanisms of SUMO regulation, particularly the potential roles of liquid-liquid phase separation/biomolecular condensates in regulating cellular SUMOylation during cellular stresses. In addition, we discuss the role of protein SUMOylation in pathogenesis and the development of novel therapeutics targeting SUMOylation. SIGNIFICANCE STATEMENT: Protein SUMOylation is one of the most prevalent post-translational modifications and plays a vital role in maintaining cellular homeostasis in response to stresses. Protein SUMOylation has been implicated in human pathogenesis, such as cancer, cardiovascular diseases, neurodegeneration, and infection. After more than a quarter century of extensive research, intriguing enigmas remain regarding the mechanism of cellular SUMOylation regulation and the therapeutic potential of targeting SUMOylation.
Collapse
Affiliation(s)
- Xiaodong Cheng
- Department of Integrative Biology & Pharmacology and Texas Therapeutics Institute, Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Wenli Yang
- Department of Integrative Biology & Pharmacology and Texas Therapeutics Institute, Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Wei Lin
- Department of Integrative Biology & Pharmacology and Texas Therapeutics Institute, Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Fang Mei
- Department of Integrative Biology & Pharmacology and Texas Therapeutics Institute, Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| |
Collapse
|
9
|
Xiang M, Gao Y, Zhou Y, Wang M, Yao X. A novel nomogram based on cell cycle-related genes for predicting overall survival in early-onset colorectal cancer. BMC Cancer 2023; 23:595. [PMID: 37370046 DOI: 10.1186/s12885-023-11075-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Although the incidence of late-onset colorectal cancer (LOCRC) has decreased, the incidence of early-onset colorectal cancer (EOCRC) is still rising dramatically. Heterogeneity in the genomic, biological, and clinicopathological characteristics between EOCRC and LOCRC has been revealed. Therefore, the previous prognostic models based on the total CRC patient population might not be suitable for EOCRC patients. Here, we constructed a prognostic classifier to enhance the precision of individualized treatment and management of EOCRC patients. METHODS EOCRC expression data were downloaded from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases. The regulatory pathways were explored by gene set enrichment analysis (GSEA). The prognostic model was developed by univariate Cox-LASSO-multivariate Cox regression analyses of GEO samples. TCGA samples were used to verify the model. The expression and mutation profiles and immune landscape of the high-risk and low-risk cohorts were analyzed and compared. Finally, the expression and prognostic value of the model genes were verified by immunohistochemistry and qRT‒PCR analysis. RESULTS The cell cycle was identified as the most significantly enriched oncological signature of EOCRC. Then, a 4-gene prognostic signature comprising MCM2, INHBA, CGREF1, and KLF9 was constructed. The risk score was an independent predictor of overall survival. The area under the curve values of the classifier for 1-, 3-, and 5-year survival were 0.856, 0.893, and 0.826, respectively, in the training set and 0.749, 0.858, and 0.865, respectively, in the validation set. Impaired DNA damage repair capability (p < 0.05) and frequent PIK3CA mutations (p < 0.05) were found in the high-risk cohort. CD8 T cells (p < 0.05), activated memory CD4 T cells (p < 0.01), and activated dendritic cells (p < 0.05) were clustered in the low-risk group. Finally, we verified the expression of MCM2, INHBA, CGREF1, and KLF9. Their prognostic value was closely related to age. CONCLUSION In this study, a robust prognostic classifier for EOCRC was established and validated. The findings may provide a reference for individualized treatment and medical decision-making for patients with EOCRC.
Collapse
Affiliation(s)
- Meijuan Xiang
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
- Department of Gastrointestinal Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- Department of General Surgery, Guangdong Provincial People's Hospital Ganzhou Hospital (Ganzhou Municipal Hospital), Ganzhou, 341000, China
- Department of General Surgery, Foresea Life Insurance Shaoguan Hospital, Shaoguan, 512000, China
| | - Yuan Gao
- Department of Gastrointestinal Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- Department of General Surgery, Guangdong Provincial People's Hospital Ganzhou Hospital (Ganzhou Municipal Hospital), Ganzhou, 341000, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yue Zhou
- Department of Gastrointestinal Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- Department of General Surgery, Guangdong Provincial People's Hospital Ganzhou Hospital (Ganzhou Municipal Hospital), Ganzhou, 341000, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Muqing Wang
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Xueqing Yao
- School of Medicine, South China University of Technology, Guangzhou, 510006, China.
- Department of Gastrointestinal Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China.
- Department of General Surgery, Guangdong Provincial People's Hospital Ganzhou Hospital (Ganzhou Municipal Hospital), Ganzhou, 341000, China.
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
10
|
Martín-Rufo R, de la Vega-Barranco G, Lecona E. Ubiquitin and SUMO as timers during DNA replication. Semin Cell Dev Biol 2022; 132:62-73. [PMID: 35210137 DOI: 10.1016/j.semcdb.2022.02.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 12/14/2022]
Abstract
Every time a cell copies its DNA the genetic material is exposed to the acquisition of mutations and genomic alterations that corrupt the information passed on to daughter cells. A tight temporal regulation of DNA replication is necessary to ensure the full copy of the DNA while preventing the appearance of genomic instability. Protein modification by ubiquitin and SUMO constitutes a very complex and versatile system that allows the coordinated control of protein stability, activity and interactome. In chromatin, their action is complemented by the AAA+ ATPase VCP/p97 that recognizes and removes ubiquitylated and SUMOylated factors from specific cellular compartments. The concerted action of the ubiquitin/SUMO system and VCP/p97 determines every step of DNA replication enforcing the ordered activation/inactivation, loading/unloading and stabilization/destabilization of replication factors. Here we analyze the mechanisms used by ubiquitin/SUMO and VCP/p97 to establish molecular timers throughout DNA replication and their relevance in maintaining genome stability. We propose that these PTMs are the main molecular watch of DNA replication from origin recognition to replisome disassembly.
Collapse
Affiliation(s)
- Rodrigo Martín-Rufo
- Chromatin, Cancer and the Ubiquitin System lab, Centre for Molecular Biology Severo Ochoa (CBMSO, CSIC-UAM), Department of Genome Dynamics and Function, Madrid 28049, Spain
| | - Guillermo de la Vega-Barranco
- Chromatin, Cancer and the Ubiquitin System lab, Centre for Molecular Biology Severo Ochoa (CBMSO, CSIC-UAM), Department of Genome Dynamics and Function, Madrid 28049, Spain
| | - Emilio Lecona
- Chromatin, Cancer and the Ubiquitin System lab, Centre for Molecular Biology Severo Ochoa (CBMSO, CSIC-UAM), Department of Genome Dynamics and Function, Madrid 28049, Spain.
| |
Collapse
|
11
|
Liu XY, Huo YY, Yang J, Li TT, Xu FR, Wan HP, Li JN, Wu CH, Zhang YH, Dong X. Integrated physiological, metabolomic, and proteome analysis of Alpinia officinarum Hance essential oil inhibits the growth of Fusarium oxysporum of Panax notoginseng. Front Microbiol 2022; 13:1031474. [DOI: 10.3389/fmicb.2022.1031474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/03/2022] [Indexed: 11/17/2022] Open
Abstract
Fusarium oxysporum is the main pathogen of Panax notoginseng root rot, and chemical fungicides remain the primary measures to control the disease. Plant essential oil (EO) is a volatile plant secondary metabolic product that does not produce any residue to replace chemical pesticide. To comprehensively understand the antifungal mechanism of Alpinia officinarum Hance EO, the physiological indicators, proteome and metabolome were analyzed using F. oxysporum spores and hyphae treated with different EO concentrations. The cell membrane was damaged after both low and high concentrations of EO treatment, along with leakage of the cell contents. To resist the destruction of membrane structure, fungi can increase the function of steroid biosynthesis and expression of these catalytic enzymes, including squalene monooxygenase (SQLE), sterol 14alpha-demethylase (CYP51, CYP61A), delta14-sterol reductase (TM7SF2, ERG4), methylsterol monooxygenase (MESO1), and sterol 24-C-methyltransferase (SMT1). Furthermore, the tricarboxylic acid cycle (TCA) was influenced by inhibiting the expression of glutamate synthase (GLT1), 4-aminobutyrate aminotransferase (ABAT), and succinate-semialdehyde dehydrogenase (gabD); increasing malate and gamma-aminobutyric acid (GABA); and decreasing citrate content. The spore germination rate and mycelia growth were decreased because the expression of cohesin complex subunit SA-1/2 (IRR1) and cohesion complex subunit (YCS4, BRN1, YCG1) were inhibited. Particularly, under high EO concentrations, cyclin-dependent kinase (CDC28) and DNA replication licensing factor (MCM) were further inhibited to disrupt the cell cycle and meiosis, thus affecting cell division. The results of this study will enrich the understanding of the antifungal mechanism of EOs and provide an important basis to develop new plant-derived fungicides.
Collapse
|
12
|
Regan-Mochrie G, Hoggard T, Bhagwat N, Lynch G, Hunter N, Remus D, Fox CA, Zhao X. Yeast ORC sumoylation status fine-tunes origin licensing. Genes Dev 2022; 36:gad.349610.122. [PMID: 35926881 PMCID: PMC9480853 DOI: 10.1101/gad.349610.122] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/14/2022] [Indexed: 01/03/2023]
Abstract
Sumoylation is emerging as a posttranslation modification important for regulating chromosome duplication and stability. The origin recognition complex (ORC) that directs DNA replication initiation by loading the MCM replicative helicase onto origins is sumoylated in both yeast and human cells. However, the biological consequences of ORC sumoylation are unclear. Here we report the effects of hypersumoylation and hyposumoylation of yeast ORC on ORC activity and origin function using multiple approaches. ORC hypersumoylation preferentially reduced the function of a subset of early origins, while Orc2 hyposumoylation had an opposing effect. Mechanistically, ORC hypersumoylation reduced MCM loading in vitro and diminished MCM chromatin association in vivo. Either hypersumoylation or hyposumoylation of ORC resulted in genome instability and the dependence of yeast on other genome maintenance factors, providing evidence that appropriate ORC sumoylation levels are important for cell fitness. Thus, yeast ORC sumoylation status must be properly controlled to achieve optimal origin function across the genome and genome stability.
Collapse
Affiliation(s)
- Gemma Regan-Mochrie
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Timothy Hoggard
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - Nikhil Bhagwat
- Howard Hughes Medical Institute, University of California at Davis, Davis, California 95616, USA
- Department of Microbiology and Molecular Genetics, University of California at Davis, Davis, California 95616, USA
| | - Gerard Lynch
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Neil Hunter
- Howard Hughes Medical Institute, University of California at Davis, Davis, California 95616, USA
- Department of Microbiology and Molecular Genetics, University of California at Davis, Davis, California 95616, USA
| | - Dirk Remus
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Catherine A Fox
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - Xiaolan Zhao
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
13
|
Quan Y, Zhang QY, Zhou AL, Wang Y, Cai J, Gao YQ, Zhou H. Site-specific MCM sumoylation prevents genome rearrangements by controlling origin-bound MCM. PLoS Genet 2022; 18:e1010275. [PMID: 35696436 PMCID: PMC9232163 DOI: 10.1371/journal.pgen.1010275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/24/2022] [Accepted: 05/25/2022] [Indexed: 11/24/2022] Open
Abstract
Timely completion of eukaryotic genome duplication requires coordinated DNA replication initiation at multiple origins. Replication begins with the loading of the Mini-Chromosome Maintenance (MCM) complex, proceeds by the activation of the Cdc45-MCM-GINS (CMG) helicase, and ends with CMG removal after chromosomes are fully replicated. Post-translational modifications on the MCM and associated factors ensure an orderly transit of these steps. Although the mechanisms of CMG activation and removal are partially understood, regulated MCM loading is not, leaving an incomplete understanding of how DNA replication begins. Here we describe a site-specific modification of Mcm3 by the Small Ubiquitin-like MOdifier (SUMO). Mutations that prevent this modification reduce the MCM loaded at replication origins and lower CMG levels, resulting in impaired cell growth, delayed chromosomal replication, and the accumulation of gross chromosomal rearrangements (GCRs). These findings demonstrate the existence of a SUMO-dependent regulation of origin-bound MCM and show that this pathway is needed to prevent genome rearrangements. Faithful replication of the genome is essential for the survival and health of all living organisms. The eukaryotic genome presents a unique and difficult challenge: its enormous size demands the coordinated action of numerous DNA replication origins to ensure timely completion of genome duplication. Although the mechanisms that control the activation and removal of DNA replisome are partially understood, whether and how cells regulate the loading of the Mini-Chromosome Maintenance (MCM) complex, the precursor of the DNA replisome, at replication origins are not. Because mutations to MCM-loading factors and enzymes that catalyze reversible protein sumoylation cause substantial gross chromosomal rearrangements (GCRs) that characterize the cancer genome, understanding regulated MCM loading is one of the most pressing questions in the field. Here, we identified a site-specific SUMO modification of MCM and found that mutation disabling this modification causes severe growth defect and impaired DNA replication. These defects are attributable to reduced MCM at DNA replication origins, resulting in a lower DNA replisome level and a dramatic accumulation of GCRs. Thus, these findings identify a hitherto unknown regulatory mechanism: Site-specific MCM sumoylation regulates origin-bound MCM, and this prevents genome rearrangements.
Collapse
Affiliation(s)
- Yun Quan
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, United States of America
| | - Qian-yi Zhang
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, United States of America
| | - Ann L. Zhou
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, United States of America
| | - Yuhao Wang
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, United States of America
| | - Jiaxi Cai
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, United States of America
| | - Yong-qi Gao
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, United States of America
| | - Huilin Zhou
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, United States of America
- Moores Cancer Center, School of Medicine, University of California at San Diego, La Jolla, CA, United States of America
- * E-mail:
| |
Collapse
|
14
|
Targeted inhibition of the expression of both MCM5 and MCM7 by miRNA-214 impedes DNA replication and tumorigenesis in hepatocellular carcinoma cells. Cancer Lett 2022; 539:215677. [DOI: 10.1016/j.canlet.2022.215677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/12/2022] [Accepted: 03/29/2022] [Indexed: 12/12/2022]
|
15
|
Franz A, Valledor P, Ubieto-Capella P, Pilger D, Galarreta A, Lafarga V, Fernández-Llorente A, de la Vega-Barranco G, den Brave F, Hoppe T, Fernandez-Capetillo O, Lecona E. USP7 and VCP FAF1 define the SUMO/Ubiquitin landscape at the DNA replication fork. Cell Rep 2021; 37:109819. [PMID: 34644576 PMCID: PMC8527565 DOI: 10.1016/j.celrep.2021.109819] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/20/2021] [Accepted: 09/21/2021] [Indexed: 12/16/2022] Open
Abstract
The AAA+ ATPase VCP regulates the extraction of SUMO and ubiquitin-modified DNA replication factors from chromatin. We have previously described that active DNA synthesis is associated with a SUMO-high/ubiquitin-low environment governed by the deubiquitylase USP7. Here, we unveil a functional cooperation between USP7 and VCP in DNA replication, which is conserved from Caenorhabditis elegans to mammals. The role of VCP in chromatin is defined by its cofactor FAF1, which facilitates the extraction of SUMOylated and ubiquitylated proteins that accumulate after the block of DNA replication in the absence of USP7. The inactivation of USP7 and FAF1 is synthetically lethal both in C. elegans and mammalian cells. In addition, USP7 and VCP inhibitors display synergistic toxicity supporting a functional link between deubiquitylation and extraction of chromatin-bound proteins. Our results suggest that USP7 and VCPFAF1 facilitate DNA replication by controlling the balance of SUMO/Ubiquitin-modified DNA replication factors on chromatin.
Collapse
Affiliation(s)
- André Franz
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Pablo Valledor
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Patricia Ubieto-Capella
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Domenic Pilger
- The Wellcome Trust and Cancer Research UK Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge CB2 1QN, UK
| | - Antonio Galarreta
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Vanesa Lafarga
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Alejandro Fernández-Llorente
- Chromatin, Cancer and the Ubiquitin System lab, Centre for Molecular Biology Severo Ochoa (CBMSO, CSIC-UAM), Department of Genome Dynamics and Function, Madrid 28049, Spain
| | - Guillermo de la Vega-Barranco
- Chromatin, Cancer and the Ubiquitin System lab, Centre for Molecular Biology Severo Ochoa (CBMSO, CSIC-UAM), Department of Genome Dynamics and Function, Madrid 28049, Spain
| | - Fabian den Brave
- Institute of Biochemistry and Molecular Biology, University of Bonn, 53115 Bonn, Germany
| | - Thorsten Hoppe
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
| | - Oscar Fernandez-Capetillo
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain; Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 171 21 Stockholm, Sweden.
| | - Emilio Lecona
- Chromatin, Cancer and the Ubiquitin System lab, Centre for Molecular Biology Severo Ochoa (CBMSO, CSIC-UAM), Department of Genome Dynamics and Function, Madrid 28049, Spain.
| |
Collapse
|
16
|
Herce-Hagiwara B, Thu YM. SGS1-SuOff rescues the mild methylmethane sulfonate sensitivity of srs2Δ cells in Saccharomyces cerevisiae. MICROPUBLICATION BIOLOGY 2021; 2021. [PMID: 34585105 PMCID: PMC8463932 DOI: 10.17912/micropub.biology.000480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/02/2021] [Accepted: 09/22/2021] [Indexed: 11/18/2022]
Abstract
Sgs1p in Saccharomyces cerevisiae belongs to the RecQ helicase family. Sgs1p is involved in recombination during DNA damage repair and sumoylation of Sgs1p is one mechanism by which the protein is regulated. To further understand the significance of Sgs1p sumoylation in DNA damage repair, we examined the genetic interaction between SGS1 SUMO mutants and a mutant of SRS2, the protein product of which also prevents aberrant recombination structures. We observed that SGS1-SuOff, a mutant in which Sgs1p cannot be sumoylated, attenuates the mild sensitivity of srs2Δcells to methyl methane sulfonate.
Collapse
|
17
|
Coordinating DNA Replication and Mitosis through Ubiquitin/SUMO and CDK1. Int J Mol Sci 2021; 22:ijms22168796. [PMID: 34445496 PMCID: PMC8395760 DOI: 10.3390/ijms22168796] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 12/30/2022] Open
Abstract
Post-translational modification of the DNA replication machinery by ubiquitin and SUMO plays key roles in the faithful duplication of the genetic information. Among other functions, ubiquitination and SUMOylation serve as signals for the extraction of factors from chromatin by the AAA ATPase VCP. In addition to the regulation of DNA replication initiation and elongation, we now know that ubiquitination mediates the disassembly of the replisome after DNA replication termination, a process that is essential to preserve genomic stability. Here, we review the recent evidence showing how active DNA replication restricts replisome ubiquitination to prevent the premature disassembly of the DNA replication machinery. Ubiquitination also mediates the removal of the replisome to allow DNA repair. Further, we discuss the interplay between ubiquitin-mediated replisome disassembly and the activation of CDK1 that is required to set up the transition from the S phase to mitosis. We propose the existence of a ubiquitin–CDK1 relay, where the disassembly of terminated replisomes increases CDK1 activity that, in turn, favors the ubiquitination and disassembly of more replisomes. This model has important implications for the mechanism of action of cancer therapies that induce the untimely activation of CDK1, thereby triggering premature replisome disassembly and DNA damage.
Collapse
|
18
|
Shastri VM, Subramanian V, Schmidt KH. A novel cell-cycle-regulated interaction of the Bloom syndrome helicase BLM with Mcm6 controls replication-linked processes. Nucleic Acids Res 2021; 49:8699-8713. [PMID: 34370039 PMCID: PMC8421143 DOI: 10.1093/nar/gkab663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/16/2021] [Accepted: 07/22/2021] [Indexed: 11/13/2022] Open
Abstract
The Bloom syndrome DNA helicase BLM contributes to chromosome stability through its roles in double-strand break repair by homologous recombination and DNA replication fork restart during the replication stress response. Loss of BLM activity leads to Bloom syndrome, which is characterized by extraordinary cancer risk and small stature. Here, we have analyzed the composition of the BLM complex during unperturbed S-phase and identified a direct physical interaction with the Mcm6 subunit of the minichromosome maintenance (MCM) complex. Using distinct binding sites, BLM interacts with the N-terminal domain of Mcm6 in G1 phase and switches to the C-terminal Cdt1-binding domain of Mcm6 in S-phase, with a third site playing a role for Mcm6 binding after DNA damage. Disruption of Mcm6-binding to BLM in S-phase leads to supra-normal DNA replication speed in unperturbed cells, and the helicase activity of BLM is required for this increased replication speed. Upon disruption of BLM/Mcm6 interaction, repair of replication-dependent DNA double-strand breaks is delayed and cells become hypersensitive to DNA damage and replication stress. Our findings reveal that BLM not only plays a role in the response to DNA damage and replication stress, but that its physical interaction with Mcm6 is required in unperturbed cells, most notably in S-phase as a negative regulator of replication speed.
Collapse
Affiliation(s)
- Vivek M Shastri
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620, USA
| | - Veena Subramanian
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620, USA
| | - Kristina H Schmidt
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620, USA.,Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| |
Collapse
|
19
|
Quan Y, Hinshaw SM, Wang PC, Harrison SC, Zhou H. Ctf3/CENP-I provides a docking site for the desumoylase Ulp2 at the kinetochore. THE JOURNAL OF CELL BIOLOGY 2021; 220:212227. [PMID: 34081091 PMCID: PMC8178754 DOI: 10.1083/jcb.202012149] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/24/2021] [Accepted: 05/17/2021] [Indexed: 01/10/2023]
Abstract
The step-by-step process of chromosome segregation defines the stages of the cell cycle. In eukaryotes, signals controlling these steps converge upon the kinetochore, a multiprotein assembly that connects spindle microtubules to chromosomal centromeres. Kinetochores control and adapt to major chromosomal transactions, including replication of centromeric DNA, biorientation of sister centromeres on the metaphase spindle, and transit of sister chromatids into daughter cells during anaphase. Although the mechanisms that ensure tight microtubule coupling at anaphase are at least partly understood, kinetochore adaptations that support other cell cycle transitions are not. We report here a mechanism that enables regulated control of kinetochore sumoylation. A conserved surface of the Ctf3/CENP-I kinetochore protein provides a binding site for Ulp2, the nuclear enzyme that removes SUMO chains from modified substrates. Ctf3 mutations that disable Ulp2 recruitment cause elevated inner kinetochore sumoylation and defective chromosome segregation. The location of the site within the assembled kinetochore suggests coordination between sumoylation and other cell cycle–regulated processes.
Collapse
Affiliation(s)
- Yun Quan
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA
| | - Stephen M Hinshaw
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Howard Hughes Medical Institute, Boston, MA
| | - Pang-Che Wang
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA
| | - Stephen C Harrison
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Howard Hughes Medical Institute, Boston, MA
| | - Huilin Zhou
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA
| |
Collapse
|
20
|
Shared and distinct roles of Esc2 and Mms21 in suppressing genome rearrangements and regulating intracellular sumoylation. PLoS One 2021; 16:e0247132. [PMID: 33600463 PMCID: PMC7891725 DOI: 10.1371/journal.pone.0247132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
Protein sumoylation, especially when catalyzed by the Mms21 SUMO E3 ligase, plays a major role in suppressing duplication-mediated gross chromosomal rearrangements (dGCRs). How Mms21 targets its substrates in the cell is insufficiently understood. Here, we demonstrate that Esc2, a protein with SUMO-like domains (SLDs), recruits the Ubc9 SUMO conjugating enzyme to specifically facilitate Mms21-dependent sumoylation and suppress dGCRs. The D430R mutation in Esc2 impairs its binding to Ubc9 and causes a synergistic growth defect and accumulation of dGCRs with mutations that delete the Siz1 and Siz2 E3 ligases. By contrast, esc2-D430R does not appreciably affect sensitivity to DNA damage or the dGCRs caused by the catalytically inactive mms21-CH. Moreover, proteome-wide analysis of intracellular sumoylation demonstrates that esc2-D430R specifically down-regulates sumoylation levels of Mms21-preferred targets, including the nucleolar proteins, components of the SMC complexes and the MCM complex that acts as the catalytic core of the replicative DNA helicase. These effects closely resemble those caused by mms21-CH, and are relatively unaffected by deleting Siz1 and Siz2. Thus, by recruiting Ubc9, Esc2 facilitates Mms21-dependent sumoylation to suppress the accumulation of dGCRs independent of Siz1 and Siz2.
Collapse
|
21
|
Li S, Bonner JN, Wan B, So S, Summers A, Gonzalez L, Xue X, Zhao X. Esc2 orchestrates substrate-specific sumoylation by acting as a SUMO E2 cofactor in genome maintenance. Genes Dev 2021; 35:261-272. [PMID: 33446573 PMCID: PMC7849368 DOI: 10.1101/gad.344739.120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022]
Abstract
In this study, Li et al. set out to investigate the conserved genome stability factor Esc2 in budding yeast and its roles in DNA damage-induced sumoylation. Using in vitro and in vivo approaches, the authors propose that Esc2 acts as a SUMO E2 cofactor at distinct DNA structures to promote the sumoylation of specific substrates and genome maintenance. SUMO modification regulates diverse cellular processes by targeting hundreds of proteins. However, the limited number of sumoylation enzymes raises the question of how such a large number of substrates are efficiently modified. Specifically, how genome maintenance factors are dynamically sumoylated at DNA replication and repair sites to modulate their functions is poorly understood. Here, we demonstrate a role for the conserved yeast Esc2 protein in this process by acting as a SUMO E2 cofactor. Esc2 is required for genome stability and binds to Holliday junctions and replication fork structures. Our targeted screen found that Esc2 promotes the sumoylation of a Holliday junction dissolution complex and specific replisome proteins. Esc2 does not elicit these effects via stable interactions with substrates or their common SUMO E3. Rather, we show that a SUMO-like domain of Esc2 stimulates sumoylation by exploiting a noncovalent SUMO binding site on the E2 enzyme. This role of Esc2 in sumoylation is required for Holliday junction clearance and genome stability. Our findings thus suggest that Esc2 acts as a SUMO E2 cofactor at distinct DNA structures to promote the sumoylation of specific substrates and genome maintenance.
Collapse
Affiliation(s)
- Shibai Li
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Jacob N Bonner
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA.,Program in Biochemistry, Cell, and Molecular Biology, Weill Cornell Graduate School of Medical Sciences, New York, New York 10065, USA
| | - Bingbing Wan
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Stephen So
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, Texas 78666, USA
| | - Ashley Summers
- Materials Science, Engineering, and Commercialization Program, Texas State University, San Marcos, Texas 78666, USA
| | - Leticia Gonzalez
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, Texas 78666, USA
| | - Xiaoyu Xue
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, Texas 78666, USA.,Materials Science, Engineering, and Commercialization Program, Texas State University, San Marcos, Texas 78666, USA
| | - Xiaolan Zhao
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA.,Program in Biochemistry, Cell, and Molecular Biology, Weill Cornell Graduate School of Medical Sciences, New York, New York 10065, USA
| |
Collapse
|
22
|
Dou L, Tian Z, Zhao Q, Xu M, Zhu Y, Luo X, Qiao X, Ren R, Zhang X, Li H. Transcriptomic Characterization of the Effects of Selenium on Maize Seedling Growth. FRONTIERS IN PLANT SCIENCE 2021; 12:737029. [PMID: 34887883 PMCID: PMC8650135 DOI: 10.3389/fpls.2021.737029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/14/2021] [Indexed: 05/05/2023]
Abstract
Selenium (Se) is a trace mineral element in soils that can be beneficial to plants in small amounts. Although maize is among the most economically important crops, there are few reports on the effects of Se on maize seedling growth at the molecular level. In this study, the growth of maize seedlings treated with different concentrations of Na2SeO3 was investigated, and the physiological characteristics were measured. Compared with the control, a low Se concentration promoted seedling growth, whereas a high Se concentration inhibited it. To illustrate the transcriptional effects of Se on maize seedling growth, samples from control plants and those treated with low or high concentrations of Se were subjected to RNA sequencing. The differentially expressed gene (DEG) analysis revealed that there were 239 upregulated and 106 downregulated genes in the low Se treatment groups, while there were 845 upregulated and 1,686 downregulated DEGs in the high Se treatment groups. Both the Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation analyses showed a low concentration of the Se-stimulated expression of "DNA replication" and "glutathione (GSH) metabolism"-related genes. A high concentration of Se repressed the expression of auxin signal transduction and lignin biosynthesis-related genes. The real-time quantitative reverse transcription PCR (qRT-PCR) results showed that in the low Se treatment, "auxin signal transduction," "DNA replication," and lignin biosynthesis-related genes were upregulated 1.4- to 57.68-fold compared to the control, while, in the high Se concentration treatment, auxin signal transduction and lignin biosynthesis-related genes were downregulated 1.6- to 16.23-fold compared to the control. Based on these transcriptional differences and qRT-PCR validation, it was found that a low dosage of Se may promote maize seedling growth but becomes inhibitory to growth at higher concentrations. This study lays a foundation for the mechanisms underlying the effects of Se on maize seedling growth.
Collapse
Affiliation(s)
- Lingling Dou
- School of Chemistry and Chemical Engineering, Xianyang Normal University, Xianyang, China
| | - Zailong Tian
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Qin Zhao
- School of Chemistry and Chemical Engineering, Xianyang Normal University, Xianyang, China
| | - Mengting Xu
- School of Chemistry and Chemical Engineering, Xianyang Normal University, Xianyang, China
| | - Yiran Zhu
- School of Chemistry and Chemical Engineering, Xianyang Normal University, Xianyang, China
| | - Xiaoyue Luo
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Xinxing Qiao
- Shaanxi Hygrogeology Engineering Geology and Environment Geology Survey Center, Xi’an, China
| | - Rui Ren
- Shaanxi Hygrogeology Engineering Geology and Environment Geology Survey Center, Xi’an, China
- *Correspondence: Rui Ren,
| | - Xianliang Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Xianliang Zhang,
| | - Huaizhu Li
- School of Chemistry and Chemical Engineering, Xianyang Normal University, Xianyang, China
- Huaizhu Li,
| |
Collapse
|
23
|
DNA polymerase ε relies on a unique domain for efficient replisome assembly and strand synthesis. Nat Commun 2020; 11:2437. [PMID: 32415104 PMCID: PMC7228970 DOI: 10.1038/s41467-020-16095-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 04/14/2020] [Indexed: 12/21/2022] Open
Abstract
DNA polymerase epsilon (Pol ε) is required for genome duplication and tumor suppression. It supports both replisome assembly and leading strand synthesis; however, the underlying mechanisms remain to be elucidated. Here we report that a conserved domain within the Pol ε catalytic core influences both of these replication steps in budding yeast. Modeling cancer-associated mutations in this domain reveals its unexpected effect on incorporating Pol ε into the four-member pre-loading complex during replisome assembly. In addition, genetic and biochemical data suggest that the examined domain supports Pol ε catalytic activity and symmetric movement of replication forks. Contrary to previously characterized Pol ε cancer variants, the examined mutants cause genome hyper-rearrangement rather than hyper-mutation. Our work thus suggests a role of the Pol ε catalytic core in replisome formation, a reliance of Pol ε strand synthesis on a unique domain, and a potential tumor-suppressive effect of Pol ε in curbing genome re-arrangements.
Collapse
|
24
|
Identification of the role of toxin B in the virulence of Clostridioides difficile based on integrated bioinformatics analyses. Int Microbiol 2020; 23:575-587. [PMID: 32388701 DOI: 10.1007/s10123-020-00128-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 03/03/2020] [Accepted: 04/13/2020] [Indexed: 02/08/2023]
Abstract
PURPOSE Clostridioides difficile toxin B (TcdB) plays a critical role in C. difficile infection (CDI), a common and costly healthcare-associated disease. The aim of the current study was to explore the intracellular and potent systemic effects of TcdB on human colon epithelial cells utilizing Gene Expression Omnibus and bioinformatic methods. METHODS Two datasets (GSE63880 and GSE29008) were collected to extract data components of mRNA of TcdB-treated human colon epithelial cells; "limma" package of "R" software was used to screen the differential genes, and "pheatmap" package was applied to construct heat maps for the differential genes; Metascape website was utilized for protein-protein interaction network and Molecular Complex Detection analysis, and Genome Ontology (GO) was used to analyze the selected differential genes. Quantitative real-time PCR (qRT-PCR) and Western blot were performed to validate the expression of hub genes. RESULTS GO terms involved in DNA replication and cell cycle were identified significantly enriched in TcdB-treated human colon epithelial cells. Moreover, the decreased expression of DNA replication-related genes, MCM complex, and CDC45 in C. difficile (TcdA-/TcdB+)-infected Caco-2 cells were validated via qRT-PCR and Western blot assays. CONCLUSIONS In conclusion, the integrated analysis of different gene expression datasets allowed us to identify a set of genes and GO terms underlying the mechanisms of CDI induced by TcdB. It would aid in understanding of the molecular mechanisms underlying TcdB-exposed colon epithelial cells and provide the basis for developing diagnosis biomarkers, treatment, and prevention strategies.
Collapse
|
25
|
Zheng S, Zheng H, Huang A, Mai L, Huang X, Hu Y, Huang Y. Piwi-interacting RNAs play a role in vitamin C-mediated effects on endothelial aging. Int J Med Sci 2020; 17:946-952. [PMID: 32308548 PMCID: PMC7163353 DOI: 10.7150/ijms.42586] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/24/2020] [Indexed: 12/11/2022] Open
Abstract
The underlying mechanisms that mediate the effects of vitamin C on endothelial cell aging are widely unknown. To investigate whether Piwi-interacting RNAs (piRNAs) are involved in this process, an endothelial aging model was induced in vitro using H2O2 in human umbilical vein endothelial cells (HUVECs) and then treated with vitamin C (VC). Untreated HUVECs without H2O2 exposure were used to serve as the negative control group. Cell cycle, cell viability, and aging-associated protein expression were assessed, and RNA sequencing was performed to reveal the piRNA profile. Functional and regulatory networks of the different piRNA target genes were predicted by the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment and Gene Ontology (GO) analysis. H2O2 induced G1 phase cell arrest, decreased cell viability, and upregulated the senescence marker p16 in HUVECs. We found that VC treatment inhibited G1 phase cell arrest, increased the number of cells in the S and G2/M phases, increased cell viability, and decreased p16 expression. The piRNA expression profiles revealed that a large proportion of piRNAs that were differentially expressed in H2O2-treated HUVECs were partly normalized by VC. Furthermore, a number of piRNAs associated with the response to VC in H2O2-treated HUVECs were linked with senescence and cell cycle-related pathways and networks. These results indicate that the ability of VC to attenuate H2O2-mediated endothelial cell senescence may be associated with changes in expression of piRNAs that are linked to the cell cycle.
Collapse
Affiliation(s)
- Sulin Zheng
- Department of cardiology, Shunde hospital, Southern Medical University (The first people's hospital of Shunde, Foshan), Guangdong, China
| | - Haoxiao Zheng
- Department of cardiology, Shunde hospital, Southern Medical University (The first people's hospital of Shunde, Foshan), Guangdong, China
- Second Medical College of Southern Medical University, Guangzhou, China
| | - Anqing Huang
- Department of cardiology, Shunde hospital, Southern Medical University (The first people's hospital of Shunde, Foshan), Guangdong, China
| | - Linlin Mai
- Department of cardiology, Shunde hospital, Southern Medical University (The first people's hospital of Shunde, Foshan), Guangdong, China
| | - Xiaohui Huang
- Department of cardiology, Shunde hospital, Southern Medical University (The first people's hospital of Shunde, Foshan), Guangdong, China
| | - Yunzhao Hu
- Department of cardiology, Shunde hospital, Southern Medical University (The first people's hospital of Shunde, Foshan), Guangdong, China
| | - Yuli Huang
- Department of cardiology, Shunde hospital, Southern Medical University (The first people's hospital of Shunde, Foshan), Guangdong, China
| |
Collapse
|
26
|
MCMs in Cancer: Prognostic Potential and Mechanisms. Anal Cell Pathol (Amst) 2020; 2020:3750294. [PMID: 32089988 PMCID: PMC7023756 DOI: 10.1155/2020/3750294] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 01/25/2020] [Indexed: 12/17/2022] Open
Abstract
Enabling replicative immortality and uncontrolled cell cycle are hallmarks of cancer cells. Minichromosome maintenance proteins (MCMs) exhibit helicase activity in replication initiation and play vital roles in controlling replication times within a cell cycle. Overexpressed MCMs are detected in various cancerous tissues and cancer cell lines. Previous studies have proposed MCMs as promising proliferation markers in cancers, while the prognostic values remain controversial and the underlying mechanisms remain unascertained. This review provides an overview of the significant findings regarding the cellular and tumorigenic functions of the MCM family. Besides, current evidence of the prognostic roles of MCMs is retrospectively reviewed. This work also offers insight into the mechanisms of MCMs prompting carcinogenesis and adverse prognosis, providing information for future research. Finally, MCMs in liver cancer are specifically discussed, and future perspectives are provided.
Collapse
|
27
|
Meng X, Wei L, Peng XP, Zhao X. Sumoylation of the DNA polymerase ε by the Smc5/6 complex contributes to DNA replication. PLoS Genet 2019; 15:e1008426. [PMID: 31765372 PMCID: PMC6876774 DOI: 10.1371/journal.pgen.1008426] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 09/16/2019] [Indexed: 12/27/2022] Open
Abstract
DNA polymerase epsilon (Pol ε) is critical for genome duplication, but little is known about how post-translational modification regulates its function. Here we report that the Pol ε catalytic subunit Pol2 in yeast is sumoylated at a single lysine within a catalytic domain insertion uniquely possessed by Pol2 family members. We found that Pol2 sumoylation occurs specifically in S phase and is increased under conditions of replication fork blockade. Analyses of the genetic requirements of this modification indicate that Pol2 sumoylation is associated with replication fork progression and dependent on the Smc5/6 SUMO ligase known to promote DNA synthesis. Consistently, the pol2 sumoylation mutant phenotype suggests impaired replication progression and increased levels of gross chromosomal rearrangements. Our findings thus indicate a direct role for SUMO in Pol2-mediated DNA synthesis and a molecular basis for Smc5/6-mediated regulation of genome stability. DNA replication factors are tightly regulated to ensure genome duplication accuracy and efficiency. Among these factors, the Pol ε replicative polymerase plays a vital role by copying half of the genome every cell cycle. However, little is known about how this critical enzyme is regulated. Here we describe SUMO-based regulation of the catalytic subunit of Pol ε, Pol2. Our data suggest that Pol2 sumoylation occurs during replication elongation, particularly when replication forks encounter template obstacles. This modification is mediated by the conserved Smc5/6 SUMO ligase complex and occurs at a single site within the Pol2 catalytic domain. Several observations suggest that Pol2 sumoylation makes positive contributions to the synthesis of DNA regions enriched with template barriers and helps to prevent large-scale genomic alterations. Our work thus provides new insights into DNA polymerase regulation, specifically the role played by contributions from SUMO and the Smc5/6 complex.
Collapse
Affiliation(s)
- Xiangzhou Meng
- Molecular Biology Department, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Lei Wei
- Molecular Biology Department, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Xiao P. Peng
- Molecular Biology Department, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
- Tri-Institutional MD-PhD Program of Weill Cornell Medical School, Rockefeller University, and Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Xiaolan Zhao
- Molecular Biology Department, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
28
|
Winczura A, Appanah R, Tatham MH, Hay RT, De Piccoli G. The S phase checkpoint promotes the Smc5/6 complex dependent SUMOylation of Pol2, the catalytic subunit of DNA polymerase ε. PLoS Genet 2019; 15:e1008427. [PMID: 31765407 PMCID: PMC6876773 DOI: 10.1371/journal.pgen.1008427] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 09/16/2019] [Indexed: 12/31/2022] Open
Abstract
Replication fork stalling and accumulation of single-stranded DNA trigger the S phase checkpoint, a signalling cascade that, in budding yeast, leads to the activation of the Rad53 kinase. Rad53 is essential in maintaining cell viability, but its targets of regulation are still partially unknown. Here we show that Rad53 drives the hyper-SUMOylation of Pol2, the catalytic subunit of DNA polymerase ε, principally following replication forks stalling induced by nucleotide depletion. Pol2 is the main target of SUMOylation within the replisome and its modification requires the SUMO-ligase Mms21, a subunit of the Smc5/6 complex. Moreover, the Smc5/6 complex co-purifies with Pol ε, independently of other replisome components. Finally, we map Pol2 SUMOylation to a single site within the N-terminal catalytic domain and identify a SUMO-interacting motif at the C-terminus of Pol2. These data suggest that the S phase checkpoint regulate Pol ε during replication stress through Pol2 SUMOylation and SUMO-binding ability.
Collapse
Affiliation(s)
- Alicja Winczura
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Rowin Appanah
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Michael H. Tatham
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, United Kingdom
| | - Ronald T. Hay
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, United Kingdom
| | | |
Collapse
|
29
|
Psakhye I, Castellucci F, Branzei D. SUMO-Chain-Regulated Proteasomal Degradation Timing Exemplified in DNA Replication Initiation. Mol Cell 2019; 76:632-645.e6. [PMID: 31519521 PMCID: PMC6891891 DOI: 10.1016/j.molcel.2019.08.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 07/01/2019] [Accepted: 08/01/2019] [Indexed: 11/18/2022]
Abstract
Similar to ubiquitin, SUMO forms chains, but the identity of SUMO-chain-modified factors and the purpose of this modification remain largely unknown. Here, we identify the budding yeast SUMO protease Ulp2, able to disassemble SUMO chains, as a DDK interactor enriched at replication origins that promotes DNA replication initiation. Replication-engaged DDK is SUMOylated on chromatin, becoming a degradation-prone substrate when Ulp2 no longer protects it against SUMO chain assembly. Specifically, SUMO chains channel DDK for SUMO-targeted ubiquitin ligase Slx5/Slx8-mediated and Cdc48 segregase-assisted proteasomal degradation. Importantly, the SUMOylation-defective ddk-KR mutant rescues inefficient replication onset and MCM activation in cells lacking Ulp2, suggesting that SUMO chains time DDK degradation. Using two unbiased proteomic approaches, we further identify subunits of the MCM helicase and other factors as SUMO-chain-modified degradation-prone substrates of Ulp2 and Slx5/Slx8. We thus propose SUMO-chain/Ulp2-protease-regulated proteasomal degradation as a mechanism that times the availability of functionally engaged SUMO-modified protein pools during replication and beyond.
Collapse
Affiliation(s)
- Ivan Psakhye
- IFOM, FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | | | - Dana Branzei
- IFOM, FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy; Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche (IGM-CNR), Via Abbiategrasso 207, 27100 Pavia, Italy.
| |
Collapse
|
30
|
Casar Tena T, Maerz LD, Szafranski K, Groth M, Blätte TJ, Donow C, Matysik S, Walther P, Jeggo PA, Burkhalter MD, Philipp M. Resting cells rely on the DNA helicase component MCM2 to build cilia. Nucleic Acids Res 2019; 47:134-151. [PMID: 30329080 PMCID: PMC6326816 DOI: 10.1093/nar/gky945] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 10/04/2018] [Indexed: 12/24/2022] Open
Abstract
Minichromosome maintenance (MCM) proteins facilitate replication by licensing origins and unwinding the DNA double strand. Interestingly, the number of MCM hexamers greatly exceeds the number of firing origins suggesting additional roles of MCMs. Here we show a hitherto unanticipated function of MCM2 in cilia formation in human cells and zebrafish that is uncoupled from replication. Zebrafish depleted of MCM2 develop ciliopathy-phenotypes including microcephaly and aberrant heart looping due to malformed cilia. In non-cycling human fibroblasts, loss of MCM2 promotes transcription of a subset of genes, which cause cilia shortening and centriole overduplication. Chromatin immunoprecipitation experiments show that MCM2 binds to transcription start sites of cilia inhibiting genes. We propose that such binding may block RNA polymerase II-mediated transcription. Depletion of a second MCM (MCM7), which functions in complex with MCM2 during its canonical functions, reveals an overlapping cilia-deficiency phenotype likely unconnected to replication, although MCM7 appears to regulate a distinct subset of genes and pathways. Our data suggests that MCM2 and 7 exert a role in ciliogenesis in post-mitotic tissues.
Collapse
Affiliation(s)
- Teresa Casar Tena
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081 Ulm, Germany
| | - Lars D Maerz
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081 Ulm, Germany
| | - Karol Szafranski
- Leibniz Institute on Aging, Fritz Lipmann Institute, 07745 Jena, Germany
| | - Marco Groth
- Leibniz Institute on Aging, Fritz Lipmann Institute, 07745 Jena, Germany
| | - Tamara J Blätte
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081 Ulm, Germany
| | - Cornelia Donow
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081 Ulm, Germany
| | - Sabrina Matysik
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081 Ulm, Germany
| | - Paul Walther
- Central Facility for Electron Microscopy, Ulm University, 89081 Ulm, Germany
| | - Penelope A Jeggo
- Genome Damage and Stability Centre, University of Sussex, Brighton BN1 9RQ, UK
| | - Martin D Burkhalter
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081 Ulm, Germany
| | - Melanie Philipp
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081 Ulm, Germany
| |
Collapse
|
31
|
Bai L, Dong J, Liu Z, Rao Y, Feng P, Lan K. Viperin catalyzes methionine oxidation to promote protein expression and function of helicases. SCIENCE ADVANCES 2019; 5:eaax1031. [PMID: 31489375 PMCID: PMC6713503 DOI: 10.1126/sciadv.aax1031] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 07/25/2019] [Indexed: 05/29/2023]
Abstract
Helicases play pivotal roles in fundamental biological processes, and posttranslational modifications regulate the localization, function, and stability of helicases. Here, we report that methionine oxidation of representative helicases, including DNA and RNA helicases of viral (ORF44 of KSHV) and cellular (MCM7 and RIG-I) origin, promotes their expression and functions. Cellular viperin, a major antiviral interferon-stimulated gene whose functions beyond host defense remain largely unknown, catalyzes the methionine oxidation of these helicases. Moreover, biochemical studies entailing loss-of-function mutations of helicases and a pharmacological inhibitor interfering with lipid metabolism and, hence, decreasing viperin activity indicate that methionine oxidation potently increases the stability and enzyme activity of these helicases that are critical for DNA replication and immune activation. Our work uncovers a pivotal role of viperin in catalyzing the methionine oxidation of helicases that are implicated in diverse fundamental biological processes.
Collapse
Affiliation(s)
- Lei Bai
- State Key Laboratory of Virology, College of Life Sciences, Medical Research Institute, Wuhan University, Wuhan 430072, P.R. China
| | - Jiazhen Dong
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, P.R. China
| | - Zhenqiu Liu
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, P.R. China
| | - Youliang Rao
- Section of Infection and Immunity, Herman Ostrow School of Dentistry and Norris Comprehensive Cancer Center, University of Southern California, 925 W 34th Street, Los Angeles, CA 90089, USA
| | - Pinghui Feng
- Section of Infection and Immunity, Herman Ostrow School of Dentistry and Norris Comprehensive Cancer Center, University of Southern California, 925 W 34th Street, Los Angeles, CA 90089, USA
| | - Ke Lan
- State Key Laboratory of Virology, College of Life Sciences, Medical Research Institute, Wuhan University, Wuhan 430072, P.R. China
| |
Collapse
|
32
|
Post-Translational Modifications of the Mini-Chromosome Maintenance Proteins in DNA Replication. Genes (Basel) 2019; 10:genes10050331. [PMID: 31052337 PMCID: PMC6563057 DOI: 10.3390/genes10050331] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/26/2019] [Accepted: 04/26/2019] [Indexed: 12/15/2022] Open
Abstract
The eukaryotic mini-chromosome maintenance (MCM) complex, composed of MCM proteins 2-7, is the core component of the replisome that acts as the DNA replicative helicase to unwind duplex DNA and initiate DNA replication. MCM10 tightly binds the cell division control protein 45 homolog (CDC45)/MCM2-7/ DNA replication complex Go-Ichi-Ni-San (GINS) (CMG) complex that stimulates CMG helicase activity. The MCM8-MCM9 complex may have a non-essential role in activating the pre-replicative complex in the gap 1 (G1) phase by recruiting cell division cycle 6 (CDC6) to the origin recognition complex (ORC). Each MCM subunit has a distinct function achieved by differential post-translational modifications (PTMs) in both DNA replication process and response to replication stress. Such PTMs include phosphorylation, ubiquitination, small ubiquitin-like modifier (SUMO)ylation, O-N-acetyl-D-glucosamine (GlcNAc)ylation, and acetylation. These PTMs have an important role in controlling replication progress and genome stability. Because MCM proteins are associated with various human diseases, they are regarded as potential targets for therapeutic development. In this review, we summarize the different PTMs of the MCM proteins, their involvement in DNA replication and disease development, and the potential therapeutic implications.
Collapse
|
33
|
RNA Sequencing Analysis of Molecular Basis of Sodium Butyrate-Induced Growth Inhibition on Colorectal Cancer Cell Lines. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1427871. [PMID: 30937307 PMCID: PMC6415300 DOI: 10.1155/2019/1427871] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 02/07/2019] [Indexed: 01/24/2023]
Abstract
Butyrate is a short-chain fatty acid decomposed from dietary fiber and has been shown to have effects on inhibition of proliferation but induction of apoptosis in colorectal cancer cells. However, clinical trials have yielded ambiguous outcomes with regard to its antitumor activities. In this study, we aimed to explore the molecular mechanisms underlying the sensitivity of colorectal cancer cells to sodium butyrate (NaB). RNA sequencing was used to establish the whole-transcriptome profile in NaB-treated versus untreated colorectal cancer cells. Differentially expressed genes were bioinformatically analyzed to predict their possible involvement in NaB-triggered cell death, and the expression of eight dysregulated genes was validated by quantitative real-time PCR. We found that there were a total of 7192 genes (5720 upregulated and 1472 downregulated, fold-change ≥ 2 or ≤ 0.5 for upregulation or downregulation, q-value < 0.05) differentially expressed in NaB-treated cells as compared with the untreated controls. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis demonstrated that the differentially expressed genes were enriched in DNA replication, cell cycle, homologous recombination, pyrimidine metabolism, mismatch repair, and other signaling pathways and may take part in NaB-induced cell death. Among the identified factors, the MCM2-7 complex might be a target of NaB. Our findings provide an important basis for further studies of the complicate network that might regulate sensitivity of colorectal cancer cells to NaB.
Collapse
|
34
|
Control of Eukaryotic DNA Replication Initiation-Mechanisms to Ensure Smooth Transitions. Genes (Basel) 2019; 10:genes10020099. [PMID: 30700044 PMCID: PMC6409694 DOI: 10.3390/genes10020099] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/25/2019] [Accepted: 01/25/2019] [Indexed: 02/06/2023] Open
Abstract
DNA replication differs from most other processes in biology in that any error will irreversibly change the nature of the cellular progeny. DNA replication initiation, therefore, is exquisitely controlled. Deregulation of this control can result in over-replication characterized by repeated initiation events at the same replication origin. Over-replication induces DNA damage and causes genomic instability. The principal mechanism counteracting over-replication in eukaryotes is a division of replication initiation into two steps—licensing and firing—which are temporally separated and occur at distinct cell cycle phases. Here, we review this temporal replication control with a specific focus on mechanisms ensuring the faultless transition between licensing and firing phases.
Collapse
|
35
|
Dhingra N, Wei L, Zhao X. Replication protein A (RPA) sumoylation positively influences the DNA damage checkpoint response in yeast. J Biol Chem 2018; 294:2690-2699. [PMID: 30591583 DOI: 10.1074/jbc.ra118.006006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/20/2018] [Indexed: 11/06/2022] Open
Abstract
The DNA damage response relies on protein modifications to elicit physiological changes required for coping with genotoxic conditions. Besides canonical DNA damage checkpoint-mediated phosphorylation, DNA damage-induced sumoylation has recently been shown to promote genotoxin survival. Cross-talk between these two pathways exists in both yeast and human cells. In particular, sumoylation is required for optimal checkpoint function, but the underlying mechanisms are not well-understood. To address this question, we examined the sumoylation of the first responder to DNA lesions, the ssDNA-binding protein complex replication protein A (RPA) in budding yeast (Saccharomyces cerevisiae). We delineated the sumoylation sites of the RPA large subunit, Rfa1 on the basis of previous and new mapping data. Findings using a sumoylation-defective Rfa1 mutant suggested that Rfa1 sumoylation acts in parallel with the 9-1-1 checkpoint complex to enhance the DNA damage checkpoint response. Mechanistically, sumoylated Rfa1 fostered an interaction with a checkpoint adaptor protein, Sgs1, and contributed to checkpoint kinase activation. Our results suggest that SUMO-based modulation of a DNA damage sensor positively influences the checkpoint response.
Collapse
Affiliation(s)
- Nalini Dhingra
- From the Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Lei Wei
- From the Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Xiaolan Zhao
- From the Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| |
Collapse
|
36
|
Mughal MJ, Mahadevappa R, Kwok HF. DNA replication licensing proteins: Saints and sinners in cancer. Semin Cancer Biol 2018; 58:11-21. [PMID: 30502375 DOI: 10.1016/j.semcancer.2018.11.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/08/2018] [Accepted: 11/26/2018] [Indexed: 12/12/2022]
Abstract
DNA replication is all-or-none process in the cell, meaning, once the DNA replication begins it proceeds to completion. Hence, to achieve maximum control of DNA replication, eukaryotic cells employ a multi-subunit initiator protein complex known as "pre-replication complex or DNA replication licensing complex (DNA replication LC). This complex involves multiple proteins which are origin-recognition complex family proteins, cell division cycle-6, chromatin licensing and DNA replication factor 1, and minichromosome maintenance family proteins. Higher-expression of DNA replication LC proteins appears to be an early event during development of cancer since it has been a common hallmark observed in a wide variety of cancers such as oesophageal, laryngeal, pulmonary, mammary, colorectal, renal, urothelial etc. However, the exact mechanisms leading to the abnormally high expression of DNA replication LC have not been clearly deciphered. Increased expression of DNA replication LC leads to licensing and/or firing of multiple origins thereby inducing replication stress and genomic instability. Therapeutic approaches where the reduction in the activity of DNA replication LC was achieved either by siRNA or shRNA techniques, have shown increased sensitivity of cancer cell lines towards the anti-cancer drugs such as cisplatin, 5-Fluorouracil, hydroxyurea etc. Thus, the expression level of DNA replication LC within the cell determines a cell's fate thereby creating a paradox where DNA replication LC acts as both "Saint" and "Sinner". With a potential to increase sensitivity to chemotherapy drugs, DNA replication LC proteins have prospective clinical importance in fighting cancer. Hence, in this review, we will shed light on importance of DNA replication LC with an aim to use DNA replication LC in diagnosis and prognosis of cancer in patients as well as possible therapeutic targets for cancer therapy.
Collapse
Affiliation(s)
- Muhammad Jameel Mughal
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau
| | - Ravikiran Mahadevappa
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau
| | - Hang Fai Kwok
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau.
| |
Collapse
|
37
|
Liu C, Li J. O-GlcNAc: A Sweetheart of the Cell Cycle and DNA Damage Response. Front Endocrinol (Lausanne) 2018; 9:415. [PMID: 30105004 PMCID: PMC6077185 DOI: 10.3389/fendo.2018.00415] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/02/2018] [Indexed: 01/22/2023] Open
Abstract
The addition and removal of O-linked N-acetylglucosamine (O-GlcNAc) to and from the Ser and Thr residues of proteins is an emerging post-translational modification. Unlike phosphorylation, which requires a legion of kinases and phosphatases, O-GlcNAc is catalyzed by the sole enzyme in mammals, O-GlcNAc transferase (OGT), and reversed by the sole enzyme, O-GlcNAcase (OGA). With the advent of new technologies, identification of O-GlcNAcylated proteins, followed by pinpointing the modified residues and understanding the underlying molecular function of the modification has become the very heart of the O-GlcNAc biology. O-GlcNAc plays a multifaceted role during the unperturbed cell cycle, including regulating DNA replication, mitosis, and cytokinesis. When the cell cycle is challenged by DNA damage stresses, O-GlcNAc also protects genome integrity via modifying an array of histones, kinases as well as scaffold proteins. Here we will focus on both cell cycle progression and the DNA damage response, summarize what we have learned about the role of O-GlcNAc in these processes and envision a sweeter research future.
Collapse
Affiliation(s)
| | - Jing Li
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, China
| |
Collapse
|
38
|
Peng XP, Lim S, Li S, Marjavaara L, Chabes A, Zhao X. Acute Smc5/6 depletion reveals its primary role in rDNA replication by restraining recombination at fork pausing sites. PLoS Genet 2018; 14:e1007129. [PMID: 29360860 PMCID: PMC5779651 DOI: 10.1371/journal.pgen.1007129] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 11/27/2017] [Indexed: 11/18/2022] Open
Abstract
Smc5/6, a member of the conserved SMC family of complexes, is essential for growth in most organisms. Its exact functions in a mitotic cell cycle are controversial, as chronic Smc5/6 loss-of-function alleles produce varying phenotypes. To circumvent this issue, we acutely depleted Smc5/6 in budding yeast and determined the first cell cycle consequences of Smc5/6 removal. We found a striking primary defect in replication of the ribosomal DNA (rDNA) array. Each rDNA repeat contains a programmed replication fork barrier (RFB) established by the Fob1 protein. Fob1 removal improves rDNA replication in Smc5/6 depleted cells, implicating Smc5/6 in the management of programmed fork pausing. A similar improvement is achieved by removing the DNA helicase Mph1 whose recombinogenic activity can be inhibited by Smc5/6 under DNA damage conditions. DNA 2D gel analyses further show that Smc5/6 loss increases recombination structures at RFB regions; moreover, mph1∆ and fob1∆ similarly reduce this accumulation. These findings point to an important mitotic role for Smc5/6 in restraining recombination events when protein barriers in rDNA stall replication forks. As rDNA maintenance influences multiple essential cellular processes, Smc5/6 likely links rDNA stability to overall mitotic growth. Smc5/6 belongs to the SMC (Structural Maintenance of Chromosomes) family of protein complexes, all of which are highly conserved and critical for genome maintenance. To address the roles of Smc5/6 during growth, we rapidly depleted its subunits in yeast and found the main acute effect to be defective ribosomal DNA (rDNA) duplication. The rDNA contains hundreds of sites that can pause replication forks; these must be carefully managed for cells to finish replication. We found that reducing fork pausing improved rDNA replication in cells without Smc5/6. Further analysis suggested that Smc5/6 prevents the DNA helicase Mph1 from turning paused forks into recombination structures, which cannot be processed without Smc5/6. Our findings thus revealed a key role for Smc5/6 in managing endogenous replication fork pausing. As rDNA and its associated nucleolar structure are critical for overall genome maintenance and other cellular processes, rDNA regulation by Smc5/6 would be expected to have multilayered effects on cell physiology and growth.
Collapse
Affiliation(s)
- Xiao P. Peng
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
- Tri-Institutional MD-PhD Program of Weill Cornell Medical School, Rockefeller University, and Sloan-Kettering Cancer Center, New York, NY, United States of America
| | - Shelly Lim
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| | - Shibai Li
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| | - Lisette Marjavaara
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Andrei Chabes
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Xiaolan Zhao
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
- * E-mail:
| |
Collapse
|
39
|
Okada T, Okabe G, Tak YS, Mimura S, Takisawa H, Kubota Y. Suppression of targeting of Dbf4-dependent kinase to pre-replicative complex in G0 nuclei. Genes Cells 2018; 23:94-104. [PMID: 29314475 DOI: 10.1111/gtc.12556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 12/01/2017] [Indexed: 12/01/2022]
Abstract
Intact G0 nuclei isolated from quiescent cells are not capable of DNA replication in interphase Xenopus egg extracts, which allow efficient replication of permeabilized G0 nuclei. Previous studies have shown multiple control mechanisms for maintaining the quiescent state, but DNA replication inhibition of intact G0 nuclei in the extracts remains poorly understood. Here, we showed that pre-RC is assembled on chromatin, but its activation is inhibited after incubating G0 nuclei isolated from quiescent NIH3T3 cells in the extracts. Concomitant with the inhibition of replication, Mcm4 phosphorylation mediated by Dbf4-dependent kinase (DDK) as well as chromatin binding of DDK is suppressed in G0 nuclei without affecting the nuclear transport of DDK. We further found that the nuclear extracts of G0 but not proliferating cells inhibit the binding of recombinant DDK to pre-RC assembled plasmids. In addition, we observed rapid activation of checkpoint kinases after incubating G0 nuclei in the egg extracts. However, specific inhibitors of ATR/ATM are unable to promote DNA replication in G0 nuclei in the egg extracts. We suggest that a novel inhibitory mechanism is functional to prevent the targeting of DDK to pre-RC in G0 nuclei, thereby suppressing DNA replication in Xenopus egg extracts.
Collapse
Affiliation(s)
- Takuya Okada
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan.,Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto, Kyoto, Japan
| | - Gaku Okabe
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan.,Engineering Integration Department, Air Water Inc., Osaka, Japan
| | - Yon-Soo Tak
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Satoru Mimura
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Haruhiko Takisawa
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Yumiko Kubota
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| |
Collapse
|
40
|
You Z, Masai H. Potent DNA strand annealing activity associated with mouse Mcm2∼7 heterohexameric complex. Nucleic Acids Res 2017; 45:6494-6506. [PMID: 28449043 PMCID: PMC5499727 DOI: 10.1093/nar/gkx269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 04/05/2017] [Indexed: 01/08/2023] Open
Abstract
Mini-chromosome maintenance (Mcm) is a central component for DNA unwinding reaction during eukaryotic DNA replication. Mcm2∼7, each containing a conserved ATPase motif, form a six subunit-heterohexamer. Although the reconstituted Mcm2∼7–Cdc45–GINS (CMG) complex displays DNA unwinding activity, the Mcm2∼7 complex does not generally exhibit helicase activity under a normal assay condition. We detected a strong DNA strand annealing activity in the purified mouse Mcm2∼7 heterohexamer, which promotes rapid reassociation of displaced complementary single-stranded DNAs, suggesting a potential cause for its inability to exhibit DNA helicase activity. Indeed, DNA unwinding activity of Mcm2∼7 could be detected in the presence of a single-stranded DNA that is complementary to the displaced strand, which would prevent its reannealing to the template. ATPase-deficient mutations in Mcm2, 4, 5 and 6 subunits inactivated the annealing activity, while those in Mcm2 and 5 subunits alone did not. The annealing activity of Mcm2∼7 does not require Mg2+ and ATP, and is adversely inhibited by the presence of high concentration of Mg2+ and ATP while activated by similar concentrations of ADP. Our findings show that the DNA helicase activity of Mcm2∼7 may be masked by its unexpectedly strong annealing activity, and suggest potential physiological roles of strand annealing activity of Mcm during replication stress responses.
Collapse
Affiliation(s)
- Zhiying You
- Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Hisao Masai
- Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| |
Collapse
|
41
|
Zilio N, Eifler-Olivi K, Ulrich HD. Functions of SUMO in the Maintenance of Genome Stability. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 963:51-87. [PMID: 28197906 DOI: 10.1007/978-3-319-50044-7_4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Like in most other areas of cellular metabolism, the functions of the ubiquitin-like modifier SUMO in the maintenance of genome stability are manifold and varied. Perturbations of global sumoylation causes a wide spectrum of phenotypes associated with defects in DNA maintenance, such as hypersensitivity to DNA-damaging agents, gross chromosomal rearrangements and loss of entire chromosomes. Consistent with these observations, many key factors involved in various DNA repair pathways have been identified as SUMO substrates. However, establishing a functional connection between a given SUMO target, the cognate SUMO ligase and a relevant phenotype has remained a challenge, mainly because of the difficulties involved in identifying important modification sites and downstream effectors that specifically recognize the target in its sumoylated state. This review will give an overview over the major pathways of DNA repair and genome maintenance influenced by the SUMO system and discuss selected examples of SUMO's actions in these pathways where the biological consequences of the modification have been elucidated.
Collapse
Affiliation(s)
- Nicola Zilio
- Institute of Molecular Biology (IMB), Ackermannweg 4, D-55128, Mainz, Germany
| | | | - Helle D Ulrich
- Institute of Molecular Biology (IMB), Ackermannweg 4, D-55128, Mainz, Germany.
| |
Collapse
|
42
|
Nuclear DNA Replication in Trypanosomatids: There Are No Easy Methods for Solving Difficult Problems. Trends Parasitol 2017; 33:858-874. [PMID: 28844718 PMCID: PMC5662062 DOI: 10.1016/j.pt.2017.08.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 07/31/2017] [Accepted: 08/02/2017] [Indexed: 01/09/2023]
Abstract
In trypanosomatids, etiological agents of devastating diseases, replication is robust and finely controlled to maintain genome stability and function in stressful environments. However, these parasites encode several replication protein components and complexes that show potentially variant composition compared with model eukaryotes. This review focuses on the advances made in recent years regarding the differences and peculiarities of the replication machinery in trypanosomatids, including how such divergence might affect DNA replication dynamics and the replication stress response. Comparing the DNA replication machinery and processes of parasites and their hosts may provide a foundation for the identification of targets that can be used in the development of chemotherapies to assist in the eradication of diseases caused by these pathogens. In trypanosomatids, DNA replication is tightly controlled by protein complexes that diverge from those of model eukaryotes. There is no consensus for the number of replication origins used by trypanosomatids; how their replication dynamics compares with that of model organisms is the subject of debate. The DNA replication rate in trypanosomatids is similar to, but slightly higher than, that of model eukaryotes, which may be related to chromatin structure and function. Recent data suggest that the origin recognition complex in trypanosomatids closely resembles the multisubunit eukaryotic model. The absence of fundamental replication-associated proteins in trypanosomatids suggests that new signaling pathways may be present in these parasites to direct DNA replication and the replicative stress response.
Collapse
|
43
|
Ravoitytė B, Wellinger RE. Non-Canonical Replication Initiation: You're Fired! Genes (Basel) 2017; 8:genes8020054. [PMID: 28134821 PMCID: PMC5333043 DOI: 10.3390/genes8020054] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 01/19/2017] [Indexed: 12/25/2022] Open
Abstract
The division of prokaryotic and eukaryotic cells produces two cells that inherit a perfect copy of the genetic material originally derived from the mother cell. The initiation of canonical DNA replication must be coordinated to the cell cycle to ensure the accuracy of genome duplication. Controlled replication initiation depends on a complex interplay of cis-acting DNA sequences, the so-called origins of replication (ori), with trans-acting factors involved in the onset of DNA synthesis. The interplay of cis-acting elements and trans-acting factors ensures that cells initiate replication at sequence-specific sites only once, and in a timely order, to avoid chromosomal endoreplication. However, chromosome breakage and excessive RNA:DNA hybrid formation can cause break-induced (BIR) or transcription-initiated replication (TIR), respectively. These non-canonical replication events are expected to affect eukaryotic genome function and maintenance, and could be important for genome evolution and disease development. In this review, we describe the difference between canonical and non-canonical DNA replication, and focus on mechanistic differences and common features between BIR and TIR. Finally, we discuss open issues on the factors and molecular mechanisms involved in TIR.
Collapse
Affiliation(s)
- Bazilė Ravoitytė
- Nature Research Centre, Akademijos g. 2, LT-08412 Vilnius, Lithuania.
| | - Ralf Erik Wellinger
- CABIMER-Universidad de Sevilla, Avd Americo Vespucio sn, 41092 Sevilla, Spain.
| |
Collapse
|
44
|
Parker MW, Botchan MR, Berger JM. Mechanisms and regulation of DNA replication initiation in eukaryotes. Crit Rev Biochem Mol Biol 2017; 52:107-144. [PMID: 28094588 DOI: 10.1080/10409238.2016.1274717] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cellular DNA replication is initiated through the action of multiprotein complexes that recognize replication start sites in the chromosome (termed origins) and facilitate duplex DNA melting within these regions. In a typical cell cycle, initiation occurs only once per origin and each round of replication is tightly coupled to cell division. To avoid aberrant origin firing and re-replication, eukaryotes tightly regulate two events in the initiation process: loading of the replicative helicase, MCM2-7, onto chromatin by the origin recognition complex (ORC), and subsequent activation of the helicase by its incorporation into a complex known as the CMG. Recent work has begun to reveal the details of an orchestrated and sequential exchange of initiation factors on DNA that give rise to a replication-competent complex, the replisome. Here, we review the molecular mechanisms that underpin eukaryotic DNA replication initiation - from selecting replication start sites to replicative helicase loading and activation - and describe how these events are often distinctly regulated across different eukaryotic model organisms.
Collapse
Affiliation(s)
- Matthew W Parker
- a Department of Biophysics and Biophysical Chemistry , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Michael R Botchan
- b Department of Molecular and Cell Biology , University of California Berkeley , Berkeley , CA , USA
| | - James M Berger
- a Department of Biophysics and Biophysical Chemistry , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| |
Collapse
|
45
|
Wei L, Zhao X. Roles of SUMO in Replication Initiation, Progression, and Termination. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1042:371-393. [PMID: 29357067 PMCID: PMC6643980 DOI: 10.1007/978-981-10-6955-0_17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Accurate genome duplication during cell division is essential for life. This process is accomplished by the close collaboration between replication factors and many additional proteins that provide assistant roles. Replication factors establish the replication machineries capable of copying billions of nucleotides, while regulatory proteins help to achieve accuracy and efficiency of replication. Among regulatory proteins, protein modification enzymes can bestow fast and reversible changes to many targets, leading to coordinated effects on replication. Recent studies have begun to elucidate how one type of protein modification, sumoylation, can modify replication proteins and regulate genome duplication through multiple mechanisms. This chapter summarizes these new findings, and how they can integrate with the known regulatory circuitries of replication. As this area of research is still at its infancy, many outstanding questions remain to be explored, and we discuss these issues in light of the new advances.
Collapse
Affiliation(s)
- Lei Wei
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Xiaolan Zhao
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
46
|
Analysis of SUMOylation in the RENT Complex by Fusion to a SUMO-Specific Protease Domain. Methods Mol Biol 2017; 1505:97-117. [PMID: 27826860 DOI: 10.1007/978-1-4939-6502-1_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Protein sumoylation is a reversible posttranslational modification that controls multiple processes during cell cycle progression. Frequently, SUMO synergistically targets various subunits in a protein complex to modulate its function, leading to what has been defined as protein group sumoylation. Different subunits in the RENT (regulator of nucleolar silencing and telophase) complex, including Net1, Sir2, and Cdc14, can be coupled to SUMO, making it difficult to ascertain the role of this modification. Here we describe a method to downregulate sumoylation in RENT, consisting in the fusion of a catalytic domain of the Ulp1 SUMO protease (Ulp Domain; UD) to the C-terminus of members in the complex using epitope tags as linkers. Targeting of the UD to specific loci can be simplified by transformation of PCR-amplified cassettes. The presence of the UD in the complex allows the concurrent downregulation of sumoylated species in the RENT complex, what can be easily monitored by pull-down of SUMO conjugates. This methodology can be applied to other protein complexes exhibiting group sumoylation.
Collapse
|
47
|
Gambus A. Termination of Eukaryotic Replication Forks. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1042:163-187. [DOI: 10.1007/978-981-10-6955-0_8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
48
|
Duncker BP. Mechanisms Governing DDK Regulation of the Initiation of DNA Replication. Genes (Basel) 2016; 8:genes8010003. [PMID: 28025497 PMCID: PMC5294998 DOI: 10.3390/genes8010003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 12/13/2016] [Accepted: 12/16/2016] [Indexed: 12/14/2022] Open
Abstract
The budding yeast Dbf4-dependent kinase (DDK) complex—comprised of cell division cycle (Cdc7) kinase and its regulatory subunit dumbbell former 4 (Dbf4)—is required to trigger the initiation of DNA replication through the phosphorylation of multiple minichromosome maintenance complex subunits 2-7 (Mcm2-7). DDK is also a target of the radiation sensitive 53 (Rad53) checkpoint kinase in response to replication stress. Numerous investigations have determined mechanistic details, including the regions of Mcm2, Mcm4, and Mcm6 phosphorylated by DDK, and a number of DDK docking sites. Similarly, the way in which the Rad53 forkhead-associated 1 (FHA1) domain binds to DDK—involving both canonical and non-canonical interactions—has been elucidated. Recent work has revealed mutual promotion of DDK and synthetic lethal with dpb11-1 3 (Sld3) roles. While DDK phosphorylation of Mcm2-7 subunits facilitates their interaction with Sld3 at origins, Sld3 in turn stimulates DDK phosphorylation of Mcm2. Details of a mutually antagonistic relationship between DDK and Rap1-interacting factor 1 (Rif1) have also recently come to light. While Rif1 is able to reverse DDK-mediated Mcm2-7 complex phosphorylation by targeting the protein phosphatase glycogen 7 (Glc7) to origins, there is evidence to suggest that DDK can counteract this activity by binding to and phosphorylating Rif1.
Collapse
Affiliation(s)
- Bernard P Duncker
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L3G1, Canada.
| |
Collapse
|
49
|
Lecona E, Fernandez-Capetillo O. A SUMO and ubiquitin code coordinates protein traffic at replication factories. Bioessays 2016; 38:1209-1217. [DOI: 10.1002/bies.201600129] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Emilio Lecona
- Spanish National Cancer Research Centre; CNIO; Madrid Spain
| | - Oscar Fernandez-Capetillo
- Spanish National Cancer Research Centre; CNIO; Madrid Spain
- Science for Life Laboratory; Division of Translational Medicine and Chemical Biology; Department of Medical Biochemistry and Biophysics; Karolinska Institute; Stockholm Sweden
| |
Collapse
|
50
|
Mulvaney KM, Matson JP, Siesser PF, Tamir TY, Goldfarb D, Jacobs TM, Cloer EW, Harrison JS, Vaziri C, Cook JG, Major MB. Identification and Characterization of MCM3 as a Kelch-like ECH-associated Protein 1 (KEAP1) Substrate. J Biol Chem 2016; 291:23719-23733. [PMID: 27621311 DOI: 10.1074/jbc.m116.729418] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Indexed: 12/30/2022] Open
Abstract
KEAP1 is a substrate adaptor protein for a CUL3-based E3 ubiquitin ligase. Ubiquitylation and degradation of the antioxidant transcription factor NRF2 is considered the primary function of KEAP1; however, few other KEAP1 substrates have been identified. Because KEAP1 is altered in a number of human pathologies and has been proposed as a potential therapeutic target therein, we sought to better understand KEAP1 through systematic identification of its substrates. Toward this goal, we combined parallel affinity capture proteomics and candidate-based approaches. Substrate-trapping proteomics yielded NRF2 and the related transcription factor NRF1 as KEAP1 substrates. Our targeted investigation of KEAP1-interacting proteins revealed MCM3, an essential subunit of the replicative DNA helicase, as a new substrate. We show that MCM3 is ubiquitylated by the KEAP1-CUL3-RBX1 complex in cells and in vitro Using ubiquitin remnant profiling, we identify the sites of KEAP1-dependent ubiquitylation in MCM3, and these sites are on predicted exposed surfaces of the MCM2-7 complex. Unexpectedly, we determined that KEAP1 does not regulate total MCM3 protein stability or subcellular localization. Our analysis of a KEAP1 targeting motif in MCM3 suggests that MCM3 is a point of direct contact between KEAP1 and the MCM hexamer. Moreover, KEAP1 associates with chromatin in a cell cycle-dependent fashion with kinetics similar to the MCM2-7 complex. KEAP1 is thus poised to affect MCM2-7 dynamics or function rather than MCM3 abundance. Together, these data establish new functions for KEAP1 within the nucleus and identify MCM3 as a novel substrate of the KEAP1-CUL3-RBX1 E3 ligase.
Collapse
Affiliation(s)
- Kathleen M Mulvaney
- From the Departments of Cell Biology and Physiology.,Lineberger Comprehensive Cancer Center, and
| | | | | | - Tigist Y Tamir
- Lineberger Comprehensive Cancer Center, and.,Pharmacology
| | - Dennis Goldfarb
- Lineberger Comprehensive Cancer Center, and.,Computer Science, and
| | - Timothy M Jacobs
- Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Erica W Cloer
- From the Departments of Cell Biology and Physiology.,Lineberger Comprehensive Cancer Center, and
| | - Joseph S Harrison
- Lineberger Comprehensive Cancer Center, and.,Biochemistry and Biophysics
| | - Cyrus Vaziri
- Lineberger Comprehensive Cancer Center, and.,Pathology
| | - Jeanette G Cook
- Lineberger Comprehensive Cancer Center, and .,Biochemistry and Biophysics
| | - Michael B Major
- From the Departments of Cell Biology and Physiology, .,Lineberger Comprehensive Cancer Center, and.,Pharmacology.,Computer Science, and
| |
Collapse
|