1
|
Lehner PA, Degen M, Jakob RP, Modaresi SM, Callon M, Burmann BM, Maier T, Hiller S. Architecture and conformational dynamics of the BAM-SurA holo insertase complex. SCIENCE ADVANCES 2025; 11:eads6094. [PMID: 40184469 PMCID: PMC11970506 DOI: 10.1126/sciadv.ads6094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 02/28/2025] [Indexed: 04/06/2025]
Abstract
The proper folding of outer membrane proteins in Gram-negative bacteria relies on their delivery to the β-barrel assembly machinery (BAM) complex. The mechanism by which survival protein A (SurA), the major periplasmic chaperone, facilitates this process is not well understood. We determine the structure of the holo insertase complex, where SurA binds BAM for substrate delivery. High-resolution cryo-electron microscopy structures of four different states and a three-dimensional variability analysis show that the holo insertase complex has a large motional spectrum. SurA bound to BAM can undergo a large swinging motion between two states. This motion is uncoupled from the conformational flexibility of the BamA barrel, which can open and close without affecting SurA binding. Notably, we observed conformational coupling of the SurA swing state and the carboxyl-terminal helix grip domain of BamC. Substrate delivery by SurA to BAM appears to follow a concerted motion that encodes a gated delivery pathway through the BAM accessory proteins to the membrane entry site.
Collapse
Affiliation(s)
| | - Morris Degen
- Biozentrum, University of Basel, Basel, Switzerland
- Swiss Nanoscience Institute, University of Basel, Basel, Switzerland
| | | | | | | | | | - Timm Maier
- Biozentrum, University of Basel, Basel, Switzerland
| | | |
Collapse
|
2
|
Wang X, Nyenhuis SB, Bernstein HD. The translocation assembly module (TAM) catalyzes the assembly of bacterial outer membrane proteins in vitro. Nat Commun 2024; 15:7246. [PMID: 39174534 PMCID: PMC11341756 DOI: 10.1038/s41467-024-51628-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 08/12/2024] [Indexed: 08/24/2024] Open
Abstract
The translocation and assembly module (TAM) has been proposed to play a crucial role in the assembly of a small subset of outer membrane proteins (OMPs) in Proteobacteria based on experiments conducted in vivo using tamA and tamB mutant strains and in vitro using biophysical methods. TAM consists of an OMP (TamA) and a periplasmic protein that is anchored to the inner membrane by a single α helix (TamB). Here we examine the function of the purified E. coli complex in vitro after reconstituting it into proteoliposomes. We find that TAM catalyzes the assembly of four model OMPs nearly as well as the β-barrel assembly machine (BAM), a universal heterooligomer that contains a TamA homolog (BamA) and that catalyzes the assembly of almost all E. coli OMPs. Consistent with previous results, both TamA and TamB are required for significant TAM activity. Our study provides direct evidence that TAM can function as an independent OMP insertase and describes a new method to gain insights into TAM function.
Collapse
Affiliation(s)
- Xu Wang
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sarah B Nyenhuis
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Harris D Bernstein
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
3
|
Devlin T, Fleming KG. A team of chaperones play to win in the bacterial periplasm. Trends Biochem Sci 2024; 49:667-680. [PMID: 38677921 DOI: 10.1016/j.tibs.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/14/2024] [Accepted: 03/22/2024] [Indexed: 04/29/2024]
Abstract
The survival and virulence of Gram-negative bacteria require proper biogenesis and maintenance of the outer membrane (OM), which is densely packed with β-barrel OM proteins (OMPs). Before reaching the OM, precursor unfolded OMPs (uOMPs) must cross the whole cell envelope. A network of periplasmic chaperones and proteases maintains unfolded but folding-competent conformations of these membrane proteins in the aqueous periplasm while simultaneously preventing off-pathway aggregation. These periplasmic proteins utilize different strategies, including conformational heterogeneity, oligomerization, multivalency, and kinetic partitioning, to perform and regulate their functions. Redundant and unique characteristics of the individual periplasmic players synergize to create a protein quality control team capable responding to changing environmental stresses.
Collapse
Affiliation(s)
- Taylor Devlin
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Karen G Fleming
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
4
|
Wang X, Nyenhuis SB, Bernstein HD. The translocation assembly module (TAM) catalyzes the assembly of bacterial outer membrane proteins in vitro. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.20.599893. [PMID: 39372782 PMCID: PMC11451606 DOI: 10.1101/2024.06.20.599893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The bacterial translocation assembly module (TAM) contains an outer membrane protein (OMP) (TamA) and an elongated periplasmic protein that is anchored to the inner membrane by a single α helix (TamB). TAM has been proposed to play a critical role in the assembly of a small subset of OMPs produced by Proteobacteria based on experiments conducted in vivo using tamA and/or tamB deletion or mutant strains and in vitro using biophysical methods. Recent genetic experiments, however, have strongly suggested that TAM promotes phospholipid homeostasis. To test the idea that TAM catalyzes OMP assembly directly, we examined the function of the purified E. coli complex in vitro after reconstituting it into proteoliposomes. Remarkably, we find that TAM catalyzes the assembly of four model OMPs nearly as well as the β-barrel assembly machinery (BAM), a universal heterooligomer that contains a TamA homolog (BamA) and that catalyzes the assembly of almost all E. coli OMPs. Consistent with previous results, both TamA and TamB are required for significant TAM activity. Our results provide strong evidence that although their peripheral subunits are unrelated, both BAM and TAM function as independent OMP insertases. Furthermore, our study describes a new method to gain insights into TAM function.
Collapse
Affiliation(s)
- Xu Wang
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - Sarah B. Nyenhuis
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - Harris D. Bernstein
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| |
Collapse
|
5
|
Lauber F, Deme JC, Liu X, Kjær A, Miller HL, Alcock F, Lea SM, Berks BC. Structural insights into the mechanism of protein transport by the Type 9 Secretion System translocon. Nat Microbiol 2024; 9:1089-1102. [PMID: 38538833 PMCID: PMC10994853 DOI: 10.1038/s41564-024-01644-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/19/2024] [Indexed: 04/06/2024]
Abstract
Secretion systems are protein export machines that enable bacteria to exploit their environment through the release of protein effectors. The Type 9 Secretion System (T9SS) is responsible for protein export across the outer membrane (OM) of bacteria of the phylum Bacteroidota. Here we trap the T9SS of Flavobacterium johnsoniae in the process of substrate transport by disrupting the T9SS motor complex. Cryo-EM analysis of purified substrate-bound T9SS translocons reveals an extended translocon structure in which the previously described translocon core is augmented by a periplasmic structure incorporating the proteins SprE, PorD and a homologue of the canonical periplasmic chaperone Skp. Substrate proteins bind to the extracellular loops of a carrier protein within the translocon pore. As transport intermediates accumulate on the translocon when energetic input is removed, we deduce that release of the substrate-carrier protein complex from the translocon is the energy-requiring step in T9SS transport.
Collapse
Affiliation(s)
- Frédéric Lauber
- Department of Biochemistry, University of Oxford, Oxford, UK
- de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Justin C Deme
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
- The Central Oxford Structural Molecular Imaging Centre (COSMIC), University of Oxford, Oxford, UK
| | - Xiaolong Liu
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Andreas Kjær
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Helen L Miller
- Biological Physics Research Group, Department of Physics, University of Oxford, Oxford, UK
| | - Felicity Alcock
- Department of Biochemistry, University of Oxford, Oxford, UK
- Newcastle University Biosciences Institute, Newcastle University, Newcastle, UK
| | - Susan M Lea
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA.
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
- The Central Oxford Structural Molecular Imaging Centre (COSMIC), University of Oxford, Oxford, UK.
| | - Ben C Berks
- Department of Biochemistry, University of Oxford, Oxford, UK.
| |
Collapse
|
6
|
Guo X, Hu F, Zhao S, Yong Z, Zhang Z, Peng N. Immunomagnetic Separation Method Integrated with the Strep-Tag II System for Rapid Enrichment and Mild Release of Exosomes. Anal Chem 2023; 95:3569-3576. [PMID: 36661256 DOI: 10.1021/acs.analchem.2c03470] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Exosomes are important participants in numerous pathophysiological processes and hold promising application value in cancer diagnosis, monitoring, and prognosis. However, the small size (40-160 nm) and high heterogeneity of exosomes make it still challenging to enrich exosomes efficiently from the complex biological fluid microenvironment, which has largely restricted their downstream analysis and clinical application. In this work, we introduced a novel method for rapid isolation and mild release of exosomes from the cell culture supernatant. A Strep-tag II-based immunomagnetic isolation (SIMI) system was constructed by modifying the capture antibodies onto magnetic nanoparticles through specific and reversible recognition between Strep-Tactin and Strep-tag II. Due to their high affinity and binding selectivity, exosomes could be isolated within 38 min with an isolation efficiency of 82.5% and a release efficiency of 62%. Compared with the gold-standard ultracentrifugation, the SIMI system could harvest nearly 59% more exosomes from the 293 T cell culture medium with shorter isolation time and higher purity. In addition, cellular uptake assay indicated that exosomes released from magnetic nanoparticles could maintain their high biological activity. These superior characteristics show that this novel method is a fast, efficient, and nondestructive exosome isolation tool and thus could potentially be further utilized in various exosome-related applications, e.g., disease diagnosis and drug delivery.
Collapse
Affiliation(s)
- Xiaoniu Guo
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710054, Shaanxi, China
| | - Fei Hu
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710054, Shaanxi, China.,Xi'an Key Laboratory of Biomedical Testing and High-End Equipment, Xi'an 710049, Shaanxi, China
| | - Shuhao Zhao
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710054, Shaanxi, China
| | - Zhang Yong
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710054, Shaanxi, China
| | - Zengming Zhang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710054, Shaanxi, China
| | - Niancai Peng
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710054, Shaanxi, China.,Xi'an Key Laboratory of Biomedical Testing and High-End Equipment, Xi'an 710049, Shaanxi, China
| |
Collapse
|
7
|
SurA-like and Skp-like Proteins as Important Virulence Determinants of the Gram Negative Bacterial Pathogens. Int J Mol Sci 2022; 24:ijms24010295. [PMID: 36613738 PMCID: PMC9820271 DOI: 10.3390/ijms24010295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
In the Gram-negative bacteria, many important virulence factors reach their destination via two-step export systems, and they must traverse the periplasmic space before reaching the outer membrane. Since these proteins must be maintained in a structure competent for transport into or across the membrane, they frequently require the assistance of chaperones. Based on the results obtained for the model bacterium Escherichia coli and related species, it is assumed that in the biogenesis of the outer membrane proteins and the periplasmic transit of secretory proteins, the SurA peptidyl-prolyl isomerase/chaperone plays a leading role, while the Skp chaperone is rather of secondary importance. However, detailed studies carried out on several other Gram-negative pathogens indicate that the importance of individual chaperones in the folding and transport processes depends on the properties of client proteins and is species-specific. Taking into account the importance of SurA functions in bacterial virulence and severity of phenotypes due to surA mutations, this folding factor is considered as a putative therapeutic target to combat microbial infections. In this review, we present recent findings regarding SurA and Skp proteins: their mechanisms of action, involvement in processes related to virulence, and perspectives to use them as therapeutic targets.
Collapse
|
8
|
Papadopoulos A, Busch M, Reiners J, Hachani E, Baeumers M, Berger J, Schmitt L, Jaeger KE, Kovacic F, Smits SHJ, Kedrov A. The periplasmic chaperone Skp prevents misfolding of the secretory lipase A from Pseudomonas aeruginosa. Front Mol Biosci 2022; 9:1026724. [DOI: 10.3389/fmolb.2022.1026724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas aeruginosa is a wide-spread opportunistic human pathogen and a high-risk factor for immunodeficient people and patients with cystic fibrosis. The extracellular lipase A belongs to the virulence factors of P. aeruginosa. Prior to the secretion, the lipase undergoes folding and activation by the periplasmic foldase LipH. At this stage, the enzyme is highly prone to aggregation in mild and high salt concentrations typical for the sputum of cystic fibrosis patients. Here, we demonstrate that the periplasmic chaperone Skp of P. aeruginosa efficiently prevents misfolding of the lipase A in vitro. In vivo experiments in P. aeruginosa show that the lipase secretion is nearly abolished in absence of the endogenous Skp. Small-angle X-ray scattering elucidates the trimeric architecture of P. aeruginosa Skp and identifies two primary conformations of the chaperone, a compact and a widely open. We describe two binding modes of Skp to the lipase, with affinities of 20 nM and 2 μM, which correspond to 1:1 and 1:2 stoichiometry of the lipase:Skp complex. Two Skp trimers are required to stabilize the lipase via the apolar interactions, which are not affected by elevated salt concentrations. We propose that Skp is a crucial chaperone along the lipase maturation and secretion pathway that ensures stabilization and carry-over of the client to LipH.
Collapse
|
9
|
Pang C, Zhang G, Liu S, Zhou J, Li J, Du G. Engineering sigma factors and chaperones for enhanced heterologous lipoxygenase production in Escherichia coli. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:105. [PMID: 36217152 PMCID: PMC9552429 DOI: 10.1186/s13068-022-02206-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/30/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Lipoxygenase (EC. 1.13.11.12, LOX) can catalyze the addition of oxygen into polyunsaturated fatty acids to produce hydroperoxides, which are widely used in the food, chemical, and pharmaceutical industries. In recent years, the heterologous production of LOX by Escherichia coli has attracted extensive attention. However, overexpressed recombinant LOX in E. coli aggregates and forms insoluble inclusion bodies owing to protein misfolding. RESULTS In this study, a split green fluorescent protein-based screening method was developed to screen sigma (σ) factors and molecular chaperones for soluble LOX expression. Three mutant libraries of Skp, GroES, and RpoH was analyzed using the high-throughput screening method developed herein, and a series of mutants with significantly higher yield of soluble heterologous LOX were obtained. The soluble expression level of LOX in the isolated mutants increased by 4.2- to 5.3-fold. Further, the highest LOX activity (up to 6240 ± 269 U·g-DCW-1) was observed in E. coli REopt, with the regulatory factor mutants, RpoH and GroES. Based on RNA-Seq analysis of the selected strains, E. coli Eopt, E. coli Sopt, E. coli Ropt, and wild type, amino acid substitutions in σ factors and molecular chaperones regulated the expression level of genes related to gene replication, recombination, and repair. Furthermore, the regulatory factor mutants were identified to be beneficial to the soluble expression of two other heterologous proteins, amylase and bone morphological protein 12. CONCLUSION In this study, a high-throughput screening method was developed for improved soluble LOX expression. The obtained positive mutants of the regulatory factor were analyzed and employed for the expression of other heterologous proteins, thus providing a potential solution for the inclusion-body protein.
Collapse
Affiliation(s)
- Cuiping Pang
- grid.258151.a0000 0001 0708 1323National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China ,grid.258151.a0000 0001 0708 1323Science Center for Future Foods, Jiangnan University, Wuxi, 214122 China
| | - Guoqiang Zhang
- grid.258151.a0000 0001 0708 1323National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China ,grid.258151.a0000 0001 0708 1323Science Center for Future Foods, Jiangnan University, Wuxi, 214122 China ,grid.258151.a0000 0001 0708 1323Engineering Research Center of Ministry of Education On Food Synthetic Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
| | - Song Liu
- grid.258151.a0000 0001 0708 1323National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China ,grid.258151.a0000 0001 0708 1323Science Center for Future Foods, Jiangnan University, Wuxi, 214122 China ,grid.258151.a0000 0001 0708 1323Engineering Research Center of Ministry of Education On Food Synthetic Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
| | - Jingwen Zhou
- grid.258151.a0000 0001 0708 1323National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China ,grid.258151.a0000 0001 0708 1323Science Center for Future Foods, Jiangnan University, Wuxi, 214122 China ,grid.258151.a0000 0001 0708 1323Engineering Research Center of Ministry of Education On Food Synthetic Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
| | - Jianghua Li
- grid.258151.a0000 0001 0708 1323Science Center for Future Foods, Jiangnan University, Wuxi, 214122 China ,grid.258151.a0000 0001 0708 1323School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China ,grid.258151.a0000 0001 0708 1323Engineering Research Center of Ministry of Education On Food Synthetic Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
| | - Guocheng Du
- grid.258151.a0000 0001 0708 1323Science Center for Future Foods, Jiangnan University, Wuxi, 214122 China ,grid.258151.a0000 0001 0708 1323School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China ,grid.258151.a0000 0001 0708 1323Engineering Research Center of Ministry of Education On Food Synthetic Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
| |
Collapse
|
10
|
Wang X, Bernstein HD. The Escherichia coli outer membrane protein OmpA acquires secondary structure prior to its integration into the membrane. J Biol Chem 2022; 298:101802. [PMID: 35257747 PMCID: PMC8987393 DOI: 10.1016/j.jbc.2022.101802] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 11/25/2022] Open
Abstract
Almost all proteins that reside in the outer membrane (OM) of Gram-negative bacteria contain a membrane-spanning segment that folds into a unique β barrel structure and inserts into the membrane by an unknown mechanism. To obtain further insight into outer membrane protein (OMP) biogenesis, we revisited the surprising observation reported over 20 years ago that the Escherichia coli OmpA β barrel can be assembled into a native structure in vivo when it is expressed as two noncovalently linked fragments. Here, we show that disulfide bonds between β strand 4 in the N-terminal fragment and β strand 5 in the C-terminal fragment can form in the periplasmic space and greatly increase the efficiency of assembly of "split" OmpA, but only if the cysteine residues are engineered in perfect register (i.e., they are aligned in the fully folded β barrel). In contrast, we observed only weak disulfide bonding between β strand 1 in the N-terminal fragment and β strand 8 in the C-terminal fragment that would form a closed or circularly permutated β barrel. Our results not only demonstrate that β barrels begin to fold into a β-sheet-like structure before they are integrated into the OM but also help to discriminate among the different models of OMP biogenesis that have been proposed.
Collapse
Affiliation(s)
- Xu Wang
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Harris D Bernstein
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
11
|
Troman LA, Collinson I. Pushing the Envelope: The Mysterious Journey Through the Bacterial Secretory Machinery, and Beyond. Front Microbiol 2021; 12:782900. [PMID: 34917061 PMCID: PMC8669966 DOI: 10.3389/fmicb.2021.782900] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/09/2021] [Indexed: 11/20/2022] Open
Abstract
Gram-negative bacteria are contained by an envelope composed of inner and outer-membranes with the peptidoglycan (PG) layer between them. Protein translocation across the inner membrane for secretion, or insertion into the inner membrane is primarily conducted using the highly conserved, hourglass-shaped channel, SecYEG: the core-complex of the Sec translocon. This transport process is facilitated by interactions with ancillary subcomplex SecDF-YajC (secretion) and YidC (insertion) forming the holo-translocon (HTL). This review recaps the transport process across the inner-membrane and then further explores how delivery and folding into the periplasm or outer-membrane is achieved. It seems very unlikely that proteins are jettisoned into the periplasm and left to their own devices. Indeed, chaperones such as SurA, Skp, DegP are known to play a part in protein folding, quality control and, if necessary degradation. YfgM and PpiD, by their association at the periplasmic surface of the Sec machinery, most probably are also involved in some way. Yet, it is not entirely clear how outer-membrane proteins are smuggled past the proteases and across the PG to the barrel-assembly machinery (BAM) and their final destination. Moreover, how can this be achieved, as is thought, without the input of energy? Recently, we proposed that the Sec and BAM translocons interact with one another, and most likely other factors, to provide a conduit to the periplasm and the outer-membrane. As it happens, numerous other specialized proteins secretion systems also form trans-envelope structures for this very purpose. The direct interaction between components across the envelope raises the prospect of energy coupling from the inner membrane for active transport to the outer-membrane. Indeed, this kind of long-range energy coupling through large inter-membrane assemblies occurs for small molecule import (e.g., nutrient import by the Ton complex) and export (e.g., drug efflux by the AcrAB-TolC complex). This review will consider this hypothetical prospect in the context of outer-membrane protein biogenesis.
Collapse
Affiliation(s)
| | - Ian Collinson
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
12
|
Herranz-Montoya I, Park S, Djouder N. A comprehensive analysis of prefoldins and their implication in cancer. iScience 2021; 24:103273. [PMID: 34761191 PMCID: PMC8567396 DOI: 10.1016/j.isci.2021.103273] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Prefoldins (PFDNs) are evolutionary conserved co-chaperones, initially discovered in archaea but universally present in eukaryotes. PFDNs are prevalently organized into hetero-hexameric complexes. Although they have been overlooked since their discovery and their functions remain elusive, several reports indicate they act as co-chaperones escorting misfolded or non-native proteins to group II chaperonins. Unlike the eukaryotic PFDNs which interact with cytoskeletal components, the archaeal PFDNs can bind and stabilize a wide range of substrates, possibly due to their great structural diversity. The discovery of the unconventional RPB5 interactor (URI) PFDN-like complex (UPC) suggests that PFDNs have versatile functions and are required for different cellular processes, including an important role in cancer. Here, we summarize their functions across different species. Moreover, a comprehensive analysis of PFDNs genomic alterations across cancer types by using large-scale cancer genomic data indicates that PFDNs are a new class of non-mutated proteins significantly overexpressed in some cancer types.
Collapse
Affiliation(s)
- Irene Herranz-Montoya
- Growth Factors, Nutrients and Cancer Group, Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas, CNIO, Madrid 28029, Spain
| | - Solip Park
- Computational Cancer Genomics Group, Structural Biology Programme, Centro Nacional de Investigaciones Oncológicas, CNIO, Madrid 28029, Spain
| | - Nabil Djouder
- Growth Factors, Nutrients and Cancer Group, Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas, CNIO, Madrid 28029, Spain
| |
Collapse
|
13
|
Sučec I, Bersch B, Schanda P. How do Chaperones Bind (Partly) Unfolded Client Proteins? Front Mol Biosci 2021; 8:762005. [PMID: 34760928 PMCID: PMC8573040 DOI: 10.3389/fmolb.2021.762005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/06/2021] [Indexed: 01/03/2023] Open
Abstract
Molecular chaperones are central to cellular protein homeostasis. Dynamic disorder is a key feature of the complexes of molecular chaperones and their client proteins, and it facilitates the client release towards a folded state or the handover to downstream components. The dynamic nature also implies that a given chaperone can interact with many different client proteins, based on physico-chemical sequence properties rather than on structural complementarity of their (folded) 3D structure. Yet, the balance between this promiscuity and some degree of client specificity is poorly understood. Here, we review recent atomic-level descriptions of chaperones with client proteins, including chaperones in complex with intrinsically disordered proteins, with membrane-protein precursors, or partially folded client proteins. We focus hereby on chaperone-client interactions that are independent of ATP. The picture emerging from these studies highlights the importance of dynamics in these complexes, whereby several interaction types, not only hydrophobic ones, contribute to the complex formation. We discuss these features of chaperone-client complexes and possible factors that may contribute to this balance of promiscuity and specificity.
Collapse
Affiliation(s)
- Iva Sučec
- CEA, CNRS, Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, Grenoble, France
| | - Beate Bersch
- CEA, CNRS, Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, Grenoble, France
| | - Paul Schanda
- CEA, CNRS, Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, Grenoble, France.,Institute of Science and Technology Austria, Klosterneuburg, Austria
| |
Collapse
|
14
|
Phan TH, Kuijl C, Huynh DT, Jong WSP, Luirink J, van Ulsen P. Overproducing the BAM complex improves secretion of difficult-to-secrete recombinant autotransporter chimeras. Microb Cell Fact 2021; 20:176. [PMID: 34488755 PMCID: PMC8419823 DOI: 10.1186/s12934-021-01668-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/26/2021] [Indexed: 11/14/2022] Open
Abstract
Monomeric autotransporters have been used extensively to transport recombinant proteins or protein domains to the cell surface of Gram-negative bacteria amongst others for antigen display. Genetic fusion of such antigens into autotransporters has yielded chimeras that can be used for vaccination purposes. However, not every fusion construct is transported efficiently across the cell envelope. Problems occur in particular when the fused antigen attains a relatively complex structure in the periplasm, prior to its translocation across the outer membrane. The latter step requires the interaction with periplasmic chaperones and the BAM (β-barrel assembly machinery) complex in the outer membrane. This complex catalyzes insertion and folding of β-barrel outer membrane proteins, including the β-barrel domain of autotransporters. Here, we investigated whether the availability of periplasmic chaperones or the BAM complex is a limiting factor for the surface localization of difficult-to-secrete chimeric autotransporter constructs. Indeed, we found that overproduction of in particular the BAM complex, increases surface display of difficult-to-secrete chimeras. Importantly, this beneficial effect appeared to be generic not only for a number of monomeric autotransporter fusions but also for fusions to trimeric autotransporters. Therefore, overproduction of BAM might be an attractive strategy to improve the production of recombinant autotransporter constructs.
Collapse
Affiliation(s)
- Trang H Phan
- Department of Molecular Microbiology, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Coen Kuijl
- Medical Microbiology and Infection Control, Amsterdam Institute of Infection & Immunity, Amsterdam UMC, Amsterdam, The Netherlands
| | - Dung T Huynh
- Department of Molecular Microbiology, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | | - Joen Luirink
- Department of Molecular Microbiology, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Abera Bioscience AB, Solna, Sweden
| | - Peter van Ulsen
- Department of Molecular Microbiology, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
15
|
Wang X, Peterson JH, Bernstein HD. Bacterial Outer Membrane Proteins Are Targeted to the Bam Complex by Two Parallel Mechanisms. mBio 2021; 12:e00597-21. [PMID: 33947759 PMCID: PMC8262991 DOI: 10.1128/mbio.00597-21] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 03/12/2021] [Indexed: 01/23/2023] Open
Abstract
Membrane proteins that are integrated into the outer membrane of Gram-negative bacteria typically contain a unique "β barrel" structure that serves as a membrane spanning segment. A conserved "β signal" motif is located at the C terminus of the β barrel of many outer membrane proteins (OMPs), but the function of this sequence is unclear. We found that mutations in the β signal slightly delayed the assembly of three model Escherichia coli OMPs by reducing their affinity for the barrel assembly machinery (Bam) complex, a heterooligomer that catalyzes β barrel insertion, and led to the degradation of a fraction of the protein in the periplasm. Interestingly, the absence of the periplasmic chaperone SurA amplified the effect of the mutations and caused the complete degradation of the mutant proteins. In contrast, the absence of another periplasmic chaperone (Skp) suppressed the effect of the mutations and considerably enhanced the efficiency of assembly. Our results reveal the existence of two parallel OMP targeting mechanisms that rely on a cis-acting peptide (the β signal) and a trans-acting factor (SurA), respectively. Our results also challenge the long-standing view that periplasmic chaperones are redundant and provide evidence that they have specialized functions.IMPORTANCE Proteins that are embedded in the outer membrane of Gram-negative bacteria (OMPs) play an important role in protecting the cell from harmful chemicals. OMPs share a common architecture and often contain a conserved sequence motif (β motif) of unknown function. Although OMPs are escorted to the outer membrane by proteins called chaperones, the exact function of the chaperones is also unclear. Here, we show that the β motif and the chaperone SurA both target OMPs to the β barrel insertion machinery in the outer membrane. In contrast, the chaperone Skp delivers unintegrated OMPs to protein degradation complexes. Our results challenge the long-standing view that chaperones are functionally redundant and strongly suggest that they have specialized roles in OMP targeting and quality control.
Collapse
Affiliation(s)
- Xu Wang
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Janine H Peterson
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Harris D Bernstein
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
16
|
Diederichs KA, Buchanan SK, Botos I. Building Better Barrels - β-barrel Biogenesis and Insertion in Bacteria and Mitochondria. J Mol Biol 2021; 433:166894. [PMID: 33639212 PMCID: PMC8292188 DOI: 10.1016/j.jmb.2021.166894] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/18/2021] [Accepted: 02/18/2021] [Indexed: 01/20/2023]
Abstract
β-barrel proteins are folded and inserted into outer membranes by multi-subunit protein complexes that are conserved across different types of outer membranes. In Gram-negative bacteria this complex is the barrel-assembly machinery (BAM), in mitochondria it is the sorting and assembly machinery (SAM) complex, and in chloroplasts it is the outer envelope protein Oep80. Mitochondrial β-barrel precursor proteins are translocated from the cytoplasm to the intermembrane space by the translocase of the outer membrane (TOM) complex, and stabilized by molecular chaperones before interaction with the assembly machinery. Outer membrane bacterial BamA interacts with four periplasmic accessory proteins, whereas mitochondrial Sam50 interacts with two cytoplasmic accessory proteins. Despite these major architectural differences between BAM and SAM complexes, their core proteins, BamA and Sam50, seem to function the same way. Based on the new SAM complex structures, we propose that the mitochondrial β-barrel folding mechanism follows the budding model with barrel-switching aiding in the release of new barrels. We also built a new molecular model for Tom22 interacting with Sam37 to identify regions that could mediate TOM-SAM supercomplex formation.
Collapse
Affiliation(s)
- Kathryn A Diederichs
- Laboratory of Molecular Biology, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Susan K Buchanan
- Laboratory of Molecular Biology, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Istvan Botos
- Laboratory of Molecular Biology, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| |
Collapse
|
17
|
Hiller S. Molecular chaperones and their denaturing effect on client proteins. JOURNAL OF BIOMOLECULAR NMR 2021; 75:1-8. [PMID: 33136251 PMCID: PMC7897196 DOI: 10.1007/s10858-020-00353-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/23/2020] [Indexed: 05/05/2023]
Abstract
Advanced NMR methods combined with biophysical techniques have recently provided unprecedented insight into structure and dynamics of molecular chaperones and their interaction with client proteins. These studies showed that several molecular chaperones are able to dissolve aggregation-prone polypeptides in aqueous solution. Furthermore, chaperone-bound clients often feature fluid-like backbone dynamics and chaperones have a denaturing effect on clients. Interestingly, these effects that chaperones have on client proteins resemble the effects of known chaotropic substances. Following this analogy, chaotropicity could be a fruitful concept to describe, quantify and rationalize molecular chaperone function. In addition, the observations raise the possibility that at least some molecular chaperones might share functional similarities with chaotropes. We discuss these concepts and outline future research in this direction.
Collapse
Affiliation(s)
- Sebastian Hiller
- Biozentrum, University of Basel, Klingelbergstr. 70, 4056, Basel, Switzerland.
| |
Collapse
|
18
|
Mas G, Burmann BM, Sharpe T, Claudi B, Bumann D, Hiller S. Regulation of chaperone function by coupled folding and oligomerization. SCIENCE ADVANCES 2020; 6:6/43/eabc5822. [PMID: 33087350 PMCID: PMC7577714 DOI: 10.1126/sciadv.abc5822] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/03/2020] [Indexed: 05/03/2023]
Abstract
The homotrimeric molecular chaperone Skp of Gram-negative bacteria facilitates the transport of outer membrane proteins across the periplasm. It has been unclear how its activity is modulated during its functional cycle. Here, we report an atomic-resolution characterization of the Escherichia coli Skp monomer-trimer transition. We find that the monomeric state of Skp is intrinsically disordered and that formation of the oligomerization interface initiates folding of the α-helical coiled-coil arms via a unique "stapling" mechanism, resulting in the formation of active trimeric Skp. Native client proteins contact all three Skp subunits simultaneously, and accordingly, their binding shifts the Skp population toward the active trimer. This activation mechanism is shown to be essential for Salmonella fitness in a mouse infection model. The coupled mechanism is a unique example of how an ATP-independent chaperone can modulate its activity as a function of the presence of client proteins.
Collapse
Affiliation(s)
- Guillaume Mas
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Björn M Burmann
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Timothy Sharpe
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Beatrice Claudi
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Dirk Bumann
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Sebastian Hiller
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland.
| |
Collapse
|
19
|
Affinity of Skp to OmpC revealed by single-molecule detection. Sci Rep 2020; 10:14871. [PMID: 32913243 PMCID: PMC7483523 DOI: 10.1038/s41598-020-71608-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 08/19/2020] [Indexed: 11/09/2022] Open
Abstract
Outer membrane proteins (OMPs) are essential to gram-negative bacteria, and molecular chaperones prevent the OMPs from aggregation in the periplasm during the OMPs biogenesis. Skp is one of the molecular chaperones for this purpose. Here, we combined single-molecule fluorescence resonance energy transfer and fluorescence correlation spectroscopy to study the affinity and stoichiometric ratio of Skp in its binding with OmpC at the single-molecule level. The half concentration of the Skp self-trimerization (C1/2) was measured to be (2.5 ± 0.7) × 102 nM. Under an Skp concentration far below the C1/2, OmpC could recruit Skp monomers to form OmpC·Skp3. The affinity to form the OmpC·Skp3 complex was determined to be (5.5 ± 0.4) × 102 pM with a Hill coefficient of 1.6 ± 0.2. Under the micromolar concentrations of Skp, the formation of OmpC·(Skp3)2 was confirmed, and the dissociation constant of OmpC·(Skp3)2 was determined to be 1.2 ± 0.4 μM. The precise information will help us to quantitatively depict the role of Skp in the biogenesis of OMPs.
Collapse
|
20
|
Müntener T, Böhm R, Atz K, Häussinger D, Hiller S. NMR pseudocontact shifts in a symmetric protein homotrimer. JOURNAL OF BIOMOLECULAR NMR 2020; 74:413-419. [PMID: 32621004 PMCID: PMC7508745 DOI: 10.1007/s10858-020-00329-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/25/2020] [Indexed: 06/11/2023]
Abstract
NMR pseudocontact shifts are a valuable tool for structural and functional studies of proteins. Protein multimers mediate key functional roles in biology, but methods for their study by pseudocontact shifts are so far not available. Paramagnetic tags attached to identical subunits in multimeric proteins cause a combined pseudocontact shift that cannot be described by the standard single-point model. Here, we report pseudocontact shifts generated simultaneously by three paramagnetic Tm-M7PyThiazole-DOTA tags to the trimeric molecular chaperone Skp and provide an approach for the analysis of this and related symmetric systems. The pseudocontact shifts were described by a "three-point" model, in which positions and parameters of the three paramagnetic tags were fitted. A good correlation between experimental data and predicted values was found, validating the approach. The study establishes that pseudocontact shifts can readily be applied to multimeric proteins, offering new perspectives for studies of large protein complexes by paramagnetic NMR spectroscopy.
Collapse
Affiliation(s)
- Thomas Müntener
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056, Basel, Switzerland
| | - Raphael Böhm
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056, Basel, Switzerland
| | - Kenneth Atz
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056, Basel, Switzerland
| | - Daniel Häussinger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Sebastian Hiller
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056, Basel, Switzerland.
| |
Collapse
|
21
|
Comparative sequence, structure and functional analysis of Skp protein, a molecular chaperone among members of Pasteurellaceae and its homologues in Gram-negative bacteria. Meta Gene 2020. [DOI: 10.1016/j.mgene.2020.100680] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
22
|
Abstract
Neurodegeneration in Parkinson’s disease is correlated with the occurrence of Lewy bodies, intracellular inclusions containing aggregates of the intrinsically disordered protein (IDP) α-Synuclein1. The aggregation propensity of α-Synuclein in cells is modulated by specific factors including posttranslational modifications2,3, Abelson-kinase-mediated phosphorylation4,5 and interactions with intracellular machineries such as molecular chaperones, although the underlying mechanisms are unclear6–8. Here, we systematically characterize the interaction of molecular chaperones with α-Synuclein in vitro as well as in cells at the atomic level. We find that six vastly different molecular chaperones commonly recognize a canonical motif in α-Synuclein, consisting of the amino-terminus and a segment around Tyr39, hindering its aggregation. In-cell NMR experiments9 show the same transient interaction pattern preserved inside living mammalian cells. Specific inhibition of the interactions between α-Synuclein and the chaperones Hsc70 and Hsp90 yields transient membrane binding and triggers a remarkable re-localization of α-Synuclein to mitochondria and concomitant aggregate formation. Phosphorylation of α-Synuclein at Tyr39 directly impairs the chaperone interaction, thus providing a functional explanation for the role of Abelson kinase in Parkinson’s disease progression. Our results establish a master regulatory mechanism of α-Synuclein function and aggregation in mammalian cells, extending the functional repertoire of molecular chaperones and opening new perspectives for therapeutic interventions for Parkinson’s disease.
Collapse
|
23
|
Abstract
Skp and other holdase chaperones bind unfolded bacterial outer membrane proteins, preventing premature folding until they insert into the membrane. In this issue of Structure, Holdbrook et al. (2017) use a combination of NMR, SAXS, ensemble optimization, and MD simulations to show that the Skp chaperone samples a much wider range of conformations than suggested by its structure alone.
Collapse
|
24
|
Hiller S. Chaperone-Bound Clients: The Importance of Being Dynamic. Trends Biochem Sci 2019; 44:517-527. [PMID: 30611607 DOI: 10.1016/j.tibs.2018.12.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/29/2018] [Accepted: 12/11/2018] [Indexed: 01/14/2023]
Abstract
Several recent atomic-resolution studies have resolved how chaperones interact with their client proteins. In some cases, molecular chaperones recognize and bind their clients in conformational ensembles that are locally highly dynamic and interconvert, while in other cases clients bind in unique conformations. The presence of a locally dynamic client ensemble state has important consequences, both for the interpretation of experimental data and for the functionality of chaperones, as local dynamics facilitate rapid client release, folding on and from the chaperone surface, and client recognition without shape complementarity. Facilitated by the local dynamics, at least some chaperones appear to specifically recognize energetically frustrated sites of partially folded client proteins, such that the release of frustration contributes to the interaction affinity.
Collapse
|
25
|
Abstract
The periplasm of Gram-negative bacteria contains a specialized chaperone network that facilitates the transport of unfolded membrane proteins to the outer membrane as its primary functional role. The network, involving the chaperones Skp and SurA as key players and potentially additional chaperones, is indispensable for the survival of the cell. Structural descriptions of the apo forms of these molecular chaperones were initially provided by X-ray crystallography. Subsequently, a combination of experimental biophysical methods including solution NMR spectroscopy provided a detailed understanding of full-length chaperone-client complexes . The data showed that conformational changes and dynamic re-organization of the chaperones upon client binding, as well as client dynamics on the chaperone surface are crucial for function. This chapter gives an overview of the structure-function relationship of the dynamic conformational rearrangements that regulate the functional cycles of the periplasmic molecular chaperones Skp and SurA.
Collapse
Affiliation(s)
- Guillaume Mas
- Biozentrum, University of Basel, Klingelbergstrasse 70, Basel, 4056, Switzerland
| | - Johannes Thoma
- Department of Chemistry and Molecular Biology, Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Medicinaregatan 9c, 405 30, Gothenburg, Sweden
| | - Sebastian Hiller
- Biozentrum, University of Basel, Klingelbergstrasse 70, Basel, 4056, Switzerland.
| |
Collapse
|
26
|
Schüßler A, Herwig S, Kleinschmidt JH. Kinetics of Insertion and Folding of Outer Membrane Proteins by Gel Electrophoresis. Methods Mol Biol 2019; 2003:145-162. [PMID: 31218617 DOI: 10.1007/978-1-4939-9512-7_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
To examine the mechanisms of folding and insertion of TMPs into membranes, kinetic studies are instrumental, for example, for the analysis of folding steps and involved intermediates or for the determination of activation energies. For many β-barrel transmembrane proteins (β-TMPs) it has been shown that the folded, functional form can be separated from the unfolded form by a simple electrophoretic mobility assay. The only requirements for a separation by SDS-polyacrylamide gel electrophoresis (SDS-PAGE) are that the folded form is sufficiently stable and that the samples are not heat-denatured before the electrophoresis is performed. Many folded β-TMPs resist the treatment with SDS at room temperature and are stable against forces during electrophoresis. On the other side, SDS also binds to unfolded forms of β-TMPs and prevents their folding into β-barrel structure. These observations have been used to develop a simple assay to monitor the kinetics of β-barrel tertiary structure formation in a membrane environment by electrophoresis. A folding reaction of a β-TMP is initiated by dilution of the denaturant in the presence of preformed lipid bilayers, proteoliposomes or membrane vesicles. At selected times, samples are taken from the reaction. In these samples, folding is stopped by addition of SDS. At the end of the entire folding reaction, all samples are analyzed by SDS-PAGE and the fractions of folded β-TMP that they contain are determined by densitometry.An advantage of this kinetic assay is that it not only allows a direct determination of fractions of folded and unfolded forms at a selected time during folding of the β-TMP into a membrane, but also facilitates the determination of the impact of folding factors (e.g., molecular chaperones) or folding machinery that most often have a different molecular mass and electrophoretic mobility. The assay has been very useful to examine how folding and insertion is affected by the structure of the phospholipids in the lipid bilayer and how folding machinery compensates for the presence of membrane lipids that retard folding and insertion of β-TMPs.
Collapse
Affiliation(s)
- Andre Schüßler
- Department of Biophysics, Institute of Biology, FB10 and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel, Kassel, Germany
| | - Sascha Herwig
- Department of Biophysics, Institute of Biology, FB10 and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel, Kassel, Germany
| | - Jörg H Kleinschmidt
- Department of Biophysics, Institute of Biology, FB10 and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel, Kassel, Germany.
| |
Collapse
|
27
|
Bibow S, Hiller S. A guide to quantifying membrane protein dynamics in lipids and other native-like environments by solution-state NMR spectroscopy. FEBS J 2018; 286:1610-1623. [PMID: 30133960 DOI: 10.1111/febs.14639] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/04/2018] [Accepted: 08/20/2018] [Indexed: 02/06/2023]
Abstract
Recent biochemical and technical developments permit residue-specific solution NMR measurements of membrane protein (MP) dynamics in lipidic and chaperone-bound environments. This is possible by combinations of improved sample preparations with suitable NMR relaxation experiments to correlate protein function to backbone dynamics on timescales from picoseconds to seconds, even for large MP-lipid assemblies above 100 kDa in molecular mass. Here, we introduce the basic concepts of different NMR relaxation experiments, individually sensitive to specific timescales. We discuss the general limitations of detergent environments and highlight the importance for native-like environments when studying MPs. We then review three practical studies of fast- and slow-timescale MP dynamics in lipid environments, as well as in a natively unfolded, chaperone-bound state. These examples illustrate the new avenues solution NMR spectroscopy is taking to investigate MP dynamics in native-like environments with atomic resolution.
Collapse
|
28
|
Hartmann JB, Zahn M, Burmann IM, Bibow S, Hiller S. Sequence-Specific Solution NMR Assignments of the β-Barrel Insertase BamA to Monitor Its Conformational Ensemble at the Atomic Level. J Am Chem Soc 2018; 140:11252-11260. [PMID: 30125090 DOI: 10.1021/jacs.8b03220] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
β-barrel outer membrane proteins (Omps) are key functional components of the outer membranes of Gram-negative bacteria, mitochondria, and plastids. In bacteria, their biogenesis requires the β-barrel-assembly machinery (Bam) with the central insertase BamA, but the exact translocation and insertion mechanism remains elusive. The BamA insertase features a loosely closed gating region between the first and last β-strand 16. Here, we describe ∼70% complete sequence-specific NMR resonance assignments of the transmembrane region of the BamA β-barrel in detergent micelles. On the basis of the assignments, NMR spectra show that the BamA barrel populates a conformational ensemble in slow exchange equilibrium, both in detergent micelles and lipid bilayer nanodiscs. Individual conformers can be selected from the ensemble by the introduction of a C-terminal strand extension, single-point mutations, or specific disulfide cross-linkings, and these modifications at the barrel seam are found to be allosterically coupled to sites at the entire barrel circumference. The resonance assignment provides a platform for mechanistic studies of BamA at atomic resolution, as well as for investigating interactions with potential antibiotic drugs and partner proteins.
Collapse
Affiliation(s)
| | - Michael Zahn
- Biozentrum , University of Basel , Klingelbergstrasse 70 , 4056 Basel , Switzerland
| | | | - Stefan Bibow
- Biozentrum , University of Basel , Klingelbergstrasse 70 , 4056 Basel , Switzerland
| | - Sebastian Hiller
- Biozentrum , University of Basel , Klingelbergstrasse 70 , 4056 Basel , Switzerland
| |
Collapse
|
29
|
Abstract
The biogenesis of periplasmic and outer membrane proteins (OMPs) in Escherichia coli is assisted by a variety of processes that help with their folding and transport to their final destination in the cellular envelope. Chaperones are macromolecules, usually proteins, that facilitate the folding of proteins or prevent their aggregation without becoming part of the protein's final structure. Because chaperones often bind to folding intermediates, they often (but not always) act to slow protein folding. Protein folding catalysts, on the other hand, act to accelerate specific steps in the protein folding pathway, including disulfide bond formation and peptidyl prolyl isomerization. This review is primarily concerned with E. coli and Salmonella periplasmic and cellular envelope chaperones; it also discusses periplasmic proline isomerization.
Collapse
Affiliation(s)
- Frederick Stull
- Dept of Molecular Cellular and Developmental Biology, Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI 48109
| | - Jean-Michel Betton
- Unité de Repliement et Modélisation des Protéines, Institut Pasteur-CNRS URA2185, 75724 Paris cedex 15, France
| | - James C A Bardwell
- Dept of Molecular Cellular and Developmental Biology, Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
30
|
Mas G, Hiller S. Conformational plasticity of molecular chaperones involved in periplasmic and outer membrane protein folding. FEMS Microbiol Lett 2018; 365:4998852. [DOI: 10.1093/femsle/fny121] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 05/15/2018] [Indexed: 12/14/2022] Open
Affiliation(s)
- Guillaume Mas
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Sebastian Hiller
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| |
Collapse
|
31
|
Li G, He C, Bu P, Bi H, Pan S, Sun R, Zhao XS. Single-Molecule Detection Reveals Different Roles of Skp and SurA as Chaperones. ACS Chem Biol 2018. [PMID: 29543429 DOI: 10.1021/acschembio.8b00097] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Skp and SurA are both periplasmic chaperones involved in the biogenesis of Escherichia coli β-barrel outer membrane proteins (OMPs). It is commonly assumed that SurA plays a major role whereas Skp is a minor factor. However, there is no molecular evidence for whether their roles are redundant. Here, by using different dilution methods, we obtained monodisperse and aggregated forms of OmpC and studied their interactions with Skp and SurA by single-molecule fluorescence resonance energy transfer and fluorescence correlation spectroscopy. We found that Skp can dissolve aggregated OmpC while SurA cannot convert aggregated OmpC into the monodisperse form and the conformations of OmpC recognized by the two chaperones as well as their stoichiometries of binding are different. Our study demonstrates the functional distinctions between Skp and SurA. In particular, the role of Skp is not redundant and is probably more significant under stress conditions.
Collapse
Affiliation(s)
- Geng Li
- Department of Chemical Biology, Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing 100871, China
| | - Chenhui He
- Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing 100871, China
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Peixuan Bu
- Department of Chemical Biology, Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing 100871, China
| | - Huimin Bi
- Department of Chemical Biology, Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing 100871, China
| | - Sichen Pan
- Department of Chemical Biology, Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing 100871, China
| | - Ronghua Sun
- Department of Chemical Biology, Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing 100871, China
| | - Xin Sheng Zhao
- Department of Chemical Biology, Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing 100871, China
| |
Collapse
|
32
|
He L, Hiller S. Common Patterns in Chaperone Interactions with a Native Client Protein. Angew Chem Int Ed Engl 2018; 57:5921-5924. [PMID: 29498447 DOI: 10.1002/anie.201713064] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/31/2018] [Indexed: 11/08/2022]
Abstract
Many molecular chaperones are promiscuous and interact with a wide range of unfolded, quasi-native, and native client proteins. The mechanisms by which chaperones interact with the highly diverse structures of native clients thus remain puzzling. In this work, we investigate at the atomic level how three ATP-independent chaperones interact with a β-sheet-rich protein, the Fyn SH3 domain. The results reveal that the chaperone Spy recognizes the locally frustrated surface of the client Fyn SH3 and that the interaction is transient and highly dynamic, leaving the chaperone-interacting surface on Fyn SH3 solvent accessible. The two alternative molecular chaperones SurA and Skp recognize the same locally frustrated surface of the Fyn SH3 domain. These results indicate dynamic recognition of frustrated segments as a common mechanism underlying the chaperone-native client interaction, which also provides a basis for chaperone promiscuousness.
Collapse
Affiliation(s)
- Lichun He
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056, Basel, Switzerland
| | - Sebastian Hiller
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056, Basel, Switzerland
| |
Collapse
|
33
|
He L, Hiller S. Übereinstimmende Muster in Chaperon-Interaktionen mit einem nativen Klientenprotein. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201713064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Lichun He
- Biozentrum; University of Basel; Klingelbergstraße 70 4056 Basel Schweiz
| | - Sebastian Hiller
- Biozentrum; University of Basel; Klingelbergstraße 70 4056 Basel Schweiz
| |
Collapse
|
34
|
Ranava D, Caumont-Sarcos A, Albenne C, Ieva R. Bacterial machineries for the assembly of membrane-embedded β-barrel proteins. FEMS Microbiol Lett 2018; 365:4961134. [DOI: 10.1093/femsle/fny087] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 04/03/2018] [Indexed: 12/11/2022] Open
Affiliation(s)
- David Ranava
- Laboratoire de Microbiologie et de Génétique Moléculaires, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 118 route de Narbonne, 31062 Toulouse, France
| | - Anne Caumont-Sarcos
- Laboratoire de Microbiologie et de Génétique Moléculaires, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 118 route de Narbonne, 31062 Toulouse, France
| | - Cécile Albenne
- Laboratoire de Microbiologie et de Génétique Moléculaires, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 118 route de Narbonne, 31062 Toulouse, France
| | - Raffaele Ieva
- Laboratoire de Microbiologie et de Génétique Moléculaires, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 118 route de Narbonne, 31062 Toulouse, France
| |
Collapse
|
35
|
Hiller S, Burmann BM. Chaperone-client complexes: A dynamic liaison. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 289:142-155. [PMID: 29544626 DOI: 10.1016/j.jmr.2017.12.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/08/2017] [Accepted: 12/10/2017] [Indexed: 06/08/2023]
Abstract
Living cells contain molecular chaperones that are organized in intricate networks to surveil protein homeostasis by avoiding polypeptide misfolding, aggregation, and the generation of toxic species. In addition, cellular chaperones also fulfill a multitude of alternative functionalities: transport of clients towards a target location, help them fold, unfold misfolded species, resolve aggregates, or deliver clients towards proteolysis machineries. Until recently, the only available source of atomic resolution information for virtually all chaperones were crystal structures of their client-free, apo-forms. These structures were unable to explain details of the functional mechanisms underlying chaperone-client interactions. The difficulties to crystallize chaperones in complexes with clients arise from their highly dynamic nature, making solution NMR spectroscopy the method of choice for their study. With the advent of advanced solution NMR techniques, in the past few years a substantial number of structural and functional studies on chaperone-client complexes have been resolved, allowing unique insight into the chaperone-client interaction. This review summarizes the recent insights provided by advanced high-resolution NMR-spectroscopy to understand chaperone-client interaction mechanisms at the atomic scale.
Collapse
Affiliation(s)
- Sebastian Hiller
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Björn M Burmann
- Department of Chemistry and Molecular Biology, Wallenberg Centre for Molecular and Translational Medicine, University for Gothenburg, 405 30 Göteborg, Sweden.
| |
Collapse
|
36
|
Kędzior M, Pawlak A, Seredyński R, Bania J, Platt-Samoraj A, Czemplik M, Klausa E, Bugla-Płoskońska G, Gutowicz J. Revealing the inhibitory potential of Yersinia enterocolitica on cysteine proteases of the papain family. Microbiol Res 2018; 207:211-225. [DOI: 10.1016/j.micres.2017.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 11/29/2017] [Accepted: 12/04/2017] [Indexed: 11/27/2022]
|
37
|
Shimizu K, Cao W, Saad G, Shoji M, Terada T. Comparative analysis of membrane protein structure databases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1077-1091. [PMID: 29331638 DOI: 10.1016/j.bbamem.2018.01.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 12/28/2017] [Accepted: 01/04/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Membrane proteins play important roles in cell survival and cell communication, as they function as transporters, receptors, anchors and enzymes. They are also potential targets for drugs that block receptors or inhibit enzymes related to diseases. Although the number of known structures of membrane proteins is still small relative to the size of the proteome as a whole, many new membrane protein structures have been determined recently. SCOPE OF THE ARTICLE We compared and analyzed the widely used membrane protein databases, mpstruc, Orientations of Proteins in Membranes (OPM), and PDBTM, as well as the extended dataset of mpstruc based on sequence similarity, the PDB structures whose classification field indicates that they are "membrane proteins" and the proteins with Structural Classification of Proteins (SCOP) class-f domains. We evaluated the relationships between these databases or datasets based on the overlap in their contents and the degree of consistency in the structural, topological, and functional classifications and in the transmembrane domain assignment. MAJOR CONCLUSIONS The membrane databases differ from each other in their coverage, and in the criteria that they use for annotation and classification. To ensure the efficient use of these databases, it is important to understand their differences and similarities. The establishment of more detailed and consistent annotations for the sequence, structure, membrane association, and function of membrane proteins is still required. GENERAL SIGNIFICANCE Considering the recent growth of experimentally determined structures, a broad survey and cumulative analysis of the sum of knowledge as presented in the membrane protein structure databases can be helpful to elucidate structures and functions of membrane proteins. We also aim to provide a framework for future research and classification of membrane proteins.
Collapse
Affiliation(s)
- Kentaro Shimizu
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.
| | - Wei Cao
- Faculty of Information Networking for Innovation and Design, Toyo University, Tokyo, Japan.
| | - Gull Saad
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.
| | - Michiru Shoji
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.
| | - Tohru Terada
- Agricultural Bioinformatics Research Unit, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
38
|
Arranz R, Martín-Benito J, Valpuesta JM. Structure and Function of the Cochaperone Prefoldin. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1106:119-131. [PMID: 30484157 DOI: 10.1007/978-3-030-00737-9_9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Molecular chaperones are key players in proteostasis, the balance between protein synthesis, folding, assembly and degradation. They are helped by a plethora of cofactors termed cochaperones, which direct chaperones towards any of these different, sometime opposite pathways. One of these is prefoldin (PFD), present in eukaryotes and in archaea, a heterohexamer whose best known role is the assistance to group II chaperonins (the Hsp60 chaperones found in archaea and the eukaryotic cytosolic) in the folding of proteins in the cytosol, in particular cytoskeletal proteins. However, over the last years it has become evident a more complex role for this cochaperone, as it can adopt different oligomeric structures, form complexes with other proteins and be involved in many other processes, both in the cytosol and in the nucleus, different from folding. This review intends to describe the structure and the many functions of this interesting macromolecular complex.
Collapse
Affiliation(s)
- Rocío Arranz
- Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | | | | |
Collapse
|
39
|
Albenne C, Ieva R. Job contenders: roles of the β-barrel assembly machinery and the translocation and assembly module in autotransporter secretion. Mol Microbiol 2017; 106:505-517. [PMID: 28887826 DOI: 10.1111/mmi.13832] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2017] [Indexed: 01/17/2023]
Abstract
In Gram-negative bacteria, autotransporters secrete effector protein domains that are linked to virulence. Although they were once thought to be simple and autonomous secretion machines, mounting evidence reveals that multiple factors of the bacterial envelope are necessary for autotransporter assembly. Secretion across the outer membrane of their soluble effector "passenger domain" is promoted by the assembly of an outer membrane-spanning "β-barrel domain". Both reactions require BamA, an essential component of the β-barrel assembly machinery (BAM complex) that catalyzes the final reaction step by which outer membrane proteins are integrated into the lipid bilayer. A large amount of data generated in the last decade has shed key insights onto the mechanistic coordination of autotransporter β-barrel domain assembly and passenger domain secretion. These results, together with the recently solved structures of the BAM complex, offer an unprecedented opportunity to discuss a detailed model of autotransporter assembly. Importantly, some autotransporters benefit from the presence of an additional machinery, the translocation and assembly module (TAM), a two-membrane spanning complex, which contains a BamA-homologous subunit. Although it remains unclear how the BAM complex and the TAM cooperate, it is evident that multiple preparatory steps are necessary for efficient autotransporter biogenesis.
Collapse
Affiliation(s)
- Cécile Albenne
- Laboratoire de Microbiologie et de Génétique Moléculaires, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Raffaele Ieva
- Laboratoire de Microbiologie et de Génétique Moléculaires, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
40
|
Schiffrin B, Calabrese AN, Higgins AJ, Humes JR, Ashcroft AE, Kalli AC, Brockwell DJ, Radford SE. Effects of Periplasmic Chaperones and Membrane Thickness on BamA-Catalyzed Outer-Membrane Protein Folding. J Mol Biol 2017; 429:3776-3792. [PMID: 28919234 PMCID: PMC5692476 DOI: 10.1016/j.jmb.2017.09.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/08/2017] [Accepted: 09/09/2017] [Indexed: 11/18/2022]
Abstract
The biogenesis of outer-membrane proteins (OMPs) in gram-negative bacteria involves delivery by periplasmic chaperones to the β-barrel assembly machinery (BAM), which catalyzes OMP insertion into the outer membrane. Here, we examine the effects of membrane thickness, the Escherichia coli periplasmic chaperones Skp and SurA, and BamA, the central subunit of the BAM complex, on the folding kinetics of a model OMP (tOmpA) using fluorescence spectroscopy, native mass spectrometry, and molecular dynamics simulations. We show that prefolded BamA promotes the release of tOmpA from Skp despite the nM affinity of the Skp:tOmpA complex. This activity is located in the BamA β-barrel domain, but is greater when full-length BamA is present, indicating that both the β-barrel and polypeptide transport-associated (POTRA) domains are required for maximal activity. By contrast, SurA is unable to release tOmpA from Skp, providing direct evidence against a sequential chaperone model. By varying lipid acyl chain length in synthetic liposomes we show that BamA has a greater catalytic effect on tOmpA folding in thicker bilayers, suggesting that BAM catalysis involves lowering of the kinetic barrier imposed by the hydrophobic thickness of the membrane. Consistent with this, molecular dynamics simulations reveal that increases in membrane thinning/disorder by the transmembrane domain of BamA is greatest in thicker bilayers. Finally, we demonstrate that cross-linking of the BamA barrel does not affect tOmpA folding kinetics in 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) liposomes, suggesting that lateral gating of the BamA barrel and/or hybrid barrel formation is not required, at least for the assembly of a small 8-stranded OMP in vitro. Mechanisms of OMP periplasmic transport and folding by BAM are poorly understood. BamA catalyzes folding by reducing the kinetic barrier imposed by membrane thickness. BamA proteoliposomes promote folding of Skp-bound tOmpA. Lateral gating is not required for BamA-catalyzed folding of tOmpA in DMPC bilayers.
Collapse
Affiliation(s)
- Bob Schiffrin
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Antonio N Calabrese
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Anna J Higgins
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Julia R Humes
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Alison E Ashcroft
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Antreas C Kalli
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; Leeds Institute of Cancer and Pathology, University of Leeds, St. James's University Hospital, Wellcome Trust Brenner Building, Leeds LS9 7TF, UK
| | - David J Brockwell
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
41
|
Holdbrook DA, Burmann BM, Huber RG, Petoukhov MV, Svergun DI, Hiller S, Bond PJ. A Spring-Loaded Mechanism Governs the Clamp-like Dynamics of the Skp Chaperone. Structure 2017. [PMID: 28648612 DOI: 10.1016/j.str.2017.05.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The trimeric periplasmic holdase chaperone Skp binds and stabilizes unfolded outer membrane proteins (OMPs) as part of bacterial OMP biogenesis. Skp binds client proteins in its central cavity, thereby reducing its backbone dynamics, but the molecular mechanisms that govern Skp dynamics and adaptation to differently sized clients remains unknown. Here, we employ a combination of microsecond timescale molecular dynamics simulation, small-angle X-ray scattering, and nuclear magnetic resonance spectroscopy to reveal that Skp is remarkably flexible, and features a molecular spring-loaded mechanism in its "tentacle" arms that enables switching between two distinct conformations on sub-millisecond timescales. The conformational switch is executed around a conserved pivot element within the coiled-coil structures of the tentacles, allowing expansion of the cavity and thus accommodation of differently sized clients. The spring-loaded mechanism shows how a chaperone can efficiently modulate its structure and function in an ATP-independent manner.
Collapse
Affiliation(s)
- Daniel A Holdbrook
- Bioinformatics Institute (A∗STAR), 30 Biopolis Street, #07-01 Matrix, 138671 Singapore, Singapore
| | - Björn M Burmann
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Roland G Huber
- Bioinformatics Institute (A∗STAR), 30 Biopolis Street, #07-01 Matrix, 138671 Singapore, Singapore
| | - Maxim V Petoukhov
- European Molecular Biology Laboratory, EMBL Hamburg Outstation, c/o DESY, Notkestrasse 85, 22607 Hamburg, Germany; A.V. Shubnikov Institute of Crystallography, Federal Scientific Research Centre "Crystallography and Photonics", Russian Academy of Sciences, Leninsky Prospect 59, 119333 Moscow, Russia; A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky Prospect 31, 119071 Moscow, Russia; N.N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Kosygina Street 4, 119991 Moscow, Russia
| | - Dmitri I Svergun
- European Molecular Biology Laboratory, EMBL Hamburg Outstation, c/o DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Sebastian Hiller
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland.
| | - Peter J Bond
- Bioinformatics Institute (A∗STAR), 30 Biopolis Street, #07-01 Matrix, 138671 Singapore, Singapore; Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543 Singapore, Singapore.
| |
Collapse
|
42
|
Abstract
Coiled coils appear in countless structural contexts, as appendages to small proteins, as parts of multi-domain proteins, and as building blocks of filaments. Although their structure is unpretentious and their basic properties are understood in great detail, the spectrum of functional properties they provide in different proteins has become increasingly complex. This chapter aims to depict this functional spectrum, to identify common themes and their molecular basis, with an emphasis on new insights gained into dynamic aspects.
Collapse
Affiliation(s)
- Marcus D Hartmann
- Max Planck Institute for Developmental Biology, Spemannstraße 35, 72076, Tübingen, Germany.
| |
Collapse
|
43
|
Yadav DK, Yadav N, Yadav S, Haque S, Tuteja N. An insight into fusion technology aiding efficient recombinant protein production for functional proteomics. Arch Biochem Biophys 2016; 612:57-77. [DOI: 10.1016/j.abb.2016.10.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/15/2016] [Accepted: 10/18/2016] [Indexed: 11/27/2022]
|
44
|
He L, Sharpe T, Mazur A, Hiller S. A molecular mechanism of chaperone-client recognition. SCIENCE ADVANCES 2016; 2:e1601625. [PMID: 28138538 PMCID: PMC5262456 DOI: 10.1126/sciadv.1601625] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 10/12/2016] [Indexed: 05/13/2023]
Abstract
Molecular chaperones are essential in aiding client proteins to fold into their native structure and in maintaining cellular protein homeostasis. However, mechanistic aspects of chaperone function are still not well understood at the atomic level. We use nuclear magnetic resonance spectroscopy to elucidate the mechanism underlying client recognition by the adenosine triphosphate-independent chaperone Spy at the atomic level and derive a structural model for the chaperone-client complex. Spy interacts with its partially folded client Im7 by selective recognition of flexible, locally frustrated regions in a dynamic fashion. The interaction with Spy destabilizes a partially folded client but spatially compacts an unfolded client conformational ensemble. By increasing client backbone dynamics, the chaperone facilitates the search for the native structure. A comparison of the interaction of Im7 with two other chaperones suggests that the underlying principle of recognizing frustrated segments is of a fundamental nature.
Collapse
|
45
|
Schiffrin B, Calabrese AN, Devine PWA, Harris SA, Ashcroft AE, Brockwell DJ, Radford SE. Skp is a multivalent chaperone of outer-membrane proteins. Nat Struct Mol Biol 2016; 23:786-793. [PMID: 27455461 PMCID: PMC5018216 DOI: 10.1038/nsmb.3266] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 06/24/2016] [Indexed: 01/17/2023]
Abstract
The trimeric chaperone Skp sequesters outer-membrane proteins (OMPs) within a hydrophobic cage, thereby preventing their aggregation during transport across the periplasm in Gram-negative bacteria. Here, we studied the interaction between Escherichia coli Skp and five OMPs of varying size. Investigations of the kinetics of OMP folding revealed that higher Skp/OMP ratios are required to prevent the folding of 16-stranded OMPs compared with their 8-stranded counterparts. Ion mobility spectrometry-mass spectrometry (IMS-MS) data, computer modeling and molecular dynamics simulations provided evidence that 10- to 16-stranded OMPs are encapsulated within an expanded Skp substrate cage. For OMPs that cannot be fully accommodated in the expanded cavity, sequestration is achieved by binding of an additional Skp trimer. The results suggest a new mechanism for Skp chaperone activity involving the coordination of multiple copies of Skp in protecting a single substrate from aggregation.
Collapse
Affiliation(s)
- Bob Schiffrin
- Astbury Centre for Structural Molecular Biology
- School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - Antonio N Calabrese
- Astbury Centre for Structural Molecular Biology
- School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - Paul W A Devine
- Astbury Centre for Structural Molecular Biology
- School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - Sarah A Harris
- Astbury Centre for Structural Molecular Biology
- School of Physics and Astronomy, University of Leeds, Leeds, UK
| | - Alison E Ashcroft
- Astbury Centre for Structural Molecular Biology
- School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - David J Brockwell
- Astbury Centre for Structural Molecular Biology
- School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology
- School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| |
Collapse
|
46
|
Rollauer SE, Sooreshjani MA, Noinaj N, Buchanan SK. Outer membrane protein biogenesis in Gram-negative bacteria. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2015.0023. [PMID: 26370935 DOI: 10.1098/rstb.2015.0023] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Gram-negative bacteria contain a double membrane which serves for both protection and for providing nutrients for viability. The outermost of these membranes is called the outer membrane (OM), and it contains a host of fully integrated membrane proteins which serve essential functions for the cell, including nutrient uptake, cell adhesion, cell signalling and waste export. For pathogenic strains, many of these outer membrane proteins (OMPs) also serve as virulence factors for nutrient scavenging and evasion of host defence mechanisms. OMPs are unique membrane proteins in that they have a β-barrel fold and can range in size from 8 to 26 strands, yet can still serve many different functions for the cell. Despite their essential roles in cell survival and virulence, the exact mechanism for the biogenesis of these OMPs into the OM has remained largely unknown. However, the past decade has witnessed significant progress towards unravelling the pathways and mechanisms necessary for moulding a nascent polypeptide into a functional OMP within the OM. Here, we will review some of these recent discoveries that have advanced our understanding of the biogenesis of OMPs in Gram-negative bacteria, starting with synthesis in the cytoplasm to folding and insertion into the OM.
Collapse
Affiliation(s)
- Sarah E Rollauer
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Moloud A Sooreshjani
- Markey Center for Structural Biology, Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Nicholas Noinaj
- Markey Center for Structural Biology, Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Susan K Buchanan
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
47
|
Burmann BM, Holdbrook DA, Callon M, Bond PJ, Hiller S. Revisiting the interaction between the chaperone Skp and lipopolysaccharide. Biophys J 2016; 108:1516-1526. [PMID: 25809264 DOI: 10.1016/j.bpj.2015.01.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 12/22/2014] [Accepted: 01/28/2015] [Indexed: 10/23/2022] Open
Abstract
The bacterial outer membrane comprises two main classes of components, lipids and membrane proteins. These nonsoluble compounds are conveyed across the aqueous periplasm along specific molecular transport routes: the lipid lipopolysaccharide (LPS) is shuttled by the Lpt system, whereas outer membrane proteins (Omps) are transported by chaperones, including the periplasmic Skp. In this study, we revisit the specificity of the chaperone-lipid interaction of Skp and LPS. High-resolution NMR spectroscopy measurements indicate that LPS interacts with Skp nonspecifically, accompanied by destabilization of the Skp trimer and similar to denaturation by the nonnatural detergent lauryldimethylamine-N-oxide (LDAO). Bioinformatic analysis of amino acid conservation, structural analysis of LPS-binding proteins, and MD simulations further confirm the absence of a specific LPS binding site on Skp, making a biological relevance of the interaction unlikely. Instead, our analysis reveals a highly conserved salt-bridge network, which likely has a role for Skp function.
Collapse
Affiliation(s)
| | | | | | - Peter J Bond
- Bioinformatics Institute (A(∗)STAR), Singapore; Department of Biological Sciences, National University of Singapore, Singapore
| | | |
Collapse
|
48
|
Abstract
The β-barrel outer membrane proteins (OMPs) are integral membrane proteins that reside in the outer membrane of Gram-negative bacteria and perform a diverse range of biological functions. Synthesized in the cytoplasm, OMPs must be transported across the inner membrane and through the periplasmic space before they are assembled in the outer membrane. In Escherichia coli, Skp, SurA and DegP are the most prominent factors identified to guide OMPs across the periplasm and to play the role of quality control. Although extensive genetic and biochemical analyses have revealed many basic functions of these periplasmic proteins, the mechanism of their collaboration in assisting the folding and insertion of OMPs is much less understood. Recently, biophysical approaches have shed light on the identification of the intricate network. In the present review, we summarize recent advances in the characterization of these key factors, with a special emphasis on the multifunctional protein DegP. In addition, we present our proposed model on the periplasmic quality control in biogenesis of OMPs.
Collapse
|
49
|
Abstract
Biogenesis of the Gram-negative outer membrane involves the chaperone seventeen kilodalton protein (Skp). A Skp trimer is currently thought to bind its unfolded outer membrane protein (uOMP) substrates. Using sedimentation equilibrium, we discovered that Skp is not an obligate trimer under physiological conditions and that Na(+), Cl(-), Mg(2+), and PO4(3-) ions are not linked to Skp trimerization. These findings suggest that electrostatics play a negligible role in Skp assembly. Our results demonstrate that Skp monomers are populated at biologically relevant concentrations, which raises the idea that kinetic formation of Skp-uOMP complexes likely involves Skp monomer assembly around its substrate. In addition, van't Hoff analysis of Skp self-association does not support a previously proposed coupled folding and trimerization of Skp.
Collapse
Affiliation(s)
- Clifford W. Sandlin
- T.C. Jenkins Department of Biophysics, The Johns Hopkins University, Baltimore MD 21218
| | - Nathan R. Zaccai
- T.C. Jenkins Department of Biophysics, The Johns Hopkins University, Baltimore MD 21218
| | - Karen G. Fleming
- T.C. Jenkins Department of Biophysics, The Johns Hopkins University, Baltimore MD 21218
| |
Collapse
|
50
|
Abstract
The major class of integral proteins found in the outer membrane (OM) of E. coli and Salmonella adopt a β-barrel conformation (OMPs). OMPs are synthesized in the cytoplasm with a typical signal sequence at the amino terminus, which directs them to the secretion machinery (SecYEG) located in the inner membrane for translocation to the periplasm. Chaperones such as SurA, or DegP and Skp, escort these proteins across the aqueous periplasm protecting them from aggregation. The chaperones then deliver OMPs to a highly conserved outer membrane assembly site termed the Bam complex. In E. coli, the Bam complex is composed of an essential OMP, BamA, and four associated OM lipoproteins, BamBCDE, one of which, BamD, is also essential. Here we provide an overview of what we know about the process of OMP assembly and outline the various hypotheses that have been proposed to explain how proteins might be integrated into the asymmetric OM lipid bilayer in an environment that lacks obvious energy sources. In addition, we describe the envelope stress responses that ensure the fidelity of OM biogenesis and how factors, such as phage and certain toxins, have coopted this essential machine to gain entry into the cell.
Collapse
|