1
|
Isa HM, Abdulnabi MJ, Naser NS, Lahmda FN, AlAnsari NM, Isa ZH, Mohamed AM. Clinical, laboratory, and therapeutic differences between immunoglobulin E-mediated and non-immunoglobulin E-mediated cow’s milk protein allergy in children. World J Clin Pediatr 2025; 14:100386. [DOI: 10.5409/wjcp.v14.i1.100386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/08/2024] [Accepted: 11/12/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Although breast milk is ideal for newborns, in some cases, it is replaced with cow’s milk, which contains proteins that increase the risk of cow’s milk protein allergy (CMPA).
AIM To evaluate CMPA prevalence in Bahrain and compare clinical characteristics of children with immunoglobulin E (IgE)- and non-IgE-mediated CMPA.
METHODS This retrospective cohort study examined children with CMPA diagnosed at the pediatric gastroenterology outpatient clinic of the Salmaniya Medical Complex, Bahrain, between 2014 and 2022, and assessed CMPA prevalence. Clinical presentations, laboratory findings, dietary modifications, and outcomes were compared between children with IgE-mediated and non-IgE-mediated CMPA. Categorical variables were compared using Fisher’s exact test or Pearson’s χ2 test, whereas continuous variables were compared using Student’s t-test or the Mann-Whitney U test.
RESULTS Of 8332 patients, 6022 (72.3%) adhered to their appointment. Of them, 618 (10.3%) were suggested of having CMPA and 595 (96.3%) were included; CMPA prevalence was 2%. Most patients were Bahraini (93.8%) and males (55.3%). Non-IgE-mediated type accounted for 77.3% cases and IgE-mediated type, 22.7%. IgE-mediated CMPA presented more in boys (P = 0.030), and later in life (5.1 months ± 4.5 months vs 4.2 months ± 4.2 months, P = 0.016, 95%CI: 0.08-1.73), had more associated diseases (P < 0.001); and presented with more cutaneous (P = 0.024) and respiratory (P = 0.003) manifestations, severe symptoms [rash/dry skin (P = 0.031), facial swelling/angioedema (P = 0.003), failure to thrive (P = 0.013), apparent life-threatening event (P < 0.001)], and positive physical findings (P = 0.002) than non-IgE-mediated CMPA. Most patients were exclusively fed cow milk formula (50.3%). The amino acid-based formula (AAF) was most prescribed (60.5%) with no difference between the two types (P = 0.173). Although breastfeeding was recommended to 49.6%, only 8.2% were exclusively breastfed. IgE-mediated CMPA was associated with a longer follow-up duration than non-IgE-mediated CMPA (17.3 months ± 14.0 months vs 13.5 months ± 13.4 months, P = 0.005, 95%CI: 1.1-6.3).
CONCLUSION This study revealed a high CMPA prevalence with clinical differences between both types that can influence treatment. AAF was most prescribed, while breastfeeding with dietary modification is rarely applied.
Collapse
Affiliation(s)
- Hasan M Isa
- Department of Pediatrics, Salmaniya Medical Complex, Manama 26671, Bahrain
- Department of Pediatrics, Arabian Gulf University, Manama 26671, Bahrain
| | - Marwa J Abdulnabi
- Department of Pediatrics, Salmaniya Medical Complex, Manama 26671, Bahrain
| | - Nawra S Naser
- Department of Pediatrics, Salmaniya Medical Complex, Manama 26671, Bahrain
| | - Fatema N Lahmda
- Department of Pediatrics, Salmaniya Medical Complex, Manama 26671, Bahrain
| | - Noor M AlAnsari
- Department of Pediatrics, Salmaniya Medical Complex, Manama 26671, Bahrain
| | - Zahra H Isa
- Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Afaf M Mohamed
- Public Health Directorate, Ministry of Health, Manama 26671, Bahrain
| |
Collapse
|
2
|
Du M, Li S, Jiang J, Ma X, Liu L, Wang T, Zhang J, Niu D. Advances in the Pathogenesis and Treatment Strategies for Type 1 Diabetes Mellitus. Int Immunopharmacol 2025; 148:114185. [PMID: 39893858 DOI: 10.1016/j.intimp.2025.114185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/26/2025] [Accepted: 01/26/2025] [Indexed: 02/04/2025]
Abstract
Type 1 diabetes (T1D) is a complex autoimmune disorder distinguished by the infiltration of immune cells into pancreatic islets, primarily resulting in damage to pancreatic β-cells. Despite extensive research, the precise pathogenesis of T1D remains elusive, with its etiology linked to a complex interplay of genetic, immune, and environmental factors. While genetic predispositions, such as HLA and other susceptibility genes, are necessary, they do not fully account for disease development. Environmental influences such as viral infections and dietary factors may contribute to the disease by affecting the immune system and epigenetic modifications. Additionally, endogenous retroviruses (ERVs) might play a role in T1D pathogenesis. Current therapeutic approaches, including insulin replacement therapy, immune omodulatory therapy, autoantigen immunotherapy, organ transplantation, and genetic modification, offer potential to alter disease progression but are still constrained by limitations. This review presents updated knowledge on T1D, with a focus on risk factors, predisposing hypotheses, and recent advancements in therapeutic strategies.
Collapse
Affiliation(s)
- Meiheng Du
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang 311300, China
| | - Sihong Li
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang 311300, China
| | - Jun Jiang
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang 311300, China
| | - Xiang Ma
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang 311300, China
| | - Lu Liu
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang 311300, China
| | - Tao Wang
- Nanjing Kgene Genetic Engineering Co., Ltd, Nanjing, Jiangsu 211300, China
| | - Jufang Zhang
- Department of Plastic Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang 310006, China.
| | - Dong Niu
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang 311300, China.
| |
Collapse
|
3
|
Kim E, Chen C, Chu MJ, Hamstra MF, Bentley WE, Payne GF. Proline-Selective Electrochemiluminescence Detecting a Single Amino Acid Variation Between A1 and A2 β-Casein Containing Milks. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411956. [PMID: 39644502 PMCID: PMC11792022 DOI: 10.1002/advs.202411956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/05/2024] [Indexed: 12/09/2024]
Abstract
The proline amino acid and prolyl residues of peptides/proteins confer unique biological and biochemical properties that motivates the development of proline-selective analysis. The study focuses on one specific class of problem, the detection of single amino acid variants involving proline, and reports a Pro-selective electrochemiluminescence (ECL) method. To develop this method, the A1-/A2- variants of milk's β-casein protein are investigated because it is a well-established example and abundant samples are readily available. Specifically, β-casein has 209 amino acids with 34 (or 35) proline residues: the A1-variant has a Pro-to-His substitution at position 67 (relative to the A2 variant). The study shows that proline's strong luminescence allows the generic discrimination of: Pro from other amino acids; an A2-oligopeptide from an A1-oligopeptide; the A2-β-casein variant from the A1-variant; and commercially-available A2 milks from A1-containing regular milks. The evidence indicates that luminescence depends on proline content and accessibility, as well as signal quenching. Compared to conventional immunoassays, the ECL method is simple, rapid, and inexpensive. Further, the ECL-method is Pro-selective (vs molecularly-selective like typical immunoassays) which should make it broadly useful for studying the role of proline in biology and especially useful for tracking the digestion of proline-rich proteins in the diet.
Collapse
Affiliation(s)
- Eunkyoung Kim
- Institute for Bioscience and Biotechnology ResearchUniversity of MarylandCollege ParkMaryland20742USA
- Robert E. Fischell Institute for Biomedical DevicesUniversity of MarylandCollege ParkMaryland20742USA
| | - Chen‐Yu Chen
- Institute for Bioscience and Biotechnology ResearchUniversity of MarylandCollege ParkMaryland20742USA
- Robert E. Fischell Institute for Biomedical DevicesUniversity of MarylandCollege ParkMaryland20742USA
- Fischell Department of BioengineeringUniversity of MarylandCollege ParkMaryland20742USA
| | - Monica J. Chu
- Fischell Department of BioengineeringUniversity of MarylandCollege ParkMaryland20742USA
| | - Mya F. Hamstra
- Fischell Department of BioengineeringUniversity of MarylandCollege ParkMaryland20742USA
| | - William E. Bentley
- Institute for Bioscience and Biotechnology ResearchUniversity of MarylandCollege ParkMaryland20742USA
- Robert E. Fischell Institute for Biomedical DevicesUniversity of MarylandCollege ParkMaryland20742USA
- Fischell Department of BioengineeringUniversity of MarylandCollege ParkMaryland20742USA
| | - Gregory F. Payne
- Institute for Bioscience and Biotechnology ResearchUniversity of MarylandCollege ParkMaryland20742USA
- Robert E. Fischell Institute for Biomedical DevicesUniversity of MarylandCollege ParkMaryland20742USA
| |
Collapse
|
4
|
Dubey SK, Thakur A, Jena MK, Kumar S, Sodhi M, Mukesh M, Kaushik JK, Mohanty AK. Effect of bovine beta-casomorphins on rat pancreatic beta cells (RIN-5F) under glucotoxic stress. Biochem Biophys Res Commun 2024; 739:150578. [PMID: 39178795 DOI: 10.1016/j.bbrc.2024.150578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/31/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
Beta-casomorphins (BCMs) are the bio-active peptides having opioid properties which are formed by the proteolytic digestion of β-caseins in milk. BCM-7 forms when A1 milk is digested in the small intestine due to a histidine at the 67th position in β-casein, unlike A2 milk, which has proline at this position and produces BCM-9. BCM-7 has further degraded into BCM-5 by the dipeptidyl peptidase-IV (DPP-IV) enzyme in the intestine. The opioid-like activity of BCM-7 is responsible for eliciting signaling pathways which enable a wide range of physiological effects. The aim of our study was to find out the differential role of BCMs (BCM-7, BCM-9 and BCM-5) on pancreatic β-cell proliferation, insulin secretion, and opioid peptide binding receptors from β-cells (RIN-5F cell line) in normal (5.5 mM) and high glucose (27.5 mM) concentrations. Our results showed that BCM-7/9/5 did not affect β-cell viability, proliferation, and insulin secretion at normal glucose level. However, at higher glucose concentration, BCMs significantly protected β-cells from glucotoxicity but did not affect the insulin secretion. Interestingly, in the presence of Mu-opioid peptide receptor antagonist CTOP, BCMs did not protect β-cells from glucotoxicity. The results suggest that BCMs protect β-cells from glucotoxicity via non-opioid mediated pathways because BCMs did not modulate the gene expression of the mu, kappa and delta opioid peptide receptors.
Collapse
Affiliation(s)
- Shivam Kumar Dubey
- Cell, Molecular and Proteomics Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute (ICAR-NDRI), Karnal, Haryana, 132001, India.
| | - Abhishek Thakur
- Cell, Molecular and Proteomics Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute (ICAR-NDRI), Karnal, Haryana, 132001, India.
| | - Manoj Kumar Jena
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India.
| | - Sudarshan Kumar
- Cell, Molecular and Proteomics Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute (ICAR-NDRI), Karnal, Haryana, 132001, India.
| | - Monika Sodhi
- Animal Biotechnology Division, ICAR-National Bureau of Animal Genetic Resources (ICAR-NBAGR), Karnal, Haryana, 132001, India.
| | - Manishi Mukesh
- Animal Biotechnology Division, ICAR-National Bureau of Animal Genetic Resources (ICAR-NBAGR), Karnal, Haryana, 132001, India.
| | - Jai Kumar Kaushik
- Cell, Molecular and Proteomics Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute (ICAR-NDRI), Karnal, Haryana, 132001, India.
| | - Ashok Kumar Mohanty
- Cell, Molecular and Proteomics Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute (ICAR-NDRI), Karnal, Haryana, 132001, India; ICAR-Central Institute for Research on Cattle (ICAR-CIRC), Meerut, Uttar Pradesh, 250001, India.
| |
Collapse
|
5
|
Zhang J, Polidori P, Pucciarelli S, Vici G, Polzonetti V, Renzi S, Wei F, Han F, Li X, Vincenzetti S. The Aggregated and Micellar Forms of β-Casein Purified from Donkey and Bovine Milk Present Potential as Carriers for Bioactive Nutritional Compounds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15416-15426. [PMID: 38955361 DOI: 10.1021/acs.jafc.4c02052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
In recent years, there has been a growing interest in the pure casein fraction of milk protein, particularly β-casein due to its physicochemical properties as well as its bio- and techno-functional properties. The utilization of self-assembled β-caseins from bovine origin as nanocarriers for the delivery of nutraceutical compounds or drugs has increased dramatically. Concerning β-caseins from other milk sources, the use of hypoallergenic donkey β-caseins as a potential delivery vehicle for nutraceutical hydrophobic compounds is beginning to generate interest. The present review deals with casein micelles models, bovine and donkey β-casein molecular structures, as well as their physical-chemical properties that account for their exploitation in nutraceutics and pharmaceutics. This review work suggests the possibility of developing delivery systems for hydrophobic bioactive compounds using β-casein purified from hypoallergenic donkey milk, highlighting the potential of this protein as an innovative and promising vehicle for enhancing the enrichment and bioavailability of various bioactive substances in food products.
Collapse
Affiliation(s)
- Jingjing Zhang
- School of Pharmacy, Liaocheng University, Liaocheng, Shandong 252000, P. R. China
- School of Biosciences and Veterinary Medicine, University of Camerino, via Gentile III da Varano, Camerino, Macerata 62032, Italy
| | - Paolo Polidori
- School of Pharmacy, University of Camerino, via Gentile III da Varano, Camerino, Macerata 62032, Italy
| | - Stefania Pucciarelli
- School of Biosciences and Veterinary Medicine, University of Camerino, via Gentile III da Varano, Camerino, Macerata 62032, Italy
| | - Giorgia Vici
- School of Biosciences and Veterinary Medicine, University of Camerino, via Gentile III da Varano, Camerino, Macerata 62032, Italy
| | - Valeria Polzonetti
- School of Biosciences and Veterinary Medicine, University of Camerino, via Gentile III da Varano, Camerino, Macerata 62032, Italy
| | - Sofia Renzi
- School of Biosciences and Veterinary Medicine, University of Camerino, via Gentile III da Varano, Camerino, Macerata 62032, Italy
| | - Fuyao Wei
- School of Pharmacy, Liaocheng University, Liaocheng, Shandong 252000, P. R. China
| | - Fubo Han
- School of Pharmacy, Liaocheng University, Liaocheng, Shandong 252000, P. R. China
| | - Xiaojing Li
- School of Pharmacy, Liaocheng University, Liaocheng, Shandong 252000, P. R. China
| | - Silvia Vincenzetti
- School of Biosciences and Veterinary Medicine, University of Camerino, via Gentile III da Varano, Camerino, Macerata 62032, Italy
| |
Collapse
|
6
|
Jeremiah SS, Moin ASM, Butler AE. Virus-induced diabetes mellitus: revisiting infection etiology in light of SARS-CoV-2. Metabolism 2024; 156:155917. [PMID: 38642828 DOI: 10.1016/j.metabol.2024.155917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/14/2024] [Accepted: 04/14/2024] [Indexed: 04/22/2024]
Abstract
Diabetes mellitus (DM) is comprised of two predominant subtypes: type 1 diabetes mellitus (T1DM), accounting for approximately 5 % of cases worldwide and resulting from autoimmune destruction of insulin-producing β-cells, and type 2 (T2DM), accounting for approximately 95 % of cases globally and characterized by the inability of pancreatic β-cells to meet the demand for insulin due to a relative β-cell deficit in the setting of peripheral insulin resistance. Both types of DM involve derangement of glucose metabolism and are metabolic diseases generally considered to be initiated by a combination of genetic and environmental factors. Viruses have been reported to play a role as infectious etiological factors in the initiation of both types of DM in predisposed individuals. Among the reported viral infections causing DM in humans, the most studied include coxsackie B virus, cytomegalovirus and hepatitis C virus. The recent COVID-19 pandemic has highlighted the diabetogenic potential of SARS-CoV-2, rekindling interest in the field of virus-induced diabetes (VID). This review discusses the reported mechanisms of viral-induced DM, addressing emerging concepts in VID, as well as highlighting areas where knowledge is lacking, and further investigation is warranted.
Collapse
Affiliation(s)
| | - Abu Saleh Md Moin
- Royal College of Surgeons in Ireland - Medical University of Bahrain, Busaiteen, Kingdom of Bahrain.
| | - Alexandra E Butler
- Royal College of Surgeons in Ireland - Medical University of Bahrain, Busaiteen, Kingdom of Bahrain.
| |
Collapse
|
7
|
Bolat E, Eker F, Yılmaz S, Karav S, Oz E, Brennan C, Proestos C, Zeng M, Oz F. BCM-7: Opioid-like Peptide with Potential Role in Disease Mechanisms. Molecules 2024; 29:2161. [PMID: 38731652 PMCID: PMC11085506 DOI: 10.3390/molecules29092161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Bovine milk is an essential supplement due to its rich energy- and nutrient-rich qualities. Caseins constitute the vast majority of the proteins in milk. Among these, β-casein comprises around 37% of all caseins, and it is an important type of casein with several different variants. The A1 and A2 variants of β-casein are the most researched genotypes due to the changes in their composition. It is accepted that the A2 variant is ancestral, while a point mutation in the 67th amino acid created the A1 variant. The digestion derived of both A1 and A2 milk is BCM-7. Digestion of A2 milk in the human intestine also forms BCM-9 peptide molecule. The opioid-like characteristics of BCM-7 are highlighted for their potential triggering effect on several diseases. Most research has been focused on gastrointestinal-related diseases; however other metabolic and nervous system-based diseases are also potentially triggered. By manipulating the mechanisms of these diseases, BCM-7 can induce certain situations, such as conformational changes, reduction in protein activity, and the creation of undesired activity in the biological system. Furthermore, the genotype of casein can also play a role in bone health, such as altering fracture rates, and calcium contents can change the characteristics of dietary products. The context between opioid molecules and BCM-7 points to a potential triggering mechanism for the central nervous system and other metabolic diseases discussed.
Collapse
Affiliation(s)
- Ecem Bolat
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye; (E.B.); (F.E.); (S.Y.)
| | - Furkan Eker
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye; (E.B.); (F.E.); (S.Y.)
| | - Selin Yılmaz
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye; (E.B.); (F.E.); (S.Y.)
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye; (E.B.); (F.E.); (S.Y.)
| | - Emel Oz
- Department of Food Engineering, Faculty of Agriculture, Atatürk University, Erzurum 25030, Türkiye; (E.O.); (F.O.)
| | - Charles Brennan
- School of Science, RMIT University, Melbourne, VIC 3001, Australia;
| | - Charalampos Proestos
- Laboratory of Food Chemistry, Department of Chemistry, School of Sciences, National and Kapodistrian University of Athens Zografou, 157 84 Athens, Greece;
| | - Maomao Zeng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China;
| | - Fatih Oz
- Department of Food Engineering, Faculty of Agriculture, Atatürk University, Erzurum 25030, Türkiye; (E.O.); (F.O.)
| |
Collapse
|
8
|
Borş A, Borş SI, Floriștean VC. Health-Related Outcomes and Molecular Methods for the Characterization of A1 and A2 Cow's Milk: Review and Update. Vet Sci 2024; 11:172. [PMID: 38668439 PMCID: PMC11053430 DOI: 10.3390/vetsci11040172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/29/2024] Open
Abstract
A new trend in cow's milk has emerged in the market called type A1 and A2 milk. These products have piqued the interest of both consumers and researchers. Recent studies suggest that A2 milk may have potential health benefits beyond that of A1 milk, which is why researchers are investigating this product further. It is interesting to note that the A1 and A2 milk types have area-specific characteristics compared to breed-specific characteristics. Extensive research has focused on milk derivatives obtained from cow's milk, primarily through in vitro and animal studies. However, few clinical studies have been conducted in humans, and the results have been unsatisfactory. New molecular techniques for identifying A1 and A2 milk may help researchers develop new studies that can clarify certain controversies surrounding A1 milk. It is essential to exercise extreme caution when interpreting the updated literature. It has the potential to spread panic worldwide and have negative economic implications. Therefore, this study aims to investigate the differences between A1 and A2 milk in various research areas and clarify some aspects regarding these two types of milk.
Collapse
Affiliation(s)
- Alina Borş
- Department of Public Health, Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” Iasi University of Life Sciences, 700489 Iaşi, Romania; (A.B.); (V.-C.F.)
| | - Silviu-Ionuț Borş
- Research and Development Station for Cattle Breeding Dancu, 707252 Iaşi, Romania
| | - Viorel-Cezar Floriștean
- Department of Public Health, Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” Iasi University of Life Sciences, 700489 Iaşi, Romania; (A.B.); (V.-C.F.)
| |
Collapse
|
9
|
Jeong H, Park YS, Yoon SS. A2 milk consumption and its health benefits: an update. Food Sci Biotechnol 2024; 33:491-503. [PMID: 38274187 PMCID: PMC10806982 DOI: 10.1007/s10068-023-01428-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/26/2023] [Accepted: 08/30/2023] [Indexed: 01/27/2024] Open
Abstract
Milk is a widely consumed nutrient-rich food containing protein variants such as casein A2 and A1. A1 differs from A2 in an amino acid at position 67 (Pro67 to His67). The breakdown of β-casein yields β-casomorphins (BCM), among which BCM-7 is extensively studied for its effects on the human body. Animal studies have shown that A1 β-casein milk increases digestive transit time and enhances myeloperoxidase activity. Individuals with lactose intolerance prefer A2 milk to conventional A1 milk, as BCM-7 in A1 milk can lead to inflammation and discomfort in sensitive individuals. A2 milk, which contains A2 β-casein, is believed to be more easily digestible than A1 β-casein. Its popularity has grown owing to reports linking A1 casein to diseases such as type 1 diabetes, heart disease, and autism. A2 milk has gained popularity as an alternative to A1 milk, primarily because of its potential benefits for individuals with certain diseases. This review aims to provide an updated understanding of A2 milk consumption and its health benefits. This review aims to provide an updated understanding of A2 milk consumption and its health benefits.
Collapse
Affiliation(s)
- Huijin Jeong
- Department of Food Science and Biotechnology, Gachon University, Seongnam, 13120 Republic of Korea
| | - Young-Seo Park
- Department of Food Science and Biotechnology, Gachon University, Seongnam, 13120 Republic of Korea
| | - Sung-Sik Yoon
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493 Republic of Korea
| |
Collapse
|
10
|
Zhang J, Vincenzetti S, Polidori P, Polzonetti V, Di Michele A, Perinelli DR, Liu G, Li L, Pucciarelli S. The effects of pH, temperature, and buffer concentration on the self-assembling behavior, secondary structure, and surface hydrophobicity of donkey and bovine β-casein. Food Chem 2024; 433:137285. [PMID: 37683474 DOI: 10.1016/j.foodchem.2023.137285] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023]
Abstract
The self-assembling behavior, secondary structure, and surface hydrophobicity of purified donkey β-casein in terms of pH, temperature, and buffer concentration were investigated in comparison with commercial bovine β-casein. Critical micelle concentration of both β-caseins decreased with the lowering of pH (pH 8.0-6.0) and the increasing temperatures (25-50 °C). Critical micelle temperature of both β-caseins increased moving from pH 6.0 to 8.0 and aggregates larger than micelles formed at pH 6.0 that is close to their isoelectric point. Fluorescence spectroscopy analysis demonstrated that the maximum surface hydrophobicity was achieved at pH 6.0. The secondary structure was examined using circular dichroism spectroscopy, highlighting an increase of α-helix content and a decrease of unordered structures with the decrease of pH and increase of temperature. This work provides insights on parameters promoting molecular interactions involved in donkey β-CN self-association, useful to develop nanocarriers for encapsulating bioactive compounds in pharmaceutical and nutraceutical applications.
Collapse
Affiliation(s)
- Jingjing Zhang
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032 Camerino, MC, Italy; College of Agronomy, Shandong Engineering Technology Research Center for Efficient Breeding and Ecological Feeding of Black Donkey, Shandong Donkey Industry Technology Collaborative Innovation Center, Liaocheng University, 252000 Liaocheng, Shandong, China.
| | - Silvia Vincenzetti
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032 Camerino, MC, Italy.
| | - Paolo Polidori
- School of Pharmacy, University of Camerino, Via Gentile da Varano, 62032 Camerino, MC, Italy.
| | - Valeria Polzonetti
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032 Camerino, MC, Italy.
| | - Alessandro Di Michele
- Department of Physics and Geology, University of Perugia, Via Alessandro Pascoli, 06123 Perugia, PG, Italy.
| | - Diego Romano Perinelli
- School of Pharmacy, University of Camerino, Via Gentile da Varano, 62032 Camerino, MC, Italy.
| | - Guiqin Liu
- College of Agronomy, Shandong Engineering Technology Research Center for Efficient Breeding and Ecological Feeding of Black Donkey, Shandong Donkey Industry Technology Collaborative Innovation Center, Liaocheng University, 252000 Liaocheng, Shandong, China.
| | - Lanjie Li
- College of Agronomy, Shandong Engineering Technology Research Center for Efficient Breeding and Ecological Feeding of Black Donkey, Shandong Donkey Industry Technology Collaborative Innovation Center, Liaocheng University, 252000 Liaocheng, Shandong, China.
| | - Stefania Pucciarelli
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032 Camerino, MC, Italy.
| |
Collapse
|
11
|
Jirillo F. Healthy Effects of Milk and Dairy Product Consumption in the Mediterranean Area and Japan. Endocr Metab Immune Disord Drug Targets 2024; 24:1813-1822. [PMID: 38994611 DOI: 10.2174/0118715303289711240703080701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 07/13/2024]
Abstract
Milk is a food enriched in essential components for human health. Especially, in the Mediterranean area, besides cow's milk, milk from goats, sheep, and donkeys, is largely used. The consumption of animal milk is an important component of the Mediterranean (MED) diet, even if in moderate amounts. Milk is a complete food since it contains proteins, carbohydrates, and fats, as well as micronutrients (minerals and vitamins). Milk-fermented products are largely consumed in the MED diet, such as cheese and yogurt, which are rich in essential metabolites, bioactive compounds, vitamins, minerals, and exopolysaccharides. A large body of evidence suggests that consumption of milk and dairy products does not increase the risk of all-cause mortality, type 2 diabetes, and cardiovascular disease, even if some earlier studies have reported harmful effects associated with their higher consumption. Also, in Japan, despite the lower consumption of milk than in Western countries, intake of bovine milk is associated with healthy effects. The present review describes the effects of the various constituents of animal milk on human health, with special reference to the Mediterranean area and Japan. Experimental data and clinical trials support the ability of milk and dairy products to lower the risk of chronic diseases.
Collapse
|
12
|
Villalobos-Cortés A, Rodriguez G, Castillo H, Franco S. Characterization of casein variants in the Guaymi and Guabala breeds through a low-density chip arrangement. JOURNAL OF APPLIED ANIMAL RESEARCH 2023. [DOI: 10.1080/09712119.2022.2154216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
| | | | | | - Selma Franco
- Animal Health Laboratory, IDIAP, Divisa, Panama City, Panama
| |
Collapse
|
13
|
Ardicli S, Aldevir O, Aksu E, Gumen A. The variation in the beta-casein genotypes and its effect on milk yield and genomic values in Holstein-Friesian cows. Anim Biotechnol 2023; 34:4116-4125. [PMID: 37830164 DOI: 10.1080/10495398.2023.2267614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
The A2 milk marker is gaining popularity worldwide; thus, many farms plan to convert their dairy cattle herds to the A2A2 genotype. Variation in beta-casein genotypes needs to be monitored in large dairy cattle populations. Therefore we aimed to evaluate the genotypic distributions, population genetics, and diversity parameters in Holstein-Friesian cows. A total of 1200 cattle were genotyped using the Affymetrix® Axiom® array system. We performed an association analysis regarding the CSN2 genotypes and phenotypic traits, including lactation and test-day milk yield. We next evaluated the effects of the genotypes considering the genetic merit of the animals. Animals were grouped based on their PTAs for milk production, fat, protein, and daughter pregnancy rate. Thus, we tested the genotype × genetic merit interaction for significance. The A2 allele frequency is remarkably high (0.68), and the heterozygous genotype is predominant (46.25%). The marker showed intermediate variability and diversity levels, indicating a considerable frequency of the A1A1 genotype (9.33%) remains in the population. ANOVA results showed no significant association between the CSN2 genotypes and milk yield traits. A similar finding is valid for the genotype × genetic merit regarding the genomic test results. The data presented here may be helpful for further investigations and applications on A2 milk production.
Collapse
Affiliation(s)
- Sena Ardicli
- Department of Genetics, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa, Turkey
| | - Ozgur Aldevir
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa, Turkey
| | | | - Ahmet Gumen
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa, Turkey
| |
Collapse
|
14
|
Gonzales-Malca JA, Tirado-Kulieva VA, Abanto-López MS, Aldana-Juárez WL, Palacios-Zapata CM. Worldwide research on the health effects of bovine milk containing A1 and A2 β-casein: Unraveling the current scenario and future trends through bibliometrics and text mining. Curr Res Food Sci 2023; 7:100602. [PMID: 37790856 PMCID: PMC10542606 DOI: 10.1016/j.crfs.2023.100602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/05/2023] Open
Abstract
The possible adverse effect of consuming bovine milk with A1 β-casein (but not with A2 β-casein) on health aspects due to the release of β-casomorphin-7 (BCM-7) is currently under debate. The aim of this study was to perform a bibliometric analysis of studies extracted from Scopus to explore the relationship between BCM-7, A1 or A2 bovine milk with different aspects of health. Over time, several research groups were formed that are no longer active and although some authors have returned to the field of study, they have focused their efforts mainly on conducting reviews that show the same imprecise conclusions due to the few original articles. Research is concentrated in Europe and Asia, where New Zealand, China and Germany are the countries with the most publications, records and citations on the subject, respectively. On the other hand, no country in Africa or South America has scientific production, which opens the possibility of building collaborations between countries and exploring areas that lack scientific studies. Based on conflicting information from primarily in vitro and animal studies, and limited clinical trials with poor designs, A1 milk presents pro-inflammatory and oxidative activity, but the evidence is insufficient to associate its consumption with negative health effects. However, A2 milk may be better tolerated by the digestive system of some individuals, suggesting its possible modulating role in the intestinal microbiota. Stronger scientific evidence is needed to reach a consensus on whether the presence of β-casein A1 can significantly negatively affect health. The information shown will allow a better understanding of the subject and consumers will be able to make their own decisions regarding A1 or A2 milk.
Collapse
Affiliation(s)
- Jhony Alberto Gonzales-Malca
- Laboratorio de Tecnología de Alimentos y Procesos, Universidad Nacional de Frontera, Peru
- Laboratorio de Biología Molecular, Universidad Nacional de Frontera, Peru
| | | | | | | | | |
Collapse
|
15
|
Chunder R, Heider T, Kuerten S. The prevalence of IgG antibodies against milk and milk antigens in patients with multiple sclerosis. Front Immunol 2023; 14:1202006. [PMID: 37492579 PMCID: PMC10364054 DOI: 10.3389/fimmu.2023.1202006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/21/2023] [Indexed: 07/27/2023] Open
Abstract
Introduction Multiple sclerosis (MS) is a chronic demyelinating disease of the central nervous system (CNS). The pathophysiology of MS is complex and is said to be influenced by multiple environmental determinants, including diet. We and others have previously demonstrated how consumption of bovine milk can aggravate disease severity in MS patients, which can be explained by molecular mimicry between milk antigens and those expressed within the CNS. In this study we set out to identify alternatives to drinking cow milk which might be less detrimental to MS patients who have a genetic predisposition towards developing antibody titers against bovine milk antigens that cross-react with CNS antigens. Methods To this end, we screened 35 patients with MS and 20 healthy controls for their IgG reactivity against an array of animal-sourced milk, plant-based alternatives as well as individual antigens from bovine milk. Results We demonstrate that MS patients have a significantly higher IgG response to animal-sourced milk, especially cow milk, in comparison to healthy donors. We also show that the reactivity to cow milk in MS patients can be attributed to reactivity against different bovine milk antigens. Finally, our correlation data indicate the co-existence of antibodies to individual bovine milk antigens and their corresponding cross-reactive CNS antigens. Discussion Taken together, we suggest screening of blood from MS patients for antibodies against different types of milk and milk antigens in order to establish a personalized diet regimen.
Collapse
Affiliation(s)
- Rittika Chunder
- Institute of Neuroanatomy, Medical Faculty, University of Bonn, Bonn, Germany
| | - Thorsten Heider
- Clinic for Neurology, Klinikum St. Marien Amberg, Amberg, Germany
| | - Stefanie Kuerten
- Institute of Neuroanatomy, Medical Faculty, University of Bonn, Bonn, Germany
| |
Collapse
|
16
|
Runthala A, Mbye M, Ayyash M, Xu Y, Kamal-Eldin A. Caseins: Versatility of Their Micellar Organization in Relation to the Functional and Nutritional Properties of Milk. Molecules 2023; 28:molecules28052023. [PMID: 36903269 PMCID: PMC10004547 DOI: 10.3390/molecules28052023] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/24/2023] Open
Abstract
The milk of mammals is a complex fluid mixture of various proteins, minerals, lipids, and other micronutrients that play a critical role in providing nutrition and immunity to newborns. Casein proteins together with calcium phosphate form large colloidal particles, called casein micelles. Caseins and their micelles have received great scientific interest, but their versatility and role in the functional and nutritional properties of milk from different animal species are not fully understood. Caseins belong to a class of proteins that exhibit open and flexible conformations. Here, we discuss the key features that maintain the structures of the protein sequences in four selected animal species: cow, camel, human, and African elephant. The primary sequences of these proteins and their posttranslational modifications (phosphorylation and glycosylation) that determine their secondary structures have distinctively evolved in these different animal species, leading to differences in their structural, functional, and nutritional properties. The variability in the structures of milk caseins influence the properties of their dairy products, such as cheese and yogurt, as well as their digestibility and allergic properties. Such differences are beneficial to the development of different functionally improved casein molecules with variable biological and industrial utilities.
Collapse
Affiliation(s)
- Ashish Runthala
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Vijayawada 522302, India
- Correspondence: (A.R.); (A.K.-E.); Tel.: +971-5-0138-9248 (A.K.-E.)
| | - Mustapha Mbye
- Department of Food Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Mutamed Ayyash
- Department of Food Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Yajun Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100871, China
| | - Afaf Kamal-Eldin
- Department of Food Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Zayed Bin Sultan Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Correspondence: (A.R.); (A.K.-E.); Tel.: +971-5-0138-9248 (A.K.-E.)
| |
Collapse
|
17
|
Kumar A, Sodhi M, Mukesh M, Kaur A, Bhakri G, Chaudhary V, Swami P, Sharma V, Mohanty AK, Kataria RS. Identification of stably expressed Internal Control Genes (ICGs) for normalization of expression data in liver of C57BL/6 mice injected with beta casomorphins. PLoS One 2023; 18:e0282994. [PMID: 37145997 PMCID: PMC10162558 DOI: 10.1371/journal.pone.0282994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/28/2023] [Indexed: 05/07/2023] Open
Abstract
In recent years, beta-casomorphin peptides (BCM7/BCM9) derived from the digestion of cow milk have drawn a lot of attention world over because of their proposed impact on human health. In order to evaluate the transcriptional modulation of target genes through RT-qPCR in response to these peptides, availability of appropriate reference or internal control genes (ICGs) will be the key. The present study was planned to identify a panel of stable ICGs in the liver tissue of C57BL/6 mice injected with BCM7/BCM9 cow milk peptides for 3 weeks. A total of ten candidate genes were evaluated as potential ICGs by assessing their expression stability using software suites; geNorm, NormFinder and BestKeeper. The suitability of the identified ICGs was validated by assessing the relative expression levels of target genes, HP and Cu/Zn SOD. Based on geNorm, PPIA and SDHA gene pair was identified to be most stably expressed in liver tissue during the animal trials. Similarly, NormFinder analysis also identified PPIA as the most stable gene. BestKeeper analysis showed crossing point SD value for all the genes in the acceptable range that is closer to 1. Overall, the study identified a panel of stable ICGs for reliable normalization of target genes expression data in mice liver tissues during BCM7/9 peptides trial.
Collapse
Affiliation(s)
- Anurag Kumar
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana, India
| | - Monika Sodhi
- Animal Biotechnology Division, National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| | - Manishi Mukesh
- Animal Biotechnology Division, National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| | - Amandeep Kaur
- Animal Biotechnology Division, National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| | - Gaurav Bhakri
- Animal Biotechnology Division, National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| | - Vipul Chaudhary
- Animal Biotechnology Division, National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| | - Preeti Swami
- Animal Biotechnology Division, National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| | - Vishal Sharma
- Animal Biotechnology Division, National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| | - Ashok Kumar Mohanty
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana, India
| | - Ranjit S Kataria
- Animal Biotechnology Division, National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| |
Collapse
|
18
|
Cieślińska A, Fiedorowicz E, Rozmus D, Sienkiewicz-Szłapka E, Jarmołowska B, Kamiński S. Does a Little Difference Make a Big Difference? Bovine β-Casein A1 and A2 Variants and Human Health-An Update. Int J Mol Sci 2022; 23:15637. [PMID: 36555278 PMCID: PMC9779325 DOI: 10.3390/ijms232415637] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
For over 20 years, bovine beta-casein has been a subject of increasing scientific interest because its genetic A1 variant during gastrointestinal digestion releases opioid-like peptide β-casomorphin-7 (β-CM-7). Since β-CM-7 is involved in the dysregulation of many physiological processes, there is a growing discussion of whether the consumption of the β-casein A1 variant has an influence on human health. In the last decade, the number of papers dealing with this problem has substantially increased. The newest clinical studies on humans showed a negative effect of variant A1 on serum glutathione level, digestive well-being, cognitive performance score in children, and mood score in women. Scientific reports in this field can affect the policies of dairy cattle breeders and the milk industry, leading to the elimination of allele A1 in dairy cattle populations and promoting milk products based on milk from cows with the A2A2 genotype. More scientific proof, especially in well-designed clinical studies, is necessary to determine whether a little difference in the β-casein amino acid sequence negatively affects the health of milk consumers.
Collapse
Affiliation(s)
- Anna Cieślińska
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, 10-719 Olsztyn, Poland
| | - Ewa Fiedorowicz
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, 10-719 Olsztyn, Poland
| | - Dominika Rozmus
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, 10-719 Olsztyn, Poland
| | - Edyta Sienkiewicz-Szłapka
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, 10-719 Olsztyn, Poland
| | - Beata Jarmołowska
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, 10-719 Olsztyn, Poland
| | - Stanisław Kamiński
- Department of Animal Genetics, University of Warmia and Mazury, 10-719 Olsztyn, Poland
| |
Collapse
|
19
|
Mannino GC, Mancuso E, Sbrignadello S, Morettini M, Andreozzi F, Tura A. Chemical Compounds and Ambient Factors Affecting Pancreatic Alpha-Cells Mass and Function: What Evidence? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16489. [PMID: 36554367 PMCID: PMC9778390 DOI: 10.3390/ijerph192416489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/02/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
The exposure to different substances present in the environment can affect the ability of the human body to maintain glucose homeostasis. Some review studies summarized the current evidence about the relationships between environment and insulin resistance or beta-cell dysfunction. Instead, no reviews focused on the relationships between the environment and the alpha cell, although in recent years clear indications have emerged for the pivotal role of the alpha cell in glucose regulation. Thus, the aim of this review was to analyze the studies about the effects of chemical, biological, and physical environmental factors on the alpha cell. Notably, we found studies focusing on the effects of different categories of compounds, including air pollutants, compounds of known toxicity present in common objects, pharmacological agents, and compounds possibly present in food, plus studies on the effects of physical factors (mainly heat exposure). However, the overall number of relevant studies was limited, especially when compared to studies related to the environment and insulin sensitivity or beta-cell function. In our opinion, this was likely due to the underestimation of the alpha-cell role in glucose homeostasis, but since such a role has recently emerged with increasing strength, we expect several new studies about the environment and alpha-cell in the near future.
Collapse
Affiliation(s)
- Gaia Chiara Mannino
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Elettra Mancuso
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | | | - Micaela Morettini
- Department of Information Engineering, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Francesco Andreozzi
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Andrea Tura
- CNR Institute of Neuroscience, 35127 Padova, Italy
| |
Collapse
|
20
|
A2 Milk: New Perspectives for Food Technology and Human Health. Foods 2022; 11:foods11162387. [PMID: 36010390 PMCID: PMC9407547 DOI: 10.3390/foods11162387] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/02/2022] [Accepted: 08/06/2022] [Indexed: 11/18/2022] Open
Abstract
Although milk consumption is increasing worldwide, in some geographical regions, its consumption has persistently declined in recent decades. This fact, together with the increase in milk production prices, has caused both milk producers and the dairy industry to be immersed in a major crisis. Some possible solutions to this problem are to get people who do not currently consume milk to start drinking it again, or to market milk and dairy products with a higher added value. In this context, a type of milk called A2 has recently received attention from the industry. This type of milk, characterized by a difference in an amino acid at position 67 of the β-casein polypeptide chain, releases much smaller amounts of bioactive opioid peptide β-casomorphin 7 upon digestion, which has been linked to harmful effects on human health. Additionally, A2 milk has been attributed worse technological properties in the production of some dairy products. Thus, doubts exist about the convenience for the dairy industry to bet on this product. The aim of this review is to provide an update on the effects on human health of A2 milk, as well as its different technological properties to produce dairy products.
Collapse
|
21
|
Demographic pattern of A1/A2 beta casein variants indicates conservation of A2 type haplotype across native cattle breeds (Bos indicus) of India. 3 Biotech 2022; 12:167. [PMID: 35845115 PMCID: PMC9276908 DOI: 10.1007/s13205-022-03232-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 06/17/2022] [Indexed: 11/30/2022] Open
Abstract
Genetic variations of the beta casein gene hold importance because of their probable association with human health. Comparative sequence analysis of β-casein gene across Indian native, crossbred and exotic breeds in India revealed 15 SNPs and 4 INDELs corresponding to 14 haplotypes. The frequency of A2 type haplotype was maximum (0.941) across all Indian native breeds. Among the 15 variants reported for taurine breeds, only three (A1, A2 and B) were observed in analysed populations. Allelic profiling of A1/A2 β-casein variants in ~ 4000 animals belonging to three cattle types and breeding bulls also revealed the predominance of A2 allele (0.95) in Indian cattle. The high proportion of A2 allele/haplotype indicates that Indian native cattle are the best suited to meet the demands for A2 milk globally. However, a higher percentage of heterozygous genotype (A1A2) in breeding bulls warrants the need to screen sire lines so as to drift the herd towards A2. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03232-0.
Collapse
|
22
|
Kaplan M, Baydemir B, Günar BB, Arslan A, Duman H, Karav S. Benefits of A2 Milk for Sports Nutrition, Health and Performance. Front Nutr 2022; 9:935344. [PMID: 35911103 PMCID: PMC9326461 DOI: 10.3389/fnut.2022.935344] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Bovine milk is one of the best pre-and pro-workout sources for athletes owing to its rich nutritional content. Even though bovine milk consumption significantly benefits athletes' health and performance, many athletes cannot consume bovine milk since they struggle with gastrointestinal problems caused after milk consumption. Especially, the consumption of regular milk, which contains A1 β-casein, is associated with a variety of diseases ranging from gastrointestinal discomfort to ischemic heart diseases. The main reason behind this is related to β-casomorphine 7 (BCM-7), which is derived from A1 β-casein during the digestion of A1 milk. A1 β-casein is formed as a result of a point mutation in the position of 67th in the amino acid sequence A2 β-casein by changing proline to histidine. Therefore, this mutated form of β-casein in regular milk cannot easily be digested by the human-associated digestion enzymes. A2 milk, which includes A2 β-casein instead of A1 β-casein, is the best substitute for regular milk with the same nutritional content. This natural form of milk positively affects the athlete's health as well as performance without causing any gastrointestinal discomfort or more serious problems which are seen in the consumption of regular milk. In this review, A2 milk and its potential health effects in comparison to diseases related to A1 milk consumption are discussed.
Collapse
Affiliation(s)
- Merve Kaplan
- Department of Molecular Biology and Genetics, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - Barış Baydemir
- Department of Coaching Education, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - Bilgetekin Burak Günar
- Department of Physical Education and Sports Teaching, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - Ayşenur Arslan
- Department of Molecular Biology and Genetics, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - Hatice Duman
- Department of Molecular Biology and Genetics, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Canakkale Onsekiz Mart University, Canakkale, Turkey
| |
Collapse
|
23
|
Hockey M, Hoare E, Mohebbi M, Tolmunen T, Hantunen S, Tuomainen TP, Macpherson H, Staudacher H, Jacka FN, Virtanen JK, Rocks T, Ruusunen A. Nonfermented Dairy Intake, but Not Fermented Dairy Intake, Associated with a Higher Risk of Depression in Middle-Age and Older Finnish Men. J Nutr 2022; 152:1916-1926. [PMID: 35652820 PMCID: PMC9361734 DOI: 10.1093/jn/nxac128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 03/03/2022] [Accepted: 05/27/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Despite the putative health benefits of fermented dairy products, evidence on the association between fermented dairy and nonfermented dairy intake, and depression incidence is limited. OBJECTIVES This study examined cross-sectional and prospective associations between total dairy, fermented dairy, and nonfermented dairy intake with 1) the presence of elevated depressive symptoms and 2) the risk of a future hospital discharge or outpatient diagnosis of depression. METHODS Data from 2603 Finnish men (aged 42-60 y), recruited as part of the Kuopio Ischaemic Heart Disease Risk Factor Study, were included. Multivariable logistic regression models were used to examine ORs and 95% CIs for elevated depressive symptoms (Human Population Laboratory scale ≥5 points) at baseline. Cox proportional hazards regression models were used to estimate HRs and 95% CIs between dairy categories and risk of depression diagnoses. RESULTS In cross-sectional analyses, fermented dairy intake in the highest (compared with lowest) tertile was associated with lower odds of having elevated depressive symptoms (adjusted OR: 0.70; 95% CI: 0.52, 0.96). Each 100-g increase in nonfermented dairy intake was associated with higher odds of having elevated depressive symptoms (adjusted OR: 1.06; 95% CI: 1.01, 1.10). During a mean follow-up time of 24 y, 113 males received a diagnosis of depression. After excluding cheese intake, higher fermented dairy intake was associated with a lower risk of depression diagnosis (adjusted HR: 0.62; 95% CI: 0.38, 1.03), which was strengthened after excluding those with elevated depressive symptoms at baseline (adjusted HR: 0.55; 95% CI: 0.31, 0.99), whereas nonfermented dairy intake in the highest tertile was associated with a 2-fold higher risk of depression (adjusted HR: 2.02; 95% CI: 1.20, 3.42). CONCLUSIONS Fermented dairy and nonfermented dairy intake were differentially associated with depression outcomes when examined cross-sectionally and over a mean period of 24 y. These findings suggest that dairy fermentation status may influence the association between dairy intake and depression in Finnish men. The KIHD study was registered at clinicaltrials.gov as NCT03221127.
Collapse
Affiliation(s)
| | - Erin Hoare
- IMPACT (the Institute for Mental and Physical Health and Clinical Translation), Food & Mood Centre, Deakin University, Geelong, Australia
| | | | - Tommi Tolmunen
- Department of Adolescent Psychiatry, Kuopio University Hospital, Kuopio, Finland,Institute of Clinical Medicine/Psychiatry, University of Eastern Finland, Kuopio, Finland
| | - Sari Hantunen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Tomi-Pekka Tuomainen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Helen Macpherson
- Faculty of Health, Institute for Physical Activity and Nutrition, School of Exercise and Nutrition, Deakin University, Geelong, Australia
| | - Heidi Staudacher
- IMPACT (the Institute for Mental and Physical Health and Clinical Translation), Food & Mood Centre, Deakin University, Geelong, Australia
| | - Felice N Jacka
- IMPACT (the Institute for Mental and Physical Health and Clinical Translation), Food & Mood Centre, Deakin University, Geelong, Australia,Centre for Adolescent Health, Murdoch Children's Research Institute, Melbourne, Australia,Black Dog Institute, Sydney, Australia
| | - Jykri K Virtanen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Tetyana Rocks
- IMPACT (the Institute for Mental and Physical Health and Clinical Translation), Food & Mood Centre, Deakin University, Geelong, Australia
| | - Anu Ruusunen
- IMPACT (the Institute for Mental and Physical Health and Clinical Translation), Food & Mood Centre, Deakin University, Geelong, Australia,Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland,Department of Psychiatry, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
24
|
Giribaldi M, Lamberti C, Cirrincione S, Giuffrida MG, Cavallarin L. A2 Milk and BCM-7 Peptide as Emerging Parameters of Milk Quality. Front Nutr 2022; 9:842375. [PMID: 35571904 PMCID: PMC9094626 DOI: 10.3389/fnut.2022.842375] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/23/2022] [Indexed: 12/13/2022] Open
Abstract
Beta-casein makes up about 30% of the total protein contained in milk and can be present in cows' milk in two distinct forms (A1 or A2) or as a combination of the two. The only difference between these two variants of β-casein (β-CN) is a single amino acid substitution. This results in a different behavior of the protein upon enzymatic cleavage, following human consumption or due to microbial action. In most of the commercially available milk containing A1 or A1/A2 β-CN variants, the β-casomorphin-7 peptide (BCM-7) is released upon digestion and during cheese manufacturing/ripening, while this does not happen with A2 milk. BCM-7 is a known μ-opioid receptor agonist that may influence the gastro-intestinal physiology directly and may also exert effects elsewhere in the body, such as on the cardiovascular, neurological and endocrine systems. The present article is aimed at a revision of prior review papers on the topic, with a focus on the impact of ingestion of A1 β-CN milk and A2 β-CN milk on any health-related outcomes and on the impact of A1 or A2 β-CN variant on technological properties of cows' milk. When systematic reviews were considered, it was possible to conclude that A2 β-CN exerts beneficial effects at the gastrointestinal level compared with A1 β-CN, but that there is no evidence of A1 β-CN having negative effects on human health. Physicochemical differences among cows' milk containing either β-CN A2 or β-CN A1 and their effects on technological properties are discussed.
Collapse
Affiliation(s)
- Marzia Giribaldi
- Institute of Sciences of Food Production, National Research Council (CNR), Grugliasco, Italy
| | - Cristina Lamberti
- Institute of Sciences of Food Production, National Research Council (CNR), Grugliasco, Italy
| | - Simona Cirrincione
- Institute of Sciences of Food Production, National Research Council (CNR), Grugliasco, Italy
| | | | - Laura Cavallarin
- Institute of Sciences of Food Production, National Research Council (CNR), Grugliasco, Italy
| |
Collapse
|
25
|
Antibody cross-reactivity between casein and myelin-associated glycoprotein results in central nervous system demyelination. Proc Natl Acad Sci U S A 2022; 119:e2117034119. [PMID: 35235454 PMCID: PMC8916005 DOI: 10.1073/pnas.2117034119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Multiple sclerosis (MS) is the most prevalent autoimmune disease of the central nervous system (CNS), leading to irreversible deficits in young adults. Its pathophysiology is believed to be influenced by environmental determinants. As far back as the 1990s, it had been suggested that there is a correlation between the consumption of cow’s milk and the prevalence of MS. Here, we not only demonstrate that a high percentage of MS patients harbor antibodies to bovine casein but also that antibody cross-reactivity between cow’s milk and CNS antigens can exacerbate demyelination. Our data broaden the current understanding of how diet influences the etiology of MS and set the stage for combining personalized diet plans with disease-modifying treatment strategies. Multiple sclerosis (MS) is a neuroinflammatory demyelinating disease of the central nervous system (CNS) with a high socioeconomic relevance. The pathophysiology of MS, which is both complex and incompletely understood, is believed to be influenced by various environmental determinants, including diet. Since the 1990s, a correlation between the consumption of bovine milk products and MS prevalence has been debated. Here, we show that C57BL/6 mice immunized with bovine casein developed severe spinal cord pathology, in particular, demyelination, which was associated with the deposition of immunoglobulin G. Furthermore, we observed binding of serum from casein-immunized mice to mouse oligodendrocytes in CNS tissue sections and in culture where casein-specific antibodies induced complement-dependent pathology. We subsequently identified myelin-associated glycoprotein (MAG) as a cross-reactive antigenic target. The results obtained from the mouse model were complemented by clinical data showing that serum samples from patients with MS contained significantly higher B cell and antibody reactivity to bovine casein than those from patients with other neurologic diseases. This reactivity correlated with the B cell response to a mixture of CNS antigens and could again be attributed to MAG reactivity. While we acknowledge disease heterogeneity among individuals with MS, we believe that consumption of cow’s milk in a subset of patients with MS who have experienced a previous loss of tolerance to bovine casein may aggravate the disease. Our data suggest that patients with antibodies to bovine casein might benefit from restricting dairy products from their diet.
Collapse
|
26
|
Houeiss P, Luce S, Boitard C. Environmental Triggering of Type 1 Diabetes Autoimmunity. Front Endocrinol (Lausanne) 2022; 13:933965. [PMID: 35937815 PMCID: PMC9353023 DOI: 10.3389/fendo.2022.933965] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 06/20/2022] [Indexed: 12/15/2022] Open
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease in which pancreatic islet β cells are destroyed by immune cells, ultimately leading to overt diabetes. The progressive increase in T1D incidence over the years points to the role of environmental factors in triggering or accelerating the disease process which develops on a highly multigenic susceptibility background. Evidence that environmental factors induce T1D has mostly been obtained in animal models. In the human, associations between viruses, dietary habits or changes in the microbiota and the development of islet cell autoantibodies or overt diabetes have been reported. So far, prediction of T1D development is mostly based on autoantibody detection. Future work should focus on identifying a causality between the different environmental risk factors and T1D development to improve prediction scores. This should allow developing preventive strategies to limit the T1D burden in the future.
Collapse
Affiliation(s)
- Pamela Houeiss
- Laboratory Immunology of Diabetes, Department EMD, Cochin Institute, INSERMU1016, Paris, France
- Medical Faculty, Paris University, Paris, France
| | - Sandrine Luce
- Laboratory Immunology of Diabetes, Department EMD, Cochin Institute, INSERMU1016, Paris, France
- Medical Faculty, Paris University, Paris, France
| | - Christian Boitard
- Laboratory Immunology of Diabetes, Department EMD, Cochin Institute, INSERMU1016, Paris, France
- Medical Faculty, Paris University, Paris, France
- *Correspondence: Christian Boitard,
| |
Collapse
|
27
|
de Almeida CC, Baião DDS, Leandro KC, Paschoalin VMF, da Costa MP, Conte-Junior CA. Protein Quality in Infant Formulas Marketed in Brazil: Assessments on Biodigestibility, Essential Amino Acid Content and Proteins of Biological Importance. Nutrients 2021; 13:nu13113933. [PMID: 34836188 PMCID: PMC8622549 DOI: 10.3390/nu13113933] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/28/2021] [Accepted: 10/30/2021] [Indexed: 11/16/2022] Open
Abstract
Infant formulas, designed to provide similar nutritional composition and performance to human milk, are recommended when breastfeeding is not enough to provide for the nutritional needs of children under 12 months of age. In this context, the present study aimed to assess the protein quality and essential amino acid content of both starting (phase 1) and follow-up (phase 2) formulas from different manufacturers. The chemical amino acid score and protein digestibility corrected by the amino acid score were calculated. The determined protein contents in most formulas were above the maximum limit recommended by FAO and WHO guidelines and at odds with the protein contents declared in the label. All infant formulas contained lactoferrin (0.06 to 0.44 g·100 g−1) and α-lactalbumin (0.02 to 1.34 g·100 g−1) below recommended concentrations, whereas ĸ-casein (8.28 to 12.91 g·100 g−1), α-casein (0.70 to 2.28 g·100 g−1) and β-lactoglobulin (1.32 to 4.19 g·100 g−1) were detected above recommended concentrations. Essential amino acid quantification indicated that threonine, leucine and phenylalanine were the most abundant amino acids found in the investigated infant formulas. In conclusion, infant formulas are still unconforming to nutritional breast milk quality and must be improved in order to follow current global health authority guidelines.
Collapse
Affiliation(s)
- Cristine Couto de Almeida
- Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, Brazil; (C.C.d.A.); (K.C.L.)
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, Brazil
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói 24230-340, Brazil;
| | - Diego dos Santos Baião
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil; (D.d.S.B.); (V.M.F.P.)
| | - Katia Christina Leandro
- Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, Brazil; (C.C.d.A.); (K.C.L.)
| | - Vania Margaret Flosi Paschoalin
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil; (D.d.S.B.); (V.M.F.P.)
- Graduate Studies in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
- Graduate Studies in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
| | - Marion Pereira da Costa
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói 24230-340, Brazil;
- Laboratory of Inspection and Technology of Milk and Derivatives (LaITLácteos), School of Veterinary Medicine and Animal Science, Federal University of Bahia (UFBA), Salvador 40170-110, Brazil
| | - Carlos Adam Conte-Junior
- Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, Brazil; (C.C.d.A.); (K.C.L.)
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, Brazil
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói 24230-340, Brazil;
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil; (D.d.S.B.); (V.M.F.P.)
- Graduate Studies in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
- Graduate Studies in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
- Correspondence: ; Tel.: +21-98728-6704 or +21-3938-7825
| |
Collapse
|
28
|
Dhasmana S, Das S, Shrivastava S. Potential nutraceuticals from the casein fraction of goat's milk. J Food Biochem 2021; 46:e13982. [PMID: 34716606 DOI: 10.1111/jfbc.13982] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/03/2021] [Accepted: 10/07/2021] [Indexed: 11/30/2022]
Abstract
Goat is one of the major dairy and meat providers. In terms of structure, nutrient content, and medicinal properties, goat milk is somewhat different from other milk. The differences in composition are important in determining the technical suitability of goat milk and its products for health benefits. In recent years, there has been increasing attention to the identification and molecular composition of milk proteins and the interest in caprine milk. Casein, which accounts for almost 80% of all the proteins, is the most significant protein found in goat milk. It is a pioneer in the field of nutraceutical formulation and drug production by using the goat mammary gland as a bioreactor. In goat milk, the most prevalent proteins are αS-casein, β-casein, and κ-casein. The aim of this review is to highlight the importance of goat milk casein and also focus on recent findings on their medicinal importance that may be helpful for further research on dairy products with health beneficial properties for humans as a remarkable nutraceutical. PRACTICAL APPLICATIONS: Goat milk casein is considered as a healthy nutrient as well as a therapeutic agent to control abnormal or disease conditions through some of its biologically active peptide residues. Casein fractions of goat milk have been shown to exhibit different biologic activities. Therefore, this study aims to observe the use of goat milk in various disorders and to know about the different products made from goat milk. It will be helpful in the field of medicine to be a new active constituent for the management of various disease conditions.
Collapse
Affiliation(s)
- Shruti Dhasmana
- Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, India
| | - Sanjita Das
- Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, India
| | - Shivani Shrivastava
- Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, India
| |
Collapse
|
29
|
JOSHI SHIVANGI, MANSURI FAIZAN, KULKARNI ADITI, JAMKHEDKAR SURUCHI. A1 and A2 milk caseins-comparative FTIR and spectroflourimetry analysis. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2021. [DOI: 10.56093/ijans.v91i9.116469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Around 35% of the total caseins are β-caseins, which are further classified as A1 β-caseins and A2 β-caseins, based on differences in the amino acid composition of both. A2 is the wild type genetic variant of β-casein while A1 is the mutant. The present study aimed at the isolation of A1 and A2 casein from different cow milk sources and its characterization by using simple chemical techniques, viz. FTIR and spectrofluorimetry. The commercial milk sample from Bos indicus (Gir) (A2) was obtained from Bombay Panjrapole, Mumbai and two commercially available packaged cow milk samples (pasteurized, skimmed) namely from Gokul and Mother Dairy (A1) were also obtained for comparison analysis from the local market. The isolation of casein was performed by standard method and analyzed using SDS-PAGE, FTIR and spectrofluorimetry. There was evidence that the A2 milk lacked histidine and rich in aromatic amino acids like tryptophan using FTIR and spectrofluorimetry techniques.
Collapse
|
30
|
Edwards TS, Dawson KL, Keenan JI, Day AS. A simple method to generate β-casomorphin-7 by in vitro digestion of casein from bovine milk. J Funct Foods 2021; 85:104631. [DOI: 10.1016/j.jff.2021.104631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
31
|
Mayer HK, Lenz K, Halbauer EM. "A2 milk" authentication using isoelectric focusing and different PCR techniques. Food Res Int 2021; 147:110523. [PMID: 34399501 DOI: 10.1016/j.foodres.2021.110523] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 06/01/2021] [Accepted: 06/09/2021] [Indexed: 12/17/2022]
Abstract
Genetic variants of milk proteins have attracted great interest for decades as they are related to important issues such as the composition and technological properties of milk. More recently, an "A1/A2 hypothesis" was developed saying that β-casein variant A1 may be a dietary risk factor for cardiovascular diseases, type 1 diabetes, sudden infant death syndrome and neurological disorders due to the release of β-casomorphin-7, whereas no evidence for such adverse effects was assumed for β-casein A2. Thus, the aim of this study was to adapt and establish analytical methods for the identification of genetic variants of β-casein using isoelectric focusing of milk proteins as well as appropriate PCR techniques. Allele-specific polymerase chain reaction (AS-PCR) proved to be a reliable method for differentiating most common β-casein variants (A1, A2, B, C), amplification-created restriction site (ACRS)-PCR using three different restriction enzymes allowed also the detection of variant A3, and the restriction fragment length polymorphism (RFLP)-PCR method enabled the reliable discrimination between A2 (homozygote/heterozygote) and non-A2 animals. Since traces of β-casein A1 were also found in commercial "A2 milk" in Austria, the authentication of such expensive dairy products is urgently recommended, both by genotyping of all dairy cows at farm level (to confirm that all cows are homozygous β-casein A2A2) and by screening commercial products on the market (to confirm the absence of β-casein variants A1, B, and C in dairy products labelled "A2 milk") to protect consumers from this unexpected fraud.
Collapse
Affiliation(s)
- Helmut K Mayer
- Department of Food Science and Technology, Food Chemistry Laboratory, BOKU - University of Natural Resources and Life Sciences Vienna, Muthgasse 11, A-1190 Vienna, Austria.
| | - Kathrin Lenz
- Department of Food Science and Technology, Food Chemistry Laboratory, BOKU - University of Natural Resources and Life Sciences Vienna, Muthgasse 11, A-1190 Vienna, Austria
| | - Eva-Maria Halbauer
- Department of Food Science and Technology, Food Chemistry Laboratory, BOKU - University of Natural Resources and Life Sciences Vienna, Muthgasse 11, A-1190 Vienna, Austria
| |
Collapse
|
32
|
Woodford KB. Casomorphins and Gliadorphins Have Diverse Systemic Effects Spanning Gut, Brain and Internal Organs. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18157911. [PMID: 34360205 PMCID: PMC8345738 DOI: 10.3390/ijerph18157911] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/14/2021] [Accepted: 07/17/2021] [Indexed: 12/11/2022]
Abstract
Food-derived opioid peptides include digestive products derived from cereal and dairy diets. If these opioid peptides breach the intestinal barrier, typically linked to permeability and constrained biosynthesis of dipeptidyl peptidase-4 (DPP4), they can attach to opioid receptors. The widespread presence of opioid receptors spanning gut, brain, and internal organs is fundamental to the diverse and systemic effects of food-derived opioids, with effects being evidential across many health conditions. However, manifestation delays following low-intensity long-term exposure create major challenges for clinical trials. Accordingly, it has been easiest to demonstrate causal relationships in digestion-based research where some impacts occur rapidly. Within this environment, the role of the microbiome is evidential but challenging to further elucidate, with microbiome effects ranging across gut-condition indicators and modulators, and potentially as systemic causal factors. Elucidation requires a systemic framework that acknowledges that public-health effects of food-derived opioids are complex with varying genetic susceptibility and confounding factors, together with system-wide interactions and feedbacks. The specific role of the microbiome within this puzzle remains a medical frontier. The easiest albeit challenging nutritional strategy to modify risk is reduced intake of foods containing embedded opioids. In future, constituent modification within specific foods to reduce embedded opioids may become feasible.
Collapse
|
33
|
Kay SIS, Delgado S, Mittal J, Eshraghi RS, Mittal R, Eshraghi AA. Beneficial Effects of Milk Having A2 β-Casein Protein: Myth or Reality? J Nutr 2021; 151:1061-1072. [PMID: 33693747 DOI: 10.1093/jn/nxaa454] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/14/2020] [Accepted: 12/28/2020] [Indexed: 01/03/2023] Open
Abstract
Diet has been shown to play an important role in maintaining normal homeostasis in the human body. Milk and milk products are a major component of the Western diet, but their consumption may predispose sensitive individuals to adverse health outcomes. Current literature about milk products recognizes various bioactive components including lactate, whey protein, and β-casein protein. Specifically, cow milk has 2 major subvariants of its β-casein protein, A1 and A2, due to a single nucleotide difference that changes the codon at position 67. Whereas the A2 polymorphism is unlikely to undergo enzymatic cleavage during digestion, the A1 polymorphism is more likely to undergo enzymatic cleavage resulting in the product peptide β-casomorphin-7, a known μ-opioid receptor agonist. The objective of this article is to review the current understanding of the 2 major β-casein subvariants and their effects on various organ systems that may have an impact on the health of an individual. Synthesis of the current existing literature on this topic is relevant given the increased association of milk consumption with adverse effects in susceptible individuals resulting in a rising interest in consuming milk alternatives. We discuss the influence of the β-casein protein on the gastrointestinal system, endocrine system, nervous system, and cardiovascular system as well as its role in antioxidants and methylation. A1 milk consumption has been associated with enhanced inflammatory markers. It has also been reported to have an opioid-like response that can lead to manifestations of clinical symptoms of neurological disorders such as autism spectrum disorder. On the other hand, A2 milk consumption has been associated with beneficial effects and is easier to digest in sensitive individuals. Further research is warranted to investigate the short- and long-term effects of consumption of A1 β-casein in comparison with milk with A2 β-casein proteins.
Collapse
Affiliation(s)
- Sae-In S Kay
- Dr. Kiran C Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Stefanie Delgado
- Hearing Research and Communication Disorders Laboratory, Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Jeenu Mittal
- Hearing Research and Communication Disorders Laboratory, Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Rebecca S Eshraghi
- Division of Gastroenterology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Rahul Mittal
- Hearing Research and Communication Disorders Laboratory, Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Adrien A Eshraghi
- Hearing Research and Communication Disorders Laboratory, Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, FL, USA.,Department of Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA.,Department of Pediatrics, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
34
|
Daniloski D, Cunha NM, McCarthy NA, O'Callaghan TF, McParland S, Vasiljevic T. Health-related outcomes of genetic polymorphism of bovine β-casein variants: A systematic review of randomised controlled trials. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.073] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
35
|
Abstract
A new type of cow’s milk, called A2 milk, has appeared in the dairy aisles of supermarkets in recent years. Cows’ milk generally contains two major types of beta-casein as A1 and A2 types, although there are 13 genetic variants of β-casein: A1, A2, A3, A4, B, C, D, E, F, H1, H2, I and G. Studies have shown that A1 β-casein may be harmful, and A2 β-casein is a safer choice for human health especially in infant nutrition and health. The A2 cow milk is reportedly easier to digest and better absorb than A1 or other types of milk. The structure of A2 cow’s milk protein is more comparable to human breast milk, as well as milk from goats, sheep and buffalo. Digestion of A1 type milk produces a peptide called β-casomorphin-7 (BCM-7), which is implicated with adverse gastrointestinal effects on milk consumption. In addition, bovine milk contains predominantly αs1-casein and low levels or even absent in αs2-casein, whereby caprine milk has been recommended as an ideal substitute for patients suffering from allergies against cow milk protein or other food sources. Since goat milk contains relatively low levels of αs1-casein or negligible its content, and αs2-casein levels are high in the milk of most dairy goat breeds, it is logical to assume that children with a high milk sensitivity to αs1-casein should tolerate goat milk well. Cow milk protein allergy (CMPA) is considered a common milk digestive and metabolic disorder or allergic disease with various levels of prevalence from 2.5% in children during the first 3 years of life to 12–30% in infants less than 3 months old, and it can go up to even as high as 20% in some countries. CMPA is an IgE-mediated allergy where the body starts to produce IgE antibodies against certain protein (allergens) such as A1 milk and αs1-casein in bovine milk. Studies have shown that ingestion of β-casein A1 milk can cause ischemic heart disease, type-1 diabetes, arteriosclerosis, sudden infant death syndrome, autism, schizophrenia, etc. The knowledge of bovine A2 milk and caprine αs2-casein has been utilized to rescue CMPA patients and other potential disease problems. This knowledge has been genetically applied to milk production in cows or goats or even whole herds of the two species. This practice has happened in California and Ohio, as well as in New Zealand, where this A2 cow milk has been now advanced commercially. In the USA, there have been even promotions of bulls, whose daughters have been tested homozygous for the A2 β-casein protein.
Collapse
|
36
|
Wright NS, Smith M. Guidelines Suggesting Children Avoid Plant-Based Milks: A Closer Examination. Matern Child Health J 2020; 24:1189-1192. [PMID: 32602067 DOI: 10.1007/s10995-020-02970-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Recent Healthy Drinks, Healthy Kids (HDHK) guidelines state children between 12 and 24 months need to be consuming 2-3 cups a day of whole fat cow's milk, and less of all other beverages except water. Guidelines explicitly state plant-based milks should be avoided (with the exception of soy milk). We agree that in the first 12 months the optimal food for childhood growth is breast milk, with formula used where needed. However, after weaning, milk of any kind is not required, and should not be relied upon as a main source of calories. Children will be fine with water and a healthy balanced diet. Whether cow's milk should be consumed is beyond our scope here, however it is clear that plant-based milks can easily be included in day-to-day use post-weaning. Used in this fashion plant-based milks can be less harmful than dairy milks; at least for certain groups. Although cow's milk is rich in calcium, it does not appear to clearly reduce fractures, but consumption carries risks including: a potential association with type 1 diabetes mellitus onset; anemia in toddlers; lactose intolerance; cow's milk protein allergy; and infantile colic. Adverse effects from normal consumption must be compared against risks from plant-based milks, which are problematic mainly when used inappropriately in otherwise unbalanced diets; e.g. with inadequate solid foods. Despite limited evidence of serious harms from consumption of plant-based milks, HDHK provides vigorous recommendations, especially by comparison to guidelines with more evidence to support their stance (such as processed meats causing colorectal cancer).
Collapse
Affiliation(s)
- Nicholas S Wright
- Royal New Zealand College of General Practitioners, 50 Customhouse Quay, Wellington, 6011, New Zealand.
| | - Morgen Smith
- Plant Based New Zealand Health Charitable Trust, Gisborne, New Zealand
| |
Collapse
|
37
|
Singh A, Enjapoori AK, Gibert Y, Dwyer KM. The protective effects of human milk-derived peptides on the pancreatic islet biology. Biol Open 2020; 9:bio049304. [PMID: 32694188 PMCID: PMC7438016 DOI: 10.1242/bio.049304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 07/09/2020] [Indexed: 12/15/2022] Open
Abstract
Several epidemiological studies support the protective role of breastfeeding in reducing the risk for type 1 diabetes. Human breast milk is the perfect nutrition for infants and contains many complex proteins, lipids and carbohydrates. In this study, we examined the physiological effects of human milk-derived opioid peptides, β-casomorphins (BCM), and compared them with bovine-milk-derived opioid peptides on pancreatic hormone regulation and β-cell regeneration. Exposure of wild-type zebrafish embryos to 50 µg/ml of human BCM-5 and -7 from 3 days post fertilisation until 6 days post fertilisation resulted in an increased insulin domain of expression while exposure to bovine BCM-5 and -7 significantly reduced the insulin domain of expression as analysed by whole-mount in situ hybridisation. These changes may be accounted for by reduced insulin expression or β-cell number and were mitigated by the µ-opioid receptor antagonist, naloxone. The effect of BCM on β-cell regeneration was assessed following ablation of β-cells in Tg (ins: CFP-NTR) zebrafish from 3 days post fertilisation to 4 days post fertilisation, followed by exposure of bovine and human BCM-5 and -7 (50 µg/ml) from 4 days post fertilisation until 7 days post fertilisation. The regenerative capacity of β-cells was not impeded following exposure to human BCM-5 and -7, whereas the capacity of β-cells to regenerate following bovine BCM-5 and -7 exposure was reduced. Our data suggest that human BCM-5 and -7 may promote β-cell development and enable the regeneration of β-cells, while the bovine-milk-derived peptides, BCM-5 and -7, play an opposite role. These data may provide some biological explanation for the protective effect of breastfeeding on the development of type 1 diabetes.
Collapse
Affiliation(s)
- Amitoj Singh
- School of Medicine, Faculty of Health, Deakin University, 75 Pigdons Road, Waurn Ponds, Geelong, VIC 3216, Australia
| | - Ashwantha Kumar Enjapoori
- School of Medicine, Faculty of Health, Deakin University, 75 Pigdons Road, Waurn Ponds, Geelong, VIC 3216, Australia
| | - Yann Gibert
- School of Medicine, Faculty of Health, Deakin University, 75 Pigdons Road, Waurn Ponds, Geelong, VIC 3216, Australia
| | - Karen M Dwyer
- School of Medicine, Faculty of Health, Deakin University, 75 Pigdons Road, Waurn Ponds, Geelong, VIC 3216, Australia
| |
Collapse
|
38
|
Oral Feeding of Cow Milk Containing A1 Variant of β Casein Induces Pulmonary Inflammation in Male Balb/c Mice. Sci Rep 2020; 10:8053. [PMID: 32415285 PMCID: PMC7228999 DOI: 10.1038/s41598-020-64997-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/22/2020] [Indexed: 11/08/2022] Open
Abstract
Milk is globally consumed as a rich source of protein and calcium. A major protein component of milk is casein, with β-casein having 2 major variants A1 and A2. Of these, A1 casein variant has been implicated as a potential etiological factor in several pathologies, but direct effect on lungs has not been studied. The objective of the present study was to evaluate the A1and A2 β casein variants of cow milk as factors causing allergic airway disease in murine model. Mice fed with A1A1 milk exhibited increased airway hyperresponsiveness with increasing concentration of bronchoconstrictor (methacholine), which was not observed in mice fed with A2A2 milk. Significantly elevated levels of IL-4 and IL-5 were found in bronchoalveolar lavage and serum of A1A1 variant fed mice. Increased IgE and IgG levels along with increased infiltration of lymphocytes and eosinophils, leading to peribronchial inflammation was also observed in A1A1 variant fed mice, although, no goblet cell hyperplasia or airway remodeling was observed. In contrast, A2A2 milk fed mice presented phenotype matching the control group, while A1A2 milk fed group presented an intermediate phenotype. In summary, our results show that A1 form of cow milk has a proinflammatory effect on the lung resulting in phenotype closely matching with the typical allergic asthma phenotype.
Collapse
|
39
|
Wong CB, Odamaki T, Xiao JZ. Insights into the reason of Human-Residential Bifidobacteria (HRB) being the natural inhabitants of the human gut and their potential health-promoting benefits. FEMS Microbiol Rev 2020; 44:369-385. [PMID: 32319522 PMCID: PMC7326374 DOI: 10.1093/femsre/fuaa010] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 04/20/2020] [Indexed: 12/11/2022] Open
Abstract
Members of Bifidobacterium are among the first microbes to colonise the human gut, and certain species are recognised as the natural resident of human gut microbiota. Their presence in the human gut has been associated with health-promoting benefits and reduced abundance of this genus is linked with several diseases. Bifidobacterial species are assumed to have coevolved with their hosts and include members that are naturally present in the human gut, thus recognised as Human-Residential Bifidobacteria (HRB). The physiological functions of these bacteria and the reasons why they occur in and how they adapt to the human gut are of immense significance. In this review, we provide an overview of the biology of bifidobacteria as members of the human gut microbiota and address factors that contribute to the preponderance of HRB in the human gut. We highlight some of the important genetic attributes and core physiological traits of these bacteria that may explain their adaptive advantages, ecological fitness, and competitiveness in the human gut. This review will help to widen our understanding of one of the most important human commensal bacteria and shed light on the practical consideration for selecting bifidobacterial strains as human probiotics.
Collapse
Affiliation(s)
- Chyn Boon Wong
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., 5-1-83, Higashihara, Zama, Kanagawa, 252–8583 Japan
| | - Toshitaka Odamaki
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., 5-1-83, Higashihara, Zama, Kanagawa, 252–8583 Japan
| | - Jin-zhong Xiao
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., 5-1-83, Higashihara, Zama, Kanagawa, 252–8583 Japan
| |
Collapse
|
40
|
Veteikis D. Antipyretics might occupy a narrow temporal position in aetiology of type 1 diabetes: Immunological and intestinal studies required. Med Hypotheses 2020; 141:109708. [PMID: 32283444 DOI: 10.1016/j.mehy.2020.109708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 04/05/2020] [Indexed: 10/24/2022]
Abstract
Geographical variance in the incidence of type 1 diabetes mellitus (T1DM) and its etiological link to viruses and gut microbiome imply causative environmental agents. Antipyretics and especially acetaminophen received some attention recently due to the associations with some autoimmune conditions and lack of studies on the mechanisms influencing the immune system. A couple of recent studies involving large cohorts have found no association between the use of acetaminophen in early childhood and seroconversion leading to T1DM (TEDDY, involving international cohort) or diagnosis of overt T1DM (Norwegian MoBa) in the follow up years. The paper gives the supplemental argumentation for the antipyretic hypothesis presented in Medical Hypotheses in 2016 that is still valid in face of the mentioned conclusions. The hypothesis assumes that critical effect of acetaminophen and possibly other antipyretics expresses itself as the immediate influence on the immune system in the unfortunate coincidence with the other environmental factors, supposedly involving feverish, new to immunity, viral infection, all creating triggering circumstances regardless of age. Young age, in this respect should be regarded as a risk factor due to immatureness of immunity. The paper discusses that antipyretics and particularly acetaminophen need more attention evaluating their possible immunity modulations during infection or through negative effects on intestinal microbiota or both.
Collapse
Affiliation(s)
- Darijus Veteikis
- Vilnius University, Faculty of Chemistry and Geosciences, 21 M. K. Čiurlionio Str., Vilnius LT-03101, Lithuania.
| |
Collapse
|
41
|
Summer A, Di Frangia F, Ajmone Marsan P, De Noni I, Malacarne M. Occurrence, biological properties and potential effects on human health of β-casomorphin 7: Current knowledge and concerns. Crit Rev Food Sci Nutr 2020; 60:3705-3723. [PMID: 32033519 DOI: 10.1080/10408398.2019.1707157] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The genetic variant A1 of bovine β-casein (β-Cn) presents a His residue at a position 67 of the mature protein. This feature makes the Ile66-His67 bond more vulnerable to enzymatic cleavage, determining the release of the peptide β-Cn f(60-66), named β-casomorphin 7 (BCM7). BCM7 is an opioid-agonist for μ receptors, and it has been hypothesized to be involved in the development of different non-transmissible diseases in humans. In the last decade, studies have provided additional results on the potential health impact of β-Cn A1 and BCM7. These studies, here reviewed, highlighted a relation between the consumption of β-Cn A1 (and its derivative BCM7) and the increase of inflammatory response as well as discomfort at the gastrointestinal level. Conversely, the role of BCM7 and the effects of ingestion of β-Cn A1 on the onset or worsening of other non-transmissible diseases as caused or favored by still need proof of evidence. Overall, the reviewed literature demonstrates that the "β-Cn A1/BCM7 issue" remains an intriguing but not exhaustively explained topic in human nutrition. On this basis, policies in favor of breeding for β-Cn variants not releasing BCM7 and consumption of "A1-like" milk appear not yet sound for a healthier and safer nutrition.
Collapse
Affiliation(s)
- Andrea Summer
- Department of Veterinary Sciences, Università di Parma, Parma, Italy
| | | | - Paolo Ajmone Marsan
- Department of Animal Science, Food and Nutrition (DIANA) and Nutrigenomics and Proteomics Research Center (PRONUTRIGEN), Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Ivano De Noni
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Milan, Italy
| | - Massimo Malacarne
- Department of Veterinary Sciences, Università di Parma, Parma, Italy
| |
Collapse
|
42
|
McHugh P, Smith M, Wright N, Bush S, Pullon S. If You Don't Eat Meat… You'll Die. A Mixed-Method Survey of Health-Professionals' Beliefs. Nutrients 2019; 11:nu11123028. [PMID: 31835856 PMCID: PMC6950587 DOI: 10.3390/nu11123028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/20/2019] [Accepted: 12/04/2019] [Indexed: 01/01/2023] Open
Abstract
Despite an ever-increasing burden of non-communicable diseases and overwhelming evidence that good nutrition improves outcomes it is difficult to know whether this evidence is reaching the general population. The purpose of this study was to investigate whether health professionals in Tairāwhiti have sufficient nutrition education for their roles in health education and promotion and whether nutrition beliefs held by health professionals were consistent with current literature. A particular interest was to enlist views on the harms, benefits, and possible barriers to following plant-based diets. A mixed-methods study involving health professionals completing a questionnaire and a subsequent focus group to collect data was used. Survey data were analysed using spreadsheet software, and thematic content analysis of focus group data was undertaken. Participants provided nutrition advice 2.4 times per day. Almost half of practitioners considered their nutrition knowledge to be inadequate, and most made poor use of references for provision of information. Plant-based diets were generally viewed as beneficial to health, improve quality of life, be filling, but were perceived as not as easy to follow. This study is in keeping with previous research that the health workforce would benefit from more formalised nutrition education and competencies to address common chronic disease.
Collapse
Affiliation(s)
- Patrick McHugh
- Te Hauora O Turanganui-A-Kiwa (Turanga Health), 4010 Gisborne, New Zealand
- Correspondence:
| | - Morgen Smith
- Plant-Based New Zealand Health Charity, 4010 Gisborne, New Zealand; (M.S.); (N.W.)
| | - Nicholas Wright
- Plant-Based New Zealand Health Charity, 4010 Gisborne, New Zealand; (M.S.); (N.W.)
| | - Sarah Bush
- Bioethics Centre (Te Pokapū Matatika Koiora), University of Otago, 9054 Dunedin, New Zealand;
| | - Sue Pullon
- Department of Primary Health Care and General Practice (Te Whare Wānanga o Otāgo ki Te Whanga-Nui-a-Tara), University of Otago, 6242 Wellington, New Zealand;
| |
Collapse
|
43
|
Romero-Velarde E, Delgado-Franco D, García-Gutiérrez M, Gurrola-Díaz C, Larrosa-Haro A, Montijo-Barrios E, Muskiet FAJ, Vargas-Guerrero B, Geurts J. The Importance of Lactose in the Human Diet: Outcomes of a Mexican Consensus Meeting. Nutrients 2019; 11:E2737. [PMID: 31718111 PMCID: PMC6893676 DOI: 10.3390/nu11112737] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/04/2019] [Accepted: 11/08/2019] [Indexed: 12/12/2022] Open
Abstract
Lactose is a unique component of breast milk, many infant formulas and dairy products, and is widely used in pharmaceutical products. In spite of that, its role in human nutrition or lactose intolerance is generally not well-understood. For that reason, a 2-day-long lactose consensus meeting with health care professionals was organized in Mexico to come to a set of statements for which consensus could be gathered. Topics ranging from lactase expression to potential health benefits of lactose were introduced by experts, and that was followed by a discussion on concept statements. Interestingly, lactose does not seem to induce a neurological reward response when consumed. Although lactose digestion is optimal, it supplies galactose for liver glycogen synthesis. In infants, it cannot be ignored that lactose-derived galactose is needed for the synthesis of glycosylated macromolecules. At least beyond infancy, the low glycemic index of lactose might be metabolically beneficial. When lactase expression decreases, lactose maldigestion may lead to lactose intolerance symptoms. In infancy, the temporary replacing of lactose by other carbohydrates is only justified in case of severe intolerance symptoms. In those who show an (epi)genetic decrease or absence of lactase expression, a certain amount (for adults mostly up to 12 g per portion) of lactose can still be consumed. In these cases, lactose shows beneficial intestinal-microbiota-shaping effects. Avoiding lactose-containing products may imply a lower intake of other important nutrients, such as calcium and vitamin B12 from dairy products, as well as an increased intake of less beneficial carbohydrates.
Collapse
Affiliation(s)
- Enrique Romero-Velarde
- Instituto de Nutrición Humana, Universidad de Guadalajara and Hospital Civil de Guadalajara “Dr. Juan I. Menchaca”, 44340 Guadalajara, Jalisco, Mexico
| | - Dagoberto Delgado-Franco
- Neonatology Department. ABC Medical Center, 01120 Mexico City and Instituto Tecnológico de Estudios Superiores de Monterrey, 64849 Monterrey, Mexico;
| | | | - Carmen Gurrola-Díaz
- Departamento de Biología Molecular y Genómica. Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, 44340 Guadalajara, Jalisco, Mexico; (C.G.-D.); (B.V.-G.)
| | - Alfredo Larrosa-Haro
- Instituto de Nutrición Humana, Universidad de Guadalajara, 44340 Guadalajara, Jalisco, Mexico;
| | - Ericka Montijo-Barrios
- Servicio de Gastroenterología. Instituto Nacional de Pediatría, 04530 Mexico City, Mexico;
| | - Frits A. J. Muskiet
- Laboratory Medicine, University Medical Center Groningen and University of Groningen, 9713 GZ Groningen, The Netherlands;
| | - Belinda Vargas-Guerrero
- Departamento de Biología Molecular y Genómica. Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, 44340 Guadalajara, Jalisco, Mexico; (C.G.-D.); (B.V.-G.)
| | - Jan Geurts
- FrieslandCampina, 3818 LEAmersfoort, The Netherlands;
| |
Collapse
|
44
|
Ledesma-Martínez E, Aguíñiga-Sánchez I, Weiss-Steider B, Rivera-Martínez AR, Santiago-Osorio E. Casein and Peptides Derived from Casein as Antileukaemic Agents. JOURNAL OF ONCOLOGY 2019; 2019:8150967. [PMID: 31582978 PMCID: PMC6754885 DOI: 10.1155/2019/8150967] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/20/2019] [Accepted: 08/04/2019] [Indexed: 12/20/2022]
Abstract
Milk is a heterogeneous lacteal secretion mixture of numerous components that exhibit a wide variety of chemical and functional activities. Casein, the main protein in milk, is composed of α-, β-, and κ-caseins, each of which is important for nutritional value and for promoting the release of cytokines, also are linked to the regulation of haematopoiesis and immune response and inhibit the proliferation and induce the differentiation of leukaemia cells. It has been shown that the digestive process of caseins leads to the release of bioactive peptides that are involved in the regulation of blood pressure and the inhibition or activation of the immune response by serving as agonists or antagonists of opioid receptors, thus controlling the expression of genes that exert epigenetic control. Later, they bind to opioid receptor, block nuclear factor κ-beta, increase the redox potential, and reduce oxidative stress and the pro-inflammatory agents that favour an antioxidant and anti-inflammatory environment. Therefore, the bioactive peptides of casein could be compounds with antileukaemia potential. This review provides a summary of current knowledge about caseins and casein peptides on the immune system as well as their roles in the natural defence against the development of leukaemia and as relevant epigenetic regulators that can help eradicate leukaemia.
Collapse
Affiliation(s)
- Edgar Ledesma-Martínez
- Haematopoiesis and Leukaemia Laboratory, Research Unit on Cell Differentiation and Cancer, FES Zaragoza, National Autonomous University of Mexico, 09230 Mexico City, Mexico
| | - Itzen Aguíñiga-Sánchez
- Haematopoiesis and Leukaemia Laboratory, Research Unit on Cell Differentiation and Cancer, FES Zaragoza, National Autonomous University of Mexico, 09230 Mexico City, Mexico
| | - Benny Weiss-Steider
- Haematopoiesis and Leukaemia Laboratory, Research Unit on Cell Differentiation and Cancer, FES Zaragoza, National Autonomous University of Mexico, 09230 Mexico City, Mexico
| | - Ana Rocío Rivera-Martínez
- Haematopoiesis and Leukaemia Laboratory, Research Unit on Cell Differentiation and Cancer, FES Zaragoza, National Autonomous University of Mexico, 09230 Mexico City, Mexico
| | - Edelmiro Santiago-Osorio
- Haematopoiesis and Leukaemia Laboratory, Research Unit on Cell Differentiation and Cancer, FES Zaragoza, National Autonomous University of Mexico, 09230 Mexico City, Mexico
| |
Collapse
|
45
|
Rehan F, Ahemad N, Gupta M. Casein nanomicelle as an emerging biomaterial—A comprehensive review. Colloids Surf B Biointerfaces 2019; 179:280-292. [DOI: 10.1016/j.colsurfb.2019.03.051] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 02/22/2019] [Accepted: 03/24/2019] [Indexed: 12/15/2022]
|
46
|
Küllenberg de Gaudry D, Lohner S, Schmucker C, Kapp P, Motschall E, Hörrlein S, Röger C, Meerpohl JJ. Milk A1 β-casein and health-related outcomes in humans: a systematic review. Nutr Rev 2019; 77:278-306. [DOI: 10.1093/nutrit/nuy063] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
| | - Szimonetta Lohner
- Clinical Center of the University of Pécs, Medical School, University of Pécs, Pécs, Hungary
| | - Christine Schmucker
- Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Philipp Kapp
- Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Edith Motschall
- Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Simone Hörrlein
- Competence Center for Nutrition, Bavarian State Ministry for Food, Agriculture and Forestry, Freising, Germany
| | - Christine Röger
- Competence Center for Nutrition, Bavarian State Ministry for Food, Agriculture and Forestry, Freising, Germany
| | - Jörg J Meerpohl
- Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
47
|
Rogal J, Zbinden A, Schenke-Layland K, Loskill P. Stem-cell based organ-on-a-chip models for diabetes research. Adv Drug Deliv Rev 2019; 140:101-128. [PMID: 30359630 DOI: 10.1016/j.addr.2018.10.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 09/10/2018] [Accepted: 10/19/2018] [Indexed: 12/22/2022]
Abstract
Diabetes mellitus (DM) ranks among the severest global health concerns of the 21st century. It encompasses a group of chronic disorders characterized by a dysregulated glucose metabolism, which arises as a consequence of progressive autoimmune destruction of pancreatic beta-cells (type 1 DM), or as a result of beta-cell dysfunction combined with systemic insulin resistance (type 2 DM). Human cohort studies have provided evidence of genetic and environmental contributions to DM; yet, these studies are mostly restricted to investigating statistical correlations between DM and certain risk factors. Mechanistic studies, on the other hand, aimed at re-creating the clinical picture of human DM in animal models. A translation to human biology is, however, often inadequate owing to significant differences between animal and human physiology, including the species-specific glucose regulation. Thus, there is an urgent need for the development of advanced human in vitro models with the potential to identify novel treatment options for DM. This review provides an overview of the technological advances in research on DM-relevant stem cells and their integration into microphysiological environments as provided by the organ-on-a-chip technology.
Collapse
Affiliation(s)
- Julia Rogal
- Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University, Silcherstrasse 7/1, 72076 Tübingen, Germany; Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Nobelstrasse 12, 70569 Stuttgart, Germany
| | - Aline Zbinden
- Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University, Silcherstrasse 7/1, 72076 Tübingen, Germany
| | - Katja Schenke-Layland
- Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University, Silcherstrasse 7/1, 72076 Tübingen, Germany; The Natural and Medical Sciences Institute (NMI) at the University of Tübingen, Markwiesenstr. 55, 72770 Reutlingen, Germany; Department of Medicine/Cardiology, Cardiovascular Research Laboratories, David Geffen School of Medicine at UCLA, 675 Charles E. Young Drive South, MRL 3645, Los Angeles, CA, USA.
| | - Peter Loskill
- Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University, Silcherstrasse 7/1, 72076 Tübingen, Germany; Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Nobelstrasse 12, 70569 Stuttgart, Germany
| |
Collapse
|
48
|
Immunomodulatory Effect of Vitamin D and Its Potential Role in the Prevention and Treatment of Type 1 Diabetes Mellitus-A Narrative Review. Molecules 2018; 24:molecules24010053. [PMID: 30586887 PMCID: PMC6337255 DOI: 10.3390/molecules24010053] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/14/2018] [Accepted: 12/21/2018] [Indexed: 12/16/2022] Open
Abstract
Type 1 diabetes mellitus is a chronic autoimmune disease associated with degeneration of pancreatic β-cells that results in an inability to produce insulin and the need for exogenous insulin administration. It is a significant global health problem as the incidence of this disorder is increasing worldwide. The causes are still poorly understood, although it certainly has genetic and environmental origins. Vitamin D formed profusely in the skin upon exposure to sunlight, as well as from dietary sources, exhibits an immunomodulatory effect based on gene transcription control. Indeed, vitamin D can downregulate mechanisms connected with adaptive immunity, induce immunological tolerance and decrease auto-aggression-related inflammation. These properties provide the basis for a preventive and therapeutic role of vitamin D. As many studies have demonstrated, appropriate supplementation with vitamin D reduces the risk of autoimmune diseases, including type 1 diabetes mellitus, and alleviates disease symptoms in patients. The aim of this narrative review is to present the molecular mechanisms for the vitamin D immunomodulatory effect as well as review human clinical studies on the use of vitamin D as adjuvant therapy in type 1 diabetes mellitus.
Collapse
|
49
|
Dietary Cows' Milk Protein A1 Beta-Casein Increases the Incidence of T1D in NOD Mice. Nutrients 2018; 10:nu10091291. [PMID: 30213104 PMCID: PMC6163334 DOI: 10.3390/nu10091291] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/06/2018] [Accepted: 09/08/2018] [Indexed: 12/20/2022] Open
Abstract
The contribution of cows’ milk containing beta-casein protein A1 variant to the development of type 1 diabetes (T1D) has been controversial for decades. Despite epidemiological data demonstrating a relationship between A1 beta-casein consumption and T1D incidence, direct evidence is limited. We demonstrate that early life exposure to A1 beta-casein through the diet can modify progression to diabetes in non-obese diabetic (NOD) mice, with the effect apparent in later generations. Adult NOD mice from the F0 generation and all subsequent generations (F1 to F4) were fed either A1 or A2 beta-casein supplemented diets. Diabetes incidence in F0–F2 generations was similar in both cohorts of mice. However, diabetes incidence doubled in the F3 generation NOD mice fed an A1 beta-casein supplemented diet. In F4 NOD mice, subclinical insulitis and altered glucose handling was evident as early as 10 weeks of age in A1 fed mice only. A significant decrease in the proportion of non-conventional regulatory T cell subset defined as CD4+CD25−FoxP3+ was evident in the F4 generation of A1 fed mice. This feeding intervention study demonstrates that dietary A1 beta-casein may affect glucose homeostasis and T1D progression, although this effect takes generations to manifest.
Collapse
|
50
|
Sakurai T, Yamada A, Hashikura N, Odamaki T, Xiao JZ. Degradation of food-derived opioid peptides by bifidobacteria. Benef Microbes 2018; 9:675-682. [PMID: 29633643 DOI: 10.3920/bm2017.0165] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Some food-derived opioid peptides have been reported to cause diseases, such as gastrointestinal inflammation, celiac disease, and mental disorders. Bifidobacterium is a major member of the dominant human gut microbiota, particularly in the gut of infants. In this study, we evaluated the potential of Bifidobacterium in the degradation of food-derived opioid peptides. All strains tested showed some level of dipeptidyl peptidase activity, which is thought to be involved in the degradation of food-derived opioid peptides. However, this activity was higher in bifidobacterial strains that are commonly found in the intestines of human infants, such as Bifidobacterium longum subsp. longum, B. longum subsp. infantis, Bifidobacterium breve and Bifidobacterium bifidum, than in those of other species, such as Bifidobacterium animalis and Bifidobacterium pseudolongum. In addition, some B. longum subsp. infantis and B. bifidum strains showed degradative activity in food-derived opioid peptides such as human and bovine milk-derived casomorphin-7 and wheat gluten-derived gliadorphin-7. A further screening of B. bifidum strains revealed some bifidobacterial strains that could degrade all three peptides. Our results revealed the potential of Bifidobacterium species in the degradation of food-derived opioid peptides, particularly for species commonly found in the intestine of infants. Selected strains of B. longum subsp. infantis and B. bifidum with high degradative capabilities can be used as probiotic microorganisms to eliminate food-derived opioid peptides and contribute to host health.
Collapse
Affiliation(s)
- T Sakurai
- 1 Morinaga Milk Industry Co., Ltd., Frontier Research Department, Next Generation Science Institute, 1-83, 5-Chome, Higashihara, Zama-City, Kanagawa-Pref. 252-8583, Japan
| | - A Yamada
- 2 Morinaga Milk Industry Co., Ltd., Functional Food Ingredients Department, Food Ingredients and Technology Institute, 1-83, 5-Chome, Higashihara, Zama-City, Kanagawa-Pref. 252-8583, Japan
| | - N Hashikura
- 1 Morinaga Milk Industry Co., Ltd., Frontier Research Department, Next Generation Science Institute, 1-83, 5-Chome, Higashihara, Zama-City, Kanagawa-Pref. 252-8583, Japan
| | - T Odamaki
- 1 Morinaga Milk Industry Co., Ltd., Frontier Research Department, Next Generation Science Institute, 1-83, 5-Chome, Higashihara, Zama-City, Kanagawa-Pref. 252-8583, Japan
| | - J-Z Xiao
- 1 Morinaga Milk Industry Co., Ltd., Frontier Research Department, Next Generation Science Institute, 1-83, 5-Chome, Higashihara, Zama-City, Kanagawa-Pref. 252-8583, Japan
| |
Collapse
|