1
|
Near-Infrared Reflectance Spectroscopy for Predicting the Phospholipid Fraction and the Total Fatty Acid Composition of Freeze-Dried Beef. SENSORS 2021; 21:s21124230. [PMID: 34203102 PMCID: PMC8233715 DOI: 10.3390/s21124230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 02/04/2023]
Abstract
Research on fatty acids (FA) is important because their intake is related to human health. NIRS can be a useful tool to estimate the FA of beef but due to the high moisture and the high absorbance of water makes it difficult to calibrate the analyses. This work evaluated near-infrared reflectance spectroscopy as a tool to assess the total fatty acid composition and the phospholipid fraction of fatty acids of beef using freeze-dried meat. An average of 22 unrelated pure breed young bulls from 15 European breeds were reared on a common concentrate-based diet. A total of 332 longissimus thoracis steaks were analysed for fatty acid composition and a freeze-dried sample was subjected to near-infrared spectral analysis. 220 samples (67%) were used as a calibration set with the remaining 110 (33%) being used for validation of the models obtained. There was a large variation in the total FA concentration across the animals giving a good data set for the analysis and whilst the coefficient of variation was nearly 68% for the monounsaturated FA it was only 27% for the polyunsaturated fatty acids (PUFA). PLS method was used to develop the prediction models. The models for the phospholipid fraction had a low R2p and high standard error, while models for neutral lipid had the best performance, in general. It was not possible to obtain a good prediction of many individual PUFA concentrations being present at low concentrations and less variable than other FA. The best models were developed for Total FA, saturated FA, 9c18:1 and 16:1 with R2p greater than 0.76. This study indicates that NIRS is a feasible and useful tool for screening purposes and it has the potential to predict most of the FA of freeze-dried beef.
Collapse
|
2
|
Wang W, Fromm M. Sphingolipids are required for efficient triacylglycerol loss in conjugated linoleic Acid treated adipocytes. PLoS One 2015; 10:e0119005. [PMID: 25906159 PMCID: PMC4407960 DOI: 10.1371/journal.pone.0119005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 01/13/2015] [Indexed: 11/19/2022] Open
Abstract
Conjugated linoleic acid (CLA) reduces adiposity in human and mouse adipocytes. This outcome is achieved through a variety of biological responses including increased energy expenditure and fatty acid oxidation, increased inflammation, repression of fatty acid biosynthesis, attenuated glucose transport, and apoptosis. In the current study, profiling of 261 metabolites was conducted to gain new insights into the biological pathways responding to CLA in 3T3-L1 adipocytes. Sphinganine and sphingosine levels were observed to be highly elevated in CLA treated adipocytes. Exogenous chemicals that increased endogenous ceramide levels decreased lipid levels in adipocytes, and activated AMP-activated protein kinase (AMPK) as well as NF-κB, both of which are typically activated in CLA treated adipocytes. Concurrent inhibition of ceramide de novo biosynthesis and recycling from existing sphingolipid pools attenuated the lipid lowering effect normally associated with responses to CLA, implicating ceramides as an important component of the lipid lowering response in CLA treated adipocytes.
Collapse
Affiliation(s)
- Wei Wang
- Department of Animal Science, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Michael Fromm
- Center for Biotechnology, University of Nebraska, Lincoln, Nebraska, United States of America
| |
Collapse
|
3
|
Pullanagari RR, Yule IJ, Agnew M. On-line prediction of lamb fatty acid composition by visible near infrared spectroscopy. Meat Sci 2015; 100:156-63. [DOI: 10.1016/j.meatsci.2014.10.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 10/03/2014] [Accepted: 10/07/2014] [Indexed: 10/24/2022]
|
4
|
Sevane N, Nute G, Sañudo C, Cortes O, Cañon J, Williams J, Dunner S. Muscle lipid composition in bulls from 15 European breeds. Livest Sci 2014. [DOI: 10.1016/j.livsci.2013.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Ippagunta S, Angius Z, Sanda M, Barnes KM. Dietary CLA-induced Lipolysis Is Delayed in Soy Oil-Fed Mice Compared to Coconut Oil-Fed Mice. Lipids 2013; 48:1145-55. [DOI: 10.1007/s11745-013-3835-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 08/16/2013] [Indexed: 12/19/2022]
|
6
|
Jiang S, Wang W, Miner J, Fromm M. Cross regulation of sirtuin 1, AMPK, and PPARγ in conjugated linoleic acid treated adipocytes. PLoS One 2012; 7:e48874. [PMID: 23155420 PMCID: PMC3498327 DOI: 10.1371/journal.pone.0048874] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 10/02/2012] [Indexed: 02/04/2023] Open
Abstract
Trans-10, cis-12 conjugated linoleic acid (t10c12 CLA) reduces triglyceride (TG) levels in adipocytes through multiple pathways, with AMP-activated protein kinase (AMPK) generally facilitating, and peroxisome proliferator-activated receptor γ (PPARγ) generally opposing these reductions. Sirtuin 1 (SIRT1), a histone/protein deacetylase that affects energy homeostasis, often functions coordinately with AMPK, and is capable of binding to PPARγ, thereby inhibiting its activity. This study investigated the role of SIRT1 in the response of 3T3-L1 adipocytes to t10c12 CLA by testing the following hypotheses: 1) SIRT1 is functionally required for robust TG reduction; and 2) SIRT1, AMPK, and PPARγ cross regulate each other. These experiments were performed by using activators, inhibitors, or siRNA knockdowns that affected these pathways in t10c12 CLA-treated 3T3-L1 adipocytes. Inhibition of SIRT1 amounts or activity using siRNA, sirtinol, nicotinamide, or etomoxir attenuated the amount of TG loss, while SIRT1 activator SRT1720 increased the TG loss. SRT1720 increased AMPK activity while sirtuin-specific inhibitors decreased AMPK activity. Reciprocally, an AMPK inhibitor reduced SIRT1 activity. Treatment with t10c12 CLA increased PPARγ phosphorylation in an AMPK-dependent manner and increased the amount of PPARγ bound to SIRT1. Reciprocally, a PPARγ agonist attenuated AMPK and SIRT1 activity levels. These results indicated SIRT1 increased TG loss and that cross regulation between SIRT1, AMPK, and PPARγ occurred in 3T3-L1 adipocytes treated with t10c12 CLA.
Collapse
Affiliation(s)
- Shan Jiang
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Wei Wang
- Department of Animal Science, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Jess Miner
- Department of Animal Science, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Michael Fromm
- Center for Biotechnology, University of Nebraska, Lincoln, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
7
|
Shelton VJ, Shelton AG, Azain MJ, Hargrave-Barnes KM. Incorporation of conjugated linoleic acid into brain lipids is not necessary for conjugated linoleic acid-induced reductions in feed intake or body fat in mice. Nutr Res 2012. [PMID: 23176793 DOI: 10.1016/j.nutres.2012.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Dietary conjugated linoleic acid (CLA) causes reduced feed intake (FI) and body fat (BF). It is unknown, though, if CLA incorporation into tissues, alterations in serum hormones, and/or appetite-regulating neuropeptides are involved. We hypothesized that CLA incorporation into brain lipids would be correlated with changes in appetite-regulating neuropeptide expression and reductions in FI and BF. Male mice (n = 150; 9 weeks old, ICR) received the control diet ad libitum (CON), 2% CLA diet ad libitum (CLA), or control diet pair-fed to the intake of CLA-fed mice for 1, 2, 3, 5, or 7 days. Both FI and body weight were measured daily, and a BF index was calculated. Liver, adipose, and brain fatty acids; serum insulin, leptin, and peptide YY; and arcuate nucleus neuropeptide Y, agouti-related protein, and α-melanocyte-stimulating hormone protein were determined. Mice fed CLA ate less (P < .05) than did the CON on days 1, 2, 3, and 7 but were leaner (P < .05) only on day 7. Mice that received the control diet pair-fed to the intake of CLA-fed mice did not differ in BF from the CON. By days 1 and 2, CLA isomers were incorporated into the liver and adipose but not in the brain. Insulin was increased in CLA-fed mice on days 5 and 7, and leptin was decreased on day 7. Peptide YY and the neuropeptides did not differ. Tissue CLA was not correlated with FI, body weight, or BF but was positively correlated with insulin and negatively correlated with leptin. The reduction in FI is not sufficient to cause the reduction in BF, and tissue CLA accumulation does not appear to be required.
Collapse
Affiliation(s)
- Valerie J Shelton
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV 26506, USA
| | | | | | | |
Collapse
|
8
|
Lin X, Bo J, Oliver SAM, Corl BA, Jacobi SK, Oliver WT, Harrell RJ, Odle J. Dietary conjugated linoleic acid alters long chain polyunsaturated fatty acid metabolism in brain and liver of neonatal pigs. J Nutr Biochem 2011; 22:1047-54. [DOI: 10.1016/j.jnutbio.2010.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2010] [Revised: 07/20/2010] [Accepted: 09/09/2010] [Indexed: 11/17/2022]
|
9
|
Ippagunta S, Hadenfeldt TJ, Miner JL, Hargrave-Barnes KM. Dietary conjugated linoleic acid induces lipolysis in adipose tissue of coconut oil-fed mice but not soy oil-fed mice. Lipids 2011; 46:821-30. [PMID: 21643838 DOI: 10.1007/s11745-011-3574-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 05/10/2011] [Indexed: 10/18/2022]
Abstract
Mice fed diets containing conjugated linoleic acid (CLA) are leaner than mice not fed CLA. This anti-obesity effect is amplified in mice fed coconut oil-containing or fat free diets, compared to soy oil diets. The present objective was to determine if CLA alters lipolysis in mice fed different base oils. Mice were fed diets containing soy oil (SO), coconut oil (CO), or fat free (FF) for 6 weeks, followed by 10 or 12 days of CLA or no CLA supplementation. Body fat, tissue weights, and ex vivo lipolysis were determined. Relative protein abundance and activation of perilipin, hormone sensitive lipase (HSL), adipose triglyceride lipase (ATGL), and adipose differentiation related protein (ADRP) were determined by western blotting. CLA feeding caused mice to have less (P < 0.05) body fat than non-CLA fed mice. This was enhanced in CO and FF-fed mice (CLA × oil source, P < 0.05). There was also a CLA × oil source interaction on lipolysis as CO + CLA and FF + CLA-fed mice had increased (P < 0.05) rates of lipolysis but SO + CLA-fed mice did not. However, after 12 days of CLA consumption, activated perilipin was increased (P < 0.05) only in SO + CLA-fed mice and total HSL and ATGL were decreased (P < 0.05) in CO + CLA-fed mice. Therefore, the enhanced CLA-induced body fat loss in CO and FF-fed mice appears to involve increased lipolysis but this effect may be decreasing by 12 days of CLA consumption.
Collapse
Affiliation(s)
- S Ippagunta
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV 26506, 6108, USA
| | | | | | | |
Collapse
|
10
|
Jiang S, Chen H, Wang Z, Riethoven JJ, Xia Y, Miner J, Fromm M. Activated AMPK and prostaglandins are involved in the response to conjugated linoleic acid and are sufficient to cause lipid reductions in adipocytes. J Nutr Biochem 2010; 22:656-64. [PMID: 20965713 DOI: 10.1016/j.jnutbio.2010.05.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 12/18/2009] [Accepted: 05/20/2010] [Indexed: 11/20/2022]
Abstract
trans-10, cis-12 Conjugated linoleic acid (t10c12 CLA) reduces triglyceride levels in adipocytes. AMP-activated protein kinase (AMPK) and inflammation were recently demonstrated to be involved in the emerging pathways regulating this response. This study further investigated the role of AMPK and inflammation by testing the following hypotheses: (1) a moderate activation of AMPK and an inflammatory response are sufficient to reduce triglycerides, and (2) strong activation of AMPK is also sufficient. Experiments were performed by adding compounds that affect these pathways and by measuring their effects in 3T3-L1 adipocytes. A comparison of four AMPK activators (metformin, phenformin, TNF-α and t10c12 CLA) found a correlation between AMPK activity and triglyceride reduction. This correlation appeared to be modulated by the level of cyclo-oxygenase (COX)-2 mRNA produced. Inhibitors of the prostaglandin (PG) biosynthetic pathway interfered with t10c12 CLA's ability to reduce triglycerides. A combination of metformin and PGH2, or phenformin alone, efficiently reduced triglyceride levels in adipocytes. Microarray analysis indicated that the transcriptional responses to phenformin or t10c12 CLA were very similar, suggesting similar pathways were activated. 3T3-L1 fibroblasts were found to weakly induce the integrated stress response (ISR) in response to phenformin or t10c12 CLA and to respond robustly as they differentiated into adipocytes. This indicated that both chemicals required adipocytes at the same stage of differentiation to be competent for this response. These results support the above hypotheses and suggest compounds that moderately activate AMPK and increase PG levels or robustly activate AMPK in adipocytes may be beneficial for reducing adiposity.
Collapse
Affiliation(s)
- Shan Jiang
- Department of Animal Science, University of Nebraska, Lincoln, NE 68588-0665, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
McAfee AJ, McSorley EM, Cuskelly GJ, Moss BW, Wallace JM, Bonham MP, Fearon AM. Red meat consumption: An overview of the risks and benefits. Meat Sci 2010; 84:1-13. [DOI: 10.1016/j.meatsci.2009.08.029] [Citation(s) in RCA: 415] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Revised: 08/07/2009] [Accepted: 08/10/2009] [Indexed: 11/29/2022]
|
12
|
Kennedy A, Martinez K, Schmidt S, Mandrup S, LaPoint K, McIntosh M. Antiobesity mechanisms of action of conjugated linoleic acid. J Nutr Biochem 2009; 21:171-9. [PMID: 19954947 DOI: 10.1016/j.jnutbio.2009.08.003] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Revised: 08/06/2009] [Accepted: 08/19/2009] [Indexed: 12/24/2022]
Abstract
Conjugated linoleic acid (CLA), a family of fatty acids found in beef, dairy foods and dietary supplements, reduces adiposity in several animal models of obesity and some human studies. However, the isomer-specific antiobesity mechanisms of action of CLA are unclear, and its use in humans is controversial. This review will summarize in vivo and in vitro findings from the literature regarding potential mechanisms by which CLA reduces adiposity, including its impact on (a) energy metabolism, (b) adipogenesis, (c) inflammation, (d) lipid metabolism and (e) apoptosis.
Collapse
Affiliation(s)
- Arion Kennedy
- Department of Nutrition, University of North Carolina Greensboro, PO Box 26170, Greensboro, NC 27402-6170, USA
| | | | | | | | | | | |
Collapse
|