1
|
Yamaguchi H, Sugawa H, Takahashi H, Nagai R. Rapid and Efficient Synthesis of Succinated Thiol Compounds via Maleic Anhydride Derivatization. Molecules 2025; 30:571. [PMID: 39942675 PMCID: PMC11820211 DOI: 10.3390/molecules30030571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/24/2025] [Accepted: 01/25/2025] [Indexed: 02/16/2025] Open
Abstract
Succination is a non-enzymatic post-translational modification of cysteine (Cys) residues, resulting in the formation of S-(2-succino)cysteine (2SC). While hundreds of 2SC-modified proteins have been identified and are associated with the dysfunction of proteins, the underlying molecular mechanisms remain poorly understood. Conventional methods for synthesizing succinated compounds, such as 2SC, often require prolonged reaction times and/or HCl hydrolysis. In this study, we present a rapid and efficient synthesis method for succinated compounds using maleic anhydride, enabling more effective in vivo studies of succination mechanisms. This method was tested on thiol compounds with varying molecular weights, including Cys derivatives, Cys-containing peptides, and reduced bovine serum albumin. By incubating these compounds in an aqueous buffer with maleic anhydride dissolved in an organic solvent like diethyl ether, we achieved significantly improved succination efficiency compared to conventional methods. The succination efficiency using maleic anhydride surpassed that of fumaric acid or maleic acid. Notably, this approach facilitated the succination of amino acids, peptides, and proteins within minutes at 25 °C, without requiring acid hydrolysis. Our findings provide a straightforward, time-efficient strategy for synthesizing succinated thiol compounds, offering a valuable tool to enhance the understanding of succination's molecular mechanisms and its role in protein function and dysfunction.
Collapse
Affiliation(s)
- Hiroshi Yamaguchi
- Department of Food and Life Science, School of Agriculture, Tokai University, 871-12 Sugido, Mashiki, Kamimashiki, Kumamoto 861-2205, Japan; (H.S.); (R.N.)
- Graduate School of Bioscience, Tokai University, 871-12 Sugido, Mashiki, Kamimashiki, Kumamoto 861-2205, Japan;
| | - Hikari Sugawa
- Department of Food and Life Science, School of Agriculture, Tokai University, 871-12 Sugido, Mashiki, Kamimashiki, Kumamoto 861-2205, Japan; (H.S.); (R.N.)
| | - Himeno Takahashi
- Graduate School of Bioscience, Tokai University, 871-12 Sugido, Mashiki, Kamimashiki, Kumamoto 861-2205, Japan;
| | - Ryoji Nagai
- Department of Food and Life Science, School of Agriculture, Tokai University, 871-12 Sugido, Mashiki, Kamimashiki, Kumamoto 861-2205, Japan; (H.S.); (R.N.)
- Graduate School of Bioscience, Tokai University, 871-12 Sugido, Mashiki, Kamimashiki, Kumamoto 861-2205, Japan;
| |
Collapse
|
2
|
Dutta H, Jain N. Post-translational modifications and their implications in cancer. Front Oncol 2023; 13:1240115. [PMID: 37795435 PMCID: PMC10546021 DOI: 10.3389/fonc.2023.1240115] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/21/2023] [Indexed: 10/06/2023] Open
Abstract
Post-translational modifications (PTMs) are crucial regulatory mechanisms that alter the properties of a protein by covalently attaching a modified chemical group to some of its amino acid residues. PTMs modulate essential physiological processes such as signal transduction, metabolism, protein localization, and turnover and have clinical relevance in cancer and age-related pathologies. Majority of proteins undergo post-translational modifications, irrespective of their occurrence in or after protein biosynthesis. Post-translational modifications link to amino acid termini or side chains, causing the protein backbone to get cleaved, spliced, or cyclized, to name a few. These chemical modifications expand the diversity of the proteome and regulate protein activity, structure, locations, functions, and protein-protein interactions (PPIs). This ability to modify the physical and chemical properties and functions of proteins render PTMs vital. To date, over 200 different protein modifications have been reported, owing to advanced detection technologies. Some of these modifications include phosphorylation, glycosylation, methylation, acetylation, and ubiquitination. Here, we discuss about the existing as well as some novel post-translational protein modifications, with their implications in aberrant states, which will help us better understand the modified sites in different proteins and the effect of PTMs on protein functions in core biological processes and progression in cancer.
Collapse
Affiliation(s)
- Hashnu Dutta
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Nishant Jain
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
3
|
Giallongo S, Costa F, Longhitano L, Giallongo C, Ferrigno J, Tropea E, Vicario N, Li Volti G, Parenti R, Barbagallo I, Bramanti V, Tibullo D. The Pleiotropic Effects of Fumarate: From Mitochondrial Respiration to Epigenetic Rewiring and DNA Repair Mechanisms. Metabolites 2023; 13:880. [PMID: 37512586 PMCID: PMC10384640 DOI: 10.3390/metabo13070880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Tumor onset and its progression are strictly linked to its metabolic rewiring on the basis of the Warburg effect. In this context, fumarate emerged as a putative oncometabolite mediating cancer progression. Fumarate accumulation is usually driven by fumarate hydratase (FH) loss of function, the enzyme responsible for the reversible conversion of fumarate into malate. Fumarate accumulation acts as a double edge sword: on one hand it takes part in the metabolic rewiring of cancer cells, while on the other it also plays a crucial role in chromatin architecture reorganization. The latter is achieved by competing with a-ketoglutarate-dependent enzymes, eventually altering the cellular methylome profile, which in turn leads to its transcriptome modeling. Furthermore, in recent years, it has emerged that FH has an ability to recruit DNA double strand breaks. The accumulation of fumarate into damaged sites might also determine the DNA repair pathway in charge for the seizure of the lesion, eventually affecting the mutational state of the cells. In this work, we aimed to review the current knowledge on the role of fumarate as an oncometabolite orchestrating the cellular epigenetic landscape and DNA repair machinery.
Collapse
Affiliation(s)
- Sebastiano Giallongo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Francesco Costa
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Lucia Longhitano
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Cesarina Giallongo
- Department of Medical-Surgical Science and Advanced Technologies "Ingrassia", University of Catania, 95123 Catania, Italy
| | - Jessica Ferrigno
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Emanuela Tropea
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Nunzio Vicario
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Giovanni Li Volti
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Rosalba Parenti
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Ignazio Barbagallo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | | | - Daniele Tibullo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| |
Collapse
|
4
|
Wu X, Xu M, Geng M, Chen S, Little PJ, Xu S, Weng J. Targeting protein modifications in metabolic diseases: molecular mechanisms and targeted therapies. Signal Transduct Target Ther 2023; 8:220. [PMID: 37244925 PMCID: PMC10224996 DOI: 10.1038/s41392-023-01439-y] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 03/01/2023] [Accepted: 04/06/2023] [Indexed: 05/29/2023] Open
Abstract
The ever-increasing prevalence of noncommunicable diseases (NCDs) represents a major public health burden worldwide. The most common form of NCD is metabolic diseases, which affect people of all ages and usually manifest their pathobiology through life-threatening cardiovascular complications. A comprehensive understanding of the pathobiology of metabolic diseases will generate novel targets for improved therapies across the common metabolic spectrum. Protein posttranslational modification (PTM) is an important term that refers to biochemical modification of specific amino acid residues in target proteins, which immensely increases the functional diversity of the proteome. The range of PTMs includes phosphorylation, acetylation, methylation, ubiquitination, SUMOylation, neddylation, glycosylation, palmitoylation, myristoylation, prenylation, cholesterylation, glutathionylation, S-nitrosylation, sulfhydration, citrullination, ADP ribosylation, and several novel PTMs. Here, we offer a comprehensive review of PTMs and their roles in common metabolic diseases and pathological consequences, including diabetes, obesity, fatty liver diseases, hyperlipidemia, and atherosclerosis. Building upon this framework, we afford a through description of proteins and pathways involved in metabolic diseases by focusing on PTM-based protein modifications, showcase the pharmaceutical intervention of PTMs in preclinical studies and clinical trials, and offer future perspectives. Fundamental research defining the mechanisms whereby PTMs of proteins regulate metabolic diseases will open new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Xiumei Wu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, China
| | - Mengyun Xu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Mengya Geng
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Shuo Chen
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Peter J Little
- School of Pharmacy, University of Queensland, Pharmacy Australia Centre of Excellence, Woolloongabba, QLD, 4102, Australia
- Sunshine Coast Health Institute and School of Health and Behavioural Sciences, University of the Sunshine Coast, Birtinya, QLD, 4575, Australia
| | - Suowen Xu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Jianping Weng
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China.
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, China.
- Bengbu Medical College, Bengbu, 233000, China.
| |
Collapse
|
5
|
Katsuta N, Nagai M, Saruwatari K, Nakamura M, Nagai R. Mitochondrial stress and glycoxidation increase with decreased kidney function. J Clin Biochem Nutr 2023; 72:147-156. [PMID: 36936874 PMCID: PMC10017327 DOI: 10.3164/jcbn.22-101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/04/2022] [Indexed: 03/04/2023] Open
Abstract
Mitochondrial stress increases the production of fumarate, an intermediate of the Krebs cycle. Fumarate non-enzymatically reacts with the thiol group of cysteine, leading to the production of S-(2-succinyl)cysteine. Here, we quantified the concentration of fumarate, the free form of S-(2-succinyl)cysteine, and advanced glycation end-products, including N ε-(carboxymethyl)lysine and N δ-(5-hydro-5-methyl-4-imidazolone-2-yl)-ornithine, in the serum of chronic kidney disease patients, using liquid chromatography-tandem mass spectrometry and an enzymatic assay. In a cross-sectional study, we evaluated the difference in metabolite concentration between healthy individuals (n = 22) and kidney transplant patients (n = 93). Additionally, we evaluated the metabolite concentration of end-stage renal disease patients (n = 17) before and 1, 3, 6, and 12 months after transplantation, in a longitudinal study. While the S-(2-succinyl)cysteine and AGEs levels were significantly increased in accordance with the rising chronic kidney disease severity, they were significantly decreased after transplantation. However, fumarate levels were only significantly different in end-stage renal disease patients. The S-(2-succinyl)cysteine levels correlated with the pre-existing kidney function marker. This study demonstrates that mitochondrial metabolic disorders contribute to impaired kidney function, and that measuring blood S-(2-succinyl)cysteine levels may be a minimally invasive way to evaluate the metabolic change in chronic kidney disease.
Collapse
Affiliation(s)
- Nana Katsuta
- Laboratory of Food and Regulation Biology, Graduate School of Bioscience, Tokai University, Toroku 9-1-1, Higashi-ku, Kumamoto 862-8652, Japan
| | - Mime Nagai
- Laboratory of Food and Regulation Biology, Department of Food and Life Sciences, School of Agriculture, Tokai University, Toroku 9-1-1, Higashi-ku, Kumamoto 862-8652, Japan
| | - Kaishi Saruwatari
- Laboratory of Food and Regulation Biology, Department of Food and Life Sciences, School of Agriculture, Tokai University, Toroku 9-1-1, Higashi-ku, Kumamoto 862-8652, Japan
| | - Michio Nakamura
- Department of Transplant Surgery, School of Medicine, Tokai University, Kanagawa, Japan
| | - Ryoji Nagai
- Laboratory of Food and Regulation Biology, Graduate School of Bioscience, Tokai University, Toroku 9-1-1, Higashi-ku, Kumamoto 862-8652, Japan
- Laboratory of Food and Regulation Biology, Department of Food and Life Sciences, School of Agriculture, Tokai University, Toroku 9-1-1, Higashi-ku, Kumamoto 862-8652, Japan
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
6
|
Hillmann KB, Goethel ME, Erickson NA, Niehaus TD. Identification of a S-(2-succino)cysteine breakdown pathway that uses a novel S-(2-succino) lyase. J Biol Chem 2022; 298:102639. [PMID: 36309089 PMCID: PMC9706529 DOI: 10.1016/j.jbc.2022.102639] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 11/07/2022] Open
Abstract
Succination is the spontaneous reaction between the respiratory intermediate fumarate and cellular thiols that forms stable S-(2-succino)-adducts such as S-(2-succino)cysteine (2SC). 2SC is a biomarker for conditions associated with elevated fumarate levels, including diabetes, obesity, and certain cancers, and succination likely contributes to disease progression. Bacillus subtilis has a yxe operon-encoded breakdown pathway for 2SC that involves three distinct enzymatic conversions. The first step is N-acetylation of 2SC by YxeL to form N-acetyl-2SC (2SNAC). YxeK catalyzes the oxygenation of 2SNAC, resulting in its breakdown to oxaloacetate and N-acetylcysteine, which is deacetylated by YxeP to give cysteine. The monooxygenase YxeK is key to the pathway but is rare, with close homologs occurring infrequently in prokaryote and fungal genomes. The existence of additional 2SC breakdown pathways was not known prior to this study. Here, we used comparative genomics to identify a S-(2-succino) lyase (2SL) that replaces yxeK in some yxe gene clusters. 2SL genes from Enterococcus italicus and Dickeya dadantii complement B. subtilis yxeK mutants. We also determined that recombinant 2SL enzymes efficiently break down 2SNAC into fumarate and N-acetylcysteine, can perform the reverse reaction, and have minor activity against 2SC and other small molecule thiols. The strong preferences both YxeK and 2SL enzymes have for 2SNAC indicate that 2SC acetylation is a conserved breakdown step. The identification of a second naturally occurring 2SC breakdown pathway underscores the importance of 2SC catabolism and defines a general strategy for 2SC breakdown involving acetylation, breakdown, and deacetylation.
Collapse
|
7
|
Systems biology approach to functionally assess the Clostridioides difficile pangenome reveals genetic diversity with discriminatory power. Proc Natl Acad Sci U S A 2022; 119:e2119396119. [PMID: 35476524 PMCID: PMC9170149 DOI: 10.1073/pnas.2119396119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
SignificanceClostridioides difficile infections are the most common source of hospital-acquired infections and are responsible for an extensive burden on the health care system. Strains of the C. difficile species comprise diverse lineages and demonstrate genome variability, with advantageous trait acquisition driving the emergence of endemic lineages. Here, we present a systems biology analysis of C. difficile that evaluates strain-specific genotypes and phenotypes to investigate the overall diversity of the species. We develop a strain typing method based on similarity of accessory genomes to identify and contextualize genetic loci capable of discriminating between strain groups.
Collapse
|
8
|
Katsuta N, Takahashi H, Nagai M, Sugawa H, Nagai R. Changes in S-(2-succinyl)cysteine and advanced glycation end-products levels in mouse tissues associated with aging. Amino Acids 2022; 54:653-661. [PMID: 35166937 DOI: 10.1007/s00726-022-03130-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/15/2022] [Indexed: 01/06/2023]
Abstract
Cysteine is non-enzymatically modified by fumarate, which is an intermediate of the tricarboxylic acid cycle, leading to the formation of S-(2-succinyl)cysteine (2SC). Post-translational modification of physiological proteins by fumarate causes enzyme dysfunction. The aim of the study was to evaluate the changes in 2SC accumulation in physiological tissues associated with aging. Brain, liver, kidney, and serum samples were collected from 4-, 12-, and 96-week-old male C57BL/6J mice, and the level of 2SC was determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS) after pretreatment, including delipidation, protein precipitation, and hydrolysis using hydrochloric acid. The 2SC level in the brain was higher than that in other tissues, and its accumulation significantly increased with age. Similarly, Nε-(carboxymethyl)lysine levels, an advanced glycation end-products (AGEs) that accumulates in tissues in an age-dependent manner, was found to be increased in the brain and kidneys of elderly mice. Accumulation of Nδ-(5-hydro-5-methyl-4-imidazolone-2-yl)-ornithine increased significantly with age, but only in the kidneys. The fumarate content in the brain was similar to that in the liver and kidney at 4 and 12 weeks of age. Furthermore, fumarate contents increased in the liver and kidney at 96 weeks of age, whereas its level did not change in the brain. Our results demonstrated that the changes in 2SC and AGEs levels in tissues reflected differing metabolism and enhanced oxidative stress in each organ; in particular, the metabolism in the brain and kidneys is highly affected by aging.
Collapse
Affiliation(s)
- Nana Katsuta
- Laboratory of Food and Regulation Biology, Graduate School of Bioscience, Tokai University, Kumamoto, Japan
| | - Himeno Takahashi
- Laboratory of Food and Regulation Biology, Department of Bioscience, School of Agriculture, Tokai University, Toroku 9-1-1, Higashi-ku, Kumamoto City, Kumamoto, 862-8652, Japan
| | - Mime Nagai
- Laboratory of Food and Regulation Biology, Department of Bioscience, School of Agriculture, Tokai University, Toroku 9-1-1, Higashi-ku, Kumamoto City, Kumamoto, 862-8652, Japan
| | - Hikari Sugawa
- Laboratory of Food and Regulation Biology, Department of Bioscience, School of Agriculture, Tokai University, Toroku 9-1-1, Higashi-ku, Kumamoto City, Kumamoto, 862-8652, Japan
| | - Ryoji Nagai
- Laboratory of Food and Regulation Biology, Graduate School of Bioscience, Tokai University, Kumamoto, Japan. .,Laboratory of Food and Regulation Biology, Department of Bioscience, School of Agriculture, Tokai University, Toroku 9-1-1, Higashi-ku, Kumamoto City, Kumamoto, 862-8652, Japan.
| |
Collapse
|
9
|
Liu Y, Pan X, Zhao M, Gao Y. Global chemical modifications comparison of human plasma proteome from two different age groups. Sci Rep 2020; 10:14998. [PMID: 32929118 PMCID: PMC7490693 DOI: 10.1038/s41598-020-72196-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/17/2020] [Indexed: 11/09/2022] Open
Abstract
In this study, two groups of human plasma proteome at different age groups (old and young) were used to perform a comparison of global chemical modifications, as determined by tandem mass spectrometry (MS/MS) combined with non-limiting modification identification algorithms. The sulfhydryl in the cysteine A total of 4 molecular modifications were found to have significant differences passing random grouping tests: the succinylation and phosphorylation modification of cysteine (Cys, C) and the modification of lysine (Lys, K) with threonine (Thr, T) were significantly higher in the old group than in the young group, while the carbamylation of lysine was lower in the young group. We speculate that there is an increase in certain modified proteins in the blood of the old people which, in turn, changes the function of those proteins. This change may be one of the reasons why old people are more likely than young people to be at risk for age-related diseases, such as metabolic diseases, cerebral and cardiovascular diseases, and cancer.
Collapse
Affiliation(s)
- Yongtao Liu
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Gene Engineering Drug and Biotechnology, Beijing Normal University, Beijing, China
| | - Xuanzhen Pan
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Gene Engineering Drug and Biotechnology, Beijing Normal University, Beijing, China
| | - Mindi Zhao
- Department of Laboratory Medicine, National Geriatrics Center, Beijing Hospital, Beijing, China
| | - Youhe Gao
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Gene Engineering Drug and Biotechnology, Beijing Normal University, Beijing, China.
| |
Collapse
|
10
|
Protein succination as a potential surrogate biomarker of airway obstruction. The ilervas project. Respir Med 2020; 172:106124. [PMID: 32919375 DOI: 10.1016/j.rmed.2020.106124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 11/23/2022]
Abstract
BACKGROUND Airway obstruction (AO) is associated with hypoxemia, systemic inflammation and oxidative stress. These conditions can favor the formation of Advanced Glycation End-products (AGEs) and induce mitochondrial stress. The latter can alter metabolite intermediates in the Krebs cycle leading to the formation of the cysteine-fumarate adduct S-(2-succino) cysteine (2SC) in proteins (protein succination). Protein succination has not been described in airways diseases. RESEARCH QUESTION To assess differences in levels of AGEs and 2SC between patients with AO and normal spirometry. STUDY DESIGN and Methods: In this case-control study, we investigated 35 moderate to severe AO patients and 31 subjects with normal spirometry, matched for age, gender, body mass index (BMI), tobacco history, prediabetes and adherence to Mediterranean diet. Plasma 2SC and AGEs concentrations were measured by GS/MS, and AGEs in skin were determined measuring autofluorescence (SAF). Multivariate logistic regression models explored the association between AGEs in the skin, 2SC and the presence of AO. RESULTS The population was predominantly middle-age (mean of 58.7 years-old), overweight (median of BMI 26.7 kg/m2) and male subjects (69.7%). Patients with AO showed higher values of SAF (p = 0.04) and 2SC (p = 0.047). No differences were observed for plasma AGEs. SAF and 2SC were significantly associated with the presence of AO after adjusting for age, gender, smoking history, BMI and Mediterranean diet score (p = 0.041 and p = 0.038, respectively). INTERPRETATION Skin AGEs and 2SC are increased in patients with moderate to severe AO and independently associated with its presence. Further studies should confirm these findings and explore their potential role as a biomarker for the disease.
Collapse
|
11
|
Dual functionality of the amyloid protein TasA in Bacillus physiology and fitness on the phylloplane. Nat Commun 2020; 11:1859. [PMID: 32313019 PMCID: PMC7171179 DOI: 10.1038/s41467-020-15758-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 03/27/2020] [Indexed: 02/07/2023] Open
Abstract
Bacteria can form biofilms that consist of multicellular communities embedded in an extracellular matrix (ECM). In Bacillus subtilis, the main protein component of the ECM is the functional amyloid TasA. Here, we study further the roles played by TasA in B. subtilis physiology and biofilm formation on plant leaves and in vitro. We show that ΔtasA cells exhibit a range of cytological symptoms indicative of excessive cellular stress leading to increased cell death. TasA associates to the detergent-resistant fraction of the cell membrane, and the distribution of the flotillin-like protein FloT is altered in ΔtasA cells. We propose that, in addition to a structural function during ECM assembly and interactions with plants, TasA contributes to the stabilization of membrane dynamics as cells enter stationary phase. The amyloid protein TasA is a main component of the extracellular matrix in Bacillus subtilis biofilms. Here the authors show that, in addition to a structural function during biofilm assembly and interactions with plants, TasA contributes to the stabilization of membrane dynamics during stationary phase.
Collapse
|
12
|
Niehaus TD, Hillmann KB. Enzyme promiscuity, metabolite damage, and metabolite damage control systems of the tricarboxylic acid cycle. FEBS J 2020; 287:1343-1358. [DOI: 10.1111/febs.15284] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/26/2020] [Accepted: 03/05/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Thomas D. Niehaus
- Department of Plant and Microbial Biology University of Minnesota Twin Cities Saint Paul MN USA
| | - Katie B. Hillmann
- Department of Plant and Microbial Biology University of Minnesota Twin Cities Saint Paul MN USA
| |
Collapse
|
13
|
Jové M, Pradas I, Mota-Martorell N, Cabré R, Ayala V, Ferrer I, Pamplona R. Succination of Protein Thiols in Human Brain Aging. Front Aging Neurosci 2020; 12:52. [PMID: 32210786 PMCID: PMC7068737 DOI: 10.3389/fnagi.2020.00052] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 02/17/2020] [Indexed: 01/07/2023] Open
Abstract
Human brain evolution toward complexity has been achieved with increasing energy supply as the main adaptation in brain metabolism. Energy metabolism, like other biochemical reactions in aerobic cells, is under enzymatic control and strictly regulated. Nevertheless, physiologically uncontrolled and deleterious reactions take place. It has been proposed that these reactions constitute the basic molecular mechanisms that underlie the maintenance or loss-of-function of neurons and, by extension, cerebral functions during brain aging. In this review article, we focus attention on the role of the nonenzymatic and irreversible adduction of fumarate to the protein thiols, which leads to the formation of S-(2-succino)cysteine (2SC; protein succination) in the human brain. In particular, we first offer a brief approach to the succination reaction, features related to the specificity of protein succination, methods for their detection and quantification, the bases for considering 2SC as a biomarker of mitochondrial stress, the succinated proteome, the cross-regional differences in 2SC content, and changes during brain aging, as well as the potential regulatory significance of fumarate and 2SC. We propose that 2SC defines cross-regional differences of metabolic mitochondrial stress in the human brain and that mitochondrial stress is sustained throughout the healthy adult lifespan in order to preserve neuronal function and survival.
Collapse
Affiliation(s)
- Mariona Jové
- Department of Experimental Medicine, University of Lleida-Lleida Biomedical Research Institute (UdL-IRBLleida), Lleida, Spain
| | - Irene Pradas
- Department of Experimental Medicine, University of Lleida-Lleida Biomedical Research Institute (UdL-IRBLleida), Lleida, Spain
| | - Natalia Mota-Martorell
- Department of Experimental Medicine, University of Lleida-Lleida Biomedical Research Institute (UdL-IRBLleida), Lleida, Spain
| | - Rosanna Cabré
- Department of Experimental Medicine, University of Lleida-Lleida Biomedical Research Institute (UdL-IRBLleida), Lleida, Spain
| | - Victoria Ayala
- Department of Experimental Medicine, University of Lleida-Lleida Biomedical Research Institute (UdL-IRBLleida), Lleida, Spain
| | - Isidre Ferrer
- Institute of Neuropathology, Bellvitge University Hospital, University of Barcelona, Biomedical Research Institute of Bellvitge (IDIBELL), L'Hospitalet de Llobregat (Barcelona), Barcelona, Spain.,Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), ISCIII, Madrid, Spain
| | - Reinald Pamplona
- Department of Experimental Medicine, University of Lleida-Lleida Biomedical Research Institute (UdL-IRBLleida), Lleida, Spain
| |
Collapse
|
14
|
Abstract
The study of cancer metabolism has evolved vastly beyond the remit of tumour proliferation and survival with the identification of the role of 'oncometabolites' in tumorigenesis. Simply defined, oncometabolites are conventional metabolites that, when aberrantly accumulated, have pro-oncogenic functions. Their discovery has led researchers to revisit the Warburg hypothesis, first postulated in the 1950s, of aberrant metabolism as an aetiological determinant of cancer. As such, the identification of oncometabolites and their utilization in diagnostics and prognostics, as novel therapeutic targets and as biomarkers of disease, are areas of considerable interest in oncology. To date, fumarate, succinate, L-2-hydroxyglutarate (L-2-HG) and D-2-hydroxyglutarate (D-2-HG) have been characterized as bona fide oncometabolites. Extensive metabolic reprogramming occurs during tumour initiation and progression in renal cell carcinoma (RCC) and three oncometabolites - fumarate, succinate and L-2-HG - have been implicated in this disease process. All of these oncometabolites inhibit a superfamily of enzymes known as α-ketoglutarate-dependent dioxygenases, leading to epigenetic dysregulation and induction of pseudohypoxic phenotypes, and also have specific pro-oncogenic capabilities. Oncometabolites could potentially be exploited for the development of novel targeted therapies and as biomarkers of disease.
Collapse
Affiliation(s)
- Cissy Yong
- Department of Surgery, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Grant D Stewart
- Department of Surgery, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
| | - Christian Frezza
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.
| |
Collapse
|
15
|
Manuel AM, Walla MD, Dorn MT, Tanis RM, Piroli GG, Frizzell N. Fumarate and oxidative stress synergize to promote stability of C/EBP homologous protein in the adipocyte. Free Radic Biol Med 2020; 148:70-82. [PMID: 31883977 PMCID: PMC6961135 DOI: 10.1016/j.freeradbiomed.2019.12.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/22/2019] [Accepted: 12/24/2019] [Indexed: 12/13/2022]
Abstract
C/EBP homologous protein (CHOP) is a transcription factor that is elevated in adipose tissue across many models of diabetes and metabolic stress. Although increased CHOP levels are associated with the terminal response to endoplasmic reticulum stress and apoptosis, there is no evidence for CHOP mediated apoptosis in the adipose tissue during diabetes. CHOP protein levels increase in parallel with protein succination, a fumarate derived cysteine modification, in the adipocyte during metabolic stress. We investigated the factors contributing to sustained CHOP proteins levels in the adipocyte, with an emphasis on the regulation of CHOP protein turnover by metabolite-driven modification of Keap1 cysteines. CHOP protein stability was investigated in conditions of nutrient stress due to high glucose or elevated fumarate (fumarase knockdown model); where cysteine succination is specifically elevated. CHOP protein turnover is significantly reduced in models of elevated glucose and fumarate with a ~30% increase in CHOP stability (p > 0.01), in part due to decreased CHOP phosphorylation. Sustained CHOP levels occur in parallel with elevated heme-oxygenase-1, a production of increased Nrf2 transcriptional activity and Keap1 modification. While Keap1 is directly succinated in the presence of excess fumarate derived from genetic knockdown of fumarase (fumarate levels are elevated >20-fold), it is the oxidative modification of Keap1 that predominates in adipocytes matured in high glucose (fumarate increases 4-5 fold). Elevated fumarate indirectly regulates CHOP stability through the induction of oxidative stress. The antioxidant N-acetylcysteine (NAC) reduces fumarate levels, protein succination and CHOP levels in adipocytes matured in high glucose. Elevated CHOP does not contribute elevated apoptosis in adipocytes, but plays a redox-dependent role in decreasing the adipocyte secretion of interleukin-13, an anti-inflammatory chemokine. NAC treatment restores adipocyte IL-13 secretion, confirming the redox-dependent regulation of a potent anti-inflammatory eotaxin. This study demonstrates that physiological increases in the metabolite fumarate during high glucose exposure contributes to the presence of oxidative stress and sustained CHOP levels in the adipocyte during diabetes. The results reveal a novel metabolic link between mitochondrial metabolic stress and reduced anti-inflammatory adipocyte signaling as a consequence of reduced CHOP protein turnover.
Collapse
Affiliation(s)
- Allison M Manuel
- Department of Pharmacology, Physiology & Neuroscience, School of Medicine, University of South Carolina, Columbia, SC, 29209, USA
| | - Michael D Walla
- Mass Spectrometry Center, Department of Chemistry & Biochemistry, University of South Carolina, Columbia, SC, 29205, USA
| | - Margaret T Dorn
- Department of Pharmacology, Physiology & Neuroscience, School of Medicine, University of South Carolina, Columbia, SC, 29209, USA
| | - Ross M Tanis
- Department of Pharmacology, Physiology & Neuroscience, School of Medicine, University of South Carolina, Columbia, SC, 29209, USA
| | - Gerardo G Piroli
- Department of Pharmacology, Physiology & Neuroscience, School of Medicine, University of South Carolina, Columbia, SC, 29209, USA
| | - Norma Frizzell
- Department of Pharmacology, Physiology & Neuroscience, School of Medicine, University of South Carolina, Columbia, SC, 29209, USA.
| |
Collapse
|
16
|
Serrano JCE, Baena‐Fustegueras JA, Martin‐Gari M, Rassendren H, Cassanye A, Naudí A, López‐Cano C, Sánchez E, de la Fuente‐Juárez MC, Herrerías González F, Olsina Kissler JJ, Lecube A, Portero‐Otín M. Adipose Tissue Protein Glycoxidation is Associated with Weight-Loss Potential. Obesity (Silver Spring) 2019; 27:1133-1140. [PMID: 31112015 PMCID: PMC6618070 DOI: 10.1002/oby.22501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 03/19/2019] [Indexed: 11/11/2022]
Abstract
OBJECTIVE This study aimed to characterize the differences in protein oxidation biomarkers in adipose tissue (AT) as an indicator of AT metabolism and bariatric surgery weight-loss success. METHODS A human model, in which sixty-five individuals with obesity underwent bariatric surgery, and a diet-induced obesity animal model, in which animals were treated for 2 months with normocaloric diets, were analyzed to determine the associations between AT protein oxidation and body weight loss. Protein oxidative biomarkers were determined by gas chromatography/mass spectrometry in AT from human volunteers before the surgery, as well as 2 months after a diet treatment in the animal model. RESULTS The levels of carboxyethyl-lysine (CEL) and 2-succinocystein (2SC) in both visceral and subcutaneous AT before the surgery directly correlated with greater weight loss in both human and animal models. 2SC levels in subcutaneous AT greater than 4.7 × 106 μmol/mol lysine (95% CI: 3.4 × 106 to 6.0 × 106 ) may predict greater weight loss after bariatric surgery (receiver operating characteristic curve area = 0.8222; P = 0.0047). Additionally, it was observed that individuals with diabetes presented lower levels of CEL and 2SC in subcutaneous AT (P = 0.0266 and P = 0.0316, respectively) compared with individuals without diabetes. CONCLUSIONS CEL and 2SC in AT are useful biomarkers of AT metabolism and predict the individual's ability to reduce body weight after bariatric surgery.
Collapse
Affiliation(s)
| | - Juan Antonio Baena‐Fustegueras
- General and Digestive Surgery Service, Endocrine, Bariatric and Metabolic Surgery UnitArnau de Vilanova University HospitalLleidaSpain
| | | | | | - Anna Cassanye
- Department of Experimental MedicineUniversity of LleidaLleidaSpain
| | - Alba Naudí
- Department of Experimental MedicineUniversity of LleidaLleidaSpain
| | - Carolina López‐Cano
- Endocrinology and Nutrition Department, Arnau de Vilanova University Hospital; and Obesity, Diabetes and Metabolism Research Group (ODIM), Institut de Recerca Biomèdica de Lleida (IRBLleida)University of LleidaLleidaSpain
| | - Enric Sánchez
- Endocrinology and Nutrition Department, Arnau de Vilanova University Hospital; and Obesity, Diabetes and Metabolism Research Group (ODIM), Institut de Recerca Biomèdica de Lleida (IRBLleida)University of LleidaLleidaSpain
| | - María Cruz de la Fuente‐Juárez
- General and Digestive Surgery Service, Endocrine, Bariatric and Metabolic Surgery UnitArnau de Vilanova University HospitalLleidaSpain
| | - Fernando Herrerías González
- General and Digestive Surgery Service, Endocrine, Bariatric and Metabolic Surgery UnitArnau de Vilanova University HospitalLleidaSpain
| | - Jorge J. Olsina Kissler
- General and Digestive Surgery Service, Endocrine, Bariatric and Metabolic Surgery UnitArnau de Vilanova University HospitalLleidaSpain
| | - Albert Lecube
- Endocrinology and Nutrition Department, Arnau de Vilanova University Hospital; and Obesity, Diabetes and Metabolism Research Group (ODIM), Institut de Recerca Biomèdica de Lleida (IRBLleida)University of LleidaLleidaSpain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)Instituto de Salud Carlos III (ISCIII)MadridSpain
| | | |
Collapse
|
17
|
Krause MP, Milne KJ, Hawke TJ. Adiponectin-Consideration for its Role in Skeletal Muscle Health. Int J Mol Sci 2019; 20:ijms20071528. [PMID: 30934678 PMCID: PMC6480271 DOI: 10.3390/ijms20071528] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 03/24/2019] [Accepted: 03/25/2019] [Indexed: 12/17/2022] Open
Abstract
Adiponectin regulates metabolism through blood glucose control and fatty acid oxidation, partly mediated by downstream effects of adiponectin signaling in skeletal muscle. More recently, skeletal muscle has been identified as a source of adiponectin expression, fueling interest in the role of adiponectin as both a circulating adipokine and a locally expressed paracrine/autocrine factor. In addition to being metabolically responsive, skeletal muscle functional capacity, calcium handling, growth and maintenance, regenerative capacity, and susceptibility to chronic inflammation are all strongly influenced by adiponectin stimulation. Furthermore, physical exercise has clear links to adiponectin expression and circulating concentrations in healthy and diseased populations. Greater physical activity is generally related to higher adiponectin expression while lower adiponectin levels are found in inactive obese, pre-diabetic, and diabetic populations. Exercise training typically restores plasma adiponectin and is associated with improved insulin sensitivity. Thus, the role of adiponectin signaling in skeletal muscle has expanded beyond that of a metabolic regulator to include several aspects of skeletal muscle function and maintenance critical to muscle health, many of which are responsive to, and mediated by, physical exercise.
Collapse
Affiliation(s)
- Matthew P Krause
- Department of Kinesiology, Faculty of Human Kinetics, University of Windsor, 401 Sunset Avenue, Windsor, ON N9B 3P4, Canada.
| | - Kevin J Milne
- Department of Kinesiology, Faculty of Human Kinetics, University of Windsor, 401 Sunset Avenue, Windsor, ON N9B 3P4, Canada.
| | - Thomas J Hawke
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, 1280 Main Street, Hamilton, ON L8S 4L8, Canada.
| |
Collapse
|
18
|
Piroli GG, Manuel AM, Patel T, Walla MD, Shi L, Lanci SA, Wang J, Galloway A, Ortinski PI, Smith DS, Frizzell N. Identification of Novel Protein Targets of Dimethyl Fumarate Modification in Neurons and Astrocytes Reveals Actions Independent of Nrf2 Stabilization. Mol Cell Proteomics 2019; 18:504-519. [PMID: 30587509 PMCID: PMC6398201 DOI: 10.1074/mcp.ra118.000922] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 12/01/2018] [Indexed: 12/15/2022] Open
Abstract
The fumarate ester dimethyl fumarate (DMF) has been introduced recently as a treatment for relapsing remitting multiple sclerosis (RRMS), a chronic inflammatory condition that results in neuronal demyelination and axonal loss. DMF is known to act by depleting intracellular glutathione and modifying thiols on Keap1 protein, resulting in the stabilization of the transcription factor Nrf2, which in turn induces the expression of antioxidant response element genes. We have previously shown that DMF reacts with a wide range of protein thiols, suggesting that the complete mechanisms of action of DMF are unknown. Here, we investigated other intracellular thiol residues that may also be irreversibly modified by DMF in neurons and astrocytes. Using mass spectrometry, we identified 24 novel proteins that were modified by DMF in neurons and astrocytes, including cofilin-1, tubulin and collapsin response mediator protein 2 (CRMP2). Using an in vitro functional assay, we demonstrated that DMF-modified cofilin-1 loses its activity and generates less monomeric actin, potentially inhibiting its cytoskeletal remodeling activity, which could be beneficial in the modulation of myelination during RRMS. DMF modification of tubulin did not significantly impact axonal lysosomal trafficking. We found that the oxygen consumption rate of N1E-115 neurons and the levels of proteins related to mitochondrial energy production were only slightly affected by the highest doses of DMF, confirming that DMF treatment does not impair cellular respiratory function. In summary, our work provides new insights into the mechanisms supporting the neuroprotective and remyelination benefits associated with DMF treatment in addition to the antioxidant response by Nrf2.
Collapse
Affiliation(s)
- Gerardo G Piroli
- From the ‡Department of Pharmacology, Physiology & Neuroscience, School of Medicine, University of South Carolina, Columbia, South Carolina 29209
| | - Allison M Manuel
- From the ‡Department of Pharmacology, Physiology & Neuroscience, School of Medicine, University of South Carolina, Columbia, South Carolina 29209
| | - Tulsi Patel
- From the ‡Department of Pharmacology, Physiology & Neuroscience, School of Medicine, University of South Carolina, Columbia, South Carolina 29209
| | - Michael D Walla
- §Mass Spectrometry Center, Department of Chemistry & Biochemistry, University of South Carolina, Columbia, South Carolina 29205
| | - Liang Shi
- ¶Department of Biological Sciences, University of South Carolina, Columbia, South Carolina 29205
| | - Scott A Lanci
- From the ‡Department of Pharmacology, Physiology & Neuroscience, School of Medicine, University of South Carolina, Columbia, South Carolina 29209
| | - Jingtian Wang
- From the ‡Department of Pharmacology, Physiology & Neuroscience, School of Medicine, University of South Carolina, Columbia, South Carolina 29209
| | - Ashley Galloway
- From the ‡Department of Pharmacology, Physiology & Neuroscience, School of Medicine, University of South Carolina, Columbia, South Carolina 29209
| | - Pavel I Ortinski
- From the ‡Department of Pharmacology, Physiology & Neuroscience, School of Medicine, University of South Carolina, Columbia, South Carolina 29209
| | - Deanna S Smith
- ¶Department of Biological Sciences, University of South Carolina, Columbia, South Carolina 29205
| | - Norma Frizzell
- From the ‡Department of Pharmacology, Physiology & Neuroscience, School of Medicine, University of South Carolina, Columbia, South Carolina 29209;
| |
Collapse
|
19
|
Adam J, Ramracheya R, Chibalina MV, Ternette N, Hamilton A, Tarasov AI, Zhang Q, Rebelato E, Rorsman NJG, Martín-Del-Río R, Lewis A, Özkan G, Do HW, Spégel P, Saitoh K, Kato K, Igarashi K, Kessler BM, Pugh CW, Tamarit-Rodriguez J, Mulder H, Clark A, Frizzell N, Soga T, Ashcroft FM, Silver A, Pollard PJ, Rorsman P. Fumarate Hydratase Deletion in Pancreatic β Cells Leads to Progressive Diabetes. Cell Rep 2018; 20:3135-3148. [PMID: 28954230 PMCID: PMC5637167 DOI: 10.1016/j.celrep.2017.08.093] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 07/27/2017] [Accepted: 08/29/2017] [Indexed: 12/31/2022] Open
Abstract
We explored the role of the Krebs cycle enzyme fumarate hydratase (FH) in glucose-stimulated insulin secretion (GSIS). Mice lacking Fh1 in pancreatic β cells (Fh1βKO mice) appear normal for 6–8 weeks but then develop progressive glucose intolerance and diabetes. Glucose tolerance is rescued by expression of mitochondrial or cytosolic FH but not by deletion of Hif1α or Nrf2. Progressive hyperglycemia in Fh1βKO mice led to dysregulated metabolism in β cells, a decrease in glucose-induced ATP production, electrical activity, cytoplasmic [Ca2+]i elevation, and GSIS. Fh1 loss resulted in elevated intracellular fumarate, promoting succination of critical cysteines in GAPDH, GMPR, and PARK 7/DJ-1 and cytoplasmic acidification. Intracellular fumarate levels were increased in islets exposed to high glucose and in islets from human donors with type 2 diabetes (T2D). The impaired GSIS in islets from diabetic Fh1βKO mice was ameliorated after culture under normoglycemic conditions. These studies highlight the role of FH and dysregulated mitochondrial metabolism in T2D. Fh1 loss in β cells causes progressive Hif1α-independent diabetes Fh1 loss in β cells impairs ATP generation, electrical activity, and GSIS Elevated fumarate is a feature of diabetic murine and human islets “Normoglycemia” restores GSIS in Fh1βKO islets
Collapse
Affiliation(s)
- Julie Adam
- Radcliffe Department of Medicine, OCDEM, Churchill Hospital, University of Oxford, Oxford OX3 7LE, UK; Nuffield Department of Medicine, Henry Wellcome Building for Molecular Physiology, University of Oxford, Oxford OX3 7BN, UK; Nuffield Department of Medicine, NDMRB, University of Oxford, Oxford OX3 7FZ, UK.
| | - Reshma Ramracheya
- Radcliffe Department of Medicine, OCDEM, Churchill Hospital, University of Oxford, Oxford OX3 7LE, UK
| | - Margarita V Chibalina
- Radcliffe Department of Medicine, OCDEM, Churchill Hospital, University of Oxford, Oxford OX3 7LE, UK
| | - Nicola Ternette
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Alexander Hamilton
- Radcliffe Department of Medicine, OCDEM, Churchill Hospital, University of Oxford, Oxford OX3 7LE, UK
| | - Andrei I Tarasov
- Radcliffe Department of Medicine, OCDEM, Churchill Hospital, University of Oxford, Oxford OX3 7LE, UK
| | - Quan Zhang
- Radcliffe Department of Medicine, OCDEM, Churchill Hospital, University of Oxford, Oxford OX3 7LE, UK
| | - Eduardo Rebelato
- Radcliffe Department of Medicine, OCDEM, Churchill Hospital, University of Oxford, Oxford OX3 7LE, UK; Department of Biophysics, Federal University of Sao Paulo, Sao Paulo 04023-062, Brazil
| | - Nils J G Rorsman
- Radcliffe Department of Medicine, OCDEM, Churchill Hospital, University of Oxford, Oxford OX3 7LE, UK
| | - Rafael Martín-Del-Río
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Ramón y Cajal Hospital, Madrid, Spain
| | - Amy Lewis
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Gizem Özkan
- Nuffield Department of Medicine, Henry Wellcome Building for Molecular Physiology, University of Oxford, Oxford OX3 7BN, UK
| | - Hyun Woong Do
- Radcliffe Department of Medicine, OCDEM, Churchill Hospital, University of Oxford, Oxford OX3 7LE, UK
| | - Peter Spégel
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, 221 00 Lund, Sweden
| | - Kaori Saitoh
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Tsuruoka, Yamagata 997-0052, Japan
| | - Keiko Kato
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Tsuruoka, Yamagata 997-0052, Japan
| | - Kaori Igarashi
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Tsuruoka, Yamagata 997-0052, Japan
| | - Benedikt M Kessler
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Christopher W Pugh
- Nuffield Department of Medicine, Henry Wellcome Building for Molecular Physiology, University of Oxford, Oxford OX3 7BN, UK; Nuffield Department of Medicine, NDMRB, University of Oxford, Oxford OX3 7FZ, UK
| | - Jorge Tamarit-Rodriguez
- Biochemistry Department, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Hindrik Mulder
- Lund University Diabetes Centre, Unit of Molecular Metabolism, Clinical Research Centre, Malmo University Hospital, 20502 Malmo, Sweden
| | - Anne Clark
- Radcliffe Department of Medicine, OCDEM, Churchill Hospital, University of Oxford, Oxford OX3 7LE, UK
| | - Norma Frizzell
- Department of Pharmacology, Physiology & Neuroscience, School of Medicine, University of South Carolina, Columbia, SC 29208, USA
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Tsuruoka, Yamagata 997-0052, Japan
| | - Frances M Ashcroft
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | - Andrew Silver
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Patrick J Pollard
- Nuffield Department of Medicine, Henry Wellcome Building for Molecular Physiology, University of Oxford, Oxford OX3 7BN, UK; Department of Physiology, Institute of Neuroscience and Physiology, University of Göteborg, 405 30 Göteborg, Sweden
| | - Patrik Rorsman
- Radcliffe Department of Medicine, OCDEM, Churchill Hospital, University of Oxford, Oxford OX3 7LE, UK; Department of Physiology, Institute of Neuroscience and Physiology, University of Göteborg, 405 30 Göteborg, Sweden.
| |
Collapse
|
20
|
Analysis of fumarate-sensitive proteins and sites by exploiting residue interaction networks. Amino Acids 2018; 50:647-652. [DOI: 10.1007/s00726-018-2548-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 02/24/2018] [Indexed: 10/17/2022]
|
21
|
Niehaus TD, Folz J, McCarty DR, Cooper AJL, Moraga Amador D, Fiehn O, Hanson AD. Identification of a metabolic disposal route for the oncometabolite S-(2-succino)cysteine in Bacillus subtilis. J Biol Chem 2018; 293:8255-8263. [PMID: 29626092 DOI: 10.1074/jbc.ra118.002925] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/04/2018] [Indexed: 01/21/2023] Open
Abstract
Cellular thiols such as cysteine spontaneously and readily react with the respiratory intermediate fumarate, resulting in the formation of stable S-(2-succino)-adducts. Fumarate-mediated succination of thiols increases in certain tumors and in response to glucotoxicity associated with diabetes. Therefore, S-(2-succino)-adducts such as S-(2-succino)cysteine (2SC) are considered oncometabolites and biomarkers for human disease. No disposal routes for S-(2-succino)-compounds have been reported prior to this study. Here, we show that Bacillus subtilis metabolizes 2SC to cysteine using a pathway encoded by the yxe operon. The first step is N-acetylation of 2SC followed by an oxygenation that we propose results in the release of oxaloacetate and N-acetylcysteine, which is deacetylated to give cysteine. Knockouts of the genes predicted to mediate each step in the pathway lose the ability to grow on 2SC as the sulfur source and accumulate the expected upstream metabolite(s). We further show that N-acetylation of 2SC relieves toxicity. This is the first demonstration of a metabolic disposal route for any S-(2-succino)-compound, paving the way toward the identification of corresponding pathways in other species.
Collapse
Affiliation(s)
- Thomas D Niehaus
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611.
| | - Jacob Folz
- West Coast Metabolomics Center, University of California, Davis, California 95616
| | - Donald R McCarty
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611
| | - Arthur J L Cooper
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York 10595
| | - David Moraga Amador
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida 32611
| | - Oliver Fiehn
- West Coast Metabolomics Center, University of California, Davis, California 95616
| | - Andrew D Hanson
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611.
| |
Collapse
|
22
|
Abstract
Genomic studies focus on key metabolites and pathways that, despite their obvious anthropocentric design, keep being 'predicted', while this is only finding again what is already known. As increasingly more genomes are sequenced, this lightpost effect may account at least in part for our failure to understand the function of a continuously growing number of genes. Core metabolism often goes astray, accidentally producing a variety of unexpected compounds. Catabolism of these forgotten metabolites makes an essential part of the functions coded in metagenomes. Here, I explore the fate of a limited number of those: compounds resulting from radical reactions and molecules derived from some reactive intermediates produced during normal metabolism. I try both to update investigators with the most recent literature and to uncover old articles that may open up new research avenues in the genome exploration of metabolism. This should allow us to foresee further developments in experimental genomics and genome annotation.
Collapse
Affiliation(s)
- Antoine Danchin
- Institute of Cardiometabolism and NutritionHôpital de la Pitié‐Salpêtrière47 Boulevard de l'HôpitalParis75013France
| |
Collapse
|
23
|
Sciacovelli M, Frezza C. Oncometabolites: Unconventional triggers of oncogenic signalling cascades. Free Radic Biol Med 2016; 100:175-181. [PMID: 27117029 PMCID: PMC5145802 DOI: 10.1016/j.freeradbiomed.2016.04.025] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 04/11/2016] [Accepted: 04/19/2016] [Indexed: 01/27/2023]
Abstract
Cancer is a complex and heterogeneous disease thought to be caused by multiple genetic lesions. The recent finding that enzymes of the tricarboxylic acid (TCA) cycle are mutated in cancer rekindled the hypothesis that altered metabolism might also have a role in cellular transformation. Attempts to link mitochondrial dysfunction to cancer uncovered the unexpected role of small molecule metabolites, now known as oncometabolites, in tumorigenesis. In this review, we describe how oncometabolites can contribute to tumorigenesis. We propose that lesions of oncogenes and tumour suppressors are only one of the possible routes to tumorigenesis, which include accumulation of oncometabolites triggered by environmental cues.
Collapse
Affiliation(s)
- Marco Sciacovelli
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197, Cambridge Biomedical Campus, Cambridge CB2 0XZ, United Kingdom
| | - Christian Frezza
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197, Cambridge Biomedical Campus, Cambridge CB2 0XZ, United Kingdom.
| |
Collapse
|
24
|
Boyer F, Diotel N, Girard D, Rondeau P, Essop MF, Bourdon E. Enhanced oxidative stress in adipose tissue from diabetic mice, possible contribution of glycated albumin. Biochem Biophys Res Commun 2016; 473:154-160. [DOI: 10.1016/j.bbrc.2016.03.068] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 03/16/2016] [Indexed: 12/16/2022]
|
25
|
Miglio G, Sabatino AD, Veglia E, Giraudo MT, Beccuti M, Cordero F. A computational analysis of S-(2-succino)cysteine sites in proteins. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1864:211-8. [PMID: 26589354 DOI: 10.1016/j.bbapap.2015.11.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 10/19/2015] [Accepted: 11/13/2015] [Indexed: 12/31/2022]
Abstract
The adduction of fumaric acid to the sulfhydryl group of certain cysteine (Cys) residues in proteins via a Michael-like reaction leads to the formation of S-(2-succino)cysteine (2SC) sites. Although its role remains to be fully understood, this post-translational Cys modification (protein succination) has been implicated in the pathogenesis of diabetes/obesity and fumarate hydratase-related diseases. In this study, theoretical approaches to address sequence- and 3D-structure-based features possibly underlying the specificity of protein succination have been applied to perform the first analysis of the available data on the succinate proteome. A total of 182 succinated proteins, 205 modifiable, and 1750 non-modifiable sites have been examined. The rate of 2SC sites per protein ranged from 1 to 3, and the overall relative abundance of modifiable sites was 10.8%. Modifiable and non-modifiable sites were not distinguishable when the hydrophobicity of the Cys-flaking peptides, the acid dissociation constant value of the sulfhydryl groups, and the secondary structure of the Cys-containing segments were compared. By contrast, significant differences were determined when the accessibility of the sulphur atoms and the amino acid composition of the Cys-flaking peptides were analysed. Based on these findings, a sequence-based score function has been evaluated as a descriptor for Cys residues. In conclusion, our results indicate that modifiable and non-modifiable sites form heterogeneous subsets when features often discussed to describe Cys reactivity are examined. However, they also suggest that some differences exist, which may constitute the baseline for further investigations aimed at the development of predictive methods for 2SC sites in proteins.
Collapse
Affiliation(s)
- Gianluca Miglio
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Turin, Italy.
| | | | - Eleonora Veglia
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Turin, Italy
| | - Maria Teresa Giraudo
- Dipartimento di Matematica "Giuseppe Peano", Università degli Studi di Torino, Turin, Italy
| | - Marco Beccuti
- Dipartimento di Informatica, Università degli Studi di Torino, Turin, Italy
| | - Francesca Cordero
- Dipartimento di Informatica, Università degli Studi di Torino, Turin, Italy
| |
Collapse
|
26
|
Piroli GG, Manuel AM, Clapper AC, Walla MD, Baatz JE, Palmiter RD, Quintana A, Frizzell N. Succination is Increased on Select Proteins in the Brainstem of the NADH dehydrogenase (ubiquinone) Fe-S protein 4 (Ndufs4) Knockout Mouse, a Model of Leigh Syndrome. Mol Cell Proteomics 2015; 15:445-61. [PMID: 26450614 DOI: 10.1074/mcp.m115.051516] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Indexed: 12/21/2022] Open
Abstract
Elevated fumarate concentrations as a result of Krebs cycle inhibition lead to increases in protein succination, an irreversible post-translational modification that occurs when fumarate reacts with cysteine residues to generate S-(2-succino)cysteine (2SC). Metabolic events that reduce NADH re-oxidation can block Krebs cycle activity; therefore we hypothesized that oxidative phosphorylation deficiencies, such as those observed in some mitochondrial diseases, would also lead to increased protein succination. Using the Ndufs4 knockout (Ndufs4 KO) mouse, a model of Leigh syndrome, we demonstrate for the first time that protein succination is increased in the brainstem (BS), particularly in the vestibular nucleus. Importantly, the brainstem is the most affected region exhibiting neurodegeneration and astrocyte and microglial proliferation, and these mice typically die of respiratory failure attributed to vestibular nucleus pathology. In contrast, no increases in protein succination were observed in the skeletal muscle, corresponding with the lack of muscle pathology observed in this model. 2D SDS-PAGE followed by immunoblotting for succinated proteins and MS/MS analysis of BS proteins allowed us to identify the voltage-dependent anion channels 1 and 2 as specific targets of succination in the Ndufs4 knockout. Using targeted mass spectrometry, Cys(77) and Cys(48) were identified as endogenous sites of succination in voltage-dependent anion channels 2. Given the important role of voltage-dependent anion channels isoforms in the exchange of ADP/ATP between the cytosol and the mitochondria, and the already decreased capacity for ATP synthesis in the Ndufs4 KO mice, we propose that the increased protein succination observed in the BS of these animals would further decrease the already compromised mitochondrial function. These data suggest that fumarate is a novel biochemical link that may contribute to the progression of the neuropathology in this mitochondrial disease model.
Collapse
Affiliation(s)
- Gerardo G Piroli
- From the ‡Department of Pharmacology, Physiology & Neuroscience, School of Medicine, University of South Carolina, Columbia, South Carolina 29209
| | - Allison M Manuel
- From the ‡Department of Pharmacology, Physiology & Neuroscience, School of Medicine, University of South Carolina, Columbia, South Carolina 29209
| | - Anna C Clapper
- From the ‡Department of Pharmacology, Physiology & Neuroscience, School of Medicine, University of South Carolina, Columbia, South Carolina 29209
| | - Michael D Walla
- §Mass Spectrometry Center, Department of Chemistry & Biochemistry, University of South Carolina, Columbia, South Carolina 29205
| | - John E Baatz
- ¶Department of Pediatrics, College of Medicine, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Richard D Palmiter
- ‖Howard Hughes Medical Institute and Department of Biochemistry, University of Washington, Seattle, Washington 98195
| | - Albert Quintana
- ‖Howard Hughes Medical Institute and Department of Biochemistry, University of Washington, Seattle, Washington 98195; **Center for Integrative Brain Research and Center for Developmental Therapeutics, Seattle Children's Research Institute, Seattle, Washington 98101
| | - Norma Frizzell
- From the ‡Department of Pharmacology, Physiology & Neuroscience, School of Medicine, University of South Carolina, Columbia, South Carolina 29209;
| |
Collapse
|
27
|
Gomez A, Gomez J, Torres ML, Naudi A, Mota-Martorell N, Pamplona R, Barja G. Cysteine dietary supplementation reverses the decrease in mitochondrial ROS production at complex I induced by methionine restriction. J Bioenerg Biomembr 2015; 47:199-208. [DOI: 10.1007/s10863-015-9608-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 03/05/2015] [Indexed: 01/24/2023]
|
28
|
Tanis RM, Piroli GG, Day SD, Frizzell N. The effect of glucose concentration and sodium phenylbutyrate treatment on mitochondrial bioenergetics and ER stress in 3T3-L1 adipocytes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:213-21. [PMID: 25448036 DOI: 10.1016/j.bbamcr.2014.10.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 10/14/2014] [Accepted: 10/15/2014] [Indexed: 01/10/2023]
Abstract
While the 3T3-L1 adipocyte model is routinely used for the study of obesity and diabetes, the mitochondrial respiratory profile in normal versus high glucose has not been examined in detail. We matured adipocytes in normal (5mM) or high (30 mM) glucose and insulin and examined the mitochondrial bioenergetics. We also assessed the requirement for the Unfolded Protein Response (UPR) and ER stress under these conditions. Basal respiration was ~1.7-fold greater in adipocytes that had matured in 30 mM glucose; however, their ability to increase oxygen consumption in response to stress was impaired. Adipogenesis proceeded in both normal and high glucose with concomitant activation of the UPR, but only high glucose was associated with increased levels of ER stress and mitochondrial stress as observed by parallel increases in CHOP and protein succination. Treatment of adipocytes with sodium phenylbutyrate relieved mitochondrial stress through a reduction in mitochondrial respiration. Our data suggests that mitochondrial stress, protein succination and ER stress are uniquely linked in adipocytes matured in high glucose.
Collapse
Affiliation(s)
- Ross M Tanis
- Department of Pharmacology, Physiology & Neuroscience, School of Medicine, University of South Carolina, Columbia, SC 29208, USA
| | - Gerardo G Piroli
- Department of Pharmacology, Physiology & Neuroscience, School of Medicine, University of South Carolina, Columbia, SC 29208, USA
| | - Stani D Day
- Department of Pharmacology, Physiology & Neuroscience, School of Medicine, University of South Carolina, Columbia, SC 29208, USA
| | - Norma Frizzell
- Department of Pharmacology, Physiology & Neuroscience, School of Medicine, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|
29
|
Abstract
Protein succination is a stable post-translational modification that occurs when fumarate reacts with cysteine residues to generate 2SC [S-(2-succino)cysteine]. We demonstrate that both α- and β-tubulin are increasingly modified by succination in 3T3-L1 adipocytes and in the adipose tissue of db/db mice. Incubation of purified tubulin from porcine brain with fumarate (50 mM) or the pharmacological compound DMF (dimethylfumarate, 500 μM) inhibited polymerization up to 35% and 59% respectively. Using MS we identified Cys347α, Cys376α, Cys12β and Cys303β as sites of succination in porcine brain tubulin and the relative abundance of succination at these cysteine residues increased in association with fumarate concentration. The increase in succination after incubation with fumarate altered tubulin recognition by an anti-α-tubulin antibody. Succinated tubulin in adipocytes cultured in high glucose compared with normal glucose also had reduced reactivity with the anti-α-tubulin antibody; suggesting that succination may interfere with tubulin-protein interactions. DMF reacted rapidly with 11 of the 20 cysteine residues in the αβ-tubulin dimer, decreased the number of free thiols and inhibited the proliferation of 3T3-L1 fibroblasts. Our data suggest that inhibition of tubulin polymerization is an important undocumented mechanism of action of DMF. Taken together, our results demonstrate that succination is a novel post-translational modification of tubulin and suggest that extensive modification by fumarate, either physiologically or pharmacologically, may alter microtubule dynamics.
Collapse
|
30
|
The Succinated Proteome of FH-Mutant Tumours. Metabolites 2014; 4:640-54. [PMID: 25105836 PMCID: PMC4192685 DOI: 10.3390/metabo4030640] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 07/21/2014] [Accepted: 07/24/2014] [Indexed: 01/08/2023] Open
Abstract
Inherited mutations in the Krebs cycle enzyme fumarate hydratase (FH) predispose to hereditary leiomyomatosis and renal cell cancer (HLRCC). Loss of FH activity in HLRCC tumours causes accumulation of the Krebs cycle intermediate fumarate to high levels, which may act as an oncometabolite through various, but not necessarily mutually exclusive, mechanisms. One such mechanism, succination, is an irreversible non-enzymatic modification of cysteine residues by fumarate, to form S-(2-succino)cysteine (2SC). Previous studies have demonstrated that succination of proteins including glyceraldehyde 3-phosphate dehydrogenase (GAPDH), kelch-like ECH-associated protein 1 (KEAP1) and mitochondrial aconitase (ACO2) can have profound effects on cellular metabolism. Furthermore, immunostaining for 2SC is a sensitive and specific biomarker for HLRCC tumours. Here, we performed a proteomic screen on an FH-mutant tumour and two HLRCC-derived cancer cell lines and identified 60 proteins where one or more cysteine residues were succinated; 10 of which were succinated at cysteine residues either predicted, or experimentally proven, to be functionally significant. Bioinformatic enrichment analyses identified most succinated targets to be involved in redox signaling. To our knowledge, this is the first proteomic-based succination screen performed in human tumours and cancer-derived cells and has identified novel 2SC targets that may be relevant to the pathogenesis of HLRCC.
Collapse
|
31
|
Unsuspected task for an old team: succinate, fumarate and other Krebs cycle acids in metabolic remodeling. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1330-7. [PMID: 24699309 DOI: 10.1016/j.bbabio.2014.03.013] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 03/17/2014] [Accepted: 03/25/2014] [Indexed: 12/15/2022]
Abstract
Seventy years from the formalization of the Krebs cycle as the central metabolic turntable sustaining the cell respiratory process, key functions of several of its intermediates, especially succinate and fumarate, have been recently uncovered. The presumably immutable organization of the cycle has been challenged by a number of observations, and the variable subcellular location of a number of its constitutive protein components is now well recognized, although yet unexplained. Nonetheless, the most striking observations have been made in the recent period while investigating human diseases, especially a set of specific cancers, revealing the crucial role of Krebs cycle intermediates as factors affecting genes methylation and thus cell remodeling. We review here the recent advances and persisting incognita about the role of Krebs cycle acids in diverse aspects of cellular life and human pathology.
Collapse
|
32
|
Merkley ED, Metz TO, Smith RD, Baynes JW, Frizzell N. The succinated proteome. MASS SPECTROMETRY REVIEWS 2014; 33:98-109. [PMID: 24115015 PMCID: PMC4038156 DOI: 10.1002/mas.21382] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 03/27/2013] [Indexed: 06/01/2023]
Abstract
The post-translational modifications (PTMs) of cysteine residues include oxidation, S-glutathionylation, S-nitrosylation, and succination, all of which modify protein function or turnover in response to a changing intracellular redox environment. Succination is a chemical modification of cysteine in proteins by the Krebs cycle intermediate, fumarate, yielding S-(2-succino)cysteine (2SC). Intracellular fumarate concentration and succination of proteins are increased by hyperpolarization of the inner mitochondrial membrane, in concert with mitochondrial, endoplasmic reticulum (ER) and oxidative stress in 3T3 adipocytes grown in high glucose medium and in adipose tissue in obesity and diabetes in mice. Increased succination of proteins is also detected in the kidney of a fumarase deficient conditional knock-out mouse which develops renal cysts. A wide range of proteins are subject to succination, including enzymes, adipokines, cytoskeletal proteins, and ER chaperones with functional cysteine residues. There is also some overlap between succinated and glutathionylated proteins, suggesting that the same low pKa thiols are targeted by both. Succination of adipocyte proteins in diabetes increases as a result of nutrient excess derived mitochondrial stress and this is inhibited by uncouplers, which discharge the mitochondrial membrane potential (ΔΨm) and relieve the electron transport chain. 2SC therefore serves as a biomarker of mitochondrial stress or dysfunction in chronic diseases, such as obesity, diabetes, and cancer, and recent studies suggest that succination is a mechanistic link between mitochondrial dysfunction, oxidative and ER stress, and cellular progression toward apoptosis. In this article, we review the history of the succinated proteome and the challenges associated with measuring this non-enzymatic PTM of proteins by proteomics approaches.
Collapse
Affiliation(s)
- Eric D. Merkley
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington
| | - Thomas O. Metz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington
| | - Richard D. Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington
| | - John W. Baynes
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina, School of Medicine, Columbia, South Carolina
| | - Norma Frizzell
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina, School of Medicine, Columbia, South Carolina
| |
Collapse
|
33
|
Yang OC, Maxwell PH, Pollard PJ. Renal cell carcinoma: translational aspects of metabolism and therapeutic consequences. Kidney Int 2013; 84:667-81. [DOI: 10.1038/ki.2013.245] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Revised: 03/12/2013] [Accepted: 03/14/2013] [Indexed: 02/08/2023]
|
34
|
Rare insights into cancer biology. Oncogene 2013; 33:2547-56. [PMID: 23812428 DOI: 10.1038/onc.2013.222] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 04/12/2013] [Accepted: 04/12/2013] [Indexed: 12/12/2022]
Abstract
Cancer-associated mutations have been identified in the metabolic genes succinate dehydrogenase (SDH), fumarate hydratase (FH) and isocitrate dehydrogenase (IDH), advancing and challenging our understanding of cellular function and disease mechanisms and providing direct links between dysregulated metabolism and cancer. Some striking parallels exist in the cellular consequences of the genetic mutations within this triad of cancer syndromes, including accumulation of oncometabolites and competitive inhibition of 2-oxoglutarate-dependent dioxygenases, particularly, hypoxia-inducible factor (HIF) prolyl hydroxylases, JmjC domain-containing histone demethylases (part of the JMJD family) and the ten-eleven translocation (TET) family of 5methyl cytosine (5mC) DNA hydroxylases. These lead to activation of HIF-dependent oncogenic pathways and inhibition of histone and DNA demethylation. Mutations in FH, resulting in loss of enzyme activity, predispose affected individuals to a rare cancer, hereditary leiomyomatosis and renal cell cancer (HLRCC), characterised by benign smooth muscle cutaneous and uterine tumours (leiomyomata) and an aggressive form of collecting duct and type 2 papillary renal cancer. Interestingly, loss of FH activity results in the accumulation of high levels of fumarate that can lead to the non-enzymatic modification of cysteine residues in multiple proteins (succination) and in some cases to their disrupted function. Here we consider that the study of rare diseases such as HLRCC, combining analyses of human tumours and cell lines with in vitro and in vivo murine models has provided novel insights into cancer biology associated with dysregulated metabolism and represents a useful paradigm for cancer research.
Collapse
|
35
|
Ternette N, Yang M, Laroyia M, Kitagawa M, O’Flaherty L, Wolhulter K, Igarashi K, Saito K, Kato K, Fischer R, Berquand A, Kessler B, Lappin T, Frizzell N, Soga T, Adam J, Pollard P. Inhibition of mitochondrial aconitase by succination in fumarate hydratase deficiency. Cell Rep 2013; 3:689-700. [PMID: 23499446 PMCID: PMC3617368 DOI: 10.1016/j.celrep.2013.02.013] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2012] [Revised: 01/28/2013] [Accepted: 02/11/2013] [Indexed: 01/23/2023] Open
Abstract
The gene encoding the Krebs cycle enzyme fumarate hydratase (FH) is mutated in hereditary leiomyomatosis and renal cell cancer (HLRCC). Loss of FH activity causes accumulation of intracellular fumarate, which can directly modify cysteine residues to form 2-succinocysteine through succination. We undertook a proteomic-based screen in cells and renal cysts from Fh1 (murine FH)-deficient mice and identified 94 protein succination targets. Notably, we identified the succination of three cysteine residues in mitochondrial Aconitase2 (ACO2) crucial for iron-sulfur cluster binding. We show that fumarate exerts a dose-dependent inhibition of ACO2 activity, which correlates with increased succination as determined by mass spectrometry, possibly by interfering with iron chelation. Importantly, we show that aconitase activity is impaired in FH-deficient cells. Our data provide evidence that succination, resulting from FH deficiency, targets and potentially alters the function of multiple proteins and may contribute to the dysregulated metabolism observed in HLRCC.
Collapse
Affiliation(s)
- Nicola Ternette
- Central Proteomics Facility, Henry Wellcome Building for Molecular Physiology, University of Oxford, Oxford OX3 7BN, UK
| | - Ming Yang
- Cancer Biology and Metabolism Group, Henry Wellcome Building for Molecular Physiology, University of Oxford, Oxford OX3 7BN, UK
- Corresponding author
| | - Mahima Laroyia
- Cancer Biology and Metabolism Group, Henry Wellcome Building for Molecular Physiology, University of Oxford, Oxford OX3 7BN, UK
| | - Mitsuhiro Kitagawa
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Tsuruoka, Yamagata 997-0052, Japan
| | - Linda O’Flaherty
- Cancer Biology and Metabolism Group, Henry Wellcome Building for Molecular Physiology, University of Oxford, Oxford OX3 7BN, UK
| | - Kathryn Wolhulter
- Cancer Biology and Metabolism Group, Henry Wellcome Building for Molecular Physiology, University of Oxford, Oxford OX3 7BN, UK
| | - Kaori Igarashi
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Tsuruoka, Yamagata 997-0052, Japan
| | - Kaori Saito
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Tsuruoka, Yamagata 997-0052, Japan
| | - Keiko Kato
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Tsuruoka, Yamagata 997-0052, Japan
| | - Roman Fischer
- Central Proteomics Facility, Henry Wellcome Building for Molecular Physiology, University of Oxford, Oxford OX3 7BN, UK
| | - Alexandre Berquand
- Bruker Nano GmbH, Östliche Rheinbrückenstraße 49, 76187 Karlsruhe, Germany
| | - Benedikt M. Kessler
- Central Proteomics Facility, Henry Wellcome Building for Molecular Physiology, University of Oxford, Oxford OX3 7BN, UK
| | - Terry Lappin
- Hypoxia Biology Group, Henry Wellcome Building for Molecular Physiology, University of Oxford, Oxford OX3 7BN, UK
- Centre for Cancer Research and Cell Biology, Queen’s University, Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Norma Frizzell
- Department of Pharmacology, Physiology & Neuroscience, School of Medicine, University of South Carolina, Columbia, SC 29208, USA
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Tsuruoka, Yamagata 997-0052, Japan
- Oxford-Keio Metabolomics Consortium, Keio University, 246-2 Mizukami, Tsuruoka, Yamagata 997-0052, Japan
- Oxford-Keio Metabolomics Consortium, Oxford OX3 7BN, UK
| | - Julie Adam
- Cancer Biology and Metabolism Group, Henry Wellcome Building for Molecular Physiology, University of Oxford, Oxford OX3 7BN, UK
| | - Patrick J. Pollard
- Cancer Biology and Metabolism Group, Henry Wellcome Building for Molecular Physiology, University of Oxford, Oxford OX3 7BN, UK
- Oxford-Keio Metabolomics Consortium, Keio University, 246-2 Mizukami, Tsuruoka, Yamagata 997-0052, Japan
- Oxford-Keio Metabolomics Consortium, Oxford OX3 7BN, UK
- Corresponding author
| |
Collapse
|
36
|
Mitochondrial stress causes increased succination of proteins in adipocytes in response to glucotoxicity. Biochem J 2012; 445:247-54. [PMID: 22524437 DOI: 10.1042/bj20112142] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
2SC [S-(2-succino)-cysteine] is a chemical modification formed by a Michael addition reaction of fumarate with cysteine residues in proteins. Formation of 2SC, termed 'succination' of proteins, increases in adipocytes grown in high-glucose medium and in adipose tissues of Type 2 diabetic mice. However, the metabolic mechanisms leading to increased fumarate and succination of protein in the adipocyte are unknown. Treatment of 3T3 cells with high glucose (30 mM compared with 5 mM) caused a significant increase in cellular ATP/ADP, NADH/NAD+ and Δψm (mitochondrial membrane potential). There was also a significant increase in the cellular fumarate concentration and succination of proteins, which may be attributed to the increase in NADH/NAD+ and subsequent inhibition of tricarboxylic acid cycle NAD+-dependent dehydrogenases. Chemical uncouplers, which dissipated Δψm and reduced the NADH/NAD+ ratio, also decreased the fumarate concentration and protein succination. High glucose plus metformin, an inhibitor of complex I in the electron transport chain, caused an increase in fumarate and succination of protein. Thus excess fuel supply (glucotoxicity) appears to create a pseudohypoxic environment (high NADH/NAD+ without hypoxia), which drives the increase in succination of protein. We propose that increased succination of proteins is an early marker of glucotoxicity and mitochondrial stress in adipose tissue in diabetes.
Collapse
|