1
|
Szabó P, Bonet S, Hetényi R, Hanna D, Kovács Z, Prisztóka G, Križalkovičová Z, Szentpéteri J. Systematic review: pain, cognition, and cardioprotection-unpacking oxytocin's contributions in a sport context. Front Physiol 2024; 15:1393497. [PMID: 38915776 PMCID: PMC11194439 DOI: 10.3389/fphys.2024.1393497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/13/2024] [Indexed: 06/26/2024] Open
Abstract
Introduction This systematic review investigates the interplay between oxytocin and exercise; in terms of analgesic, anti-inflammatory, pro-regenerative, and cardioprotective effects. Furthermore, by analyzing measurement methods, we aim to improve measurement validity and reliability. Methods Utilizing PRISMA, GRADE, and MECIR protocols, we examined five databases with a modified SPIDER search. Including studies on healthy participants, published within the last 20 years, based on keywords "oxytocin," "exercise" and "measurement," 690 studies were retrieved initially (455 unique records). After excluding studies of clinically identifiable diseases, and unpublished and reproduction-focused studies, 175 studies qualified for the narrative cross-thematic and structural analysis. Results The analysis resulted in five categories showing the reciprocal impact of oxytocin and exercise: Exercise (50), Physiology (63), Environment (27), Social Context (65), and Stress (49). Exercise-induced oxytocin could promote tissue regeneration, with 32 studies showing its analgesic and anti-inflammatory effects, while 14 studies discussed memory and cognition. Furthermore, empathy-associated OXTR rs53576 polymorphism might influence team sports performance. Since dietary habits and substance abuse can impact oxytocin secretion too, combining self-report tests and repeated salivary measurements may help achieve precision. Discussion Oxytocin's effect on fear extinction and social cognition might generate strategies for mental training, and technical, and tactical development in sports. Exercise-induced oxytocin can affect the amount of stress experienced by athletes, and their response to it. However, oxytocin levels could depend on the type of sport in means of contact level, exercise intensity, and duration. The influence of oxytocin on athletes' performance and recovery could have been exploited due to its short half-life. Examining oxytocin's complex interactions with exercise paves the way for future research and application in sports science, psychology, and medical disciplines. Systematic Review Registration https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=512184, identifier CRD42024512184.
Collapse
Affiliation(s)
- Péter Szabó
- Faculty of Sciences, Institute of Sports Science and Physical Education, University of Pécs, Pécs, Hungary
- Faculty of Humanities, University of Pécs, Pécs, Hungary
- Medical School, Institute of Transdisciplinary Discoveries, University of Pécs, Pécs, Hungary
| | - Sara Bonet
- Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Roland Hetényi
- RoLink Biotechnology Kft., Pécs, Hungary
- Hungarian National Blood Transfusion Service, Budapest, Hungary
- Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- National Virology Laboratory, University of Pécs, Pécs, Hungary
| | - Dániel Hanna
- RoLink Biotechnology Kft., Pécs, Hungary
- Hungarian National Blood Transfusion Service, Budapest, Hungary
- Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- National Virology Laboratory, University of Pécs, Pécs, Hungary
| | - Zsófia Kovács
- Faculty of Sciences, Institute of Sports Science and Physical Education, University of Pécs, Pécs, Hungary
| | - Gyöngyvér Prisztóka
- Faculty of Sciences, Institute of Sports Science and Physical Education, University of Pécs, Pécs, Hungary
| | - Zuzana Križalkovičová
- Faculty of Health Sciences, Institute of Physiotherapy and Sport Science, Department of Sport Science, Pécs, Hungary
| | - József Szentpéteri
- Medical School, Institute of Transdisciplinary Discoveries, University of Pécs, Pécs, Hungary
| |
Collapse
|
2
|
Liu T, Xu Y, Yi CX, Tong Q, Cai D. The hypothalamus for whole-body physiology: from metabolism to aging. Protein Cell 2022; 13:394-421. [PMID: 33826123 PMCID: PMC9095790 DOI: 10.1007/s13238-021-00834-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/01/2021] [Indexed: 01/05/2023] Open
Abstract
Obesity and aging are two important epidemic factors for metabolic syndrome and many other health issues, which contribute to devastating diseases such as cardiovascular diseases, stroke and cancers. The brain plays a central role in controlling metabolic physiology in that it integrates information from other metabolic organs, sends regulatory projections and orchestrates the whole-body function. Emerging studies suggest that brain dysfunction in sensing various internal cues or processing external cues may have profound effects on metabolic and other physiological functions. This review highlights brain dysfunction linked to genetic mutations, sex, brain inflammation, microbiota, stress as causes for whole-body pathophysiology, arguing brain dysfunction as a root cause for the epidemic of aging and obesity-related disorders. We also speculate key issues that need to be addressed on how to reveal relevant brain dysfunction that underlines the development of these disorders and diseases in order to develop new treatment strategies against these health problems.
Collapse
Affiliation(s)
- Tiemin Liu
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Genetic Engineering, Department of Endocrinology and Metabolism, Institute of Metabolism and Integrative Biology, Human Phenome Institute, and Collaborative Innovation Center for Genetics and Development, Zhongshan Hospital, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Yong Xu
- grid.39382.330000 0001 2160 926XChildren’s Nutrition Research Center, Department of Pediatrics, Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
| | - Chun-Xia Yi
- grid.7177.60000000084992262Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, Amsterdam Gastroenterology Endocrinology Metabolism, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, Netherlands
| | - Qingchun Tong
- grid.453726.10000 0004 5906 7293Brown Foundation Institute of Molecular Medicine, Department of Neurobiology and Anatomy, University of Texas McGovern Medical School, Graduate Program in Neuroscience of MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030 USA
| | - Dongsheng Cai
- grid.251993.50000000121791997Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, NY 10461 USA
| |
Collapse
|
3
|
Acar MB, Ayaz-Güner Ş, Di Bernardo G, Güner H, Murat A, Peluso G, Özcan S, Galderisi U. Obesity induced by high-fat diet is associated with critical changes in biological and molecular functions of mesenchymal stromal cells present in visceral adipose tissue. Aging (Albany NY) 2020; 12:24894-24913. [PMID: 33361524 PMCID: PMC7803587 DOI: 10.18632/aging.202423] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 11/27/2020] [Indexed: 12/27/2022]
Abstract
The mesenchymal stromal cells (MSCs) residing within the stromal component of visceral adipose tissue appear to be greatly affected by obesity, with impairment of their functions and presence of senescence. To gain further insight into these phenomena, we analyzed the changes in total proteome content and secretome of mouse MSCs after a high-fat diet (HFD) treatment compared to a normal diet (ND). In healthy conditions, MSCs are endowed with functions mainly devoted to vesicle trafficking. These cells have an immunoregulatory role, affecting leukocyte activation and migration, acute inflammation phase response, chemokine signaling, and platelet activities. They also present a robust response to stress. We identified four signaling pathways (TGF-β, VEGFR2, HMGB1, and Leptin) that appear to govern the cells' functions. In the obese mice, MSCs showed a change in their functions. The immunoregulation shifted toward pro-inflammatory tasks with the activation of interleukin-1 pathway and of Granzyme A signaling. Moreover, the methionine degradation pathway and the processing of capped intronless pre-mRNAs may be related to the inflammation process. The signaling pathways we identified in ND MSCs were replaced by MET, WNT, and FGFR2 signal transduction, which may play a role in promoting inflammation, cancer, and aging.
Collapse
Affiliation(s)
- Mustafa Burak Acar
- Genome and Stem Cell Center (GENKÖK) Erciyes University, Kayseri, Turkey
| | - Şerife Ayaz-Güner
- Department of Molecular Biology and Genetics, Faculty of Life and Natural Science, Abdullah Gül University, Kayseri, Turkey
| | - Giovanni Di Bernardo
- Department of Experimental Medicine, Luigi Vanvitelli Campania University, Naples, Italy
| | - Hüseyin Güner
- Department of Molecular Biology and Genetics, Faculty of Life and Natural Science, Abdullah Gül University, Kayseri, Turkey
| | - Ayşegül Murat
- Genome and Stem Cell Center (GENKÖK) Erciyes University, Kayseri, Turkey
| | | | - Servet Özcan
- Genome and Stem Cell Center (GENKÖK) Erciyes University, Kayseri, Turkey
- Department of Biology, Faculty of Science, Erciyes University, Kayseri, Turkey
| | - Umberto Galderisi
- Genome and Stem Cell Center (GENKÖK) Erciyes University, Kayseri, Turkey
- Department of Experimental Medicine, Luigi Vanvitelli Campania University, Naples, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
4
|
Lu Y, Liu H, Yang XY, Liu JX, Dai MY, Wu JC, Guo YX, Luo TC, Sun FF, Pan W. Microarray Analysis of lncRNA and mRNA Reveals Enhanced Lipolysis Along With Metabolic Remodeling in Mice Infected With Larval Echinococcus granulosus. Front Physiol 2020; 11:1078. [PMID: 32973568 PMCID: PMC7472464 DOI: 10.3389/fphys.2020.01078] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/05/2020] [Indexed: 12/14/2022] Open
Abstract
Parasitic infection improves metabolic homeostasis in “western diet”-induced obesity through the regulation of adipogenesis. However, the underlying mechanism is not yet fully understood. Using microarray analysis, this study investigated the long non-coding RNA (lncRNA) and messenger RNA (mRNA) profiles of subcutaneous adipose tissues from mice infected with Echinococcus granulosus protoscoleces. A total of 1052 mRNA (541 upregulated, 511 downregulated) and 220 lncRNA (126 upregulated, 94 downregulated) transcripts were differentially expressed (fold change ≥2, P < 0.05) in the infected subcutaneous adipose tissues. When compared with the control group, the infected mice showed a decrease in adipose tissue mass and a reduction in adipocyte size. Indirect calorimetry revealed the change in the energy metabolism after infection, characterized by a lower CO2 production and O2 consumption, a sharp decline in carbohydrate oxidation, and a slight increase in fat oxidation. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses showed that the parasitic infection reprogrammed a complex metabolic network. Notably, “lipoxygenase” and “arginine and proline metabolism” pathways were significantly upregulated while “glycolysis,” “tricarboxylic acid cycle,” “de novo lipogenesis,” and “lipid droplet” pathways were dramatically downregulated. In addition, several key lncRNAs were associated with insulin resistance and adipocyte differentiation. Overall, the present study suggested that E. granulosus infection could enhance lipolysis. Thus, our findings provide novel insights into parasite-mediated metabolic homeostasis, and into the mechanism of hypertrophic adipocytes in obesity.
Collapse
Affiliation(s)
- Yang Lu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,Department of Clinical Medicine, Xuzhou Medical University, Xuzhou, China
| | - Hua Liu
- Key Laboratory of Parasite and Vector Biology, Ministry of Health, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China
| | - Xiao-Ying Yang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Jia-Xue Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,Department of Clinical Medicine, Xuzhou Medical University, Xuzhou, China
| | - Meng-Yu Dai
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,Department of Clinical Medicine, Xuzhou Medical University, Xuzhou, China
| | - Jia-Cheng Wu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,Department of Clinical Medicine, Xuzhou Medical University, Xuzhou, China
| | - Yu-Xin Guo
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,Department of Clinical Medicine, Xuzhou Medical University, Xuzhou, China
| | - Tian-Cheng Luo
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,Department of Clinical Medicine, Xuzhou Medical University, Xuzhou, China
| | - Fen-Fen Sun
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Wei Pan
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
5
|
Crane MM, Sands B, Battaglia C, Johnson B, Yun S, Kaeberlein M, Brent R, Mendenhall A. In vivo measurements reveal a single 5'-intron is sufficient to increase protein expression level in Caenorhabditis elegans. Sci Rep 2019; 9:9192. [PMID: 31235724 PMCID: PMC6591249 DOI: 10.1038/s41598-019-45517-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 06/06/2019] [Indexed: 11/29/2022] Open
Abstract
Introns can increase gene expression levels using a variety of mechanisms collectively referred to as Intron Mediated Enhancement (IME). IME has been measured in cell culture and plant models by quantifying expression of intronless and intron-bearing reporter genes in vitro. We developed hardware and software to implement microfluidic chip-based gene expression quantification in vivo. We altered position, number and sequence of introns in reporter genes controlled by the hsp-90 promoter. Consistent with plant and mammalian studies, we determined a single, natural or synthetic, 5'-intron is sufficient for the full IME effect conferred by three synthetic introns, while a 3'-intron is not. We found coding sequence can affect IME; the same three synthetic introns that increase mcherry protein concentration by approximately 50%, increase mEGFP by 80%. We determined IME effect size is not greatly affected by the stronger vit-2 promoter. Our microfluidic imaging approach should facilitate screens for factors affecting IME and other intron-dependent processes.
Collapse
Affiliation(s)
- Matthew M Crane
- University of Washington, School of Medicine, Department of Pathology, Seattle, WA, USA
| | - Bryan Sands
- University of Washington, School of Medicine, Department of Pathology, Seattle, WA, USA
| | - Christian Battaglia
- University of Washington, School of Medicine, Department of Pathology, Seattle, WA, USA
| | - Brock Johnson
- University of Washington, School of Medicine, Department of Pathology, Seattle, WA, USA
| | - Soo Yun
- University of Washington, School of Medicine, Department of Pathology, Seattle, WA, USA
| | - Matt Kaeberlein
- University of Washington, School of Medicine, Department of Pathology, Seattle, WA, USA
| | - Roger Brent
- Fred Hutchinson Cancer Research Center, Division of Basic Science, Seattle, WA, USA
| | - Alex Mendenhall
- University of Washington, School of Medicine, Department of Pathology, Seattle, WA, USA.
| |
Collapse
|
6
|
Qin C, Li J, Tang K. The Paraventricular Nucleus of the Hypothalamus: Development, Function, and Human Diseases. Endocrinology 2018; 159:3458-3472. [PMID: 30052854 DOI: 10.1210/en.2018-00453] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 07/16/2018] [Indexed: 02/08/2023]
Abstract
The paraventricular nucleus of the hypothalamus (PVH), located in the ventral diencephalon adjacent to the third ventricle, is a highly conserved brain region present in species from zebrafish to humans. The PVH is composed of three main types of neurons, magnocellular, parvocellular, and long-projecting neurons, which play imperative roles in the regulation of energy balance and various endocrinological activities. In this review, we focus mainly on recent findings about the early development of the hypothalamus and the PVH, the functions of the PVH in the modulation of energy homeostasis and in the hypothalamus-pituitary system, and human diseases associated with the PVH, such as obesity, short stature, hypertension, and diabetes insipidus. Thus, the investigations of the PVH will benefit not only understanding of the development of the central nervous system but also the etiology of and therapy for human diseases.
Collapse
Affiliation(s)
- Cheng Qin
- Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi, China
- Institute of Life Science, Nanchang University, Nanchang, Jiangxi, China
| | - Jiaheng Li
- Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi, China
- Institute of Life Science, Nanchang University, Nanchang, Jiangxi, China
| | - Ke Tang
- Institute of Life Science, Nanchang University, Nanchang, Jiangxi, China
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong, China
| |
Collapse
|
7
|
Hovey D, Henningsson S, Cortes DS, Bänziger T, Zettergren A, Melke J, Fischer H, Laukka P, Westberg L. Emotion recognition associated with polymorphism in oxytocinergic pathway gene ARNT2. Soc Cogn Affect Neurosci 2018; 13:173-181. [PMID: 29194499 PMCID: PMC5827350 DOI: 10.1093/scan/nsx141] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 10/31/2017] [Accepted: 11/19/2017] [Indexed: 12/18/2022] Open
Abstract
The ability to correctly understand the emotional expression of another person is essential for social relationships and appears to be a partly inherited trait. The neuropeptides oxytocin and vasopressin have been shown to influence this ability as well as face processing in humans. Here, recognition of the emotional content of faces and voices, separately and combined, was investigated in 492 subjects, genotyped for 25 single nucleotide polymorphisms (SNPs) in eight genes encoding proteins important for oxytocin and vasopressin neurotransmission. The SNP rs4778599 in the gene encoding aryl hydrocarbon receptor nuclear translocator 2 (ARNT2), a transcription factor that participates in the development of hypothalamic oxytocin and vasopressin neurons, showed an association that survived correction for multiple testing with emotion recognition of audio-visual stimuli in women (n = 309). This study demonstrates evidence for an association that further expands previous findings of oxytocin and vasopressin involvement in emotion recognition.
Collapse
Affiliation(s)
- Daniel Hovey
- Department of Pharmacology, Institute of Neuroscience and Physiology at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Susanne Henningsson
- Department of Pharmacology, Institute of Neuroscience and Physiology at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Diana S Cortes
- Department of Psychology, Stockholm University, Stockholm, Sweden
| | - Tanja Bänziger
- Department of Psychology, Mid Sweden University, Östersund, Sweden
| | - Anna Zettergren
- Department of Pharmacology, Institute of Neuroscience and Physiology at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jonas Melke
- Department of Pharmacology, Institute of Neuroscience and Physiology at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Håkan Fischer
- Department of Psychology, Stockholm University, Stockholm, Sweden
| | - Petri Laukka
- Department of Psychology, Stockholm University, Stockholm, Sweden
| | - Lars Westberg
- Department of Pharmacology, Institute of Neuroscience and Physiology at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
8
|
Stanikova D, Buzga M, Krumpolec P, Skopkova M, Surova M, Ukropcova B, Ticha L, Petrasova M, Gabcova D, Huckova M, Piskorova L, Bozensky J, Mokan M, Ukropec J, Zavacka I, Klimes I, Stanik J, Gasperikova D. Genetic analysis of single-minded 1 gene in early-onset severely obese children and adolescents. PLoS One 2017; 12:e0177222. [PMID: 28472148 PMCID: PMC5417716 DOI: 10.1371/journal.pone.0177222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 04/24/2017] [Indexed: 11/23/2022] Open
Abstract
Background Inactivating mutations of the hypothalamic transcription factor singleminded1 (SIM1) have been shown as a cause of early-onset severe obesity. However, to date, the contribution of SIM1 mutations to the obesity phenotype has only been studied in a few populations. In this study, we screened the functional regions of SIM1 in severely obese children of Slovak and Moravian descent to determine if genetic variants within SIM1 may influence the development of obesity in these populations. Methods The SIM1 promoter region, exons and exon-intron boundaries were sequenced in 126 unrelated obese children and adolescents (2–18 years of age) and 41 adult lean controls of Slovak and Moravian origin. Inclusion criteria for the children and adolescents were a body mass index standard deviation score higher than 2 SD for an appropriate age and sex, and obesity onset at less than 5 years of age. The clinical phenotypes of the SIM1 variant carriers were compared with clinical phenotypes of 4 MC4R variant carriers and with 27 unrelated SIM1 and MC4R mutation negative obese controls that were matched for age and gender. Results Seven previously described SIM1 variants and one novel heterozygous variant p.D134N were identified. The novel variant was predicted to be pathogenic by 7 in silico software analyses and is located at a highly conserved position of the SIM1 protein. The p.D134N variant was found in an 18 year old female proband (BMI 44.2kg/m2; +7.5 SD), and in 3 obese family members. Regardless of early onset severe obesity, the proband and her brother (age 16 years) did not fulfill the criteria of metabolic syndrome. Moreover, the variant carriers had significantly lower preferences for high sugar (p = 0.02) and low fat, low carbohydrate, high protein (p = 0.02) foods compared to the obese controls. Conclusions We have identified a novel SIM1 variant, p.D134N, in 4 obese individuals from a single pedigree which is also associated with lower preference for certain foods.
Collapse
Affiliation(s)
- Daniela Stanikova
- Laboratory of Diabetes and Metabolic Disorders, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Pediatrics, Medical Faculty of Comenius University, Bratislava, Slovakia
- Institute of Social Medicine, Occupational Health and Public Health, University of Leipzig, Leipzig, Germany
| | - Marek Buzga
- Department of Physiology and Pathophysiology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - Patrik Krumpolec
- Laboratory of Diabetes and Metabolic Disorders, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Martina Skopkova
- Laboratory of Diabetes and Metabolic Disorders, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Martina Surova
- Laboratory of Diabetes and Metabolic Disorders, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Barbara Ukropcova
- Laboratory of Diabetes and Metabolic Disorders, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
- Institute of Pathophysiolgy, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Lubica Ticha
- Department of Pediatrics, Medical Faculty of Comenius University, Bratislava, Slovakia
| | - Miroslava Petrasova
- Department of Pediatrics, Medical Faculty of Safarik University, Kosice, Slovakia
| | - Dominika Gabcova
- Laboratory of Diabetes and Metabolic Disorders, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Miroslava Huckova
- Laboratory of Diabetes and Metabolic Disorders, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Lucie Piskorova
- Department of Pediatrics, Vitkovice Hospital, Ostrava, Czech Republic
| | - Jan Bozensky
- Department of Pediatrics, Vitkovice Hospital, Ostrava, Czech Republic
| | - Marian Mokan
- Department of Internal Medicine, Jessenius Medical Faculty of Comenius University, Martin, Slovakia
| | - Jozef Ukropec
- Laboratory of Diabetes and Metabolic Disorders, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Ivona Zavacka
- Department of Biomedical Sciences, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - Iwar Klimes
- Laboratory of Diabetes and Metabolic Disorders, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Juraj Stanik
- Laboratory of Diabetes and Metabolic Disorders, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Pediatrics, Medical Faculty of Comenius University, Bratislava, Slovakia
- Center for Pediatric Research Leipzig, University Hospital for Children & Adolescents, University of Leipzig, Leipzig, Germany
| | - Daniela Gasperikova
- Laboratory of Diabetes and Metabolic Disorders, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
- * E-mail:
| |
Collapse
|
9
|
Windholz J, Kovacs P, Schlicke M, Franke C, Mahajan A, Morris AP, Lemke JR, Klammt J, Kiess W, Schöneberg T, Pfäffle R, Körner A. Copy number variations in "classical" obesity candidate genes are not frequently associated with severe early-onset obesity in children. J Pediatr Endocrinol Metab 2017; 30:507-515. [PMID: 28593922 DOI: 10.1515/jpem-2016-0435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 03/06/2017] [Indexed: 11/15/2022]
Abstract
BACKGROUND Obesity is genetically heterogeneous and highly heritable, although polymorphisms explain the phenotype in only a small proportion of obese children. We investigated the presence of copy number variations (CNVs) in "classical" genes known to be associated with (monogenic) early-onset obesity in children. METHODS In 194 obese Caucasian children selected for early-onset and severe obesity from our obesity cohort we screened for deletions and/or duplications by multiplex ligation-dependent probe amplification reaction (MLPA). As we found one MLPA probe to interfere with a polymorphism in SIM1 we investigated its association with obesity and other phenotypic traits in our extended cohort of 2305 children. RESULTS In the selected subset of most severely obese children, we did not find CNV with MLPA in POMC, LEP, LEPR, MC4R, MC3R or MC2R genes. However, one SIM1 probe located at exon 9 gave signals suggestive for SIM1 insufficiency in 52 patients. Polymerase chain reaction (PCR) analysis identified this as a false positive result due to interference with single nucleotide polymorphism (SNP) rs3734354/rs3734355. We, therefore, investigated for associations of this polymorphism with obesity and metabolic traits in our extended cohort. We found rs3734354/rs3734355 to be associated with body mass index-standard deviation score (BMI-SDS) (p = 0.003), but not with parameters of insulin metabolism, blood pressure or food intake. CONCLUSIONS In our modest sample of severely obese children, we were unable to find CNVs in well-established monogenic obesity genes. Nevertheless, we found an association of rs3734354 in SIM1 with obesity of early-onset type in children, although not with obesity-related traits.
Collapse
Affiliation(s)
- Jan Windholz
- Pediatric Research Center, University Hospital for Children and Adolescents, Medical Faculty, University of Leipzig, Leipzig
| | - Peter Kovacs
- Leipzig University Medical Center, IFB AdiposityDiseases, University of Leipzig, Leipzig
| | - Marina Schlicke
- Pediatric Research Center, University Hospital for Children and Adolescents, Medical Faculty, University of Leipzig, Leipzig
| | - Christin Franke
- Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, University of Leipzig, Leipzig
| | - Anubha Mahajan
- Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford
| | - Andrew P Morris
- Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford
| | - Johannes R Lemke
- Institute of Human Genetics, Medical Faculty, University of Leipzig, Leipzig
| | - Jürgen Klammt
- Pediatric Research Center, University Hospital for Children and Adolescents, Medical Faculty, University of Leipzig, Leipzig
| | - Wieland Kiess
- Pediatric Research Center, University Hospital for Children and Adolescents, Medical Faculty, University of Leipzig, Leipzig
| | - Torsten Schöneberg
- Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, University of Leipzig, Leipzig
| | - Roland Pfäffle
- Pediatric Research Center, University Hospital for Children and Adolescents, Medical Faculty, University of Leipzig, Leipzig
| | - Antje Körner
- Pediatric Research Center, University Hospital for Children and Adolescents, Medical Faculty, University of Leipzig, Leipzig
| |
Collapse
|
10
|
Ben-Avraham D, Karasik D, Verghese J, Lunetta KL, Smith JA, Eicher JD, Vered R, Deelen J, Arnold AM, Buchman AS, Tanaka T, Faul JD, Nethander M, Fornage M, Adams HH, Matteini AM, Callisaya ML, Smith AV, Yu L, De Jager PL, Evans DA, Gudnason V, Hofman A, Pattie A, Corley J, Launer LJ, Knopman DS, Parimi N, Turner ST, Bandinelli S, Beekman M, Gutman D, Sharvit L, Mooijaart SP, Liewald DC, Houwing-Duistermaat JJ, Ohlsson C, Moed M, Verlinden VJ, Mellström D, van der Geest JN, Karlsson M, Hernandez D, McWhirter R, Liu Y, Thomson R, Tranah GJ, Uitterlinden AG, Weir DR, Zhao W, Starr JM, Johnson AD, Ikram MA, Bennett DA, Cummings SR, Deary IJ, Harris TB, Kardia SLR, Mosley TH, Srikanth VK, Windham BG, Newman AB, Walston JD, Davies G, Evans DS, Slagboom EP, Ferrucci L, Kiel DP, Murabito JM, Atzmon G. The complex genetics of gait speed: genome-wide meta-analysis approach. Aging (Albany NY) 2017; 9:209-246. [PMID: 28077804 PMCID: PMC5310665 DOI: 10.18632/aging.101151] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 12/26/2016] [Indexed: 01/08/2023]
Abstract
Emerging evidence suggests that the basis for variation in late-life mobility is attributable, in part, to genetic factors, which may become increasingly important with age. Our objective was to systematically assess the contribution of genetic variation to gait speed in older individuals. We conducted a meta-analysis of gait speed GWASs in 31,478 older adults from 17 cohorts of the CHARGE consortium, and validated our results in 2,588 older adults from 4 independent studies. We followed our initial discoveries with network and eQTL analysis of candidate signals in tissues. The meta-analysis resulted in a list of 536 suggestive genome wide significant SNPs in or near 69 genes. Further interrogation with Pathway Analysis placed gait speed as a polygenic complex trait in five major networks. Subsequent eQTL analysis revealed several SNPs significantly associated with the expression of PRSS16, WDSUB1 and PTPRT, which in addition to the meta-analysis and pathway suggested that genetic effects on gait speed may occur through synaptic function and neuronal development pathways. No genome-wide significant signals for gait speed were identified from this moderately large sample of older adults, suggesting that more refined physical function phenotypes will be needed to identify the genetic basis of gait speed in aging.
Collapse
Affiliation(s)
- Dan Ben-Avraham
- Department of Medicine and Genetics Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - David Karasik
- Institute for Aging Research, Hebrew SeniorLife, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02131, USA
- Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel
| | - Joe Verghese
- Integrated Divisions of Cognitive & Motor Aging (Neurology) and Geriatrics (Medicine), Montefiore-Einstein Center for the Aging Brain, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Kathryn L. Lunetta
- The National Heart Lung and Blood Institute's Framingham Heart Study, Framingham, MA 01702, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA
| | - Jennifer A. Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - John D. Eicher
- The National Heart Lung and Blood Institute's Framingham Heart Study, Framingham, MA 01702, USA
- Population Sciences Branch, National Heart Lung and Blood Institute, Framingham, MA 01702, USA
| | - Rotem Vered
- Psychology Department, University of Haifa, Haifa, Israel
| | - Joris Deelen
- Molecular Epidemiology, Leiden University Medical Center, Leiden, Netherlands
- Max Planck Institute for Biology of Ageing, Köln, Germany
| | - Alice M. Arnold
- Department of Biostatistics, University of Washington, Seattle, WA 98115, USA
| | - Aron S. Buchman
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL 60614, USA
| | - Toshiko Tanaka
- Translational Gerontology Branch, National Institute on Aging, Baltimore MD 21224, USA
| | - Jessica D. Faul
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI 48104, USA
| | - Maria Nethander
- Bioinformatics Core Facility, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Myriam Fornage
- The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Hieab H. Adams
- Department of Epidemiology, Erasmus MC, Rotterdam, Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, Netherlands
| | - Amy M. Matteini
- Division of Geriatric Medicine, Johns Hopkins Medical Institutes, Baltimore, MD 21224, USA
| | - Michele L. Callisaya
- Medicine, Peninsula Health, Peninsula Clinical School, Central Clinical School, Frankston, Melbourne, Victoria, Australia
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Albert V. Smith
- Icelandic Heart Association, Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
| | - Lei Yu
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL 60614, USA
| | - Philip L. De Jager
- Broad Institute of Harvard and MIT, Cambridge, Harvard Medical School, Department of Neurology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Denis A. Evans
- Rush Institute for Healthy Aging and Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Vilmundur Gudnason
- Icelandic Heart Association, Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
| | - Albert Hofman
- Department of Epidemiology, Erasmus MC, Rotterdam, Netherlands
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Alison Pattie
- Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Janie Corley
- Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Lenore J. Launer
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Intramural Research Program, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Neeta Parimi
- California Pacific Medical Center Research Institute, San Francisco, CA 94107, USA
| | - Stephen T. Turner
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Marian Beekman
- Molecular Epidemiology, Leiden University Medical Center, Leiden, Netherlands
| | - Danielle Gutman
- Department of Human Biology, Faculty of Natural Science, University of Haifa, Haifa, Israel
| | - Lital Sharvit
- Department of Human Biology, Faculty of Natural Science, University of Haifa, Haifa, Israel
| | - Simon P. Mooijaart
- Gerontology and Geriatrics, Leiden University Medical Center, Leiden, Netherland
| | - David C. Liewald
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Jeanine J. Houwing-Duistermaat
- Genetical Statistics, Leiden University Medical Center, Leiden, Netherland. Department of Statistics, University of Leeds, Leeds, UK
| | - Claes Ohlsson
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska, Academy, University of Gothenburg, Gothenburg, Sweden
| | - Matthijs Moed
- Molecular Epidemiology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Dan Mellström
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska, Academy, University of Gothenburg, Gothenburg, Sweden
| | | | - Magnus Karlsson
- Clinical and Molecular Osteoporosis Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Dena Hernandez
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD 20892, USA
| | - Rebekah McWhirter
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Yongmei Liu
- Department of Epidemiology and Prevention, Division of Public Health Sciences, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Russell Thomson
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
- School of Computing, Engineering and Mathematics, University of Western Sydney, Sydney, Australia
| | - Gregory J. Tranah
- California Pacific Medical Center Research Institute, San Francisco, CA 94107, USA
| | - Andre G. Uitterlinden
- Department of Internal Medicine, Erasmus MC, and Netherlands Genomics Initiative (NGI)-sponsored Netherlands Consortium for Healthy Aging (NCHA), Rotterdam, The Netherlands
| | - David R. Weir
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI 48104, USA
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - John M. Starr
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
- Alzheimer Scotland Dementia Research Centre, University of Edinburgh, Edinburgh, UK
| | - Andrew D. Johnson
- The National Heart Lung and Blood Institute's Framingham Heart Study, Framingham, MA 01702, USA
- Population Sciences Branch, National Heart Lung and Blood Institute, Framingham, MA 01702, USA
| | - M. Arfan Ikram
- Department of Epidemiology, Erasmus MC, Rotterdam, Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, Netherlands
| | - David A. Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL 60614, USA
| | - Steven R. Cummings
- California Pacific Medical Center Research Institute, San Francisco, CA 94107, USA
| | - Ian J. Deary
- Department of Psychology, University of Edinburgh, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Tamara B. Harris
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Intramural Research Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sharon L. R. Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Thomas H. Mosley
- University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Velandai K. Srikanth
- Medicine, Peninsula Health, Peninsula Clinical School, Central Clinical School, Frankston, Melbourne, Victoria, Australia
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | | | - Ann B. Newman
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jeremy D. Walston
- Division of Geriatric Medicine, Johns Hopkins Medical Institutes, Baltimore, MD 21224, USA
| | - Gail Davies
- Department of Psychology, University of Edinburgh, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Daniel S. Evans
- California Pacific Medical Center Research Institute, San Francisco, CA 94107, USA
| | - Eline P. Slagboom
- Molecular Epidemiology, Leiden University Medical Center, Leiden, Netherlands
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging, Baltimore MD 21224, USA
| | - Douglas P. Kiel
- Institute for Aging Research, Hebrew SeniorLife, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02131, USA
- Broad Institute of Harvard and MIT, Boston, MA 02131, USA
| | - Joanne M. Murabito
- The National Heart Lung and Blood Institute's Framingham Heart Study, Framingham, MA 01702, USA
- Section of General Internal Medicine, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Gil Atzmon
- Department of Medicine and Genetics Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Human Biology, Faculty of Natural Science, University of Haifa, Haifa, Israel
| |
Collapse
|
11
|
Ayuso M, Fernández A, Núñez Y, Benítez R, Isabel B, Fernández AI, Rey AI, González-Bulnes A, Medrano JF, Cánovas Á, López-Bote CJ, Óvilo C. Developmental Stage, Muscle and Genetic Type Modify Muscle Transcriptome in Pigs: Effects on Gene Expression and Regulatory Factors Involved in Growth and Metabolism. PLoS One 2016; 11:e0167858. [PMID: 27936208 PMCID: PMC5148031 DOI: 10.1371/journal.pone.0167858] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/21/2016] [Indexed: 01/08/2023] Open
Abstract
Iberian pig production includes purebred (IB) and Duroc-crossbred (IBxDU) pigs, which show important differences in growth, fattening and tissue composition. This experiment was conducted to investigate the effects of genetic type and muscle (Longissimus dorsi (LD) vs Biceps femoris (BF)) on gene expression and transcriptional regulation at two developmental stages. Nine IB and 10 IBxDU piglets were slaughtered at birth, and seven IB and 10 IBxDU at four months of age (growing period). Carcass traits and LD intramuscular fat (IMF) content were measured. Muscle transcriptome was analyzed on LD samples with RNA-Seq technology. Carcasses were smaller in IB than in IBxDU neonates (p < 0.001), while growing IB pigs showed greater IMF content (p < 0.05). Gene expression was affected (p < 0.01 and Fold change > 1.5) by the developmental stage (5,812 genes), muscle type (135 genes), and genetic type (261 genes at birth and 113 at growth). Newborns transcriptome reflected a highly proliferative developmental stage, while older pigs showed upregulation of catabolic and muscle functioning processes. Regarding the genetic type effect, IBxDU newborns showed enrichment of gene pathways involved in muscle growth, in agreement with the higher prenatal growth observed in these pigs. However, IB growing pigs showed enrichment of pathways involved in protein deposition and cellular growth, supporting the compensatory gain experienced by IB pigs during this period. Moreover, newborn and growing IB pigs showed more active glucose and lipid metabolism than IBxDU pigs. Moreover, LD muscle seems to have more active muscular and cell growth, while BF points towards lipid metabolism and fat deposition. Several regulators controlling transcriptome changes in both genotypes were identified across muscles and ages (SIM1, PVALB, MEFs, TCF7L2 or FOXO1), being strong candidate genes to drive expression and thus, phenotypic differences between IB and IBxDU pigs. Many of the identified regulators were known to be involved in muscle and adipose tissues development, but others not previously associated with pig muscle growth were also identified, as PVALB, KLF1 or IRF2. The present study discloses potential molecular mechanisms underlying phenotypic differences observed between IB and IBxDU pigs and highlights candidate genes implicated in these molecular mechanisms.
Collapse
Affiliation(s)
- Miriam Ayuso
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | | | - Yolanda Núñez
- Departamento de Mejora Genética Animal, INIA, Madrid, Spain
| | - Rita Benítez
- Departamento de Mejora Genética Animal, INIA, Madrid, Spain
| | - Beatriz Isabel
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | | | - Ana I. Rey
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | | | - Juan F. Medrano
- Department of Animal Science, University of California Davis, Davis, California, United States of America
| | - Ángela Cánovas
- Department of Animal Science, University of California Davis, Davis, California, United States of America
| | - Clemente J. López-Bote
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Cristina Óvilo
- Departamento de Mejora Genética Animal, INIA, Madrid, Spain
| |
Collapse
|
12
|
Samson WK. Oxytocin redux. Am J Physiol Regul Integr Comp Physiol 2016; 311:R710-R713. [PMID: 27511282 DOI: 10.1152/ajpregu.00307.2016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 08/08/2016] [Accepted: 08/09/2016] [Indexed: 11/22/2022]
Affiliation(s)
- Willis K Samson
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, Missouri
| |
Collapse
|
13
|
Geets E, Zegers D, Beckers S, Verrijken A, Massa G, Van Hoorenbeeck K, Verhulst S, Van Gaal L, Van Hul W. Copy number variation (CNV) analysis and mutation analysis of the 6q14.1-6q16.3 genes SIM1 and MRAP2 in Prader Willi like patients. Mol Genet Metab 2016; 117:383-8. [PMID: 26795956 DOI: 10.1016/j.ymgme.2016.01.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 01/07/2016] [Accepted: 01/07/2016] [Indexed: 12/14/2022]
Abstract
BACKGROUND Prader-Willi syndrome (PWS), caused by a paternal defect on 15q11.2-q13, is the most common form of syndromic obesity. However, patients clinically diagnosed with PWS do not always show this defect on chromosome 15q and are therefore molecularly categorized as Prader Willi like (PWL). Deletions at 6q14.1-q16.3 encompassing MRAP2 and SIM1 were reported in some individuals with a PWL phenotype. In addition, a few mutations in SIM1 and MRAP2 were also previously identified in cohorts of obese individuals. Therefore, we decided to perform copy number variation analysis of the 6q14.1-6q16.3 region followed by mutation analysis of SIM1 and MRAP2 in a PWL cohort. METHODS A genome-wide microarray analysis was performed in a group of 109 PWL patients. Next, we screened 94 PWL patients for mutations in SIM1 and MRAP2 using high-resolution melting curve analysis and Sanger sequencing. Additionally, 363 obese children and adolescents were screened for mutations in MRAP2. RESULTS No gene harboring deletions were identified at the 6q14.1-q16.3 region in the 109 PWL patients. SIM1 mutation analysis resulted in the identification of one very rare nonsynonymous variant p.P352S (rs3734354). Another rare nonsynonymous variant, p.A40S, was detected in the MRAP2 gene. No variants were identified in the 363 obese individuals. CONCLUSIONS In contrast to literature reports, no gene harboring deletions were identified in the SIM1 and MRAP2 regions in our PWL cohort. Secondly, taking into account their very low minor allele frequencies in public sequencing databases and the results of in silico prediction programs, further functional analysis of p.P352S found in SIM1 and p.A40S found in MRAP2 is useful. This would provide further support for a possible role of SIM1 and MRAP2 in the pathogenesis of the PWL phenotype albeit in a limited number of patients.
Collapse
Affiliation(s)
- Ellen Geets
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Doreen Zegers
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Sigri Beckers
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - An Verrijken
- Department of Endocrinology, Diabetology and Metabolic Diseases, Antwerp University Hospital, Antwerp, Belgium
| | - Guy Massa
- Department of Pediatrics, Jessa Hospital, Hasselt, Belgium
| | | | - Stijn Verhulst
- Department of Pediatrics, Antwerp University Hospital, Antwerp, Belgium
| | - Luc Van Gaal
- Department of Endocrinology, Diabetology and Metabolic Diseases, Antwerp University Hospital, Antwerp, Belgium
| | - Wim Van Hul
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
14
|
Romano A, Tempesta B, Micioni Di Bonaventura MV, Gaetani S. From Autism to Eating Disorders and More: The Role of Oxytocin in Neuropsychiatric Disorders. Front Neurosci 2016; 9:497. [PMID: 26793046 PMCID: PMC4709851 DOI: 10.3389/fnins.2015.00497] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 12/14/2015] [Indexed: 11/13/2022] Open
Abstract
Oxytocin (oxy) is a pituitary neuropeptide hormone synthesized from the paraventricular and supraoptic nuclei within the hypothalamus. Like other neuropeptides, oxy can modulate a wide range of neurotransmitter and neuromodulator activities. Additionally, through the neurohypophysis, oxy is secreted into the systemic circulation to act as a hormone, thereby influencing several body functions. Oxy plays a pivotal role in parturition, milk let-down and maternal behavior and has been demonstrated to be important in the formation of pair bonding between mother and infants as well as in mating pairs. Furthermore, oxy has been proven to play a key role in the regulation of several behaviors associated with neuropsychiatric disorders, including social interactions, social memory response to social stimuli, decision-making in the context of social interactions, feeding behavior, emotional reactivity, etc. An increasing body of evidence suggests that deregulations of the oxytocinergic system might be involved in the pathophysiology of certain neuropsychiatric disorders such as autism, eating disorders, schizophrenia, mood, and anxiety disorders. The potential use of oxy in these mental health disorders is attracting growing interest since numerous beneficial properties are ascribed to this neuropeptide. The present manuscript will review the existing findings on the role played by oxy in a variety of distinct physiological and behavioral functions (Figure 1) and on its role and impact in different psychiatric disorders. The aim of this review is to highlight the need of further investigations on this target that might contribute to the development of novel more efficacious therapies.
Oxytocin regulatory control of different and complex processes. ![]()
Collapse
Affiliation(s)
- Adele Romano
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome Rome, Italy
| | - Bianca Tempesta
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome Rome, Italy
| | | | - Silvana Gaetani
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome Rome, Italy
| |
Collapse
|
15
|
Kim YR, Kim JH, Kim CH, Shin JG, Treasure J. Association between the oxytocin receptor gene polymorphism (rs53576) and bulimia nervosa. EUROPEAN EATING DISORDERS REVIEW 2015; 23:171-8. [PMID: 25773927 DOI: 10.1002/erv.2354] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 01/21/2015] [Accepted: 02/13/2015] [Indexed: 01/19/2023]
Abstract
OBJECTIVE Oxytocin circuits are implicated in the regulation of appetite and weight. Variants in the oxytocin receptor (OXTR) gene have been associated with bulimic behaviour. This study aimed to investigate the association between the OXTR gene and eating disorders. METHOD We genotyped six single nucleotide polymorphisms, rs53576, rs237879, rs2228485, rs13316193, rs2254298 and rs1042778, located within the OXTR gene in Korean patients with eating disorders using the single-base extension method. We studied a total of 262 women, including 69 patients with anorexia nervosa, 90 patients with bulimia nervosa (BN), and 103 healthy women. RESULTS We found a positive association between the G allele of OXTR rs53576 and BN. In the BN group, the G carriers showed a high score on the behavioural inhibition system. CONCLUSIONS These findings suggest the involvement of the oxytocinergic system in the mechanism that underlies BN.
Collapse
Affiliation(s)
- Youl-Ri Kim
- Department of Neuropsychiatry, Seoul Paik Hospital, Inje University College of Medicine, Seoul, South Korea; Institute of Eating Disorders and Mental Health, Inje University, Seoul, South Korea
| | | | | | | | | |
Collapse
|
16
|
Blevins JE, Graham JL, Morton GJ, Bales KL, Schwartz MW, Baskin DG, Havel PJ. Chronic oxytocin administration inhibits food intake, increases energy expenditure, and produces weight loss in fructose-fed obese rhesus monkeys. Am J Physiol Regul Integr Comp Physiol 2014; 308:R431-8. [PMID: 25540103 DOI: 10.1152/ajpregu.00441.2014] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Despite compelling evidence that oxytocin (OT) is effective in reducing body weight (BW) in diet-induced obese (DIO) rodents, studies of the effects of OT in humans and rhesus monkeys have primarily focused on noningestive behaviors. The goal of this study was to translate findings in DIO rodents to a preclinical translational model of DIO. We tested the hypothesis that increased OT signaling would reduce BW in DIO rhesus monkeys by inhibiting food intake and increasing energy expenditure (EE). Male DIO rhesus monkeys from the California National Primate Research Center were adapted to a 12-h fast and maintained on chow and a daily 15% fructose-sweetened beverage. Monkeys received 2× daily subcutaneous vehicle injections over 1 wk. We subsequently identified doses of OT (0.2 and 0.4 mg/kg) that reduced food intake and BW in the absence of nausea or diarrhea. Chronic administration of OT for 4 wk (0.2 mg/kg for 2 wk; 0.4 mg/kg for 2 wk) reduced BW relative to vehicle by 3.3 ± 0.4% (≈0.6 kg; P < 0.05). Moreover, the low dose of OT suppressed 12-h chow intake by 26 ± 7% (P < 0.05). The higher dose of OT reduced 12-h chow intake by 27 ± 5% (P < 0.05) and 8-h fructose-sweetened beverage intake by 18 ± 8% (P < 0.05). OT increased EE during the dark cycle by 14 ± 3% (P < 0.05) and was associated with elevations of free fatty acids and glycerol and reductions in triglycerides suggesting increased lipolysis. Together, these data suggest that OT reduces BW in DIO rhesus monkeys through decreased food intake as well as increased EE and lipolysis.
Collapse
Affiliation(s)
- James E Blevins
- Veterans Affairs Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, Washington; Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, Washington;
| | - James L Graham
- Department of Nutrition and Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California; and
| | - Gregory J Morton
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, Washington; Diabetes and Obesity Center of Excellence, University of Washington School of Medicine, Seattle, Washington
| | - Karen L Bales
- Department of Psychology, University of California, Davis, California
| | - Michael W Schwartz
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, Washington; Diabetes and Obesity Center of Excellence, University of Washington School of Medicine, Seattle, Washington
| | - Denis G Baskin
- Veterans Affairs Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, Washington; Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, Washington
| | - Peter J Havel
- Department of Nutrition and Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California; and
| |
Collapse
|
17
|
Hovey D, Zettergren A, Jonsson L, Melke J, Anckarsäter H, Lichtenstein P, Westberg L. Associations between oxytocin-related genes and autistic-like traits. Soc Neurosci 2014; 9:378-86. [PMID: 24635660 DOI: 10.1080/17470919.2014.897995] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Oxytocin has repeatedly been shown to influence human behavior in social contexts; also, a relationship between oxytocin and the pathophysiology of autism spectrum disorder (ASD) has been suggested. In the present study, we investigated single-nucleotide polymorphisms (SNPs) in the oxytocin gene (OXT) and the genes for single-minded 1 (SIM1), aryl hydrocarbon receptor nuclear translocator 2 (ARNT2) and cluster of differentiation 38 (CD38) in a population of 1771 children from the Child and Adolescent Twin Study in Sweden (CATSS). Statistical analyses were performed to investigate any association between SNPs and autistic-like traits (ALTs), measured through ASD scores in the Autism-Tics, ADHD and other Co-morbidities inventory. Firstly, we found a statistically significant association between the SIM1 SNP rs3734354 (Pro352Thr) and scores for language impairment (p = .0004), but due to low statistical power this should be interpreted cautiously. Furthermore, nominal associations were found between ASD scores and SNPs in OXT, ARNT2 and CD38. In summary, the present study lends support to the hypothesis that oxytocin and oxytocin neuron development may have an influence on the development of ALTs and suggests a new candidate gene in the search for the pathophysiology of ASD.
Collapse
Affiliation(s)
- Daniel Hovey
- a Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy , University of Gothenburg , Gothenburg , Sweden
| | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Obesity and its associated metabolic disorders are growing health concerns in the US and worldwide. In the US alone, more than two-thirds of the adult population is classified as either overweight or obese [1], highlighting the need to develop new, effective treatments for these conditions. Whereas the hormone oxytocin is well known for its peripheral effects on uterine contraction during parturition and milk ejection during lactation, release of oxytocin from somatodendrites and axonal terminals within the central nervous system (CNS) is implicated in both the formation of prosocial behaviors and in the control of energy balance. Recent findings demonstrate that chronic administration of oxytocin reduces food intake and body weight in diet-induced obese (DIO) and genetically obese rodents with impaired or defective leptin signaling. Importantly, chronic systemic administration of oxytocin out to 6 weeks recapitulates the effects of central administration on body weight loss in DIO rodents at doses that do not result in the development of tolerance. Furthermore, these effects are coupled with induction of Fos (a marker of neuronal activation) in hindbrain areas (e.g. dorsal vagal complex (DVC)) linked to the control of meal size and forebrain areas (e.g. hypothalamus, amygdala) linked to the regulation of food intake and body weight. This review assesses the potential central and peripheral targets by which oxytocin may inhibit body weight gain, its regulation by anorexigenic and orexigenic signals, and its potential use as a therapy that can circumvent leptin resistance and reverse the behavioral and metabolic abnormalities associated with DIO and genetically obese models.
Collapse
Affiliation(s)
- James E Blevins
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, 98108, USA,
| | | |
Collapse
|
19
|
Ho JM, Blevins JE. Coming full circle: contributions of central and peripheral oxytocin actions to energy balance. Endocrinology 2013; 154:589-96. [PMID: 23270805 PMCID: PMC3548187 DOI: 10.1210/en.2012-1751] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The neuropeptide oxytocin has emerged as an important anorexigen in the regulation of energy balance. Its effects on food intake have largely been attributed to limiting meal size through interactions in key regulatory brain regions such as the hypothalamus and hindbrain. Pharmacologic and pair-feeding studies indicate that its ability to reduce body mass extends beyond that of food intake, affecting multiple factors that determine energy balance such as energy expenditure, lipolysis, and glucose regulation. Systemic administration of oxytocin recapitulates many of its effects when administered centrally, raising the questions of whether and to what extent circulating oxytocin contributes to energy regulation. Its therapeutic potential to treat metabolic conditions remains to be determined, but data from diet-induced and genetically obese rodent models as well as application of oxytocin in humans in other areas of research have revealed promising results thus far.
Collapse
Affiliation(s)
- Jacqueline M Ho
- Veterans Affairs Puget Sound Health Care System, 1660 South Columbian Way, Seattle, WA 98108, USA.
| | | |
Collapse
|