1
|
Canalis E, Guzzo R, Schilling L, Denker E. NOTCH2 disrupts the synovial fibroblast identity and the inflammatory response of epiphyseal chondrocytes. J Biol Chem 2025:110206. [PMID: 40345585 DOI: 10.1016/j.jbc.2025.110206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/25/2025] [Accepted: 05/01/2025] [Indexed: 05/11/2025] Open
Abstract
Notch signaling plays a fundamental role in the inflammatory response and has been linked to the pathogenesis of osteoarthritis in murine models of the disease and in humans. To address how Notch signaling modifies transcriptomes and cell populations, we examined the effects of NOTCH2 in chondrocytes from mice harboring a NOTCH2 gain-of-function mutation (Notch2tm1.1Ecan) and a conditional NOTCH2 gain-of-function model expressing the NOTCH2 intracellular domain (NICD2) from the Rosa26 locus (R26-NICD2 mice). Bulk RNA-Sequencing (RNA-Seq) of primary epiphyseal cells from both gain-of-function models established increased expression of pathways associated with the phagosome, genes linked to osteoclast activity in rheumatoid arthritis signaling and pulmonary fibrosis signaling. Expression of genes linked to collagen degradation was enhanced in Notch2tm1.1Ecan cells, while genes related to osteoarthritis pathways were increased in NICD2-expressing cells. Single cell (sc)RNA-Seq of cultured Notch2tm1.1Ecan cells revealed clusters of cells related to limb mesenchyme, chondrogenic cells and fibroblasts including articular synovial fibroblasts. Pseudotime trajectory revealed close associations among clusters in control cultures, but the cluster of articular/synovial fibroblasts was disrupted in cells from Notch2tm1.1Ecan mice. ScRNA-Seq showed similarities in the cluster distributions and pseudotime trajectories of NICD2-expressing and control cells, except for altered progression in a cluster of NICD2-expressing cells. In conclusion, NOTCH2 enhances the activity of pathways associated with inflammation in epiphyseal chondrocytes and disrupts the transcriptome profile of articular/synovial fibroblasts.
Collapse
Affiliation(s)
- Ernesto Canalis
- Department of Orthopaedic Surgery, UConn Health, Farmington, CT 06030; Department of Medicine, UConn Health, Farmington, CT 06030; UConn Musculoskeletal Institute, UConn Health, Farmington, CT 06030.
| | - Rosa Guzzo
- Department of Neuroscience, UConn Health, Farmington, CT 06030
| | - Lauren Schilling
- UConn Musculoskeletal Institute, UConn Health, Farmington, CT 06030
| | - Emily Denker
- UConn Musculoskeletal Institute, UConn Health, Farmington, CT 06030
| |
Collapse
|
2
|
Shirzadian M, Moori S, Rabbani R, Rahbarizadeh F. SynNotch CAR-T cell, when synthetic biology and immunology meet again. Front Immunol 2025; 16:1545270. [PMID: 40308611 PMCID: PMC12040928 DOI: 10.3389/fimmu.2025.1545270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 03/28/2025] [Indexed: 05/02/2025] Open
Abstract
Cancer immunotherapy has been transformed by chimeric antigen receptor (CAR) T-cell treatment, which has shown groundbreaking results in hematological malignancies. However, its application in solid tumors remains a formidable challenge due to immune evasion, tumor heterogeneity, and safety concerns arising from off-target effects. A long-standing effort in this field has been the development of synthetic receptors to create new signaling pathways and rewire immune cells for the specific targeting of cancer cells, particularly in cell-based immunotherapy. This field has undergone a paradigm shift with the introduction of synthetic Notch (synNotch) receptors, which offer a highly versatile signaling platform modeled after natural receptor-ligand interactions. By functioning as molecular logic gates, synNotch receptors enable precise, multi-antigen regulation of T-cell activation, paving the way for enhanced specificity and control. This review explores the revolutionary integration of synNotch systems with CAR T-cell therapy, emphasizing cutting-edge strategies to overcome the inherent limitations of traditional approaches. We delve into the mechanisms of synNotch receptor design, focusing on their ability to discriminate between cancerous and normal cells through spatiotemporally controlled gene expression. Additionally, we highlight recent advancements to improve therapeutic efficacy, safety, and adaptability in treating solid tumors. This study highlights the potential of synNotch-based CAR-T cells to transform the field of targeted cancer therapy by resolving present challenges and shedding light on potential future paths.
Collapse
Affiliation(s)
- Mohsen Shirzadian
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sepideh Moori
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Reza Rabbani
- Department of Stem Cell Technology and Tissue Engineering, Faculty of Interdisciplinary Science and Technology, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Rahbarizadeh
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
3
|
Foran G, Hallam RD, Megaly M, Turgambayeva A, Antfolk D, Li Y, Luca VC, Necakov A. Notch1 Phase Separation Coupled Percolation facilitates target gene expression and enhancer looping. Sci Rep 2024; 14:21912. [PMID: 39300145 PMCID: PMC11413390 DOI: 10.1038/s41598-024-71634-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/29/2024] [Indexed: 09/22/2024] Open
Abstract
The Notch receptor is a pleiotropic signaling protein that translates intercellular ligand interactions into changes in gene expression via the nuclear localization of the Notch intracellular Domain (NICD). Using a combination of immunohistochemistry, RNA in situ, Optogenetics and super-resolution live imaging of transcription in human cells, we show that the N1ICD can form condensates that positively facilitate Notch target gene expression. We determined that N1ICD undergoes Phase Separation Coupled Percolation (PSCP) into transcriptional condensates, which recruit, enrich, and encapsulate a broad set of core transcriptional proteins. We show that the capacity for condensation is due to the intrinsically disordered transcriptional activation domain of the N1ICD. In addition, the formation of such transcriptional condensates acts to promote Notch-mediated super enhancer-looping and concomitant activation of the MYC protooncogene expression. Overall, we introduce a novel mechanism of Notch1 activity in which discrete changes in nuclear N1ICD abundance are translated into the assembly of transcriptional condensates that facilitate gene expression by enriching essential transcriptional machineries at target genomic loci.
Collapse
Affiliation(s)
- Gregory Foran
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada
| | - Ryan Douglas Hallam
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada
| | - Marvel Megaly
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada
| | - Anel Turgambayeva
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada
| | - Daniel Antfolk
- Department of Immunology, Moffitt Cancer Centre, Tampa, FL, USA
| | - Yifeng Li
- Department of Computer Science, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada
| | - Vincent C Luca
- Department of Immunology, Moffitt Cancer Centre, Tampa, FL, USA
| | - Aleksandar Necakov
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada.
| |
Collapse
|
4
|
Foran G, Hallam RD, Megaly M, Turgambayeva A, Antfolk D, Li Y, Luca VC, Necakov A. Notch1 Phase Separation Coupled Percolation facilitates target gene expression and enhancer looping. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.17.533124. [PMID: 39131356 PMCID: PMC11312450 DOI: 10.1101/2023.03.17.533124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The Notch receptor is a pleiotropic signaling protein that translates intercellular ligand interactions into changes in gene expression via the nuclear localization of the Notch intracellular Domain (NICD). Using a combination of immunohistochemistry, RNA in situ, Optogenetics and super-resolution live imaging of transcription in human cells, we show that the N1ICD can form condensates that positively facilitate Notch target gene expression. We determined that N1ICD undergoes Phase Separation Coupled Percolation (PSCP) into transcriptional condensates, which recruit, enrich, and encapsulate a broad set of core transcriptional proteins. We show that the capacity for condensation is due to the intrinsically disordered transcriptional activation domain of the N1ICD. In addition, the formation of such transcriptional condensates acts to promote Notch-mediated super enhancer-looping and concomitant activation of the MYC protooncogene expression. Overall, we introduce a novel mechanism of Notch1 activity in which discrete changes in nuclear N1ICD abundance are translated into the assembly of transcriptional condensates that facilitate gene expression by enriching essential transcriptional machineries at target genomic loci.
Collapse
Affiliation(s)
- Gregory Foran
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, Canada, L2S 3A1
| | - Ryan Douglas Hallam
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, Canada, L2S 3A1
| | - Marvel Megaly
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, Canada, L2S 3A1
| | - Anel Turgambayeva
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, Canada, L2S 3A1
| | - Daniel Antfolk
- Department of Immunology, Moffitt Cancer Centre, Tampa, FL, USA
| | - Yifeng Li
- Department of Computer Science, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, Canada, L2S 3A1
| | - Vincent C. Luca
- Department of Immunology, Moffitt Cancer Centre, Tampa, FL, USA
| | - Aleksandar Necakov
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, Canada, L2S 3A1
| |
Collapse
|
5
|
Guo S, Zheng S, Liu M, Wang G. Novel Anti-Cancer Stem Cell Compounds: A Comprehensive Review. Pharmaceutics 2024; 16:1024. [PMID: 39204369 PMCID: PMC11360402 DOI: 10.3390/pharmaceutics16081024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
Cancer stem cells (CSCs) possess a significant ability to renew themselves, which gives them a strong capacity to form tumors and expand to encompass additional body areas. In addition, they possess inherent resistance to chemotherapy and radiation therapies used to treat many forms of cancer. Scientists have focused on investigating the signaling pathways that are highly linked to the ability of CSCs to renew themselves and maintain their stem cell properties. The pathways encompassed are Notch, Wnt/β-catenin, hedgehog, STAT3, NF-κB, PI-3K/Akt/mTOR, sirtuin, ALDH, MDM2, and ROS. Recent studies indicate that directing efforts towards CSC cells is essential in eradicating the overall cancer cell population and reducing the likelihood of tumor metastasis. As our comprehension of the mechanisms that stimulate CSC activity, growth, and resistance to chemotherapy advances, the discovery of therapeutic drugs specifically targeting CSCs, such as small-molecule compounds, holds the potential to revolutionize cancer therapy. This review article examines and analyzes the novel anti-CSC compounds that have demonstrated effective and selective targeting of pathways associated with the renewal and stemness of CSCs. We also discussed their special drug metabolism and absorption mechanisms. CSCs have been the subject of much study in cancer biology. As a possible treatment for malignancies, small-molecule drugs that target CSCs are gaining more and more attention. This article provides a comprehensive review of the current state of key small-molecule compounds, summarizes their recent developments, and anticipates the future discovery of even more potent and targeted compounds, opening up new avenues for cancer treatment.
Collapse
Affiliation(s)
- Shanchun Guo
- RCMI Cancer Research Center and Department of Chemistry, Xavier University of Louisiana, New Orleans, LA 70125, USA;
| | - Shilong Zheng
- RCMI Cancer Research Center and Department of Chemistry, Xavier University of Louisiana, New Orleans, LA 70125, USA;
| | - Mingli Liu
- Department of Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA;
| | - Guangdi Wang
- RCMI Cancer Research Center and Department of Chemistry, Xavier University of Louisiana, New Orleans, LA 70125, USA;
| |
Collapse
|
6
|
Amiri-Farsani M, Taheri Z, Tirbakhsh Gouran S, Chabok O, Safarpour-Dehkordi M, Kazemi Roudsari M. Cancer stem cells: Recent trends in cancer therapy. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024; 43:1383-1414. [PMID: 38319997 DOI: 10.1080/15257770.2024.2311789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/08/2024]
Abstract
Cancer stem cells (CSCs) are a subset of tumor cells that were first identified in blood cancers (leukemia) and are considered promising therapeutic targets in cancer treatment. These cells are the cause of many malignancies including metastasis, heterogeneity, drug resistance, and tumor recurrence. They carry out these activities through multiple transcriptional programs and signaling pathways. This review summarizes the characteristics of cancer stem cells, explains their key signaling pathways and factors, and discusses targeted therapies for cancer stem cells. Investigating these mechanisms and signaling pathways responsible for treatment failure may help identify new therapeutic pathways in cancer.
Collapse
Affiliation(s)
- Maryam Amiri-Farsani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Zahra Taheri
- Department of Biology and Biotechnology, Pavia University, Pavia, Italy
| | - Somayeh Tirbakhsh Gouran
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Omid Chabok
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Maryam Safarpour-Dehkordi
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Mahsa Kazemi Roudsari
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| |
Collapse
|
7
|
Canalis E, Schilling L, Yu J, Denker E. NOTCH2 promotes osteoclast maturation and metabolism and modulates the transcriptome profile during osteoclastogenesis. J Biol Chem 2024; 300:105613. [PMID: 38159855 PMCID: PMC10837628 DOI: 10.1016/j.jbc.2023.105613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/11/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024] Open
Abstract
Notch signaling plays a key regulatory role in bone remodeling and NOTCH2 enhances osteoclastogenesis, an effect that is mostly mediated by its target gene Hes1. In the present study, we explored mechanisms responsible for the enhanced osteoclastogenesis in bone marrow-derived macrophages (BMM) from Notch2tm1.1Ecan, harboring a NOTCH2 gain-of-function mutation, and control mice. Notch2tm1.1Ecan mice are osteopenic and have enhanced osteoclastogenesis. Bulk RNA-Seq and gene set enrichment analysis of Notch2tm1.1Ecan BMMs cultured in the presence of macrophage colony stimulating factor (M-CSF) and receptor activator of NF-κB ligand revealed enrichment of genes associated with enhanced cell metabolism, aerobic respiration, and mitochondrial function, all associated with osteoclastogenesis. These pathways were not enhanced in the context of a Hes1 inactivation. Analysis of single cell RNA-Seq data of pooled control and Notch2tm1.1Ecan BMMs treated with M-CSF or M-CSF and receptor activator of NF-κB ligand for 3 days identified 11 well-defined cellular clusters. Pseudotime trajectory analysis indicated a trajectory of clusters expressing genes associated with osteoclast progenitors, osteoclast precursors, and mature cells. There were an increased number of cells expressing gene markers associated with the osteoclast and with an unknown, albeit related, cluster in Notch2tm1.1Ecan than in control BMMs as well as enhanced expression of genes associated with osteoclast progenitors and precursors in Notch2tm1.1Ecan cells. In conclusion, BMM cultures display cellular heterogeneity, and NOTCH2 enhances osteoclastogenesis, increases mitochondrial and metabolic activity of osteoclasts, and affects cell cluster allocation in BMMs.
Collapse
Affiliation(s)
- Ernesto Canalis
- Department of Orthopaedic Surgery, UConn Health, Farmington, Connecticut, USA; Department of Medicine, UConn Health, Farmington, Connecticut, USA; UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut, USA.
| | - Lauren Schilling
- UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut, USA
| | - Jungeun Yu
- Department of Orthopaedic Surgery, UConn Health, Farmington, Connecticut, USA; UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut, USA
| | - Emily Denker
- UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut, USA
| |
Collapse
|
8
|
Liu G, Wei J, Xiao W, Xie W, Ru Q, Chen L, Wu Y, Mobasheri A, Li Y. Insights into the Notch signaling pathway in degenerative musculoskeletal disorders: Mechanisms and perspectives. Biomed Pharmacother 2023; 169:115884. [PMID: 37981460 DOI: 10.1016/j.biopha.2023.115884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023] Open
Abstract
Degenerative musculoskeletal disorders are a group of age-related diseases of the locomotive system that severely affects the patient's ability to work and cause adverse sequalae such as fractures and even death. The incidence and prevalence of degenerative musculoskeletal disorders is rising owing to the aging of the world's population. The Notch signaling pathway, which is expressed in almost all organ systems, extensively regulates cell proliferation and differentiation as well as cellular fate. Notch signaling shows increased activity in degenerative musculoskeletal disorders and retards the progression of degeneration to some extent. The review focuses on four major degenerative musculoskeletal disorders (osteoarthritis, intervertebral disc degeneration, osteoporosis, and sarcopenia) and summarizes the pathophysiological functions of Notch signaling in these disorders, especially its role in stem/progenitor cells in each disorder. Finally, a conclusion will be presented to explore the research and application of the perspectives on Notch signaling in degenerative musculoskeletal disorders.
Collapse
Affiliation(s)
- Gaoming Liu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410011, China
| | - Jun Wei
- Department of Clinical Medical School, Xinjiang Medical University, Urumqi 830054, China
| | - Wenfeng Xiao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410011, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Wenqing Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410011, China
| | - Qin Ru
- Department of Health and Physical Education, Jianghan University, Wuhan 430056, China
| | - Lin Chen
- Department of Health and Physical Education, Jianghan University, Wuhan 430056, China
| | - Yuxiang Wu
- Department of Health and Physical Education, Jianghan University, Wuhan 430056, China.
| | - Ali Mobasheri
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland; Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania; Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; World Health Organization Collaborating Center for Public Health Aspects of Musculoskeletal Health and Aging, Université de Liège, Liège, Belgium.
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410011, China; Department of Clinical Medical School, Xinjiang Medical University, Urumqi 830054, China.
| |
Collapse
|
9
|
Canalis E, Yu J, Singh V, Mocarska M, Schilling L. NOTCH2 sensitizes the chondrocyte to the inflammatory response of tumor necrosis factor α. J Biol Chem 2023; 299:105372. [PMID: 37865314 PMCID: PMC10692730 DOI: 10.1016/j.jbc.2023.105372] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/06/2023] [Accepted: 10/15/2023] [Indexed: 10/23/2023] Open
Abstract
Notch regulates the immune and inflammatory response and has been associated with the pathogenesis of osteoarthritis in humans and preclinical models of the disease. Notch2tm1.1Ecan mice harbor a NOTCH2 gain-of-function and are sensitized to osteoarthritis, but the mechanisms have not been explored. We examined the effects of tumor necrosis factor α (TNFα) in chondrocytes from Notch2tm1.1Ecan mice and found that NOTCH2 enhanced the effect of TNFα on Il6 and Il1b expression. Similar results were obtained in cells from a conditional model of NOTCH2 gain-of-function, Notch22.1Ecan mice, and following the expression of the NOTCH2 intracellular domain in vitro. Recombination signal-binding protein for immunoglobulin Kappa J region partners with the NOTCH2 intracellular domain to activate transcription; in the absence of Notch signaling it inhibits transcription, and Rbpj inactivation in chondrocytes resulted in Il6 induction. Although TNFα induced IL6 to a greater extent in the context of NOTCH2 activation, there was a concomitant inhibition of Notch target genes Hes1, Hey1, Hey2, and Heyl. Electrophoretic mobility shift assay demonstrated displacement of recombination signal-binding protein for immunoglobulin Kappa J region from DNA binding sites by TNFα explaining the increased Il6 expression and the concomitant decrease in Notch target genes. NOTCH2 enhanced the effect of TNFα on NF-κB signaling, and RNA-Seq revealed increased expression of pathways associated with inflammation and the phagosome in NOTCH2 overexpressing cells in the absence and presence of TNFα. Collectively, NOTCH2 has important interactions with TNFα resulting in the enhanced expression of Il6 and inflammatory pathways in chondrocytes.
Collapse
Affiliation(s)
- Ernesto Canalis
- Department of Orthopaedic Surgery, UConn Health, Farmington, Connecticut, USA; Department of Medicine, UConn Health, Farmington, Connecticut, USA; UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut, USA.
| | - Jungeun Yu
- Department of Orthopaedic Surgery, UConn Health, Farmington, Connecticut, USA; UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut, USA
| | - Vijender Singh
- Computational Biology Core, Institute for System Genomics, UConn, Storrs, Connecticut, USA
| | - Magda Mocarska
- UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut, USA
| | - Lauren Schilling
- UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut, USA
| |
Collapse
|
10
|
Canalis E, Mocarska M, Schilling L, Jafar-Nejad P, Carrer M. Antisense oligonucleotides targeting a NOTCH3 mutation in male mice ameliorate the cortical osteopenia of lateral meningocele syndrome. Bone 2023; 177:116898. [PMID: 37704069 PMCID: PMC10591917 DOI: 10.1016/j.bone.2023.116898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/15/2023]
Abstract
Lateral Meningocele Syndrome (LMS) is a monogenic disorder associated with NOTCH3 pathogenic variants that result in the stabilization of NOTCH3 and a gain-of-function. A mouse model (Notch3em1Ecan) harboring a 6691-TAATGA mutation in the Notch3 locus that results in a functional outcome analogous to LMS exhibits cancellous and cortical bone osteopenia. We tested Notch3 antisense oligonucleotides (ASOs) specific to the Notch36691-TAATGA mutation for their effects on Notch3 downregulation and on the osteopenia of Notch3em1Ecan mice. Twenty-four mouse Notch3 mutant ASOs were designed and tested for toxic effects in vivo, and 12 safe ASOs were tested for their impact on the downregulation of Notch36691-TAATGA and Notch3 mRNA in osteoblast cultures from Notch3em1Ecan mice. Three ASOs downregulated Notch3 mutant transcripts specifically and were tested in vivo for their effects on the bone microarchitecture of Notch3em1Ecan mice. All three ASOs were well tolerated. One of these ASOs had more consistent effects in vivo and was studied in detail. The Notch3 mutant ASO downregulated Notch3 mutant transcripts in osteoblasts and bone marrow stromal cells and had no effect on other Notch receptors. The subcutaneous administration of Notch3 mutant ASO at 50 mg/Kg decreased Notch36691-TAATGA mRNA in bone without apparent toxicity; microcomputed tomography demonstrated that the ASO ameliorated the cortical osteopenia of Notch3em1Ecan mice but not the cancellous bone osteopenia. In conclusion, a Notch3 ASO that downregulates Notch3 mutant expression specifically ameliorates the cortical osteopenia in Notch3em1Ecan mice. ASOs may become useful strategies in the management of monogenic disorders affecting the skeleton.
Collapse
Affiliation(s)
- Ernesto Canalis
- Department of Orthopaedic Surgery, UConn Health, Farmington, CT, USA; Department of Medicine, UConn Health, Farmington, CT, USA; UConn Musculoskeletal Institute, UConn Health, Farmington, CT, USA.
| | - Magda Mocarska
- UConn Musculoskeletal Institute, UConn Health, Farmington, CT, USA
| | - Lauren Schilling
- UConn Musculoskeletal Institute, UConn Health, Farmington, CT, USA
| | | | | |
Collapse
|
11
|
Jurcau A, Andronie-Cioara FL, Nistor-Cseppento DC, Pascalau N, Rus M, Vasca E, Jurcau MC. The Involvement of Neuroinflammation in the Onset and Progression of Parkinson's Disease. Int J Mol Sci 2023; 24:14582. [PMID: 37834030 PMCID: PMC10573049 DOI: 10.3390/ijms241914582] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/15/2023] Open
Abstract
Parkinson's disease is a neurodegenerative disease exhibiting the fastest growth in incidence in recent years. As with most neurodegenerative diseases, the pathophysiology is incompletely elucidated, but compelling evidence implicates inflammation, both in the central nervous system and in the periphery, in the initiation and progression of the disease, although it is not yet clear what triggers this inflammatory response and where it begins. Gut dysbiosis seems to be a likely candidate for the initiation of the systemic inflammation. The therapies in current use provide only symptomatic relief, but do not interfere with the disease progression. Nonetheless, animal models have shown promising results with therapies that target various vicious neuroinflammatory cascades. Translating these therapeutic strategies into clinical trials is still in its infancy, and a series of issues, such as the exact timing, identifying biomarkers able to identify Parkinson's disease in early and pre-symptomatic stages, or the proper indications of genetic testing in the population at large, will need to be settled in future guidelines.
Collapse
Affiliation(s)
- Anamaria Jurcau
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (A.J.); (D.C.N.-C.)
| | - Felicia Liana Andronie-Cioara
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (A.J.); (D.C.N.-C.)
| | - Delia Carmen Nistor-Cseppento
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (A.J.); (D.C.N.-C.)
| | - Nicoleta Pascalau
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (A.J.); (D.C.N.-C.)
| | - Marius Rus
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| | - Elisabeta Vasca
- Department of Oral Rehabilitation, Faculty of Medicine “Vasile Goldis” Arad, 310025 Arad, Romania
| | | |
Collapse
|
12
|
Hanna GJ, Stathis A, Lopez-Miranda E, Racca F, Quon D, Leyvraz S, Hess D, Keam B, Rodon J, Ahn MJ, Kim HR, Schneeweiss A, Ribera JM, DeAngelo D, Perez Garcia JM, Cortes J, Schönborn-Kellenberger O, Weber D, Pisa P, Bauer M, Beni L, Bobadilla M, Lehal R, Vigolo M, Vogl FD, Garralda E. A Phase I Study of the Pan-Notch Inhibitor CB-103 for Patients with Advanced Adenoid Cystic Carcinoma and Other Tumors. CANCER RESEARCH COMMUNICATIONS 2023; 3:1853-1861. [PMID: 37712875 PMCID: PMC10501326 DOI: 10.1158/2767-9764.crc-23-0333] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 09/16/2023]
Abstract
PURPOSE CB-103 selectively inhibits the CSL-NICD (Notch intracellular domain) interaction leading to transcriptional downregulation of oncogenic Notch pathway activation. This dose-escalation/expansion study aimed to determine safety, pharmacokinetics, and preliminary antitumor activity. EXPERIMENTAL DESIGN Patients ≥18 years of age with selected advanced solid tumors [namely, adenoid cystic carcinoma (ACC)] and hematologic malignancies were eligible. CB-103 was dosed orally in cycles of 28 days at escalating doses until disease progression. Notch-activating mutations were required in a dose confirmatory cohort. Endpoints included dose-limiting toxicities (DLT), safety, tumor response, pharmacokinetics, and pharmacodynamics. Exploratory analyses focused on correlates of Notch and target gene expression. RESULTS Seventy-nine patients (64, 12 dose-escalation cohorts; 15, confirmatory cohort) enrolled with 54% receiving two or more lines of prior therapy. ACC was the dominant tumor type (40, 51%). Two DLTs were observed [elevated gamma-glutamyl transferase (GGT), visual change]; recommended phase II dose was declared as 500 mg twice daily (5 days on, 2 days off weekly). Grade 3-4 treatment-related adverse events occurred in 15 patients (19%), including elevated liver function tests (LFTs), anemia, and visual changes. Five (6%) discontinued drug for toxicity; with no drug-related deaths. There were no objective responses, but 37 (49%) had stable disease; including 23 of 40 (58%) patients with ACC. In the ACC cohort, median progression-free survival was 2.5 months [95% confidence interval (CI), 1.5-3.7] and median overall survival was 18.4 months (95% CI, 6.3-not reached). CONCLUSIONS CB-103 had a manageable safety profile and biological activity but limited clinical antitumor activity as monotherapy in this first-in-human study. SIGNIFICANCE CB-103 is a novel oral pan-Notch inhibitor that selectively blocks the CSL-NICD interaction leading to transcriptional downregulation of oncogenic Notch pathway activation. This first-in-human dose-escalation and -confirmation study aimed to determine the safety, pharmacokinetics, and preliminary antitumor efficacy of CB-103. We observed a favorable safety profile with good tolerability and biological activity but limited clinical single-agent antitumor activity. Some disease stabilization was observed among an aggressive NOTCH-mutant ACC type-I subgroup where prognosis is poor and therapies are critically needed. Peripheral downregulation of select Notch target gene levels was observed with escalating doses. Future studies exploring CB-103 should enrich for patients with NOTCH-mutant ACC and investigate rational combinatorial approaches in tumors where there is limited success with investigational or approved drugs.
Collapse
Affiliation(s)
- Glenn J. Hanna
- Department of Medical Oncology, Center for Head and Neck Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Anastasios Stathis
- Oncology Institute of Southern Switzerland, EOC, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana (USI), Lugano, Switzerland
| | | | - Fabricio Racca
- IOB – Institute of Oncology Barcelona and Madrid, Hospital Quironsalud-Barcelona, Barcelona, Spain
| | - Doris Quon
- Sarcoma Oncology Research Center, Santa Monica, California
| | - Serge Leyvraz
- Charité Comprehensive Cancer Center, Charité Campus Benjamin Franklin, Berlin, Germany
| | - Dagmar Hess
- Department of Medical Oncology, Kantonsspital St Gallen, St Gallen, Switzerland
| | - Bhumsuk Keam
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of South Korea
| | - Jordi Rodon
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Myung-Ju Ahn
- Samsung Medical Center Sungkyunkwan University School of Medicine, Seoul, Republic of South Korea
| | - Hye Ryun Kim
- Severance Hospital – Yonsei Cancer Center, Seoul, Republic of South Korea
| | - Andreas Schneeweiss
- National Center for Tumor Diseases (NCT), University Hospital Heidelberg and German Cancer Research Center, Heidelberg, Germany
| | - Josep-Maria Ribera
- Institut Català d'Oncologia (Catalan Institute of Oncology [ICO]), Josep Carreras Research Institute, Barcelona, Spain
| | - Daniel DeAngelo
- Division of Leukemia, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jose Manuel Perez Garcia
- International Breast Cancer Center (IBCC), Pangaea Oncology, Quiron Hospital, Barcelona, Spain
- Medica Scientia Innovation Research, Barcelona, Spain
- Medica Scientia Innovation Research, Ridgewood, New Jersey
| | - Javier Cortes
- International Breast Cancer Center (IBCC), Pangaea Oncology, Quiron Hospital, Barcelona, Spain
- Medica Scientia Innovation Research, Barcelona, Spain
- Medica Scientia Innovation Research, Ridgewood, New Jersey
| | | | - Dirk Weber
- Cellestia Biotech AG, Basel, Switzerland
| | - Pavel Pisa
- piMedConsulting Ltd, Gersau, Switzerland
| | | | - Laura Beni
- Cellestia Biotech AG, Basel, Switzerland
| | | | - Raj Lehal
- Cellestia Biotech AG, Basel, Switzerland
| | | | | | - Elena Garralda
- Early Drug Development Unit, Clinical Research Program, Vall d'Hebron University Hospital and Institute of Oncology (VHIO) and Medical Oncology, Vall d'Hebron University Hospital (HUVH), Barcelona, Spain
| |
Collapse
|
13
|
Kidwai FK, Canalis E, Robey PG. Induced pluripotent stem cell technology in bone biology. Bone 2023; 172:116760. [PMID: 37028583 PMCID: PMC10228209 DOI: 10.1016/j.bone.2023.116760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/09/2023]
Abstract
Technologies on the development and differentiation of human induced pluripotent stem cells (hiPSCs) are rapidly improving, and have been applied to create cell types relevant to the bone field. Differentiation protocols to form bona fide bone-forming cells from iPSCs are available, and can be used to probe details of differentiation and function in depth. When applied to iPSCs bearing disease-causing mutations, the pathogenetic mechanisms of diseases of the skeleton can be elucidated, along with the development of novel therapeutics. These cells can also be used for development of cell therapies for cell and tissue replacement.
Collapse
Affiliation(s)
- Fahad K Kidwai
- Skeletal Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, United States of America
| | - Ernesto Canalis
- Center for Skeletal Research, Orthopedic Surgery and Medicine, UConn Musculoskeletal Institute, UConn Health, Farmington, CT 06030-4037, United States of America
| | - Pamela G Robey
- Skeletal Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, United States of America.
| |
Collapse
|
14
|
Isik S, Yeman Kiyak B, Akbayir R, Seyhali R, Arpaci T. Microglia Mediated Neuroinflammation in Parkinson’s Disease. Cells 2023; 12:cells12071012. [PMID: 37048085 PMCID: PMC10093562 DOI: 10.3390/cells12071012] [Citation(s) in RCA: 102] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Parkinson’s Disease (PD) is the second most common neurodegenerative disorder seen, especially in the elderly. Tremor, shaking, movement problems, and difficulty with balance and coordination are among the hallmarks, and dopaminergic neuronal loss in substantia nigra pars compacta of the brain and aggregation of intracellular protein α-synuclein are the pathological characterizations. Neuroinflammation has emerged as an involving mechanism at the initiation and development of PD. It is a complex network of interactions comprising immune and non-immune cells in addition to mediators of the immune response. Microglia, the resident macrophages in the CNS, take on the leading role in regulating neuroinflammation and maintaining homeostasis. Under normal physiological conditions, they exist as “homeostatic” but upon pathological stimuli, they switch to the “reactive state”. Pro-inflammatory (M1) and anti-inflammatory (M2) phenotypes are used to classify microglial activity with each phenotype having its own markers and released mediators. When M1 microglia are persistent, they will contribute to various inflammatory diseases, including neurodegenerative diseases, such as PD. In this review, we focus on the role of microglia mediated neuroinflammation in PD and also signaling pathways, receptors, and mediators involved in the process, presenting the studies that associate microglia-mediated inflammation with PD. A better understanding of this complex network and interactions is important in seeking new therapies for PD and possibly other neurodegenerative diseases.
Collapse
Affiliation(s)
- Sevim Isik
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Uskudar University, Uskudar, Istanbul 34662, Turkey
- Stem Cell Research and Application Center (USKOKMER), Uskudar University, Uskudar, Istanbul 34662, Turkey
- Correspondence: ; Tel.: +90-216-400-2222 (ext. 2462)
| | - Bercem Yeman Kiyak
- Stem Cell Research and Application Center (USKOKMER), Uskudar University, Uskudar, Istanbul 34662, Turkey
- Department of Molecular Medicine, Institute of Hamidiye Health Sciences, University of Health Sciences, Uskudar, Istanbul 34668, Turkey
| | - Rumeysa Akbayir
- Stem Cell Research and Application Center (USKOKMER), Uskudar University, Uskudar, Istanbul 34662, Turkey
- Department of Molecular Biology, Institute of Science, Uskudar University, Uskudar, Istanbul 34662, Turkey
| | - Rama Seyhali
- Stem Cell Research and Application Center (USKOKMER), Uskudar University, Uskudar, Istanbul 34662, Turkey
- Department of Molecular Biology, Institute of Science, Uskudar University, Uskudar, Istanbul 34662, Turkey
| | - Tahire Arpaci
- Stem Cell Research and Application Center (USKOKMER), Uskudar University, Uskudar, Istanbul 34662, Turkey
- Department of Molecular Biology, Institute of Science, Uskudar University, Uskudar, Istanbul 34662, Turkey
| |
Collapse
|
15
|
Erkhembaatar M, Yamamoto I, Inoguchi F, Taki K, Yamagishi S, Delaney L, Nishibe M, Abe T, Kiyonari H, Hanashima C, Naka‐kaneda H, Ihara D, Katsuyama Y. Involvement of Strawberry Notch homologue 1 in neurite outgrowth of cortical neurons. Dev Growth Differ 2022; 64:379-394. [DOI: 10.1111/dgd.12802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Munkhsoyol Erkhembaatar
- Division of Neuroanatomy, Department of Anatomy Shiga University of Medical Science Shiga Japan
| | - Iroha Yamamoto
- Division of Neuroanatomy, Department of Anatomy Shiga University of Medical Science Shiga Japan
| | - Fuduki Inoguchi
- Division of Neuroanatomy, Department of Anatomy Shiga University of Medical Science Shiga Japan
| | - Kosuke Taki
- Division of Neuroanatomy, Department of Anatomy Shiga University of Medical Science Shiga Japan
| | - Satoru Yamagishi
- Department of Anatomy & Neuroscience Hamamatsu University School of Medicine, Hamamatsu Shizuoka Japan
- Preeminent Medical Photonics Education & Research Center Hamamatsu University School of Medicine, Hamamatsu Shizuoka Japan
| | - Leanne Delaney
- Division of Neuroanatomy, Department of Anatomy Shiga University of Medical Science Shiga Japan
- Department of Microbiology and Immunology Dalhousie University, PO Box 15000 Halifax Nova Scotia Canada
| | - Mariko Nishibe
- Division of Neuroanatomy, Department of Anatomy Shiga University of Medical Science Shiga Japan
| | - Takaya Abe
- Animal Resource Development Unit, Biosystem Dynamics Group, Division of Bio‐Function Dynamics Imaging Center for Life Science Technologies CDB RIKEN Kobe Japan
| | - Hiroshi Kiyonari
- Animal Resource Development Unit, Biosystem Dynamics Group, Division of Bio‐Function Dynamics Imaging Center for Life Science Technologies CDB RIKEN Kobe Japan
| | - Carina Hanashima
- Department of Biology, Faculty of Education and Integrated Arts and Sciences Waseda University Tokyo Japan
| | - Hayato Naka‐kaneda
- Division of Neuroanatomy, Department of Anatomy Shiga University of Medical Science Shiga Japan
| | - Dai Ihara
- Division of Neuroanatomy, Department of Anatomy Shiga University of Medical Science Shiga Japan
| | - Yu Katsuyama
- Division of Neuroanatomy, Department of Anatomy Shiga University of Medical Science Shiga Japan
| |
Collapse
|
16
|
Current Opportunities for Targeting Dysregulated Neurodevelopmental Signaling Pathways in Glioblastoma. Cells 2022; 11:cells11162530. [PMID: 36010607 PMCID: PMC9406959 DOI: 10.3390/cells11162530] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/06/2022] [Accepted: 08/09/2022] [Indexed: 11/29/2022] Open
Abstract
Glioblastoma (GBM) is the most common and highly lethal type of brain tumor, with poor survival despite advances in understanding its complexity. After current standard therapeutic treatment, including tumor resection, radiotherapy and concomitant chemotherapy with temozolomide, the median overall survival of patients with this type of tumor is less than 15 months. Thus, there is an urgent need for new insights into GBM molecular characteristics and progress in targeted therapy in order to improve clinical outcomes. The literature data revealed that a number of different signaling pathways are dysregulated in GBM. In this review, we intended to summarize and discuss current literature data and therapeutic modalities focused on targeting dysregulated signaling pathways in GBM. A better understanding of opportunities for targeting signaling pathways that influences malignant behavior of GBM cells might open the way for the development of novel GBM-targeted therapies.
Collapse
|
17
|
Canalis E, Carrer M, Eller T, Schilling L, Yu J. Use of antisense oligonucleotides to target Notch3 in skeletal cells. PLoS One 2022; 17:e0268225. [PMID: 35536858 PMCID: PMC9089911 DOI: 10.1371/journal.pone.0268225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/25/2022] [Indexed: 01/02/2023] Open
Abstract
Notch receptors are determinants of cell fate and function, and play an important role in the regulation of bone development and skeletal remodeling. Lateral Meningocele Syndrome (LMS) is a monogenic disorder associated with NOTCH3 pathogenic variants that result in the stabilization of NOTCH3 and a gain-of-function. LMS presents with neurological developmental abnormalities and bone loss. We created a mouse model (Notch3em1Ecan) harboring a 6691TAATGA mutation in the Notch3 locus, and heterozygous Notch3em1Ecan mice exhibit cancellous and cortical bone osteopenia. In the present work, we explored whether Notch3 antisense oligonucleotides (ASO) downregulate Notch3 and have the potential to ameliorate the osteopenia of Notch3em1Ecan mice. Notch3 ASOs decreased the expression of Notch3 wild type and Notch36691-TAATGA mutant mRNA expressed by Notch3em1Ecan mice in osteoblast cultures without evidence of cellular toxicity. The effect was specific since ASOs did not downregulate Notch1, Notch2 or Notch4. The expression of Notch3 wild type and Notch36691-TAATGA mutant transcripts also was decreased in bone marrow stromal cells and osteocytes following exposure to Notch3 ASOs. In vivo, the subcutaneous administration of Notch3 ASOs at 25 to 50 mg/Kg decreased Notch3 mRNA in the liver, heart and bone. Microcomputed tomography demonstrated that the administration of Notch3 ASOs ameliorates the cortical osteopenia of Notch3em1Ecan mice, and ASOs decreased femoral cortical porosity and increased cortical thickness and bone volume. However, the administration of Notch3 ASOs did not ameliorate the cancellous bone osteopenia of Notchem1Ecan mice. In conclusion, Notch3 ASOs downregulate Notch3 expression in skeletal cells and their systemic administration ameliorates cortical osteopenia in Notch3em1Ecan mice; as such ASOs may become useful strategies in the management of skeletal diseases affected by Notch gain-of-function.
Collapse
MESH Headings
- Abnormalities, Multiple
- Animals
- Bone Diseases, Metabolic/genetics
- Bone Diseases, Metabolic/metabolism
- Bone and Bones/diagnostic imaging
- Bone and Bones/metabolism
- Meningocele
- Mice
- Oligonucleotides, Antisense
- RNA, Messenger
- Receptor, Notch2/genetics
- Receptor, Notch2/metabolism
- Receptor, Notch3/genetics
- Receptor, Notch3/metabolism
- Receptors, Notch/genetics
- X-Ray Microtomography
Collapse
Affiliation(s)
- Ernesto Canalis
- Department of Orthopaedic Surgery, UConn Health, Farmington, Connecticut, United States of America
- Department of Medicine, UConn Health, Farmington, Connecticut, United States of America
- The UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut, United States of America
| | - Michele Carrer
- Ionis Pharmaceuticals, Inc., Carlsbad, California, United States of America
| | - Tabitha Eller
- The UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut, United States of America
| | - Lauren Schilling
- The UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut, United States of America
| | - Jungeun Yu
- Department of Orthopaedic Surgery, UConn Health, Farmington, Connecticut, United States of America
- The UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut, United States of America
| |
Collapse
|
18
|
Chaudhuri A, Kumar DN, Dehari D, Singh S, Kumar P, Bolla PK, Kumar D, Agrawal AK. Emergence of Nanotechnology as a Powerful Cavalry against Triple-Negative Breast Cancer (TNBC). Pharmaceuticals (Basel) 2022; 15:542. [PMID: 35631368 PMCID: PMC9143332 DOI: 10.3390/ph15050542] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 12/11/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is considered one of the un-manageable types of breast cancer, involving devoid of estrogen, progesterone, and human epidermal growth factor receptor 2 (HER 2) receptors. Due to their ability of recurrence and metastasis, the management of TNBC remains a mainstay challenge, despite the advancements in cancer therapies. Conventional chemotherapy remains the only treatment regimen against TNBC and suffers several limitations such as low bioavailability, systemic toxicity, less targetability, and multi-drug resistance. Although various targeted therapies have been introduced to manage the hardship of TNBC, they still experience certain limitations associated with the survival benefits. The current research thus aimed at developing and improving the strategies for effective therapy against TNBC. Such strategies involved the emergence of nanoparticles. Nanoparticles are designated as nanocavalries, loaded with various agents (drugs, genes, etc.) to battle the progression and metastasis of TNBC along with overcoming the limitations experienced by conventional chemotherapy and targeted therapy. This article documents the treatment regimens of TNBC along with their efficacy towards different subtypes of TNBC, and the various nanotechnologies employed to increase the therapeutic outcome of FDA-approved drug regimens.
Collapse
Affiliation(s)
- Aiswarya Chaudhuri
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, India; (A.C.); (D.N.K.); (D.D.); (S.S.); (D.K.)
| | - Dulla Naveen Kumar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, India; (A.C.); (D.N.K.); (D.D.); (S.S.); (D.K.)
| | - Deepa Dehari
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, India; (A.C.); (D.N.K.); (D.D.); (S.S.); (D.K.)
| | - Sanjay Singh
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, India; (A.C.); (D.N.K.); (D.D.); (S.S.); (D.K.)
- Babasaheb Bhimrao Ambedkar University, Lucknow 226025, India
| | - Pradeep Kumar
- Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa;
| | - Pradeep Kumar Bolla
- Department of Biomedical Engineering, College of Engineering, The University of Texas at El Paso, 500 W. University Ave, El Paso, TX 79968, USA;
| | - Dinesh Kumar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, India; (A.C.); (D.N.K.); (D.D.); (S.S.); (D.K.)
| | - Ashish Kumar Agrawal
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, India; (A.C.); (D.N.K.); (D.D.); (S.S.); (D.K.)
| |
Collapse
|
19
|
EP300/CBP is crucial for cAMP-PKA pathway to alleviate podocyte dedifferentiation via targeting Notch3 signaling. Exp Cell Res 2021; 407:112825. [PMID: 34506759 DOI: 10.1016/j.yexcr.2021.112825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/24/2021] [Accepted: 09/05/2021] [Indexed: 11/20/2022]
Abstract
Podocyte injury is the hallmark of proteinuric glomerular diseases. Notch3 is neo-activated simultaneously in damaged podocytes and podocyte's progenitor cells of FSGS, indicating a unique role of Notch3. We previously showed that activation of cAMP-PKA pathway alleviated podocyte injury possibly via inhibiting Notch3 expression. However, the mechanisms are unknown. In the present study, Notch3 signaling was significantly activated in ADR-induced podocytes in vitro and in PAN nephrosis rats and patients with idiopathic FSGS in vivo, concomitantly with podocyte dedifferentiation. In cultured podocytes, pCPT-cAMP, a selective cAMP-PKA activator, dramatically blocked ADR-induced activation of Notch3 signaling as well as inhibition of cAMP-PKA pathway, thus alleviating the decreased cell viability and podocyte dedifferentiation. Bioinformatics analysis revealed EP300/CBP, a transcriptional co-activator, as a central hub for the crosstalk between these two signaling pathways. Additionally, CREB/KLF15 in cAMP-PKA pathway competed with RBP-J the major transcriptional factor of Notch3 signaling for binding to EP300/CBP. EP300/CBP siRNA significantly inhibited these two signaling transduction pathways and disrupted the interactions between the above major transcriptional factors. These data indicate a crucial role of EP300/CBP in regulating the crosstalk between cAMP-PKA pathway and Notch3 signaling and modulating the phenotypic change of podocytes, and enrich the reno-protective mechanisms of cAMP-PKA pathway.
Collapse
|
20
|
Uterine Notch2 facilitates pregnancy recognition and corpus luteum maintenance via upregulating decidual Prl8a2. PLoS Genet 2021; 17:e1009786. [PMID: 34460816 PMCID: PMC8432799 DOI: 10.1371/journal.pgen.1009786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 09/10/2021] [Accepted: 08/18/2021] [Indexed: 02/07/2023] Open
Abstract
The maternal recognition of pregnancy is a necessary prerequisite for gestation maintenance through prolonging the corpus luteum lifespan and ensuring progesterone production. In addition to pituitary prolactin and placental lactogens, decidual derived prolactin family members have been presumed to possess luteotropic effect. However, there was a lack of convincing evidence to support this hypothesis. Here, we unveiled an essential role of uterine Notch2 in pregnancy recognition and corpus luteum maintenance. Uterine-specific deletion of Notch2 did not affect female fertility. Nevertheless, the expression of decidual Prl8a2, a member of the prolactin family, was downregulated due to Notch2 ablation. Subsequently, we interrupted pituitary prolactin function to determine the luteotropic role of the decidua by employing the lipopolysaccharide-induced prolactin resistance model, or blocking the prolactin signaling by prolactin receptor-Fc fusion protein, or repressing pituitary prolactin release by dopamine receptor agonist bromocriptine, and found that Notch2-deficient females were more sensitive to these stresses and ended up in pregnancy loss resulting from abnormal corpus luteum function and insufficient serum progesterone level. Overexpression of Prl8a2 in Notch2 knockout mice rescued lipopolysaccharide-induced abortion, highlighting its luteotropic function. Further investigation adopting Rbpj knockout and DNMAML overexpression mouse models along with chromatin immunoprecipitation assay and luciferase analysis confirmed that Prl8a2 was regulated by the canonical Notch signaling. Collectively, our findings demonstrated that decidual prolactin members, under the control of uterine Notch signaling, assisted pituitary prolactin to sustain corpus luteum function and serum progesterone level during post-implantation phase, which was conducive to pregnancy recognition and maintenance. Progesterone secreted from the corpus luteum in the ovary is indispensable to pregnancy maintenance in both rodents and humans. Therefore, prolonged corpus luteum lifespan and sustainable progesterone production is a prerequisite for a successful pregnancy. In rodents, in addition to pituitary prolactin and placental lactogens, decidual derived factors have been presumed to possess luteotropic effects during the post-implantation stage. In this study, utilizing a mouse model with uterine specific deletion of Notch2, which displayed decreased level of decidual prolactin member Prl8a2, combined with multiple approaches to interrupt the pituitary prolactin signal, we demonstrated that decidual derived Prl8a2 assisted pituitary prolactin to sustain corpus luteum function and serum progesterone level during post-implantation phase, which was conducive to pregnancy recognition and maintenance. In addition, the expression of decidual Prl8a2 was under the direct control of the canonical Notch pathway. Together, we herein provide convincing evidence that decidual produced Prl8a2, modulated by uterine canonical Notch signaling, exhibits luteotropic functions and contributes to pregnancy maintenance.
Collapse
|
21
|
Martins T, Meng Y, Korona B, Suckling R, Johnson S, Handford PA, Lea SM, Bray SJ. The conserved C2 phospholipid-binding domain in Delta contributes to robust Notch signalling. EMBO Rep 2021; 22:e52729. [PMID: 34347930 PMCID: PMC8490980 DOI: 10.15252/embr.202152729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/10/2021] [Accepted: 07/15/2021] [Indexed: 11/09/2022] Open
Abstract
Accurate Notch signalling is critical for development and homeostasis. Fine‐tuning of Notch–ligand interactions has substantial impact on signalling outputs. Recent structural studies have identified a conserved N‐terminal C2 domain in human Notch ligands which confers phospholipid binding in vitro. Here, we show that Drosophila ligands Delta and Serrate adopt the same C2 domain structure with analogous variations in the loop regions, including the so‐called β1‐2 loop that is involved in phospholipid binding. Mutations in the β1‐2 loop of the Delta C2 domain retain Notch binding but have impaired ability to interact with phospholipids in vitro. To investigate its role in vivo, we deleted five residues within the β1‐2 loop of endogenous Delta. Strikingly, this change compromises ligand function. The modified Delta enhances phenotypes produced by Delta loss‐of‐function alleles and suppresses that of Notch alleles. As the modified protein is present on the cell surface in normal amounts, these results argue that C2 domain phospholipid binding is necessary for robust signalling in vivo fine‐tuning the balance of trans and cis ligand–receptor interactions.
Collapse
Affiliation(s)
- Torcato Martins
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Yao Meng
- Department of Biochemistry, University of Oxford, Oxford, UK
| | | | - Richard Suckling
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Steven Johnson
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | | | - Susan M Lea
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Sarah J Bray
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, UK
| |
Collapse
|
22
|
Kordbacheh F, Farah CS. Molecular Pathways and Druggable Targets in Head and Neck Squamous Cell Carcinoma. Cancers (Basel) 2021; 13:3453. [PMID: 34298667 PMCID: PMC8307423 DOI: 10.3390/cancers13143453] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/02/2021] [Accepted: 07/08/2021] [Indexed: 12/30/2022] Open
Abstract
Head and neck cancers are a heterogeneous group of neoplasms, affecting an ever increasing global population. Despite advances in diagnostic technology and surgical approaches to manage these conditions, survival rates have only marginally improved and this has occurred mainly in developed countries. Some improvements in survival, however, have been a result of new management and treatment approaches made possible because of our ever-increasing understanding of the molecular pathways triggered in head and neck oncogenesis, and the growing understanding of the abundant heterogeneity of this group of cancers. Some important pathways are common to other solid tumours, but their impact on reducing the burden of head and neck disease has been less than impressive. Other less known and little-explored pathways may hold the key to the development of potential druggable targets. The extensive work carried out over the last decade, mostly utilising next generation sequencing has opened up the development of many novel approaches to head and neck cancer treatment. This paper explores our current understanding of the molecular pathways of this group of tumours and outlines associated druggable targets which are deployed as therapeutic approaches in head and neck oncology with the ultimate aim of improving patient outcomes and controlling the personal and economic burden of head and neck cancer.
Collapse
Affiliation(s)
- Farzaneh Kordbacheh
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA;
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, Australian National University, Canberra, ACT 0200, Australia
| | - Camile S. Farah
- The Australian Centre for Oral Oncology Research & Education, Perth, WA 6009, Australia
- Genomics for Life, Brisbane, QLD 4064, Australia
- Anatomical Pathology, Australian Clinical Labs, Subiaco, WA 6008, Australia
- Peter MacCallum Cancer Centre, Head and Neck Cancer Signalling Laboratory, Melbourne, VIC 3000, Australia
| |
Collapse
|
23
|
Fultang N, Chakraborty M, Peethambaran B. Regulation of cancer stem cells in triple negative breast cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2021; 4:321-342. [PMID: 35582030 PMCID: PMC9019272 DOI: 10.20517/cdr.2020.106] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/28/2020] [Accepted: 01/06/2021] [Indexed: 12/13/2022]
Abstract
Triple Negative Breast Cancer (TNBC) is the most lethal subtype of breast cancer. Despite the successes of emerging targeted therapies, relapse, recurrence, and therapy failure rates in TNBC significantly outpace other subtypes of breast cancer. Mounting evidence suggests accumulation of therapy resistant Cancer Stem Cell (CSC) populations within TNBCs contributes to poor clinical outcomes. These CSCs are enriched in TNBC compared to non-TNBC breast cancers. The mechanisms underlying CSC accumulation have been well-characterized and discussed in other reviews. In this review, we focus on TNBC-specific mechanisms that allow the expansion and activity of self-renewing CSCs. We highlight cellular signaling pathways and transcription factors, specifically enriched in TNBC over non-TNBC breast cancer, contributing to stemness. We also analyze publicly available single-cell RNA-seq data from basal breast cancer tumors to highlight the potential of emerging bioinformatic approaches in identifying novel drivers of stemness in TNBC and other cancers.
Collapse
Affiliation(s)
- Norman Fultang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19140, USA
| | - Madhuparna Chakraborty
- Department of Biological Sciences, The University of the Sciences, Philadelphia, PA 19140, USA
| | - Bela Peethambaran
- Department of Biological Sciences, The University of the Sciences, Philadelphia, PA 19140, USA
| |
Collapse
|
24
|
Sabol HM, Delgado-Calle J. The multifunctional role of Notch signaling in multiple myeloma. JOURNAL OF CANCER METASTASIS AND TREATMENT 2021; 7:20. [PMID: 34778567 PMCID: PMC8589324 DOI: 10.20517/2394-4722.2021.35] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Multiple myeloma (MM) is a hematologic cancer characterized by uncontrolled growth of malignant plasma cells in the bone marrow and currently is incurable. The bone marrow microenvironment plays a critical role in MM. MM cells reside in specialized niches where they interact with multiple marrow cell types, transforming the bone/bone marrow compartment into an ideal microenvironment for the migration, proliferation, and survival of MM cells. In addition, MM cells interact with bone cells to stimulate bone destruction and promote the development of bone lesions that rarely heal. In this review, we discuss how Notch signals facilitate the communication between adjacent MM cells and between MM cells and bone/bone marrow cells and shape the microenvironment to favor MM progression and bone disease. We also address the potential and therapeutic approaches used to target Notch signaling in MM.
Collapse
Affiliation(s)
- Hayley M Sabol
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Jesus Delgado-Calle
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
25
|
Abstract
Notch (Notch1 through 4) are transmembrane receptors that determine cell differentiation and function, and are activated following interactions with ligands of the Jagged and Delta-like families. Notch has been established as a signaling pathway that plays a critical role in the differentiation and function of cells of the osteoblast and osteoclast lineages as well as in skeletal development and bone remodeling. Pathogenic variants of Notch receptors and their ligands are associated with a variety of genetic disorders presenting with significant craniofacial and skeletal manifestations. Lateral Meningocele Syndrome (LMS) is a rare genetic disorder characterized by neurological manifestations, meningoceles, skeletal developmental abnormalities and bone loss. LMS is associated with NOTCH3 gain-of-function pathogenic variants. Experimental mouse models of LMS revealed that the bone loss is secondary to increased osteoclastogenesis due to enhanced expression of receptor activator of nuclear factor kappa B ligand by cells of the osteoblast lineage. There are no effective therapies for LMS. Antisense oligonucleotides targeting Notch3 and antibodies that prevent the activation of NOTCH3 are being tested in preclinical models of the disease. In conclusion, LMS is a serious genetic disorder associated with NOTCH3 pathogenic variants. Novel experimental models have offered insight on mechanisms responsible and ways to correct the disease.
Collapse
Affiliation(s)
- Ernesto Canalis
- Department of Orthopaedic Surgery and Medicine, UConn Musculoskeletal Institute, UConn Health, Farmington, CT, United States
| |
Collapse
|
26
|
Canalis E, Zanotti S, Schilling L, Eller T, Yu J. Activation of Notch3 in osteoblasts/osteocytes causes compartment-specific changes in bone remodeling. J Biol Chem 2021; 296:100583. [PMID: 33774049 PMCID: PMC8086145 DOI: 10.1016/j.jbc.2021.100583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 03/12/2021] [Accepted: 03/22/2021] [Indexed: 12/24/2022] Open
Abstract
Notch receptors maintain skeletal homeostasis. NOTCH1 and 2 have been studied for their effects on bone remodeling. Although NOTCH3 plays a significant role in vascular physiology, knowledge about its function in other cellular environments, including bone, is limited. The present study was conducted to establish the function of NOTCH3 in skeletal cells using models of Notch3 misexpression. Microcomputed tomography demonstrated that Notch3 null mice did not have appreciable bone phenotypes. To study the effects of the NOTCH3 activation in the osteoblast lineage, BGLAP-Cre or Dmp1-Cre transgenics were crossed with RosaNotch3 mice, where the NOTCH3 intracellular domain is expressed following the removal of a loxP-flanked STOP cassette. Microcomputed tomography demonstrated that BGLAP-Cre;RosaNotch3 and Dmp1-Cre;RosaNotch3 mice of both sexes exhibited an increase in trabecular bone and in connectivity, with a decrease in cortical bone and increased cortical porosity. Histological analysis revealed a decrease in osteoclast number and bone resorption in trabecular bone and an increase in osteoclast number and void or pore area in cortical bone of RosaNotch3 mice. Bone formation was either decreased or could not be determined in Cre;RosaNotch3 mice. NOTCH3 activation in osteoblasts inhibited Alpl (alkaline phosphatase) and Bglap (osteocalcin) and induced Tnfsf11 (RANKL) and Tnfrsf11b (osteoprotegerin) mRNA, possibly explaining the trabecular bone phenotype. However, NOTCH3 induced Tnfsf11 and suppressed Tnfrsf11b in osteocytes, possibly explaining the cortical porosity. In conclusion, basal NOTCH3 is dispensable for skeletal homeostasis, whereas activation of NOTCH3 in osteoblasts/osteocytes inhibits osteoclastogenesis and bone resorption in cancellous bone but increases intracortical remodeling and causes cortical porosity.
Collapse
Affiliation(s)
- Ernesto Canalis
- Department of Orthopaedic Surgery, UConn Health, Farmington, Connecticut, USA; Department of Medicine, UConn Health, Farmington, Connecticut, USA; UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut, USA.
| | - Stefano Zanotti
- Department of Orthopaedic Surgery, UConn Health, Farmington, Connecticut, USA; UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut, USA
| | - Lauren Schilling
- UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut, USA
| | - Tabitha Eller
- UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut, USA
| | - Jungeun Yu
- Department of Orthopaedic Surgery, UConn Health, Farmington, Connecticut, USA; UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut, USA
| |
Collapse
|
27
|
Maier D. Membrane-Anchored Hairless Protein Restrains Notch Signaling Activity. Genes (Basel) 2020; 11:genes11111315. [PMID: 33171957 PMCID: PMC7694644 DOI: 10.3390/genes11111315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 11/16/2022] Open
Abstract
The Notch signaling pathway governs cell-to-cell communication in higher eukaryotes. In Drosophila, after cleavage of the transmembrane receptor Notch, the intracellular domain of Notch (ICN) binds to the transducer Suppressor of Hairless (Su(H)) and shuttles into the nucleus to activate Notch target genes. Similarly, the Notch antagonist Hairless transfers Su(H) into the nucleus to repress Notch target genes. With the aim to prevent Su(H) nuclear translocation, Hairless was fused to a transmembrane domain to anchor the protein at membranes. Indeed, endogenous Su(H) co-localized with membrane-anchored Hairless, demonstrating their binding in the cytoplasm. Moreover, adult phenotypes uncovered a loss of Notch activity, in support of membrane-anchored Hairless sequestering Su(H) in the cytosol. A combined overexpression of membrane-anchored Hairless with Su(H) lead to tissue proliferation, which is in contrast to the observed apoptosis after ectopic co-overexpression of the wild-type genes, indicating a shift to a gain of Notch activity. A mixed response, general de-repression of Notch signaling output, plus inhibition at places of highest Notch activity, perhaps reflects Su(H)’s role as activator and repressor, supported by results obtained with the Hairless-binding deficient Su(H)LLL mutant, inducing activation only. Overall, the results strengthen the idea of Su(H) and Hairless complex formation within the cytosolic compartment.
Collapse
Affiliation(s)
- Dieter Maier
- Deptartment of General Genetics 190g, University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany
| |
Collapse
|
28
|
Yu J, Canalis E. Notch and the regulation of osteoclast differentiation and function. Bone 2020; 138:115474. [PMID: 32526405 PMCID: PMC7423683 DOI: 10.1016/j.bone.2020.115474] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/05/2020] [Accepted: 06/05/2020] [Indexed: 12/30/2022]
Abstract
Notch 1 through 4 are transmembrane receptors that play a pivotal role in cell differentiation and function; this review addresses the role of Notch signaling in osteoclastogenesis and bone resorption. Notch receptors are activated following interactions with their ligands of the Jagged and Delta-like families. In the skeleton, Notch signaling controls osteoclast differentiation and bone-resorbing activity either directly acting on osteoclast precursors, or indirectly acting on cells of the osteoblast lineage and cells of the immune system. NOTCH1 inhibits osteoclastogenesis, whereas NOTCH2 enhances osteoclast differentiation and function by direct and indirect mechanisms. NOTCH3 induces the expression of RANKL in osteoblasts and osteocytes and as a result induces osteoclast differentiation. There is limited expression of NOTCH4 in skeletal cells. Selected congenital disorders and skeletal malignancies are associated with dysregulated Notch signaling and enhanced bone resorption. In conclusion, Notch signaling is a critical pathway that controls osteoblast and osteoclast differentiation and function and regulates skeletal homeostasis in health and disease.
Collapse
Affiliation(s)
- Jungeun Yu
- Departments of Orthopaedic Surgery, UConn Musculoskeletal Institute, Farmington, CT 06030, USA; UConn Musculoskeletal Institute, UConn Health, Farmington, CT 06030, USA
| | - Ernesto Canalis
- Departments of Orthopaedic Surgery, UConn Musculoskeletal Institute, Farmington, CT 06030, USA; Medicine, UConn Musculoskeletal Institute, Farmington, CT 06030, USA; UConn Musculoskeletal Institute, UConn Health, Farmington, CT 06030, USA.
| |
Collapse
|
29
|
Gratton R, Tricarico PM, Moltrasio C, Lima Estevão de Oliveira AS, Brandão L, Marzano AV, Zupin L, Crovella S. Pleiotropic Role of Notch Signaling in Human Skin Diseases. Int J Mol Sci 2020; 21:E4214. [PMID: 32545758 PMCID: PMC7353046 DOI: 10.3390/ijms21124214] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 02/07/2023] Open
Abstract
Notch signaling orchestrates the regulation of cell proliferation, differentiation, migration and apoptosis of epidermal cells by strictly interacting with other cellular pathways. Any disruption of Notch signaling, either due to direct mutations or to an aberrant regulation of genes involved in the signaling route, might lead to both hyper- or hypo-activation of Notch signaling molecules and of target genes, ultimately inducing the onset of skin diseases. The mechanisms through which Notch contributes to the pathogenesis of skin diseases are multiple and still not fully understood. So far, Notch signaling alterations have been reported for five human skin diseases, suggesting the involvement of Notch in their pathogenesis: Hidradenitis Suppurativa, Dowling Degos Disease, Adams-Oliver Syndrome, Psoriasis and Atopic Dermatitis. In this review, we aim at describing the role of Notch signaling in the skin, particularly focusing on the principal consequences associated with its alterations in these five human skin diseases, in order to reorganize the current knowledge and to identify potential cellular mechanisms in common between these pathologies.
Collapse
Affiliation(s)
- Rossella Gratton
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (R.G.); (L.Z.); (S.C.)
- Department of Medical Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy
| | - Paola Maura Tricarico
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (R.G.); (L.Z.); (S.C.)
| | - Chiara Moltrasio
- Dermatology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (C.M.); (A.V.M.)
| | | | - Lucas Brandão
- Department of Pathology, Federal University of Pernambuco, Recife 50670-901, Brazil;
| | - Angelo Valerio Marzano
- Dermatology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (C.M.); (A.V.M.)
| | - Luisa Zupin
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (R.G.); (L.Z.); (S.C.)
| | - Sergio Crovella
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (R.G.); (L.Z.); (S.C.)
- Department of Medical Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy
| |
Collapse
|
30
|
Canalis E, Grossman TR, Carrer M, Schilling L, Yu J. Antisense oligonucleotides targeting Notch2 ameliorate the osteopenic phenotype in a mouse model of Hajdu-Cheney syndrome. J Biol Chem 2020; 295:3952-3964. [PMID: 31992595 PMCID: PMC7086019 DOI: 10.1074/jbc.ra119.011440] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/24/2020] [Indexed: 12/23/2022] Open
Abstract
Notch receptors play critical roles in cell-fate decisions and in the regulation of skeletal development and bone remodeling. Gain-of-function NOTCH2 mutations can cause Hajdu-Cheney syndrome, an untreatable disease characterized by osteoporosis and fractures, craniofacial developmental abnormalities, and acro-osteolysis. We have previously created a mouse model harboring a point 6955C→T mutation in the Notch2 locus upstream of the PEST domain, and we termed this model Notch2tm1.1Ecan Heterozygous Notch2tm1.1Ecan mutant mice exhibit severe cancellous and cortical bone osteopenia due to increased bone resorption. In this work, we demonstrate that the subcutaneous administration of Notch2 antisense oligonucleotides (ASO) down-regulates Notch2 and the Notch target genes Hes-related family basic helix-loop-helix transcription factor with YRPW motif 1 (Hey1), Hey2, and HeyL in skeletal tissue from Notch2tm1.1Ecan mice. Results of microcomputed tomography experiments indicated that the administration of Notch2 ASOs ameliorates the cancellous osteopenia of Notch2tm1.1Ecan mice, and bone histomorphometry analysis revealed decreased osteoclast numbers in Notch2 ASO-treated Notch2tm1.1Ecan mice. Notch2 ASOs decreased the induction of mRNA levels of TNF superfamily member 11 (Tnfsf11, encoding the osteoclastogenic protein RANKL) in cultured osteoblasts and osteocytes from Notch2tm1.1Ecan mice. Bone marrow-derived macrophage cultures from the Notch2tm1.1Ecan mice displayed enhanced osteoclastogenesis, which was suppressed by Notch2 ASOs. In conclusion, Notch2tm1.1Ecan mice exhibit cancellous bone osteopenia that can be ameliorated by systemic administration of Notch2 ASOs.
Collapse
Affiliation(s)
- Ernesto Canalis
- Department of Orthopaedic Surgery, UConn Health, Farmington, Connecticut 06030
- Department of Medicine, UConn Health, Farmington, Connecticut 06030
- UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut 06030
| | | | | | - Lauren Schilling
- UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut 06030
| | - Jungeun Yu
- Department of Orthopaedic Surgery, UConn Health, Farmington, Connecticut 06030
- UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut 06030
| |
Collapse
|
31
|
Zhang X, Murray B, Mo G, Shern JF. The Role of Polycomb Repressive Complex in Malignant Peripheral Nerve Sheath Tumor. Genes (Basel) 2020; 11:genes11030287. [PMID: 32182803 PMCID: PMC7140867 DOI: 10.3390/genes11030287] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/24/2020] [Accepted: 03/02/2020] [Indexed: 12/24/2022] Open
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive soft tissue sarcomas that can arise most frequently in patients with neurofibromatosis type 1 (NF1). Despite an increasing understanding of the molecular mechanisms that underlie these tumors, there remains limited therapeutic options for this aggressive disease. One potentially critical finding is that a significant proportion of MPNSTs exhibit recurrent mutations in the genes EED or SUZ12, which are key components of the polycomb repressive complex 2 (PRC2). Tumors harboring these genetic lesions lose the marker of transcriptional repression, trimethylation of lysine residue 27 on histone H3 (H3K27me3) and have dysregulated oncogenic signaling. Given the recurrence of PRC2 alterations, intensive research efforts are now underway with a focus on detailing the epigenetic and transcriptomic consequences of PRC2 loss as well as development of novel therapeutic strategies for targeting these lesions. In this review article, we will summarize the recent findings of PRC2 in MPNST tumorigenesis, including highlighting the functions of PRC2 in normal Schwann cell development and nerve injury repair, as well as provide commentary on the potential therapeutic vulnerabilities of a PRC2 deficient tumor cell.
Collapse
Affiliation(s)
- Xiyuan Zhang
- Pediatric Oncology Branch, Tumor Evolution and Genomics Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (X.Z.); (B.M.); (G.M.)
| | - Béga Murray
- Pediatric Oncology Branch, Tumor Evolution and Genomics Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (X.Z.); (B.M.); (G.M.)
- The Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, 97 Lisburn road, Belfast BT9 7AE, UK
| | - George Mo
- Pediatric Oncology Branch, Tumor Evolution and Genomics Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (X.Z.); (B.M.); (G.M.)
- SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Jack F. Shern
- Pediatric Oncology Branch, Tumor Evolution and Genomics Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (X.Z.); (B.M.); (G.M.)
- Correspondence:
| |
Collapse
|
32
|
Yang L, Shi P, Zhao G, Xu J, Peng W, Zhang J, Zhang G, Wang X, Dong Z, Chen F, Cui H. Targeting cancer stem cell pathways for cancer therapy. Signal Transduct Target Ther 2020; 5:8. [PMID: 32296030 PMCID: PMC7005297 DOI: 10.1038/s41392-020-0110-5] [Citation(s) in RCA: 1173] [Impact Index Per Article: 234.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 12/15/2019] [Accepted: 12/19/2019] [Indexed: 12/18/2022] Open
Abstract
Since cancer stem cells (CSCs) were first identified in leukemia in 1994, they have been considered promising therapeutic targets for cancer therapy. These cells have self-renewal capacity and differentiation potential and contribute to multiple tumor malignancies, such as recurrence, metastasis, heterogeneity, multidrug resistance, and radiation resistance. The biological activities of CSCs are regulated by several pluripotent transcription factors, such as OCT4, Sox2, Nanog, KLF4, and MYC. In addition, many intracellular signaling pathways, such as Wnt, NF-κB (nuclear factor-κB), Notch, Hedgehog, JAK-STAT (Janus kinase/signal transducers and activators of transcription), PI3K/AKT/mTOR (phosphoinositide 3-kinase/AKT/mammalian target of rapamycin), TGF (transforming growth factor)/SMAD, and PPAR (peroxisome proliferator-activated receptor), as well as extracellular factors, such as vascular niches, hypoxia, tumor-associated macrophages, cancer-associated fibroblasts, cancer-associated mesenchymal stem cells, extracellular matrix, and exosomes, have been shown to be very important regulators of CSCs. Molecules, vaccines, antibodies, and CAR-T (chimeric antigen receptor T cell) cells have been developed to specifically target CSCs, and some of these factors are already undergoing clinical trials. This review summarizes the characterization and identification of CSCs, depicts major factors and pathways that regulate CSC development, and discusses potential targeted therapy for CSCs.
Collapse
Affiliation(s)
- Liqun Yang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Pengfei Shi
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Gaichao Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Jie Xu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Wen Peng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Jiayi Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Guanghui Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Xiaowen Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Zhen Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Fei Chen
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201, USA
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China.
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China.
| |
Collapse
|
33
|
Yu J, Siebel CW, Schilling L, Canalis E. An antibody to Notch3 reverses the skeletal phenotype of lateral meningocele syndrome in male mice. J Cell Physiol 2019; 235:210-220. [PMID: 31188489 DOI: 10.1002/jcp.28960] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/22/2019] [Accepted: 05/24/2019] [Indexed: 12/29/2022]
Abstract
Lateral meningocele syndrome (LMS), a genetic disorder characterized by meningoceles and skeletal abnormalities, is associated with NOTCH3 mutations. We created a mouse model of LMS (Notch3tm1.1Ecan ) by introducing a tandem termination codon in the Notch3 locus upstream of the proline (P), glutamic acid (E), serine (S) and threonine (T) domain. Microcomputed tomography demonstrated that Notch3tm1.1Ecan mice exhibit osteopenia. The cancellous bone osteopenia was no longer observed after the intraperitoneal administration of antibodies directed to the negative regulatory region (NRR) of Notch3. The anti-Notch3 NRR antibody suppressed the expression of Hes1, Hey1, and Hey2 (Notch target genes), and decreased Tnfsf11 (receptor activator of NF Kappa B ligand) messenger RNA in Notch3tm1.1Ecan osteoblast (OB) cultures. Bone marrow-derived macrophages (BMMs) from Notch3tm1.1Ecan mutants exhibited enhanced osteoclastogenesis in culture, and this was increased in cocultures with Notch3tm1.1Ecan OB. Osteoclastogenesis was suppressed by anti-Notch3 NRR antibodies in Notch3tm1.1Ecan OB/BMM cocultures. In conclusion, the cancellous bone osteopenia of Notch3tm1.1Ecan mutants is reversed by anti-Notch3 NRR antibodies.
Collapse
Affiliation(s)
- Jungeun Yu
- Department of Orthopaedic Surgery, UConn Health, Farmington, Connecticut.,The UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut
| | - Christian W Siebel
- Department of Discovery Oncology, Genentech, Inc, South San Francisco, California
| | - Lauren Schilling
- The UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut
| | - Ernesto Canalis
- Department of Orthopaedic Surgery, UConn Health, Farmington, Connecticut.,The UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut.,Department of Medicine, UConn Health, Farmington, Connecticut
| |
Collapse
|
34
|
Jin K, Xiang M. Transcription factor Ptf1a in development, diseases and reprogramming. Cell Mol Life Sci 2019; 76:921-940. [PMID: 30470852 PMCID: PMC11105224 DOI: 10.1007/s00018-018-2972-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 11/13/2018] [Accepted: 11/19/2018] [Indexed: 12/12/2022]
Abstract
The transcription factor Ptf1a is a crucial helix-loop-helix (bHLH) protein selectively expressed in the pancreas, retina, spinal cord, brain, and enteric nervous system. Ptf1a is preferably assembled into a transcription trimeric complex PTF1 with an E protein and Rbpj (or Rbpjl). In pancreatic development, Ptf1a is indispensable in controlling the expansion of multipotent progenitor cells as well as the specification and maintenance of the acinar cells. In neural tissues, Ptf1a is transiently expressed in the post-mitotic cells and specifies the inhibitory neuronal cell fates, mostly mediated by downstream genes such as Tfap2a/b and Prdm13. Mutations in the coding and non-coding regulatory sequences resulting in Ptf1a gain- or loss-of-function are associated with genetic diseases such as pancreatic and cerebellar agenesis in the rodent and human. Surprisingly, Ptf1a alone is sufficient to reprogram mouse or human fibroblasts into tripotential neural stem cells. Its pleiotropic functions in many biological processes remain to be deciphered in the future.
Collapse
Affiliation(s)
- Kangxin Jin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China.
| | - Mengqing Xiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China.
| |
Collapse
|
35
|
Maier D. The evolution of transcriptional repressors in the Notch signaling pathway: a computational analysis. Hereditas 2019; 156:5. [PMID: 30679936 PMCID: PMC6337844 DOI: 10.1186/s41065-019-0081-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 01/09/2019] [Indexed: 11/18/2022] Open
Abstract
Background The Notch signaling pathway governs the specification of different cell types in flies, nematodes and vertebrates alike. Principal components of the pathway that activate Notch target genes are highly conserved throughout the animal kingdom. Despite the impact on development and disease, repression mechanisms are less well studied. Repressors are known from arthropods and vertebrates that differ strikingly by mode of action: whereas Drosophila Hairless assembles repressor complexes with CSL transcription factors, competition between activator and repressors occurs in vertebrates (for example SHARP/MINT and KyoT2). This divergence raises questions on the evolution: Are there common ancestors throughout the animal kingdom? Results Available genome databases representing all animal clades were searched for homologues of Hairless, SHARP and KyoT2. The most distant species with convincing Hairless orthologs belong to Myriapoda, indicating its emergence after the Mandibulata-Chelicarata radiation about 500 million years ago. SHARP shares motifs with SPEN and SPENITO proteins, present throughout the animal kingdom. The CSL interacting domain of SHARP, however, is specific to vertebrates separated by roughly 600 million years of evolution. KyoT2 bears a C-terminal CSL interaction domain (CID), present only in placental mammals but highly diverged already in marsupials, suggesting introduction roughly 100 million years ago. Based on the LIM-domains that characterize KyoT2, homologues can be found in Drosophila melanogaster (Limpet) and Hydra vulgaris (Prickle 3 like). These lack the CID of KyoT2, however, contain a PET and additional LIM domains. Conservation of intron/exon boundaries underscores the phylogenetic relationship between KyoT2, Limpet and Prickle. Most strikingly, Limpet and Prickle proteins carry a tetra-peptide motif resembling that of several CSL interactors. Overall, KyoT2 may have evolved from prickle and Limpet to a Notch repressor in mammals. Conclusions Notch repressors appear to be specific to either chordates or arthropods. Orthologues of experimentally validated repressors were not found outside the phylogenetic group they have been originally identified. However, the data provide a hypothesis on the evolution of mammalian KyoT2 from Prickle like ancestors. The finding of a potential CSL interacting domain in Prickle homologues points to a novel, very ancestral CSL interactor present in the entire animal kingdom. Electronic supplementary material The online version of this article (10.1186/s41065-019-0081-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dieter Maier
- Institute of Genetics (240), University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany
| |
Collapse
|
36
|
Zanotti S, Yu J, Bridgewater D, Wolf JM, Canalis E. Mice harboring a Hajdu Cheney Syndrome mutation are sensitized to osteoarthritis. Bone 2018; 114:198-205. [PMID: 29940267 PMCID: PMC6083868 DOI: 10.1016/j.bone.2018.06.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/01/2018] [Accepted: 06/20/2018] [Indexed: 11/27/2022]
Abstract
Osteoarthritis is a joint disease characterized by cartilage degradation, altered gene expression and inflammation. NOTCH1 and NOTCH2 receptors and the JAGGED1 ligand regulate chondrocyte biology; however, the contribution of Notch signaling to osteoarthritis is controversial. Hajdu Cheney Syndrome (HCS) is a rare genetic disorder affecting the skeleton and associated with NOTCH2 mutations that lead to NOTCH2 gain-of-function. A murine model of the disease (Notch2tm1.1Ecan) was used to test whether the HCS mutation increases the susceptibility to osteoarthritis. The knee of three-month-old Notch2tm1.1Ecan male mice and control sex-matched littermates was destabilized by resection of the medial meniscotibial ligament, and changes in the joint analyzed two months thereafter. Expression of Notch target genes was increased in the femoral heads of Notch2tm1.1Ecan mice, documenting Notch signal activation. Periarticular bone and cartilage structures were unaffected in Notch2tm1.1Ecan mutants subjected to sham surgery, indicating that NOTCH2 gain-of-function had no discernible impact on joint structure under basal conditions. However, destabilization of the medial meniscus increased osteophyte volume and thickened subchondral bone in Notch2tm1.1Ecan mice compared to wild type littermates. Moreover, destabilized Notch2tm1.1Ecan mutants exhibited histological signs of moderate to severe cartilage degeneration, demonstrating joint sensitization to the development of osteoarthritis. Chondrocyte cultures from Notch2tm1.1Ecan mutants expressed increased Il6 mRNA levels following exposure to JAGGED1, possibly explaining the susceptibility of Notch2tm1.1Ecan mice to osteoarthritis. In conclusion, Notch2tm1.1Ecan mutants are sensitized to the development of osteoarthritis in destabilized joints and NOTCH2 activation may play a role in the pathogenesis of the disease.
Collapse
Affiliation(s)
- S Zanotti
- Department of Orthopaedic Surgery, UConn Health, Farmington, CT 06030, United States of America; Department of Medicine, UConn Health, Farmington, CT 06030, United States of America; UConn Musculoskeletal Institute, UConn Health, Farmington, CT 06030, United States of America
| | - J Yu
- Department of Orthopaedic Surgery, UConn Health, Farmington, CT 06030, United States of America; UConn Musculoskeletal Institute, UConn Health, Farmington, CT 06030, United States of America
| | - D Bridgewater
- UConn Musculoskeletal Institute, UConn Health, Farmington, CT 06030, United States of America
| | - J M Wolf
- Department of Orthopaedic Surgery, UConn Health, Farmington, CT 06030, United States of America; UConn Musculoskeletal Institute, UConn Health, Farmington, CT 06030, United States of America
| | - E Canalis
- Department of Orthopaedic Surgery, UConn Health, Farmington, CT 06030, United States of America; Department of Medicine, UConn Health, Farmington, CT 06030, United States of America; UConn Musculoskeletal Institute, UConn Health, Farmington, CT 06030, United States of America.
| |
Collapse
|
37
|
Canalis E, Yu J, Schilling L, Yee SP, Zanotti S. The lateral meningocele syndrome mutation causes marked osteopenia in mice. J Biol Chem 2018; 293:14165-14177. [PMID: 30042232 DOI: 10.1074/jbc.ra118.004242] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/11/2018] [Indexed: 12/26/2022] Open
Abstract
Lateral meningocele syndrome (LMS) is a rare genetic disorder characterized by neurological complications and osteoporosis. LMS is associated with mutations in exon 33 of NOTCH3 leading to a truncated protein lacking sequences for NOTCH3 degradation and presumably causing NOTCH3 gain of function. To create a mouse model reproducing human LMS-associated mutations, we utilized CRISPR/Cas9 to introduce a tandem termination codon at bases 6691-6696 (ACCAAG→TAATGA) and verified this mutation (Notch3tm1.1Ecan ) by DNA sequencing of F1 mice. One-month-old male and female heterozygous Notch3tm1.1Ecan mice had cancellous and cortical bone osteopenia but exhibited no obvious neurological alterations, and histopathology of multiple organs revealed no abnormalities. Microcomputed tomography of these mutants revealed a 35-60% decrease in cancellous bone volume associated with a reduction in trabecular number and decreased connectivity. During maturation, cancellous and cortical bones were restored in female but not in male mice, which exhibited cancellous bone osteopenia at 4 months. Cancellous bone histomorphometry revealed increased osteoblast and osteocyte numbers and a modest increase in osteoclast surface and bone formation rate. Notch3tm1.1Ecan calvarial osteoblasts had increased proliferation and increased bone γ-carboxyglutamate protein (Bglap) and TNF superfamily member 11 (Tnfsf11) mRNA levels and lower Tnfrsf11b levels. Tnfsf11 mRNA was increased in osteocyte-rich femora from Notch3tm1.1Ecan mice. Cultures of bone marrow-derived macrophages from Notch3tm1.1Ecan mice revealed increased osteoclast formation, particularly in cocultures with osteoblasts from Notch3tm1.1Ecan mice. In conclusion, the Notch3tm1.1Ecan mutation causes osteopenia despite an increase in osteoblast proliferation and function and is associated with enhanced Tnfsf11 expression in osteoblasts and osteocytes.
Collapse
Affiliation(s)
- Ernesto Canalis
- From the Departments of Orthopaedic Surgery, .,Medicine, and.,UConn Musculoskeletal Institute, and
| | - Jungeun Yu
- From the Departments of Orthopaedic Surgery.,UConn Musculoskeletal Institute, and
| | - Lauren Schilling
- From the Departments of Orthopaedic Surgery.,UConn Musculoskeletal Institute, and
| | - Siu-Pok Yee
- Cell Biology.,Center for Mouse Genome Modification, UConn Health, Farmington, Connecticut 06030
| | - Stefano Zanotti
- From the Departments of Orthopaedic Surgery.,Medicine, and.,UConn Musculoskeletal Institute, and
| |
Collapse
|
38
|
Miesfeld JB, Moon MS, Riesenberg AN, Contreras AN, Kovall RA, Brown NL. Rbpj direct regulation of Atoh7 transcription in the embryonic mouse retina. Sci Rep 2018; 8:10195. [PMID: 29977079 PMCID: PMC6033939 DOI: 10.1038/s41598-018-28420-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 06/22/2018] [Indexed: 12/24/2022] Open
Abstract
In vertebrate retinal progenitor cells, the proneural factor Atoh7 exhibits a dynamic tissue and cellular expression pattern. Although the resulting Atoh7 retinal lineage contains all seven major cell types, only retinal ganglion cells require Atoh7 for proper differentiation. Such specificity necessitates complex regulation of Atoh7 transcription during retina development. The Notch signaling pathway is an evolutionarily conserved suppressor of proneural bHLH factor expression. Previous in vivo mouse genetic studies established the cell autonomous suppression of Atoh7 transcription by Notch1, Rbpj and Hes1. Here we identify four CSL binding sites within the Atoh7 proximal regulatory region and demonstrate Rbpj protein interaction at these sequences by in vitro electromobility shift, calorimetry and luciferase assays and, in vivo via colocalization and chromatin immunoprecipitation. We found that Rbpj simultaneously represses Atoh7 transcription using both Notch-dependent and –independent pathways.
Collapse
Affiliation(s)
- Joel B Miesfeld
- Department of Cell Biology & Human Anatomy, University of California Davis School of Medicine, One Shields Avenue, Davis, CA, 95616, USA
| | - Myung-Soon Moon
- Department of Cell Biology & Human Anatomy, University of California Davis School of Medicine, One Shields Avenue, Davis, CA, 95616, USA.,Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Amy N Riesenberg
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Ashley N Contreras
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati School of Medicine, Cincinnati, OH, 45267, USA.,Department of Biology, University of Cincinnati Blue Ash College, Cincinnati, OH, 45236, USA
| | - Rhett A Kovall
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati School of Medicine, Cincinnati, OH, 45267, USA
| | - Nadean L Brown
- Department of Cell Biology & Human Anatomy, University of California Davis School of Medicine, One Shields Avenue, Davis, CA, 95616, USA. .,Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA.
| |
Collapse
|
39
|
Sun XF, Sun XH, Cheng SF, Wang JJ, Feng YN, Zhao Y, Yin S, Hou ZM, Shen W, Zhang XF. Interaction of the transforming growth factor-β and Notch signaling pathways in the regulation of granulosa cell proliferation. Reprod Fertil Dev 2018; 28:1873-1881. [PMID: 26036783 DOI: 10.1071/rd14398] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 05/06/2015] [Indexed: 12/20/2022] Open
Abstract
The Notch and transforming growth factor (TGF)-β signalling pathways play an important role in granulosa cell proliferation. However, the mechanisms underlying the cross-talk between these two signalling pathways are unknown. Herein we demonstrated a functional synergism between Notch and TGF-β signalling in the regulation of preantral granulosa cell (PAGC) proliferation. Activation of TGF-β signalling increased hairy/enhancer-of-split related with YRPW motif 2 gene (Hey2) expression (one of the target genes of the Notch pathway) in PAGCs, and suppression of TGF-β signalling by Smad3 knockdown reduced Hey2 expression. Inhibition of the proliferation of PAGCs by N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butylester (DAPT), an inhibitor of Notch signalling, was rescued by both the addition of ActA and overexpression of Smad3, indicating an interaction between the TGF-β and Notch signalling pathways. Co-immunoprecipitation (CoIP) and chromatin immunoprecipitation (ChIP) assays were performed to identify the point of interaction between the two signalling pathways. CoIP showed direct protein-protein interaction between Smad3 and Notch2 intracellular domain (NICD2), whereas ChIP showed that Smad3 could be recruited to the promoter regions of Notch target genes as a transcription factor. Therefore, the findings of the present study support the idea that nuclear Smad3 protein can integrate with NICD2 to form a complex that acts as a transcription factor to bind specific DNA motifs in Notch target genes, such as Hey1 and Hey2, and thus participates in the transcriptional regulation of Notch target genes, as well as regulation of the proliferation of PAGCs.
Collapse
Affiliation(s)
- Xiao-Feng Sun
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao 266109, China
| | - Xing-Hong Sun
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao 266109, China
| | - Shun-Feng Cheng
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao 266109, China
| | - Jun-Jie Wang
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao 266109, China
| | - Yan-Ni Feng
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao 266109, China
| | - Yong Zhao
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao 266109, China
| | - Shen Yin
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao 266109, China
| | - Zhu-Mei Hou
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao 266109, China
| | - Wei Shen
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao 266109, China
| | - Xi-Feng Zhang
- College of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
40
|
Zanotti S, Yu J, Adhikari S, Canalis E. Glucocorticoids inhibit notch target gene expression in osteoblasts. J Cell Biochem 2018; 119:6016-6023. [PMID: 29575203 DOI: 10.1002/jcb.26798] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 02/20/2018] [Indexed: 12/13/2022]
Abstract
Glucocorticoids in excess suppress osteoblast function and cause osteoporosis. We demonstrated that cortisol induces the expression of selected Notch receptors in osteoblasts, revealing a potential mechanism for the skeletal effects of glucocorticoids. However, it remains to be determined whether increased expression of Notch receptors results into enhanced signaling. Following activation of Notch, its intracellular domain (NICD) binds to the DNA-associated protein recombination signal binding protein for immunoglobulin kappa-J region (RBPJ) and induces the expression of target genes such as Hey1, Hey2, and HeyL. To determine whether glucocorticoids modulate Notch signaling in the skeleton, 1 month old wild-type mice were administered prednisolone or placebo and sacrificed after 72 h, and gene expression was analyzed in femoral bone. Prednisolone induced Tsc22d3, a glucocorticoid target gene, and suppressed Hey1 and HeyL expression, which is indicative of inhibited Notch receptor activity or direct Hey downregulation. To determine the mechanisms of Hey suppression, wild-type osteoblast-enriched cells were seeded on the Notch cognate ligand Delta-like (DLL)1 or transfected with constructs expressing the NOTCH1 NICD fragment and exposed to either cortisol or vehicle. Cortisol opposed the induction of mRNA and heterogeneous nuclear RNA for Hey1, Hey2, and HeyL by DLL1, but had no effect on mRNA stability, indicating that glucocorticoids inhibit Hey expression by transcriptional mechanisms. Transactivation studies and electrophoretic mobility shift assays revealed that cortisol did not oppose RBPJ-mediated transcription or RBPJ/DNA interactions, respectively. In conclusion, glucocorticoids suppress expression of Hey1, Hey2, and HeyL in osteoblasts by RBPJ-independent transcriptional mechanisms.
Collapse
Affiliation(s)
- Stefano Zanotti
- Department of Orthopaedic Surgery, UConn Health, Farmington, Connecticut.,Department of Medicine, UConn Health, Farmington, Connecticut.,UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut
| | - Jungeun Yu
- Department of Orthopaedic Surgery, UConn Health, Farmington, Connecticut.,UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut
| | | | - Ernesto Canalis
- Department of Orthopaedic Surgery, UConn Health, Farmington, Connecticut.,Department of Medicine, UConn Health, Farmington, Connecticut.,UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut
| |
Collapse
|
41
|
Yu J, Zanotti S, Schilling L, Schoenherr C, Economides AN, Sanjay A, Canalis E. Induction of the Hajdu-Cheney Syndrome Mutation in CD19 B Cells in Mice Alters B-Cell Allocation but Not Skeletal Homeostasis. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:1430-1446. [PMID: 29545197 DOI: 10.1016/j.ajpath.2018.02.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 02/09/2018] [Accepted: 02/27/2018] [Indexed: 01/19/2023]
Abstract
Mice harboring Notch2 mutations replicating Hajdu-Cheney syndrome (Notch2tm1.1ECan) have osteopenia and exhibit an increase in splenic marginal zone B cells with a decrease in follicular B cells. Whether the altered B-cell allocation is responsible for the osteopenia of Notch2tm1.1ECan mutants is unknown. To determine the effect of NOTCH2 activation in B cells on splenic B-cell allocation and skeletal phenotype, a conditional-by-inversion (COIN) Hajdu-Cheney syndrome allele of Notch2 (Notch2[ΔPEST]COIN) was used. Cre recombination generates a permanent Notch2ΔPEST allele expressing a transcript for which sequences coding for the proline, glutamic acid, serine, and threonine-rich (PEST) domain are replaced by a stop codon. CD19-Cre drivers were backcrossed into Notch2[ΔPEST]COIN/[ΔPEST]COIN to generate CD19-specific Notch2ΔPEST/ΔPEST mutants and control Notch2[ΔPEST]COIN/[ΔPEST]COIN littermates. There was an increase in marginal zone B cells and a decrease in follicular B cells in the spleen of CD19Cre/WT;Notch2ΔPEST/ΔPEST mice, recapitulating the splenic phenotype of Notch2tm1.1ECan mice. The effect was reproduced when the NOTCH1 intracellular domain was induced in CD19-expressing cells (CD19Cre/WT;RosaNotch1/WT mice). However, neither CD19Cre/WT;Notch2ΔPEST/ΔPEST nor CD19Cre/WT;RosaNotch1/WT mice had a skeletal phenotype. Moreover, splenectomies in Notch2tm1.1ECan mice did not reverse their osteopenic phenotype. In conclusion, Notch2 activation in CD19-expressing cells determines B-cell allocation in the spleen but has no skeletal consequences.
Collapse
Affiliation(s)
- Jungeun Yu
- Department of Orthopaedic Surgery, UConn Health, Farmington, Connecticut; UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut
| | - Stefano Zanotti
- Department of Orthopaedic Surgery, UConn Health, Farmington, Connecticut; UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut; Department of Medicine, UConn Health, Farmington, Connecticut
| | - Lauren Schilling
- UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut
| | - Chris Schoenherr
- Genome Engineering Technologies, Regeneron Pharmaceuticals, Tarrytown, New York
| | - Aris N Economides
- Genome Engineering Technologies, Regeneron Pharmaceuticals, Tarrytown, New York
| | - Archana Sanjay
- Department of Orthopaedic Surgery, UConn Health, Farmington, Connecticut; UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut.
| | - Ernesto Canalis
- Department of Orthopaedic Surgery, UConn Health, Farmington, Connecticut; UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut; Department of Medicine, UConn Health, Farmington, Connecticut.
| |
Collapse
|
42
|
Canalis E. Clinical and experimental aspects of notch receptor signaling: Hajdu-Cheney syndrome and related disorders. Metabolism 2018; 80:48-56. [PMID: 28941602 PMCID: PMC5818282 DOI: 10.1016/j.metabol.2017.08.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/04/2017] [Accepted: 08/13/2017] [Indexed: 01/04/2023]
Abstract
BACKGROUND There are four Notch transmembrane receptors that determine the fate and function of cells. Notch is activated following its interactions with ligands of the Jagged and Delta-like families that lead to the cleavage and release of the Notch intracellular domain (NICD); this translocates to the nucleus to induce the transcription of Notch target genes. Genetic disorders of loss- and gain-of-NOTCH function present with severe clinical manifestations. BASIC PROCEDURES In this article, current knowledge of Hajdu Cheney Syndrome (HCS) and related disorders is reviewed. MAIN FINDINGS HCS is a rare genetic disorder characterized by acroosteolysis, fractures, short stature, neurological manifestations, craniofacial developmental abnormalities, cardiovascular defects and polycystic kidneys. HCS is associated with NOTCH2 gain-of-function mutations. An experimental mouse model of the disease revealed that the bone loss is secondary to increased osteoclastogenesis and bone resorption due to enhanced expression of receptor activator of nuclear factor kappa B ligand (Rankl). This would suggest that inhibitors of bone resorption might prove to be beneficial in the treatment of the bone loss associated with HCS. Notch2 is a determinant of B-cell allocation in the marginal zone of the spleen and "somatic" mutations analogous to those found in HCS are associated with B-cell lymphomas of the marginal zone, but there are no reports of lymphomas associated with HCS. CONCLUSION In conclusion, HCS is a serious genetic disorder associated with NOTCH2 mutations. New experimental models have offered insight on mechanisms responsible for the manifestations of HCS.
Collapse
Affiliation(s)
- Ernesto Canalis
- Department of Orthopaedic Surgery, the UConn Musculoskeletal Institute, UConn Health, Farmington, CT 06030, USA; Department of Medicine, the UConn Musculoskeletal Institute, UConn Health, Farmington, CT 06030, USA.
| |
Collapse
|
43
|
Jo SH, Kim DE, Clocchiatti A, Dotto GP. PDCD4 is a CSL associated protein with a transcription repressive function in cancer associated fibroblast activation. Oncotarget 2018; 7:58717-58727. [PMID: 27542230 PMCID: PMC5312270 DOI: 10.18632/oncotarget.11227] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 07/22/2016] [Indexed: 11/25/2022] Open
Abstract
The Notch/CSL pathway plays an important role in skin homeostasis and carcinogenesis. CSL, the key effector of canonical Notch signaling endowed with an intrinsic transcription repressive function, suppresses stromal fibroblast senescence and Cancer Associated Fibroblast (CAF) activation through direct down-modulation of key effector genes. Interacting proteins that participate with CSL in this context are as yet to be identified. We report here that Programmed Cell Death 4 (PDCD4), a nuclear/cytoplasmic shuttling protein with multiple functions, associates with CSL and plays a similar role in suppressing dermal fibroblast senescence and CAF activation. Like CSL, PDCD4 is down-regulated in stromal fibroblasts of premalignant skin actinic keratosis (AKs) lesions and squamous cell carcinoma (SCC). While devoid of intrinsic DNA binding capability, PDCD4 is present at CSL binding sites of CAF marker genes as well as canonical Notch/CSL targets and suppresses expression of these genes in a fibroblast-specific manner. Thus, we propose that PDCD4 is part of the CSL repressive complex involved in negative control of stromal fibroblasts conversion into CAFs.
Collapse
Affiliation(s)
- Seung-Hee Jo
- Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, MA, USA.,Department of Dermatology, Harvard Medical School, Boston, MA, USA
| | - Dong Eun Kim
- Department of Biochemistry, University of Lausanne, Epalinges, CH, Switzerland
| | - Andrea Clocchiatti
- Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, MA, USA.,Department of Dermatology, Harvard Medical School, Boston, MA, USA
| | - G Paolo Dotto
- Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, MA, USA.,Department of Biochemistry, University of Lausanne, Epalinges, CH, Switzerland
| |
Collapse
|
44
|
Prasasya RD, Mayo KE. Notch Signaling Regulates Differentiation and Steroidogenesis in Female Mouse Ovarian Granulosa Cells. Endocrinology 2018; 159:184-198. [PMID: 29126263 PMCID: PMC5761600 DOI: 10.1210/en.2017-00677] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 11/02/2017] [Indexed: 01/04/2023]
Abstract
The Notch pathway is a highly conserved juxtacrine signaling mechanism that is important for many cellular processes during development, including differentiation and proliferation. Although Notch is important during ovarian follicle formation and early development, its functions during the gonadotropin-dependent stages of follicle development are largely unexplored. We observed positive regulation of Notch activity and expression of Notch ligands and receptors following activation of the luteinizing hormone-receptor in prepubertal mouse ovary. JAG1, the most abundantly expressed Notch ligand in mouse ovary, revealed a striking shift in localization from oocytes to somatic cells following hormone stimulation. Using primary cultures of granulosa cells, we investigated the functions of Jag1 using small interfering RNA knockdown. The loss of JAG1 led to suppression of granulosa cell differentiation as marked by reduced expression of enzymes and factors involved in steroid biosynthesis, and in steroid secretion. Jag1 knockdown also resulted in enhanced cell proliferation. These phenotypes were replicated, although less robustly, following knockdown of the obligate canonical Notch transcription factor RBPJ. Intracellular signaling analysis revealed increased activation of the mitogenic phosphatidylinositol 3-kinase/protein kinase B and mitogen-activated protein kinase/extracellular signal-regulated kinase pathways following Notch knockdown, with a mitogen-activated protein kinase kinase inhibitor blocking the enhanced proliferation observed in Jag1 knockdown granulosa cells. Activation of YB-1, a known regulator of granulosa cell differentiation genes, was suppressed by Jag1 knockdown. Overall, this study reveals a role of Notch signaling in promoting the differentiation of preovulatory granulosa cells, adding to the diverse functions of Notch in the mammalian ovary.
Collapse
MESH Headings
- Animals
- Cell Differentiation/drug effects
- Cell Proliferation/drug effects
- Cells, Cultured
- Chorionic Gonadotropin/pharmacology
- Estradiol/metabolism
- Female
- Gene Expression Regulation, Developmental/drug effects
- Genes, Reporter/drug effects
- Gonadotropins, Equine/pharmacology
- Granulosa Cells/cytology
- Granulosa Cells/drug effects
- Granulosa Cells/metabolism
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Immunoglobulin J Recombination Signal Sequence-Binding Protein/antagonists & inhibitors
- Immunoglobulin J Recombination Signal Sequence-Binding Protein/genetics
- Immunoglobulin J Recombination Signal Sequence-Binding Protein/metabolism
- Jagged-1 Protein/antagonists & inhibitors
- Jagged-1 Protein/genetics
- Jagged-1 Protein/metabolism
- MAP Kinase Signaling System/drug effects
- Mice, Inbred Strains
- Mice, Transgenic
- Progesterone/metabolism
- RNA Interference
- Receptor, Notch2/agonists
- Receptor, Notch2/genetics
- Receptor, Notch2/metabolism
- Receptor, Notch3/agonists
- Receptor, Notch3/genetics
- Receptor, Notch3/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
Collapse
Affiliation(s)
- Rexxi D. Prasasya
- Department of Molecular Biosciences and Center for Reproductive Science, Northwestern University, Evanston, Illinois 60208
| | - Kelly E. Mayo
- Department of Molecular Biosciences and Center for Reproductive Science, Northwestern University, Evanston, Illinois 60208
| |
Collapse
|
45
|
Martínez Trufero J, Pajares Bernad I, Torres Ramón I, Hernando Cubero J, Pazo Cid R. Desmoid-Type Fibromatosis: Who, When, and How to Treat. Curr Treat Options Oncol 2017; 18:29. [PMID: 28439797 DOI: 10.1007/s11864-017-0474-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OPINION STATEMENT Desmoid-type fibromatosis is a sarcoma subtype that gathers some singular characteristics, making it a difficult challenge to face in clinical practice. Despite its excellent survival prognosis, these tumors may be unpredictable, ranging from an asymptomatic indolent course to persistent, local, and extended recurrences that significantly impair quality of life. Although surgery was initially considered the first elective treatment, collected published data during the past few years are now pointing to the "wait and see" approach as a reasonable initial strategy because many patients can live a long life with the disease without having symptoms. When symptoms appear or there is a risk of functional impairment, a wide spectrum of therapies (local and systemic) can be useful in improving symptoms and controlling the disease. Because of the low incidence of desmoid-type fibromatosis, there is scarce scientific evidence supporting any specific treatment. Nonetheless, if volumetric responses are needed, chemotherapy may be a reasonable early option. However, if long-term control of disease is desirable, hormonal therapy, NSAIDs, and TKIs are the likely treatments of choice. Recent new findings in the biologic development of these tumors, such as the role of Wnt/β-catenin dependent pathway, have shown that the prognostic information provided by specific CTNNB1 gene mutations and other genetic profiles can lead to better methods of selecting patients as candidates for other approaches. Based on recent research, the Notch pathway inhibition in DF is one of the most promising potential targets to explore. As an orphan disease, it is mandatory that as many patients as possible be included in clinical trials.
Collapse
Affiliation(s)
- Javier Martínez Trufero
- Medical Oncology Department, Hospital Universitario Miguel Servet, Avda Isabel la Católica 1-3, 50009, Zaragoza, Spain.
| | - Isabel Pajares Bernad
- Medical Oncology Department, Hospital Universitario Miguel Servet, Avda Isabel la Católica 1-3, 50009, Zaragoza, Spain
| | - Irene Torres Ramón
- Medical Oncology Department, Hospital Universitario Miguel Servet, Avda Isabel la Católica 1-3, 50009, Zaragoza, Spain
| | - Jorge Hernando Cubero
- Medical Oncology Department, Hospital Universitario Miguel Servet, Avda Isabel la Católica 1-3, 50009, Zaragoza, Spain
| | - Roberto Pazo Cid
- Medical Oncology Department, Hospital Universitario Miguel Servet, Avda Isabel la Católica 1-3, 50009, Zaragoza, Spain
| |
Collapse
|
46
|
Yu J, Zanotti S, Walia B, Jellison E, Sanjay A, Canalis E. The Hajdu Cheney Mutation Is a Determinant of B-Cell Allocation of the Splenic Marginal Zone. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 188:149-159. [PMID: 29037852 DOI: 10.1016/j.ajpath.2017.09.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/25/2017] [Accepted: 09/21/2017] [Indexed: 12/27/2022]
Abstract
The neurogenic locus notch homolog protein (Notch)-2 receptor is a determinant of B-cell allocation, and gain-of-NOTCH2-function mutations are associated with Hajdu-Cheney syndrome (HCS), a disease presenting with osteoporosis and acro-osteolysis. We generated a mouse model reproducing the HCS mutation (Notch2HCS), and heterozygous global mutant mice displayed gain-of-Notch2 function. In the mutant spleen, the characteristic perifollicular rim marking the marginal zone (MZ), which is the interface between the nonlymphoid red pulp and the lymphoid white pulp, merged with components of the white pulp. As a consequence, the MZ of Notch2HCS mice occupied most of the splenic structure. To explore the mechanisms involved, lymphocyte populations from the bone marrow and spleen were harvested from heterozygous Notch2HCS mice and sex-matched control littermates and analyzed by flow cytometry. Notch2HCS mice had an increase in CD21/35highCD23- splenic MZ B cells of approximately fivefold and a proportional decrease in splenic follicular B cells (CD21/35intCD23+) at 1, 2, and 12 months of age. Western blot analysis revealed that Notch2HCS mutant splenocytes had increased phospho-Akt and phospho-Jun N-terminal kinase, and gene expression analysis of splenic CD19+ B cells demonstrated induction of Hes1 and Hes5 in Notch2HCS mutants. Anti-Notch2 antibodies decreased MZ B cells in control and Notch2HCS mice. In conclusion, Notch2HCS mutant mice have increased mature B cells in the MZ of the spleen.
Collapse
Affiliation(s)
- Jungeun Yu
- Department of Orthopaedic Surgery, UConn Musculoskeletal Institute, Farmington, Connecticut
| | - Stefano Zanotti
- Department of Orthopaedic Surgery, UConn Musculoskeletal Institute, Farmington, Connecticut; Department of Medicine, UConn Musculoskeletal Institute, Farmington, Connecticut
| | - Bhavita Walia
- Department of Genetics and Developmental Biology, UConn Health, Farmington, Connecticut
| | - Evan Jellison
- Department of Immunology, UConn Health, Farmington, Connecticut
| | - Archana Sanjay
- Department of Orthopaedic Surgery, UConn Musculoskeletal Institute, Farmington, Connecticut.
| | - Ernesto Canalis
- Department of Orthopaedic Surgery, UConn Musculoskeletal Institute, Farmington, Connecticut; Department of Medicine, UConn Musculoskeletal Institute, Farmington, Connecticut.
| |
Collapse
|
47
|
Urbanek K, Lesiak M, Krakowian D, Koryciak-Komarska H, Likus W, Czekaj P, Kusz D, Sieroń AL. Notch signaling pathway and gene expression profiles during early in vitro differentiation of liver-derived mesenchymal stromal cells to osteoblasts. J Transl Med 2017; 97:1225-1234. [PMID: 28805807 DOI: 10.1038/labinvest.2017.60] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 03/21/2017] [Indexed: 12/16/2022] Open
Abstract
Notch signaling is a key signaling pathway for cell proliferation and differentiation. Therefore, we formulated a working hypothesis that Notch signaling can be used to detect early osteoblastic differentiation of mesenchymal stromal cells. Changes in expression and distribution of Notch 1, 2, 3, and Delta1 in the cytoplasm and nuclei of rat liver-derived mesenchymal stromal cells differentiating into osteoblasts were investigated, together with the displacement of intracellular domains (ICDs) of the receptors. In addition, an oligonucleotide microarray was used to determine the expression of genes known to be linked to selected signaling pathways. Statistically significant changes in the number of cells expressing Notch1, Notch2, and Delta1, but not Notch3, and their activated forms were detected within 24 h of culture under osteogenic conditions. Although the number of cells expressing Notch3 remained unchanged, the number of cells with the activated receptor was significantly elevated. The number of cells positive for Notch3 was higher than that for the other Notch receptors even after 48 h of differentiation; however, a smaller fraction of cells contained activated Notch3. Culture mineralization was detected on day 4 of differentiation, and all analyzed receptors were present in the cells at that time, but only Delta1 was activated in twice as many cells than that before differentiation. Thus, the three analyzed receptors and ligand can serve as markers of very early stages of osteogenesis in stromal cells. These early changes in activation of the Notch signaling pathway were correlated with the transcription of several genes linked to osteogenesis, such as Bmps, Mmps, and Egfr, and with the regulation of cell cycle and apoptosis.
Collapse
Affiliation(s)
- Ksymena Urbanek
- Department of Molecular Biology and Genetics, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Marta Lesiak
- Department of Molecular Biology and Genetics, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Daniel Krakowian
- Department of Molecular Biology and Genetics, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Halina Koryciak-Komarska
- Department of Molecular Biology and Genetics, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Wirginia Likus
- Department of Anatomy, School of Health Science in Katowice, Medical University of Silesia, Katowice, Poland
| | - Piotr Czekaj
- Department of Cytophysiology, Chair of Histology and Embryology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Damian Kusz
- Department of Orthopaedics and Traumatology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Aleksander L Sieroń
- Department of Molecular Biology and Genetics, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
48
|
Garcia-Heredia JM, Lucena-Cacace A, Verdugo-Sivianes EM, Pérez M, Carnero A. The Cargo Protein MAP17 (PDZK1IP1) Regulates the Cancer Stem Cell Pool Activating the Notch Pathway by Abducting NUMB. Clin Cancer Res 2017; 23:3871-3883. [PMID: 28153862 DOI: 10.1158/1078-0432.ccr-16-2358] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 12/23/2016] [Accepted: 01/12/2017] [Indexed: 11/16/2022]
Abstract
Purpose: Cancer stem cells (CSC) are self-renewing tumor cells, with the ability to generate diverse differentiated tumor cell subpopulations. They differ from normal stem cells in the deregulation of the mechanisms that normally control stem cell physiology. CSCs are the origin of metastasis and highly resistant to therapy. Therefore, the understanding of the CSC origin and deregulated pathways is important for tumor control.Experimental Design: We have included experiments in vitro, in cell lines and tumors of different origins. We have used patient-derived xenografts (PDX) and public transcriptomic databases of human tumors.Results: MAP17 (PDZKIP1), a small cargo protein overexpressed in tumors, interacts with NUMB through the PDZ-binding domain activating the Notch pathway, leading to an increase in stem cell factors and cancer-initiating-like cells. Identical behavior was mimicked by inhibiting NUMB. Conversely, MAP17 downregulation in a tumor cell line constitutively expressing this gene led to Notch pathway inactivation and a marked reduction of stemness. In PDX models, MAP17 levels directly correlated with tumorsphere formation capability. Finally, in human colon, breast, or lung there is a strong correlation of MAP17 expression with a signature of Notch and stem cell genes.Conclusions: MAP17 overexpression activates Notch pathway by sequestering NUMB. High levels of MAP17 correlated with tumorsphere formation and Notch and Stem gene transcription. Its direct modification causes direct alteration of tumorsphere number and Notch and Stem pathway transcription. This defines a new mechanism of Notch pathway activation and Stem cell pool increase that may be active in a large percentage of tumors. Clin Cancer Res; 23(14); 3871-83. ©2017 AACR.
Collapse
Affiliation(s)
- Jose Manuel Garcia-Heredia
- Instituto de Biomedicina de Sevilla, IBIS/Hospital Universitario Virgen del Rocio/Universidad de Sevilla/Consejo Superior de Investigaciones Cientificas, Seville, Spain
- Department of Vegetal Biochemistry and Molecular Biology, University of Seville, Seville, Spain
- CIBER de Cancer, Seville, Spain
| | - Antonio Lucena-Cacace
- Instituto de Biomedicina de Sevilla, IBIS/Hospital Universitario Virgen del Rocio/Universidad de Sevilla/Consejo Superior de Investigaciones Cientificas, Seville, Spain
- CIBER de Cancer, Seville, Spain
| | - Eva M Verdugo-Sivianes
- Instituto de Biomedicina de Sevilla, IBIS/Hospital Universitario Virgen del Rocio/Universidad de Sevilla/Consejo Superior de Investigaciones Cientificas, Seville, Spain
- CIBER de Cancer, Seville, Spain
| | - Marco Pérez
- Instituto de Biomedicina de Sevilla, IBIS/Hospital Universitario Virgen del Rocio/Universidad de Sevilla/Consejo Superior de Investigaciones Cientificas, Seville, Spain
- CIBER de Cancer, Seville, Spain
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla, IBIS/Hospital Universitario Virgen del Rocio/Universidad de Sevilla/Consejo Superior de Investigaciones Cientificas, Seville, Spain.
- CIBER de Cancer, Seville, Spain
| |
Collapse
|
49
|
Jin K, Zhou W, Han X, Wang Z, Li B, Jeffries S, Tao W, Robbins DJ, Capobianco AJ. Acetylation of Mastermind-like 1 by p300 Drives the Recruitment of NACK to Initiate Notch-Dependent Transcription. Cancer Res 2017. [DOI: 10.1158/0008-5472.can-16-3156] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
50
|
Han X, Ranganathan P, Tzimas C, Weaver KL, Jin K, Astudillo L, Zhou W, Zhu X, Li B, Robbins DJ, Capobianco AJ. Notch Represses Transcription by PRC2 Recruitment to the Ternary Complex. Mol Cancer Res 2017; 15:1173-1183. [PMID: 28584023 DOI: 10.1158/1541-7786.mcr-17-0241] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 05/23/2017] [Accepted: 05/24/2017] [Indexed: 11/16/2022]
Abstract
It is well established that Notch functions as a transcriptional activator through the formation of a ternary complex that comprises Notch, Maml, and CSL. This ternary complex then serves to recruit additional transcriptional cofactors that link to higher order transcriptional complexes. The mechanistic details of these events remain unclear. This report reveals that the Notch ternary complex can direct the formation of a repressor complex to terminate gene expression of select target genes. Herein, it is demonstrated that p19Arf and Klf4 are transcriptionally repressed in a Notch-dependent manner. Furthermore, results indicate that Notch recruits Polycomb Repressor Complex 2 (PRC2) and Lysine Demethylase 1 (KDM1A/LSD1) to these promoters, which leads to changes in the epigenetic landscape and repression of transcription. The demethylase activity of LSD1 is a prerequisite for Notch-mediated transcriptional repression. In addition, a stable Notch transcriptional repressor complex was identified containing LSD1, PRC2, and the Notch ternary complex. These findings demonstrate a novel function of Notch and provide further insight into the mechanisms of Notch-mediated tumorigenesis.Implications: This study provides rationale for the targeting of epigenetic enzymes to inhibit Notch activity or use in combinatorial therapy to provide a more profound therapeutic response. Mol Cancer Res; 15(9); 1173-83. ©2017 AACR.
Collapse
Affiliation(s)
- Xiaoqing Han
- Molecular Oncology Program, Division of Surgical Oncology, Dewitt Daughtry Family Department of Surgery and Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida.,The Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami Miller School of Medicine, Miami, Florida
| | - Prathibha Ranganathan
- Molecular Oncology Program, Division of Surgical Oncology, Dewitt Daughtry Family Department of Surgery and Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida.,Centre for Human Genetics, Electronic City, Bengaluru, Karnataka, India
| | - Christos Tzimas
- Molecular Biology Division, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Kelly L Weaver
- Molecular Oncology Program, Division of Surgical Oncology, Dewitt Daughtry Family Department of Surgery and Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida
| | - Ke Jin
- Molecular Oncology Program, Division of Surgical Oncology, Dewitt Daughtry Family Department of Surgery and Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida.,The Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami Miller School of Medicine, Miami, Florida
| | - Luisana Astudillo
- Molecular Oncology Program, Division of Surgical Oncology, Dewitt Daughtry Family Department of Surgery and Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida
| | - Wen Zhou
- Molecular Oncology Program, Division of Surgical Oncology, Dewitt Daughtry Family Department of Surgery and Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida
| | - Xiaoxia Zhu
- Molecular Oncology Program, Division of Surgical Oncology, Dewitt Daughtry Family Department of Surgery and Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida
| | - Bin Li
- Molecular Oncology Program, Division of Surgical Oncology, Dewitt Daughtry Family Department of Surgery and Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida
| | - David J Robbins
- Molecular Oncology Program, Division of Surgical Oncology, Dewitt Daughtry Family Department of Surgery and Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida
| | - Anthony J Capobianco
- Molecular Oncology Program, Division of Surgical Oncology, Dewitt Daughtry Family Department of Surgery and Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida.
| |
Collapse
|