1
|
Dorard C, Vucak G, Baccarini M. Deciphering the RAS/ERK pathway in vivo. Biochem Soc Trans 2017; 45:27-36. [PMID: 28202657 DOI: 10.1042/bst20160135] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 11/03/2016] [Accepted: 11/07/2016] [Indexed: 12/19/2022]
Abstract
The RAS/ERK pathway has been intensely studied for about three decades, not least because of its role in human pathologies. ERK activation is observed in the majority of human cancers; in about one-third of them, it is driven by mutational activation of pathway components. The pathway is arguably one of the best targets for molecule-based pharmacological intervention, and several small-molecule inhibitors are in clinical use. Genetically engineered mouse models have greatly contributed to our understanding of signaling pathways in development, tissue homeostasis, and disease. In the specific case of the RAS/ERK pathway, they have revealed unique biological roles of structurally and functionally similar proteins, new kinase-independent effectors, and unsuspected relationships with other cascades. This short review summarizes the contribution of mouse models to our current understanding of the pathway.
Collapse
Affiliation(s)
- Coralie Dorard
- Max F. Perutz Laboratories, Center for Molecular Biology, University of Vienna, Vienna 1030, Austria
| | - Georg Vucak
- Max F. Perutz Laboratories, Center for Molecular Biology, University of Vienna, Vienna 1030, Austria
| | - Manuela Baccarini
- Max F. Perutz Laboratories, Center for Molecular Biology, University of Vienna, Vienna 1030, Austria
| |
Collapse
|
2
|
Halbrook CJ, Wen HJ, Ruggeri JM, Takeuchi KK, Zhang Y, Pasca di Magliano M, Crawford HC. Mitogen-activated Protein Kinase Kinase Activity Maintains Acinar-to-Ductal Metaplasia and Is Required for Organ Regeneration in Pancreatitis. Cell Mol Gastroenterol Hepatol 2016; 3:99-118. [PMID: 28090569 PMCID: PMC5235341 DOI: 10.1016/j.jcmgh.2016.09.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Mitogen-activated protein kinase (MAPK) signaling in the exocrine pancreas has been extensively studied in the context of pancreatic cancer, where its potential as a therapeutic target is limited by acquired drug resistance. However, its role in pancreatitis is less understood. We investigated the role of mitogen-activated protein kinase kinase (MEK)-initiated MAPK signaling in pancreatitis to determine the potential for MEK inhibition in treating pancreatitis patients. METHODS To examine the role of MEK signaling in pancreatitis, we used both genetic and pharmacologic approaches to inhibit the MAPK signaling pathway in a murine model of cerulein-induced pancreatitis. We generated mice harboring inducible short hairpins targeting the MEK isoforms Map2k1 and/or Map2k2 specifically in the pancreatic epithelium. We also used the MEK inhibitor trametinib to determine the efficacy of systemic inhibition in mice with pancreatitis. RESULTS We demonstrated an essential role for MEK signaling in the initiation of pancreatitis. We showed that both systemic and parenchyma-specific MEK inhibition in established pancreatitis induces epithelial differentiation and stromal remodeling. However, systemic MEK inhibition also leads to a loss of the proliferative capacity of the pancreas, preventing the restoration of organ mass. CONCLUSIONS MEK activity is required for the initiation and maintenance of pancreatitis. MEK inhibition may be useful in the treatment of chronic pancreatitis to interrupt the vicious cycle of destruction and repair but at the expense of organ regeneration.
Collapse
Affiliation(s)
- Christopher J. Halbrook
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Hui-Ju Wen
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Jeanine M. Ruggeri
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Kenneth K. Takeuchi
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Yaqing Zhang
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | | | - Howard C. Crawford
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan,Reprint requests Address requests for reprints to: Howard Crawford, PhD, NCRC Building 520, Room 1347, 1600 Huron Parkway, Ann Arbor, Michigan 48109-1600. fax: (734) 647-6977.NCRC Building 520Room 1347, 1600 Huron ParkwayAnn ArborMichigan 48109-1600
| |
Collapse
|
3
|
Raguz J, Jeric I, Niault T, Nowacka JD, Kuzet SE, Rupp C, Fischer I, Biggi S, Borsello T, Baccarini M. Epidermal RAF prevents allergic skin disease. eLife 2016; 5. [PMID: 27431613 PMCID: PMC4951198 DOI: 10.7554/elife.14012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 06/13/2016] [Indexed: 01/08/2023] Open
Abstract
The RAS pathway is central to epidermal homeostasis, and its activation in tumors or in Rasopathies correlates with hyperproliferation. Downstream of RAS, RAF kinases are actionable targets regulating keratinocyte turnover; however, chemical RAF inhibitors paradoxically activate the pathway, promoting epidermal proliferation. We generated mice with compound epidermis-restricted BRAF/RAF1 ablation. In these animals, transient barrier defects and production of chemokines and Th2-type cytokines by keratinocytes cause a disease akin to human atopic dermatitis, characterized by IgE responses and local and systemic inflammation. Mechanistically, BRAF and RAF1 operate independently to balance MAPK signaling: BRAF promotes ERK activation, while RAF1 dims stress kinase activation. In vivo, JNK inhibition prevents disease onset, while MEK/ERK inhibition in mice lacking epidermal RAF1 phenocopies it. These results support a primary role of keratinocytes in the pathogenesis of atopic dermatitis, and the animals lacking BRAF and RAF1 in the epidermis represent a useful model for this disease.
Collapse
Affiliation(s)
- Josipa Raguz
- Department of Microbiology, Immunology and Genetics, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Ines Jeric
- Department of Microbiology, Immunology and Genetics, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Theodora Niault
- Department of Microbiology, Immunology and Genetics, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Joanna Daniela Nowacka
- Department of Microbiology, Immunology and Genetics, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Sanya Eduarda Kuzet
- Department of Microbiology, Immunology and Genetics, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Christian Rupp
- Department of Microbiology, Immunology and Genetics, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Irmgard Fischer
- Department of Microbiology, Immunology and Genetics, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Silvia Biggi
- Department of Neuroscience, Istituto Di Ricerche Farmacologiche Mario Negri, Milano, Italy.,Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Tiziana Borsello
- Department of Neuroscience, Istituto Di Ricerche Farmacologiche Mario Negri, Milano, Italy.,Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Manuela Baccarini
- Department of Microbiology, Immunology and Genetics, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| |
Collapse
|
4
|
Roh MR, Kim JM, Lee SH, Jang HS, Park KH, Chung KY, Rha SY. Low-concentration vemurafenib induces the proliferation and invasion of human HaCaT keratinocytes through mitogen-activated protein kinase pathway activation. J Dermatol 2015; 42:881-8. [DOI: 10.1111/1346-8138.12950] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 04/12/2015] [Indexed: 12/19/2022]
Affiliation(s)
- Mi Ryung Roh
- Department of Dermatology; Cutaneous Biology Research Institute; Yonsei University College of Medicine; Seoul Korea
- Department of Dermatology; Wellman Center for Photomedicine; Massachusetts General Hospital; Harvard Medical School; Boston Massachusetts USA
| | - Jung Min Kim
- Songdam Institute for Cancer Research; Yonsei University College of Medicine; Seoul Korea
| | - Sang Hee Lee
- Department of Dermatology; Cutaneous Biology Research Institute; Yonsei University College of Medicine; Seoul Korea
| | - Hong Sun Jang
- Department of Dermatology; Cutaneous Biology Research Institute; Yonsei University College of Medicine; Seoul Korea
| | - Kyu Hyun Park
- Songdam Institute for Cancer Research; Yonsei University College of Medicine; Seoul Korea
| | - Kee Yang Chung
- Department of Dermatology; Cutaneous Biology Research Institute; Yonsei University College of Medicine; Seoul Korea
| | - Sun Young Rha
- Songdam Institute for Cancer Research; Yonsei University College of Medicine; Seoul Korea
- Department of International Medicine; Yonsei University College of Medicine; Seoul Korea
- Division of Medical Oncology; Yonsei University College of Medicine; Seoul Korea
| |
Collapse
|
5
|
Chen R, Fu M, Zhang G, Zhou Y, Zhu S, Liu J, Wang D, Deng A, Wang Z. Rac1 regulates skin tumors by regulation of keratin 17 through recruitment and interaction with CD11b+Gr1+ cells. Oncotarget 2015; 5:4406-17. [PMID: 24962779 PMCID: PMC4147333 DOI: 10.18632/oncotarget.2030] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Rac1 is a member of the Rho family of small GTPases that control cells proliferation, differentiation, migration, and inflammation. Rac1 is crucial in tumorigenesis and development. Keratin17 and CD11b+Gr1+ cells are considered to regulate skin inflmmation. Here we discuss the regulation of Rac1 on skin tumor formation and its relationship. In samples from human skin squamous cell carcinoma (SCC), Rac1 activity was higher in cancer tissues than in normal skin and activity correlated with keratin 17 overexpression. In a DMBA/TPA-induced mouse skin tumor model, inhibition of Rac1 activity and depletion of CD11b+Gr1+ cells resulted in significant tumor formation. TPA induced recruitment of CD11b+Gr1+ cells into dermis; however, Rac1 inhibitor abolished this recruitment. In vitro, Rac1 induced interferon (IFN) and interlukin (IL6) production in keratinocytes, repression of keratin 17 inhibited IFN and IL6 production induced by Rac1. Moreover, both inhibition of Rac1 activity and repression of keratin 17 restricted proliferation and induction of differentiation in keratinocytes. Coculture of CD11b+Gr1+ cells with keratinocytes activated Wnt pathway in keratinocytes, resulting in enhanced Rac1 activity, overexpression of keratin 17, and hyperproliferation of keratinocytes. Our results suggested that hyperactive Rac1 recruited and interacted with CD11b+Gr1+ cells, inducing keratin 17-regulated inflammation and promoting skin tumor formation.
Collapse
Affiliation(s)
- Rongyi Chen
- Department of Dermatology, Affiliated Hospital of Guangdong Medical College, Zhanjiang, 524001, China
| | | | | | | | | | | | | | - Anmei Deng
- Department of Laboratory Diagnostic, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Zhipeng Wang
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| |
Collapse
|
6
|
Huang PY, Balmain A. Modeling cutaneous squamous carcinoma development in the mouse. Cold Spring Harb Perspect Med 2014; 4:a013623. [PMID: 25183851 DOI: 10.1101/cshperspect.a013623] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Cutaneous squamous cell carcinoma (SCC) is one of the most common cancers in Caucasian populations and is associated with a significant risk of morbidity and mortality. The classic mouse model for studying SCC involves two-stage chemical carcinogenesis, which has been instrumental in the evolution of the concept of multistage carcinogenesis, as widely applied to both human and mouse cancers. Much is now known about the sequence of biological and genetic events that occur in this skin carcinogenesis model and the factors that can influence the course of tumor development, such as perturbations in the oncogene/tumor-suppressor signaling pathways involved, the nature of the target cell that acquires the first genetic hit, and the role of inflammation. Increasingly, studies of tumor-initiating cells, malignant progression, and metastasis in mouse skin cancer models will have the potential to inform future approaches to treatment and chemoprevention of human squamous malignancies.
Collapse
Affiliation(s)
- Phillips Y Huang
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94158
| | - Allan Balmain
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94158
| |
Collapse
|
7
|
Kim DJ, Lee MH, Reddy K, Li Y, Lim DY, Xie H, Lee SY, Yeom YI, Bode AM, Dong Z. CInQ-03, a novel allosteric MEK inhibitor, suppresses cancer growth in vitro and in vivo. Carcinogenesis 2013; 34:1134-43. [PMID: 23354306 PMCID: PMC3643416 DOI: 10.1093/carcin/bgt015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 12/03/2012] [Accepted: 01/12/2013] [Indexed: 12/25/2022] Open
Abstract
The mitogen-activated protein kinase kinase 1 and 2 signaling pathway is a major component of the RAS (Rat sarcoma)/RAF (Radpidly accelerated fibrosarcoma)/MEK (mitogen-activated protein kinase kinase)/ERKs (Extracellular signal-regulated kinases) signaling axis that regulates tumorigenesis and cancer cell growth. MEK is frequently activated in various cancers that have mutations in the KRAS and BRAF oncogenes. Therefore, MEK has been suggested as a therapeutic target for inhibitor development against tumors that are dependent on the activating mutations in mitogen-activated protein kinase signaling. Herein, we report the discovery of three novel MEK inhibitors, herein referred to as CInQ-01, CInQ-03 and CInQ-06. All three inhibitors were highly effective in suppressing MEK1 and MEK2 in vitro kinase activity as well as anchorage-dependent and anchorage-independent cell growth. The inhibitory activity was associated with markedly reduced phosphorylation of ERKs and ribosomal S6 kinases. Furthermore, administration of CInQ-03 inhibited colon cancer cell growth in an in vivo xenograft mouse model and showed no skin toxicity. Overall, these results suggest that these novel MEK inhibitors might be used for chemotherapy or prevention.
Collapse
Affiliation(s)
- Dong Joon Kim
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA and
- Biomedical Genomics Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 305–806, Korea
| | - Mee-Hyun Lee
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA and
| | - Kanamata Reddy
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA and
| | - Yani Li
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA and
| | - Do Young Lim
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA and
| | - Hua Xie
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA and
| | - Sung-Young Lee
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA and
| | - Young Il Yeom
- Biomedical Genomics Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 305–806, Korea
| | - Ann M. Bode
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA and
| | - Zigang Dong
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA and
| |
Collapse
|
8
|
Abstract
Ras-driven tumorigenesis is assumed to depend on Raf for ERK activation and proliferation; yet, an in vivo requirement for Raf as MEK/ERK activator in this setting has not been demonstrated to date. Here, we show that epidermis-restricted B-Raf ablation restrains the onset and stops the progression of established Ras-driven tumors by limiting MEK/ERK activation and proliferation. Concomitant elimination of B-Raf and Raf-1 enforces the abrupt regression of established tumors owing to the decrease in ERK activation and proliferation caused by B-Raf ablation combined with the ERK-independent increase in Rho-dependent kinase (Rok) signaling and differentiation triggered by Raf-1 inactivation. Thus, B-Raf and Raf-1 have non-redundant functions in Ras-driven tumorigenesis. Of note, Raf kinase inhibitors achieve impressive results in melanomas harboring oncogenic BRAF, but are ineffective against Ras-driven tumors; moreover, therapy-related skin tumors driven by a paradox ERK activation as well as primary and acquired resistance have been reported. Our results suggest that therapies targeting both Raf kinase-dependent and -independent pathways may be effective against a broader range of malignancies and reduce the risks of adverse effects and/or resistance.
Collapse
|
9
|
Yamashita S, Tai P, Charron J, Ko C, Ascoli M. The Leydig cell MEK/ERK pathway is critical for maintaining a functional population of adult Leydig cells and for fertility. Mol Endocrinol 2011; 25:1211-22. [PMID: 21527500 DOI: 10.1210/me.2011-0059] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
MAPK kinase (MEK)1 and MEK2 were deleted from Leydig cells by crossing Mek1(f/f);Mek2(-/-) and Cyp17iCre mice. Primary cultures of Leydig cell from mice of the appropriate genotype (Mek1(f/f);Mek2(-/-);iCre(+)) show decreased, but still detectable, MEK1 expression and decreased or absent ERK1/2 phosphorylation when stimulated with epidermal growth factor, Kit ligand, cAMP, or human choriogonadotropin (hCG). The body or testicular weights of Mek1(f/f);Mek2(-/-);iCre(+) mice are not significantly affected, but the testis have fewer Leydig cells. The Leydig cell hypoplasia is paralleled by decreased testicular expression of several Leydig cell markers, such as the lutropin receptor, steroidogenic acute regulatory protein, cholesterol side chain cleavage enzyme, 17α-hydroxylase, and estrogen sulfotransferase. The expression of Sertoli or germ cell markers, as well as the shape, size, and cellular composition of the seminiferous tubules, are not affected. cAMP accumulation in response to hCG stimulation in primary cultures of Leydig cells from Mek1(f/f);Mek2(-/-);iCre(+) mice is normal, but basal testosterone and testosterone syntheses provoked by addition of hCG or a cAMP analog, or by addition of substrates such as 22-hydroxycholesterol or pregnenolone, are barely detectable. The Mek1(f/f);Mek2(-/-);iCre(+) males show decreased intratesticular testosterone and display several signs of hypoandrogenemia, such as elevated serum LH, decreased expression of two renal androgen-responsive genes, and decreased seminal vesicle weight. Also, in spite of normal sperm number and motility, the Mek1(f/f);Mek2(-/-);iCre(+) mice show reduced fertility. These studies show that deletion of MEK1/2 in Leydig cells results in Leydig cell hypoplasia, hypoandrogenemia, and reduced fertility.
Collapse
Affiliation(s)
- Soichi Yamashita
- Department of Pharmacology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | |
Collapse
|
10
|
MEK2 is sufficient but not necessary for proliferation and anchorage-independent growth of SK-MEL-28 melanoma cells. PLoS One 2011; 6:e17165. [PMID: 21365009 PMCID: PMC3041822 DOI: 10.1371/journal.pone.0017165] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Accepted: 01/23/2011] [Indexed: 01/14/2023] Open
Abstract
Mitogen-activated protein kinase kinases (MKK or MEK) 1 and 2 are usually treated as redundant kinases. However, in assessing their relative contribution towards ERK-mediated biologic response investigators have relied on tests of necessity, not sufficiency. In response we developed a novel experimental model using lethal toxin (LeTx), an anthrax toxin-derived pan-MKK protease, and genetically engineered protease resistant MKK mutants (MKKcr) to test the sufficiency of MEK signaling in melanoma SK-MEL-28 cells. Surprisingly, ERK activity persisted in LeTx-treated cells expressing MEK2cr but not MEK1cr. Microarray analysis revealed non-overlapping downstream transcriptional targets of MEK1 and MEK2, and indicated a substantial rescue effect of MEK2cr on proliferation pathways. Furthermore, LeTx efficiently inhibited the cell proliferation and anchorage-independent growth of SK-MEL-28 cells expressing MKK1cr but not MEK2cr. These results indicate in SK-MEL-28 cells MEK1 and MEK2 signaling pathways are not redundant and interchangeable for cell proliferation. We conclude that in the absence of other MKK, MEK2 is sufficient for SK-MEL-28 cell proliferation. MEK1 conditionally compensates for loss of MEK2 only in the presence of other MKK.
Collapse
|
11
|
Shukla A, Hillegass JM, MacPherson MB, Beuschel SL, Vacek PM, Butnor KJ, Pass HI, Carbone M, Testa JR, Heintz NH, Mossman BT. ERK2 is essential for the growth of human epithelioid malignant mesotheliomas. Int J Cancer 2011; 129:1075-86. [PMID: 21710492 DOI: 10.1002/ijc.25763] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Accepted: 10/19/2010] [Indexed: 11/09/2022]
Abstract
Members of the extracellular signal-regulated kinase (ERK) family may have distinct roles in the development of cell injury and repair, differentiation and carcinogenesis. Here, we show, using a synthetic small-molecule MEK1/2 inhibitor (U0126) and RNA silencing of ERK1 and 2, comparatively, that ERK2 is critical to transformation and homeostasis of human epithelioid malignant mesotheliomas (MMs), asbestos-induced tumors with a poor prognosis. Although MM cell (HMESO) lines stably transfected with shERK1 or shERK2 both exhibited significant decreases in cell proliferation in vitro, injection of shERK2 cells, and not shERK1 cells, into immunocompromised severe combined immunodeficiency (SCID) mice showed significant attenuated tumor growth in comparison to shControl (shCon) cells. Inhibition of migration, invasion and colony formation occurred in shERK2 MM cells in vitro, suggesting multiple roles of ERK2 in neoplasia. Microarray and quantitative real-time PCR analyses revealed gene expression that was significantly increased (CASP1, TRAF1 and FAS) or decreased (SEMA3E, RPS6KA2, EGF and BCL2L1) in shERK2-transfected MM cells in contrast to shCon-transfected MM cells. Most striking decreases were observed in mRNA levels of Semaphorin 3 (SEMA3E), a candidate tumor suppressor gene linked to inhibition of angiogenesis. These studies demonstrate a key role of ERK2 in novel gene expression critical to the development of epithelioid MMs. After injection of sarcomatoid human MM (PPMMill) cells into SCID mice, both shERK1 and shERK2 lines showed significant decreased tumor growth, suggesting heterogeneous effects of ERKs in individual MMs.
Collapse
Affiliation(s)
- Arti Shukla
- Department of Pathology, University of Vermont College of Medicine, Burlington, VT 05405-0068, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
The epidermis is the outermost layer of the body and protects it from environmental insults. This crucial function is sustained by a continuous process of self-renewal involving the carefully balanced proliferation and differentiation of progenitor cells constantly replacing the mature cells at the surface of the epidermis. Genetic changes in the signalling pathways controlling keratinocyte proliferation and differentiation disrupt this balance and lead to pathological changes including carcinogenesis. This review discusses the role of Ras, an oncogene critically involved in the development of skin neoplasia, and its downstream effector Raf in epidermal homeostasis and tumourigenesis. In particular, we will focus on the recently established role of Raf-1 as the decisive element that, by restraining keratinocyte differentiation, allows the development and maintenance of Ras-driven tumours.
Collapse
|
13
|
Tartutani M, Imai Y, Yasuda K, Tsutsui H, Nakanishi K, Yamanishi K. Erratum to "Neutrophil-dominant psoriasis-like skin inflammation induced by epidermal-specific expression of Raf in mice" [J. Dermatol. Sci. 58 (2010) 28-35]. J Dermatol Sci 2010; 59:64-71. [PMID: 20578288 DOI: 10.1016/j.jdermsci.2010.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND Raf is one of the downstream effectors of Ras GTPases. The induction of Raf in the epidermis causes the proliferation of keratinocytes and epidermal hyperplasia. However, skin inflammation accompanying Ras-induced epidermal reactions has not been fully delineated. OBJECTIVE The aim of this study was to characterize inflammatory reactions induced by epidermal-specific Raf expression and to elucidate its role in skin inflammation. METHODS K14-Raf:ER transgenic mice, in which the 4-hydroxytamoxifen (4OHT)-responsive mutant estrogen receptor (ER) ligand binding domain-Raf fusion gene was expressed under control of the keratin 14 promoter, were used to characterize inflammatory reactions induced by Raf expression in the epidermis. RESULTS A single topical application of 4OHT induced the expression of phosphorylated extracellular signal-related kinase 1/2 and elicited neutrophil-dominant inflammatory infiltrates in the skin. The Raf expression also rapidly induced the production of several cytokines and chemokines, including VEGF and CXCL1, by keratinocytes and inmouse skin in vivo. Furthermore, CD4-positive cells from regional lymph nodes had the potential to differentiate into IFNg- and IL17-producing cells. Treatment with an anti-Gr-1 antibody diminished the Raf-induced cutaneous inflammation and partially reversed the epidermal hyperplasia and hyperkeratosis. CONCLUSION Activation of the Raf signaling pathway is involved in the epidermal hyperplasia and the neutrophil-dominant cutaneous inflammatory reactions which are characteristics of psoriasis.
Collapse
Affiliation(s)
- Masahito Tartutani
- Department of Dermatology, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan.
| | | | | | | | | | | |
Collapse
|
14
|
Gailhouste L, Ezan F, Bessard A, Frémin C, Rageul J, Langouët S, Baffet G. RNAi-mediated MEK1 knock-down prevents ERK1/2 activation and abolishes human hepatocarcinoma growth in vitro and in vivo. Int J Cancer 2010; 126:1367-77. [PMID: 19816936 DOI: 10.1002/ijc.24950] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The mitogen-activated protein kinases MEK/ERK pathway regulates fundamental processes in malignant cells and represents an attractive target in the development of new cancer treatments especially for human hepatocarcinoma highly resistant to chemotherapy. Although gene extinction experiments have suggested distinct roles for these proteins, the MEK/ERK cascade remains widely considered as exhibiting an overlap of functions. To investigate the functionality of each kinase in tumorigenesis, we have generated stably knock-down clones for MEK1/2 and ERK1/2 isoforms in the human hepatocellular carcinoma line HuH7. Our results have shown that RNAi strategy allows a specific disruption of the targeted kinases and argued for the critical function of MEK1 in liver tumor growth. Transient and stable extinction experiments demonstrated that MEK1 isoform acts as a major element in the signal transduction by phosphorylating ERK1 and ERK2 after growth factors stimulation, whereas oncogenic level of ERK1/2 phosphorylation appears to be MEK1 and MEK2 dependent in basal condition. In addition, silencing of MEK1 or ERK2 abolished cell proliferation and DNA replication in vitro as well as tumor growth in vivo after injection in rodent. In contrast, targeting MEK2 or ERK1 had no effect on hepatocarcinoma progression. These results strongly corroborate the relevance of targeting the MEK cascade as attested by pharmacologic drugs and support the potential application of RNAi in future development of more effective cancer therapies. Our study emphasizes the importance of the MEK/ERK pathway in human hepatocarcinoma cell growth and argues for a crucial role of MEK1 and ERK2 in this regulation.
Collapse
Affiliation(s)
- Luc Gailhouste
- EA 4427-SeRAIC, IFR 140, Université de Rennes 1, F-35043 Rennes, France
| | | | | | | | | | | | | |
Collapse
|
15
|
Frémin C, Meloche S. From basic research to clinical development of MEK1/2 inhibitors for cancer therapy. J Hematol Oncol 2010; 3:8. [PMID: 20149254 PMCID: PMC2830959 DOI: 10.1186/1756-8722-3-8] [Citation(s) in RCA: 187] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Accepted: 02/11/2010] [Indexed: 11/10/2022] Open
Abstract
The Ras-dependent Raf/MEK/ERK1/2 mitogen-activated protein (MAP) kinase signaling pathway is a major regulator of cell proliferation and survival. Not surprisingly, hyperactivation of this pathway is frequently observed in human malignancies as a result of aberrant activation of receptor tyrosine kinases or gain-of-function mutations in RAS or RAF genes. Components of the ERK1/2 pathway are therefore viewed as attractive candidates for the development of targeted therapies of cancer. In this article, we briefly review the basic research that has laid the groundwork for the clinical development of small molecules inhibitors of the ERK1/2 pathway. We then present the current state of clinical evaluation of MEK1/2 inhibitors in cancer and discuss challenges ahead.
Collapse
Affiliation(s)
- Christophe Frémin
- Institut de Recherche en Immunologie et Cancérologie and Department of Pharmacology, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | | |
Collapse
|
16
|
Tarutani M, Imai Y, Yasuda K, Tsutsui H, Nakanishi K, Yamanishi K. Neutrophil-dominant psoriasis-like skin inflammation induced by epidermal-specific expression of Raf in mice. J Dermatol Sci 2010; 58:28-35. [PMID: 20188517 DOI: 10.1016/j.jdermsci.2010.01.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Revised: 01/05/2010] [Accepted: 01/19/2010] [Indexed: 12/22/2022]
Abstract
BACKGROUND Raf is one of the downstream effectors of Ras GTPases. The induction of Raf in the epidermis causes the proliferation of keratinocytes and epidermal hyperplasia. However, skin inflammation accompanying Ras-induced epidermal reactions has not been fully delineated. OBJECTIVE The aim of this study was to characterize inflammatory reactions induced by epidermal-specific Raf expression and to elucidate its role in skin inflammation. METHODS K14-Raf:ER transgenic mice, in which the 4-hydroxytamoxifen (4OHT)-responsive mutant estrogen receptor (ER) ligand binding domain-Raf fusion gene was expressed under control of the keratin 14 promoter, were used to characterize inflammatory reactions induced by Raf expression in the epidermis. RESULTS A single topical application of 4OHT induced the expression of phosphorylated extracellular signal-related kinase 1/2 and elicited neutrophil-dominant inflammatory infiltrates in the skin. The Raf expression also rapidly induced the production of several cytokines and chemokines, including VEGF and CXCL1, by keratinocytes and in mouse skin in vivo. Furthermore, CD4-positive cells from regional lymph nodes had the potential to differentiate into IFN gamma- and IL17-producing cells. Treatment with an anti-Gr-1 antibody diminished the Raf-induced cutaneous inflammation and partially reversed the epidermal hyperplasia and hyperkeratosis. CONCLUSION Activation of the Raf signaling pathway is involved in the epidermal hyperplasia and the neutrophil-dominant cutaneous inflammatory reactions which are characteristics of psoriasis.
Collapse
Affiliation(s)
- Masahito Tarutani
- Department of Dermatology, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan.
| | | | | | | | | | | |
Collapse
|
17
|
Zhao L, Li W, Marshall C, Griffin T, Hanson M, Hick R, Dentchev T, Williams E, Werth A, Miller C, Bashir H, Pear W, Seykora JT. Srcasm inhibits Fyn-induced cutaneous carcinogenesis with modulation of Notch1 and p53. Cancer Res 2010; 69:9439-47. [PMID: 19934324 DOI: 10.1158/0008-5472.can-09-2976] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Src family tyrosine kinases (SFK) regulate cell proliferation, and increased SFK activity is common in human carcinomas, including cutaneous squamous cell carcinomas (SCC) and its precursors. The elevated SFK activity in cutaneous SCCs was modeled using K14-Fyn Y528F transgenic mice, which spontaneously form punctate keratotic lesions, scaly plaques, and large tumors resembling actinic keratoses, SCC in situ, and SCCs, respectively. Lesional tissue showed increased levels of activated SFKs, PDK1, STAT3, and ERK1/2, whereas Notch1/NICD protein and transcript levels were decreased. p53 levels also were decreased in SCC in situ and SCCs. Increasing Srcasm levels using a K14-Fyn Y528F/K14-Srcasm double transgenic model markedly inhibited cutaneous neoplasia. In contrast, increased expression of a nonphosphorylatable Srcasm mutant maintained the neoplastic phenotype. Increasing Srcasm levels decreased levels of Fyn, activated SFKs, ERK1/2, PDK1, and phospho-STAT3, and increased Notch1/NICD and p53 levels. Analysis of human specimens revealed that levels of Fyn and activated SFKs were elevated in SCCs compared with adjacent nonlesional epidermis. In addition, Notch1 and Srcasm protein and transcript levels were decreased in human SCCs compared with nonlesional epidermis. Therefore, the SCCs produced by the Fyn Y528F mice resemble their human counterparts at the molecular level. K14-Fyn Y528F mice represent a robust model of cutaneous carcinogenesis that manifests precancerous lesions and SCCs resembling human disease. The Fyn/Srcasm signaling nexus modulates activity of STAT3, PDK1, ERK1/2, Notch1, and p53. Further study of Fyn and Srcasm should provide insights into the mechanisms regulating keratinocyte proliferation and skin carcinogenesis.
Collapse
Affiliation(s)
- Liang Zhao
- Department of Dermatology, University of Pennsylvania Medical School, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Current World Literature. Curr Opin Support Palliat Care 2009; 3:305-12. [DOI: 10.1097/spc.0b013e3283339c93] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
19
|
Scholl FA, Dumesic PA, Barragan DI, Harada K, Charron J, Khavari PA. Selective role for Mek1 but not Mek2 in the induction of epidermal neoplasia. Cancer Res 2009; 69:3772-8. [PMID: 19383924 PMCID: PMC3576816 DOI: 10.1158/0008-5472.can-08-1963] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The Ras/Raf/Mek/Erk mitogen-activated protein kinase pathway regulates fundamental processes in normal and malignant cells, including proliferation, differentiation, and cell survival. Mutations in this pathway have been associated with carcinogenesis and developmental disorders, making Mek1 and Mek2 prime therapeutic targets. In this study, we examined the requirement for Mek1 and Mek2 in skin neoplasia using the two-step 7,12-dimethylbenz(a)anthracene/12-O-tetradecanoylphorbol-13-acetate (DMBA/TPA) skin carcinogenesis model. Mice lacking epidermal Mek1 protein develop fewer papillomas than both wild-type and Mek2-null mice following DMBA/TPA treatment. Mek1 knockout mice had smaller papillomas, delayed tumor onset, and half the tumor burden of wild-type mice. Loss of one Mek1 allele, however, did not affect tumor development, indicating that one Mek1 allele is sufficient for normal papilloma formation. No difference in TPA-induced hyperproliferation, inflammation, or Erk activation was observed between wild-type, conditional Mek1 knockout, and Mek2-null mice, indicating that Mek1 findings were not due to a general failure of these processes. These data show that Mek1 is important for skin tumor development and that Mek2 cannot compensate for the loss of Mek1 function in this setting.
Collapse
Affiliation(s)
- Florence A. Scholl
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California
- Veterans Affairs Palo Alto Healthcare System, Palo Alto, California
| | - Phillip A. Dumesic
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California
- Veterans Affairs Palo Alto Healthcare System, Palo Alto, California
| | - Deborah I. Barragan
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California
- Veterans Affairs Palo Alto Healthcare System, Palo Alto, California
| | - Kazutoshi Harada
- Department of Dermatology, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Jean Charron
- Centre de Recherche en Cancérologie de l’Université Laval, CHUQ, Hotel-Dieu de Québec, Quebec, Canada
| | - Paul A. Khavari
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California
- Veterans Affairs Palo Alto Healthcare System, Palo Alto, California
| |
Collapse
|