1
|
Tripathi PH, Akhtar J, Arora J, Saran RK, Mishra N, Polisetty RV, Sirdeshmukh R, Gautam P. Quantitative proteomic analysis of GnRH agonist treated GBM cell line LN229 revealed regulatory proteins inhibiting cancer cell proliferation. BMC Cancer 2022; 22:133. [PMID: 35109816 PMCID: PMC8812247 DOI: 10.1186/s12885-022-09218-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 01/04/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gonadotropin-releasing hormone (GnRH) receptor, a rhodopsin-like G-protein coupled receptor (GPCR) family member involved in GnRH signaling, is reported to be expressed in several tumors including glioblastoma multiforme (GBM), one of the most malignant and aggressive forms of primary brain tumors. However, the molecular targets associated with GnRH receptor are not well studied in GBM or in other cancers. The present study aims at investigating the effect of GnRH agonist (Gosarelin acetate) on cell proliferation and associated signaling pathways in GBM cell line, LN229. METHODS LN229 cells were treated with different concentrations of GnRH agonist (10-10 M to 10-5 M) and the effect on cell proliferation was analyzed by cell count method. Further, total protein was extracted from control and GnRH agonist treated cells (with maximum reduction in cell proliferation) followed by trypsin digestion, labeling with iTRAQ reagents and LC-MS/MS analysis to identify differentially expressed proteins. Bioinformatic analysis was performed for annotation of proteins for the associated molecular function, altered pathways and network analysis using STRING database. RESULTS The treatment with different concentrations of GnRH agonist showed a reduction in cell proliferation with a maximum reduction of 48.2% observed at 10-6 M. Quantitative proteomic analysis after GnRH agonist treatment (10-6 M) led to the identification of a total of 29 differentially expressed proteins with 1.3-fold change (23 upregulated, such as, kininogen-1 (KNG1), alpha-2-HS-glycoprotein (AHSG), alpha-fetoprotein (AFP), and 6 downregulated, such as integrator complex subunit 11 (CPSF3L), protein FRG1 (FRG1). Some of them are known [KNG1, AHSG, AFP] while others such as inter-alpha-trypsin inhibitor heavy chain H2 (ITIH2), ITIH4, and LIM domain-containing protein 1 (LIMD1) are novel to GnRH signaling pathway. Protein-protein interaction analysis showed a direct interaction of KNG1, a hub molecule, with GnRH, GnRH receptor, EGFR and other interactors including ITIH2, ITIH4 and AHSG. Overexpression of KNG1 after GnRH agonist treatment was validated using Western blot analysis, while a significant inhibition of EGFR was observed after GnRH agonist treatment. CONCLUSIONS The study suggests a possible link of GnRH signaling with EGFR signaling pathways likely via KNG1. KNG1 inhibitors may be investigated independently or in combination with GnRH agonist for therapeutic applications.
Collapse
Affiliation(s)
- Priyanka H Tripathi
- Laboratory of Molecular Oncology, ICMR- National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, 110029, India.,Symbiosis International (Deemed University), Pune, 412115, India
| | - Javed Akhtar
- Laboratory of Molecular Oncology, ICMR- National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, 110029, India.,Jamia Hamdard- Institute of Molecular Medicine, Jamia Hamdard, New Delhi, 110062, India
| | - Jyoti Arora
- Laboratory of Molecular Oncology, ICMR- National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, 110029, India
| | - Ravindra Kumar Saran
- Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, 110002, India
| | - Neetu Mishra
- Symbiosis International (Deemed University), Pune, 412115, India
| | - Ravindra Varma Polisetty
- Department of Biochemistry, Sri Venkateswara College, University of Delhi, New Delhi, 110021, India
| | - Ravi Sirdeshmukh
- Institute of Bioinformatics, International Tech Park, Bangalore, 560066, India.,Manipal Academy of Higher Education (MAHE), Manipal, 576104, India
| | - Poonam Gautam
- Laboratory of Molecular Oncology, ICMR- National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, 110029, India.
| |
Collapse
|
2
|
Henderson MW, Sparkenbaugh EM, Wang S, Ilich A, Noubouossie DF, Mailer R, Renné T, Flick MJ, Luyendyk JP, Chen ZL, Strickland S, Stravitz RT, McCrae KR, Key NS, Pawlinski R. Plasmin-mediated cleavage of high-molecular-weight kininogen contributes to acetaminophen-induced acute liver failure. Blood 2021; 138:259-272. [PMID: 33827130 PMCID: PMC8310429 DOI: 10.1182/blood.2020006198] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 03/18/2021] [Indexed: 12/11/2022] Open
Abstract
Acetaminophen (APAP)-induced liver injury is associated with activation of coagulation and fibrinolysis. In mice, both tissue factor-dependent thrombin generation and plasmin activity have been shown to promote liver injury after APAP overdose. However, the contribution of the contact and intrinsic coagulation pathways has not been investigated in this model. Mice deficient in individual factors of the contact (factor XII [FXII] and prekallikrein) or intrinsic coagulation (FXI) pathway were administered a hepatotoxic dose of 400 mg/kg of APAP. Neither FXII, FXI, nor prekallikrein deficiency mitigated coagulation activation or hepatocellular injury. Interestingly, despite the lack of significant changes to APAP-induced coagulation activation, markers of liver injury and inflammation were significantly reduced in APAP-challenged high-molecular-weight kininogen-deficient (HK-/-) mice. Protective effects of HK deficiency were not reproduced by inhibition of bradykinin-mediated signaling, whereas reconstitution of circulating levels of HK in HK-/- mice restored hepatotoxicity. Fibrinolysis activation was observed in mice after APAP administration. Western blotting, enzyme-linked immunosorbent assay, and mass spectrometry analysis showed that plasmin efficiently cleaves HK into multiple fragments in buffer or plasma. Importantly, plasminogen deficiency attenuated APAP-induced liver injury and prevented HK cleavage in the injured liver. Finally, enhanced plasmin generation and HK cleavage, in the absence of contact pathway activation, were observed in plasma of patients with acute liver failure due to APAP overdose. In summary, extrinsic but not intrinsic pathway activation drives the thromboinflammatory pathology associated with APAP-induced liver injury in mice. Furthermore, plasmin-mediated cleavage of HK contributes to hepatotoxicity in APAP-challenged mice independently of thrombin generation or bradykinin signaling.
Collapse
Affiliation(s)
- Michael W Henderson
- Department of Pathology and Laboratory Medicine
- Division of Hematology, Department of Medicine, and
- UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Erica M Sparkenbaugh
- Division of Hematology, Department of Medicine, and
- UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Shaobin Wang
- Division of Hematology, Department of Medicine, and
- UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Anton Ilich
- Division of Hematology, Department of Medicine, and
- UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Denis F Noubouossie
- Division of Hematology, Department of Medicine, and
- UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Reiner Mailer
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg, Hamburg, Germany
| | - Thomas Renné
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg, Hamburg, Germany
| | - Matthew J Flick
- Department of Pathology and Laboratory Medicine
- UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - James P Luyendyk
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI
| | - Zu-Lin Chen
- Patricia and John Rosenwald Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, New York
| | - Sidney Strickland
- Patricia and John Rosenwald Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, New York
| | - R Todd Stravitz
- Hume-Lee Transplant Center of Virginia Commonwealth University, Richmond, VA; and
| | - Keith R McCrae
- Taussig Cancer Institute and Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH
| | - Nigel S Key
- Department of Pathology and Laboratory Medicine
- Division of Hematology, Department of Medicine, and
- UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Rafal Pawlinski
- Division of Hematology, Department of Medicine, and
- UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
3
|
Eden G, Archinti M, Arnaudova R, Andreotti G, Motta A, Furlan F, Citro V, Cubellis MV, Degryse B. D2A sequence of the urokinase receptor induces cell growth through αvβ3 integrin and EGFR. Cell Mol Life Sci 2018; 75:1889-1907. [PMID: 29184982 PMCID: PMC11105377 DOI: 10.1007/s00018-017-2718-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 11/08/2017] [Accepted: 11/22/2017] [Indexed: 01/01/2023]
Abstract
The urokinase receptor (uPAR) stimulates cell proliferation by forming a macromolecular complex with αvβ3 integrin and the epidermal growth factor receptor (EGFR, ErbB1 or HER1) that we name the uPAR proliferasome. uPAR transactivates EGFR, which in turn mediates uPAR-initiated mitogenic signal to the cell. EGFR activation and EGFR-dependent cell growth are blocked in the absence of uPAR expression or when uPAR activity is inhibited by antibodies against either uPAR or EGFR. The mitogenic sequence of uPAR corresponds to the D2A motif present in domain 2. NMR analysis revealed that D2A synthetic peptide has a particular three-dimensional structure, which is atypical for short peptides. D2A peptide is as effective as EGF in promoting EGFR phosphorylation and cell proliferation that were inhibited by AG1478, a specific inhibitor of the tyrosine kinase activity of EGFR. Both D2A and EGF failed to induce proliferation of NR6-EGFR-K721A cells expressing a kinase-defective mutant of EGFR. Moreover, D2A peptide and EGF phosphorylate ERK demonstrating the involvement of the MAP kinase signalling pathway. Altogether, this study reveals the importance of sequence D2A of uPAR, and the interdependence of uPAR and EGFR.
Collapse
Affiliation(s)
- Gabriele Eden
- IFOM, FIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy
- Medical Clinic V, Teaching Hospital Braunschweig, Salzdahlumer Straße 90, 38126, Brunswick, Germany
| | - Marco Archinti
- Department of Molecular Biology and Functional Genomics, DIBIT, Università Vita-Salute San Raffaele, Via Olgettina 58, 20132, Milan, Italy
| | - Ralitsa Arnaudova
- Department of Molecular Biology and Functional Genomics, DIBIT, Università Vita-Salute San Raffaele, Via Olgettina 58, 20132, Milan, Italy
| | - Giuseppina Andreotti
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078, Pozzuoli (Naples), Italy
| | - Andrea Motta
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078, Pozzuoli (Naples), Italy
| | - Federico Furlan
- Department of Molecular Biology and Functional Genomics, DIBIT, Università Vita-Salute San Raffaele, Via Olgettina 58, 20132, Milan, Italy
- BoNetwork Programme, San Raffaele Scientific Institute, Milan, Italy
| | - Valentina Citro
- Dipartimento di Biologia, Università Federico II, Naples, Italy
| | | | - Bernard Degryse
- Department of Molecular Biology and Functional Genomics, DIBIT, Università Vita-Salute San Raffaele, Via Olgettina 58, 20132, Milan, Italy.
| |
Collapse
|
4
|
Welton JL, Brennan P, Gurney M, Webber JP, Spary LK, Carton DG, Falcón-Pérez JM, Walton SP, Mason MD, Tabi Z, Clayton A. Proteomics analysis of vesicles isolated from plasma and urine of prostate cancer patients using a multiplex, aptamer-based protein array. J Extracell Vesicles 2016; 5:31209. [PMID: 27363484 PMCID: PMC4929354 DOI: 10.3402/jev.v5.31209] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 04/11/2016] [Accepted: 04/17/2016] [Indexed: 12/28/2022] Open
Abstract
Proteomics analysis of biofluid-derived vesicles holds enormous potential for discovering non-invasive disease markers. Obtaining vesicles of sufficient quality and quantity for profiling studies has, however, been a major problem, as samples are often replete with co-isolated material that can interfere with the identification of genuine low abundance, vesicle components. Here, we used a combination of ultracentrifugation and size-exclusion chromatography to isolate and analyse vesicles of plasma or urine origin. We describe a sample-handling workflow that gives reproducible, quality vesicle isolations sufficient for subsequent protein profiling. Using a semi-quantitative aptamer-based protein array, we identified around 1,000 proteins, of which almost 400 were present at comparable quantities in plasma versus urine vesicles. Significant differences were, however, apparent with elements like HSP90, integrin αVβ5 and Contactin-1 more prevalent in urinary vesicles, while hepatocyte growth factor activator, prostate-specific antigen–antichymotrypsin complex and many others were more abundant in plasma vesicles. This was also applied to a small set of specimens collected from men with metastatic prostate cancer, highlighting several proteins with the potential to indicate treatment refractory disease. The study provides a practical platform for furthering protein profiling of vesicles in prostate cancer, and, hopefully, many other disease scenarios.
Collapse
Affiliation(s)
- Joanne Louise Welton
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom.,Velindre Cancer Centre, Cardiff, United Kingdom.,Cardiff School of Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom
| | - Paul Brennan
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Mark Gurney
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom.,Velindre Cancer Centre, Cardiff, United Kingdom
| | - Jason Paul Webber
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom.,Velindre Cancer Centre, Cardiff, United Kingdom
| | - Lisa Kate Spary
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom.,Velindre Cancer Centre, Cardiff, United Kingdom
| | - David Gil Carton
- Metabolomics Unit, CIC bioGUNE, CIBERehd, Bizkaia Technology Park, Derio, Spain
| | | | - Sean Peter Walton
- Department of Computer Science, College of Science, Swansea University, United Kingdom
| | - Malcolm David Mason
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom.,Velindre Cancer Centre, Cardiff, United Kingdom
| | - Zsuzsanna Tabi
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom.,Velindre Cancer Centre, Cardiff, United Kingdom
| | - Aled Clayton
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom.,Velindre Cancer Centre, Cardiff, United Kingdom;
| |
Collapse
|
5
|
Barrow-McGee R, Kishi N, Joffre C, Ménard L, Hervieu A, Bakhouche BA, Noval AJ, Mai A, Guzmán C, Robert-Masson L, Iturrioz X, Hulit J, Brennan CH, Hart IR, Parker PJ, Ivaska J, Kermorgant S. Beta 1-integrin-c-Met cooperation reveals an inside-in survival signalling on autophagy-related endomembranes. Nat Commun 2016; 7:11942. [PMID: 27336951 PMCID: PMC4931016 DOI: 10.1038/ncomms11942] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 05/13/2016] [Indexed: 12/20/2022] Open
Abstract
Receptor tyrosine kinases (RTKs) and integrins cooperate to stimulate cell migration and tumour metastasis. Here we report that an integrin influences signalling of an RTK, c-Met, from inside the cell, to promote anchorage-independent cell survival. Thus, c-Met and β1-integrin co-internalize and become progressively recruited on LC3B-positive 'autophagy-related endomembranes' (ARE). In cells growing in suspension, β1-integrin promotes sustained c-Met-dependent ERK1/2 phosphorylation on ARE. This signalling is dependent on ATG5 and Beclin1 but not on ATG13, suggesting ARE belong to a non-canonical autophagy pathway. This β1-integrin-dependent c-Met-sustained signalling on ARE supports anchorage-independent cell survival and growth, tumorigenesis, invasion and lung colonization in vivo. RTK-integrin cooperation has been assumed to occur at the plasma membrane requiring integrin 'inside-out' or 'outside-in' signalling. Our results report a novel mode of integrin-RTK cooperation, which we term 'inside-in signalling'. Targeting integrin signalling in addition to adhesion may have relevance for cancer therapy.
Collapse
Affiliation(s)
- Rachel Barrow-McGee
- Spatial Signalling Team, Centre for Tumour Biology, Barts Cancer Institute—A Cancer Research UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Naoki Kishi
- Spatial Signalling Team, Centre for Tumour Biology, Barts Cancer Institute—A Cancer Research UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Carine Joffre
- Spatial Signalling Team, Centre for Tumour Biology, Barts Cancer Institute—A Cancer Research UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Ludovic Ménard
- Spatial Signalling Team, Centre for Tumour Biology, Barts Cancer Institute—A Cancer Research UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Alexia Hervieu
- Spatial Signalling Team, Centre for Tumour Biology, Barts Cancer Institute—A Cancer Research UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Bakhouche A. Bakhouche
- Spatial Signalling Team, Centre for Tumour Biology, Barts Cancer Institute—A Cancer Research UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Alejandro J. Noval
- Spatial Signalling Team, Centre for Tumour Biology, Barts Cancer Institute—A Cancer Research UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Anja Mai
- University of Turku, Centre for Biotechnology and VTT Technical Research Centre of Finland, FI-20520 Turku, Finland
| | - Camilo Guzmán
- University of Turku, Centre for Biotechnology and VTT Technical Research Centre of Finland, FI-20520 Turku, Finland
| | - Luisa Robert-Masson
- Spatial Signalling Team, Centre for Tumour Biology, Barts Cancer Institute—A Cancer Research UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Xavier Iturrioz
- Protein Phosphorylation Laboratory, Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
| | - James Hulit
- Spatial Signalling Team, Centre for Tumour Biology, Barts Cancer Institute—A Cancer Research UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Caroline H. Brennan
- School of Biological and Chemical Sciences, Queen Mary University of London, 327 Mile End Road, London E1 4NS, UK
| | - Ian R. Hart
- Centre for Tumour Biology, Barts Cancer Institute—A Cancer Research UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Peter J. Parker
- Protein Phosphorylation Laboratory, Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
- Division of Cancer Studies, King's College School of Medicine, St Thomas Street, London SE1 1UL, UK
| | - Johanna Ivaska
- University of Turku, Centre for Biotechnology and VTT Technical Research Centre of Finland, FI-20520 Turku, Finland
- Department of Biochemistry and Food Chemistry, University of Turku, FI-20520 Turku, Finland
| | - Stéphanie Kermorgant
- Spatial Signalling Team, Centre for Tumour Biology, Barts Cancer Institute—A Cancer Research UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| |
Collapse
|
6
|
Chen MB, Lamar JM, Li R, Hynes RO, Kamm RD. Elucidation of the Roles of Tumor Integrin β1 in the Extravasation Stage of the Metastasis Cascade. Cancer Res 2016; 76:2513-24. [PMID: 26988988 DOI: 10.1158/0008-5472.can-15-1325] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 02/27/2016] [Indexed: 12/22/2022]
Abstract
Tumor integrin β1 (ITGB1) contributes to primary tumor growth and metastasis, but its specific roles in extravasation have not yet been clearly elucidated. In this study, we engineered a three-dimensional microfluidic model of the human microvasculature to recapitulate the environment wherein extravasation takes place and assess the consequences of β1 depletion in cancer cells. Combined with confocal imaging, these tools allowed us to decipher the detailed morphology of transmigrating tumor cells and associated endothelial cells in vitro at high spatio-temporal resolution not easily achieved in conventional transmigration assays. Dynamic imaging revealed that β1-depleted cells lacked the ability to sustain protrusions into the subendothelial matrix in contrast with control cells. Specifically, adhesion via α3β1 and α6β1 to subendothelial laminin was a critical prerequisite for successful transmigration. β1 was required to invade past the endothelial basement membrane, whereas its attenuation in a syngeneic tumor model resulted in reduced metastatic colonization of the lung, an effect not observed upon depletion of other integrin alpha and beta subunits. Collectively, our findings in this novel model of the extravasation microenvironment revealed a critical requirement for β1 in several steps of extravasation, providing new insights into the mechanisms underlying metastasis. Cancer Res; 76(9); 2513-24. ©2016 AACR.
Collapse
Affiliation(s)
- Michelle B Chen
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - John M Lamar
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Ran Li
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Richard O Hynes
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts.
| | - Roger D Kamm
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts. Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts.
| |
Collapse
|
7
|
Herkenne S, Paques C, Nivelles O, Lion M, Bajou K, Pollenus T, Fontaine M, Carmeliet P, Martial JA, Nguyen NQN, Struman I. The interaction of uPAR with VEGFR2 promotes VEGF-induced angiogenesis. Sci Signal 2015; 8:ra117. [PMID: 26577922 DOI: 10.1126/scisignal.aaa2403] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In endothelial cells, binding of vascular endothelial growth factor (VEGF) to the receptor VEGFR2 activates multiple signaling pathways that trigger processes such as proliferation, survival, and migration that are necessary for angiogenesis. VEGF-bound VEGFR2 becomes internalized, which is a key step in the proangiogenic signal. We showed that the urokinase plasminogen activator receptor (uPAR) interacted with VEGFR2 and described the mechanism by which this interaction mediated VEGF signaling and promoted angiogenesis. Knockdown of uPAR in human umbilical vein endothelial cells (HUVECs) impaired VEGFR2 signaling, and uPAR deficiency in mice prevented VEGF-induced angiogenesis. Upon exposure of HUVECs to VEGF, uPAR recruited the low-density lipoprotein receptor-related protein 1 (LRP-1) to VEGFR2, which induced VEGFR2 internalization. Thus, the uPAR-VEGFR2 interaction is crucial for VEGF signaling in endothelial cells.
Collapse
Affiliation(s)
- Stéphanie Herkenne
- Molecular Angiogenesis Laboratory, GIGA Research, University of Liège, Avenue de l'Hôpital, 1, 4000 Liège, Belgium. Dulbecco-Telethon Institute, Venetian Institute of Molecular Medicine, Via Orus 2, 35129 Padova, Italy. Department of Biology, University of Padova, Via U. Bassi 58B, 35121 Padova, Italy
| | - Cécile Paques
- Molecular Angiogenesis Laboratory, GIGA Research, University of Liège, Avenue de l'Hôpital, 1, 4000 Liège, Belgium
| | - Olivier Nivelles
- Molecular Angiogenesis Laboratory, GIGA Research, University of Liège, Avenue de l'Hôpital, 1, 4000 Liège, Belgium
| | - Michelle Lion
- Molecular Angiogenesis Laboratory, GIGA Research, University of Liège, Avenue de l'Hôpital, 1, 4000 Liège, Belgium
| | - Khalid Bajou
- Molecular Angiogenesis Laboratory, GIGA Research, University of Liège, Avenue de l'Hôpital, 1, 4000 Liège, Belgium. Department of Applied Biology, College of Sciences, University of Sharjah, P.O. Box 27272, Emirates of Sharjah, United Arab Emirates
| | - Thomas Pollenus
- Molecular Angiogenesis Laboratory, GIGA Research, University of Liège, Avenue de l'Hôpital, 1, 4000 Liège, Belgium
| | - Marie Fontaine
- Molecular Angiogenesis Laboratory, GIGA Research, University of Liège, Avenue de l'Hôpital, 1, 4000 Liège, Belgium
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Neurovascular Link, Vesalius Research Center (VRC), Vlaams Instituut Biotechnologie, 3000 Leuven, Belgium. Laboratory of Angiogenesis and Neurovascular Link, VRC, Department of Oncology, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Joseph A Martial
- Molecular Angiogenesis Laboratory, GIGA Research, University of Liège, Avenue de l'Hôpital, 1, 4000 Liège, Belgium
| | - Ngoc-Quynh-Nhu Nguyen
- Molecular Angiogenesis Laboratory, GIGA Research, University of Liège, Avenue de l'Hôpital, 1, 4000 Liège, Belgium
| | - Ingrid Struman
- Molecular Angiogenesis Laboratory, GIGA Research, University of Liège, Avenue de l'Hôpital, 1, 4000 Liège, Belgium.
| |
Collapse
|
8
|
Jing J, Zheng S, Han C, Du L, Guo Y, Wang P. Evaluating the value of uPAR of serum and tissue on patients with cervical cancer. J Clin Lab Anal 2014; 26:16-21. [PMID: 24833530 DOI: 10.1002/jcla.20499] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 09/08/2011] [Indexed: 01/08/2023] Open
Abstract
We investigated the relationship between the urokinase type plasminogen activator receptor (uPAR) in sera and tissues of patients with cervical cancer and the clinical and pathological features of the cancer. Immunohistochemistry (SABC method) was used to detect uPAR expression in cervical cancer and normal tissues; ELISA was employed to assay the uPAR levels in cervical cancer and normal tissues and the corresponding sera. The immunohistochemistry results showed that there were 37 cases of uPAR expression in 56 patients of cervical cancer with a positive expression rate of 66%, whereas there was no uPAR expression in normal cervical tissues. The uPAR levels in cancer tissue from patients with cervical cancer (70.92 ± 28.55 ng/100 mg protein) were significantly higher than those of adjacent tissues obtained from the cancer patients (11.01 ± 5.40 ng/100 mg protein) (P < 0.001). Furthermore, the tissue uPAR levels are correlated with the TNM stages, lymph node metastasis, and the degree of differentiation instead of tumor-infiltrating and vessel thrombosis. Serum uPAR levels of patients (2.38 ± 0.29 ng/ml) were significantly increased compared with health control group (0.50 ± 0.16 ng/ml) (P < 0.001). Single-factor analysis shows that the serum uPAR levels of preoperative patients are related with clinical grade, lymph node metastasis, vein embolism, and the depth of infiltration instead of tumor differentiation. We conducted multiple regression analysis and found that the factors affecting preoperative serum suPAR include clinical stage (P = 0.000), pelvic lymph node metastasis (P = 0.000), and depth of myometrial invasion (P = 0.001). The serum suPAR levels of patients with cervical cancer after surgery are significantly decreased compared with preoperation (P < 0.001). The uPAR levels of serum and tissue present a positive correlation (r = 0.705, P < 0.001). The soluble uPAR in serum (suPAR) may be a more convenient indicator to reflect the uPAR system activity in vivo. It could be a tumor marker for clinical diagnosis, treatment, and prognosis monitor of cervical cancer.
Collapse
Affiliation(s)
- Jiexian Jing
- Etiology and Tumor Markers Laboratory, Shanxi Province Tumor Hospital, Taiyuan, Shanxi Province, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
9
|
Pitkänen A, Ndode-Ekane XE, Łukasiuk K, Wilczynski GM, Dityatev A, Walker MC, Chabrol E, Dedeurwaerdere S, Vazquez N, Powell EM. Neural ECM and epilepsy. PROGRESS IN BRAIN RESEARCH 2014; 214:229-62. [DOI: 10.1016/b978-0-444-63486-3.00011-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
10
|
Kashuba E, Eagle GL, Bailey J, Evans P, Welham KJ, Allsup D, Cawkwell L. Proteomic analysis of B-cell receptor signaling in chronic lymphocytic leukaemia reveals a possible role for kininogen. J Proteomics 2013; 91:478-85. [DOI: 10.1016/j.jprot.2013.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 07/28/2013] [Accepted: 08/01/2013] [Indexed: 12/20/2022]
|
11
|
Larusch GA, Merkulova A, Mahdi F, Shariat-Madar Z, Sitrin RG, Cines DB, Schmaier AH. Domain 2 of uPAR regulates single-chain urokinase-mediated angiogenesis through β1-integrin and VEGFR2. Am J Physiol Heart Circ Physiol 2013; 305:H305-20. [PMID: 23709605 DOI: 10.1152/ajpheart.00110.2013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
How single-chain urokinase (ScuPA) mediates angiogenesis is incompletely understood. ScuPA (≥4 nM) induces phosphorylated (p)ERK1/2 (MAPK44 and MAPK42) and pAkt (Ser(473)) in umbilical vein and dermal microvascular endothelial cells. Activation of pERK1/2 by ScuPA is blocked by PD-98059 or U-0126, and pAkt (Ser(473)) activation is inhibited by wortmannin or LY-294002. ScuPA (32 nM) or protease-inhibited two-chain urokinase stimulates pERK1/2 to the same extent, indicating that signaling is not dependent on enzymatic activity. ScuPA induces pERK1/2, but not pAkt (Ser(473)), in SIN1(-/-) cells, indicating that the two pathways are not identical. Peptides from domain 2 of the urokinase plasminogen activator receptor (uPAR) or domain 5 of high-molecular-weight kininogen compete with ScuPA for the induction of pERK1/2 and pAkt (Ser(473)). A peptide of the integrin-binding site on uPAR, a β1-integrin peptide that binds uPAR, antibody 6S6 to β1-integrin, tyrosine kinase inhibitors AG-1478 or PP3, and small interfering RNA knockdown of VEFG receptor 2, but not HER1-HER4, blocked ScuPA-induced pERK1/2 and pAkt (Ser(473)). ScuPA-induced endothelial cell proliferation was blocked by inhibitors of pERK1/2 and pAkt (Ser(473)), antibody 6S6, and uPAR or kininogen peptides. ScuPA initiated aortic sprouts and Matrigel plug angiogenesis in normal, but not uPAR-deficient, mouse aortae or mice, respectively, but these were blocked by PD-98059, LY-294002, AG-1478, or cleaved high-molecular-weight kininogen. In summary, this investigation indicates a novel, a nonproteolytic signaling pathway initiated by zymogen ScuPA and mediated by domain 2 of uPAR, β1-integrins, and VEGF receptor 2 leading to angiogenesis. Kininogens or peptides from it downregulate this pathway.
Collapse
Affiliation(s)
- Gretchen A Larusch
- Division of Hematology and Oncology, Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Kashuba E, Bailey J, Allsup D, Cawkwell L. The kinin-kallikrein system: physiological roles, pathophysiology and its relationship to cancer biomarkers. Biomarkers 2013; 18:279-96. [PMID: 23672534 DOI: 10.3109/1354750x.2013.787544] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The kinin-kallikrein system (KKS) is an endogenous multiprotein cascade, the activation of which leads to triggering of the intrinsic coagulation pathway and enzymatic hydrolysis of kininogens with the consequent release of bradykinin-related peptides. This system plays a crucial role in inflammation, vasodilation, smooth muscle contraction, cardioprotection, vascular permeability, blood pressure control, coagulation and pain. In this review, we will outline the physiology and pathophysiology of the KKS and also highlight the association of this system with carcinogenesis and cancer progression.
Collapse
Affiliation(s)
- Elena Kashuba
- Postgraduate Medical Institute, University of Hull, Hull, UK
| | | | | | | |
Collapse
|
13
|
Lahlou H, Muller WJ. β1-integrins signaling and mammary tumor progression in transgenic mouse models: implications for human breast cancer. Breast Cancer Res 2011; 13:229. [PMID: 22264244 PMCID: PMC3326542 DOI: 10.1186/bcr2905] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Consistent with their essential role in cell adhesion to the extracellular matrix, integrins and their associated signaling pathways have been shown to be involved in cell proliferation, migration, invasion and survival, processes required in both tumorigenesis and metastasis. β1-integrins represent the predominantly expressed integrins in mammary epithelial cells and have been proven crucial for mammary gland development and differentiation. Here we provide an overview of the studies that have used transgenic mouse models of mammary tumorigenesis to establish β1-integrin as a critical mediator of breast cancer progression and thereby as a potential therapeutic target for the development of new anticancer strategies.
Collapse
Affiliation(s)
- Hicham Lahlou
- Goodman Cancer Centre, McGill University, 1160 Pine Avenue West, Montreal, Québec, Canada
| | | |
Collapse
|
14
|
Wedel S, Hudak L, Seibel JM, Makarević J, Juengel E, Tsaur I, Waaga-Gasser A, Haferkamp A, Blaheta RA. Molecular targeting of prostate cancer cells by a triple drug combination down-regulates integrin driven adhesion processes, delays cell cycle progression and interferes with the cdk-cyclin axis. BMC Cancer 2011; 11:375. [PMID: 21867506 PMCID: PMC3170298 DOI: 10.1186/1471-2407-11-375] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 08/25/2011] [Indexed: 11/24/2022] Open
Abstract
Background Single drug use has not achieved satisfactory results in the treatment of prostate cancer, despite application of increasingly widespread targeted therapeutics. In the present study, the combined impact of the mammalian target of rapamycin (mTOR)-inhibitor RAD001, the dual EGFr and VGEFr tyrosine kinase inhibitor AEE788 and the histone deacetylase (HDAC)-inhibitor valproic acid (VPA) on prostate cancer growth and adhesion in vitro was investigated. Methods PC-3, DU-145 and LNCaP cells were treated with RAD001, AEE788 or VPA or with a RAD-AEE-VPA combination. Tumor cell growth, cell cycle progression and cell cycle regulating proteins were then investigated by MTT-assay, flow cytometry and western blotting, respectively. Furthermore, tumor cell adhesion to vascular endothelium or to immobilized extracellular matrix proteins as well as migratory properties of the cells was evaluated, and integrin α and β subtypes were analyzed. Finally, effects of drug treatment on cell signaling pathways were determined. Results All drugs, separately applied, reduced tumor cell adhesion, migration and growth. A much stronger anti-cancer effect was evoked by the triple drug combination. Particularly, cdk1, 2 and 4 and cyclin B were reduced, whereas p27 was elevated. In addition, simultaneous application of RAD001, AEE788 and VPA altered the membranous, cytoplasmic and gene expression pattern of various integrin α and β subtypes, reduced integrin-linked kinase (ILK) and deactivated focal adhesion kinase (FAK). Signaling analysis revealed that EGFr and the downstream target Akt, as well as p70S6k was distinctly modified in the presence of the drug combination. Conclusions Simultaneous targeting of several key proteins in prostate cancer cells provides an advantage over targeting a single pathway. Since strong anti-tumor properties became evident with respect to cell growth and adhesion dynamics, the triple drug combination might provide progress in the treatment of advanced prostate cancer.
Collapse
Affiliation(s)
- Steffen Wedel
- Department of Urology, Goethe-University, Frankfurt am Main, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Pixley RA, Espinola RG, Ghebrehiwet B, Joseph K, Kao A, Bdeir K, Cines DB, Colman RW. Interaction of high-molecular-weight kininogen with endothelial cell binding proteins suPAR, gC1qR and cytokeratin 1 determined by surface plasmon resonance (BiaCore). Thromb Haemost 2011; 105:1053-9. [PMID: 21544310 PMCID: PMC3149827 DOI: 10.1160/th10-09-0591] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Accepted: 03/02/2011] [Indexed: 01/09/2023]
Abstract
The physiologic activation of the plasma kallikrein-kinin system requires the assembly of its constituents on a cell membrane. High- molecular-weight kininogen (HK) and cleaved HK (HKa) both interact with at least three endothelial cell binding proteins: urokinase plasminogen activator receptor (uPAR), globular C1q receptor (gC1qR,) and cytokeratin 1 (CK1). The affinity of HK and HKa for endothelial cells are KD=7-52 nM. The contribution of each protein is unknown. We examined the direct binding of HK and HKa to the soluble extracellular form of uPAR (suPAR), gC1qR and CK1 using surface plasmon resonance. Each binding protein linked to a CM-5 chip and the association, dissociation and KD (equilibrium constant) were measured. The interaction of HK and HKa with each binding protein was zinc-dependent. The affinity for HK and HKa was gC1qR>CK1>suPAR, indicating that gC1qR is dominant for binding. The affinity for HKa compared to HK was the same for gC1qR, 2.6-fold tighter for CK1 but 53-fold tighter for suPAR. Complex between binding proteins was only observed between gC1qR and CK1 indicating that a binary CK1-gC1qR complex can form independently of kininogen. Although suPAR has the weakest affinity of the three binding proteins, it is the only one that distinguished between HK and HKa. This finding indicates that uPAR may be a key membrane binding protein for differential binding and signalling between the cleaved and uncleaved forms of kininogen. The role of CK1 and gC1qR may be to initially bind HK to the membrane surface before productive cleavage to HKa.
Collapse
Affiliation(s)
- Robin A. Pixley
- The Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Ricardo G. Espinola
- The Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | | | - Kusumam Joseph
- Medical University of South Carolina, Charleston, South Carolina, USA
| | - Alice Kao
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Khalil Bdeir
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Robert W. Colman
- The Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
16
|
Umemura H, Togawa A, Sogawa K, Satoh M, Mogushi K, Nishimura M, Matsushita K, Tanaka H, Takizawa H, Kodera Y, Nomura F. Identification of a high molecular weight kininogen fragment as a marker for early gastric cancer by serum proteome analysis. J Gastroenterol 2011; 46:577-85. [PMID: 21298293 DOI: 10.1007/s00535-010-0369-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Accepted: 12/23/2010] [Indexed: 02/04/2023]
Abstract
BACKGROUND Serum biomarkers currently available for gastric cancers are not sufficiently sensitive and specific. METHODS We used matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MS) to generate comparative peptide profiles of serum samples obtained from gastric cancer patients (n = 81) and age- and sex-matched healthy controls (n = 66). RESULTS Because of initial screening and further validation, we found that the intensities of a 2209 m/z MS peak were increased in the preoperative sera obtained from gastric cancer patients, and we identified this peak, a 2209 Da peptide, as a high molecular weight (HMW) kininogen fragment. Receiver operating characteristic analyses showed that the area under the curve (AUC) for the 2209 Da peptide (AUC = 0.715) was greater than those for conventional tumor markers (carcinoembryonic antigen AUC = 0.593, carbohydrate antigen 19-9 AUC = 0.527) used for the detection of stage I gastric cancers. Inverse correlations were observed between the levels of intact HMW kininogen and the 2209 Da peptide, suggesting that the upregulation of some protease activities is responsible for the overproduction of a kininogen fragment in gastric cancer patients. CONCLUSIONS Serum levels of the 2209 Da peptide identified in this study have a greater diagnostic ability than those of conventional tumor markers used for the early detection of gastric cancer.
Collapse
Affiliation(s)
- Hiroshi Umemura
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, Chiba 260-8670, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Combined targeting of the VEGFr/EGFr and the mammalian target of rapamycin (mTOR) signaling pathway delays cell cycle progression and alters adhesion behavior of prostate carcinoma cells. Cancer Lett 2011; 301:17-28. [DOI: 10.1016/j.canlet.2010.11.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 11/04/2010] [Accepted: 11/07/2010] [Indexed: 01/08/2023]
|
18
|
Soung YH, Clifford JL, Chung J. Crosstalk between integrin and receptor tyrosine kinase signaling in breast carcinoma progression. BMB Rep 2010; 43:311-8. [PMID: 20510013 DOI: 10.5483/bmbrep.2010.43.5.311] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
This review explored the mechanism of breast carcinoma progression by focusing on integrins and receptor tyrosine kinases (or growth factor receptors). While the primary role of integrins was previously thought to be solely as mediators of adhesive interactions between cells and extracellular matrices, it is now believed that integrins also regulate signaling pathways that control cancer cell growth, survival, and invasion. A large body of evidence suggests that the cooperation between integrin and receptor tyrosine kinase signaling regulates certain signaling functions that are important for cancer progression. Recent developments on the crosstalk between integrins and receptor tyrosine kinases, and its implication in mammary tumor progression, are discussed.
Collapse
Affiliation(s)
- Young Hwa Soung
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130, USA
| | | | | |
Collapse
|
19
|
Kininogens: More than cysteine protease inhibitors and kinin precursors. Biochimie 2010; 92:1568-79. [PMID: 20346387 DOI: 10.1016/j.biochi.2010.03.011] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Accepted: 03/10/2010] [Indexed: 12/13/2022]
Abstract
Two kininogens are found in mammalian sera: HK (high molecular weight kininogen) and LK (low molecular weight kininogen) with the exception of the rat which encompasses a third kininogen, T-Kininogen (TK). Kininogens are multifunctional glycosylated molecules related to cystatins (clan IH, family I25). They harbor three cystatin domains but only two of them are tight-binding inhibitors of cysteine cathepsins. HK and LK, but not TK, are precursors of potent peptide hormones, the kinins, which are released proteolytically by tissue and plasma kallikreins. Besides these classical features novel functions of kininogens have been recently discovered; they are described in the second part of this review. HKa, which corresponds to the kinin-free two-chain HK and its isolated domain D5 (kininostatin), possesses angiostatic and pro-apoptotic properties, inhibits the proliferation of endothelial cells and participates in the regulation of angiogenesis. Moreover, some HK-derived peptides display potent and broad-spectrum microbicidal properties against both Gram-positive and Gram-negative bacteria, and thus may offer a promising alternative to conventional antibiotic therapy. Of seminal interest, a kininogen-derived peptide inhibits activation of the contact phase system of coagulation and protects mice with invasive Streptococcus pyogenes infection from pulmonary lesions. On the other hand, TK is a biomarker of aging at the end of lifespan of elderly rats. However, although TK has been initially identified as an acute phase reactant, and earlier known as alpha-l-acute phase globulin, the increase of TK in liver and plasma is not known to relate to any inflammatory event during the senescence process.
Collapse
|
20
|
|