1
|
Gori K, Baez-Ortega A, Strakova A, Stammnitz MR, Wang J, Chan J, Hughes K, Belkhir S, Hammel M, Moralli D, Bancroft J, Drydale E, Allum KM, Brignone MV, Corrigan AM, de Castro KF, Donelan EM, Faramade IA, Hayes A, Ignatenko N, Karmacharya R, Koenig D, Lanza-Perea M, Lopez Quintana AM, Meyer M, Neunzig W, Pedraza-Ordoñez F, Phuentshok Y, Phuntsho K, Ramirez-Ante JC, Reece JF, Schmeling SK, Singh S, Tapia Martinez LJ, Taulescu M, Thapa S, Thapa S, van der Wel MG, Wehrle-Martinez AS, Stratton MR, Murchison EP. Horizontal transfer of nuclear DNA in transmissible cancer. Proc Natl Acad Sci U S A 2025; 122:e2424634122. [PMID: 40261943 DOI: 10.1073/pnas.2424634122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 03/05/2025] [Indexed: 04/24/2025] Open
Abstract
Horizontal transfer of nuclear DNA between cells of host and cancer is a potential source of adaptive variation in cancer cells. An understanding of the frequency and significance of this process in naturally occurring tumors is, however, lacking. We screened for this phenomenon in the transmissible cancers of dogs and Tasmanian devils and found an instance in the canine transmissible venereal tumor (CTVT). This involved introduction of a 15-megabase dicentric genetic element, composed of 11 fragments of six chromosomes, to a CTVT sublineage occurring in Asia around 2,000 y ago. The element forms the short arm of a small submetacentric chromosome and derives from a dog with ancestry associated with the ancient Middle East. The introduced DNA fragment is transcriptionally active and has adopted the expression profile of CTVT. Its features suggest that it may derive from an engulfed apoptotic body. Our findings indicate that nuclear horizontal gene transfer, although likely a rare event in tumor evolution, provides a viable mechanism for the acquisition of genetic material in naturally occurring cancer genomes.
Collapse
Affiliation(s)
- Kevin Gori
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, United Kingdom
| | - Adrian Baez-Ortega
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, United Kingdom
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton CB10 1SA, United Kingdom
| | - Andrea Strakova
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, United Kingdom
| | - Maximilian R Stammnitz
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, United Kingdom
| | - Jinhong Wang
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, United Kingdom
| | - Jonathan Chan
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, United Kingdom
| | - Katherine Hughes
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, United Kingdom
| | - Sophia Belkhir
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, United Kingdom
| | - Maurine Hammel
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, United Kingdom
| | - Daniela Moralli
- Pandemic Sciences Institute, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - James Bancroft
- Cellular Imaging Core Facility, Centre for Human Genetics, University of Oxford, Oxford OX3 7BM, United Kingdom
| | - Edward Drydale
- Cellular Imaging Core Facility, Centre for Human Genetics, University of Oxford, Oxford OX3 7BM, United Kingdom
| | | | - María Verónica Brignone
- Faculty of Veterinary Sciences, Universidad de Buenos Aires, Buenos Aires C1053ABJ, Argentina
| | - Anne M Corrigan
- School of Veterinary Medicine, St. George's University, True Blue, Grenada
| | - Karina F de Castro
- Faculty of Agrarian and Veterinary Sciences, São Paulo State University, Jaboticabal 14884-900, Brazil
| | - Edward M Donelan
- Animal Management in Rural and Remote Indigenous Communities, Darwin, NT 0820, Australia
| | | | - Alison Hayes
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, United Kingdom
| | | | - Rockson Karmacharya
- Veterinary Diagnostic and Research Laboratory Pvt. Ltd., Kathmandu 44600, Nepal
| | | | - Marta Lanza-Perea
- School of Veterinary Medicine, St. George's University, True Blue, Grenada
| | | | | | | | | | | | | | - Juan C Ramirez-Ante
- Facultad de Ciencias Pecuarias, Corporación Universitaria Santa Rosa de Cabal, Santa Rosa de Cabal 661020, Colombia
| | - John F Reece
- Help in Suffering, Jaipur 302018, Rajasthan, India
| | | | - Sanjay Singh
- Help in Suffering, Jaipur 302018, Rajasthan, India
| | | | - Marian Taulescu
- Department of Anatomic Pathology, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca 400372, Romania
| | - Samir Thapa
- Kathmandu Animal Treatment Centre, Kathmandu 44622, Nepal
| | - Sunil Thapa
- Animal Nepal, Dobighat, Kathmandu 44600, Nepal
| | | | | | - Michael R Stratton
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton CB10 1SA, United Kingdom
| | - Elizabeth P Murchison
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, United Kingdom
| |
Collapse
|
2
|
Rinkevich B, Goulet TL. Micro-to multi-chimerism: the multiple facets of a singular phenomenon. Semin Immunopathol 2025; 47:17. [PMID: 39966117 DOI: 10.1007/s00281-025-01044-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 01/28/2025] [Indexed: 02/20/2025]
Abstract
Natural chimeras are prevalent in nature (> 10 phyla of protists, plants, invertebrates, and vertebrates), disrupting the conventional believe that genetically homogeneous entities are selected to prevent conflicts within an organism. Chimerism emerges as a significant ecological/evolutionary mechanism, shaping the life history characteristics of metazoans, and it develops in various forms, one of which is called 'microchimerism'. Furthermore, chimerism is a pivotal phenomenon, presenting complex biological and ecological expressions akin to a "double-edged sword", bypassing both innate and adaptive immune responses. Considering the proportionate contribution of chimeric partners and their spatial arrangements within chimeras, unveils six somatic states of chimerism (purged-chimerism, sectorial-chimerism, mosaic-chimerism, mixed-chimerism, microchimerism and multi-chimerism) and three states of germline chimerism (mixed-chimerism, male/female chimerism and parasitic germline chimerism). These diverse chimeric states are categorized into two distinct series of continua, namely 'somatic cell chimerism' and 'germline chimerism' scenarios where dynamic chimeric states transit into other states, and vice versa, within a specific continuum that relies on the concept of an endless 'Escherian stairwell' of chimerism states. Also, the same chimera may portray simultaneously, different chimeric states in various parts/organs. We further reviewed the evolutionary perspectives for chimerism, raising five commonly shared features of chimerism (multichimerism, ontogenic windows, reproductive chimerism, transmissible chimerism, germline hitchhiking) and 'costs' and 'benefits' accrued to chimerism, shared between invertebrates and vertebrates, including humans. We contest that 'microchimerism' lacks any quantitative definition, represents just a single facet in the multi-facet panorama of chimeric phenomena that demonstrate transitions over time into other states. All of the above carry evolutionary and clinical implications.
Collapse
Affiliation(s)
- Baruch Rinkevich
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, P.O. Box 2336, Tel Shikmona, Haifa, 3102201, Israel.
| | - Tamar L Goulet
- Department of Biology, University of Mississippi, P.O. Box 1848, University, MS, 38677‑1848, USA
| |
Collapse
|
3
|
Reeve HK, Pfennig DW. Evolution of transmissible cancers: An adaptive, plastic strategy of selfish genetic elements? iScience 2024; 27:110740. [PMID: 39286496 PMCID: PMC11402641 DOI: 10.1016/j.isci.2024.110740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
A growing number of studies have applied evolutionary and ecological principles to understanding cancer. However, few such studies have examined whether phenotypic plasticity--the ability of a single individual or genome to respond differently to different environmental circumstances--can impact the origin and spread of cancer. Here, we propose the adaptive horizontal transmission hypothesis to explain how flexible decision-making by selfish genetic elements can cause them to spread from the genome of their original host into the genomes of other hosts through the evolution of transmissible cancers. Specifically, we hypothesize that such cancers appear when the likelihood of successful vertical transmission is sufficiently low relative to the likelihood of successful horizontal transmission. We develop an evolutionary optimization model of this hypothesis, highlight empirical findings that support it, and offer suggestions for future research. Generally, phenotypically plastic selfish genetic elements might play an important role in the evolution of transmissible cancers.
Collapse
Affiliation(s)
- Hudson Kern Reeve
- Department of Neurobiology and Behavior, Seeley G. Mudd Hall, Cornell University, Ithaca, NY 14853, USA
| | - David W Pfennig
- Department of Biology, CB#3280, Coker Hall, University of North Carolina, Chapel Hill, NC 27599-3280, USA
| |
Collapse
|
4
|
Viña-Feás A, Temes-Rodríguez J, Vidal-Capón A, Novas S, Rodríguez-Castro J, Pequeño-Valtierra A, Pasantes JJ, Tubío JMC, Garcia-Souto D. Unravelling epigenetic mechanisms in Cerastoderma edule genome: a comparison of healthy and neoplastic cockles. Mol Genet Genomics 2024; 299:58. [PMID: 38789628 PMCID: PMC11126487 DOI: 10.1007/s00438-024-02148-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/28/2024] [Indexed: 05/26/2024]
Abstract
Cancer is a multifaceted genetic disease characterized by the acquisition of several essential hallmarks. Notably, certain cancers exhibit horizontal transmissibility, observed across mammalian species and diverse bivalves, the latter referred to as hemic neoplasia. Within this complex landscape, epigenetic mechanisms such as histone modifications and cytosine methylation emerge as fundamental contributors to the pathogenesis of these transmissible cancers. Our study delves into the epigenetic landscape of Cerastoderma edule, focusing on whole-genome methylation and hydroxymethylation profiles in heathy specimens and transmissible neoplasias by means of Nanopore long-read sequencing. Our results unveiled a global hypomethylation in the neoplastic specimens compared to their healthy counterparts, emphasizing the role of DNA methylation in these tumorigenic processes. Furthermore, we verified that intragenic CpG methylation positively correlated with gene expression, emphasizing its role in modulating transcription in healthy and neoplastic cockles, as also highlighted by some up-methylated oncogenic genes. Hydroxymethylation levels were significantly more elevated in the neoplastic samples, particularly within satellites and complex repeats, likely related to structural functions. Additionally, our analysis also revealed distinct methylation and activity patterns in retrotransposons, providing additional insights into bivalve neoplastic processes. Altogether, these findings contribute to understanding the epigenetic dynamics of bivalve neoplasias and shed light on the roles of DNA methylation and hydroxymethylation in tumorigenesis. Understanding these epigenetic alterations holds promise for advancing our broader understanding of cancer epigenetics.
Collapse
Affiliation(s)
- Alejandro Viña-Feás
- Genomes and Disease, Centre for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Javier Temes-Rodríguez
- Genomes and Disease, Centre for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | | | - Samuel Novas
- Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - Jorge Rodríguez-Castro
- Genomes and Disease, Centre for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Instituto de Investigaciones Sanitarias de Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Ana Pequeño-Valtierra
- Genomes and Disease, Centre for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Instituto de Investigaciones Sanitarias de Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | | | - Jose M C Tubío
- Genomes and Disease, Centre for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Instituto de Investigaciones Sanitarias de Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Daniel Garcia-Souto
- Genomes and Disease, Centre for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain.
- Instituto de Investigaciones Sanitarias de Santiago de Compostela (IDIS), Santiago de Compostela, Spain.
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.
- Department of Biological Sciences, School of Environment, Arts and Society, College of Arts, Sciences & Education (CASE), Florida International University, Miami, FL, USA.
| |
Collapse
|
5
|
Skazina M, Ponomartsev N, Maiorova M, Khaitov V, Marchenko J, Lentsman N, Odintsova N, Strelkov P. Genetic features of bivalve transmissible neoplasia in blue mussels from the Kola Bay (Barents Sea) suggest a recent trans-Arctic migration of the cancer lineages. Mol Ecol 2023; 32:5724-5741. [PMID: 37795906 DOI: 10.1111/mec.17157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/06/2023]
Abstract
Ecology and biogeography of bivalve transmissible neoplasia (BTN) are underexplored due to its recent discovery and a challenging diagnostics. Blue mussels harbour two evolutionary lineages of BTN, MtrBTN1 and MtrBTN2, both derived from Mytilus trossulus. MtrBTN1 has been found only in M. trossulus from North Pacific. MtrBTN2 parasitizes different Mytilus spp. worldwide. BTN in M. trossulus in the Atlantic sector has never been studied. We looked for BTN in mussels from the Barents Sea using flow cytometry of cells, qPCR with primers specific to cancer-associated alleles and sequencing of mtDNA and nuclear loci. Both MtrBTN1 and MtrBTN2 were present in our material, though their prevalence was low (~0.4%). All cancers parasitized M. trossulus except one, MtrBTN1, which was found in a hybrid between M. trossulus and M. edulis. The mtDNA haplotypes found in both lineages were nearly identical to those known from the Northwest Pacific but not from elsewhere. Our results suggest that these two lineages may have arrived in the Barents Sea in recent decades with the maritime transport along the Northern Sea Route. A young evolutionary age of MtrBTN1 seems to indicate that it is an emerging disease in the process of niche expansion. Comparing the new and the published sequence data on tumour suppressor p53, we proved that the prevalence of BTN in mussels can reach epizootic levels. The finding of diverse recombinants between paternally and maternally inherited mtDNAs in somatic tissues of M. trossulus was an unexpected result of our study.
Collapse
Affiliation(s)
- Maria Skazina
- St. Petersburg State University, St. Petersburg, Russia
| | | | - Mariia Maiorova
- National Scientific Center of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Vadim Khaitov
- St. Petersburg State University, St. Petersburg, Russia
- Kandalaksha State Nature Reserve, Kandalaksha, Russia
| | | | | | - Nelly Odintsova
- National Scientific Center of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Petr Strelkov
- St. Petersburg State University, St. Petersburg, Russia
- Laboratory of Monitoring and Conservation of Natural Arctic Ecosystems, Murmansk Arctic State University, Murmansk, Russia
| |
Collapse
|
6
|
Bruzos AL, Santamarina M, García-Souto D, Díaz S, Rocha S, Zamora J, Lee Y, Viña-Feás A, Quail MA, Otero I, Pequeño-Valtierra A, Temes J, Rodriguez-Castro J, Aramburu L, Vidal-Capón A, Villanueva A, Costas D, Rodríguez R, Prieto T, Tomás L, Alvariño P, Alonso J, Cao A, Iglesias D, Carballal MJ, Amaral AM, Balseiro P, Calado R, El Khalfi B, Izagirre U, de Montaudouin X, Pade NG, Probert I, Ricardo F, Ruiz P, Skazina M, Smolarz K, Pasantes JJ, Villalba A, Ning Z, Ju YS, Posada D, Demeulemeester J, Baez-Ortega A, Tubio JMC. Somatic evolution of marine transmissible leukemias in the common cockle, Cerastoderma edule. NATURE CANCER 2023; 4:1575-1591. [PMID: 37783803 DOI: 10.1038/s43018-023-00641-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 08/23/2023] [Indexed: 10/04/2023]
Abstract
Transmissible cancers are malignant cell lineages that spread clonally between individuals. Several such cancers, termed bivalve transmissible neoplasia (BTN), induce leukemia-like disease in marine bivalves. This is the case of BTN lineages affecting the common cockle, Cerastoderma edule, which inhabits the Atlantic coasts of Europe and northwest Africa. To investigate the evolution of cockle BTN, we collected 6,854 cockles, diagnosed 390 BTN tumors, generated a reference genome and assessed genomic variation across 61 tumors. Our analyses confirmed the existence of two BTN lineages with hemocytic origins. Mitochondrial variation revealed mitochondrial capture and host co-infection events. Mutational analyses identified lineage-specific signatures, one of which likely reflects DNA alkylation. Cytogenetic and copy number analyses uncovered pervasive genomic instability, with whole-genome duplication, oncogene amplification and alkylation-repair suppression as likely drivers. Satellite DNA distributions suggested ancient clonal origins. Our study illuminates long-term cancer evolution under the sea and reveals tolerance of extreme instability in neoplastic genomes.
Collapse
Affiliation(s)
- Alicia L Bruzos
- Genomes and Disease, Centre for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Instituto de Investigaciones Sanitarias de Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Martín Santamarina
- Genomes and Disease, Centre for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Instituto de Investigaciones Sanitarias de Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Daniel García-Souto
- Genomes and Disease, Centre for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Instituto de Investigaciones Sanitarias de Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- Wellcome Sanger Institute, Hinxton, UK
| | - Seila Díaz
- Genomes and Disease, Centre for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- ECOMARE, Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Sara Rocha
- CINBIO, Universidade de Vigo, Vigo, Spain
| | - Jorge Zamora
- Genomes and Disease, Centre for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Yunah Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Alejandro Viña-Feás
- Genomes and Disease, Centre for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Instituto de Investigaciones Sanitarias de Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | | | - Iago Otero
- Genomes and Disease, Centre for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Instituto de Investigaciones Sanitarias de Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Ana Pequeño-Valtierra
- Genomes and Disease, Centre for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Instituto de Investigaciones Sanitarias de Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Javier Temes
- Genomes and Disease, Centre for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Instituto de Investigaciones Sanitarias de Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Jorge Rodriguez-Castro
- Genomes and Disease, Centre for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Instituto de Investigaciones Sanitarias de Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Leyre Aramburu
- Genomes and Disease, Centre for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - André Vidal-Capón
- Department of Biochemistry, Genetics and Immunology, Universidade de Vigo, Vigo, Spain
| | - Antonio Villanueva
- Centro de Investigación Mariña (CIM-ECIMAT), Universidade de Vigo, Vigo, Spain
| | - Damián Costas
- Centro de Investigación Mariña (CIM-ECIMAT), Universidade de Vigo, Vigo, Spain
| | - Rosana Rodríguez
- Centro de Investigación Mariña (CIM-ECIMAT), Universidade de Vigo, Vigo, Spain
| | - Tamara Prieto
- CINBIO, Universidade de Vigo, Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
- New York Genome Center, New York, NY, USA
| | - Laura Tomás
- CINBIO, Universidade de Vigo, Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Pilar Alvariño
- CINBIO, Universidade de Vigo, Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Juana Alonso
- CINBIO, Universidade de Vigo, Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Asunción Cao
- Centro de Investigacións Mariñas (CIMA), Consellería do Mar, Xunta de Galicia, Vilanova de Arousa, Spain
| | - David Iglesias
- Centro de Investigacións Mariñas (CIMA), Consellería do Mar, Xunta de Galicia, Vilanova de Arousa, Spain
| | - María J Carballal
- Centro de Investigacións Mariñas (CIMA), Consellería do Mar, Xunta de Galicia, Vilanova de Arousa, Spain
| | - Ana M Amaral
- Centro de Ciencias do Mar do Algarve (CCMAR), Universidade do Algarve, Faro, Portugal
| | - Pablo Balseiro
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- NORCE AS, Bergen, Norway
| | - Ricardo Calado
- ECOMARE, Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Bouchra El Khalfi
- Laboratory of Physiopathology, Molecular Genetics & Biotechnology, Faculty of Sciences Ain Chock, Health and Biotechnology Research Centre, Hassan II University of Casablanca, Casablanca, Morocco
| | - Urtzi Izagirre
- Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country (UPV/EHU), Plenzia-Bitzkaia, Spain
- Cell Biology in Environmental Toxicology Research Group, University of the Basque Country (UPV/EHU), Leioa-Bizkaia, Spain
| | | | - Nicolas G Pade
- European Marine Biology Resources Centre (EMBRC-ERIC), Paris, France
| | - Ian Probert
- FR2424 Station Biologique de Roscoff, Sorbonne University/CNRS, Roscoff, France
| | - Fernando Ricardo
- ECOMARE, Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Pamela Ruiz
- Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country (UPV/EHU), Plenzia-Bitzkaia, Spain
- Cell Biology in Environmental Toxicology Research Group, University of the Basque Country (UPV/EHU), Leioa-Bizkaia, Spain
| | - Maria Skazina
- Department of Applied Ecology, St Petersburg State University, St Petersburg, Russia
| | - Katarzyna Smolarz
- Department of Marine Ecosystem Functioning, University of Gdańsk, Gdynia, Poland
| | - Juan J Pasantes
- Department of Biochemistry, Genetics and Immunology, Universidade de Vigo, Vigo, Spain
- Centro de Investigación Mariña (CIM-ECIMAT), Universidade de Vigo, Vigo, Spain
| | - Antonio Villalba
- Centro de Investigacións Mariñas (CIMA), Consellería do Mar, Xunta de Galicia, Vilanova de Arousa, Spain
- Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country (UPV/EHU), Plenzia-Bitzkaia, Spain
- Department of Life Sciences, Universidad de Alcalá, Alcalá de Henares, Spain
| | | | - Young Seok Ju
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - David Posada
- CINBIO, Universidade de Vigo, Vigo, Spain
- Department of Biochemistry, Genetics and Immunology, Universidade de Vigo, Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Jonas Demeulemeester
- VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Department of Oncology, KU Leuven, Leuven, Belgium
- The Francis Crick Institute, London, UK
| | - Adrian Baez-Ortega
- Wellcome Sanger Institute, Hinxton, UK.
- Magdalene College, University of Cambridge, Cambridge, UK.
| | - Jose M C Tubio
- Genomes and Disease, Centre for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain.
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.
- Instituto de Investigaciones Sanitarias de Santiago de Compostela (IDIS), Santiago de Compostela, Spain.
| |
Collapse
|
7
|
Kapsetaki SE, Fortunato A, Compton Z, Rupp SM, Nour Z, Riggs-Davis S, Stephenson D, Duke EG, Boddy AM, Harrison TM, Maley CC, Aktipis A. Is chimerism associated with cancer across the tree of life? PLoS One 2023; 18:e0287901. [PMID: 37384647 PMCID: PMC10309991 DOI: 10.1371/journal.pone.0287901] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 06/15/2023] [Indexed: 07/01/2023] Open
Abstract
Chimerism is a widespread phenomenon across the tree of life. It is defined as a multicellular organism composed of cells from other genetically distinct entities. This ability to 'tolerate' non-self cells may be linked to susceptibility to diseases like cancer. Here we test whether chimerism is associated with cancers across obligately multicellular organisms in the tree of life. We classified 12 obligately multicellular taxa from lowest to highest chimerism levels based on the existing literature on the presence of chimerism in these species. We then tested for associations of chimerism with tumour invasiveness, neoplasia (benign or malignant) prevalence and malignancy prevalence in 11 terrestrial mammalian species. We found that taxa with higher levels of chimerism have higher tumour invasiveness, though there was no association between malignancy or neoplasia and chimerism among mammals. This suggests that there may be an important biological relationship between chimerism and susceptibility to tissue invasion by cancerous cells. Studying chimerism might help us identify mechanisms underlying invasive cancers and also could provide insights into the detection and management of emerging transmissible cancers.
Collapse
Affiliation(s)
- Stefania E. Kapsetaki
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, United States of America
- Biodesign Institute, Center for Biocomputing, Security and Society, Arizona State University, Tempe, AZ, United States of America
| | - Angelo Fortunato
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, United States of America
- Biodesign Institute, Center for Biocomputing, Security and Society, Arizona State University, Tempe, AZ, United States of America
| | - Zachary Compton
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, United States of America
- Biodesign Institute, Center for Biocomputing, Security and Society, Arizona State University, Tempe, AZ, United States of America
- School of Life Sciences, Arizona State University, Tempe, AZ, United States of America
| | - Shawn M. Rupp
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, United States of America
- Biodesign Institute, Center for Biocomputing, Security and Society, Arizona State University, Tempe, AZ, United States of America
| | - Zaid Nour
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, United States of America
- Biodesign Institute, Center for Biocomputing, Security and Society, Arizona State University, Tempe, AZ, United States of America
| | - Skyelyn Riggs-Davis
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, United States of America
- Biodesign Institute, Center for Biocomputing, Security and Society, Arizona State University, Tempe, AZ, United States of America
| | - Dylan Stephenson
- Department of Psychology, Arizona State University, Tempe, AZ, United States of America
| | - Elizabeth G. Duke
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, United States of America
- Department of Clinical Sciences, North Carolina State University, Raleigh, NC, United States of America
- Exotic Species Cancer Research Alliance, North Carolina State University, Raleigh, NC, United States of America
| | - Amy M. Boddy
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, United States of America
- Department of Anthropology, University of California, Santa Barbara, CA, United States of America
| | - Tara M. Harrison
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, United States of America
- Department of Clinical Sciences, North Carolina State University, Raleigh, NC, United States of America
- Exotic Species Cancer Research Alliance, North Carolina State University, Raleigh, NC, United States of America
| | - Carlo C. Maley
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, United States of America
- Biodesign Institute, Center for Biocomputing, Security and Society, Arizona State University, Tempe, AZ, United States of America
- School of Life Sciences, Arizona State University, Tempe, AZ, United States of America
| | - Athena Aktipis
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, United States of America
- Department of Psychology, Arizona State University, Tempe, AZ, United States of America
| |
Collapse
|
8
|
AbdulJabbar K, Castillo SP, Hughes K, Davidson H, Boddy AM, Abegglen LM, Minoli L, Iussich S, Murchison EP, Graham TA, Spiro S, Maley CC, Aresu L, Palmieri C, Yuan Y. Bridging clinic and wildlife care with AI-powered pan-species computational pathology. Nat Commun 2023; 14:2408. [PMID: 37100774 PMCID: PMC10133243 DOI: 10.1038/s41467-023-37879-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/04/2023] [Indexed: 04/28/2023] Open
Abstract
Cancers occur across species. Understanding what is consistent and varies across species can provide new insights into cancer initiation and evolution, with significant implications for animal welfare and wildlife conservation. We build a pan-species cancer digital pathology atlas (panspecies.ai) and conduct a pan-species study of computational comparative pathology using a supervised convolutional neural network algorithm trained on human samples. The artificial intelligence algorithm achieves high accuracy in measuring immune response through single-cell classification for two transmissible cancers (canine transmissible venereal tumour, 0.94; Tasmanian devil facial tumour disease, 0.88). In 18 other vertebrate species (mammalia = 11, reptilia = 4, aves = 2, and amphibia = 1), accuracy (range 0.57-0.94) is influenced by cell morphological similarity preserved across different taxonomic groups, tumour sites, and variations in the immune compartment. Furthermore, a spatial immune score based on artificial intelligence and spatial statistics is associated with prognosis in canine melanoma and prostate tumours. A metric, named morphospace overlap, is developed to guide veterinary pathologists towards rational deployment of this technology on new samples. This study provides the foundation and guidelines for transferring artificial intelligence technologies to veterinary pathology based on understanding of morphological conservation, which could vastly accelerate developments in veterinary medicine and comparative oncology.
Collapse
Affiliation(s)
- Khalid AbdulJabbar
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Simon P Castillo
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Katherine Hughes
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, UK
| | - Hannah Davidson
- Zoological Society of London, London, UK
- Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Sq, London, UK
| | - Amy M Boddy
- Department of Anthropology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Lisa M Abegglen
- Department of Pediatrics and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- PEEL Therapeutics, Inc., Salt Lake City, UT, USA
| | - Lucia Minoli
- Department of Veterinary Sciences, University of Turin, 10095, Grugliasco, Italy
| | - Selina Iussich
- Department of Veterinary Sciences, University of Turin, 10095, Grugliasco, Italy
| | - Elizabeth P Murchison
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, UK
| | - Trevor A Graham
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
- Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Sq, London, UK
| | | | - Carlo C Maley
- Arizona Cancer Evolution Center, Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Luca Aresu
- Department of Veterinary Sciences, University of Turin, 10095, Grugliasco, Italy
| | - Chiara Palmieri
- School of Veterinary Science, The University of Queensland, 4343, Gatton, QLD, Australia
| | - Yinyin Yuan
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK.
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK.
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
9
|
Ní Leathlobhair M, Lenski RE. Population genetics of clonally transmissible cancers. Nat Ecol Evol 2022; 6:1077-1089. [PMID: 35879542 DOI: 10.1038/s41559-022-01790-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 05/12/2022] [Indexed: 11/08/2022]
Abstract
Populations of cancer cells are subject to the same core evolutionary processes as asexually reproducing, unicellular organisms. Transmissible cancers are particularly striking examples of these processes. These unusual cancers are clonal lineages that can spread through populations via physical transfer of living cancer cells from one host individual to another, and they have achieved long-term success in the colonization of at least eight different host species. Population genetic theory provides a useful framework for understanding the shift from a multicellular sexual animal into a unicellular asexual clone and its long-term effects on the genomes of these cancers. In this Review, we consider recent findings from transmissible cancer research with the goals of developing an evolutionarily informed perspective on transmissible cancers, examining possible implications for their long-term fate and identifying areas for future research on these exceptional lineages.
Collapse
Affiliation(s)
- Máire Ní Leathlobhair
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK.
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College Dublin, Dublin, Ireland.
| | - Richard E Lenski
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
10
|
Setthawongsin C, Techangamsuwan S, Rungsipipat A. Canine Transmissible Venereal Tumor: An Infectious Neoplasia in Dogs. Vet Med Sci 2022. [DOI: 10.5772/intechopen.106150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Canine transmissible venereal tumor is the oldest cancer in dogs and is transplanted via viable cancer cells. This cancer has a specific host, easy transmission, noticeable gross lesions, a predictable growth pattern, an immunologic relative host response, unique molecular characteristics, and is responsive to chemotherapeutic treatment. These points make researchers and practitioners interested in this cancer. Genital cases are noticeable and therefore easier to diagnose and treat than extragenital cases. By contrasting the anatomical features of the two types of cases, we highlight the uniqueness of canine transmissible venereal tumors and discuss the diagnosis, treatment, and prevention of this ancient cancer.
Collapse
|
11
|
Blagosklonny MV. Hallmarks of cancer and hallmarks of aging. Aging (Albany NY) 2022; 14:4176-4187. [PMID: 35533376 PMCID: PMC9134968 DOI: 10.18632/aging.204082] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/02/2022] [Indexed: 11/28/2022]
Abstract
A thought-provoking article by Gems and de Magalhães suggests that canonic hallmarks of aging are superficial imitations of hallmarks of cancer. I took their work a step further and proposed hallmarks of aging based on a hierarchical principle and the hyperfunction theory. To do this, I first reexamine the hallmarks of cancer proposed by Hanahan and Weinberg in 2000. Although six hallmarks of cancer are genuine, they are not hierarchically arranged, i.e., molecular, intra-cellular, cellular, tissue, organismal and extra-organismal. (For example, invasion and angiogenesis are manifestations of molecular alterations on the tissue level; metastasis on the organismal level, whereas cell immortality is observed outside the host). The same hierarchical approach is applicable to aging. Unlike cancer, however, aging is not a molecular disease. The lowest level of its origin is normal intracellular signaling pathways such as mTOR that drive developmental growth and, later in life, become hyperfunctional, causing age-related diseases, whose sum is aging. The key hallmark of organismal aging, from worms to humans, are age-related diseases. In addition, hallmarks of aging can be arranged as a timeline, wherein initial hyperfunction is followed by dysfunction, organ damage and functional decline.
Collapse
|
12
|
Garcia-Souto D, Bruzos AL, Diaz S, Rocha S, Pequeño-Valtierra A, Roman-Lewis CF, Alonso J, Rodriguez R, Costas D, Rodriguez-Castro J, Villanueva A, Silva L, Valencia JM, Annona G, Tarallo A, Ricardo F, Bratoš Cetinić A, Posada D, Pasantes JJ, Tubio JMC. Mitochondrial genome sequencing of marine leukaemias reveals cancer contagion between clam species in the Seas of Southern Europe. eLife 2022; 11:e66946. [PMID: 35040778 PMCID: PMC8765752 DOI: 10.7554/elife.66946] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 12/04/2021] [Indexed: 12/30/2022] Open
Abstract
Clonally transmissible cancers are tumour lineages that are transmitted between individuals via the transfer of living cancer cells. In marine bivalves, leukaemia-like transmissible cancers, called hemic neoplasia (HN), have demonstrated the ability to infect individuals from different species. We performed whole-genome sequencing in eight warty venus clams that were diagnosed with HN, from two sampling points located more than 1000 nautical miles away in the Atlantic Ocean and the Mediterranean Sea Coasts of Spain. Mitochondrial genome sequencing analysis from neoplastic animals revealed the coexistence of haplotypes from two different clam species. Phylogenies estimated from mitochondrial and nuclear markers confirmed this leukaemia originated in striped venus clams and later transmitted to clams of the species warty venus, in which it survives as a contagious cancer. The analysis of mitochondrial and nuclear gene sequences supports all studied tumours belong to a single neoplastic lineage that spreads in the Seas of Southern Europe.
Collapse
Affiliation(s)
- Daniel Garcia-Souto
- Genomes and Disease, Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de CompostelaSantiago de CompostelaSpain
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de CompostelaSantiago de CompostelaSpain
- Cancer Ageing and Somatic Mutation Programme, Wellcome Sanger InstituteCambridgeUnited Kingdom
| | - Alicia L Bruzos
- Genomes and Disease, Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de CompostelaSantiago de CompostelaSpain
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de CompostelaSantiago de CompostelaSpain
| | - Seila Diaz
- Genomes and Disease, Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de CompostelaSantiago de CompostelaSpain
| | - Sara Rocha
- Phylogenomics Lab, Universidade de VigoVigoSpain
| | - Ana Pequeño-Valtierra
- Genomes and Disease, Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de CompostelaSantiago de CompostelaSpain
| | | | - Juana Alonso
- CINBIO, Universidade de VigoVigoSpain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGOVigoSpain
| | - Rosana Rodriguez
- Centro de Investigación Mariña, Universidade de Vigo, ECIMATVigoSpain
| | - Damian Costas
- Centro de Investigación Mariña, Universidade de Vigo, ECIMATVigoSpain
| | - Jorge Rodriguez-Castro
- Genomes and Disease, Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de CompostelaSantiago de CompostelaSpain
| | | | - Luis Silva
- Instituto Español de Oceanografía (IEO), Centro Oceanográfico de CádizCádizSpain
| | - Jose Maria Valencia
- Laboratori d’Investigacions Marines i Aqüicultura, (LIMIA) - Govern de les Illes BalearsPort d'Andratx, Balearic IslandsSpain
- Instituto de Investigaciones Agroambientales y de Economía del Agua (INAGEA) (INIA-CAIB-UIB)Palma de Mallorca, Balearic IslandsSpain
| | | | | | - Fernando Ricardo
- ECOMARE, Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Santiago University CampusAveiroPortugal
| | | | - David Posada
- CINBIO, Universidade de VigoVigoSpain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGOVigoSpain
- Department of Biochemistry, Genetics and Immunology, Universidade de VigoVigoSpain
| | - Juan Jose Pasantes
- Department of Biochemistry, Genetics and Immunology, Universidade de VigoVigoSpain
- Centro de Investigación Mariña, Universidade de VigoVigoSpain
| | - Jose MC Tubio
- Genomes and Disease, Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de CompostelaSantiago de CompostelaSpain
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de CompostelaSantiago de CompostelaSpain
| |
Collapse
|
13
|
Ní Leathlobhair M, Yetsko K, Farrell JA, Iaria C, Marino G, Duffy DJ, Murchison EP. Genotype data not consistent with clonal transmission of sea turtle fibropapillomatosis or goldfish schwannoma. Wellcome Open Res 2021; 6:219. [PMID: 34622016 PMCID: PMC8459624 DOI: 10.12688/wellcomeopenres.17073.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2021] [Indexed: 01/07/2023] Open
Abstract
Recent discoveries of transmissible cancers in multiple bivalve species suggest that direct transmission of cancer cells within species may be more common than previously thought, particularly in aquatic environments. Fibropapillomatosis occurs with high prevalence in green sea turtles ( Chelonia mydas) and the geographic range of disease has increased since fibropapillomatosis was first reported in this species. Widespread incidence of schwannomas, benign tumours of Schwann cell origin, reported in aquarium-bred goldfish (Carassius auratus), suggest an infectious aetiology. We investigated the hypothesis that cancers in these species arise by clonal transmission of cancer cells. Through analysis of polymorphic microsatellite alleles, we demonstrate concordance of host and tumour genotypes in diseased animals. These results imply that the tumours examined arose from independent oncogenic transformation of host tissue and were not clonally transmitted. Further, failure to experimentally transmit goldfish schwannoma via water exposure or inoculation suggest that this disease is unlikely to have an infectious aetiology.
Collapse
Affiliation(s)
- Máire Ní Leathlobhair
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, UK
- Big Data Institute, University of Oxford, Oxford, UK
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Kelsey Yetsko
- The Whitney Laboratory for Marine Bioscience, Sea Turtle Hospital, University of Florida, St. Augustine, Florida, 32080, USA
| | - Jessica A. Farrell
- The Whitney Laboratory for Marine Bioscience, Sea Turtle Hospital, University of Florida, St. Augustine, Florida, 32080, USA
- Department of Biology, University of Florida, Gainesville, Florida, 32611, USA
| | - Carmelo Iaria
- Centre of Experimental Fish Pathology of Sicily (CISS), Viale Giovanni Palatucci, University of Messina, 98168, Messina, Italy
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Viale Ferdinando Stagno d'Alcontres, n 31, University of Messina, 98166, Messina, Italy
| | - Gabriele Marino
- Department of Veterinary Sciences, Viale Giovanni Palatucci, University of Messina, 98168, Messina, Italy
| | - David J. Duffy
- The Whitney Laboratory for Marine Bioscience, Sea Turtle Hospital, University of Florida, St. Augustine, Florida, 32080, USA
- Department of Biology, University of Florida, Gainesville, Florida, 32611, USA
| | - Elizabeth P. Murchison
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
14
|
Skazina M, Odintsova N, Maiorova M, Ivanova A, Väinölä R, Strelkov P. First description of a widespread Mytilus trossulus-derived bivalve transmissible cancer lineage in M. trossulus itself. Sci Rep 2021; 11:5809. [PMID: 33707525 PMCID: PMC7970980 DOI: 10.1038/s41598-021-85098-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/24/2021] [Indexed: 11/30/2022] Open
Abstract
Two lineages of bivalve transmissible neoplasia (BTN), BTN1 and BTN2, are known in blue mussels Mytilus. Both lineages derive from the Pacific mussel M. trossulus and are identified primarily by their unique genotypes of the nuclear gene EF1α. BTN1 is found in populations of M. trossulus from the Northeast Pacific, while BTN2 has been detected in populations of other Mytilus species worldwide but not in M. trossulus itself. Here we examined M. trossulus from the Sea of Japan (Northwest Pacific) for the presence of BTN. Using hemocytology and flow cytometry of the hemolymph, we confirmed the presence of disseminated neoplasia in our specimens. Cancerous mussels possessed the BTN2 EF1α genotype and two mitochondrial haplotypes with different recombinant control regions, similar to that of common BTN2 lineages. This is the first report of BTN2 in its original host species M. trossulus. A comparison of all available BTN and M. trossulus COI sequences suggests a common and recent origin of BTN2 diversity in populations of M. trossulus outside the Northeast Pacific, possibly in the Northwest Pacific.
Collapse
Affiliation(s)
- Maria Skazina
- Saint-Petersburg State University, Saint-Petersburg, Russia, 199178.
| | - Nelly Odintsova
- National Scientific Center of Marine Biology of the Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia, 690041
| | - Maria Maiorova
- National Scientific Center of Marine Biology of the Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia, 690041
| | - Angelina Ivanova
- Saint-Petersburg State University, Saint-Petersburg, Russia, 199178
| | - Risto Väinölä
- Finnish Museum of Natural History, University of Helsinki, P. O. Box 17, 00014, Helsinki, Finland
| | - Petr Strelkov
- Saint-Petersburg State University, Saint-Petersburg, Russia, 199178
| |
Collapse
|
15
|
Aubier TG, Galipaud M, Erten EY, Kokko H. Transmissible cancers and the evolution of sex under the Red Queen hypothesis. PLoS Biol 2020; 18:e3000916. [PMID: 33211684 PMCID: PMC7676742 DOI: 10.1371/journal.pbio.3000916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 09/21/2020] [Indexed: 12/14/2022] Open
Abstract
The predominance of sexual reproduction in eukaryotes remains paradoxical in evolutionary theory. Of the hypotheses proposed to resolve this paradox, the 'Red Queen hypothesis' emphasises the potential of antagonistic interactions to cause fluctuating selection, which favours the evolution and maintenance of sex. Whereas empirical and theoretical developments have focused on host-parasite interactions, the premises of the Red Queen theory apply equally well to any type of antagonistic interactions. Recently, it has been suggested that early multicellular organisms with basic anticancer defences were presumably plagued by antagonistic interactions with transmissible cancers and that this could have played a pivotal role in the evolution of sex. Here, we dissect this argument using a population genetic model. One fundamental aspect distinguishing transmissible cancers from other parasites is the continual production of cancerous cell lines from hosts' own tissues. We show that this influx dampens fluctuating selection and therefore makes the evolution of sex more difficult than in standard Red Queen models. Although coevolutionary cycling can remain sufficient to select for sex under some parameter regions of our model, we show that the size of those regions shrinks once we account for epidemiological constraints. Altogether, our results suggest that horizontal transmission of cancerous cells is unlikely to cause fluctuating selection favouring sexual reproduction. Nonetheless, we confirm that vertical transmission of cancerous cells can promote the evolution of sex through a separate mechanism, known as similarity selection, that does not depend on coevolutionary fluctuations.
Collapse
Affiliation(s)
- Thomas G. Aubier
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Matthias Galipaud
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - E. Yagmur Erten
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Hanna Kokko
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| |
Collapse
|
16
|
Boddy AM, Harrison TM, Abegglen LM. Comparative Oncology: New Insights into an Ancient Disease. iScience 2020; 23:101373. [PMID: 32738614 PMCID: PMC7394918 DOI: 10.1016/j.isci.2020.101373] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/30/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer has deep evolutionary roots and is an important source of selective pressure in organismal evolution. Yet, we find a great deal of variation in cancer vulnerabilities across the tree of life. Comparative oncology offers insights into why some species vary in their susceptibility to cancer and the mechanisms responsible for the diversity of cancer defenses. Here we provide an overview for why cancer persists across the tree of life. We then summarize current data on cancer in mammals, reptiles, and birds in comparison with commonly reported human cancers. We report on both novel and shared mechanisms of cancer protection in animals. Cross-discipline collaborations, including zoological and aquarium institutions, wildlife and evolutionary biologists, veterinarians, medical doctors, cancer biologists, and oncologists, will be essential for progress in the field of comparative oncology. Improving medical treatment of humans and animals with cancer is the ultimate promise of comparative oncology.
Collapse
Affiliation(s)
- Amy M Boddy
- Department of Anthropology, University of California Santa Barbara, Santa Barbara, CA, USA.
| | - Tara M Harrison
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Lisa M Abegglen
- Department of Pediatrics, University of Utah, Salt Lake City, UT, USA; Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
17
|
Dujon AM, Gatenby RA, Bramwell G, MacDonald N, Dohrmann E, Raven N, Schultz A, Hamede R, Gérard AL, Giraudeau M, Thomas F, Ujvari B. Transmissible Cancers in an Evolutionary Perspective. iScience 2020; 23:101269. [PMID: 32592998 PMCID: PMC7327844 DOI: 10.1016/j.isci.2020.101269] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/02/2020] [Accepted: 06/08/2020] [Indexed: 02/06/2023] Open
Abstract
Inter-individual transmission of cancer cells represents an intriguing and unexplored host-pathogen system, with significant ecological and evolutionary ramifications. The pathogen consists of clonal malignant cell lines that spread horizontally as allografts and/or xenografts. Although only nine transmissible cancer lineages in eight host species from both terrestrial and marine environments have been investigated, they exhibit evolutionary dynamics that may provide novel insights into tumor-host interactions particularly in the formation of metastases. Here we present an overview of known transmissible cancers, discuss the necessary and sufficient conditions for cancer transmission, and provide a comprehensive review on the evolutionary dynamics between transmissible cancers and their hosts.
Collapse
Affiliation(s)
- Antoine M Dujon
- Deakin University, Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Waurn Ponds, Vic 3216, Australia
| | - Robert A Gatenby
- Department of Radiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Georgina Bramwell
- Deakin University, Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Waurn Ponds, Vic 3216, Australia
| | - Nick MacDonald
- Deakin University, Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Waurn Ponds, Vic 3216, Australia
| | - Erin Dohrmann
- Deakin University, Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Waurn Ponds, Vic 3216, Australia
| | - Nynke Raven
- Deakin University, Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Waurn Ponds, Vic 3216, Australia
| | - Aaron Schultz
- Deakin University, Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Waurn Ponds, Vic 3216, Australia
| | - Rodrigo Hamede
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia
| | - Anne-Lise Gérard
- CREEC, UMR IRD 224-CNRS 5290-Université de Montpellier, Montpellier, France
| | - Mathieu Giraudeau
- CREEC, UMR IRD 224-CNRS 5290-Université de Montpellier, Montpellier, France
| | - Frédéric Thomas
- CREEC, UMR IRD 224-CNRS 5290-Université de Montpellier, Montpellier, France
| | - Beata Ujvari
- Deakin University, Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Waurn Ponds, Vic 3216, Australia; School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia.
| |
Collapse
|
18
|
Patchett AL, Flies AS, Lyons AB, Woods GM. Curse of the devil: molecular insights into the emergence of transmissible cancers in the Tasmanian devil (Sarcophilus harrisii). Cell Mol Life Sci 2020; 77:2507-2525. [PMID: 31900624 PMCID: PMC11104928 DOI: 10.1007/s00018-019-03435-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 12/22/2022]
Abstract
The Tasmanian devil (Sarcophilus harrisii) is the only mammalian species known to be affected by multiple transmissible cancers. Devil facial tumours 1 and 2 (DFT1 and DFT2) are independent neoplastic cell lineages that produce large, disfiguring cancers known as devil facial tumour disease (DFTD). The long-term persistence of wild Tasmanian devils is threatened due to the ability of DFTD cells to propagate as contagious allografts and the high mortality rate of DFTD. Recent studies have demonstrated that both DFT1 and DFT2 cancers originated from founder cells of the Schwann cell lineage, an uncommon origin of malignant cancer in humans. This unprecedented finding has revealed a potential predisposition of Tasmanian devils to transmissible cancers of the Schwann cell lineage. In this review, we compare the molecular nature of human Schwann cells and nerve sheath tumours with DFT1 and DFT2 to gain insights into the emergence of transmissible cancers in the Tasmanian devil. We discuss a potential mechanism, whereby Schwann cell plasticity and frequent wounding in Tasmanian devils combine with an inherent cancer predisposition and low genetic diversity to give rise to transmissible Schwann cell cancers in devils on rare occasions.
Collapse
Affiliation(s)
- Amanda L Patchett
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia
| | - Andrew S Flies
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia
| | - A Bruce Lyons
- School of Medicine, University of Tasmania, Hobart, TAS, 7000, Australia
| | - Gregory M Woods
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia.
| |
Collapse
|
19
|
Patton AH, Margres MJ, Stahlke AR, Hendricks S, Lewallen K, Hamede RK, Ruiz-Aravena M, Ryder O, McCallum HI, Jones ME, Hohenlohe PA, Storfer A. Contemporary Demographic Reconstruction Methods Are Robust to Genome Assembly Quality: A Case Study in Tasmanian Devils. Mol Biol Evol 2020; 36:2906-2921. [PMID: 31424552 PMCID: PMC6878949 DOI: 10.1093/molbev/msz191] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Reconstructing species’ demographic histories is a central focus of molecular ecology and evolution. Recently, an expanding suite of methods leveraging either the sequentially Markovian coalescent (SMC) or the site-frequency spectrum has been developed to reconstruct population size histories from genomic sequence data. However, few studies have investigated the robustness of these methods to genome assemblies of varying quality. In this study, we first present an improved genome assembly for the Tasmanian devil using the Chicago library method. Compared with the original reference genome, our new assembly reduces the number of scaffolds (from 35,975 to 10,010) and increases the scaffold N90 (from 0.101 to 2.164 Mb). Second, we assess the performance of four contemporary genomic methods for inferring population size history (PSMC, MSMC, SMC++, Stairway Plot), using the two devil genome assemblies as well as simulated, artificially fragmented genomes that approximate the hypothesized demographic history of Tasmanian devils. We demonstrate that each method is robust to assembly quality, producing similar estimates of Ne when simulated genomes were fragmented into up to 5,000 scaffolds. Overall, methods reliant on the SMC are most reliable between ∼300 generations before present (gbp) and 100 kgbp, whereas methods exclusively reliant on the site-frequency spectrum are most reliable between the present and 30 gbp. Our results suggest that when used in concert, genomic methods for reconstructing species’ effective population size histories 1) can be applied to nonmodel organisms without highly contiguous reference genomes, and 2) are capable of detecting independently documented effects of historical geological events.
Collapse
Affiliation(s)
- Austin H Patton
- School of Biological Sciences, Washington State University, Pullman, WA
| | - Mark J Margres
- School of Biological Sciences, Washington State University, Pullman, WA.,Department of Organismic and Evolutionary Biology, Harvard University, MA
| | - Amanda R Stahlke
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID
| | - Sarah Hendricks
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID
| | - Kevin Lewallen
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID
| | - Rodrigo K Hamede
- School of Natural Sciences, University of Tasmania, Hobart, Australia
| | | | - Oliver Ryder
- Institute for Conservation Research, San Diego, CA
| | | | - Menna E Jones
- School of Natural Sciences, University of Tasmania, Hobart, Australia
| | - Paul A Hohenlohe
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID
| | - Andrew Storfer
- School of Biological Sciences, Washington State University, Pullman, WA
| |
Collapse
|
20
|
Navalkar A, Ghosh S, Pandey S, Paul A, Datta D, Maji SK. Prion-like p53 Amyloids in Cancer. Biochemistry 2019; 59:146-155. [DOI: 10.1021/acs.biochem.9b00796] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Ambuja Navalkar
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, India 400076
| | - Saikat Ghosh
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, India 400076
| | - Satyaprakash Pandey
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, India 400076
| | - Ajoy Paul
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, India 400076
| | - Debalina Datta
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, India 400076
| | - Samir K. Maji
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, India 400076
| |
Collapse
|
21
|
Chale RS, Ghiam N, McNamara SA, Jimenez JJ. Transmissible Cancers and Immune Downregulation in Tasmanian Devil ( Sacrophilus harrisii) and Canine Populations. Comp Med 2019; 69:291-298. [PMID: 31387668 DOI: 10.30802/aalas-cm-18-000129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Known as devil facial tumor disease (DFTD) and canine transmissible venereal tumor (CTVT), transmissible cancer occurs in both Tasmanian devil and canine populations, respectively. Both malignancies show remarkable ability to be transmitted as allografts into subsequent hosts. How DFTD and CTVT avoid detection by immunocompetent hosts is of particular interest, given that these malignancies are rarely seen in other species in nature. Both of these transmissible cancers can downregulate the host immune system, enabling proliferation. DFTD is characterized by epigenetic modifications to the DNA promoter regions of β₂microglobulin, transporters associated with antigen processing 1 and 2, MHC I, and MHC II-crucial proteins required in the detection and surveillance of foreign material. Downregulation during DFTD may be achieved by altering the activity of histone deacetylases. DFTD has caused widespread destruction of devil populations, placing the species on the brink of extinction. CTVT demonstrates a proliferative phase, during which the tumor evades immune detection, allowing it to proliferate, and a regressive phase when hosts mount an effective immune response. Alteration of TGFβ signaling in CTVT likely impedes the antigen-processing capabilities of canine hosts in addition to hindering the ability of natural killer cells to detect immune system downregulation. Immunosuppressive cytokines such as CXCL7 may contribute to a favorable microenvironment that supports the proliferation of CTVT. When viewed from an evolutionary paradigm, both DFTD and CTVT may conform to a model of host-parasite coevolution. Furthermore, various genetic features, such as genetically active transposons in CTVT and chromosomal rearrangements in DFTD, play important roles in promoting the survival of these disease agents. Understanding the mode of transmission for these transmissible cancers may shed light on mechanisms for human malignancies and reveal opportunities for treatment in the future.
Collapse
|
22
|
Hiblu MA, Khabuli NM, Gaja AO. Canine transmissible venereal tumor: First report of three clinical cases from Tripoli, Libya. Open Vet J 2019; 9:103-105. [PMID: 31360646 PMCID: PMC6626151 DOI: 10.4314/ovj.v9i2.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 03/10/2019] [Indexed: 11/30/2022] Open
Abstract
Canine transmissible venereal tumour (CTVT) is frequently reported in dogs and is responsible for high morbidity rates and economic losses. Three clinical cases were presented at the clinic of the Faculty of Veterinary Medicine, University of Tripoli. One male and two female German shepherds were diagnosed with CTVT based on case history and tumor shape. The diagnosis was confirmed by histopathological examination. The dogs were treated with vincristine intravenously at a dose of 0.025 mg/kg and recovered fully within 4 weeks. All three dogs remained alive with no evidence of recurrence. These first cases of CTVT reported from Libya show the importance of combining case history, clinical examination and laboratory confirmation to arrive at a definitive diagnosis and implement effective therapy.
Collapse
Affiliation(s)
- Murad A Hiblu
- Department of Internal Medicine, Faculty of Veterinary Medicine, University of Tripoli, Tripoli, Libya
| | - Nizar M Khabuli
- Department of Veterinary Surgery and Theriogenology, Faculty of Veterinary Medicine, University of Tripoli, Tripoli, Libya.,Police K9 Department, CID, Libyan Ministry of Interior, Tripoli, Libya
| | - Abdurraouf O Gaja
- Department of Veterinary Surgery and Theriogenology, Faculty of Veterinary Medicine, University of Tripoli, Tripoli, Libya
| |
Collapse
|
23
|
Evaluation of a Canine Transmissible Venereal Tumour Cell Line with Tumour Immunity Capacity but Without Tumorigenic Property. J Vet Res 2019; 63:225-233. [PMID: 31276062 PMCID: PMC6598177 DOI: 10.2478/jvetres-2019-0024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 03/19/2019] [Indexed: 11/20/2022] Open
Abstract
Introduction Canine transmissible venereal tumour (CTVT) is a sexually transmitted tumour affecting dogs worldwide, imposing a financial burden on dog owners. A stable culture cell line in continuous passages for >18 months has only been achieved once. The present study investigated a stable CTVT cell line isolated from a bitch and its potential as a vaccine. Material and Methods A biopsy from a 2-year-old mongrel bitch with CTVT was obtained for histopathological confirmation and isolation of tumour cells. The isolated cells were cultured to passage 55 and characterised by flow cytometry, with karyotyping by GTG-banding and by PCR detection of myc S-2 and LINE AS1. The isolated CTVT cell line was also used as a preventive vaccine in a canine model. Results Histopathological analysis of the isolated tumour cells revealed typical CTVT characteristics. Constant proliferation and stable morphological characteristics were observed during culture. Phenotypic analysis determined the expression of HLA-DR+, CD5.1+, CD14+, CD45+, CD83+, CD163+, and Ly-6G-Ly-6C+. GTG-banding revealed a mean of 57 chromosomes in the karyotype with several complex chromosomal rearrangements. LINE-c-myc insertion in the isolated CTVT cell line at 550 bp was not detected. However, a 340-bp band was amplified. Isolated CTVT cell line inoculation at a concentration of 1×108 did not induce tumour growth in bitches, nor did a challenge with primary CTVT cells. Conclusion The present study successfully identified and isolated a stable CTVT cell line that may be useful in CTVT prevention.
Collapse
|
24
|
Fernández Robledo JA, Yadavalli R, Allam B, Pales Espinosa E, Gerdol M, Greco S, Stevick RJ, Gómez-Chiarri M, Zhang Y, Heil CA, Tracy AN, Bishop-Bailey D, Metzger MJ. From the raw bar to the bench: Bivalves as models for human health. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 92:260-282. [PMID: 30503358 PMCID: PMC6511260 DOI: 10.1016/j.dci.2018.11.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 11/09/2018] [Accepted: 11/24/2018] [Indexed: 05/05/2023]
Abstract
Bivalves, from raw oysters to steamed clams, are popular choices among seafood lovers and once limited to the coastal areas. The rapid growth of the aquaculture industry and improvement in the preservation and transport of seafood have enabled them to be readily available anywhere in the world. Over the years, oysters, mussels, scallops, and clams have been the focus of research for improving the production, managing resources, and investigating basic biological and ecological questions. During this decade, an impressive amount of information using high-throughput genomic, transcriptomic and proteomic technologies has been produced in various classes of the Mollusca group, and it is anticipated that basic and applied research will significantly benefit from this resource. One aspect that is also taking momentum is the use of bivalves as a model system for human health. In this review, we highlight some of the aspects of the biology of bivalves that have direct implications in human health including the shell formation, stem cells and cell differentiation, the ability to fight opportunistic and specific pathogens in the absence of adaptive immunity, as source of alternative drugs, mucosal immunity and, microbiome turnover, toxicology, and cancer research. There is still a long way to go; however, the next time you order a dozen oysters at your favorite raw bar, think about a tasty model organism that will not only please your palate but also help unlock multiple aspects of molluscan biology and improve human health.
Collapse
Affiliation(s)
| | | | - Bassem Allam
- Stony Brook University, School of Marine and Atmospheric Sciences, Stony Brook, NY, 11794, USA
| | | | - Marco Gerdol
- University of Trieste, Department of Life Sciences, 34127, Trieste, Italy
| | - Samuele Greco
- University of Trieste, Department of Life Sciences, 34127, Trieste, Italy
| | - Rebecca J Stevick
- University of Rhode Island, Graduate School of Oceanography, Narragansett, RI, 02882, USA
| | - Marta Gómez-Chiarri
- University of Rhode Island, Department of Fisheries, Animal and Veterinary Science, Kingston, RI, 02881, USA
| | - Ying Zhang
- University of Rhode Island, Department of Cell and Molecular Biology, Kingston, RI, 02881, USA
| | - Cynthia A Heil
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, 04544, USA
| | - Adrienne N Tracy
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, 04544, USA; Colby College, Waterville, 4,000 Mayflower Hill Dr, ME, 04901, USA
| | | | | |
Collapse
|
25
|
Hohenlohe PA, McCallum HI, Jones ME, Lawrance MF, Hamede RK, Storfer A. Conserving adaptive potential: lessons from Tasmanian devils and their transmissible cancer. CONSERV GENET 2019; 20:81-87. [PMID: 31551664 PMCID: PMC6759055 DOI: 10.1007/s10592-019-01157-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 02/09/2019] [Indexed: 11/26/2022]
Abstract
Maintenance of adaptive genetic variation has long been a goal of management of natural populations, but only recently have genomic tools allowed identification of specific loci associated with fitness-related traits in species of conservation concern. This raises the possibility of managing for genetic variation directly relevant to specific threats, such as those due to climate change or emerging infectious disease. Tasmanian devils (Sarcophilus harrisii) face the threat of a transmissible cancer, devil facial tumor disease (DFTD), that has decimated wild populations and led to intensive management efforts. Recent discoveries from genomic and modeling studies reveal how natural devil populations are responding to DFTD, and can inform management of both captive and wild devil populations. Notably, recent studies have documented genetic variation for disease-related traits and rapid evolution in response to DFTD, as well as potential mechanisms for disease resistance such as immune response and tumor regression in wild devils. Recent models predict dynamic persistence of devils with or without DFTD under a variety of modeling scenarios, although at much lower population densities than before DFTD emerged, contrary to previous predictions of extinction. As a result, current management that focuses on captive breeding and release for maintaining genome-wide genetic diversity or demographic supplementation of populations could have negative consequences. Translocations of captive devils into wild populations evolving with DFTD can cause outbreeding depression and/or increases in the force of infection and thereby the severity of the epidemic, and we argue that these risks outweigh any benefits of demographic supplementation in wild populations. We also argue that genetic variation at loci associated with DFTD should be monitored in both captive and wild populations, and that as our understanding of DFTD-related genetic variation improves, considering genetic management approaches to target this variation is warranted in developing conservation strategies for Tasmanian devils.
Collapse
Affiliation(s)
- Paul A. Hohenlohe
- Institute for Bioinformatics and Evolutionary Studies, Department of Biological Sciences, University of Idaho, Moscow, ID 83843, USA
| | - Hamish I. McCallum
- Environmental Futures Research Institute, Griffith University, Brisbane, QLD 4111, Australia
| | - Menna E. Jones
- School of Biological Sciences, University of Tasmania, Hobart, TAS 7001, Australia
| | - Matthew F. Lawrance
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | - Rodrigo K. Hamede
- School of Biological Sciences, University of Tasmania, Hobart, TAS 7001, Australia
| | - Andrew Storfer
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
26
|
Zieger M, Springer S. Thylacine and Tasmanian devil: between hope and reality – a lesson to be learnt from Google Trends search data. AUST J ZOOL 2019. [DOI: 10.1071/zo20073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The two iconic Tasmanian species, the Tasmanian devil (Sarcophilus harrisii) and the thylacine (Thylacinus cynocephalus), are of great interest to the general public and the media. The most likely extinct Tasmanian wolf or tiger, the thylacine, symbolises human responsibility for nature and species conservation and inspired the ‘National Threatened Species Day’, which commemorates the death of the last thylacine at Beaumaris Zoo in Hobart on 7 September 1936 to raise awareness of endangered plants and animals. Since the spread of the Devil Facial Tumour Disease critically endangered the survival of the largest remaining native carnivore (S. harrisii) today, this has generated both scientific interest and the interest of the general public. Google Trends has already been used as a tool for documenting and investigating the information needs and concerns of the population, as has been shown using the example of diseases. In this study, Google Trends data were used to examine the seasonality of the search term ‘thylacine sightings’ and the development of the frequency of different search terms in the period between 2004 and 2020. As a result, relative search intensities for ‘thylacine cloning’ and ‘cloning extinct species’ have shown a decrease over time. While Google Trends cannot clearly determine search motivation, search terms can be selected for the examinations that document more hope or a rational need for information or concern.
Collapse
|
27
|
Zachar EK, Meachem MD, Philibert H. Pathology in Practice. J Am Vet Med Assoc 2018; 252:189-192. [PMID: 29319440 DOI: 10.2460/javma.252.2.189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Abstract
Dogs are second only to humans in medical surveillance and preventative health care, leading to a recent perception of increased cancer incidence. Scientific priorities in veterinary oncology have thus shifted, with a demand for cancer genetic screens, better diagnostics, and more effective therapies. Most dog breeds came into existence within the last 300 years, and many are derived from small numbers of founders. Each has undergone strong artificial selection, in which dog fanciers selected for many traits, including body size, fur type, color, skull shape, and behavior, to create novel breeds. The adoption of the breed barrier rule-no dog may become a registered member of a breed unless both its dam and its sire are registered members-ensures a relatively closed genetic pool within each breed. As a result, there is strong phenotypic homogeneity within breeds but extraordinary phenotypic variation between breeds. One consequence of this is the high level of breed-associated genetic disease. We and others have taken advantage of this to identify genes for a large number of canine maladies for which mouse models do not exist, particularly with regard to cancer.
Collapse
Affiliation(s)
- Elaine A Ostrander
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Dayna L Dreger
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA; .,Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana 47907, USA
| | - Jacquelyn M Evans
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| |
Collapse
|
29
|
Toman J, Flegr J. A Virtue Made of Necessity: Is the Increasing Hierarchical Complexity of Sexual Clades an Inevitable Outcome of Their Declining (Macro)evolutionary Potential? Evol Biol 2018. [DOI: 10.1007/s11692-018-9462-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
30
|
Kwon YM, Stammnitz MR, Wang J, Swift K, Knowles GW, Pye RJ, Kreiss A, Peck S, Fox S, Pemberton D, Jones ME, Hamede R, Murchison EP. Tasman-PCR: a genetic diagnostic assay for Tasmanian devil facial tumour diseases. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180870. [PMID: 30473836 PMCID: PMC6227955 DOI: 10.1098/rsos.180870] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 09/11/2018] [Indexed: 05/04/2023]
Abstract
Tasmanian devils have spawned two transmissible cancer clones, known as devil facial tumour 1 (DFT1) and devil facial tumour 2 (DFT2). DFT1 and DFT2 are transmitted between animals by the transfer of allogeneic contagious cancer cells by biting, and both cause facial tumours. DFT1 and DFT2 tumours are grossly indistinguishable, but can be differentiated using histopathology, cytogenetics or genotyping of polymorphic markers. However, standard diagnostic methods require specialist skills and equipment and entail long processing times. Here, we describe Tasman-PCR: a simple polymerase chain reaction (PCR)-based diagnostic assay that identifies and distinguishes DFT1 and DFT2 by amplification of DNA spanning tumour-specific interchromosomal translocations. We demonstrate the high sensitivity and specificity of this assay by testing DNA from 546 tumours and 804 normal devils. A temporal-spatial screen confirmed the reported geographic ranges of DFT1 and DFT2 and did not provide evidence of additional DFT clones. DFT2 affects disproportionately more males than females, and devils can be co-infected with DFT1 and DFT2. Overall, we present a PCR-based assay that delivers rapid, accurate and high-throughput diagnosis of DFT1 and DFT2. This tool provides an additional resource for devil disease management and may assist with ongoing conservation efforts.
Collapse
Affiliation(s)
- Young Mi Kwon
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Maximilian R. Stammnitz
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Jinhong Wang
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Kate Swift
- Animal Health Laboratories, Mount Pleasant Laboratories, Tasmanian Department of Primary Industries, Parks, Water and the Environment, Prospect, Tasmania 7250, Australia
| | - Graeme W. Knowles
- Animal Health Laboratories, Mount Pleasant Laboratories, Tasmanian Department of Primary Industries, Parks, Water and the Environment, Prospect, Tasmania 7250, Australia
| | - Ruth J. Pye
- Menzies Institute, University of Tasmania, 17 Liverpool Street, Hobart, Tasmania 7000, Australia
| | - Alexandre Kreiss
- Menzies Institute, University of Tasmania, 17 Liverpool Street, Hobart, Tasmania 7000, Australia
| | - Sarah Peck
- Department of Primary Industries, Parks, Water and the Environment (DPIPWE), Save the Tasmanian Devil Program, Tasmania 7000, Australia
| | - Samantha Fox
- Department of Primary Industries, Parks, Water and the Environment (DPIPWE), Save the Tasmanian Devil Program, Tasmania 7000, Australia
- Toledo Zoo, 2605 Broadway, Toledo, OH 43609, USA
| | - David Pemberton
- Department of Primary Industries, Parks, Water and the Environment (DPIPWE), Save the Tasmanian Devil Program, Tasmania 7000, Australia
| | - Menna E. Jones
- School of Natural Sciences, University of Tasmania, 55 Private Bag, Hobart, Tasmania 7000, Australia
| | - Rodrigo Hamede
- School of Natural Sciences, University of Tasmania, 55 Private Bag, Hobart, Tasmania 7000, Australia
| | - Elizabeth P. Murchison
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
- Author for correspondence: Elizabeth P. Murchison e-mail:
| |
Collapse
|
31
|
Bordonaro M. Hypothesis: Cancer Is a Disease of Evolved Trade-Offs Between Neoplastic Virulence and Transmission. J Cancer 2018; 9:1707-1724. [PMID: 29805696 PMCID: PMC5968758 DOI: 10.7150/jca.24679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 02/10/2018] [Indexed: 12/12/2022] Open
Abstract
Virulence is defined as the ability of a pathogen to cause morbidity and/or mortality in infected hosts. The relationship between virulence and transmissibility is complex; natural selection may promote decreased virulence to enhance host mobility and increase the probability for transmission, or transmissibility may be enhanced by increased virulence, leading to higher pathogen load and, in some cases, superior evasion from host defenses. An evolutionary trade-off exists between the ability of pathogens to maintain opportunities for long-term transmission via suppressed virulence and increased short-term transmission via enhanced virulence. We propose an analogy between transmissibility and virulence in microbial pathogens and in cancer. Thus, in the latter case, the outcome of invasive growth and metastasis is analogous to transmissibility, and virulence is defined by high rates of proliferation, invasiveness and motility, potential for metastasis, and the extent to which the cancer contributes to patient morbidity and mortality. Horizontal and vertical transmission, associated with increased or decreased pathogen virulence respectively, can also be utilized to model the neoplastic process and factors that would increase or decrease tumor aggressiveness. Concepts of soft vs. hard selection and evolutionary game theory can optimize our understanding of carcinogenesis and therapeutic strategies. Therefore, the language of transmissibility, horizontal vs. vertical transmission, selection, and virulence can be used to inform approaches to inhibit tumorigenic progression, and, more generally, for cancer prevention and treatment.
Collapse
Affiliation(s)
- Michael Bordonaro
- Department of Basic Sciences, Geisinger Commonwealth School of Medicine, 525 Pine Street, Scranton, PA 18509, USA
| |
Collapse
|
32
|
Frampton D, Schwenzer H, Marino G, Butcher LM, Pollara G, Kriston-Vizi J, Venturini C, Austin R, de Castro KF, Ketteler R, Chain B, Goldstein RA, Weiss RA, Beck S, Fassati A. Molecular Signatures of Regression of the Canine Transmissible Venereal Tumor. Cancer Cell 2018; 33:620-633.e6. [PMID: 29634949 PMCID: PMC5896242 DOI: 10.1016/j.ccell.2018.03.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 12/08/2017] [Accepted: 03/01/2018] [Indexed: 01/16/2023]
Abstract
The canine transmissible venereal tumor (CTVT) is a clonally transmissible cancer that regresses spontaneously or after treatment with vincristine, but we know little about the regression mechanisms. We performed global transcriptional, methylation, and functional pathway analyses on serial biopsies of vincristine-treated CTVTs and found that regression occurs in sequential steps; activation of the innate immune system and host epithelial tissue remodeling followed by immune infiltration of the tumor, arrest in the cell cycle, and repair of tissue damage. We identified CCL5 as a possible driver of CTVT regression. Changes in gene expression are associated with methylation changes at specific intragenic sites. Our results underscore the critical role of host innate immunity in triggering cancer regression.
Collapse
Affiliation(s)
- Dan Frampton
- Department of Infection, Division of Infection & Immunity, University College London (UCL), Cruciform Building, 90 Gower Street, London WC1E 6BT, UK
| | - Hagen Schwenzer
- Department of Infection, Division of Infection & Immunity, University College London (UCL), Cruciform Building, 90 Gower Street, London WC1E 6BT, UK
| | - Gabriele Marino
- Department of Veterinary Sciences, Polo Universitario dell'Annunziata, University of Messina, Messina 98168, Italy
| | - Lee M Butcher
- Department of Cancer Biology, Cancer Institute, UCL, 72 Huntley Street, London WC1E 6BT, UK
| | - Gabriele Pollara
- Department of Infection, Division of Infection & Immunity, University College London (UCL), Cruciform Building, 90 Gower Street, London WC1E 6BT, UK
| | - Janos Kriston-Vizi
- MRC Laboratory for Molecular Cell Biology, UCL, Gower Street, London WC1E 6BT, UK
| | - Cristina Venturini
- Department of Infection, Division of Infection & Immunity, University College London (UCL), Cruciform Building, 90 Gower Street, London WC1E 6BT, UK
| | - Rachel Austin
- Department of Infection, Division of Infection & Immunity, University College London (UCL), Cruciform Building, 90 Gower Street, London WC1E 6BT, UK
| | - Karina Ferreira de Castro
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Robin Ketteler
- MRC Laboratory for Molecular Cell Biology, UCL, Gower Street, London WC1E 6BT, UK
| | - Benjamin Chain
- Department of Infection, Division of Infection & Immunity, University College London (UCL), Cruciform Building, 90 Gower Street, London WC1E 6BT, UK
| | - Richard A Goldstein
- Department of Infection, Division of Infection & Immunity, University College London (UCL), Cruciform Building, 90 Gower Street, London WC1E 6BT, UK
| | - Robin A Weiss
- Department of Infection, Division of Infection & Immunity, University College London (UCL), Cruciform Building, 90 Gower Street, London WC1E 6BT, UK
| | - Stephan Beck
- Department of Cancer Biology, Cancer Institute, UCL, 72 Huntley Street, London WC1E 6BT, UK
| | - Ariberto Fassati
- Department of Infection, Division of Infection & Immunity, University College London (UCL), Cruciform Building, 90 Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
33
|
Burns AR, Watral V, Sichel S, Spagnoli S, Banse AV, Mittge E, Sharpton TJ, Guillemin K, Kent ML. Transmission of a common intestinal neoplasm in zebrafish by cohabitation. JOURNAL OF FISH DISEASES 2018; 41:569-579. [PMID: 29023774 PMCID: PMC5844789 DOI: 10.1111/jfd.12743] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 08/31/2017] [Accepted: 09/03/2017] [Indexed: 05/04/2023]
Abstract
Intestinal neoplasms are common in zebrafish (Danio rerio) research facilities. These tumours are most often seen in older fish and are classified as small cell carcinomas or adenocarcinomas. Affected fish populations always contain subpopulations with preneoplastic lesions, characterized by epithelial hyperplasia or inflammation. Previous observations indicated that these tumours are unlikely caused by diet, water quality or genetic background, suggesting an infectious aetiology. We performed five transmission experiments by exposure of naïve fish to affected donor fish by cohabitation or exposure to tank effluent water. Intestinal lesions were observed in recipient fish in all exposure groups, including transmissions from previous recipient fish, and moribund fish exhibited a higher prevalence of neoplasms. We found a single 16S rRNA sequence, most similar to Mycoplasma penetrans, to be highly enriched in the donors and exposed recipients compared to unexposed control fish. We further tracked the presence of the Mycoplasma sp. using a targeted PCR test on individual dissected intestines or faeces or tank faeces. Original donor and exposed fish populations were positive for Mycoplasma, while corresponding unexposed control fish were negative. This study indicates an infectious aetiology for these transmissible tumours of zebrafish and suggests a possible candidate agent of a Mycoplasma species.
Collapse
Affiliation(s)
- Adam R. Burns
- Institute of Ecology and Evolutionary Biology, University of Oregon, Eugene, OR 97403
| | - Virginia. Watral
- Department of Microbiology Oregon State University, Corvallis, OR 97331
| | - Sophie Sichel
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403
| | - Sean Spagnoli
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR 97331
| | - Allison V. Banse
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403
| | - Erika Mittge
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403
| | - Thomas J. Sharpton
- Department of Microbiology Oregon State University, Corvallis, OR 97331
- Department of Statistics, Oregon State University, Corvallis, OR 97331
| | - Karen Guillemin
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, Ontario M5G 1Z8, Canada
| | - Michael L. Kent
- Department of Microbiology Oregon State University, Corvallis, OR 97331
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR 97331
| |
Collapse
|
34
|
Heim NA, Payne JL, Finnegan S, Knope ML, Kowalewski M, Lyons SK, McShea DW, Novack-Gottshall PM, Smith FA, Wang SC. Hierarchical complexity and the size limits of life. Proc Biol Sci 2018. [PMID: 28637850 DOI: 10.1098/rspb.2017.1039] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Over the past 3.8 billion years, the maximum size of life has increased by approximately 18 orders of magnitude. Much of this increase is associated with two major evolutionary innovations: the evolution of eukaryotes from prokaryotic cells approximately 1.9 billion years ago (Ga), and multicellular life diversifying from unicellular ancestors approximately 0.6 Ga. However, the quantitative relationship between organismal size and structural complexity remains poorly documented. We assessed this relationship using a comprehensive dataset that includes organismal size and level of biological complexity for 11 172 extant genera. We find that the distributions of sizes within complexity levels are unimodal, whereas the aggregate distribution is multimodal. Moreover, both the mean size and the range of size occupied increases with each additional level of complexity. Increases in size range are non-symmetric: the maximum organismal size increases more than the minimum. The majority of the observed increase in organismal size over the history of life on the Earth is accounted for by two discrete jumps in complexity rather than evolutionary trends within levels of complexity. Our results provide quantitative support for an evolutionary expansion away from a minimal size constraint and suggest a fundamental rescaling of the constraints on minimal and maximal size as biological complexity increases.
Collapse
Affiliation(s)
- Noel A Heim
- Department of Geological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Jonathan L Payne
- Department of Geological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Seth Finnegan
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| | - Matthew L Knope
- Department of Biology, University of Hawaii, Hilo, HI 96720, USA
| | - Michał Kowalewski
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - S Kathleen Lyons
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Daniel W McShea
- Department of Biology, Duke University, Durham, NC 27708, USA
| | | | - Felisa A Smith
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Steve C Wang
- Department of Mathematics and Statistics, Swarthmore College, Swarthmore, PA 19081, USA
| |
Collapse
|
35
|
Ujvari B, Papenfuss AT, Belov K. Transmissible cancers in an evolutionary context. Bioessays 2017; 38 Suppl 1:S14-23. [PMID: 27417118 DOI: 10.1002/bies.201670904] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 04/09/2015] [Accepted: 04/23/2015] [Indexed: 12/13/2022]
Abstract
Cancer is an evolutionary and ecological process in which complex interactions between tumour cells and their environment share many similarities with organismal evolution. Tumour cells with highest adaptive potential have a selective advantage over less fit cells. Naturally occurring transmissible cancers provide an ideal model system for investigating the evolutionary arms race between cancer cells and their surrounding micro-environment and macro-environment. However, the evolutionary landscapes in which contagious cancers reside have not been subjected to comprehensive investigation. Here, we provide a multifocal analysis of transmissible tumour progression and discuss the selection forces that shape it. We demonstrate that transmissible cancers adapt to both their micro-environment and macro-environment, and evolutionary theories applied to organisms are also relevant to these unique diseases. The three naturally occurring transmissible cancers, canine transmissible venereal tumour (CTVT) and Tasmanian devil facial tumour disease (DFTD) and the recently discovered clam leukaemia, exhibit different evolutionary phases: (i) CTVT, the oldest naturally occurring cell line is remarkably stable; (ii) DFTD exhibits the signs of stepwise cancer evolution; and (iii) clam leukaemia shows genetic instability. While all three contagious cancers carry the signature of ongoing and fairly recent adaptations to selective forces, CTVT appears to have reached an evolutionary stalemate with its host, while DFTD and the clam leukaemia appear to be still at a more dynamic phase of their evolution. Parallel investigation of contagious cancer genomes and transcriptomes and of their micro-environment and macro-environment could shed light on the selective forces shaping tumour development at different time points: during the progressive phase and at the endpoint. A greater understanding of transmissible cancers from an evolutionary ecology perspective will provide novel avenues for the prevention and treatment of both contagious and non-communicable cancers.
Collapse
Affiliation(s)
- Beata Ujvari
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria, 3216, Australia.,Faculty of Veterinary Sciences, University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Anthony T Papenfuss
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, 3010, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, 3010, Australia.,Bioinformatics and Cancer Genomics, Peter MacCallum Cancer Centre, East Melbourne, Victoria, 3002, Australia
| | - Katherine Belov
- Faculty of Veterinary Sciences, University of Sydney, Sydney, New South Wales, 2006, Australia
| |
Collapse
|
36
|
Toman J, Flegr J. Stability-based sorting: The forgotten process behind (not only) biological evolution. J Theor Biol 2017; 435:29-41. [PMID: 28899756 DOI: 10.1016/j.jtbi.2017.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 08/11/2017] [Accepted: 09/01/2017] [Indexed: 11/19/2022]
Abstract
Natural selection is considered to be the main process that drives biological evolution. It requires selected entities to originate dependent upon one another by the means of reproduction or copying, and for the progeny to inherit the qualities of their ancestors. However, natural selection is a manifestation of a more general persistence principle, whose temporal consequences we propose to name "stability-based sorting" (SBS). Sorting based on static stability, i.e., SBS in its strict sense and usual conception, favours characters that increase the persistence of their holders and act on all material and immaterial entities. Sorted entities could originate independently from each other, are not required to propagate and need not exhibit heredity. Natural selection is a specific form of SBS-sorting based on dynamic stability. It requires some form of heredity and is based on competition for the largest difference between the speed of generating its own copies and their expiration. SBS in its strict sense and selection thus have markedly different evolutionary consequences that are stressed in this paper. In contrast to selection, which is opportunistic, SBS is able to accumulate even momentarily detrimental characters that are advantageous for the long-term persistence of sorted entities. However, it lacks the amplification effect based on the preferential propagation of holders of advantageous characters. Thus, it works slower than selection and normally is unable to create complex adaptations. From a long-term perspective, SBS is a decisive force in evolution-especially macroevolution. SBS offers a new explanation for numerous evolutionary phenomena, including broad distribution and persistence of sexuality, altruistic behaviour, horizontal gene transfer, patterns of evolutionary stasis, planetary homeostasis, increasing ecosystem resistance to disturbances, and the universal decline of disparity in the evolution of metazoan lineages. SBS acts on all levels in all biotic and abiotic systems. It could be the only truly universal evolutionary process, and an explanatory framework based on SBS could provide new insight into the evolution of complex abiotic and biotic systems.
Collapse
Affiliation(s)
- Jan Toman
- Laboratory of Evolutionary Biology, Department of Philosophy and History of Sciences, Faculty of Science, Charles University in Prague, Vinicna 7, 128 00 Prague 2, Czech Republic.
| | - Jaroslav Flegr
- Laboratory of Evolutionary Biology, Department of Philosophy and History of Sciences, Faculty of Science, Charles University in Prague, Vinicna 7, 128 00 Prague 2, Czech Republic.
| |
Collapse
|
37
|
Caldwell A, Siddle HV. The role of MHC genes in contagious cancer: the story of Tasmanian devils. Immunogenetics 2017; 69:537-545. [PMID: 28695294 PMCID: PMC5537419 DOI: 10.1007/s00251-017-0991-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 04/21/2017] [Indexed: 12/15/2022]
Abstract
The Tasmanian devil, a marsupial species endemic to the island of Tasmania, harbours two contagious cancers, Devil Facial Tumour 1 (DFT1) and Devil Facial Tumour 2 (DFT2). These cancers pass between individuals in the population via the direct transfer of tumour cells, resulting in the growth of large tumours around the face and neck of affected animals. While these cancers are rare, a contagious cancer also exists in dogs and five contagious cancers circulate in bivalves. The ability of tumour cells to emerge and transmit in mammals is surprising as these cells are an allograft and should be rejected due to incompatibility between Major Histocompatibility Complex (MHC) genes. As such, considerable research has focused on understanding how DFT1 cells evade the host immune system with particular reference to MHC molecules. This review evaluates the role that MHC class I expression and genotype plays in allowing DFT1 to circumvent histocompatibility barriers in Tasmanian devils. We also examine recent research that suggests that Tasmanian devils can mount an immune response to DFT1 and may form the basis of a protective vaccine against the tumour.
Collapse
Affiliation(s)
- Alison Caldwell
- Department of Biological Science, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, UK
| | - Hannah V Siddle
- Department of Biological Science, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, UK.
| |
Collapse
|
38
|
Jacqueline C, Biro PA, Beckmann C, Moller AP, Renaud F, Sorci G, Tasiemski A, Ujvari B, Thomas F. Cancer: A disease at the crossroads of trade-offs. Evol Appl 2017; 10:215-225. [PMID: 28250806 PMCID: PMC5322410 DOI: 10.1111/eva.12444] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 11/01/2016] [Indexed: 12/14/2022] Open
Abstract
Central to evolutionary theory is the idea that living organisms face phenotypic and/or genetic trade-offs when allocating resources to competing life-history demands, such as growth, survival, and reproduction. These trade-offs are increasingly considered to be crucial to further our understanding of cancer. First, evidences suggest that neoplastic cells, as any living entities subject to natural selection, are governed by trade-offs such as between survival and proliferation. Second, selection might also have shaped trade-offs at the organismal level, especially regarding protective mechanisms against cancer. Cancer can also emerge as a consequence of additional trade-offs in organisms (e.g., eco-immunological trade-offs). Here, we review the wide range of trade-offs that occur at different scales and their relevance for understanding cancer dynamics. We also discuss how acknowledging these phenomena, in light of human evolutionary history, may suggest new guidelines for preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Camille Jacqueline
- CREECMontpellier Cedex 5France
- MIVEGECUMR IRD/CNRS/UM 5290Montpellier Cedex 5France
| | - Peter A. Biro
- Centre for Integrative EcologySchool of Life and Environmental SciencesDeakin UniversityWaurn PondsVICAustralia
| | - Christa Beckmann
- Centre for Integrative EcologySchool of Life and Environmental SciencesDeakin UniversityWaurn PondsVICAustralia
| | - Anders Pape Moller
- Ecologie Systématique EvolutionUniversité Paris‐SudCNRSAgroParisTechUniversité Paris‐Saclay, F‐91405 Orsay CedexFrance
| | - François Renaud
- CREECMontpellier Cedex 5France
- MIVEGECUMR IRD/CNRS/UM 5290Montpellier Cedex 5France
| | - Gabriele Sorci
- BiogéoSciencesCNRS UMR 6282Université de BourgogneDijonFrance
| | - Aurélie Tasiemski
- Unité d'EvolutionEcologie et Paléontologie (EEP) Université de Lille 1 CNRS UMR 8198groupe d'Ecoimmunologie des AnnélidesVilleneuve‐d'AscqFrance
| | - Beata Ujvari
- Centre for Integrative EcologySchool of Life and Environmental SciencesDeakin UniversityWaurn PondsVICAustralia
| | - Frédéric Thomas
- CREECMontpellier Cedex 5France
- MIVEGECUMR IRD/CNRS/UM 5290Montpellier Cedex 5France
| |
Collapse
|
39
|
Karu N, Wilson R, Hamede R, Jones M, Woods GM, Hilder EF, Shellie RA. Discovery of Biomarkers for Tasmanian Devil Cancer (DFTD) by Metabolic Profiling of Serum. J Proteome Res 2016; 15:3827-3840. [DOI: 10.1021/acs.jproteome.6b00629] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Naama Karu
- Australian
Centre for Research on Separation Science (ACROSS), School of Physical
Sciences, University of Tasmania, Private Bag 75, Hobart, Tasmania 7001, Australia
| | - Richard Wilson
- Central
Science Laboratory (CSL), University of Tasmania, Private Bag
74, Hobart, Tasmania 7001, Australia
| | - Rodrigo Hamede
- School
of Biological Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Menna Jones
- School
of Biological Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Gregory M. Woods
- Menzies
Institute for Medical Research, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Emily F. Hilder
- Australian
Centre for Research on Separation Science (ACROSS), School of Physical
Sciences, University of Tasmania, Private Bag 75, Hobart, Tasmania 7001, Australia
| | - Robert A. Shellie
- Australian
Centre for Research on Separation Science (ACROSS), School of Physical
Sciences, University of Tasmania, Private Bag 75, Hobart, Tasmania 7001, Australia
| |
Collapse
|
40
|
Hamede RK, Pearse AM, Swift K, Barmuta LA, Murchison EP, Jones ME. Transmissible cancer in Tasmanian devils: localized lineage replacement and host population response. Proc Biol Sci 2016; 282:rspb.2015.1468. [PMID: 26336167 DOI: 10.1098/rspb.2015.1468] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Tasmanian devil facial tumour disease (DFTD) is a clonally transmissible cancer threatening the Tasmanian devil (Sarcophilus harrisii) with extinction. Live cancer cells are the infectious agent, transmitted to new hosts when individuals bite each other. Over the 18 years since DFTD was first observed, distinct genetic and karyotypic sublineages have evolved. In this longitudinal study, we investigate the associations between tumour karyotype, epidemic patterns and host demographic response to the disease. Reduced host population effects and low DFTD infection rates were associated with high prevalence of tetraploid tumours. Subsequent replacement by a diploid variant of DFTD coincided with a rapid increase in disease prevalence, population decline and reduced mean age of the population. Our results suggest a role for tumour genetics in DFTD transmission dynamics and epidemic outcome. Future research, for this and other highly pathogenic emerging infectious diseases, should focus on understanding the evolution of host and pathogen genotypes, their effects on susceptibility and tolerance to infection, and their implications for designing novel genetic management strategies. This study provides evidence for a rapid localized lineage replacement occurring within a transmissible cancer epidemic and highlights the possibility that distinct DFTD genetic lineages may harbour traits that influence pathogen fitness.
Collapse
Affiliation(s)
- Rodrigo K Hamede
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania 7001, Australia
| | - Anne-Maree Pearse
- Department of Primary Industries, Parks, Water and Environment, Hobart, Tasmania 7001, Australia
| | - Kate Swift
- Department of Primary Industries, Parks, Water and Environment, Hobart, Tasmania 7001, Australia
| | - Leon A Barmuta
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania 7001, Australia
| | - Elizabeth P Murchison
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Menna E Jones
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania 7001, Australia
| |
Collapse
|
41
|
Dondelinger Y, Hulpiau P, Saeys Y, Bertrand MJM, Vandenabeele P. An evolutionary perspective on the necroptotic pathway. Trends Cell Biol 2016; 26:721-732. [PMID: 27368376 DOI: 10.1016/j.tcb.2016.06.004] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 06/02/2016] [Accepted: 06/06/2016] [Indexed: 02/08/2023]
Abstract
Throughout the animal kingdom, innate immune receptors protect the organism from microbial intruders by activating pathways that mediate inflammation and pathogen clearance. Necroptosis contributes to the innate immune response by killing pathogen-infected cells and by alerting the immune system through the release of danger signals. Components of the necroptotic signaling axis - TIR-domain-containing adapter-inducing interferon-β (TRIF), Z-DNA sensor DAI, receptor-interacting kinase (RIPK)1, RIPK3 and mixed-lineage kinase domain-like protein (MLKL) - are therefore expected to be found in all animals. However, a phylogenetic analysis reveals that the necroptotic axis, except for RIPK1, is poorly conserved in the animal kingdom, suggesting that alternative mechanisms regulate necroptosis in these species or that necroptosis would apparently be absent. These findings question the universal role of necroptosis during innate immunity in the animal kingdom.
Collapse
Affiliation(s)
- Yves Dondelinger
- VIB Inflammation Research Center, Technologiepark 927, Zwijnaarde-Ghent, 9052, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, Zwijnaarde-Ghent, 9052, Belgium
| | - Paco Hulpiau
- VIB Inflammation Research Center, Technologiepark 927, Zwijnaarde-Ghent, 9052, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, Zwijnaarde-Ghent, 9052, Belgium
| | - Yvan Saeys
- VIB Inflammation Research Center, Technologiepark 927, Zwijnaarde-Ghent, 9052, Belgium; Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Mathieu J M Bertrand
- VIB Inflammation Research Center, Technologiepark 927, Zwijnaarde-Ghent, 9052, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, Zwijnaarde-Ghent, 9052, Belgium
| | - Peter Vandenabeele
- VIB Inflammation Research Center, Technologiepark 927, Zwijnaarde-Ghent, 9052, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, Zwijnaarde-Ghent, 9052, Belgium.
| |
Collapse
|
42
|
|
43
|
Lima C, Faleiro M, Rabelo R, Vulcani V, Rubini M, Torres F, Moura V. Insertion of the LINE-1 element in the C-MYC gene and immunoreactivity of C-MYC, p53, p21 and p27 proteins in different morphological patterns of the canine TVT. ARQ BRAS MED VET ZOO 2016. [DOI: 10.1590/1678-4162-8750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
ABSTRACT The canine transmissible venereal tumor (TVT) affects the external genitalia of dogs by the natural transplant of viable tumor cells. Thus, this research aimed to diagnose and characterize TVT morphological patterns, identify the insertion of the LINE-1 element in C-MYC gene, by means of the polymerase chain reaction (PCR), and evaluate the immunohistochemical expression of C-MYC, p53, p21 and p27 proteins. The relationship between C-MYC and p53 proteins and their interference on the expression of p21 and p27 were also studied. For that, 20 samples of naturally occurring TVT were used, subjected to cytopathological, histopathological and immunohistochemical analysis, and to molecular diagnosis of neoplasia. The increased tissue expression and the correlation among C-MYC, p53, p21 and p27 proteins indicate reduction and/or loss of their functionality in the TVT microenvironment, with consequent apoptotic suppression, maintenance of cell growth and progression of neoplasia.
Collapse
|
44
|
Castro KF, Strakova A, Tinucci-Costa M, Murchison EP. Evaluation of a genetic assay for canine transmissible venereal tumour diagnosis in Brazil. Vet Comp Oncol 2016; 15:615-618. [PMID: 27135875 DOI: 10.1111/vco.12205] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 10/10/2015] [Accepted: 11/29/2015] [Indexed: 01/20/2023]
Abstract
The canine transmissible venereal tumour (CTVT) is a transmissible cancer that is spread between dogs by the allogeneic transfer of living cancer cells. The infectious agents in CTVT are the living cancer cells themselves, which are transmitted between dogs during coitus. CTVT first arose several thousand years ago and the disease has a global distribution and is frequently observed in dogs from Brazil. We evaluated the utility of a LINE-MYC quantitative polymerase chain reaction for diagnosis of CTVT cases in Brazil. Our analysis indicated that the LINE-MYC rearrangement was detectable in all CTVT samples but not in their corresponding hosts. This genetic assay proves to be a useful tool for providing a definitive molecular diagnosis of CTVT, which presents with varying degrees of aggressiveness and invasiveness in different host dogs and can therefore be a diagnostic challenge in some specific cases.
Collapse
Affiliation(s)
- K F Castro
- Department of Veterinary Medicine, São Paulo State University, São Paulo/Jaboticabal, Brazil
| | - A Strakova
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - M Tinucci-Costa
- Department of Veterinary Medicine, São Paulo State University, São Paulo/Jaboticabal, Brazil
| | - E P Murchison
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
45
|
Browning HM, Gulland FMD, Hammond JA, Colegrove KM, Hall AJ. Common cancer in a wild animal: the California sea lion (Zalophus californianus) as an emerging model for carcinogenesis. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2014.0228. [PMID: 26056370 DOI: 10.1098/rstb.2014.0228] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Naturally occurring cancers in non-laboratory species have great potential in helping to decipher the often complex causes of neoplasia. Wild animal models could add substantially to our understanding of carcinogenesis, particularly of genetic and environmental interactions, but they are currently underutilized. Studying neoplasia in wild animals is difficult and especially challenging in marine mammals owing to their inaccessibility, lack of exposure history, and ethical, logistical and legal limits on experimentation. Despite this, California sea lions (Zalophus californianus) offer an opportunity to investigate risk factors for neoplasia development that have implications for terrestrial mammals and humans who share much of their environment and diet. A relatively accessible California sea lion population on the west coast of the USA has a high prevalence of urogenital carcinoma and is regularly sampled during veterinary care in wildlife rehabilitation centres. Collaborative studies have revealed that genotype, persistent organic pollutants and a herpesvirus are all associated with this cancer. This paper reviews research to date on the epidemiology and pathogenesis of urogenital carcinoma in this species, and presents the California sea lion as an important and currently underexploited wild animal model of carcinogenesis.
Collapse
Affiliation(s)
- Helen M Browning
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews KY16 8LB, UK
| | | | | | - Kathleen M Colegrove
- Zoological Pathology Program, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Maywood, IL 60153, USA
| | - Ailsa J Hall
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews KY16 8LB, UK
| |
Collapse
|
46
|
Ewald PW, Swain Ewald HA. Infection and cancer in multicellular organisms. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2014.0224. [PMID: 26056368 DOI: 10.1098/rstb.2014.0224] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Evolutionary considerations suggest that oncogenic infections should be pervasive among animal species. Infection-associated cancers are well documented in humans and domestic animals, less commonly reported in undomesticated captive animals, and rarely documented in nature. In this paper, we review the literature associating infectious agents with cancer to evaluate the reasons for this pattern. Non-malignant infectious neoplasms occur pervasively in multicellular life, but oncogenic progression to malignancy is often uncertain. Evidence from humans and domestic animals shows that non-malignant infectious neoplasms can develop into cancer, although generally with low frequency. Malignant neoplasms could be difficult to find in nature because of a low frequency of oncogenic transformation, short survival after malignancy and reduced survival prior to malignancy. Moreover, the evaluation of malignancy can be ambiguous in nature, because criteria for malignancy may be difficult to apply consistently across species. The information available in the literature therefore does not allow for a definitive assessment of the pervasiveness of infectious cancers in nature, but the presence of infectious neoplasias and knowledge about the progression of benign neoplasias to cancer is consistent with a widespread but largely undetected occurrence.
Collapse
Affiliation(s)
- Paul W Ewald
- Department of Biology, University of Louisville, Louisville, KY 40292, USA
| | | |
Collapse
|
47
|
Setthawongsin C, Techangamsuwan S, Tangkawattana S, Rungsipipat A. Cell-based polymerase chain reaction for canine transmissible venereal tumor (CTVT) diagnosis. J Vet Med Sci 2016; 78:1167-73. [PMID: 27075116 PMCID: PMC4976273 DOI: 10.1292/jvms.15-0710] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Canine transmissible venereal tumor (CTVT) is the only naturally contagious tumor that is
transmitted during coitus or social behaviors. Based on the tumor’s location, the
diagnosis of genital TVT (GTVT) is comparably easier than those in the extragenital area
(ETVT) that are more easily incorrectly diagnosed. Fortunately, CTVT cells contain a
specific long interspersed nuclear elements (LINE), inserted upstream of the
myc gene, allowing a diagnostic polymerase chain reaction (PCR) based
detection assay. The objectives of this study were aimed to improve the diagnostic
accuracy by applying the diagnostic LINE1-c-myc PCR assay and fine needle
aspiration (FNA) collection in direct comparison with standard cytological and
histopathological analyses. Seventy-four dogs, comprised of 41 and 31 dogs with tumor
masses at their external genitalia and extragenital areas (e.g. skin and nasal cavity),
respectively, were included in this study. The signalment of these 65 dogs and clinical
history of 20 client-owned dogs were collected. Samples were taken by biopsy for both
histopathological examination and FNA for cytological examination and diagnostic PCR. The
PCR products from 10 apparently CTVT samples were purified and sequenced. Sixty-one CTVT
cases were diagnosed by cytological and histological analyses, but 65 were positive by the
PCR assay. Overall, the PCR assay improved the accuracy of diagnostic CTVT results,
especially for the more difficult ETVT tumors. Moreover, this PCR-based approach can
facilitate the decision as to discontinue chemotherapy by discrimination between residual
tumor cell masses and fibrotic tissue.
Collapse
Affiliation(s)
- Chanokchon Setthawongsin
- Companion Animal Cancer Research Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | | | | | | |
Collapse
|
48
|
Hollings T, McCallum H, Kreger K, Mooney N, Jones M. Relaxation of risk-sensitive behaviour of prey following disease-induced decline of an apex predator, the Tasmanian devil. Proc Biol Sci 2016; 282:rspb.2015.0124. [PMID: 26085584 DOI: 10.1098/rspb.2015.0124] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Apex predators structure ecosystems through lethal and non-lethal interactions with prey, and their global decline is causing loss of ecological function. Behavioural changes of prey are some of the most rapid responses to predator decline and may act as an early indicator of cascading effects. The Tasmanian devil (Sarcophilus harrisii), an apex predator, is undergoing progressive and extensive population decline, of more than 90% in long-diseased areas, caused by a novel disease. Time since local disease outbreak correlates with devil population declines and thus predation risk. We used hair traps and giving-up densities (GUDs) in food patches to test whether a major prey species of devils, the arboreal common brushtail possum (Trichosurus vulpecula), is responsive to the changing risk of predation when they forage on the ground. Possums spend more time on the ground, discover food patches faster and forage more to a lower GUD with increasing years since disease outbreak and greater devil population decline. Loss of top-down effects of devils with respect to predation risk was evident at 90% devil population decline, with possum behaviour indistinguishable from a devil-free island. Alternative predators may help to maintain risk-sensitive anti-predator behaviours in possums while devil populations remain low.
Collapse
Affiliation(s)
- Tracey Hollings
- School of Biological Sciences, University of Tasmania, Hobart, Tasmania, Australia 7001 School of Biosciences, University of Melbourne, Melbourne, Victoria, Australia 3010
| | - Hamish McCallum
- Griffith School of Environment, Griffith University, Nathan, Queensland, Australia 4111
| | - Kaely Kreger
- School of Biological Sciences, University of Tasmania, Hobart, Tasmania, Australia 7001
| | - Nick Mooney
- Department of Primary Industries, Parks, Water and Environment, Hobart, Tasmania, Australia 7001
| | - Menna Jones
- School of Biological Sciences, University of Tasmania, Hobart, Tasmania, Australia 7001
| |
Collapse
|
49
|
Ujvari B, Gatenby RA, Thomas F. The evolutionary ecology of transmissible cancers. INFECTION GENETICS AND EVOLUTION 2016; 39:293-303. [PMID: 26861618 DOI: 10.1016/j.meegid.2016.02.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 02/04/2016] [Accepted: 02/05/2016] [Indexed: 12/20/2022]
Abstract
Transmissible tumours, while rare, present a fascinating opportunity to examine the evolutionary dynamics of cancer as both an infectious agent and an exotic, invasive species. Only three naturally-occurring transmissible cancers have been observed so far in the wild: Tasmanian devil facial tumour diseases, canine transmissible venereal tumour, and clam leukaemia. Here, we define four conditions that are necessary and sufficient for direct passage of cancer cells between either vertebrate or invertebrate hosts. Successful transmission requires environment and behaviours that facilitate transfer of tumour cells between hosts including: tumour tissue properties that promote shedding of large numbers of malignant cells, tumour cell plasticity that permits their survival during transmission and growth in a new host, and a 'permissible' host or host tissue. This rare confluence of multiple host- and tumour cell-traits both explains the rarity of tumour cell transmission and provides novel insights into the dynamics that both promote and constrain their growth.
Collapse
Affiliation(s)
- Beata Ujvari
- Deakin University, Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Waurn Ponds, Vic 3216, Australia.
| | - Robert A Gatenby
- Department of Radiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | | |
Collapse
|
50
|
Abstract
Clonally transmissible cancers are somatic cell lineages that are spread between individuals via the transfer of living cancer cells. There are only three known naturally occurring transmissible cancers, and these affect dogs, soft-shell clams, and Tasmanian devils, respectively. The Tasmanian devil transmissible facial cancer was first observed in 1996, and is threatening its host species with extinction. Until now, this disease has been consistently associated with a single aneuploid cancer cell lineage that we refer to as DFT1. Here we describe a second transmissible cancer, DFT2, in five devils located in southern Tasmania in 2014 and 2015. DFT2 causes facial tumors that are grossly indistinguishable but histologically distinct from those caused by DFT1. DFT2 bears no detectable cytogenetic similarity to DFT1 and carries a Y chromosome, which contrasts with the female origin of DFT1. DFT2 shows different alleles to both its hosts and DFT1 at microsatellite, structural variant, and major histocompatibility complex (MHC) loci, confirming that it is a second cancer that can be transmitted between devils as an allogeneic, MHC-discordant graft. These findings indicate that Tasmanian devils have spawned at least two distinct transmissible cancer lineages and suggest that transmissible cancers may arise more frequently in nature than previously considered. The discovery of DFT2 presents important challenges for the conservation of Tasmanian devils and raises the possibility that this species is particularly prone to the emergence of transmissible cancers. More generally, our findings highlight the potential for cancer cells to depart from their hosts and become dangerous transmissible pathogens.
Collapse
|