1
|
Hylton-McComas HM, Cordes A, Floros KV, Faber AC, Drapkin BJ, Miles WO. Myc family proteins: Molecular drivers of tumorigenesis and resistance in neuroendocrine tumors. Biochim Biophys Acta Rev Cancer 2025; 1880:189332. [PMID: 40280500 DOI: 10.1016/j.bbcan.2025.189332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 04/18/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025]
Abstract
Neuroendocrine cancers are a diverse and poorly understood collection of malignancies derived from neuroendocrine cells throughout the body. These cancers uniquely exhibit properties of both the nervous and endocrine systems. Only a limited number of genetic driver mutations have been identified in neuroendocrine cancers, however the mechanisms of how these genetic aberrations alter tumor biology remain elusive. Recent studies have implicated the MYC family of transcription factors as important oncogenic factors in neuroendocrine tumors. We take a systematic approach to understand the roles of the MYC family (c-MYC, n-MYC, l-MYC) in the tumorigenesis of neuroendocrine cancers of the lung, GI tract, pancreas, kidney, prostate, pediatric neuroblastoma, and adrenal glands. Reflecting the complexity of neuroendocrine cancers, we highlight the roles of the MYC family in deregulating the cell cycle and transcriptional networks, invoking cellular plasticity, affecting proliferation capacity, aiding in chromatin remodeling, angiogenesis, metabolic changes, and resistance mechanisms. Depicting the diversity of neuroendocrine cancers, we suggest new approaches in understanding the underlying tumorigenic processes of neuroendocrine cancers from the perspective of MYC.
Collapse
Affiliation(s)
- Hannah M Hylton-McComas
- Department of Cancer Biology and Genetics, The Ohio State University, 460 West 12(th) Avenue, Columbus, OH 43210, USA; The Ohio State University Comprehensive Cancer Center, The Ohio State University, 460 West 12(th) Avenue, Columbus, OH 43210, USA
| | - Alyssa Cordes
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Internal Medicine and Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Konstantinos V Floros
- VCU Philips Institute, Virginia Commonwealth University School of Dentistry and Massey Comprehensive Cancer Center, Richmond, VA 23298, USA; Department of Pediatrics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Anthony C Faber
- VCU Philips Institute, Virginia Commonwealth University School of Dentistry and Massey Comprehensive Cancer Center, Richmond, VA 23298, USA; Department of Pediatrics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Benjamin J Drapkin
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Internal Medicine and Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Wayne O Miles
- Department of Cancer Biology and Genetics, The Ohio State University, 460 West 12(th) Avenue, Columbus, OH 43210, USA; The Ohio State University Comprehensive Cancer Center, The Ohio State University, 460 West 12(th) Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
2
|
Clements AN, Casillas AL, Flores CE, Liou H, Toth RK, Chauhan SS, Sutterby K, Deshmukh SK, Wu S, Xiu J, Farrell A, Radovich M, Nabhan C, Heath EI, McKay RR, Subah N, Centuori S, Weeler TJ, Cress AE, Rogers GC, Wilson JE, Recio-Boiles A, Warfel NA. Inhibition of PIM Kinase in Tumor-Associated Macrophages Suppresses Inflammasome Activation and Sensitizes Prostate Cancer to Immunotherapy. Cancer Immunol Res 2025; 13:633-645. [PMID: 39982419 PMCID: PMC12048269 DOI: 10.1158/2326-6066.cir-24-0591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 11/26/2024] [Accepted: 02/20/2025] [Indexed: 02/22/2025]
Abstract
Immune checkpoint inhibitors (ICI) have changed the treatment paradigm for many cancers but have not shown benefit in prostate cancer. Chronic inflammation contributes to the immunosuppressive prostate tumor microenvironment and is associated with poor response to ICIs. The primary source of inflammatory cytokine production is the inflammasome. In this study, we identify the proviral integration site for Moloney murine leukemia virus (PIM) kinases as regulators of inflammasome activation in tumor-associated macrophages (TAM). The analysis of clinical data from a cohort of patients with treatment-naïve, hormone-responsive prostate cancer revealed that tumors from patients with high PIM1/2/3 displayed an immunosuppressive tumor microenvironment characterized by high inflammation and a high density of repressive immune cells, most notably TAMs. Macrophage-specific knockout of PIM reduced tumor growth in syngeneic models of prostate cancer. Transcriptional analyses indicated that eliminating PIM from macrophages enhanced the adaptive immune response and increased cytotoxic immune cells. Combined treatment with PIM inhibitors and ICIs synergistically reduced tumor growth. Immune profiling revealed that PIM inhibitors sensitized prostate cancer tumors to ICIs by increasing tumor suppressive TAMs and increasing the activation of cytotoxic T cells. Our data implicate macrophage PIM as a driver of inflammation that limits ICI potency and provide preclinical evidence that PIM inhibitors are an effective strategy to improve the ICI efficacy in prostate cancer.
Collapse
Affiliation(s)
| | | | | | - Hope Liou
- Cancer Biology Graduate Program, University of Arizona, Tucson, AZ
| | | | | | | | | | | | | | | | | | | | | | | | - Noor Subah
- University of Arizona Health Sciences, Tucson, AZ
| | | | | | - Anne E. Cress
- University of Arizona Cancer Center, Tucson, AZ
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ
| | - Gregory C. Rogers
- University of Arizona Cancer Center, Tucson, AZ
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ
| | - Justin E. Wilson
- University of Arizona Cancer Center, Tucson, AZ
- Department of Immunobiology, University of Arizona, Tucson, AZ
| | - Alejandro Recio-Boiles
- University of Arizona Cancer Center, Tucson, AZ
- Department of Medicine, University of Arizona, Tucson, AZ
| | - Noel A. Warfel
- University of Arizona Cancer Center, Tucson, AZ
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ
| |
Collapse
|
3
|
Rajkumar-Calkins A, Sagar V, Wang J, Bailey S, Anderson P, Abdulkadir SA, Kirschner AN. PIM kinase inhibition counters resistance to radiotherapy and chemotherapy in human prostate cancer. Radiother Oncol 2025; 206:110794. [PMID: 39978680 DOI: 10.1016/j.radonc.2025.110794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 02/12/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025]
Abstract
PURPOSE PIM kinases are associated with treatment resistance and poor prognosis in prostate cancer through roles in DNA damage response, cellular metabolism, proliferation, and survival. We hypothesized PIM inhibition addresses treatment resistance to radiotherapy and docetaxel in prostate cancer. METHODS PIM inhibition in prostate cancer cell lines was examined by phosphorylated H2AX and colony formations assays. In normal and castrated mice with prostate tumor xenografts, tumor growth was monitored with daily oral PIM inhibition +/- fractionated radiotherapy (RT) or docetaxel. Radiotherapy was given 30 Gy in 15 treatments, mimicking clinical conventional daily treatment over 3 weeks in a translational murine model system. RESULTS PIM inhibition decreased radiotherapy-induced DNA-damage repair and decreased cell proliferation and survival. In mice, PIM inhibition increased the efficacy of both radiation and docetaxel to reduce tumor size in hormone-dependent and -independent xenografts. Xenografts showed altered gene expression changes, including downregulation of ribosomal pathways and upregulation of cardiomyocyte signaling pathways, due to PIM inhibition as analyzed by RNA-Seq. Immunostaining of multiple proteins, including COX-2 and MDM2, was altered by PIM inhibition. CONCLUSIONS PIM inhibition addresses treatment resistance to docetaxel and radiotherapy in multiple prostate cancer models. Our data provide a strong rationale for testing PIM inhibitors in combination with standard therapies for treatment-resistant high-risk localized or metastatic prostate cancer in clinical trials.
Collapse
Affiliation(s)
- Anne Rajkumar-Calkins
- Department of Radiation Oncology, Vanderbilt University Medical Center, 2220 Pierce Ave, B1003 PRB, Nashville, TN 37232, USA; Department of Radiation Oncology, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA
| | - Vinay Sagar
- Department of Urology, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, 676 N. St. Clair St., Arkes 2300, Chicago, IL 60611, USA
| | - Jian Wang
- Department of Radiation Oncology, Vanderbilt University Medical Center, 2220 Pierce Ave, B1003 PRB, Nashville, TN 37232, USA
| | - Shania Bailey
- Department of Biological Sciences, Salisbury University, 1101 Camden Avenue, Salisbury, MD 21801, USA
| | - Philip Anderson
- Department of Biological Sciences, Salisbury University, 1101 Camden Avenue, Salisbury, MD 21801, USA
| | - Sarki A Abdulkadir
- Department of Urology and Pathology, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, 303 E Superior St., Chicago, IL 60611, USA
| | - Austin N Kirschner
- Department of Radiation Oncology, Vanderbilt University Medical Center, 2220 Pierce Ave, B1003 PRB, Nashville, TN 37232, USA.
| |
Collapse
|
4
|
Abd El Hadi SR, Eldinary MA, Ghith A, Haffez H, Salman A, Sayed GA. Unravelling the potency of the 4-oxo-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carbonitrile scaffold with S-arylamide hybrids as PIM-1 kinase inhibitors: synthesis, biological activity and in silico studies. RSC Med Chem 2025:d5md00021a. [PMID: 40162200 PMCID: PMC11951167 DOI: 10.1039/d5md00021a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 03/11/2025] [Indexed: 04/02/2025] Open
Abstract
PIM-1 is a type of serine/threonine kinase that plays a crucial role in controlling several vital processes, including proliferation and apoptosis. New synthetic S-amide tetrahydropyrimidinone derivatives were designed and synthesized as PIM-1 inhibitors with potential anticancer activity. Several biochemical assays were performed for anticancer assessment, including PIM-1 inhibitory assays, MTT, apoptosis and cell cycle, gene expression analysis, c-MYC analysis, and ATPase inhibitory assays. Compounds (8c, 8d, 8g, 8h, 8k, and 8l) exhibited strong in vitro broad antiproliferative activity against MCF-7, DU-145, and PC-3, with a relatively higher SI index suggesting minimal cytotoxicity to normal cells. Furthermore, these compounds induced mixed late apoptosis and necrosis with cell cycle arrest at the G2/M phase. Moreover, compounds 8b, 8f, 8g, 8k, and 8l showed potent inhibitory action against PIM-1 kinase, with corresponding IC50 values of 660, 909, 373, 518, and 501 nM. In silico prediction studies of physiochemical properties, molecular dynamics, and induced fit docking studies were performed for these compounds to explain their potent biological activity. In conclusion, new pyrimidinone compounds (8c, 8d, 8g, 8h, 8k, and 8l) exhibit potential PIM-1 inhibitory activity and can be used as promising scaffolds for further optimization of new leads with selective PIM-inhibitors and anticancer activity.
Collapse
Affiliation(s)
- Soha R Abd El Hadi
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Egyptian Russian University, Badr City Cairo 11829 Egypt
| | - Manar A Eldinary
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Egyptian Russian University, Badr City Cairo 11829 Egypt
| | - Amna Ghith
- Discipline of Surgical Specialties, Adelaide Medical School, University of Adelaide, The Queen Elizabeth Hospital Woodville South SA 5011 Australia
- Robinson Research Institute, University of Adelaide Adelaide SA 5006 Australia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Future University in Egypt Cairo 11835 Egypt
| | - Hesham Haffez
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University P.O. Box 11795 Cairo Egypt
- Center of Scientific Excellence "Helwan Structural Biology Research (HSBR)", Helwan University Cairo 11795 Egypt
| | - Aya Salman
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829 Cairo Egypt
| | - Ghadir A Sayed
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829 Cairo Egypt
| |
Collapse
|
5
|
Kumada T, Mimae T, Tsubokawa N, Kushitani K, Takeshima Y, Miyata Y, Okada M. Role of guanylate-binding protein 1 in the proliferation of invasive lung adenocarcinoma cells. Front Oncol 2025; 15:1434249. [PMID: 40018406 PMCID: PMC11865198 DOI: 10.3389/fonc.2025.1434249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 01/03/2025] [Indexed: 03/01/2025] Open
Abstract
Background Guanylate-binding protein 1 (GBP1) is involved in the malignant progression of lung adenocarcinoma, particularly in the acquisition of invasive potential. However, its role in tumor proliferation and therapeutic viability in invasive lung adenocarcinomas remains unclear. Methods This study included 99 patients with invasive lung adenocarcinoma, excluding those with non-invasive lepidic components, who had undergone complete pulmonary resection. Immunohistochemical staining was performed to examine the presence of GBP1, and its prognostic significance was assessed using uni- and multi-variable Cox regression analyses. Additionally, the expression levels of GBP1 gene and protein levels were evaluated in lung adenocarcinoma cell lines (PC-9, A549, NCI-H322, NCI-H441, NCI-H820, and ABC-1), and its proliferative role in these cell lines was analyzed using specific inhibitors targeting GBP1. Results GBP1 expression was detected in 45 (45.5%) patients. The 5-year overall survival rates for GBP1-positive and -negative patients were 66.0% (95% confidence interval (CI): 46.3-80.0%) and 85.7% (95% CI: 72.0-93.0%), respectively (P = 0.029). The multivariable analysis demonstrated that GBP1 positivity was an independent factor for poor overall survival (hazard ratio [HR] = 2.52 [95% CI: 1.02-6.22], P = 0.045). GBP1 gene and protein were markedly expressed in NCI-H820 than in NCI-H322 and ABC-1. The inhibitor targeting GBP1 significantly suppressed the growth of NCI-H820 but not that of NCI-H322 or ABC-1. Conclusions GBP1 is a prognostic factor that may be involved in the proliferation of invasive lung adenocarcinoma, suggesting that inhibiting GBP1 activity may be a promising therapeutic approach for lung adenocarcinoma patients expressing GBP1.
Collapse
Affiliation(s)
- Takashi Kumada
- Department of Surgical Oncology, Hiroshima University, Hiroshima, Japan
| | - Takahiro Mimae
- Department of Surgical Oncology, Hiroshima University, Hiroshima, Japan
| | | | - Kei Kushitani
- Department of Pathology, Hiroshima University, Hiroshima, Japan
| | - Yukio Takeshima
- Department of Pathology, Hiroshima University, Hiroshima, Japan
| | - Yoshihiro Miyata
- Department of Surgical Oncology, Hiroshima University, Hiroshima, Japan
| | - Morihito Okada
- Department of Surgical Oncology, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
6
|
Wang LY, Hung CL, Wang TC, Hsu HC, Kung HJ, Lin KH. PROTACs as Therapeutic Modalities for Drug Discovery in Castration-Resistant Prostate Cancer. Annu Rev Pharmacol Toxicol 2025; 65:375-396. [PMID: 39116434 DOI: 10.1146/annurev-pharmtox-030624-110238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Castration-resistant prostate cancer (CRPC) presents significant challenges in clinical management due to its resistance to conventional androgen receptor (AR)-targeting therapies. The advent of proteolysis targeting chimeras (PROTACs) has revolutionized cancer therapy by enabling the targeted degradation of key molecular players implicated in CRPC progression. In this review we discuss the developments of PROTACs for CRPC treatment, focusing on AR and other CRPC-associated regulators. We provide an overview of the strategic trends in AR PROTAC development from the aspect of targeting site selection and preclinical antitumor evaluation, as well as updates on AR degraders in clinical applications. Additionally, we briefly address the current status of selective AR degrader development. Furthermore, we review new developments in PROTACs as potential CRPC treatment paradigms, highlighting those targeting chromatin modulators BRD4, EZH2, and SWI/SNF; transcription regulator SMAD3; and kinases CDK9 and PIM1. Given the molecular targets shared between CRPC and neuroendocrine prostate cancer (NEPC), we also discuss the potential of PROTACs in addressing NEPC.
Collapse
Affiliation(s)
- Ling-Yu Wang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Department of Biochemistry and Molecular Biology, Chang Gung University, Taoyuan, Taiwan;
| | - Chiu-Lien Hung
- Department of Preclinical Drug Discovery Technology, Biomedical Technology and Devices Research Labs, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Tsan-Chun Wang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hung-Chih Hsu
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Hsing-Jien Kung
- Research Center of Cancer Translational Medicine and PhD Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Kwang-Huei Lin
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
7
|
Wang X, Li S, Shen Y, Cao L, Lu Y, Cao J, Liu Y, Deng A, Yang J, Wang T. Construction of molecular subtype and prognostic model for gastric cancer based on nucleus-encoded mitochondrial genes. Sci Rep 2024; 14:28491. [PMID: 39557952 PMCID: PMC11574080 DOI: 10.1038/s41598-024-78729-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 11/04/2024] [Indexed: 11/20/2024] Open
Abstract
Gastric cancer (GC) is a common digestive system cancer, characterized by a significant mortality rate. Mitochondria is an indispensable organelle in eukaryotic cells. It was previously revealed that a series of nucleus-encoded mitochondrial genes (NMG) mutations and dysfunctions potentially contribute to the initiation and progression of GC. However, the correlation between NMG mutations and survival outcomes for GC patients is still unclear. In this study, NMG expression profile and clinical information in GC samples were collected from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Through consistent clustering and functional enrichment analysis, we have identified three NMG clusters and three gene clusters that are associated with patterns of immune cell infiltration. Prognostic genes were identified through Univariate Cox regression analysis. The principal component analysis was conducted to set up a scoring system. Subsequently, the Single‑cell RNA sequencing (scRNA-seq) data of GC patients and cancer cell drug sensitivity data were retrieved from the GEO database. Patients with high NMG scores exhibited increased microsatellite instability status and a heightened tumor mutation rate compared to those with low NMG scores. Survival analysis revealed that GC samples with high NMG scores could achieve a better prognosis. Additionally, These patients were observed to be more responsive to immunotherapy. Moreover, we delved into prognostic genes at the level of single cells, revealing that MRPL4 and MRPL37 exhibit high expression in epithelial cells, while TPM1 demonstrates high expression in tissue stem cells. Utilizing cancer cell drug sensitivity data from the Drug Sensitivity in Cancer (GDSC) database, we noted a heightened sensitivity to chemotherapy in the high NMG group. Furthermore, we discovered a significant enrichment of cuproptosis-related genes in clusters with high NMG scores. Consequently, employing the scoring system could facilitate the prediction of GC patients' sensitivity to cuproptosis-induced therapy. Our study confirmed the potency of this scoring system as a therapeutic response biomarker for gastric cancer, potentially informing clinical treatment strategies.
Collapse
Affiliation(s)
- Xu Wang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center of Medical Genetics, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Sainan Li
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Yuhuan Shen
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Li Cao
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center of Medical Genetics, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yajuan Lu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Jinghao Cao
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Yingchao Liu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Aoli Deng
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Jiyun Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center of Medical Genetics, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| | - Tongtong Wang
- Department of Intensive Care Unit, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xian, China.
| |
Collapse
|
8
|
Choudhury R, Bahadi CK, Ray IP, Dash P, Pattanaik I, Mishra S, Mohapatra SR, Patnaik S, Nikhil K. PIM1 kinase and its diverse substrate in solid tumors. Cell Commun Signal 2024; 22:529. [PMID: 39487435 PMCID: PMC11531143 DOI: 10.1186/s12964-024-01898-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/18/2024] [Indexed: 11/04/2024] Open
Abstract
The PIM kinase family, consisting of PIM1, PIM2, and PIM3, is a group of serine/threonine protein kinases crucial for cellular growth, immunoregulation, and oncogenesis. PIM1 kinase is often overexpressed in solid and hematopoietic malignancies, promoting cell survival, proliferation, migration, and senescence by activating key genes. In vitro and in vivo studies have established the oncogenic potential of PIM1 kinases. These kinases have been implicated in tumor progression, metastasis, and resistance to chemotherapy, underscoring their potential as a therapeutic target for cancer therapy. This review delves into the intricate molecular mechanisms through which PIM1 interacts with specific substrates in different tumor tissues, leading to diverse outcomes in various human cancers. Over the past decade, the inhibition of PIM1 in cancers has garnered significant attention as a potential standalone treatment. Various in vitro, in vivo, and early clinical trial data have provided support for this approach to varying extents. Novel compounds that inhibit PIM1 kinase have shown effectiveness and a favorable toxicity profile in preclinical studies. Several of these substances are now being studied in clinical trials due to their promising outcomes. This article provides a thorough examination of the PIM1 kinase pathways and the recent advancements in producing PIM1 kinase inhibitors for the treatment of cancer.
Collapse
Affiliation(s)
- Rituparna Choudhury
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed-to-Be-University, Bhubaneswar, 751024, India
| | - Chandan Kumar Bahadi
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed-to-Be-University, Bhubaneswar, 751024, India
| | - Ipsa Pratibimbita Ray
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed-to-Be-University, Bhubaneswar, 751024, India
| | - Pragyanshree Dash
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed-to-Be-University, Bhubaneswar, 751024, India
| | - Isha Pattanaik
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed-to-Be-University, Bhubaneswar, 751024, India
| | - Suman Mishra
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed-to-Be-University, Bhubaneswar, 751024, India
| | - Soumya R Mohapatra
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed-to-Be-University, Bhubaneswar, 751024, India
| | - Srinivas Patnaik
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed-to-Be-University, Bhubaneswar, 751024, India
| | - Kumar Nikhil
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed-to-Be-University, Bhubaneswar, 751024, India.
| |
Collapse
|
9
|
Rout AK, Dehury B, Parida SN, Rout SS, Jena R, Kaushik N, Kaushik NK, Pradhan SK, Sahoo CR, Singh AK, Arya M, Behera BK. A review on structure-function mechanism and signaling pathway of serine/threonine protein PIM kinases as a therapeutic target. Int J Biol Macromol 2024; 270:132030. [PMID: 38704069 DOI: 10.1016/j.ijbiomac.2024.132030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/05/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
The proviral integration for the Moloney murine leukemia virus (PIM) kinases, belonging to serine/threonine kinase family, have been found to be overexpressed in various types of cancers, such as prostate, breast, colon, endometrial, gastric, and pancreatic cancer. The three isoforms PIM kinases i.e., PIM1, PIM2, and PIM3 share a high degree of sequence and structural similarity and phosphorylate substrates controlling tumorigenic phenotypes like proliferation and cell survival. Targeting short-lived PIM kinases presents an intriguing strategy as in vivo knock-down studies result in non-lethal phenotypes, indicating that clinical inhibition of PIM might have fewer adverse effects. The ATP binding site (hinge region) possesses distinctive attributes, which led to the development of novel small molecule scaffolds that target either one or all three PIM isoforms. Machine learning and structure-based approaches have been at the forefront of developing novel and effective chemical therapeutics against PIM in preclinical and clinical settings, and none have yet received approval for cancer treatment. The stability of PIM isoforms is maintained by PIM kinase activity, which leads to resistance against PIM inhibitors and chemotherapy; thus, to overcome such effects, PIM proteolysis targeting chimeras (PROTACs) are now being developed that specifically degrade PIM proteins. In this review, we recapitulate an overview of the oncogenic functions of PIM kinases, their structure, function, and crucial signaling network in different types of cancer, and the potential of pharmacological small-molecule inhibitors. Further, our comprehensive review also provides valuable insights for developing novel antitumor drugs that specifically target PIM kinases in the future. In conclusion, we provide insights into the benefits of degrading PIM kinases as opposed to blocking their catalytic activity to address the oncogenic potential of PIM kinases.
Collapse
Affiliation(s)
- Ajaya Kumar Rout
- Rani Lakshmi Bai Central Agricultural University, Jhansi-284003, Uttar Pradesh, India
| | - Budheswar Dehury
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal-576104, India
| | - Satya Narayan Parida
- Rani Lakshmi Bai Central Agricultural University, Jhansi-284003, Uttar Pradesh, India
| | - Sushree Swati Rout
- Department of Zoology, Fakir Mohan University, Balasore-756089, Odisha, India
| | - Rajkumar Jena
- Department of Zoology, Fakir Mohan University, Balasore-756089, Odisha, India
| | - Neha Kaushik
- Department of Biotechnology, The University of Suwon, Hwaseong si, South Korea
| | | | - Sukanta Kumar Pradhan
- Department of Bioinformatics, Odisha University of Agriculture and Technology, Bhubaneswar-751003, Odisha, India
| | - Chita Ranjan Sahoo
- ICMR-Regional Medical Research Centre, Department of Health Research, Ministry of Health and Family Welfare, Government of India, Bhubaneswar-751023, India
| | - Ashok Kumar Singh
- Rani Lakshmi Bai Central Agricultural University, Jhansi-284003, Uttar Pradesh, India
| | - Meenakshi Arya
- Rani Lakshmi Bai Central Agricultural University, Jhansi-284003, Uttar Pradesh, India.
| | - Bijay Kumar Behera
- Rani Lakshmi Bai Central Agricultural University, Jhansi-284003, Uttar Pradesh, India.
| |
Collapse
|
10
|
Izadmehr S, Fernandez-Hernandez H, Wiredja D, Kirschenbaum A, Lee-Poturalski C, Tavassoli P, Yao S, Schlatzer D, Hoon D, Difeo A, Levine AC, Mosquera JM, Galsky MD, Cordon-Cardo C, Narla G. Cooperativity of c-MYC with Krüppel-Like Factor 6 Splice Variant 1 induces phenotypic plasticity and promotes prostate cancer progression and metastasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.30.577982. [PMID: 38352401 PMCID: PMC10862900 DOI: 10.1101/2024.01.30.577982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Metastasis remains a major cause of morbidity and mortality in men with prostate cancer, and the functional impact of the genetic alterations, alone or in combination, driving metastatic disease remains incompletely understood. The proto-oncogene c-MYC, commonly deregulated in prostate cancer. Transgenic expression of c-MYC is sufficient to drive the progression to prostatic intraepithelial neoplasia and ultimately to moderately differentiated localized primary tumors, however, c-MYC-driven tumors are unable to progress through the metastatic cascade, suggesting that a "second-hit" is necessary in the milieu of aberrant c-MYC-driven signaling. Here, we identified cooperativity between c-MYC and KLF6-SV1, an oncogenic splice variant of the KLF6 gene. Transgenic mice that co-expressed KLF6-SV1 and c-MYC developed progressive and metastatic prostate cancer with a histological and molecular phenotype like human prostate cancer. Silencing c-MYC expression significantly reduced tumor burden in these mice supporting the necessity for c-MYC in tumor maintenance. Unbiased global proteomic analysis of tumors from these mice revealed significantly enriched vimentin, a dedifferentiation and pro-metastatic marker, induced by KLF6-SV1. c-MYC-positive tumors were also significantly enriched for KLF6-SV1 in human prostate cancer specimens. Our findings provide evidence that KLF6-SV1 is an enhancer of c-MYC-driven prostate cancer progression and metastasis, and a correlated genetic event in human prostate cancer with potential translational significance.
Collapse
Affiliation(s)
- Sudeh Izadmehr
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | | | - Danica Wiredja
- Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, OH
| | | | - Christine Lee-Poturalski
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Peyman Tavassoli
- Department of Pathology and Laboratory Medicine, The Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medical College, New York-Presbyterian Hospital, New York, NY
| | - Shen Yao
- The Division of Endocrinology, Diabetes and Bone Disease, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Daniela Schlatzer
- Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, OH
| | - Divya Hoon
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Analisa Difeo
- Department of Pathology, University of Michigan, Ann Arbor, MI
| | - Alice C. Levine
- The Division of Endocrinology, Diabetes and Bone Disease, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Juan-Miguel Mosquera
- Department of Pathology and Laboratory Medicine, The Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medical College, New York-Presbyterian Hospital, New York, NY
| | - Matthew D. Galsky
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Carlos Cordon-Cardo
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Goutham Narla
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| |
Collapse
|
11
|
Karati D, Saha A, Roy S, Mukherjee S. PIM Kinase Inhibitors as Novel Promising Therapeutic Scaffolds in Cancer Therapy. Curr Top Med Chem 2024; 24:2489-2508. [PMID: 39297470 DOI: 10.2174/0115680266321659240906114742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 08/24/2024] [Accepted: 08/28/2024] [Indexed: 11/21/2024]
Abstract
Cancer involves the uncontrolled, abnormal growth of cells and affects other tissues. Kinase has an impact on proliferating the cells and causing cancer. For the purpose of treating cancer, PIM kinase is a potential target. The pro-viral Integration site for moloney murine leukaemia virus (PIM) kinases is responsible for the tumorigenesis, by phosphorylating the proteins that control the cell cycle and cell proliferation. PIM-1, PIM-2, and PIM-3 are the three distinct isoforms of PIM kinases. The JAK/STAT pathway is essential for controlling how PIM genes are expressed. PIM kinase is also linked withPI3K/AKT/mTOR pathway in various types of cancers. The overexpression of PIM kinase will cause cancer. Currently, there are significant efforts being made in medication design and development to target its inhibition. A few small chemical inhibitors (E.g., SGI-1776, AZD1208, LGH447) that specifically target the PIM proteins' adenosine triphosphate (ATP)-binding domain have been identified. PIM kinase antagonists have a remarkable effect on different types of cancer. Despite conducting clinical trials on SGI-1776, the first PIM inhibitory agent, was prematurely withdrawn, making it unable to generate concept evidence. On the other hand, in recent years, it has aided in hastening the identification of multiple new PIM inhibitors. Cyanopyridines and Pyrazolo[1,5-a]pyrimidinecan act as potent PIM kinase inhibitors for cancer therapy. We explore the involvement of oncogenic transcription factor c-Mycandmi-RNA in relation to PIM kinase. In this article, we highlight the oncogenic effects, and structural insights into PIM kinase inhibitors for the treatment of cancer.
Collapse
Affiliation(s)
- Dipanjan Karati
- Department of Pharmaceutical Technology, School of Pharmacy, Techno India University, Kolkata 700091, West Bengal, India
| | - Ankur Saha
- Department of Pharmaceutical Technology, School of Pharmacy, Techno India University, Kolkata 700091, West Bengal, India
| | - Souvik Roy
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata - Group of Institutions, 124, B.L Saha Road, Kolkata 700053, West Bengal, India
| | - Swarupananda Mukherjee
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata - Group of Institutions, 124, B.L Saha Road, Kolkata 700053, West Bengal, India
| |
Collapse
|
12
|
Wang A, Shen J, Rodriguez AA, Saunders EJ, Chen F, Janivara R, Darst BF, Sheng X, Xu Y, Chou AJ, Benlloch S, Dadaev T, Brook MN, Plym A, Sahimi A, Hoffman TJ, Takahashi A, Matsuda K, Momozawa Y, Fujita M, Laisk T, Figuerêdo J, Muir K, Ito S, Liu X, The Biobank Japan Project, Uchio Y, Kubo M, Kamatani Y, Lophatananon A, Wan P, Andrews C, Lori A, Choudhury PP, Schleutker J, Tammela TL, Sipeky C, Auvinen A, Giles GG, Southey MC, MacInnis RJ, Cybulski C, Wokolorczyk D, Lubinski J, Rentsch CT, Cho K, Mcmahon BH, Neal DE, Donovan JL, Hamdy FC, Martin RM, Nordestgaard BG, Nielsen SF, Weischer M, Bojesen SE, Røder A, Stroomberg HV, Batra J, Chambers S, Horvath L, Clements JA, Tilly W, Risbridger GP, Gronberg H, Aly M, Szulkin R, Eklund M, Nordstrom T, Pashayan N, Dunning AM, Ghoussaini M, Travis RC, Key TJ, Riboli E, Park JY, Sellers TA, Lin HY, Albanes D, Weinstein S, Cook MB, Mucci LA, Giovannucci E, Lindstrom S, Kraft P, Hunter DJ, Penney KL, Turman C, Tangen CM, Goodman PJ, Thompson IM, Hamilton RJ, Fleshner NE, Finelli A, Parent MÉ, Stanford JL, Ostrander EA, Koutros S, Beane Freeman LE, Stampfer M, Wolk A, et alWang A, Shen J, Rodriguez AA, Saunders EJ, Chen F, Janivara R, Darst BF, Sheng X, Xu Y, Chou AJ, Benlloch S, Dadaev T, Brook MN, Plym A, Sahimi A, Hoffman TJ, Takahashi A, Matsuda K, Momozawa Y, Fujita M, Laisk T, Figuerêdo J, Muir K, Ito S, Liu X, The Biobank Japan Project, Uchio Y, Kubo M, Kamatani Y, Lophatananon A, Wan P, Andrews C, Lori A, Choudhury PP, Schleutker J, Tammela TL, Sipeky C, Auvinen A, Giles GG, Southey MC, MacInnis RJ, Cybulski C, Wokolorczyk D, Lubinski J, Rentsch CT, Cho K, Mcmahon BH, Neal DE, Donovan JL, Hamdy FC, Martin RM, Nordestgaard BG, Nielsen SF, Weischer M, Bojesen SE, Røder A, Stroomberg HV, Batra J, Chambers S, Horvath L, Clements JA, Tilly W, Risbridger GP, Gronberg H, Aly M, Szulkin R, Eklund M, Nordstrom T, Pashayan N, Dunning AM, Ghoussaini M, Travis RC, Key TJ, Riboli E, Park JY, Sellers TA, Lin HY, Albanes D, Weinstein S, Cook MB, Mucci LA, Giovannucci E, Lindstrom S, Kraft P, Hunter DJ, Penney KL, Turman C, Tangen CM, Goodman PJ, Thompson IM, Hamilton RJ, Fleshner NE, Finelli A, Parent MÉ, Stanford JL, Ostrander EA, Koutros S, Beane Freeman LE, Stampfer M, Wolk A, Håkansson N, Andriole GL, Hoover RN, Machiela MJ, Sørensen KD, Borre M, Blot WJ, Zheng W, Yeboah ED, Mensah JE, Lu YJ, Zhang HW, Feng N, Mao X, Wu Y, Zhao SC, Sun Z, Thibodeau SN, McDonnell SK, Schaid DJ, West CM, Barnett G, Maier C, Schnoeller T, Luedeke M, Kibel AS, Drake BF, Cussenot O, Cancel-Tassin G, Menegaux F, Truong T, Koudou YA, John EM, Grindedal EM, Maehle L, Khaw KT, Ingles SA, Stern MC, Vega A, Gómez-Caamaño A, Fachal L, Rosenstein BS, Kerns SL, Ostrer H, Teixeira MR, Paulo P, Brandão A, Watya S, Lubwama A, Bensen JT, Butler EN, Mohler JL, Taylor JA, Kogevinas M, Dierssen-Sotos T, Castaño-Vinyals G, Cannon-Albright L, Teerlink CC, Huff CD, Pilie P, Yu Y, Bohlender RJ, Gu J, Strom SS, Multigner L, Blanchet P, Brureau L, Kaneva R, Slavov C, Mitev V, Leach RJ, Brenner H, Chen X, Holleczek B, Schöttker B, Klein EA, Hsing AW, Kittles RA, Murphy AB, Logothetis CJ, Kim J, Neuhausen SL, Steele L, Ding YC, Isaacs WB, Nemesure B, Hennis AJ, Carpten J, Pandha H, Michael A, Ruyck KD, Meerleer GD, Ost P, Xu J, Razack A, Lim J, Teo SH, Newcomb LF, Lin DW, Fowke JH, Neslund-Dudas CM, Rybicki BA, Gamulin M, Lessel D, Kulis T, Usmani N, Abraham A, Singhal S, Parliament M, Claessens F, Joniau S, den Broeck TV, Gago-Dominguez M, Castelao JE, Martinez ME, Larkin S, Townsend PA, Aukim-Hastie C, Bush WS, Aldrich MC, Crawford DC, Srivastava S, Cullen J, Petrovics G, Casey G, Wang Y, Tettey Y, Lachance J, Tang W, Biritwum RB, Adjei AA, Tay E, Truelove A, Niwa S, Yamoah K, Govindasami K, Chokkalingam AP, Keaton JM, Hellwege JN, Clark PE, Jalloh M, Gueye SM, Niang L, Ogunbiyi O, Shittu O, Amodu O, Adebiyi AO, Aisuodionoe-Shadrach OI, Ajibola HO, Jamda MA, Oluwole OP, Nwegbu M, Adusei B, Mante S, Darkwa-Abrahams A, Diop H, Gundell SM, Roobol MJ, Jenster G, van Schaik RH, Hu JJ, Sanderson M, Kachuri L, Varma R, McKean-Cowdin R, Torres M, Preuss MH, Loos RJ, Zawistowski M, Zöllner S, Lu Z, Van Den Eeden SK, Easton DF, Ambs S, Edwards TL, Mägi R, Rebbeck TR, Fritsche L, Chanock SJ, Berndt SI, Wiklund F, Nakagawa H, Witte JS, Gaziano JM, Justice AC, Mancuso N, Terao C, Eeles RA, Kote-Jarai Z, Madduri RK, Conti DV, Haiman CA. Characterizing prostate cancer risk through multi-ancestry genome-wide discovery of 187 novel risk variants. Nat Genet 2023; 55:2065-2074. [PMID: 37945903 PMCID: PMC10841479 DOI: 10.1038/s41588-023-01534-4] [Show More Authors] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 09/15/2023] [Indexed: 11/12/2023]
Abstract
The transferability and clinical value of genetic risk scores (GRSs) across populations remain limited due to an imbalance in genetic studies across ancestrally diverse populations. Here we conducted a multi-ancestry genome-wide association study of 156,319 prostate cancer cases and 788,443 controls of European, African, Asian and Hispanic men, reflecting a 57% increase in the number of non-European cases over previous prostate cancer genome-wide association studies. We identified 187 novel risk variants for prostate cancer, increasing the total number of risk variants to 451. An externally replicated multi-ancestry GRS was associated with risk that ranged from 1.8 (per standard deviation) in African ancestry men to 2.2 in European ancestry men. The GRS was associated with a greater risk of aggressive versus non-aggressive disease in men of African ancestry (P = 0.03). Our study presents novel prostate cancer susceptibility loci and a GRS with effective risk stratification across ancestry groups.
Collapse
Affiliation(s)
- Anqi Wang
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jiayi Shen
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | | | - Fei Chen
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Rohini Janivara
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Burcu F. Darst
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Xin Sheng
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yili Xu
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Alisha J. Chou
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sara Benlloch
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology,University of Cambridge, Cambridge, UK
| | | | | | - Anna Plym
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
- Urology Division, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Ali Sahimi
- Department of Population and Public Health Sciences, Keck School of Medicine,University of Southern California, Los Angeles, CA, USA
| | - Thomas J. Hoffman
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Atushi Takahashi
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Genomic Medicine, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| | - Koichi Matsuda
- Department of Computational Biology and Medical Sciences, Laboratory of Clinical Genome Sequencing,Graduate school of Frontier Sciences,The University of Tokyo, Tokyo, Japan
| | - Yukihide Momozawa
- Laboratory for Genotyping Development, RIKEN Center of Integrative Medical Sciences, Yokohama, Japan
| | - Masashi Fujita
- Laboratory for Cancer Genomics, RIKEN Center of Integrative Medical Sciences, Yokohama, Japan
| | - Triin Laisk
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Jéssica Figuerêdo
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Kenneth Muir
- Division of Population Health, Health Services Research and Primary Care, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Warwick Medical School, University of Warwick, Coventry, UK
| | - Shuji Ito
- Department of Orthopaedics, Shimane University, Izumo, Shimane, Japan
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Xiaoxi Liu
- Laboratory for Statistical and Translational Genetics, Center for Integrative Medical Sciences, RIKEN, Yokohama, Japan
| | - The Biobank Japan Project
- Corresponding Author: Christopher A. Haiman, Harlyne J. Norris Cancer Research Tower, USC Norris Comprehensive Cancer Center, 1450 Biggy Street, Rm 1504, Los Angeles, CA 90033 or
| | - Yuji Uchio
- Department of Orthopaedics, Shimane University, Izumo, Shimane, Japan
| | - Michiaki Kubo
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yoichiro Kamatani
- Laboratory for Statistical and Translational Genetics, Center for Integrative Medical Sciences, RIKEN, Yokohama, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Artitaya Lophatananon
- Division of Population Health, Health Services Research and Primary Care, School of Health Sciences, Faculty of Biology, Medicine and Health, Manchester, UK
| | - Peggy Wan
- Department of Population and Public Health Sciences, Keck School of Medicine,University of Southern California, Los Angeles, CA, USA
| | - Caroline Andrews
- Harvard TH Chan School of Public Health and Division of Population Sciences,Dana Farber Cancer Institute, Boston, MA, USA
| | - Adriana Lori
- Department of Population Science, American Cancer Society, Kennesaw, GA, USA
| | | | - Johanna Schleutker
- Institute of Biomedicine, University of Turku, Turku, Finland
- Department of Medical Genetics, Genomics, Laboratory Division, Turku University Hospital, Turku, Finland
| | | | - Csilla Sipeky
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Anssi Auvinen
- Unit of Health Sciences, Faculty of Social Sciences, Tampere University, Tampere, Finland
| | - Graham G. Giles
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health,The University of Melbourne, Victoria, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Melissa C. Southey
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Robert J. MacInnis
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health,The University of Melbourne, Victoria, Australia
| | - Cezary Cybulski
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Dominika Wokolorczyk
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Jan Lubinski
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Christopher T. Rentsch
- Yale School of Medicine, New Haven, CT, USA
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK
- VA Connecticut Healthcare System, West Haven, CT, USA
| | - Kelly Cho
- Division of Aging, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
| | | | - David E. Neal
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Headington, Oxford, UK
- University of Cambridge, Department of Oncology, Addenbrooke’s Hospital, Cambridge, UK
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Cambridge, UK
| | - Jenny L. Donovan
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Freddie C. Hamdy
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
- Faculty of Medical Science, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Richard M. Martin
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- NIHR Bristol Biomedical Research Centre at University Hospitals Bristol and Weston NHS Foundation Trust and the University of Bristol, Bristol, UK
- Medical Research Council (MRC) Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Borge G. Nordestgaard
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Copenhagen, Denmark
| | - Sune F. Nielsen
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Copenhagen, Denmark
| | - Maren Weischer
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Copenhagen, Denmark
| | - Stig E. Bojesen
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Copenhagen, Denmark
| | - Andreas Røder
- Copenhagen Prostate Cancer Center, Department of Urology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Hein V. Stroomberg
- Copenhagen Prostate Cancer Center, Department of Urology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Jyotsna Batra
- Australian Prostate Cancer Research Centre-Qld, Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia
- Translational Research Institute, Brisbane, Queensland, Australia
| | | | - Lisa Horvath
- Chris O’Brien Lifehouse (COBLH), Camperdown, Sydney, NSW, Australia, Sydney, Australia
- Garvan Institute of Medical Research, Sydney, Australia
| | - Judith A. Clements
- Australian Prostate Cancer Research Centre-Qld, Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia
- Translational Research Institute, Brisbane, Queensland, Australia
| | - Wayne Tilly
- Dame Roma Mitchell Cancer Research Laboratories, University of Adelaide, Adelaide, Australia
| | - Gail P. Risbridger
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
- Prostate Cancer Translational Research Program, Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Henrik Gronberg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - Markus Aly
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, and Department of Urology, Karolinska University Hospital, Solna, Stockholm, Sweden
- Department of Urology, Karolinska University Hospital, Stockholm, Sweden
| | - Robert Szulkin
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
- SDS Life Sciences, Stockholm, Sweden
| | - Martin Eklund
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - Tobias Nordstrom
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
- Department of Clinical Sciences at Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Nora Pashayan
- University College London, Department of Applied Health Research, London, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Strangeways Laboratory, Cambridge, UK
- Department of Applied Health Research, University College London, London, UK
| | - Alison M. Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Strangeways Laboratory, Cambridge, UK
| | - Maya Ghoussaini
- Open Targets, Wellcome Sanger Institute, Hinxton, Saffron Walden, Hinxton, UK
| | - Ruth C. Travis
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Tim J. Key
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Elio Riboli
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Jong Y. Park
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Thomas A. Sellers
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Hui-Yi Lin
- School of Public Health, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Stephanie Weinstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Michael B. Cook
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH,, Bethesda, MD, USA
| | - Lorelei A. Mucci
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Edward Giovannucci
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Sara Lindstrom
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Peter Kraft
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - David J. Hunter
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Kathryn L. Penney
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital/Harvard Medical School, Boston, MA, USA
| | - Constance Turman
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Catherine M. Tangen
- SWOG Statistical Center, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Phyllis J. Goodman
- SWOG Statistical Center, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Ian M. Thompson
- CHRISTUS Santa Rosa Hospital – Medical Center, San Antonio, TX, USA
| | - Robert J. Hamilton
- Dept. of Surgical Oncology, Princess Margaret Cancer Centre, Toronto, Canada
- Dept. of Surgery (Urology), University of Toronto, Toronto, Canada
| | - Neil E. Fleshner
- Dept. of Surgical Oncology, Princess Margaret Cancer Centre, Toronto, Canada
| | - Antonio Finelli
- Division of Urology, Princess Margaret Cancer Centre, Toronto, Canada
| | - Marie-Élise Parent
- Epidemiology and Biostatistics Unit, Centre Armand-Frappier Santé Biotechnologie, Laval, QC, Canada
| | - Janet L. Stanford
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Elaine A. Ostrander
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Stella Koutros
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Laura E. Beane Freeman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Meir Stampfer
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital/Harvard Medical School, Boston, MA, USA
| | - Alicja Wolk
- Division of Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Niclas Håkansson
- Division of Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Gerald L. Andriole
- Brady Urological Institute in National Capital Region, Johns Hopkins University, Baltimore, MD, USA
| | - Robert N. Hoover
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Mitchell J. Machiela
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Karina Dalsgaard Sørensen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Michael Borre
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Urology, Aarhus University Hospital, Aarhus, Denmark
| | - William J. Blot
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- International Epidemiology Institute, Rockville, MD, USA
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - James E. Mensah
- University of Ghana Medical School, Accra, Ghana
- Korle Bu Teaching Hospital, Accra, Ghana
| | - Yong-Jie Lu
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, UK
| | | | - Ninghan Feng
- Wuxi Second Hospital, Nanjing Medical University, Wuxi, Jiangzhu Province, China
| | - Xueying Mao
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, UK
| | - Yudong Wu
- Department of Urology, First Affiliated Hospital, The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Shan-Chao Zhao
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zan Sun
- The People’s Hospital of Liaoning Proviouce, The People’s Hospital of China Medical University, Shenyang, China, Shenyang, China
| | - Stephen N. Thibodeau
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | | - Daniel J. Schaid
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Catharine M.L. West
- Division of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Radiotherapy Related Research, The Christie Hospital NHS Foundation Trust, Manchester, UK
| | - Gill Barnett
- University of Cambridge Department of Oncology, Oncology Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | | | | | | | - Adam S. Kibel
- Division of Urologic Surgery, Brigham and Womens Hospital, Boston, MA, USA
| | | | - Olivier Cussenot
- GRC 5 Predictive Onco-Urology, Sorbonne Université, Paris, France
- CeRePP, Paris, France
| | | | - Florence Menegaux
- Exposome and Heredity, CESP (UMR 1018), Paris-Saclay Medical School, Paris-Saclay University, Inserm, Gustave Roussy, Villejuif, France
| | - Thérèse Truong
- Exposome and Heredity, CESP (UMR 1018), Paris-Saclay Medical School, Paris-Saclay University, Inserm, Gustave Roussy, Villejuif, France
| | - Yves Akoli Koudou
- Cancer & Environment Group, Center for Research in Epidemiology and Population Health (CESP), INSERM, University Paris-Sud, University Paris-Saclay, Villejuif Cédex, France
| | - Esther M. John
- Department of Medicine, Stanford Cancer Institute,Stanford University School of Medicine, Stanford, CA, USA
| | | | - Lovise Maehle
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Kay-Tee Khaw
- Clinical Gerontology Unit, University of Cambridge, Cambridge, UK
| | - Sue A. Ingles
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California/Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Mariana C Stern
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California/Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Ana Vega
- Fundación Pública Galega Medicina Xenómica, Santiago De Compostela, Spain
- Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago De Compostela, Spain
- Centro de Investigación en Red de Enfermedades Raras (CIBERER), Spain
| | - Antonio Gómez-Caamaño
- Department of Radiation Oncology, Complexo Hospitalario Universitario de Santiago, SERGAS, Santiago de Compostela, Spain
| | - Laura Fachal
- Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago De Compostela, Spain
- Centro de Investigación en Red de Enfermedades Raras (CIBERER), Spain
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Strangeways Research Laboratory, Cambridge, UK
- Fundación Pública Galega Medicina Xenómica, Santiago de Compostela, Spain
| | - Barry S. Rosenstein
- Department of Radiation Oncology and Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sarah L. Kerns
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Harry Ostrer
- Professor of Pathology and Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Manuel R. Teixeira
- Department of Laboratory Genetics, Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center, Porto, Portugal
- Cancer Genetics Group, IPO Porto Research Center (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center, Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Paula Paulo
- Cancer Genetics Group, IPO Porto Research Center (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center, Porto, Portugal
| | - Andreia Brandão
- Cancer Genetics Group, IPO Porto Research Center (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center, Porto, Portugal
| | | | | | - Jeannette T. Bensen
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ebonee N. Butler
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - James L. Mohler
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Jack A. Taylor
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
- Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Manolis Kogevinas
- ISGlobal, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Trinidad Dierssen-Sotos
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- University of Cantabria-IDIVAL, Santander, Spain
| | - Gemma Castaño-Vinyals
- ISGlobal, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Lisa Cannon-Albright
- Division of Epidemiology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
- George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Craig C. Teerlink
- Division of Epidemiology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
- George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Chad D. Huff
- Department of Epidemiology, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Patrick Pilie
- Department of Genitourinary Medical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Yao Yu
- Department of Epidemiology, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Ryan J. Bohlender
- Department of Epidemiology, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Jian Gu
- Department of Epidemiology, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Sara S. Strom
- The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Luc Multigner
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), Rennes, France
| | - Pascal Blanchet
- CHU de Pointe-à-Pitre, Univ Antilles, Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), Pointe-à-Pitre, France
| | - Laurent Brureau
- CHU de Pointe-à-Pitre, Univ Antilles, Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), Pointe-à-Pitre, France
| | - Radka Kaneva
- Molecular Medicine Center, Department of Medical Chemistry and Biochemistry, Medical University of Sofia, Sofia, Bulgaria
| | - Chavdar Slavov
- Department of Urology and Alexandrovska University Hospital, Medical University of Sofia, Sofia, Bulgaria
| | - Vanio Mitev
- Molecular Medicine Center, Department of Medical Chemistry and Biochemistry, Medical University of Sofia, Sofia, Bulgaria
| | - Robin J. Leach
- Department of Cell Systems and Anatomy and Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Xuechen Chen
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Ben Schöttker
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Eric A. Klein
- Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
- Glickman Urological & Kidney Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Ann W. Hsing
- Department of Medicine and Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Adam B. Murphy
- Department of Urology, Northwestern University, Chicago, IL, USA
| | - Christopher J. Logothetis
- The University of Texas M. D. Anderson Cancer Center, Department of Genitourinary Medical Oncology, Houston, TX, USA
| | - Jeri Kim
- The University of Texas M. D. Anderson Cancer Center, Department of Genitourinary Medical Oncology, Houston, TX, USA
| | - Susan L. Neuhausen
- Department of Population Sciences, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Linda Steele
- Department of Population Sciences, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Yuan Chun Ding
- Department of Population Sciences, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - William B. Isaacs
- James Buchanan Brady Urological Institute, Johns Hopkins Hospital and Medical Institution, Baltimore, MD, USA
| | - Barbara Nemesure
- Department of Family, Population and Preventive Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Anselm J.M. Hennis
- Department of Family, Population and Preventive Medicine, Stony Brook University, Stony Brook, NY, USA
- Chronic Disease Research Centre and Faculty of Medical Sciences, University of the West Indies, Bridgetown, Barbados
| | - John Carpten
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | | | - Kim De Ruyck
- Ghent University, Faculty of Medicine and Health Sciences, Basic Medical Sciences, Ghent, Belgium
| | - Gert De Meerleer
- Ghent University Hospital, Department of Radiotherapy, Ghent, Belgium
| | - Piet Ost
- Ghent University Hospital, Department of Radiotherapy, Ghent, Belgium
| | - Jianfeng Xu
- Program for Personalized Cancer Care and Department of Surgery, NorthShore University HealthSystem, Evanston, IL, USA
| | - Azad Razack
- Department of Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Jasmine Lim
- Department of Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Soo-Hwang Teo
- Cancer Research Malaysia (CRM), Outpatient Centre, Subang Jaya Medical Centre, Subang Jaya, Selangor, Malaysia
| | - Lisa F. Newcomb
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Urology, University of Washington, Seattle, WA, USA
| | - Daniel W. Lin
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Urology, University of Washington, Seattle, WA, USA
| | - Jay H. Fowke
- Department of Preventive Medicine, Division of Epidemiology,The University of Tennessee Health Science Center, Memphis, TN, USA
| | | | - Benjamin A. Rybicki
- Department of Public Health Sciences, Henry Ford Hospital, Detroit, Detroit, MI, USA
| | - Marija Gamulin
- Division of Medical Oncology, Urogenital Unit, Department of Oncology, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Davor Lessel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tomislav Kulis
- Department of Urology, University Hospital Center Zagreb, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Nawaid Usmani
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada
- Division of Radiation Oncology, Cross Cancer Institute, Edmonton, Alberta, Canada
| | - Aswin Abraham
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada
- Division of Radiation Oncology, Cross Cancer Institute, Edmonton, Alberta, Canada
| | - Sandeep Singhal
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Matthew Parliament
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada
- Division of Radiation Oncology, Cross Cancer Institute, Edmonton, Alberta, Canada
| | - Frank Claessens
- Molecular Endocrinology Laboratory, Department of Cellular and Molecular Medicine, Leuven, Belgium
| | - Steven Joniau
- Department of Urology, University Hospitals Leuven, Leuven, Belgium
| | - Thomas Van den Broeck
- Molecular Endocrinology Laboratory, Department of Cellular and Molecular Medicine, Leuven, Belgium
- Department of Urology, University Hospitals Leuven, Leuven, Belgium
| | - Manuela Gago-Dominguez
- Genomic Medicine Group, Galician Foundation of Genomic Medicine, Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago, Servicio Galego de Saúde, SERGAS, Santiago de Compostela, Spain
- University of California San Diego, Moores Cancer Center, La Jolla, CA, USA
| | - Jose Esteban Castelao
- Genetic Oncology Unit, CHUVI Hospital, Complexo Hospitalario Universitario de Vigo, Instituto de Investigación Biomédica Galicia Sur (IISGS), Vigo (Pontevedra), Spain
| | - Maria Elena Martinez
- University of California San Diego, Moores Cancer Center, Department of Family Medicine and Public Health, University of California San Diego, La Jolla, CA, USA
| | - Samantha Larkin
- Scientific Education Support, Thames Ditton, Surrey, Formerly Cancer Sciences, University of Southampton, Southampton, UK
| | - Paul A. Townsend
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Surrey, UK
| | | | - William S. Bush
- Department of Population and Quantitative Health Sciences, Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, USA
| | - Melinda C. Aldrich
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Dana C. Crawford
- Department of Population and Quantitative Health Sciences, Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, USA
| | - Shiv Srivastava
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC, USA
| | - Jennifer Cullen
- Department of Population and Quantitative Health Sciences, Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, USA
- Department of Surgery, Center for Prostate Disease Research,Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Gyorgy Petrovics
- Department of Surgery, Center for Prostate Disease Research,Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Graham Casey
- Department of Public Health Science, Center for Public Health Genomics,University of Virginia, Charlottesville, VA, USA
| | - Ying Wang
- Department of Population Science, American Cancer Society, Kennesaw, GA, USA
| | - Yao Tettey
- Korle Bu Teaching Hospital, Accra, Ghana
- Department of Pathology, University of Ghana, Accra, Ghana
| | - Joseph Lachance
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Wei Tang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | | | - Andrew A. Adjei
- Department of Pathology, University of Ghana Medical School, Accra, Ghana
| | - Evelyn Tay
- Korle Bu Teaching Hospital, Accra, Ghana
| | | | | | - Kosj Yamoah
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | | | | | - Jacob M. Keaton
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jacklyn N. Hellwege
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Division of Genetic Medicine, Department of Medicine, Vanderbilt Genetics Institute, Nashville, TN, USA
| | - Peter E. Clark
- Atrium Health/Levine Cancer Institute, Charlotte, NC, USA
| | | | | | | | - Olufemi Ogunbiyi
- Department of Pathology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olayiwola Shittu
- Department of Surgery, College of Medicine, University of Ibadan and Univerity College Hospital, Ibadan, Nigeria
| | - Olukemi Amodu
- Institute of Child Health, College of Medicine, University of Ibadan and University College Hospital, Ibadan, Nigeria
| | - Akindele O. Adebiyi
- Clinical Epidemiology Unit, Department of Community Medicine, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Oseremen I. Aisuodionoe-Shadrach
- College of Health Sciences, University of Abuja, University of Abuja Teaching Hospital and Cancer Science Center, Abuja, Nigeria
| | - Hafees O. Ajibola
- College of Health Sciences, University of Abuja, University of Abuja Teaching Hospital and Cancer Science Center, Abuja, Nigeria
| | - Mustapha A. Jamda
- College of Health Sciences, University of Abuja, University of Abuja Teaching Hospital and Cancer Science Center, Abuja, Nigeria
| | - Olabode P. Oluwole
- College of Health Sciences, University of Abuja, University of Abuja Teaching Hospital and Cancer Science Center, Abuja, Nigeria
| | - Maxwell Nwegbu
- College of Health Sciences, University of Abuja, University of Abuja Teaching Hospital and Cancer Science Center, Abuja, Nigeria
| | | | | | | | - Halimatou Diop
- Laboratoires Bacteriologie et Virologie, Hôpital Aristide Le Dantec, Dakar, Senegal
| | - Susan M. Gundell
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Monique J. Roobol
- Department of Urology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Guido Jenster
- Department of Urology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Ron H.N. van Schaik
- Department of Clinical Chemistry, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Jennifer J. Hu
- The University of Miami School of Medicine, Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Maureen Sanderson
- Department of Family and Community Medicine, Meharry Medical College, Nashville, TN, USA
| | - Linda Kachuri
- Department of Epidemiology and Population Health, Stanford Cancer Institute, Stanford, CA, USA
| | - Rohit Varma
- Southern California Eye Institute, CHA Hollywood Presbyterian Medical Center, Los Angeles, CA, USA
| | - Roberta McKean-Cowdin
- Department of Population and Public Health Sciences, Keck School of Medicine,University of Southern California, Los Angeles, CA, USA
| | - Mina Torres
- Southern California Eye Institute, CHA Hollywood Presbyterian Medical Center, Los Angeles, CA, USA
| | - Michael H. Preuss
- The Charles Bronfman Institute for Personalized Medicine,Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ruth J.F. Loos
- The Charles Bronfman Institute for Personalized Medicine,Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew Zawistowski
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
- Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Sebastian Zöllner
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
- Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Zeyun Lu
- Department of Population and Public Health Sciences, Keck School of Medicine,University of Southern California, Los Angeles, CA, USA
| | | | - Douglas F. Easton
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology,, Cambridge, UK
| | - Stefan Ambs
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Todd L. Edwards
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Reedik Mägi
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Timothy R. Rebbeck
- Harvard TH Chan School of Public Health and Division of Population Sciences, Dana Farber Cancer Institute, Boston, MA, USA
| | - Lars Fritsche
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Stephen J. Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Sonja I. Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Fredrik Wiklund
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - Hidewaki Nakagawa
- Laboratory for Cancer Genomics, RIKEN Center of Integrative Medical Sciences, Yokohama, Japan
| | - John S. Witte
- Department of Epidemiology and Population Health, Stanford Cancer Institute, Stanford, CA, USA
- Departments of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - J. Michael Gaziano
- Division of Aging, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
| | | | - Nick Mancuso
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, Center for Integrative Medical Sciences, RIKEN, Yokohama, Japan
- Clinical Research Center, Shizuoka General Hospital, Shizuoka, Japan
- The Department of Applied Genetics, School of Pharmaceutical Sciences, Shizuoka, Japan
| | - Rosalind A. Eeles
- The Institute of Cancer Research, London, UK
- Royal Marsden NHS Foundation Trust, London, UK
| | | | | | - David V. Conti
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Christopher A. Haiman
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
13
|
Wińska P, Wielechowska M, Koronkiewicz M, Borowiecki P. Synthesis and Anticancer Activity of Novel Dual Inhibitors of Human Protein Kinases CK2 and PIM-1. Pharmaceutics 2023; 15:1991. [PMID: 37514177 PMCID: PMC10385865 DOI: 10.3390/pharmaceutics15071991] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/05/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
CK2 and PIM-1 are serine/threonine kinases involved in the regulation of many essential processes, such as proliferation, differentiation, and apoptosis. Inhibition of CK2 and PIM-1 kinase activity has been shown to significantly reduce the viability of cancer cells by inducing apoptosis. A series of novel amino alcohol derivatives of parental DMAT were designed and synthesized as potent dual CK2/PIM-1 inhibitors. Concomitantly with the inhibition studies toward recombinant CK2 and PIM-1, the influence of the obtained compounds on the viability of three human carcinoma cell lines, i.e., acute lymphoblastic leukemia (CCRF-CEM), human chronic myelogenous leukemia (K-562), and breast cancer (MCF-7), as well as non-cancerous cells (Vero), was evaluated using an MTT assay. Induction of apoptosis and cell cycle progression after treatment with the most active compound and a lead compound were studied by flow-cytometry-based assay. Additionally, autophagy induction in K-562 cells and intracellular inhibition of CK2 and PIM-1 in all the tested cell lines were evaluated by qualitative/quantitative fluorescence-based assay and Western blot method, respectively. Among the newly developed inhibitors, 1,1,1-trifluoro-3-[(4,5,6,7-tetrabromo-1H-benzimidazol-2-yl)amino]propan-2-ol demonstrates the highest selectivity and the most prominent proapoptotic properties towards the studied cancer cells, especially towards acute lymphoblastic leukemia, in addition to inducing autophagy in K-562 cells.
Collapse
Affiliation(s)
- Patrycja Wińska
- Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland
| | - Monika Wielechowska
- Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland
| | | | - Paweł Borowiecki
- Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland
| |
Collapse
|
14
|
Takeuchi H, Miyamoto T, Fuseya C, Asaka R, Ida K, Ono M, Tanaka Y, Shinagawa M, Ando H, Asaka S, Shiozawa T. PIM1 is a Poor Prognostic Factor for and Potential Therapeutic Target in Serous Carcinoma of the Endometrium. Int J Gynecol Pathol 2023; 42:282-292. [PMID: 35443252 DOI: 10.1097/pgp.0000000000000882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Serous carcinoma (SC) is an aggressive histologic type of endometrial carcinoma (EMC) with a poor prognosis. The development of novel therapeutics for SC is an important issue. PIM1 is a serine/threonine kinase involved in various cellular functions, such as cell cycle progression, apoptosis, and transcriptional activation via the phosphorylation of many target proteins, including MYC. PIM1 is overexpressed in several cancers and has been associated with treatment-resistance. We investigated the expression and function of PIM1 in EMC, particularly SC. Immunohistochemical analysis in 133 EMC cases [103 endometrioid carcinomas (EC) and 30 SC] revealed the significantly stronger expression of PIM1 in SC than in EC and significantly shorter survival of patients with overexpression of PIM1 in all EMC cases, as well as in only SC cases. A multivariate analysis identified overexpression of PIM1 as an independent prognostic factor. The knockdown of PIM1 by siRNA in the SC cell line, ARK1, decreased the expression of phosphorylated MYC and reduced proliferation, migration, and invasion. The PIM1 inhibitor, SGI-1776, reduced cell viability in SC cell lines (ARK1, ARK2, and SPAC1L) with IC50 between 1 and 5 µM. SGI-1776 also reduced the migration and invasion of ARK1 cells. Moreover, the oral administration of SGI-1776 significantly suppressed subcutaneous ARK1 xenograft tumor growth in nude mice without impairing health. These results indicate that PIM1 is involved in the acquisition of aggressiveness and suggest the potential of PIM1 as a novel therapeutic target and SGI-1776 as a therapeutic agent for SC.
Collapse
|
15
|
Boi D, Rubini E, Breccia S, Guarguaglini G, Paiardini A. When Just One Phosphate Is One Too Many: The Multifaceted Interplay between Myc and Kinases. Int J Mol Sci 2023; 24:4746. [PMID: 36902175 PMCID: PMC10003727 DOI: 10.3390/ijms24054746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
Myc transcription factors are key regulators of many cellular processes, with Myc target genes crucially implicated in the management of cell proliferation and stem pluripotency, energy metabolism, protein synthesis, angiogenesis, DNA damage response, and apoptosis. Given the wide involvement of Myc in cellular dynamics, it is not surprising that its overexpression is frequently associated with cancer. Noteworthy, in cancer cells where high Myc levels are maintained, the overexpression of Myc-associated kinases is often observed and required to foster tumour cells' proliferation. A mutual interplay exists between Myc and kinases: the latter, which are Myc transcriptional targets, phosphorylate Myc, allowing its transcriptional activity, highlighting a clear regulatory loop. At the protein level, Myc activity and turnover is also tightly regulated by kinases, with a finely tuned balance between translation and rapid protein degradation. In this perspective, we focus on the cross-regulation of Myc and its associated protein kinases underlying similar and redundant mechanisms of regulation at different levels, from transcriptional to post-translational events. Furthermore, a review of the indirect effects of known kinase inhibitors on Myc provides an opportunity to identify alternative and combined therapeutic approaches for cancer treatment.
Collapse
Affiliation(s)
- Dalila Boi
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Elisabetta Rubini
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Sara Breccia
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Giulia Guarguaglini
- Institute of Molecular Biology and Pathology, National Research Council of Italy, Sapienza University of Rome, 00185 Rome, Italy
| | - Alessandro Paiardini
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
16
|
Verma P, Shukla N, Kumari S, Ansari M, Gautam NK, Patel GK. Cancer stem cell in prostate cancer progression, metastasis and therapy resistance. Biochim Biophys Acta Rev Cancer 2023; 1878:188887. [PMID: 36997008 DOI: 10.1016/j.bbcan.2023.188887] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/18/2023] [Accepted: 03/15/2023] [Indexed: 03/31/2023]
Abstract
Prostate cancer (PCa) is the most diagnosed malignancy in the men worldwide. Cancer stem cells (CSCs) are the sub-population of cells present in the tumor which possess unique properties of self-renewal and multilineage differentiation thus thought to be major cause of therapy resistance, disease relapse, and mortality in several malignancies including PCa. CSCs have also been shown positive for the common stem cells markers such as ALDH EZH2, OCT4, SOX2, c-MYC, Nanog etc. Therefore, isolation and characterization of CSCs specific markers which may discriminate CSCs and normal stem cells are critical to selectively eliminate CSCs. Rapid advances in the field offers a theoretical explanation for many of the enduring uncertainties encompassing the etiology and an optimism for the identification of new stem-cell targets, development of reliable and efficient therapies in the future. The emerging reports have also provided unprecedented insights into CSCs plasticity, quiescence, renewal, and therapeutic response. In this review, we discuss the identification of PCa stem cells, their unique properties, stemness-driving pathways, new diagnostics, and therapeutic interventions.
Collapse
|
17
|
Lin Z, Sui X, Jiao W, Wang Y, Zhao J. Exploring the mechanism and experimental verification of puerarin in the treatment of endometrial carcinoma based on network pharmacology and bioinformatics analysis. BMC Complement Med Ther 2022; 22:150. [PMID: 35672846 PMCID: PMC9175360 DOI: 10.1186/s12906-022-03623-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/12/2022] [Indexed: 11/30/2022] Open
Abstract
Endometrial carcinoma is one of the two cancers with rising mortality and morbidity in recent years. In the light of many controversies about its treatment, it is urgent to construct a new prognostic model and to find out new therapeutic directions. As a small drug molecule widely used in clinical treatment and experimental research in China, puerarin has recently been proven to have obvious anti-cancer effects in multiple cancer cells. In this study, bioinformatics analysis and experimental validation were used to explore the potential mechanism of puerarin for endometrial carcinoma and construct a prognostic model. A total of 22 drug-related differential genes were found by constructing a database of drug targets and disease genes. The protein–protein interaction network was constructed for GO and KEGG enrichment analysis to initially explore the potential mechanism of its therapeutic effects. To construct the prognostic model, validation was performed by risk regression analysis and LASSO analysis. Finally, two prognostic genes—PIM1 and BIRC5 were determined to establish high and low risk groups. Kaplan–Meier analysis displayed a higher survival rate in the low-risk group than in the high-risk group. ROC curves indicated the stable and good effect in prediction (one-year AUC is 0.626; two-year AUC is 0.620; three-year AUC is 0.623). The interrelationship between immunity and its disease was explored by immune infiltration analysis. Finally, the potential effect of puerarin on endometrial carcinoma cells was further verified by experiments.
Collapse
|
18
|
Donati G, Amati B. MYC and therapy resistance in cancer: risks and opportunities. Mol Oncol 2022; 16:3828-3854. [PMID: 36214609 PMCID: PMC9627787 DOI: 10.1002/1878-0261.13319] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/08/2022] [Accepted: 10/06/2022] [Indexed: 12/24/2022] Open
Abstract
The MYC transcription factor, encoded by the c-MYC proto-oncogene, is activated by growth-promoting signals, and is a key regulator of biosynthetic and metabolic pathways driving cell growth and proliferation. These same processes are deregulated in MYC-driven tumors, where they become critical for cancer cell proliferation and survival. As other oncogenic insults, overexpressed MYC induces a series of cellular stresses (metabolic, oxidative, replicative, etc.) collectively known as oncogenic stress, which impact not only on tumor progression, but also on the response to therapy, with profound, multifaceted consequences on clinical outcome. On one hand, recent evidence uncovered a widespread role for MYC in therapy resistance in multiple cancer types, with either standard chemotherapeutic or targeted regimens. Reciprocally, oncogenic MYC imparts a series of molecular and metabolic dependencies to cells, thus giving rise to cancer-specific vulnerabilities that may be exploited to obtain synthetic-lethal interactions with novel anticancer drugs. Here we will review the current knowledge on the links between MYC and therapeutic responses, and will discuss possible strategies to overcome resistance through new, targeted interventions.
Collapse
Affiliation(s)
- Giulio Donati
- European Institute of Oncology (IEO) – IRCCSMilanItaly
| | - Bruno Amati
- European Institute of Oncology (IEO) – IRCCSMilanItaly
| |
Collapse
|
19
|
Nayshool O, Kol N, Javaski E, Amariglio N, Rechavi G. SurviveAI: Long Term Survival Prediction of Cancer Patients Based on Somatic RNA-Seq Expression. Cancer Inform 2022; 21:11769351221127875. [PMID: 36225330 PMCID: PMC9549197 DOI: 10.1177/11769351221127875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Motivation Prediction of cancer outcome is a major challenge in oncology and is essential for treatment planning. Repositories such as The Cancer Genome Atlas (TCGA) contain vast amounts of data for many types of cancers. Our goal was to create reliable prediction models using TCGA data and validate them using an external dataset. Results For 16 TCGA cancer type cohorts we have optimized a Random Forest prediction model using parameter grid search followed by a backward feature elimination loop for dimensions reduction. For each feature that was removed, the model was retrained and the area under the curve of the receiver operating characteristic (AUC-ROC) was calculated using test data. Five prediction models gave AUC-ROC bigger than 80%. We used Clinical Proteomic Tumor Analysis Consortium v3 (CPTAC3) data for validation. The most enriched pathways for the top models were those involved in basic functions related to tumorigenesis and organ development. Enrichment for 2 prediction models of the TCGA-KIRP cohort was explored, one with 42 genes (AUC-ROC = 0.86) the other is composed of 300 genes (AUC-ROC = 0.85). The most enriched networks for both models share only 5 network nodes: DMBT1, IL11, HOXB6, TRIB3, PIM1. These genes play a significant role in renal cancer and might be used for prognosis prediction and as candidate therapeutic targets. Availability And Implementation The prediction models were created and tested using Python SciKit-Learn package. They are freely accessible via a friendly web interface we called surviveAI at https://tinyurl.com/surviveai.
Collapse
Affiliation(s)
- Omri Nayshool
- Bioinformatics Unit, Sheba Cancer
Research Center and Wohl Institute for Translational Medicine, Sheba Medical Center,
Tel HaShomer, Israel,Human Molecular Genetics and
Biochemistry, Sackler School of Medicine, Tel Aviv University, Israel,Omri Nayshool, Sheba Cancer Research
Center, Sheba Medical Center, Tel HaShomer, Derech Sheba 2, Ramat Gan 52621,
Israel.
| | - Nitzan Kol
- Bioinformatics Unit, Sheba Cancer
Research Center and Wohl Institute for Translational Medicine, Sheba Medical Center,
Tel HaShomer, Israel
| | - Elisheva Javaski
- Bioinformatics Unit, Sheba Cancer
Research Center and Wohl Institute for Translational Medicine, Sheba Medical Center,
Tel HaShomer, Israel
| | - Ninette Amariglio
- Bioinformatics Unit, Sheba Cancer
Research Center and Wohl Institute for Translational Medicine, Sheba Medical Center,
Tel HaShomer, Israel
| | - Gideon Rechavi
- Bioinformatics Unit, Sheba Cancer
Research Center and Wohl Institute for Translational Medicine, Sheba Medical Center,
Tel HaShomer, Israel,Human Molecular Genetics and
Biochemistry, Sackler School of Medicine, Tel Aviv University, Israel
| |
Collapse
|
20
|
Zhai Y, Singh P, Dolnik A, Brazda P, Atlasy N, del Gaudio N, Döhner K, Döhner H, Minucci S, Martens J, Altucci L, Megchelenbrink W, Bullinger L, Stunnenberg HG. Longitudinal single-cell transcriptomics reveals distinct patterns of recurrence in acute myeloid leukemia. Mol Cancer 2022; 21:166. [PMID: 35986270 PMCID: PMC9389773 DOI: 10.1186/s12943-022-01635-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/07/2022] [Indexed: 12/02/2022] Open
Abstract
Background Acute myeloid leukemia (AML) is a heterogeneous and aggressive blood cancer that results from diverse genetic aberrations in the hematopoietic stem or progenitor cells (HSPCs) leading to the expansion of blasts in the hematopoietic system. The heterogeneity and evolution of cancer blasts can render therapeutic interventions ineffective in a yet poorly understood patient-specific manner. In this study, we investigated the clonal heterogeneity of diagnosis (Dx) and relapse (Re) pairs at genetic and transcriptional levels, and unveiled the underlying pathways and genes contributing to recurrence. Methods Whole-exome sequencing was used to detect somatic mutations and large copy number variations (CNVs). Single cell RNA-seq was performed to investigate the clonal heterogeneity between Dx-Re pairs and amongst patients. Results scRNA-seq analysis revealed extensive expression differences between patients and Dx-Re pairs, even for those with the same -presumed- initiating events. Transcriptional differences between and within patients are associated with clonal composition and evolution, with the most striking differences in patients that gained large-scale copy number variations at relapse. These differences appear to have significant molecular implications, exemplified by a DNMT3A/FLT3-ITD patient where the leukemia switched from an AP-1 regulated clone at Dx to a mTOR signaling driven clone at Re. The two distinct AML1-ETO pairs share genes related to hematopoietic stem cell maintenance and cell migration suggesting that the Re leukemic stem cell-like (LSC-like) cells evolved from the Dx cells. Conclusions In summary, the single cell RNA data underpinned the tumor heterogeneity not only amongst patient blasts with similar initiating mutations but also between each Dx-Re pair. Our results suggest alternatively and currently unappreciated and unexplored mechanisms leading to therapeutic resistance and AML recurrence. Supplementary Information The online version contains supplementary material available at 10.1186/s12943-022-01635-4.
Collapse
|
21
|
Zhai Y, Singh P, Dolnik A, Brazda P, Atlasy N, Del Gaudio N, Döhner K, Döhner H, Minucci S, Martens J, Altucci L, Megchelenbrink W, Bullinger L, Stunnenberg HG. Longitudinal single-cell transcriptomics reveals distinct patterns of recurrence in acute myeloid leukemia. Mol Cancer 2022. [PMID: 35986270 DOI: 10.1186/s12943-022-01635-4.pmid:35986270;pmcid:pmc9389773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) is a heterogeneous and aggressive blood cancer that results from diverse genetic aberrations in the hematopoietic stem or progenitor cells (HSPCs) leading to the expansion of blasts in the hematopoietic system. The heterogeneity and evolution of cancer blasts can render therapeutic interventions ineffective in a yet poorly understood patient-specific manner. In this study, we investigated the clonal heterogeneity of diagnosis (Dx) and relapse (Re) pairs at genetic and transcriptional levels, and unveiled the underlying pathways and genes contributing to recurrence. METHODS Whole-exome sequencing was used to detect somatic mutations and large copy number variations (CNVs). Single cell RNA-seq was performed to investigate the clonal heterogeneity between Dx-Re pairs and amongst patients. RESULTS scRNA-seq analysis revealed extensive expression differences between patients and Dx-Re pairs, even for those with the same -presumed- initiating events. Transcriptional differences between and within patients are associated with clonal composition and evolution, with the most striking differences in patients that gained large-scale copy number variations at relapse. These differences appear to have significant molecular implications, exemplified by a DNMT3A/FLT3-ITD patient where the leukemia switched from an AP-1 regulated clone at Dx to a mTOR signaling driven clone at Re. The two distinct AML1-ETO pairs share genes related to hematopoietic stem cell maintenance and cell migration suggesting that the Re leukemic stem cell-like (LSC-like) cells evolved from the Dx cells. CONCLUSIONS In summary, the single cell RNA data underpinned the tumor heterogeneity not only amongst patient blasts with similar initiating mutations but also between each Dx-Re pair. Our results suggest alternatively and currently unappreciated and unexplored mechanisms leading to therapeutic resistance and AML recurrence.
Collapse
Affiliation(s)
- Yanan Zhai
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138, Naples, Italy.,Prinses Maxima Centrum, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands.,Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, the Netherlands
| | - Prashant Singh
- Prinses Maxima Centrum, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
| | - Anna Dolnik
- Medical Department, Division of Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health, Berlin, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter Brazda
- Prinses Maxima Centrum, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands.,Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, the Netherlands
| | - Nader Atlasy
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, the Netherlands
| | - Nunzio Del Gaudio
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138, Naples, Italy
| | - Konstanze Döhner
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Hartmut Döhner
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Saverio Minucci
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, EO, Italy
| | - Joost Martens
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, the Netherlands
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138, Naples, Italy.,Institute of Molecular Biology and Genetics, BIOGEM, Ariano Irpino, AV, Italy
| | - Wout Megchelenbrink
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138, Naples, Italy.,Prinses Maxima Centrum, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
| | - Lars Bullinger
- Medical Department, Division of Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health, Berlin, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hendrik G Stunnenberg
- Prinses Maxima Centrum, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands. .,Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, the Netherlands.
| |
Collapse
|
22
|
Costanzo-Garvey DL, Case AJ, Watson GF, Alsamraae M, Chatterjee A, Oberley-Deegan RE, Dutta S, Abdalla MY, Kielian T, Lindsey ML, Cook LM. Prostate cancer addiction to oxidative stress defines sensitivity to anti-tumor neutrophils. Clin Exp Metastasis 2022; 39:641-659. [PMID: 35604506 PMCID: PMC9338904 DOI: 10.1007/s10585-022-10170-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/24/2022] [Indexed: 01/17/2023]
Abstract
Bone metastatic prostate cancer (BM-PCa) remains one of the most difficult cancers to treat due to the complex interactions of cancer and stromal cells. We previously showed that bone marrow neutrophils elicit an anti-tumor immune response against BM-PCa. Further, we demonstrated that BM-PCa induces neutrophil oxidative burst, which has previously been identified to promote primary tumor growth of other cancers, and a goal of this study was to define the importance of neutrophil oxidative burst in BM-PCa. To do this, we first examined the impact of depletion of reactive oxygen species (ROS), via systemic deletion of the main source of ROS in phagocytes, NADPH oxidase (Nox)2, which we found to suppress prostate tumor growth in bone. Further, using pharmacologic ROS inhibitors and Nox2-null neutrophils, we found that ROS depletion specifically suppresses growth of androgen-insensitive prostate cancer cells. Upon closer examination using bulk RNA sequencing analysis, we identified that metastatic prostate cancer induces neutrophil transcriptomic changes that activates pathways associated with response to oxidative stress. In tandem, prostate cancer cells resist neutrophil anti-tumor response via extracellular (i.e., regulation of neutrophils) and intracellular alterations of glutathione synthesis, the most potent cellular antioxidant. These findings demonstrate that BM-PCa thrive under oxidative stress conditions and such that regulation of ROS and glutathione programming could be leveraged for targeting of BM-PCa progression.
Collapse
Affiliation(s)
- Diane L Costanzo-Garvey
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 985900 Nebraska Med Center, Omaha, NE, 68198, USA
| | - Adam J Case
- Department of Psychiatry and Behavioral Sciences, Texas A&M College of Medicine, Bryan, TX, USA.,Department of Medical Physiology, Texas A&M College of Medicine, Bryan, TX, USA
| | - Gabrielle F Watson
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center and Omaha VA Medical Center, Omaha, NE, USA
| | - Massar Alsamraae
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 985900 Nebraska Med Center, Omaha, NE, 68198, USA
| | - Arpita Chatterjee
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Rebecca E Oberley-Deegan
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Samikshan Dutta
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Maher Y Abdalla
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 985900 Nebraska Med Center, Omaha, NE, 68198, USA
| | - Tammy Kielian
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 985900 Nebraska Med Center, Omaha, NE, 68198, USA
| | - Merry L Lindsey
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center and Omaha VA Medical Center, Omaha, NE, USA
| | - Leah M Cook
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 985900 Nebraska Med Center, Omaha, NE, 68198, USA.
| |
Collapse
|
23
|
Kunder R, Velyunskiy M, Dunne SF, Cho BK, Kanojia D, Begg L, Orriols AM, Fleming-Trujillo E, Vadlamani P, Vialichka A, Bolin R, Perrino JN, Roth D, Clutter MR, Zielinski-Mozny NA, Goo YA, Cristofanilli M, Mendillo ML, Vassilopoulos A, Horiuchi D. Synergistic PIM kinase and proteasome inhibition as a therapeutic strategy for MYC-overexpressing triple-negative breast cancer. Cell Chem Biol 2022; 29:358-372.e5. [PMID: 34525344 PMCID: PMC8901784 DOI: 10.1016/j.chembiol.2021.08.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 06/24/2021] [Accepted: 08/23/2021] [Indexed: 11/30/2022]
Abstract
Triple-negative breast cancer (TNBC) is the breast cancer subtype with the poorest clinical outcome. The PIM family of kinases has emerged as a factor that is both overexpressed in TNBC and associated with poor outcomes. Preclinical data suggest that TNBC with an elevated MYC expression is sensitive to PIM inhibition. However, clinical observations indicate that the efficacy of PIM inhibitors as single agents may be limited, suggesting the need for combination therapies. Our screening effort identifies PIM and the 20S proteasome inhibition as the most synergistic combination. PIM inhibitors, when combined with proteasome inhibitors, induce significant antitumor effects, including abnormal accumulation of poly-ubiquitinated proteins, increased proteotoxic stress, and the inability of NRF1 to counter loss in proteasome activity. Thus, the identified combination could represent a rational combination therapy against MYC-overexpressing TNBC that is readily translatable to clinical investigations.
Collapse
Affiliation(s)
- Ratika Kunder
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Michelle Velyunskiy
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Adlai E. Stevenson High School, Lincolnshire, IL 60069, USA
| | - Sara F Dunne
- High-Throughput Analysis Laboratory, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
| | - Byoung-Kyu Cho
- Proteomics Center for Excellence, Northwestern University, Chicago, IL 60611, USA
| | - Deepak Kanojia
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Lauren Begg
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Adrienne M Orriols
- Department of Radiation Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Erica Fleming-Trujillo
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Pranathi Vadlamani
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Alesia Vialichka
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Rosemary Bolin
- Center for Comparative Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jessica N Perrino
- Center for Comparative Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Diane Roth
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Matthew R Clutter
- High-Throughput Analysis Laboratory, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| | - Nicolette A Zielinski-Mozny
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Center for Comparative Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Young Ah Goo
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Proteomics Center for Excellence, Northwestern University, Chicago, IL 60611, USA
| | - Massimo Cristofanilli
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| | - Marc L Mendillo
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Simpson Querrey Institute for Epigenetics, Northwestern University, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| | - Athanassios Vassilopoulos
- Department of Radiation Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| | - Dai Horiuchi
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
24
|
Toth RK, Solomon R, Warfel NA. Stabilization of PIM Kinases in Hypoxia Is Mediated by the Deubiquitinase USP28. Cells 2022; 11:1006. [PMID: 35326457 PMCID: PMC8947361 DOI: 10.3390/cells11061006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/09/2022] [Accepted: 03/13/2022] [Indexed: 02/05/2023] Open
Abstract
Proviral integration sites for Moloney murine leukemia virus (PIM) kinases are upregulated at the protein level in response to hypoxia and have multiple protumorigenic functions, promoting cell growth, survival, and angiogenesis. However, the mechanism responsible for the induction of PIM in hypoxia remains unknown. Here, we examined factors affecting PIM kinase stability in normoxia and hypoxia. We found that PIM kinases were upregulated in hypoxia at the protein level but not at the mRNA level, confirming that PIMs were upregulated in hypoxia in a hypoxia inducible factor 1-independent manner. PIM kinases were less ubiquitinated in hypoxia than in normoxia, indicating that hypoxia reduced their proteasomal degradation. We identified the deubiquitinase ubiquitin-specific protease 28 (USP28) as a key regulator of PIM1 and PIM2 stability. The overexpression of USP28 increased PIM protein stability and total levels in both normoxia and hypoxia, and USP28-knockdown significantly increased the ubiquitination of PIM1 and PIM2. Interestingly, coimmunoprecipitation assays showed an increased interaction between PIM1/2 and USP28 in response to hypoxia, which correlated with reduced ubiquitination and increased protein stability. In a xenograft model, USP28-knockdown tumors grew more slowly than control tumors and showed significantly lower levels of PIM1 in vivo. In conclusion, USP28 blocked the ubiquitination and increased the stability of PIM1/2, particularly in hypoxia. These data provide the first insight into proteins responsible for controlling PIM protein degradation and identify USP28 as an important upstream regulator of this hypoxia-induced, protumorigenic signaling pathway.
Collapse
Affiliation(s)
- Rachel K. Toth
- University of Arizona Cancer Center, Tucson, AZ 85724, USA;
| | - Regina Solomon
- Department of Biochemistry, Cell & Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA;
| | - Noel A. Warfel
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, USA
| |
Collapse
|
25
|
Molecular landscape of c-Myc signaling in prostate cancer: A roadmap to clinical translation. Pathol Res Pract 2022; 233:153851. [DOI: 10.1016/j.prp.2022.153851] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/02/2022] [Accepted: 03/17/2022] [Indexed: 12/16/2022]
|
26
|
Zhou D, Wu Y, Jiang K, Xu F, Hong R, Wang S. Identification of a risk prediction model for clinical prognosis in HER2 positive breast cancer patients. Genomics 2021; 113:4088-4097. [PMID: 34666190 DOI: 10.1016/j.ygeno.2021.10.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/03/2021] [Accepted: 10/12/2021] [Indexed: 12/24/2022]
Abstract
Background New biomarkers are needed to identify different clinical outcomes for HER2+ breast cancer (BC). Methods Differential genes of HER2+ BC were screened based on TCGA database. We used WGCNA to identify the genes related to the survival. Genetic Algorithm was used to structure risk prediction model. The prognostic model was validated in GSE data. Results We constructed a risk prediction model of 6 genes to identify prognosis of HER2+ BC, including CLEC9A, PLD4, PIM1, PTK2B, AKNAD1 and C15orf27. Kaplan-Meier curve showed that the model effectively distinguished the survival of HER2+ BC patients. The multivariate Cox regression suggested that the risk model was an independent predictor for HER2+ BC. Analysis related to immune showed that significant differences in immune infiltration between high- and low-risk groups classified by the prognostic model. Conclusions Our study identified a risk prediction model of 6 genes that could distinguish the prognosis of HER2+ BC.
Collapse
Affiliation(s)
- Danyang Zhou
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China.
| | - Ying Wu
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China.
| | - Kuikui Jiang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China.
| | - Fei Xu
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China.
| | - Ruoxi Hong
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China.
| | - Shusen Wang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China.
| |
Collapse
|
27
|
Kang J, Brajanovski N, Chan KT, Xuan J, Pearson RB, Sanij E. Ribosomal proteins and human diseases: molecular mechanisms and targeted therapy. Signal Transduct Target Ther 2021; 6:323. [PMID: 34462428 PMCID: PMC8405630 DOI: 10.1038/s41392-021-00728-8] [Citation(s) in RCA: 204] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 07/12/2021] [Accepted: 07/30/2021] [Indexed: 02/07/2023] Open
Abstract
Ribosome biogenesis and protein synthesis are fundamental rate-limiting steps for cell growth and proliferation. The ribosomal proteins (RPs), comprising the structural parts of the ribosome, are essential for ribosome assembly and function. In addition to their canonical ribosomal functions, multiple RPs have extra-ribosomal functions including activation of p53-dependent or p53-independent pathways in response to stress, resulting in cell cycle arrest and apoptosis. Defects in ribosome biogenesis, translation, and the functions of individual RPs, including mutations in RPs have been linked to a diverse range of human congenital disorders termed ribosomopathies. Ribosomopathies are characterized by tissue-specific phenotypic abnormalities and higher cancer risk later in life. Recent discoveries of somatic mutations in RPs in multiple tumor types reinforce the connections between ribosomal defects and cancer. In this article, we review the most recent advances in understanding the molecular consequences of RP mutations and ribosomal defects in ribosomopathies and cancer. We particularly discuss the molecular basis of the transition from hypo- to hyper-proliferation in ribosomopathies with elevated cancer risk, a paradox termed "Dameshek's riddle." Furthermore, we review the current treatments for ribosomopathies and prospective therapies targeting ribosomal defects. We also highlight recent advances in ribosome stress-based cancer therapeutics. Importantly, insights into the mechanisms of resistance to therapies targeting ribosome biogenesis bring new perspectives into the molecular basis of cancer susceptibility in ribosomopathies and new clinical implications for cancer therapy.
Collapse
Affiliation(s)
- Jian Kang
- grid.1055.10000000403978434Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC Australia
| | - Natalie Brajanovski
- grid.1055.10000000403978434Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC Australia
| | - Keefe T. Chan
- grid.1055.10000000403978434Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC Australia
| | - Jiachen Xuan
- grid.1055.10000000403978434Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC Australia
| | - Richard B. Pearson
- grid.1055.10000000403978434Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC Australia ,grid.1002.30000 0004 1936 7857Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, VIC Australia
| | - Elaine Sanij
- grid.1055.10000000403978434Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Clinical Pathology, University of Melbourne, Melbourne, VIC Australia ,grid.1073.50000 0004 0626 201XSt. Vincent’s Institute of Medical Research, Fitzroy, VIC Australia
| |
Collapse
|
28
|
Rathi A, Kumar D, Hasan GM, Haque MM, Hassan MI. Therapeutic targeting of PIM KINASE signaling in cancer therapy: Structural and clinical prospects. Biochim Biophys Acta Gen Subj 2021; 1865:129995. [PMID: 34455019 DOI: 10.1016/j.bbagen.2021.129995] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/28/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND PIM kinases are well-studied drug targets for cancer, belonging to Serine/Threonine kinases family. They are the downstream target of various signaling pathways, and their up/down-regulation affects various physiological processes. PIM family comprises three isoforms, namely, PIM-1, PIM-2, and PIM-3, on alternative initiation of translation and they have different levels of expression in different types of cancers. Its structure shows a unique ATP-binding site in the hinge region which makes it unique among other kinases. SCOPE OF REVIEW PIM kinases are widely reported in hematological malignancies along with prostate and breast cancers. Currently, many drugs are used as inhibitors of PIM kinases. In this review, we highlighted the physiological significance of PIM kinases in the context of disease progression and therapeutic targeting. We comprehensively reviewed the PIM kinases in terms of their expression and regulation of different physiological roles. We further predicted functional partners of PIM kinases to elucidate their role in the cellular physiology of different cancer and mapped their interaction network. MAJOR CONCLUSIONS A deeper mechanistic insight into the PIM signaling involved in regulating different cellular processes, including transcription, apoptosis, cell cycle regulation, cell proliferation, cell migration and senescence, is provided. Furthermore, structural features of PIM have been dissected to understand the mechanism of inhibition and subsequent implication of designed inhibitors towards therapeutic management of prostate, breast and other cancers. GENERAL SIGNIFICANCE Being a potential drug target for cancer therapy, available drugs and PIM inhibitors at different stages of clinical trials are discussed in detail.
Collapse
Affiliation(s)
- Aanchal Rathi
- Department of Biotechnology, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Dhiraj Kumar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Gulam Mustafa Hasan
- Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | | | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
29
|
Thankamony AP, Subbalakshmi AR, Jolly MK, Nair R. Lineage Plasticity in Cancer: The Tale of a Skin-Walker. Cancers (Basel) 2021; 13:3602. [PMID: 34298815 PMCID: PMC8306016 DOI: 10.3390/cancers13143602] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/04/2021] [Accepted: 07/14/2021] [Indexed: 12/11/2022] Open
Abstract
Lineage plasticity, the switching of cells from one lineage to another, has been recognized as a cardinal property essential for embryonic development, tissue repair and homeostasis. However, such a highly regulated process goes awry when cancer cells exploit this inherent ability to their advantage, resulting in tumorigenesis, relapse, metastasis and therapy resistance. In this review, we summarize our current understanding on the role of lineage plasticity in tumor progression and therapeutic resistance in multiple cancers. Lineage plasticity can be triggered by treatment itself and is reported across various solid as well as liquid tumors. Here, we focus on the importance of lineage switching in tumor progression and therapeutic resistance of solid tumors such as the prostate, lung, hepatocellular and colorectal carcinoma and the myeloid and lymphoid lineage switch observed in leukemias. Besides this, we also discuss the role of epithelial-mesenchymal transition (EMT) in facilitating the lineage switch in biphasic cancers such as aggressive carcinosarcomas. We also discuss the mechanisms involved, current therapeutic approaches and challenges that lie ahead in taming the scourge of lineage plasticity in cancer.
Collapse
Affiliation(s)
- Archana P. Thankamony
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Kerala 695014, India;
- Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| | - Ayalur Raghu Subbalakshmi
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India;
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India;
| | - Radhika Nair
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Kerala 695014, India;
| |
Collapse
|
30
|
Eerola SK, Kohvakka A, Tammela TLJ, Koskinen PJ, Latonen L, Visakorpi T. Expression and ERG regulation of PIM kinases in prostate cancer. Cancer Med 2021; 10:3427-3436. [PMID: 33932111 PMCID: PMC8124112 DOI: 10.1002/cam4.3893] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/04/2021] [Accepted: 03/23/2021] [Indexed: 11/26/2022] Open
Abstract
The three oncogenic PIM family kinases have been implicated in the development of prostate cancer (PCa). The aim of this study was to examine the mRNA and protein expression levels of PIM1, PIM2, and PIM3 in PCa and their associations with the MYC and ERG oncogenes. We utilized prostate tissue specimens of normal, benign prostatic hyperplasia (BPH), prostatic intraepithelial neoplasia (PIN), untreated PCa, and castration‐resistant prostate cancer (CRPC) for immunohistochemical (IHC) analysis. In addition, we analyzed data from publicly available mRNA expression and chromatin immunoprecipitation sequencing (ChIP‐Seq) datasets. Our data demonstrated that PIM expression levels are significantly elevated in PCa compared to benign samples. Strikingly, the expression of both PIM1 and PIM2 was further increased in CRPC compared to PCa. We also demonstrated a significant association between upregulated PIM family members and both the ERG and MYC oncoproteins. Interestingly, ERG directly binds to the regulatory regions of all PIM genes and upregulates their expression. Furthermore, ERG suppression with siRNA reduced the expression of PIM in PCa cells. These results provide evidence for cooperation of PIM and the MYC and ERG oncoproteins in PCa development and progression and may help to stratify suitable patients for PIM‐targeted therapies.
Collapse
Affiliation(s)
- Sini K Eerola
- Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Annika Kohvakka
- Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Teuvo L J Tammela
- Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland.,Department of Urology, Tampere University Hospital, Tampere, Finland
| | | | - Leena Latonen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Tapio Visakorpi
- Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland.,Fimlab Laboratories Ltd, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
31
|
Co-Targeting PIM Kinase and PI3K/mTOR in NSCLC. Cancers (Basel) 2021; 13:cancers13092139. [PMID: 33946744 PMCID: PMC8125027 DOI: 10.3390/cancers13092139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/25/2021] [Accepted: 04/20/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary PIM kinases interact with major oncogenic players, including the PI3K/Akt pathway, and provide an escape mechanism leading to drug resistance. This study examined PIM kinase expression in NSCLC and the potential of PIM1 as a prognostic marker. The effect on cell signaling of novel preclinical PI3K/mTOR/PIM kinase inhibitor IBL-301 was compared to PI3K/mTOR inhibition in vitro and ex vivo. PI3K-mTOR inhibitor sensitive (H1975P) and resistant (H1975GR) cells were compared for altered IL6/STAT3 pathway expression and sensitivity to IBL-301. All three PIM kinases are expressed in NSCLC and PIM1 is a marker of poor prognosis. IBL-301 inhibited c-Myc, the PI3K-Akt and JAK/STAT pathways in vitro and in NSCLC tumor tissue explants. IBL-301 also inhibited secreted pro-inflammatory cytokine MCP-1. PIM kinases were activated in H1975GR cells which were more sensitive to IBL-301 than H1975P cells. A miRNA signature of PI3K-mTOR resistance was validated. Co-targeting PIM kinase and PI3K-mTOR warrants further clinical investigation. Abstract PIM kinases are constitutively active proto-oncogenic serine/threonine kinases that play a role in cell cycle progression, metabolism, inflammation and drug resistance. PIM kinases interact with and stabilize p53, c-Myc and parallel signaling pathway PI3K/Akt. This study evaluated PIM kinase expression in NSCLC and in response to PI3K/mTOR inhibition. It investigated a novel preclinical PI3K/mTOR/PIM inhibitor (IBL-301) in vitro and in patient-derived NSCLC tumor tissues. Western blot analysis confirmed PIM1, PIM2 and PIM3 are expressed in NSCLC cell lines and PIM1 is a marker of poor prognosis in patients with NSCLC. IBL-301 decreased PIM1, c-Myc, pBAD and p4EBP1 (Thr37/46) and peIF4B (S406) protein levels in-vitro and MAP kinase, PI3K-Akt and JAK/STAT pathways in tumor tissue explants. IBL-301 significantly decreased secreted pro-inflammatory cytokine MCP-1. Altered mRNA expression, including activated PIM kinase and c-Myc, was identified in Apitolisib resistant cells (H1975GR) by an IL-6/STAT3 pathway array and validated by Western blot. H1975GR cells were more sensitive to IBL-301 than parent cells. A miRNA array identified a dysregulated miRNA signature of PI3K/mTOR drug resistance consisting of regulators of PIM kinase and c-Myc (miR17-5p, miR19b-3p, miR20a-5p, miR15b-5p, miR203a, miR-206). Our data provides a rationale for co-targeting PIM kinase and PI3K-mTOR to improve therapeutic response in NSCLC.
Collapse
|
32
|
Ledet RJ, Ruff SE, Wang Y, Nayak S, Schneider JA, Ueberheide B, Logan SK, Garabedian MJ. Identification of PIM1 substrates reveals a role for NDRG1 phosphorylation in prostate cancer cellular migration and invasion. Commun Biol 2021; 4:36. [PMID: 33398037 PMCID: PMC7782530 DOI: 10.1038/s42003-020-01528-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 11/25/2020] [Indexed: 12/17/2022] Open
Abstract
PIM1 is a serine/threonine kinase that promotes and maintains prostate tumorigenesis. While PIM1 protein levels are elevated in prostate cancer relative to local disease, the mechanisms by which PIM1 contributes to oncogenesis have not been fully elucidated. Here, we performed a direct, unbiased chemical genetic screen to identify PIM1 substrates in prostate cancer cells. The PIM1 substrates we identified were involved in a variety of oncogenic processes, and included N-Myc Downstream-Regulated Gene 1 (NDRG1), which has reported roles in suppressing cancer cell invasion and metastasis. NDRG1 is phosphorylated by PIM1 at serine 330 (pS330), and the level of NDRG1 pS330 is associated higher grade prostate tumors. We have shown that PIM1 phosphorylation of NDRG1 at S330 reduced its stability, nuclear localization, and interaction with AR, resulting in enhanced cell migration and invasion.
Collapse
Affiliation(s)
- Russell J Ledet
- Departments of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, 10016, USA
- Department of Urology, New York University School of Medicine, New York, NY, 10016, USA
- Department of Microbiology, New York University School of Medicine, New York, NY, 10016, USA
| | - Sophie E Ruff
- Departments of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, 10016, USA
- Department of Urology, New York University School of Medicine, New York, NY, 10016, USA
- Department of Microbiology, New York University School of Medicine, New York, NY, 10016, USA
| | - Yu Wang
- Departments of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, 10016, USA
- Department of Urology, New York University School of Medicine, New York, NY, 10016, USA
| | - Shruti Nayak
- Proteomics Laboratory, New York University School of Medicine, New York, NY, 10016, USA
| | - Jeffrey A Schneider
- Departments of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, 10016, USA
- Department of Urology, New York University School of Medicine, New York, NY, 10016, USA
- Department of Microbiology, New York University School of Medicine, New York, NY, 10016, USA
| | - Beatrix Ueberheide
- Departments of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, 10016, USA
- Proteomics Laboratory, New York University School of Medicine, New York, NY, 10016, USA
| | - Susan K Logan
- Departments of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, 10016, USA.
- Department of Urology, New York University School of Medicine, New York, NY, 10016, USA.
| | - Michael J Garabedian
- Department of Urology, New York University School of Medicine, New York, NY, 10016, USA.
- Department of Microbiology, New York University School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
33
|
Johansson P, Dierichs L, Klein-Hitpass L, Bergmann AK, Möllmann M, Menninger S, Habenberger P, Klebl B, Siveke JT, Dührsen U, Choidas A, Dürig J. Anti-leukemic effect of CDK9 inhibition in T-cell prolymphocytic leukemia. Ther Adv Hematol 2020; 11:2040620720933761. [PMID: 33117517 PMCID: PMC7570784 DOI: 10.1177/2040620720933761] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 05/19/2020] [Indexed: 12/22/2022] Open
Abstract
T-cell prolymphocytic leukemia (T-PLL) is an aggressive malignancy characterized by chemotherapy resistance and a median survival of less than 2 years. Here, we investigated the pharmacological effects of the novel highly specific cyclin-dependent kinase 9 (CDK9) inhibitor LDC526 and its clinically used derivate atuveciclib employing primary T-PLL cells in an ex vivo drug sensitivity testing platform. Importantly, all T-PLL samples were sensitive to CDK9 inhibition at submicromolar concentrations, while conventional cytotoxic drugs were found to be largely ineffective. At the cellular level LDC526 inhibited the phosphorylation at serine 2 of the RNA polymerase II C-terminal domain resulting in decreased de novo RNA transcription. LDC526 induced apoptotic leukemic cell death through down-regulating MYC and MCL1 both at the mRNA and protein level. Microarray-based transcriptomic profiling revealed that genes down-modulated in response to CDK9 inhibition were enriched for MYC and JAK-STAT targets. By contrast, CDK9 inhibition increased the expression of the tumor suppressor FBXW7, which may contribute to decreased MYC and MCL1 protein levels. Finally, the combination of atuvecliclib and the BCL2 inhibitor venetoclax exhibited synergistic anti-leukemic activity, providing the rationale for a novel targeted-agent-based treatment of T-PLL.
Collapse
Affiliation(s)
| | - Laura Dierichs
- Institute for Developmental Cancer Therapeutics, West German Cancer Center, University Hospital Essen, Essen, Germany
- Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany
| | - Ludger Klein-Hitpass
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Anke K. Bergmann
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Michael Möllmann
- Department of Hematology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | | | | | - Bert Klebl
- Lead Discovery Center GmbH, Dortmund, Germany
| | - Jens T. Siveke
- Institute for Developmental Cancer Therapeutics, West German Cancer Center, University Hospital Essen, Essen, Germany
- Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany
| | - Ulrich Dührsen
- Department of Hematology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | | | - Jan Dürig
- Department of Hematology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- German Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
34
|
Hesabi N, Ebrahimi A. The electrochemical properties and PIM1 kinase enzyme inhibition of some 2-(hydroxy phenyl amino) naphthalene-1,4-dione derivatives. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
35
|
Panchal NK, Sabina EP. A serine/threonine protein PIM kinase as a biomarker of cancer and a target for anti-tumor therapy. Life Sci 2020; 255:117866. [PMID: 32479955 DOI: 10.1016/j.lfs.2020.117866] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 01/04/2023]
Abstract
The PIM Kinases belong to the family of a proto-oncogene that essentially phosphorylates the serine/threonine residues of the target proteins. They are primarily categorized into three types PIM-1, PIM-2, PIM-3 which plays an indispensable regulatory role in signal transduction cascades, by promoting cell survival, proliferation, and drug resistance. These kinases are overexpressed in several solid as well as hematopoietic tumors which supports in vitro and in vivo malignant cell growth along with survival by regulating cell cycle and inhibiting apoptosis. They lack regulatory domain which makes them constitutively active once transcribed. PIM kinases usually appear to be important downstream effectors of oncoproteins which overexpresses and helps in mediating drug resistance to available agents, such as rapamycin. Structural studies of PIM kinases revealed that they have unique hinge regions where two Proline resides and makes ATP binding unique, by offering a target for an increasing number of potent PIM kinase inhibitors. Preclinical studies of those inhibitory compounds in various cancers indicate that these novel agents show promising activity and some of them currently being under examination. In this review, we have outlined PIM kinases molecular mechanism and signaling pathways along with matriculation in various cancer and list of inhibitors often used.
Collapse
Affiliation(s)
- Nagesh Kishan Panchal
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - E P Sabina
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India.
| |
Collapse
|
36
|
PIM-1 Is Overexpressed at a High Frequency in Circulating Tumor Cells from Metastatic Castration-Resistant Prostate Cancer Patients. Cancers (Basel) 2020; 12:cancers12051188. [PMID: 32397108 PMCID: PMC7281625 DOI: 10.3390/cancers12051188] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/29/2020] [Accepted: 05/05/2020] [Indexed: 12/21/2022] Open
Abstract
PIM-1 is an oncogene involved in cell cycle progression, cell growth, cell survival and therapy resistance, activated in many types of cancer, and is now considered as a very promising target for cancer therapy. We report for the first time that PIM-1 is overexpressed in circulating tumor cells (CTCs) from metastatic castration-resistant prostate cancer patients (mCRPC). We first developed and validated a highly sensitive RT-qPCR assay for quantification of PIM-1 transcripts. We further applied this assay to study PIM-1 expression in EpCAM(+) CTC fraction isolated from 64 peripheral blood samples of 50 mCRPC patients. CTC enumeration in all samples was performed using the FDA-cleared CellSearch® system. PIM-1 overexpression was detected in 24/64 (37.5%) cases, while in 20/24 (83.3%) cases that were positive for PIM-1 expression, at least one CTC/7.5 mL PB was detected in the CellSearch®. Our data indicate that PIM-1 overexpression is observed at high frequency in CTCs from mCRPC patients and this finding, in combination with androgen receptor splice variant 7 (AR-V7) expression in CTCs, suggest its potential role as a very promising target for cancer therapy. We strongly believe that PIM-1 overexpression in EpCAM(+) CTC fraction merits to be further evaluated and validated as a non-invasive circulating tumor biomarker in a large and well-defined patient cohort with mCRPC.
Collapse
|
37
|
TAB3 upregulates PIM1 expression by directly activating the TAK1-STAT3 complex to promote colorectal cancer growth. Exp Cell Res 2020; 391:111975. [PMID: 32229191 DOI: 10.1016/j.yexcr.2020.111975] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 03/03/2020] [Accepted: 03/18/2020] [Indexed: 02/08/2023]
Abstract
Transforming growth factor-β-activated kinase 1 (TAK1)-binding protein 3 (TAB3) and the proviral integration site for Moloney murine leukaemia virus 1 (PIM1) are implicated in cancer development. In this study, we investigated the relationship between TAB3 and PIM1 in colorectal cancer (CRC) and determined the potential role and molecular mechanism of TAB3 in PIM1-mediated CRC growth. We found that TAB3 and PIM1 expression levels were positively correlated in CRC tissues. The knockdown of TAB3 significantly decreased PIM1 expression and inhibited CRC proliferation in vitro and in vivo. The upregulation of PIM1 rescued the decreased cell proliferation induced by TAB3 knockdown, whereas PIM1 knockdown decreased TAB3-enhanced CRC proliferation. Additionally, TAB3 regulates PIM1 expression through the STAT3 signalling pathway and confirmed a positive correlation between TAB3 and phosphorylated-STAT3 expression in CRC tissues. Patients with high expression of TAB3 and phosphorylated-STAT3 had the worst prognosis. Mechanistically, TAB3 regulates PIM1 expression by promoting STAT3 phosphorylation and activation through the formation of the TAB3-TAK1-STAT3 complex. Overall, a novel CRC regulatory circuit involving the TAB3-TAK1-STAT3 complex and PIM1 was identified, the dysfunction of which may contribute to CRC tumorigenesis.
Collapse
|
38
|
Lineage plasticity in cancer: a shared pathway of therapeutic resistance. Nat Rev Clin Oncol 2020; 17:360-371. [PMID: 32152485 DOI: 10.1038/s41571-020-0340-z] [Citation(s) in RCA: 341] [Impact Index Per Article: 68.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2020] [Indexed: 12/25/2022]
Abstract
Lineage plasticity, the ability of cells to transition from one committed developmental pathway to another, has been proposed as a source of intratumoural heterogeneity and of tumour adaptation to an adverse tumour microenvironment including exposure to targeted anticancer treatments. Tumour cell conversion into a different histological subtype has been associated with a loss of dependency on the original oncogenic driver, leading to therapeutic resistance. A well-known pathway of lineage plasticity in cancer - the histological transformation of adenocarcinomas to aggressive neuroendocrine derivatives - was initially described in lung cancers harbouring an EGFR mutation, and was subsequently reported in multiple other adenocarcinomas, including prostate cancer in the presence of antiandrogens. Squamous transformation is a subsequently identified and less well-characterized pathway of adenocarcinoma escape from suppressive anticancer therapy. The increased practice of tumour re-biopsy upon disease progression has increased the recognition of these mechanisms of resistance and has improved our understanding of the underlying biology. In this Review, we provide an overview of the impact of lineage plasticity on cancer progression and therapy resistance, with a focus on neuroendocrine transformation in lung and prostate tumours. We discuss the current understanding of the molecular drivers of this phenomenon, emerging management strategies and open questions in the field.
Collapse
|
39
|
Luszczak S, Kumar C, Sathyadevan VK, Simpson BS, Gately KA, Whitaker HC, Heavey S. PIM kinase inhibition: co-targeted therapeutic approaches in prostate cancer. Signal Transduct Target Ther 2020; 5:7. [PMID: 32296034 PMCID: PMC6992635 DOI: 10.1038/s41392-020-0109-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/05/2019] [Accepted: 12/13/2019] [Indexed: 01/09/2023] Open
Abstract
PIM kinases have been shown to play a role in prostate cancer development and progression, as well as in some of the hallmarks of cancer, especially proliferation and apoptosis. Their upregulation in prostate cancer has been correlated with decreased patient overall survival and therapy resistance. Initial efforts to inhibit PIM with monotherapies have been hampered by compensatory upregulation of other pathways and drug toxicity, and as such, it has been suggested that co-targeting PIM with other treatment approaches may permit lower doses and be a more viable option in the clinic. Here, we present the rationale and basis for co-targeting PIM with inhibitors of PI3K/mTOR/AKT, JAK/STAT, MYC, stemness, and RNA Polymerase I transcription, along with other therapies, including androgen deprivation, radiotherapy, chemotherapy, and immunotherapy. Such combined approaches could potentially be used as neoadjuvant therapies, limiting the development of resistance to treatments or sensitizing cells to other therapeutics. To determine which drugs should be combined with PIM inhibitors for each patient, it will be key to develop companion diagnostics that predict response to each co-targeted option, hopefully providing a personalized medicine pathway for subsets of prostate cancer patients in the future.
Collapse
Affiliation(s)
- Sabina Luszczak
- Molecular Diagnostics and Therapeutics Group, University College London, London, UK
| | - Christopher Kumar
- Molecular Diagnostics and Therapeutics Group, University College London, London, UK
| | | | - Benjamin S Simpson
- Molecular Diagnostics and Therapeutics Group, University College London, London, UK
| | - Kathy A Gately
- Trinity Translational Medicine Institute, St. James's Hospital Dublin, Dublin 8, Dublin, Ireland
| | - Hayley C Whitaker
- Molecular Diagnostics and Therapeutics Group, University College London, London, UK
| | - Susan Heavey
- Molecular Diagnostics and Therapeutics Group, University College London, London, UK.
| |
Collapse
|
40
|
Broutian TR, Jiang B, Li J, Akagi K, Gui S, Zhou Z, Xiao W, Symer DE, Gillison ML. Human papillomavirus insertions identify the PIM family of serine/threonine kinases as targetable driver genes in head and neck squamous cell carcinoma. Cancer Lett 2020; 476:23-33. [PMID: 31958486 DOI: 10.1016/j.canlet.2020.01.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/05/2020] [Accepted: 01/09/2020] [Indexed: 12/24/2022]
Abstract
Human papillomavirus (HPV) insertions in cancer genomes have been linked to various forms of focal genomic instability and altered expression of neighboring genes. Here we tested the hypothesis that investigation of HPV insertions in a head and neck cancer squamous cell carcinoma (HNSCC) cell line would identify targetable driver genes contributing to oncogenesis of other HNSCC. In the cell line UPCI:SCC090 HPV16 integration amplified the PIM1 serine/threonine kinase gene ~16-fold, thereby increasing transcript and protein levels. We used genetic and pharmacological approaches to inhibit PIM kinases in this and other HNSCC cell lines. Knockdown of PIM1 transcripts by transfected short hairpin RNAs reduced UPCI:SCC090 viability. CRISPR/Cas9-mediated mutagenesis of PIM1 caused cell cycle arrest and apoptosis. Pharmacological inhibition of PIM family kinases decreased growth of UPCI:SCC090 and additional HNSCC cell lines in vitro and a xenograft UPCI:SCC090 model in vivo. Based on established interactions between intracellular signaling pathways and relatively high levels of gene expression in almost all HNSCC, we also evaluated combinations of PIM kinase and epidermal growth factor receptor (EGFR) inhibitors. Dual inhibition of these pathways resulted in supra-additive cell death. These data support clinical testing of PIM inhibitors alone or in combination in HNSCC.
Collapse
Affiliation(s)
- Tatevik R Broutian
- Biomedical Sciences Graduate Program, Ohio State University, Columbus, OH, 43210, United States
| | - Bo Jiang
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, United States
| | - Jingfeng Li
- Division of Medical Oncology, Department of Internal Medicine, Ohio State University, Columbus, OH, 43210, United States
| | - Keiko Akagi
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, United States
| | - Shanying Gui
- Division of Medical Oncology, Department of Internal Medicine, Ohio State University, Columbus, OH, 43210, United States
| | - Zhengqiu Zhou
- Division of Medical Oncology, Department of Internal Medicine, Ohio State University, Columbus, OH, 43210, United States
| | - Weihong Xiao
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, United States
| | - David E Symer
- Department of Lymphoma and Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, United States.
| | - Maura L Gillison
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, United States.
| |
Collapse
|
41
|
Yu C, Hu K, Nguyen D, Wang ZA. From genomics to functions: preclinical mouse models for understanding oncogenic pathways in prostate cancer. Am J Cancer Res 2019; 9:2079-2102. [PMID: 31720076 PMCID: PMC6834478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 09/10/2019] [Indexed: 06/10/2023] Open
Abstract
Next-generation sequencing has revealed numerous genomic alterations that induce aberrant signaling activities in prostate cancer (PCa). Among them are pathways affecting multiple cancer types, including the PI3K/AKT/mTOR, p53, Rb, Ras/Raf/MAPK, Myc, FGF, and Wnt signaling pathways, as well as ones that are prominent in PCa, including alterations in genes of AR signaling, the ETS family, NKX3.1, and SPOP. Cross talk among the oncogenic pathways can confer PCa resistance to therapy, particularly in advanced tumors, which are castration-resistant or show neuroendocrine features. Various experimental models, such as cancer cell lines, animal models, and patient-derived xenografts and organoids have been utilized to dissect PCa progression mechanisms. Here, we review the current preclinical mouse models for studying the most commonly altered pathways in PCa, with an emphasis on their interplays. We highlight the power of genetically engineered mouse models (GEMMs) in translating genomic discoveries into understanding of the functions of these oncogenic events in vivo. Developing and analyzing PCa mouse models will undoubtedly continue to offer new insights into tumor biology and guide novel rationalized therapy.
Collapse
Affiliation(s)
- Chuan Yu
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, CA 95064, USA
| | - Kevin Hu
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, CA 95064, USA
| | - Daniel Nguyen
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, CA 95064, USA
| | - Zhu A Wang
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, CA 95064, USA
| |
Collapse
|
42
|
Chen J, Tang G. PIM-1 kinase: a potential biomarker of triple-negative breast cancer. Onco Targets Ther 2019; 12:6267-6273. [PMID: 31496730 PMCID: PMC6690594 DOI: 10.2147/ott.s212752] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/30/2019] [Indexed: 01/10/2023] Open
Abstract
Triple-negative breast cancer is associated with a poor prognosis, and effective biomarkers for targeted diagnosis and treatment are lacking. The tumorigenicity of the provirus integration site for Moloney murine leukemia virus 1 (PIM-1) gene has been studied for many years. However, its significance in breast cancer remains unclear. In this review we briefly summarized the physiological characteristics and regulation of PIM-1 kinase, and subsequently focused on the role of PIM-1 in tumors, especially breast cancer. Oncogene PIM-1 was found to be upregulated in breast cancer, especially in triple-negative breast cancer. Moreover, it is involved in tumorigenesis and the development of drug resistance, and linked to poor prognosis. A highly selective probe targeting PIM-1 for imaging has emerged, suggesting that PIM-1 may be a potential biomarker for the accurate diagnosis and targeted therapy of triple-negative breast cancer.
Collapse
Affiliation(s)
- Jieying Chen
- Department of Radiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Guangyu Tang
- Department of Radiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
43
|
Gao X, Liu X, Lu Y, Wang Y, Cao W, Liu X, Hu H, Wang H. PIM1 is responsible for IL-6-induced breast cancer cell EMT and stemness via c-myc activation. Breast Cancer 2019; 26:663-671. [PMID: 30989585 PMCID: PMC6694096 DOI: 10.1007/s12282-019-00966-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 03/25/2019] [Indexed: 12/24/2022]
Abstract
Background Interleukin-6 (IL-6) has been demonstrated to be a critical factor for breast cancer malignancy. However, the molecular mechanisms by which IL-6 induce breast cancer cells epithelial–mesenchymal-transition (EMT) and stemness remain elusive. Methods Breast cancer cell lines T47D and MCF7 were exposed to IL-6, the expression of PIM1 was examined by quantitative real-time PCR (qRT-PCR) and western blot. Luciferase reporter assay was used to determine the transcriptional modulation of PIM1 by IL-6 and STAT3 inhibitor. Transwell assay was used to detect the invading ability of breast cancer cells induced by IL-6 or PIM1. The expressions of EMT and stemness markers were determined by qRT-PCR. Results IL-6 promoted PIM1 expression in a dose- and time-dependent manner, and this induction could be abrogated by inhibiting STAT3 activation, subsequently suppressing the transcriptional level of PIM1. Moreover, we noticed that knocking down of PIM1 in cells which was exposed to IL-6 significantly impaired the invasion ability and the expression of EMT and stemness markers. On the contrary, overexpression of PIM1 promoted cell invasion and upregulated the expression of EMT and stemness markers. In addition, we demonstrated that c-myc, the cofactor of PIM1, involved in the pro-oncogenic roles of PIM1. Knocking down of c-myc attenuated the PIM1-induced cell EMT and stemness. Conclusion This study proposed the upregulation of PIM1 by IL-6 contributed to breast cancer cell aggressiveness and targeting PIM1 or c-myc could be novel approaches for breast cancer treatment.
Collapse
Affiliation(s)
- Xueqiang Gao
- Breast Disease Center, The Affiliated Hospital of Qingdao University, 59 Haier Road, Qingdao, 266000, Shandong, China
| | - Xiangping Liu
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China
| | - Yangyong Lu
- Department of Galactophore Surgery, Qingdao Women and Children's Hospital, Qingdao, Shandong, 266000, China
| | - Yu Wang
- Breast Disease Center, The Affiliated Hospital of Qingdao University, 59 Haier Road, Qingdao, 266000, Shandong, China
| | - Weihong Cao
- Breast Disease Center, The Affiliated Hospital of Qingdao University, 59 Haier Road, Qingdao, 266000, Shandong, China
| | - Xiaoyi Liu
- Breast Disease Center, The Affiliated Hospital of Qingdao University, 59 Haier Road, Qingdao, 266000, Shandong, China
| | - Haiyan Hu
- Breast Disease Center, The Affiliated Hospital of Qingdao University, 59 Haier Road, Qingdao, 266000, Shandong, China
| | - Haibo Wang
- Breast Disease Center, The Affiliated Hospital of Qingdao University, 59 Haier Road, Qingdao, 266000, Shandong, China.
| |
Collapse
|
44
|
Zhang C, Qie Y, Yang T, Wang L, Du E, Liu Y, Xu Y, Qiao B, Zhang Z. Kinase PIM1 promotes prostate cancer cell growth via c-Myc-RPS7-driven ribosomal stress. Carcinogenesis 2018; 40:52-60. [PMID: 30247545 DOI: 10.1093/carcin/bgy126] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 08/26/2018] [Accepted: 09/19/2018] [Indexed: 01/01/2023] Open
Affiliation(s)
- Changwen Zhang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin, China
| | - Yunkai Qie
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin, China
| | - Tong Yang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin, China
| | - Li Wang
- Department of Gynaecology and Obstetrics, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - E Du
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin, China
| | - Yan Liu
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin, China
| | - Yong Xu
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin, China
| | - Baomin Qiao
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin, China
| | - Zhihong Zhang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin, China
| |
Collapse
|
45
|
Karatas OF. Antiproliferative potential of miR-33a in laryngeal cancer Hep-2 cells via targeting PIM1. Head Neck 2018; 40:2455-2461. [PMID: 30102806 DOI: 10.1002/hed.25361] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 03/21/2018] [Accepted: 05/17/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Laryngeal cancer is a frequent cause of cancer-associated mortality worldwide with an overall poor prognosis along with high mortality rates. Therefore, comprehensive investigation of underlying molecular mechanisms of laryngeal carcinogenesis remains an important problem. METHODS In this study, proliferative and apoptotic features of Hep-2 cells overexpressing microRNA-33a (miR-33a) were evaluated and in silico analysis along with literature search was used to find putative targets of miR-33a. The potential of PIM1 (pim-1 oncogene) as a direct target of miR-33a was tested using quantitative real-time polymerase chain reaction, Western blot, and luciferase assay. RESULTS Induced miR-33a expression significantly inhibited proliferation through inducing apoptosis of Hep-2 cells. Further in vitro tests showed downregulation of PIM1 in messenger ribonucleic acid (mRNA) and protein level upon miR-33a overexpression and confirmed PIM1 as a direct target of miR-33a. CONCLUSIONS Mir-33a was demonstrated to act as a tumor suppressor in larnygeal cancer via directly targeting the 3' untranslated region of PIM1.
Collapse
Affiliation(s)
- Omer Faruk Karatas
- Molecular Biology and Genetics Department, Erzurum Technical University, Erzurum, Turkey
| |
Collapse
|
46
|
La Rosa S, Bernasconi B, Vanoli A, Sciarra A, Notohara K, Albarello L, Casnedi S, Billo P, Zhang L, Tibiletti MG, Sessa F. c-MYC amplification and c-myc protein expression in pancreatic acinar cell carcinomas. New insights into the molecular signature of these rare cancers. Virchows Arch 2018; 473:435-441. [PMID: 29721608 DOI: 10.1007/s00428-018-2366-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 04/23/2018] [Accepted: 04/25/2018] [Indexed: 12/12/2022]
Abstract
The molecular alterations of pancreatic acinar cell carcinomas (ACCs) and mixed acinar-neuroendocrine carcinomas (MANECs) are not completely understood, and the possible role of c-MYC amplification in tumor development, progression, and prognosis is not known. We have investigated c-MYC gene amplification in a series of 35 ACCs and 4 MANECs to evaluate its frequency and a possible prognostic role. Gene amplification was investigated using interphasic fluorescence in situ hybridization analysis simultaneously hybridizing c-MYC and the centromere of chromosome 8 probes. Protein expression was immunohistochemically investigated using a specific monoclonal anti-c-myc antibody. Twenty cases had clones with different polysomies of chromosome 8 in absence of c-MYC amplification, and 5 cases had one amplified clone and other clones with chromosome 8 polysomy, while the remaining 14 cases were diploid for chromosome 8 and lacked c-MYC amplification. All MANECs showed c-MYC amplification and/or polysomy which were observed in 54% pure ACCs. Six cases (15.3%) showed nuclear immunoreactivity for c-myc, but only 4/39 cases showed simultaneous c-MYC amplification/polysomy and nuclear protein expression. c-myc immunoreactivity as well as c-MYC amplification and/or chromosome 8 polysomy was not statistically associated with prognosis. Our study demonstrates that a subset of ACCs shows c-MYC alterations including gene amplification and chromosome 8 polysomy. Although they are not associated with a different prognostic signature, the fact that these alterations are present in all MANECs suggests a role in the acinar-neuroendocrine differentiation possibly involved in the pathogenesis of MANECs.
Collapse
Affiliation(s)
- Stefano La Rosa
- Service of Clinical Pathology, Institute of Pathology, Lausanne University Hospital, 25 rue du Bugnon, 1011, Lausanne, Switzerland.
| | - Barbara Bernasconi
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | | | - Amedeo Sciarra
- Service of Clinical Pathology, Institute of Pathology, Lausanne University Hospital, 25 rue du Bugnon, 1011, Lausanne, Switzerland
| | - Kenji Notohara
- Department of Anatomic Pathology, Kurashiki Central Hospital, Kurashiki, Japan
| | - Luca Albarello
- Pathology Unit, San Raffaele Scientific Institute, Milan, Italy
| | | | - Paola Billo
- Unit of Pathology, Ospedale Civile, Legnano, Italy
| | - Lizhi Zhang
- Department of Pathology, Mayo Clinic, Rochester, MN, USA
| | | | - Fausto Sessa
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| |
Collapse
|
47
|
An J, Xu J, Li J, Jia S, Li X, Lu Y, Yang Y, Lin Z, Xin X, Wu M, Zheng Q, Pu H, Gui X, Li T, Lu D. HistoneH3 demethylase JMJD2A promotes growth of liver cancer cells through up-regulating miR372. Oncotarget 2018; 8:49093-49109. [PMID: 28467776 PMCID: PMC5564752 DOI: 10.18632/oncotarget.17095] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 04/01/2017] [Indexed: 11/25/2022] Open
Abstract
Changes in histone lysine methylation status have been observed during cancer formation. JMJD2A protein is a demethylase that is overexpressed in several tumors. Herein, our results demonstrate that JMJD2A accelerates malignant progression of liver cancer cells in vitro and in vivo. Mechanistically, JMJD2A promoted the expression and mature of pre-miR372 epigenetically. Notably, miR372 blocks the editing of 13th exon-introns-14th exon and forms a novel transcript(JMJD2AΔ) of JMJD2A. In particular, JMJD2A inhibited P21(WAF1/Cip1) expression by decreasing H3K9me3 dependent on JMJD2AΔ. Thereby, JMJD2A could enhance Pim1 transcription by suppressing P21(WAF1/Cip1). Furthermore, through increasing the expression of Pim1, JMJD2A could facilitate the interaction among pRB, CDK2 and CyclinE which prompts the transcription and translation of oncogenic C-myc. Strikingly, JMJD2A may trigger the demethylation of Pim1. On the other hand, Pim1 knockdown and P21(WAF1/Cip1) overexpression fully abrogated the oncogenic function of JMJD2A. Our observations suggest that JMJD2A promotes liver cancer cell cycle progress through JMJD2A-miR372-JMJD2AΔ-P21WAF1/Cip1-Pim1-pRB-CDK2-CyclinE-C-myc axis. This study elucidates a novel mechanism for JMJD2A in liver cancer cells and suggests that JMJD2A can be used as a novel therapeutic targets of liver cancer.
Collapse
Affiliation(s)
- Jiahui An
- School of Life Science and Technology, Tongji University, Shanghai, 20092, China
| | - Jie Xu
- School of Life Science and Technology, Tongji University, Shanghai, 20092, China
| | - Jiao Li
- School of Medicine, Tongji University, Shanghai, 200092, China
| | - Song Jia
- School of Medicine, Tongji University, Shanghai, 200092, China
| | - Xiaonan Li
- School of Life Science and Technology, Tongji University, Shanghai, 20092, China
| | - Yanan Lu
- School of Life Science and Technology, Tongji University, Shanghai, 20092, China
| | - Yuxin Yang
- School of Life Science and Technology, Tongji University, Shanghai, 20092, China
| | - Zhuojia Lin
- School of Life Science and Technology, Tongji University, Shanghai, 20092, China
| | - Xiaoru Xin
- School of Life Science and Technology, Tongji University, Shanghai, 20092, China
| | - Mengying Wu
- School of Life Science and Technology, Tongji University, Shanghai, 20092, China
| | - Qidi Zheng
- School of Life Science and Technology, Tongji University, Shanghai, 20092, China
| | - Hu Pu
- School of Life Science and Technology, Tongji University, Shanghai, 20092, China
| | - Xin Gui
- School of Life Science and Technology, Tongji University, Shanghai, 20092, China
| | - Tianming Li
- School of Life Science and Technology, Tongji University, Shanghai, 20092, China
| | - Dongdong Lu
- School of Life Science and Technology, Tongji University, Shanghai, 20092, China
| |
Collapse
|
48
|
Calcium and Nuclear Signaling in Prostate Cancer. Int J Mol Sci 2018; 19:ijms19041237. [PMID: 29671777 PMCID: PMC5979488 DOI: 10.3390/ijms19041237] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/15/2018] [Accepted: 04/17/2018] [Indexed: 02/06/2023] Open
Abstract
Recently, there have been a number of developments in the fields of calcium and nuclear signaling that point to new avenues for a more effective diagnosis and treatment of prostate cancer. An example is the discovery of new classes of molecules involved in calcium-regulated nuclear import and nuclear calcium signaling, from the G protein-coupled receptor (GPCR) and myosin families. This review surveys the new state of the calcium and nuclear signaling fields with the aim of identifying the unifying themes that hold out promise in the context of the problems presented by prostate cancer. Genomic perturbations, kinase cascades, developmental pathways, and channels and transporters are covered, with an emphasis on nuclear transport and functions. Special attention is paid to the molecular mechanisms behind prostate cancer progression to the malignant forms and the unfavorable response to anti-androgen treatment. The survey leads to some new hypotheses that connect heretofore disparate results and may present a translational interest.
Collapse
|
49
|
Zhang M, Liu T, Sun H, Weng W, Zhang Q, Liu C, Han Y, Sheng W. Pim1 supports human colorectal cancer growth during glucose deprivation by enhancing the Warburg effect. Cancer Sci 2018. [PMID: 29516572 PMCID: PMC5980151 DOI: 10.1111/cas.13562] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cancer cells metabolize glucose mainly by glycolysis and are well adapted to metabolic stress. Pim1 is an oncogene that promotes colorectal cancer (CRC) growth and metastasis, and its expression is positively correlated with CRC progression. However, the mechanism underlying Pim1 overexpression during CRC progression and the role of Pim1 in CRC metabolism remains unclear. In the present study, we discovered that Pim1 expression was significantly upregulated in response to glucose deprivation‐induced metabolic stress by AMP‐activated protein kinase signaling. Pim1 promoted CRC cell proliferation in vitro and tumorigenicity in vivo. Clinical observations showed that Pim1 expression was higher in CRC tissues than in adjacent normal tissues. Pim1 overexpression in CRC tissues not only predicted CRC prognosis in patients but also showed a positive relationship with 18F‐fluorodeoxyglucose uptake. Further in vitro experiments showed that Pim1 promoted the Warburg effect and that Pim1 expression was positively correlated with hexokinase 2 and lactate dehydrogenase A expression. Pim1‐silenced cells were more vulnerable to glucose starvation, and Pim1‐induced tumor proliferation or tolerance to glucose starvation was attenuated by blocking the Warburg effect. In conclusion, glucose deprivation is one of the mechanisms that leads to elevated Pim1 expression in CRC, and Pim1 upregulation ensures CRC growth in response to glucose deprivation by facilitating the Warburg effect in a compensatory way.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Pathology, Shanghai Medical College, Fudan University, Shanghai, China.,Institute of Pathology, Fudan University, Shanghai, China
| | - Tingting Liu
- Department of Pathology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hui Sun
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.,Institute of Pathology, Fudan University, Shanghai, China
| | - Weiwei Weng
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.,Institute of Pathology, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qiongyan Zhang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.,Institute of Pathology, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chenchen Liu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Gastric Cancer Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yang Han
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Gastric Cancer Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Weiqi Sheng
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.,Institute of Pathology, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
50
|
Anker JF, Mok H, Naseem AF, Thumbikat P, Abdulkadir SA. A Bioluminescent and Fluorescent Orthotopic Syngeneic Murine Model of Androgen-dependent and Castration-resistant Prostate Cancer. J Vis Exp 2018. [PMID: 29578515 PMCID: PMC5931443 DOI: 10.3791/57301] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Orthotopic tumor modeling is a valuable tool for pre-clinical prostate cancer research, as it has multiple advantages over both subcutaneous and transgenic genetically engineered mouse models. Unlike subcutaneous tumors, orthotopic tumors contain more clinically accurate vasculature, tumor microenvironment, and responses to multiple therapies. In contrast to genetically engineered mouse models, orthotopic models can be performed with lower cost and in less time, involve the use of highly complex and heterogeneous mouse or human cancer cell lines, rather that single genetic alterations, and these cell lines can be genetically modified, such as to express imaging agents. Here, we present a protocol to surgically injecting a luciferase- and mCherry-expressing murine prostate cancer cell line into the anterior prostate lobe of mice. These mice developed orthotopic tumors that were non-invasively monitored in vivo and further analyzed for tumor volume, weight, mouse survival, and immune infiltration. Further, orthotopic tumor-bearing mice were surgically castrated, leading to immediate tumor regression and subsequent recurrence, representing castration-resistant prostate cancer. Although technical skill is required to carry out this procedure, this syngeneic orthotopic model of both androgen-dependent and castration-resistant prostate cancer is of great use to all investigators in the field.
Collapse
Affiliation(s)
- Jonathan F Anker
- Department of Urology, Northwestern University Feinberg School of Medicine
| | - Hanlin Mok
- Department of Urology, Northwestern University Feinberg School of Medicine
| | - Anum F Naseem
- Department of Urology, Northwestern University Feinberg School of Medicine
| | - Praveen Thumbikat
- Department of Urology, Northwestern University Feinberg School of Medicine; Department of Pathology, Northwestern University Feinberg School of Medicine;
| | - Sarki A Abdulkadir
- Department of Urology, Northwestern University Feinberg School of Medicine; The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine; Department of Pathology, Northwestern University Feinberg School of Medicine;
| |
Collapse
|