1
|
Iyer R, Deshpande A, Pedgaonkar A, Bala PA, Kim T, Brien GL, Finlay D, Vuori K, Soragni A, Murad R, Deshpande AJ. SUMO2 Inhibition Reverses Aberrant Epigenetic Rewiring Driven by Synovial Sarcoma Fusion Oncoproteins and Impairs Sarcomagenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.23.614593. [PMID: 39386552 PMCID: PMC11463515 DOI: 10.1101/2024.09.23.614593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Synovial Sarcoma (SySa) is an aggressive soft tissue sarcoma that accounts for 5 - 10% of all soft tissue sarcomas. Current treatment involves radiation and radical surgery including limb amputation, highlighting the urgent need to develop targeted therapies. We reasoned that transcriptional rewiring by the fusion protein SS18-SSX, the sole oncogenic driver in SySa, creates specific vulnerabilities that can be exploited for treatment. To uncover genes that are selectively essential for SySa, we mined The Cancer Dependency Map (DepMap) data to identify genes that specifically impact the fitness of SySa compared to other tumor cell lines. Targeted CRISPR library screening of SySa-selective candidates revealed that the small ubiquitin-like modifier 2 (SUMO2) was one of the strongest dependencies both in vitro as well as in vivo. TAK-981, a clinical-stage small molecule SUMO2 inhibitor potently inhibited growth and colony-forming ability. Strikingly, transcriptomic studies showed that pharmacological SUMO2 inhibition with TAK-981 treatment elicited a profound reversal of a gene expression program orchestrated by SS18-SSX fusions. Of note, genetic or pharmacological SUMO2 inhibition reduced global and chromatin levels of the SS18-SSX fusion protein with a concomitant reduction in histone 2A lysine 119 ubiquitination (H2AK119ub), an epigenetic mark that plays an important role in SySa pathogenesis. Taken together, our studies identify SUMO2 as a novel, selective vulnerability in SySa. Since SUMO2 inhibitors are currently in Phase 1/2 clinical trials for other cancers, our findings present a novel avenue for targeted treatment of synovial sarcoma.
Collapse
Affiliation(s)
- Rema Iyer
- Cancer Genome and Epigenetics Program, National Cancer Institute-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Anagha Deshpande
- Cancer Genome and Epigenetics Program, National Cancer Institute-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Aditi Pedgaonkar
- Cancer Genome and Epigenetics Program, National Cancer Institute-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Pramod Akula Bala
- Computational Biology Core, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Taehee Kim
- Department of Orthopedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Gerard L. Brien
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer University of Edinburgh, Edinburgh, United Kingdom
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, United Kingdom
| | - Darren Finlay
- Cancer Molecular Therapeutics Program, National Cancer Institute-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Kristiina Vuori
- Cancer Molecular Therapeutics Program, National Cancer Institute-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Alice Soragni
- Department of Orthopedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Rabi Murad
- Computational Biology Core, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Aniruddha J. Deshpande
- Cancer Genome and Epigenetics Program, National Cancer Institute-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| |
Collapse
|
2
|
Parker K, Zhang Y, Anchondo G, Smith A, Guerrero Pacheco S, Kondo T, Su L. Combination of HDAC and FYN inhibitors in synovial sarcoma treatment. Front Cell Dev Biol 2024; 12:1422452. [PMID: 39045458 PMCID: PMC11264242 DOI: 10.3389/fcell.2024.1422452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/17/2024] [Indexed: 07/25/2024] Open
Abstract
The SS18-SSX fusion protein is an oncogenic driver in synovial sarcoma. At the molecular level, SS18-SSX functions as both an activator and a repressor to coordinate transcription of different genes responsible for tumorigenesis. Here, we identify the proto-oncogene FYN as a new SS18-SSX target gene and examine its relation to synovial sarcoma therapy. FYN is a tyrosine kinase that promotes cancer growth, metastasis and therapeutic resistance, but SS18-SSX appears to negatively regulate FYN expression in synovial sarcoma cells. Using both genetic and histone deacetylase inhibitor (HDACi)-based pharmacologic approaches, we show that suppression of SS18-SSX leads to FYN reactivation. In support of this notion, we find that blockade of FYN activity synergistically enhances HDACi action to reduce synovial sarcoma cell proliferation and migration. Our results support a role for FYN in attenuation of anti-cancer activity upon inhibition of SS18-SSX function and demonstrate the feasibility of targeting FYN to improve the effectiveness of HDACi treatment against synovial sarcoma.
Collapse
Affiliation(s)
- Kyra Parker
- Department of Biology, Jacksonville State University, Jacksonville, AL, United States
| | - Yanfeng Zhang
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Gavin Anchondo
- Department of Biology, Jacksonville State University, Jacksonville, AL, United States
| | - Ashlyn Smith
- Department of Biology, Jacksonville State University, Jacksonville, AL, United States
| | | | | | - Le Su
- Department of Biology, Jacksonville State University, Jacksonville, AL, United States
| |
Collapse
|
3
|
Tanaka M, Homme M, Teramura Y, Kumegawa K, Yamazaki Y, Yamashita K, Osato M, Maruyama R, Nakamura T. HEY1-NCOA2 expression modulates chondrogenic differentiation and induces mesenchymal chondrosarcoma in mice. JCI Insight 2023; 8:160279. [PMID: 37212282 DOI: 10.1172/jci.insight.160279] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/12/2023] [Indexed: 05/23/2023] Open
Abstract
Mesenchymal chondrosarcoma affects adolescents and young adults, and most cases usually have the HEY1::NCOA2 fusion gene. However, the functional role of HEY1-NCOA2 in the development and progression of mesenchymal chondrosarcoma remains largely unknown. This study aimed to clarify the functional role of HEY1-NCOA2 in transformation of the cell of origin and induction of typical biphasic morphology of mesenchymal chondrosarcoma. We generated a mouse model for mesenchymal chondrosarcoma by introducing HEY1-NCOA2 into mouse embryonic superficial zone (eSZ) followed by subcutaneous transplantation into nude mice. HEY1-NCOA2 expression in eSZ cells successfully induced subcutaneous tumors in 68.9% of recipients, showing biphasic morphologies and expression of Sox9, a master regulator of chondrogenic differentiation. ChIP sequencing analyses indicated frequent interaction between HEY1-NCOA2 binding peaks and active enhancers. Runx2, which is important for differentiation and proliferation of the chondrocytic lineage, is invariably expressed in mouse mesenchymal chondrosarcoma, and interaction between HEY1-NCOA2 and Runx2 is observed using NCOA2 C-terminal domains. Although Runx2 knockout resulted in significant delay in tumor onset, it also induced aggressive growth of immature small round cells. Runx3, which is also expressed in mesenchymal chondrosarcoma and interacts with HEY1-NCOA2, replaced the DNA-binding property of Runx2 only in part. Treatment with the HDAC inhibitor panobinostat suppressed tumor growth both in vitro and in vivo, abrogating expression of genes downstream of HEY1-NCOA2 and Runx2. In conclusion, HEY1::NCOA2 expression modulates the transcriptional program in chondrogenic differentiation, affecting cartilage-specific transcription factor functions.
Collapse
Affiliation(s)
- Miwa Tanaka
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- Department of Experimental Pathology, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
- Project for Cancer Epigenomics, The Cancer Institute, and
| | - Mizuki Homme
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yasuyo Teramura
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kohei Kumegawa
- Project for Cancer Epigenomics, The Cancer Institute, and
| | - Yukari Yamazaki
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- Department of Experimental Pathology, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Kyoko Yamashita
- Department of Pathology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Motomi Osato
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Reo Maruyama
- Project for Cancer Epigenomics, The Cancer Institute, and
| | - Takuro Nakamura
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- Department of Experimental Pathology, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
4
|
Landuzzi L, Ruzzi F, Lollini PL, Scotlandi K. Synovial Sarcoma Preclinical Modeling: Integrating Transgenic Mouse Models and Patient-Derived Models for Translational Research. Cancers (Basel) 2023; 15:cancers15030588. [PMID: 36765545 PMCID: PMC9913760 DOI: 10.3390/cancers15030588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Synovial sarcomas (SyS) are rare malignant tumors predominantly affecting children, adolescents, and young adults. The genetic hallmark of SyS is the t(X;18) translocation encoding the SS18-SSX fusion gene. The fusion protein interacts with both the BAF enhancer and polycomb repressor complexes, and either activates or represses target gene transcription, resulting in genome-wide epigenetic perturbations and altered gene expression. Several experimental in in vivo models, including conditional transgenic mouse models expressing the SS18-SSX fusion protein and spontaneously developing SyS, are available. In addition, patient-derived xenografts have been estab-lished in immunodeficient mice, faithfully reproducing the complex clinical heterogeneity. This review focuses on the main molecular features of SyS and the related preclinical in vivo and in vitro models. We will analyze the different conditional SyS mouse models that, after combination with some of the few other recurrent alterations, such as gains in BCL2, Wnt-β-catenin signaling, FGFR family, or loss of PTEN and SMARCB1, have provided additional insight into the mechanisms of synovial sarcomagenesis. The recent advancements in the understanding of SyS biology and improvements in preclinical modeling pave the way to the development of new epigenetic drugs and immunotherapeutic approaches conducive to new treatment options.
Collapse
Affiliation(s)
- Lorena Landuzzi
- Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
- Correspondence: (L.L.); (P.-L.L.); Tel.: +39-051-2094796 (L.L.); +39-051-2094786 (P.-L.L.)
| | - Francesca Ruzzi
- Laboratory of Immunology and Biology of Metastasis, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | - Pier-Luigi Lollini
- Laboratory of Immunology and Biology of Metastasis, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
- Correspondence: (L.L.); (P.-L.L.); Tel.: +39-051-2094796 (L.L.); +39-051-2094786 (P.-L.L.)
| | - Katia Scotlandi
- Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| |
Collapse
|
5
|
Wang X, Semba T, Manyam GC, Wang J, Shao S, Bertucci F, Finetti P, Krishnamurthy S, Phi LTH, Pearson T, Van Laere SJ, Burks JK, Cohen EN, Reuben JM, Yang F, Min H, Navin N, Trinh VN, Iwase T, Batra H, Shen Y, Zhang X, Tripathy D, Ueno NT. EGFR is a master switch between immunosuppressive and immunoactive tumor microenvironment in inflammatory breast cancer. SCIENCE ADVANCES 2022; 8:eabn7983. [PMID: 36525493 PMCID: PMC9757751 DOI: 10.1126/sciadv.abn7983] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Inflammatory breast cancer (IBC), the most aggressive breast cancer subtype, is driven by an immunosuppressive tumor microenvironment (TME). Current treatments for IBC have limited efficacy. In a clinical trial (NCT01036087), an anti-EGFR antibody combined with neoadjuvant chemotherapy produced the highest pathological complete response rate ever reported in patients with IBC having triple-negative receptor status. We determined the molecular and immunological mechanisms behind this superior clinical outcome. Using novel humanized IBC mouse models, we discovered that EGFR-targeted therapy remodels the IBC TME by increasing cytotoxic T cells and reducing immunosuppressive regulatory T cells and M2 macrophages. These changes were due to diminishing immunosuppressive chemokine expression regulated by transcription factor EGR1. We also showed that induction of an immunoactive IBC TME by an anti-EGFR antibody improved the antitumor efficacy of an anti-PD-L1 antibody. Our findings lay the foundation for clinical trials evaluating EGFR-targeted therapy combined with immune checkpoint inhibitors in patients with cancer.
Collapse
Affiliation(s)
- Xiaoping Wang
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Takashi Semba
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ganiraju C. Manyam
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shan Shao
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Francois Bertucci
- Laboratoire d’Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, Marseille, France
- Département d’Oncologie Médicale, Institut Paoli-Calmettes, Marseille, France
| | - Pascal Finetti
- Laboratoire d’Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, Marseille, France
| | - Savitri Krishnamurthy
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lan Thi Hanh Phi
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Troy Pearson
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Steven J. Van Laere
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp; Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Jared K. Burks
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Evan N. Cohen
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - James M. Reuben
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Fei Yang
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hu Min
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nicholas Navin
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Van Ngu Trinh
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Toshiaki Iwase
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Harsh Batra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yichao Shen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xiang Zhang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Debu Tripathy
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Naoto T. Ueno
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Cancer Biology Program, University of Hawai'i Cancer Center, Honolulu, HI 96813, USA
| |
Collapse
|
6
|
Lanzi C, Cassinelli G. Combinatorial strategies to potentiate the efficacy of HDAC inhibitors in fusion-positive sarcomas. Biochem Pharmacol 2022; 198:114944. [DOI: 10.1016/j.bcp.2022.114944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/02/2022] [Accepted: 02/02/2022] [Indexed: 12/12/2022]
|
7
|
Lanzi C, Favini E, Dal Bo L, Tortoreto M, Arrighetti N, Zaffaroni N, Cassinelli G. Upregulation of ERK-EGR1-heparanase axis by HDAC inhibitors provides targets for rational therapeutic intervention in synovial sarcoma. J Exp Clin Cancer Res 2021; 40:381. [PMID: 34857011 PMCID: PMC8638516 DOI: 10.1186/s13046-021-02150-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 10/21/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Synovial sarcoma (SS) is an aggressive soft tissue tumor with limited therapeutic options in advanced stage. SS18-SSX fusion oncogenes, which are the hallmarks of SS, cause epigenetic rewiring involving histone deacetylases (HDACs). Promising preclinical studies supporting HDAC targeting for SS treatment were not reflected in clinical trials with HDAC inhibitor (HDACi) monotherapies. We investigated pathways implicated in SS cell response to HDACi to identify vulnerabilities exploitable in combination treatments and improve the therapeutic efficacy of HDACi-based regimens. METHODS Antiproliferative and proapoptotic effects of the HDACi SAHA and FK228 were examined in SS cell lines in parallel with biochemical and molecular analyses to bring out cytoprotective pathways. Treatments combining HDACi with drugs targeting HDACi-activated prosurvival pathways were tested in functional assays in vitro and in a SS orthotopic xenograft model. Molecular mechanisms underlying synergisms were investigated in SS cells through pharmacological and gene silencing approaches and validated by qRT-PCR and Western blotting. RESULTS SS cell response to HDACi was consistently characterized by activation of a cytoprotective and auto-sustaining axis involving ERKs, EGR1, and the β-endoglycosidase heparanase, a well recognized pleiotropic player in tumorigenesis and disease progression. HDAC inhibition was shown to upregulate heparanase by inducing expression of the positive regulator EGR1 and by hampering negative regulation by p53 through its acetylation. Interception of HDACi-induced ERK-EGR1-heparanase pathway by cell co-treatment with a MEK inhibitor (trametinib) or a heparanase inhibitor (SST0001/roneparstat) enhanced antiproliferative and pro-apoptotic effects. HDAC and heparanase inhibitors had opposite effects on histone acetylation and nuclear heparanase levels. The combination of SAHA with SST0001 prevented the upregulation of ERK-EGR1-heparanase induced by the HDACi and promoted caspase-dependent cell death. In vivo, the combined treatment with SAHA and SST0001 potentiated the antitumor efficacy against the CME-1 orthotopic SS model as compared to single agent administration. CONCLUSIONS The present study provides preclinical rationale and mechanistic insights into drug combinatory strategies based on the use of ERK pathway and heparanase inhibitors to improve the efficacy of HDACi-based antitumor therapies in SS. The involvement of classes of agents already clinically available, or under clinical evaluation, indicates the transferability potential of the proposed approaches.
Collapse
Affiliation(s)
- Cinzia Lanzi
- Department of Applied Research and Technological Development, Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy
| | - Enrica Favini
- Department of Applied Research and Technological Development, Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy
| | - Laura Dal Bo
- Department of Applied Research and Technological Development, Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy
| | - Monica Tortoreto
- Department of Applied Research and Technological Development, Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy
| | - Noemi Arrighetti
- Department of Applied Research and Technological Development, Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy
| | - Nadia Zaffaroni
- Department of Applied Research and Technological Development, Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy
| | - Giuliana Cassinelli
- Department of Applied Research and Technological Development, Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy.
| |
Collapse
|
8
|
Feng X, Huang YL, Zhang Z, Wang N, Yao Q, Pang LJ, Li F, Qi Y. The role of SYT-SSX fusion gene in tumorigenesis of synovial sarcoma. Pathol Res Pract 2021; 222:153416. [PMID: 33848939 DOI: 10.1016/j.prp.2021.153416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/09/2021] [Accepted: 03/20/2021] [Indexed: 12/29/2022]
Abstract
Synovial sarcoma (SS) is an aggressive malignancy of an unknown tissue origin that is characterized by biphasic differentiation. A possible basis of the pathogenesis of SS is pathognomonic t(X;18) (p11.2; q11.2) translocation, leading to the formation and expression of the SYT-SSX fusion gene. More than a quarter of the patients die of SS metastasis within 5 years after the diagnosis, but the pathogenic factors are unknown. Therefore, there is an urgent need to explore the pathogenesis, invasion, metastasis, and clinical treatment options for SS, especially molecular-targeted drug therapy. Recent studies have shown that the SYT-SSX fusion gene associated with SS may be regulated by different signaling pathways, microRNAs, and other molecules, which may produce stem cell characteristics or promote epithelial-mesenchymal transition, resulting in SS invasion and metastasis. This review article aims to show the relationship between the SYT-SSX fusion gene and the related pathway molecules as well as other molecules involved from different perspectives, which may provide a deeper and clearer understanding of the SYT-SSX fusion gene function. Therefore, this review may provide a more innovative and broader perspective of the current research, treatment options, and prognosis assessment of SS.
Collapse
Affiliation(s)
- Xiao Feng
- Department of Pathology, Shihezi University School of Medicine & the First Affiliated Hospital to Shihezi University School of Medicine, Shihezi, 832002, Xinjiang, China
| | - Ya-Lan Huang
- Department of Pathology, Shihezi University School of Medicine & the First Affiliated Hospital to Shihezi University School of Medicine, Shihezi, 832002, Xinjiang, China; Department of Pathology Suining Central Hospital, Suining, Sichuan, China
| | - Zhen Zhang
- Department of Pathology, Shihezi University School of Medicine & the First Affiliated Hospital to Shihezi University School of Medicine, Shihezi, 832002, Xinjiang, China
| | - Ning Wang
- Department of Pathology, Shihezi University School of Medicine & the First Affiliated Hospital to Shihezi University School of Medicine, Shihezi, 832002, Xinjiang, China
| | - Qing Yao
- Department of Pathology, Shihezi University School of Medicine & the First Affiliated Hospital to Shihezi University School of Medicine, Shihezi, 832002, Xinjiang, China
| | - Li-Juan Pang
- Department of Pathology, Shihezi University School of Medicine & the First Affiliated Hospital to Shihezi University School of Medicine, Shihezi, 832002, Xinjiang, China
| | - Feng Li
- Department of Pathology, Shihezi University School of Medicine & the First Affiliated Hospital to Shihezi University School of Medicine, Shihezi, 832002, Xinjiang, China; Department of Pathology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
| | - Yan Qi
- Department of Pathology, Shihezi University School of Medicine & the First Affiliated Hospital to Shihezi University School of Medicine, Shihezi, 832002, Xinjiang, China; Department of Pathology, Central People's Hospital of Zhanjiang and Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, China.
| |
Collapse
|
9
|
Dai D, Xie L, Shui Y, Li J, Wei Q. Identification of Tumor Microenvironment-Related Prognostic Genes in Sarcoma. Front Genet 2021; 12:620705. [PMID: 33597971 PMCID: PMC7882740 DOI: 10.3389/fgene.2021.620705] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/06/2021] [Indexed: 12/16/2022] Open
Abstract
Aim Immune cells that infiltrate the tumor microenvironment (TME) are associated with cancer prognosis. The aim of the current study was to identify TME related gene signatures related to the prognosis of sarcoma (SARC) by using the data from The Cancer Genome Atlas (TCGA). Methods Immune and stromal scores were calculated by estimation of stromal and immune cells in malignant tumor tissues using expression data algorithms. The least absolute shrinkage and selection operator (lasso) based cox model was then used to select hub survival genes. A risk score model and nomogram were used to predict the overall survival of patients with SARC. Results We selected 255 patients with SARC for our analysis. The Kaplan–Meier method found that higher immune (p = 0.0018) or stromal scores (p = 0.0022) were associated with better prognosis of SARC. The estimated levels of CD4+ (p = 0.0012) and CD8+ T cells (p = 0.017) via the tumor immune estimation resource were higher in patients with SARC with better overall survival. We identified 393 upregulated genes and 108 downregulated genes (p < 0.05, fold change >4) intersecting between the immune and stromal scores based on differentially expressed gene (DEG) analysis. The univariate Cox analysis of each intersecting DEG and subsequent lasso-based Cox model identified 11 hub survival genes (MYOC, NNAT, MEDAG, TNFSF14, MYH11, NRXN1, P2RY13, CXCR3, IGLV3-25, IGHV1-46, and IGLV2-8). Then, a hub survival gene-based risk score gene signature was constructed; higher risk scores predicted worse SARC prognosis (p < 0.0001). A nomogram including the risk scores, immune/stromal scores and clinical factors showed a good prediction value for SARC overall survival (C-index = 0.716). Finally, connectivity mapping analysis identified that the histone deacetylase inhibitors trichostatin A and vorinostat might have the potential to reverse the harmful TME for patients with SARC. Conclusion The current study provided new indications for the association between the TME and SARC. Lists of TME related survival genes and potential therapeutic drugs were identified for SARC.
Collapse
Affiliation(s)
- Dongjun Dai
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lanyu Xie
- Department of Clinical Medicine, Fuzhou Medical College of Nanchang University, Jiangxi, China
| | - Yongjie Shui
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinfan Li
- Department of Pathology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qichun Wei
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
10
|
Wei F, Jing H, Wei M, Liu L, Wu J, Wang M, Han D, Yang F, Yang B, Jiao D, Zheng G, Zhang L, Xi W, Guo Z, Yang AG, Qin W, Zhou Y, Wen W. Ring finger protein 2 promotes colorectal cancer progression by suppressing early growth response 1. Aging (Albany NY) 2020; 12:26199-26220. [PMID: 33346749 PMCID: PMC7803491 DOI: 10.18632/aging.202396] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 11/11/2020] [Indexed: 12/15/2022]
Abstract
Ring finger protein 2 (RNF2) is an important component of polycomb repressive complex 1. RNF2 is upregulated in many kinds of tumors, and elevated RNF2 expression is associated with a poor prognosis in certain cancers. To assess the function of RNF2 in colorectal cancer, we examined RNF2 protein levels in 313 paired colorectal cancer tissues and adjacent normal tissues. We then analyzed the association of RNF2 expression with the patients’ clinicopathologic features and prognoses. RNF2 expression was upregulated in colorectal cancer tissues and was associated with the tumor differentiation status, tumor stage and prognosis. In colorectal cancer cell lines, downregulation of RNF2 inhibited cell proliferation and induced apoptosis. Gene microarray analysis revealed that early growth response 1 (EGR1) was upregulated in RNF2-knockdown cells. Knocking down EGR1 partially reversed the inhibition of cell proliferation and the induction of apoptosis in RNF2-knockdown cells. RNF2 was enriched at the EGR1 promoter, where it mono-ubiquitinated histone H2A, thereby inhibiting EGR1 expression. These results indicate that RNF2 is oncogenic in colorectal cancer and may promote disease progression by inhibiting EGR1 expression. RNF2 is thus a potential prognostic marker and therapeutic target in colorectal cancer.
Collapse
Affiliation(s)
- Feilong Wei
- Department of Orthopedics, Tangdu Hospital, Fourth Military Medical University, Xi’an 710038, China
| | - Haoren Jing
- Department of Anorectal Surgery, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin 300013, China
| | - Ming Wei
- Urology Department of No. 989 Hospital, Joint Logistics Support Force of PLA, Luoyang 471000, China
| | - Lei Liu
- Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical University, Xi’an 710038, China
| | - Jieheng Wu
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi’an 710032, China
| | - Meng Wang
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi’an 710032, China
| | - Donghui Han
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Fa Yang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Bo Yang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Dian Jiao
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi’an 710038, China
| | - Guoxu Zheng
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi’an 710032, China
| | - Lingling Zhang
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi’an 710032, China
| | - Wenjin Xi
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi’an 710032, China
| | - Zhangyan Guo
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi’an 710032, China
| | - An-Gang Yang
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi’an 710032, China
| | - Weijun Qin
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Yi Zhou
- Department of Anorectal Surgery, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin 300013, China
| | - Weihong Wen
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
11
|
Chang H, Cai Z, Roberts TM. The Mechanisms Underlying PTEN Loss in Human Tumors Suggest Potential Therapeutic Opportunities. Biomolecules 2019; 9:biom9110713. [PMID: 31703360 PMCID: PMC6921025 DOI: 10.3390/biom9110713] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/01/2019] [Accepted: 11/04/2019] [Indexed: 12/13/2022] Open
Abstract
In this review, we will first briefly describe the diverse molecular mechanisms associated with PTEN loss of function in cancer. We will then proceed to discuss the molecular mechanisms linking PTEN loss to PI3K activation and demonstrate how these mechanisms suggest possible therapeutic approaches for patients with PTEN-null tumors.
Collapse
Affiliation(s)
- Hyeyoun Chang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; (H.C.); (Z.C.)
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA
- KIST-DFCI On-Site Lab, Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Zhenying Cai
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; (H.C.); (Z.C.)
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA
| | - Thomas M. Roberts
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; (H.C.); (Z.C.)
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA
- Correspondence: ; Tel.: +1-617-632-3049
| |
Collapse
|
12
|
The PTEN Tumor Suppressor Gene in Soft Tissue Sarcoma. Cancers (Basel) 2019; 11:cancers11081169. [PMID: 31416195 PMCID: PMC6721622 DOI: 10.3390/cancers11081169] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/26/2019] [Accepted: 08/08/2019] [Indexed: 02/07/2023] Open
Abstract
Soft tissue sarcoma (STS) is a rare malignancy of mesenchymal origin classified into more than 50 different subtypes with distinct clinical and pathologic features. Despite the poor prognosis in the majority of patients, only modest improvements in treatment strategies have been achieved, largely due to the rarity and heterogeneity of these tumors. Therefore, the discovery of new prognostic and predictive biomarkers, together with new therapeutic targets, is of enormous interest. Phosphatase and tensin homolog (PTEN) is a well-known tumor suppressor that commonly loses its function via mutation, deletion, transcriptional silencing, or protein instability, and is frequently downregulated in distinct sarcoma subtypes. The loss of PTEN function has consequent alterations in important pathways implicated in cell proliferation, survival, migration, and genomic stability. PTEN can also interact with other tumor suppressors and oncogenic signaling pathways that have important implications for the pathogenesis in certain STSs. The aim of the present review is to summarize the biological significance of PTEN in STS and its potential role in the development of new therapeutic strategies.
Collapse
|
13
|
Inoue K, Gan G, Ciarleglio M, Zhang Y, Tian X, Pedigo CE, Cavanaugh C, Tate J, Wang Y, Cross E, Groener M, Chai N, Wang Z, Justice A, Zhang Z, Parikh CR, Wilson FP, Ishibe S. Podocyte histone deacetylase activity regulates murine and human glomerular diseases. J Clin Invest 2019; 129:1295-1313. [PMID: 30776024 DOI: 10.1172/jci124030] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 01/10/2019] [Indexed: 12/21/2022] Open
Abstract
We identified 2 genes, histone deacetylase 1 (HDAC1) and HDAC2, contributing to the pathogenesis of proteinuric kidney diseases, the leading cause of end-stage kidney disease. mRNA expression profiling from proteinuric mouse glomeruli was linked to Connectivity Map databases, identifying HDAC1 and HDAC2 with the differentially expressed gene set reversible by HDAC inhibitors. In numerous progressive glomerular disease models, treatment with valproic acid (a class I HDAC inhibitor) or SAHA (a pan-HDAC inhibitor) mitigated the degree of proteinuria and glomerulosclerosis, leading to a striking increase in survival. Podocyte HDAC1 and HDAC2 activities were increased in mice podocytopathy models, and podocyte-associated Hdac1 and Hdac2 genetic ablation improved proteinuria and glomerulosclerosis. Podocyte early growth response 1 (EGR1) was increased in proteinuric patients and mice in an HDAC1- and HDAC2-dependent manner. Loss of EGR1 in mice reduced proteinuria and glomerulosclerosis. Longitudinal analysis of the multicenter Veterans Aging Cohort Study demonstrated a 30% reduction in mean annual loss of estimated glomerular filtration rate, and this effect was more pronounced in proteinuric patients receiving valproic acid. These results strongly suggest that inhibition of HDAC1 and HDAC2 activities may suppress the progression of human proteinuric kidney diseases through the regulation of EGR1.
Collapse
Affiliation(s)
| | - Geliang Gan
- Yale School of Public Health, Department of Biostatistics, Yale Center for Analytical Sciences, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Maria Ciarleglio
- Yale School of Public Health, Department of Biostatistics, Yale Center for Analytical Sciences, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Yan Zhang
- State Key Laboratory of Organ Failure Research, Nanfang Hospital.,Department of Cardiology, Nanfang Hospital, and.,Center for Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | | | | | - Corey Cavanaugh
- Department of Internal Medicine, and.,Program of Applied Translational Research, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Janet Tate
- VA Connecticut Healthcare System, West Haven, Connecticut, USA
| | - Ying Wang
- Department of Internal Medicine, and
| | | | | | | | - Zhen Wang
- Department of Internal Medicine, and
| | - Amy Justice
- Department of Internal Medicine, and.,VA Connecticut Healthcare System, West Haven, Connecticut, USA
| | - Zhenhai Zhang
- State Key Laboratory of Organ Failure Research, Nanfang Hospital.,Department of Cardiology, Nanfang Hospital, and.,Center for Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Chirag R Parikh
- Department of Internal Medicine, Division of Nephrology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Francis P Wilson
- Department of Internal Medicine, and.,Program of Applied Translational Research, Yale University School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
14
|
Patel N, Wang J, Shiozawa K, Jones KB, Zhang Y, Prokop JW, Davenport GG, Nihira NT, Hao Z, Wong D, Brandsmeier L, Meadows SK, Sampaio AV, Werff RV, Endo M, Capecchi MR, McNagny KM, Mak TW, Nielsen TO, Underhill TM, Myers RM, Kondo T, Su L. HDAC2 Regulates Site-Specific Acetylation of MDM2 and Its Ubiquitination Signaling in Tumor Suppression. iScience 2019; 13:43-54. [PMID: 30818224 PMCID: PMC6393697 DOI: 10.1016/j.isci.2019.02.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/10/2019] [Accepted: 02/11/2019] [Indexed: 12/17/2022] Open
Abstract
Histone deacetylases (HDACs) are promising targets for cancer therapy, although their individual actions remain incompletely understood. Here, we identify a role for HDAC2 in the regulation of MDM2 acetylation at previously uncharacterized lysines. Upon inactivation of HDAC2, this acetylation creates a structural signal in the lysine-rich domain of MDM2 to prevent the recognition and degradation of its downstream substrate, MCL-1 ubiquitin ligase E3 (MULE). This mechanism further reveals a therapeutic connection between the MULE ubiquitin ligase function and tumor suppression. Specifically, we show that HDAC inhibitor treatment promotes the accumulation of MULE, which diminishes the t(X; 18) translocation-associated synovial sarcomagenesis by directly targeting the fusion product SS18-SSX for degradation. These results uncover a new HDAC2-dependent pathway that integrates reversible acetylation signaling to the anticancer ubiquitin response.
Collapse
Affiliation(s)
- Nikita Patel
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Juehong Wang
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Kumiko Shiozawa
- Division of Rare Cancer Research, National Cancer Center, Tokyo 104-0045, Japan
| | - Kevin B Jones
- Department of Orthopaedics and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Yanfeng Zhang
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Jeremy W Prokop
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA; Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, MI 49503, USA
| | | | - Naoe T Nihira
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Zhenyue Hao
- Princess Margaret Cancer Centre, University of Toronto, Toronto, ON M5G 2C1, Canada
| | - Derek Wong
- Biomdical Research Centre, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | | | - Sarah K Meadows
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Arthur V Sampaio
- Biomdical Research Centre, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Ryan Vander Werff
- Biomdical Research Centre, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Makoto Endo
- Genetic Pathology Evaluation Centre, Vancouver Coastal Health Research Institute, Vancouver, BC V5Z 1M9, Canada
| | - Mario R Capecchi
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Kelly M McNagny
- Biomdical Research Centre, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Tak W Mak
- Princess Margaret Cancer Centre, University of Toronto, Toronto, ON M5G 2C1, Canada
| | - Torsten O Nielsen
- Genetic Pathology Evaluation Centre, Vancouver Coastal Health Research Institute, Vancouver, BC V5Z 1M9, Canada
| | - T Michael Underhill
- Biomdical Research Centre, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Richard M Myers
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Tadashi Kondo
- Division of Rare Cancer Research, National Cancer Center, Tokyo 104-0045, Japan
| | - Le Su
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA.
| |
Collapse
|
15
|
Giles KM, Rosenbaum BE, Berger M, Izsak A, Li Y, Illa Bochaca I, Vega-Saenz de Miera E, Wang J, Darvishian F, Zhong H, Osman I. Revisiting the Clinical and Biologic Relevance of Partial PTEN Loss in Melanoma. J Invest Dermatol 2019; 139:430-438. [PMID: 30148988 PMCID: PMC6342667 DOI: 10.1016/j.jid.2018.07.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 07/11/2018] [Accepted: 07/19/2018] [Indexed: 12/26/2022]
Abstract
The extent of PTEN loss that confers clinical and biological impact in melanoma is unclear. We evaluated the clinical and biologic relevance of PTEN dosage in melanoma and tested the postulate that partial PTEN loss is due to epigenetic mechanisms. PTEN expression was assessed by immunohistochemistry in a stage III melanoma cohort (n = 190) with prospective follow up. Overall, 21 of 190 (11%) tumors had strong PTEN expression, 51 of 190 (27%) had intermediate PTEN, 44 of 190 (23%) had weak PTEN, and 74 of 190 (39%) had absent PTEN. Both weak and absent PTEN expression predicted shorter survival in multivariate analyses (hazard ratio = 2.13, P < 0.01). We show a continuous negative correlation between PTEN and activated Akt in melanoma cells with titrated PTEN expression and in two additional independent tumor datasets. PTEN genomic alterations (deletion, mutation), promoter methylation, and protein destabilization did not fully explain PTEN loss in melanoma, whereas PTEN levels increased with treatment of melanoma cells with the histone deacetylase inhibitor LBH589. Our data indicate that partial PTEN loss is due to modifiable epigenetic mechanisms and drives Akt activation and worse prognosis, suggesting a potential approach to improve the clinical outcome for a subset of patients with advanced melanoma.
Collapse
Affiliation(s)
- Keith M Giles
- The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, New York, USA.
| | - Brooke E Rosenbaum
- The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, New York, USA
| | - Marlies Berger
- The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, New York, USA
| | - Allison Izsak
- The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, New York, USA
| | - Yang Li
- The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, New York, USA
| | - Irineu Illa Bochaca
- The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, New York, USA
| | - Eleazar Vega-Saenz de Miera
- The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, New York, USA
| | - Jinhua Wang
- University of Minnesota Institute for Health Informatics, Minneapolis, Minnesota, USA; Masonic Cancer Center; Minneapolis, Minnesota, USA
| | - Farbod Darvishian
- Department of Pathology, New York University School of Medicine, New York, New York, USA
| | - Hua Zhong
- Department of Population Health, New York University School of Medicine, New York, New York, USA
| | - Iman Osman
- The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, New York, USA.
| |
Collapse
|
16
|
Natarajan V, Ramanathan P, Gopisetty G, Ramachandran B, Thangarajan R, Kesavan S. In silico and in vitro screening of small molecule Inhibitors against SYT-SSX1 fusion protein in synovial sarcoma. Comput Biol Chem 2018; 77:36-43. [PMID: 30219714 DOI: 10.1016/j.compbiolchem.2018.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 09/04/2018] [Accepted: 09/04/2018] [Indexed: 12/30/2022]
Abstract
Synovial sarcoma (SS) is characterized by a tumour specific chromosomal translocation t(X;18) (p11;q11) which results in the formation of SYT-SSX1 fusion protein. This fusion protein represents a clear therapeutic target and molecules specifically targeting SYT-SSX1 fusion protein are currently not available. In this study, SYT-SSX1 fusion protein sequence was retrieved from Uniprot and 3D structure was generated using I-TASSER modeling program. A structure based computational screening approach has been employed using Glide docking software to identify potential SYT-SSX1 small molecule inhibitors that bind to the junction region of the fusion protein. The obtained inhibitors were further filtered based on the docking score and ADME/T properties. Ten best fit compounds were chosen for in vitro studies. The anti-proliferative activities of these 10 compounds were screened in Yamato, ASKA (carries SYT-SSX1 fusion protein) and other sarcoma cell lines such as A673, 143B to understand the specificity of inhibition of the chosen compounds. The in vitro activity was compared against HEK293 cell lines. The compound 5-fluoro-3-(1-phenyl-1H-tetraazol-5-yl)-1H-indole (FPTI) was found to be selectively cytotoxic in synovial sarcoma cell lines (Yamato and ASKA) and this compound also showed insignificant anti proliferative activity on other cell lines. Further, target gene expression study confirmed that FPTI treatment down-regulated SYT-SSX1 and modulated its downstream target genes. Cell cycle analysis revealed the involvement of an apoptotic mechanism of cell death. Further experimental validations may elucidate the therapeutic potentials of FPTI against SYT-SSX1 fusion protein.
Collapse
Affiliation(s)
- Valliyammai Natarajan
- Dept of Molecular Oncology, Dr. S. Krishnamurthi Campus, Cancer Institute (WIA), Guindy, Chennai, 600036, India
| | - Priya Ramanathan
- Dept of Molecular Oncology, Dr. S. Krishnamurthi Campus, Cancer Institute (WIA), Guindy, Chennai, 600036, India
| | - Gopal Gopisetty
- Dept of Molecular Oncology, Dr. S. Krishnamurthi Campus, Cancer Institute (WIA), Guindy, Chennai, 600036, India
| | - Balaji Ramachandran
- Dept of Molecular Oncology, Dr. S. Krishnamurthi Campus, Cancer Institute (WIA), Guindy, Chennai, 600036, India
| | - Rajkumar Thangarajan
- Dept of Molecular Oncology, Dr. S. Krishnamurthi Campus, Cancer Institute (WIA), Guindy, Chennai, 600036, India
| | - Sabitha Kesavan
- Dept of Molecular Oncology, Dr. S. Krishnamurthi Campus, Cancer Institute (WIA), Guindy, Chennai, 600036, India.
| |
Collapse
|
17
|
Histone deacetylase inhibitor ITF2357 leads to apoptosis and enhances doxorubicin cytotoxicity in preclinical models of human sarcoma. Oncogenesis 2018; 7:20. [PMID: 29472530 PMCID: PMC5833676 DOI: 10.1038/s41389-018-0026-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 09/26/2017] [Accepted: 11/09/2017] [Indexed: 12/14/2022] Open
Abstract
Sarcomas are rare tumors with generally poor prognosis, for which current therapies have shown limited efficacy. Histone deacetylase inhibitors (HDACi) are emerging anti-tumor agents; however, little is known about their effect in sarcomas. By using established and patient-derived sarcoma cells with different subtypes, we showed that the pan-HDACi, ITF2357, potently inhibited in vitro survival in a p53-independent manner. ITF2357-mediated cell death implied the activation of mitochondrial apoptosis, as attested by induction of pro-apoptotic BH3-only proteins and a caspases-dependent mechanism. ITF2357 also induced autophagy, which protected sarcoma cells from apoptotic cell death. ITF2357 activated forkhead box (FOXO) 1 and 3a transcription factors and their downstream target genes, however, silencing of both FOXO1 and 3a did not protect sarcoma cells against ITF2357-induced apoptosis and upregulated FOXO4 and 6. Notably, ITF2357 synergized with Doxorubicin to induce cell death of established and patient-derived sarcoma cells. Furthermore, combination treatment strongly impaired xenograft tumor growth in vivo, when compared to single treatments, suggesting that combination of ITF2357 with Doxorubicin has the potential to enhance sensitization in different preclinical models of sarcoma. Overall, our study highlights the therapeutic potential of ITF2357, alone or in rational combination therapies, for bone and soft tissue sarcomas management.
Collapse
|
18
|
Dancsok AR, Asleh-Aburaya K, Nielsen TO. Advances in sarcoma diagnostics and treatment. Oncotarget 2018; 8:7068-7093. [PMID: 27732970 PMCID: PMC5351692 DOI: 10.18632/oncotarget.12548] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 09/29/2016] [Indexed: 01/06/2023] Open
Abstract
The heterogeneity of sarcomas with regard to molecular genesis, histology, clinical characteristics, and response to treatment makes management of these rare yet diverse neoplasms particularly challenging. This review encompasses recent developments in sarcoma diagnostics and treatment, including cytotoxic, targeted, epigenetic, and immune therapy agents. In the past year, groups internationally explored the impact of adding mandatory molecular testing to histological diagnosis, reporting some changes in diagnosis and/or management; however, the impact on outcomes could not be adequately assessed. Transcriptome sequencing techniques have brought forward new diagnostic tools for identifying fusions and/or characterizing unclassified entities. Next-generation sequencing and advanced molecular techniques were also applied to identify potential targets for directed and epigenetic therapy, where preclinical studies reported results for agents active within the receptor tyrosine kinase, mTOR, Notch, Wnt, Hedgehog, Hsp90, and MDM2 signaling networks. At the level of clinical practice, modest developments were seen for some sarcoma subtypes in conventional chemotherapy and in therapies targeting the pathways activated by various receptor tyrosine kinases. In the burgeoning field of immune therapy, sarcoma work is in its infancy; however, elaborate protocols for immune stimulation are being explored, and checkpoint blockade agents advance from preclinical models to clinical studies.
Collapse
Affiliation(s)
- Amanda R Dancsok
- Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Karama Asleh-Aburaya
- Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Torsten O Nielsen
- Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.,Sarcoma Disease Site Committee, Canadian Cancer Trials Group
| |
Collapse
|
19
|
Laporte AN, Ji JX, Ma L, Nielsen TO, Brodin BA. Identification of cytotoxic agents disrupting synovial sarcoma oncoprotein interactions by proximity ligation assay. Oncotarget 2018; 7:34384-94. [PMID: 27120803 PMCID: PMC5085163 DOI: 10.18632/oncotarget.8882] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 04/02/2016] [Indexed: 02/06/2023] Open
Abstract
Conventional cytotoxic therapies for synovial sarcoma provide limited benefit. Drugs specifically targeting the product of its driver translocation are currently unavailable, in part because the SS18-SSX oncoprotein functions via aberrant interactions within multiprotein complexes. Proximity ligation assay is a recently-developed method that assesses protein-protein interactions in situ. Here we report use of the proximity ligation assay to confirm the oncogenic association of SS18-SSX with its co-factor TLE1 in multiple human synovial sarcoma cell lines and in surgically-excised human tumor tissue. SS18-SSX/TLE1 interactions are disrupted by class I HDAC inhibitors and novel small molecule inhibitors. This assay can be applied in a high-throughput format for drug discovery in fusion-oncoprotein associated cancers where key effector partners are known.
Collapse
Affiliation(s)
- Aimée N Laporte
- Department of Pathology and Laboratory Medicine, Vancouver Coastal Health Research Institute and Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.,Centre for Translational and Applied Genomics, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Jennifer X Ji
- Centre for Translational and Applied Genomics, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Limin Ma
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Torsten O Nielsen
- Department of Pathology and Laboratory Medicine, Vancouver Coastal Health Research Institute and Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.,Centre for Translational and Applied Genomics, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Bertha A Brodin
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
20
|
Laporte AN, Poulin NM, Barrott JJ, Wang XQ, Lorzadeh A, Vander Werff R, Jones KB, Underhill TM, Nielsen TO. Death by HDAC Inhibition in Synovial Sarcoma Cells. Mol Cancer Ther 2017; 16:2656-2667. [PMID: 28878027 DOI: 10.1158/1535-7163.mct-17-0397] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 08/28/2017] [Accepted: 08/31/2017] [Indexed: 12/30/2022]
Abstract
Conventional cytotoxic therapies for synovial sarcoma provide limited benefit, and no drugs specifically targeting the causative SS18-SSX fusion oncoprotein are currently available. Histone deacetylase (HDAC) inhibition has been shown in previous studies to disrupt the synovial sarcoma oncoprotein complex, resulting in apoptosis. To understand the molecular effects of HDAC inhibition, RNA-seq transcriptome analysis was undertaken in six human synovial sarcoma cell lines. HDAC inhibition induced pathways of cell-cycle arrest, neuronal differentiation, and response to oxygen-containing species, effects also observed in other cancers treated with this class of drugs. More specific to synovial sarcoma, polycomb group targets were reactivated, including tumor suppressor CDKN2A, and proapoptotic transcriptional patterns were induced. Functional analyses revealed that ROS-mediated FOXO activation and proapoptotic factors BIK, BIM, and BMF were important to apoptosis induction following HDAC inhibition in synovial sarcoma. HDAC inhibitor pathway activation results in apoptosis and decreased tumor burden following a 7-day quisinostat treatment in the Ptenfl/fl;hSS2 mouse model of synovial sarcoma. This study provides mechanistic support for a particular susceptibility of synovial sarcoma to HDAC inhibition as a means of clinical treatment. Mol Cancer Ther; 16(12); 2656-67. ©2017 AACR.
Collapse
Affiliation(s)
- Aimée N Laporte
- Faculty of Medicine, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Neal M Poulin
- Faculty of Medicine, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jared J Barrott
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Xiu Qing Wang
- Faculty of Medicine, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alireza Lorzadeh
- Department of Microbiology and Immunology, Michael Smith Laboratories Centre for High-Throughput Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ryan Vander Werff
- Department of Cellular and Physiological Sciences, Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kevin B Jones
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - T Michael Underhill
- Department of Cellular and Physiological Sciences, Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Torsten O Nielsen
- Faculty of Medicine, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
21
|
Bernhart E, Stuendl N, Kaltenegger H, Windpassinger C, Donohue N, Leithner A, Lohberger B. Histone deacetylase inhibitors vorinostat and panobinostat induce G1 cell cycle arrest and apoptosis in multidrug resistant sarcoma cell lines. Oncotarget 2017; 8:77254-77267. [PMID: 29100385 PMCID: PMC5652778 DOI: 10.18632/oncotarget.20460] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 07/26/2017] [Indexed: 12/15/2022] Open
Abstract
Synovial sarcoma and high grade chondrosarcoma are characterized by their lack of response to conventional cytotoxic chemotherapy, the tendency to develop lung metastases, and low survival rates. Research within the field prioritizes the development and expansion of new treatment options for dealing with unresectable or metastatic diseases. Numerous clinical trials using histone deacetylases inhibitors (HDACi) have shown specific efficacy as an active antitumor agent for treating a variety of solid tumors. However, as of yet the effect of different HDACi on synovial- and chondrosarcoma cells has not been investigated. In this study, vorinostat (SAHA), panobinostat (LBH-589), and belinostat (PXD101) decreased cell viability of synovial sarcoma (SW-982) and chondrosarcoma (SW-1353) cells in a time- and dose dependent manner and arrested SW-982 cells in the G1/S phase. Western blot analysis determined the responsible cell cycle regulator proteins. In addition, we found apoptotic induction by caspase 3/7 activity, caspase 3 cleavage, and PARP cleavage. In SW-1353 cells only SAHA showed comparable effects. Noteworthy, all HDACi tested had synergistic effects with the topoisomerase II inhibitor doxorubicin in SW-1353 chondrosarcoma cells making the cells more sensitive to the chemotherapeutic drug. Our results show for the first time that SAHA and LBH-589 reduced viability of sarcoma cells and arrested them at the G1/S checkpoint, while also inducing apoptosis and enhancing chemotherapeutic sensitivity, especially in chondrosarcoma cells. These data demonstrate the exciting potential of HDACi for use in sarcoma treatment.
Collapse
Affiliation(s)
- Eva Bernhart
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Nicole Stuendl
- Department of Orthopedics and Trauma, Medical University of Graz, 8036 Graz, Austria
| | - Heike Kaltenegger
- Department of Orthopedics and Trauma, Medical University of Graz, 8036 Graz, Austria
| | | | - Nicholas Donohue
- Department of Orthopedics and Trauma, Medical University of Graz, 8036 Graz, Austria
| | - Andreas Leithner
- Department of Orthopedics and Trauma, Medical University of Graz, 8036 Graz, Austria
| | - Birgit Lohberger
- Department of Orthopedics and Trauma, Medical University of Graz, 8036 Graz, Austria
| |
Collapse
|
22
|
Tang F, Choy E, Tu C, Hornicek F, Duan Z. Therapeutic applications of histone deacetylase inhibitors in sarcoma. Cancer Treat Rev 2017; 59:33-45. [PMID: 28732326 DOI: 10.1016/j.ctrv.2017.06.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/21/2017] [Accepted: 06/23/2017] [Indexed: 02/05/2023]
Abstract
Sarcomas are a rare group of malignant tumors originating from mesenchymal stem cells. Surgery, radiation and chemotherapy are currently the only standard treatments for sarcoma. However, their response rates to chemotherapy are quite low. Toxic side effects and multi-drug chemoresistance make treatment even more challenging. Therefore, better drugs to treat sarcomas are needed. Histone deacetylase inhibitors (HDAC inhibitors, HDACi, HDIs) are epigenetic modifying agents that can inhibit sarcoma growth in vitro and in vivo through a variety of pathways, including inducing tumor cell apoptosis, causing cell cycle arrest, impairing tumor invasion and preventing metastasis. Importantly, preclinical studies have revealed that HDIs can not only sensitize sarcomas to chemotherapy and radiotherapy, but also increase treatment responses when combined with other chemotherapeutic drugs. Several phase I and II clinical trials have been conducted to assess the efficacy of HDIs either as monotherapy or in combination with standard chemotherapeutic agents or targeted therapeutic drugs for sarcomas. Combination regimen for sarcomas appear to be more promising than monotherapy when using HDIs. This review summarizes our current understanding and therapeutic applications of HDIs in sarcomas.
Collapse
Affiliation(s)
- Fan Tang
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Jackson 1115, Boston, MA 02114, USA; Department of Orthopedics, West China Hospital, Sichuan University, 37 Guoxue Road, Chengdu, Sichuan 610041, China
| | - Edwin Choy
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Jackson 1115, Boston, MA 02114, USA
| | - Chongqi Tu
- Department of Orthopedics, West China Hospital, Sichuan University, 37 Guoxue Road, Chengdu, Sichuan 610041, China
| | - Francis Hornicek
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Jackson 1115, Boston, MA 02114, USA
| | - Zhenfeng Duan
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Jackson 1115, Boston, MA 02114, USA.
| |
Collapse
|
23
|
Laporte AN, Barrott JJ, Yao RJ, Poulin NM, Brodin BA, Jones KB, Underhill TM, Nielsen TO. HDAC and Proteasome Inhibitors Synergize to Activate Pro-Apoptotic Factors in Synovial Sarcoma. PLoS One 2017; 12:e0169407. [PMID: 28056055 PMCID: PMC5215898 DOI: 10.1371/journal.pone.0169407] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 12/16/2016] [Indexed: 12/29/2022] Open
Abstract
Conventional cytotoxic therapies for synovial sarcoma provide limited benefit, and no drugs specifically targeting its driving SS18-SSX fusion oncoprotein are currently available. Patients remain at high risk for early and late metastasis. A high-throughput drug screen consisting of over 900 tool compounds and epigenetic modifiers, representing over 100 drug classes, was undertaken in a panel of synovial sarcoma cell lines to uncover novel sensitizing agents and targetable pathways. Top scoring drug categories were found to be HDAC inhibitors and proteasomal targeting agents. We find that the HDAC inhibitor quisinostat disrupts the SS18-SSX driving protein complex, thereby reestablishing expression of EGR1 and CDKN2A tumor suppressors. In combination with proteasome inhibition, HDAC inhibitors synergize to decrease cell viability and elicit apoptosis. Quisinostat inhibits aggresome formation in response to proteasome inhibition, and combination treatment leads to elevated endoplasmic reticulum stress, activation of pro-apoptotic effector proteins BIM and BIK, phosphorylation of BCL-2, increased levels of reactive oxygen species, and suppression of tumor growth in a murine model of synovial sarcoma. This study identifies and provides mechanistic support for a particular susceptibility of synovial sarcoma to the combination of quisinostat and proteasome inhibition.
Collapse
Affiliation(s)
- Aimée N. Laporte
- Faculty of Medicine, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jared J. Barrott
- Department of Orthopaedics, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, United States of America
| | - Ren Jie Yao
- Faculty of Medicine, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Neal M. Poulin
- Faculty of Medicine, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Bertha A. Brodin
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Kevin B. Jones
- Department of Orthopaedics, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, United States of America
| | - T. Michael Underhill
- Department of Cellular and Physiological Sciences, Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Torsten O. Nielsen
- Faculty of Medicine, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
24
|
Abstract
Malignant peripheral nerve sheath tumor (MPNST) is a highly aggressive disease with a dismal prognosis. The disease can occur sporadically or in patients with inherited neurofibromatosis (NF-1). MPNST is typically resistant to therapeutic intervention. Hence, the need for improved therapies is warranted. Several broad spectrum histone deacetylase (HDAC) inhibitors have a high affinity for class I HDAC isoforms. Inhibition of multiple HDAC isoforms often results in undesirable side effects, while inhibiting a single isoform could possibly improve the therapeutic window and limit toxicity. Recently, HDAC8 inhibitors have been developed and in initial preclinical studies, they demonstrate anticancer efficacy. Little is known about the role of HDAC8 in MPNST. We recently revealed an anticancer effect of HDAC8 inhibition in human and murine MPNST models. The goal of our previous study was to determine the potential therapeutic efficacy of HDAC8 inhibition in MPNST. In this chapter, we briefly describe the methods for determining the role of pharmacological HDAC inhibition in MPNST.
Collapse
|
25
|
Munkacsi AB, Hammond N, Schneider RT, Senanayake DS, Higaki K, Lagutin K, Bloor SJ, Ory DS, Maue RA, Chen FW, Hernandez-Ono A, Dahlson N, Repa JJ, Ginsberg HN, Ioannou YA, Sturley SL. Normalization of Hepatic Homeostasis in the Npc1nmf164 Mouse Model of Niemann-Pick Type C Disease Treated with the Histone Deacetylase Inhibitor Vorinostat. J Biol Chem 2016; 292:4395-4410. [PMID: 28031458 DOI: 10.1074/jbc.m116.770578] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 12/21/2016] [Indexed: 12/31/2022] Open
Abstract
Niemann-Pick type C (NP-C) disease is a fatal genetic lipidosis for which there is no Food and Drug Administration (FDA)-approved therapy. Vorinostat, an FDA-approved inhibitor of histone deacetylases, ameliorates lysosomal lipid accumulation in cultured NP-C patient fibroblasts. To assess the therapeutic potential of histone deacetylase inhibition, we pursued these in vitro observations in two murine models of NP-C disease. Npc1nmf164 mice, which express a missense mutation in the Npc1 gene, were treated intraperitoneally, from weaning, with the maximum tolerated dose of vorinostat (150 mg/kg, 5 days/week). Disease progression was measured via gene expression, liver function and pathology, serum and tissue lipid levels, body weight, and life span. Transcriptome analyses of treated livers indicated multiple changes consistent with reversal of liver dysfunction that typifies NP-C disease. Significant improvements in liver pathology and function were achieved by this treatment regimen; however, NPC1 protein maturation and levels, disease progression, weight loss, and animal morbidity were not detectably altered. Vorinostat concentrations were >200 μm in the plasma compartment of treated animals but were almost 100-fold lower in brain tissue. Apolipoprotein B metabolism and the expression of key components of lipid homeostasis in primary hepatocytes from null (Npc1-/-) and missense (Npc1nmf164 ) mutant mice were altered by vorinostat treatment, consistent with a response by these cells independent of the status of the Npc1 locus. These results suggest that HDAC inhibitors have utility to treat visceral NP-C disease. However, it is clear that improved blood-brain barrier penetration will be required to alleviate the neurological symptoms of human NP-C disease.
Collapse
Affiliation(s)
- Andrew B Munkacsi
- From the School of Biological Sciences and .,Centre for Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
| | | | | | | | - Katsumi Higaki
- the Division of Functional Genomics, Research Center for Bioscience and Technology, Tottori University, Yonago 683-8503, Japan
| | | | | | - Daniel S Ory
- the Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Robert A Maue
- the Department of Physiology and Neurobiology and the Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755
| | - Fannie W Chen
- the Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, New York 10029
| | | | - Nicole Dahlson
- the Departments of Physiology and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, and
| | - Joyce J Repa
- the Departments of Physiology and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, and
| | | | - Yiannis A Ioannou
- the Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, New York 10029
| | - Stephen L Sturley
- the Department of Genetics and Development, Columbia University Medical Center, New York, New York 10032
| |
Collapse
|
26
|
Taguchi YH. Principal component analysis based unsupervised feature extraction applied to publicly available gene expression profiles provides new insights into the mechanisms of action of histone deacetylase inhibitors. NEUROEPIGENETICS 2016; 8:1-18. [DOI: 10.1016/j.nepig.2016.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
27
|
Barrott JJ, Kafchinski LA, Jin H, Potter JW, Kannan SD, Kennedy R, Mosbruger T, Wang WL, Tsai JW, Araujo DM, Liu T, Capecchi MR, Lazar AJ, Jones KB. Modeling synovial sarcoma metastasis in the mouse: PI3'-lipid signaling and inflammation. J Exp Med 2016; 213:2989-3005. [PMID: 27956588 PMCID: PMC5154942 DOI: 10.1084/jem.20160817] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 09/09/2016] [Accepted: 10/17/2016] [Indexed: 12/25/2022] Open
Abstract
Solid tumor metastasis is a complex biology, impinged upon by a variety of dysregulated signaling pathways. PI3'-lipid signaling has been associated with metastasis and inflammation in many cancers, but the relationship between tumor cell-intrinsic PI3'-lipid signaling and inflammatory cell recruitment has remained enigmatic. Elevated PI3'-lipid signaling associates with progression of synovial sarcoma, a deadly soft tissue malignancy initiated by a t(X;18) chromosomal translocation that generates an SS18-SSX fusion oncoprotein. Here, we show in genetically engineered mouse models of locally induced expression of SS18-SSX1 or SS18-SSX2 that Pten silencing dramatically accelerated and enhanced sarcomagenesis without compromising synovial sarcoma characteristics. PTEN deficiency increased tumor angiogenesis, promoted inflammatory gene expression, and enabled highly penetrant spontaneous pulmonary metastasis. PTEN-deficient sarcomas revealed infiltrating myeloid-derived hematopoietic cells, particularly macrophages and neutrophils, recruited via PI3'-lipid-induced CSF1 expression in tumor cells. Moreover, in a large panel of human synovial sarcomas, enhanced PI3'-lipid signaling also correlated with increased inflammatory cell recruitment and CSF1R signal transduction in both macrophages and endothelial cells. Thus, both in the mouse model and in human synovial sarcomas, PI3'-lipid signaling drives CSF1 expression and associates with increased infiltration of the monocyte/macrophage lineage as well as neutrophils.
Collapse
Affiliation(s)
- Jared J Barrott
- Department of Orthopaedics, University of Utah, Salt Lake City, UT 84112.,Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112.,Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112
| | - Lisa A Kafchinski
- Department of Orthopaedics, University of Utah, Salt Lake City, UT 84112
| | - Huifeng Jin
- Department of Orthopaedics, University of Utah, Salt Lake City, UT 84112.,Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112.,Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112
| | - Jared W Potter
- Department of Orthopaedics, University of Utah, Salt Lake City, UT 84112.,Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112.,Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112
| | - Sarmishta D Kannan
- Department of Orthopaedics, University of Utah, Salt Lake City, UT 84112.,Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112.,Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112
| | - Robert Kennedy
- Department of Orthopaedics, University of Utah, Salt Lake City, UT 84112.,Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112.,Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112
| | - Tim Mosbruger
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112.,Department of Bioinformatics, University of Utah, Salt Lake City, UT 84112
| | - Wei-Lien Wang
- Departments of Pathology and Translational Molecular Pathology, M.D. Anderson Cancer Center, Houston, TX 77030
| | - Jen-Wei Tsai
- Departments of Pathology and Translational Molecular Pathology, M.D. Anderson Cancer Center, Houston, TX 77030
| | - Dejka M Araujo
- Sarcoma Medical Oncology, M.D. Anderson Cancer Center, Houston, TX 77030
| | - Ting Liu
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112.,Department of Pathology, University of Utah, Salt Lake City, UT 84112
| | - Mario R Capecchi
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112
| | - Alexander J Lazar
- Departments of Pathology and Translational Molecular Pathology, M.D. Anderson Cancer Center, Houston, TX 77030
| | - Kevin B Jones
- Department of Orthopaedics, University of Utah, Salt Lake City, UT 84112 .,Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112.,Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112
| |
Collapse
|
28
|
Rimondi E, Benassi MS, Bazzocchi A, Balladelli A, Facchini G, Rossi G, Taieb S, Vanel D. Translational research in diagnosis and management of soft tissue tumours. Cancer Imaging 2016; 16:13. [PMID: 27266712 PMCID: PMC4897899 DOI: 10.1186/s40644-016-0071-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/21/2016] [Indexed: 02/08/2023] Open
Abstract
Finding a soft tissue mass in the superficial regions is a common event in daily clinical practice. Correct management of the diagnostic process is crucial to avoid blunders. Diagnosis is posed by pathology, although both imaging and a better understanding of the cellular and molecular mechanisms play an important a role in the characterization, staging and follow-up of soft tissue masses. Cellular and molecular mechanisms can explain either the development of chemo-resistance and the underlying pre- and post-surgery metastasis formation. These are mandatory to improve prognosis and unveil novel parameters predicting therapeutic response. Imaging mainly involves ultrasound and MR and is fundamental not only in diagnosis but also in the first step of therapy: the biopsy. Novel imaging techniques like Ultrasound Elastosonography, Dynamic Contrast-Enhanced MR imaging (DCE), Diffusion Weighted MR imaging (DWI) and MR Spectroscopy (MRS) are discussed. This paper aims at reviewing and discussing pathological methods and imaging in the diagnosis of soft tissue masses underscoring that the most appropriate treatment depends on advanced molecular and radiological studies.
Collapse
Affiliation(s)
- Eugenio Rimondi
- Diagnostic and Interventional Radiology, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Maria Serena Benassi
- Laboratory of Experimental Oncology, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Alberto Bazzocchi
- Diagnostic and Interventional Radiology, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Alba Balladelli
- Laboratory of Experimental Oncology, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Giancarlo Facchini
- Diagnostic and Interventional Radiology, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Giuseppe Rossi
- Interventional Angiographic Radiology, Istituto Ortopedico Rizzoli, Bologna, Italy
| | | | - Daniel Vanel
- Research Department, Istituto Ortopedico Rizzoli, Bologna, Italy.
| |
Collapse
|
29
|
Crochiere M, Kashyap T, Kalid O, Shechter S, Klebanov B, Senapedis W, Saint-Martin JR, Landesman Y. Deciphering mechanisms of drug sensitivity and resistance to Selective Inhibitor of Nuclear Export (SINE) compounds. BMC Cancer 2015; 15:910. [PMID: 26573568 PMCID: PMC4647283 DOI: 10.1186/s12885-015-1790-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 10/15/2015] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Exportin 1 (XPO1) is a well-characterized nuclear export protein whose expression is up-regulated in many types of cancers and functions to transport key tumor suppressor proteins (TSPs) from the nucleus. Karyopharm Therapeutics has developed a series of small-molecule Selective Inhibitor of Nuclear Export (SINE) compounds, which have been shown to block XPO1 function both in vitro and in vivo. The drug candidate, selinexor (KPT-330), is currently in Phase-II/IIb clinical trials for treatment of both hematologic and solid tumors. The present study sought to decipher the mechanisms that render cells either sensitive or resistant to treatment with SINE compounds, represented by KPT-185, an early analogue of KPT-330. METHODS Using the human fibrosarcoma HT1080 cell line, resistance to SINE was acquired over a period of 10 months of constant incubation with increasing concentration of KPT-185. Cell viability was assayed by MTT. Immunofluorescence was used to compare nuclear export of TSPs. Fluorescence activated cell sorting (FACS), quantitative polymerase chain reaction (qPCR), and immunoblots were used to measure effects on cell cycle, gene expression, and cell death. RNA from naïve and drug treated parental and resistant cells was analyzed by Affymetrix microarrays. RESULTS Treatment of HT1080 cells with gradually increasing concentrations of SINE resulted in >100 fold decrease in sensitivity to SINE cytotoxicity. Resistant cells displayed prolonged cell cycle, reduced nuclear accumulation of TSPs, and similar changes in protein expression compared to parental cells, however the magnitude of the protein expression changes were more significant in parental cells. Microarray analyses comparing parental to resistant cells indicate that a number of key signaling pathways were altered in resistant cells including expression changes in genes involved in adhesion, apoptosis, and inflammation. While the patterns of changes in transcription following drug treatment are similar in parental and resistant cells, the extent of response was more robust in the parental cells. CONCLUSIONS These results suggest that SINE resistance is conferred by alterations in signaling pathways downstream of XPO1 inhibition. Modulation of these pathways could potentially overcome the resistance to nuclear export inhibitors.
Collapse
Affiliation(s)
- Marsha Crochiere
- Karyopharm Therapeutics Inc., 85 Wells Avenue, Newton, MA 02459, USA.
| | - Trinayan Kashyap
- Karyopharm Therapeutics Inc., 85 Wells Avenue, Newton, MA 02459, USA.
| | - Ori Kalid
- Karyopharm Therapeutics Inc., 85 Wells Avenue, Newton, MA 02459, USA.
| | - Sharon Shechter
- Karyopharm Therapeutics Inc., 85 Wells Avenue, Newton, MA 02459, USA.
| | - Boris Klebanov
- Karyopharm Therapeutics Inc., 85 Wells Avenue, Newton, MA 02459, USA.
| | - William Senapedis
- Karyopharm Therapeutics Inc., 85 Wells Avenue, Newton, MA 02459, USA.
| | | | - Yosef Landesman
- Karyopharm Therapeutics Inc., 85 Wells Avenue, Newton, MA 02459, USA.
| |
Collapse
|
30
|
Sobolewski C, Sanduja S, Blanco FF, Hu L, Dixon DA. Histone Deacetylase Inhibitors Activate Tristetraprolin Expression through Induction of Early Growth Response Protein 1 (EGR1) in Colorectal Cancer Cells. Biomolecules 2015; 5:2035-55. [PMID: 26343742 PMCID: PMC4598787 DOI: 10.3390/biom5032035] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 07/30/2015] [Accepted: 08/10/2015] [Indexed: 02/06/2023] Open
Abstract
The RNA-binding protein tristetraprolin (TTP) promotes rapid decay of mRNAs bearing 3' UTR AU-rich elements (ARE). In many cancer types, loss of TTP expression is observed allowing for stabilization of ARE-mRNAs and their pathologic overexpression. Here we demonstrate that histone deacetylase (HDAC) inhibitors (Trichostatin A, SAHA and sodium butyrate) promote TTP expression in colorectal cancer cells (HCA-7, HCT-116, Moser and SW480 cells) and cervix carcinoma cells (HeLa). We found that HDAC inhibitors-induced TTP expression, promote the decay of COX-2 mRNA, and inhibit cancer cell proliferation. HDAC inhibitors were found to promote TTP transcription through activation of the transcription factor Early Growth Response protein 1 (EGR1). Altogether, our findings indicate that loss of TTP in tumors occurs through silencing of EGR1 and suggests a therapeutic approach to rescue TTP expression in colorectal cancer.
Collapse
Affiliation(s)
- Cyril Sobolewski
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | - Sandhya Sanduja
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | - Fernando F Blanco
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | - Liangyan Hu
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | - Dan A Dixon
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
31
|
Ko H, Kim JM, Kim SJ, Shim SH, Ha CH, Chang HI. Induction of apoptosis by genipin inhibits cell proliferation in AGS human gastric cancer cells via Egr1/p21 signaling pathway. Bioorg Med Chem Lett 2015; 25:4191-6. [PMID: 26283511 DOI: 10.1016/j.bmcl.2015.08.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 07/29/2015] [Accepted: 08/04/2015] [Indexed: 02/06/2023]
Abstract
Natural compounds are becoming important candidates in cancer therapy due to their cytotoxic effects on cancer cells by inducing various types of programmed cell deaths. In this study, we investigated whether genipin induces programmed cell deaths and mediates in Egr1/p21 signaling pathways in gastric cancer cells. Effects of genipin in AGS cancer cell lines were observed via evaluation of cell viability, ROS generation, cell cycle arrest, and protein and RNA levels of p21, Egr1, as well as apoptotic marker genes. The cell viability of AGS cells reduced by genipin treatment via induction of the caspase 3-dependent apoptosis. Cell cycle arrest was observed at the G2/M phase along with induction of p21 and p21-dependent cyclins. As an upstream mediator of p21, the transcription factor early growth response-1 (Egr1) upregulated p21 through nuclear translocation and binding to the p21 promoter site. Silencing Egr1 expression inhibited the expression of p21 and downstream molecules involved in apoptosis. We demonstrated that genipin treatment in AGS human gastric cancer cell line induces apoptosis via p53-independent Egr1/p21 signaling pathway in a dose-dependent manner.
Collapse
Affiliation(s)
- Hyeonseok Ko
- Laboratory of Molecular Oncology, Cheil General Hospital and Women's Healthcare Center, Dankook University College of Medicine, Seoul, Republic of Korea
| | - Jee Min Kim
- College of Life Sciences & Biotechnology, Korea University, 5-1 Anam-dong, Seongbuk-gu, Seoul 136-701, Republic of Korea
| | - Sun-Joong Kim
- College of Life Sciences & Biotechnology, Korea University, 5-1 Anam-dong, Seongbuk-gu, Seoul 136-701, Republic of Korea
| | - So Hee Shim
- Department of Microbiology, College of Medicine, Korea University, 5-1 Anam-dong, Seongbuk-gu, Seoul 136-701, Republic of Korea
| | - Chang Hoon Ha
- Department of Asan Institute for Life Sciences, Asan Medical Center, College of Medicine, University of Ulsan, 86 Asanbyeoungwon-gil, Songpa-gu, Seoul 138-736, Republic of Korea.
| | - Hyo Ihl Chang
- College of Life Sciences & Biotechnology, Korea University, 5-1 Anam-dong, Seongbuk-gu, Seoul 136-701, Republic of Korea.
| |
Collapse
|
32
|
Chu QSC, Nielsen TO, Alcindor T, Gupta A, Endo M, Goytain A, Xu H, Verma S, Tozer R, Knowling M, Bramwell VB, Powers J, Seymour LK, Eisenhauer EA. A phase II study of SB939, a novel pan-histone deacetylase inhibitor, in patients with translocation-associated recurrent/metastatic sarcomas-NCIC-CTG IND 200†. Ann Oncol 2015; 26:973-981. [PMID: 25632070 DOI: 10.1093/annonc/mdv033] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 01/09/2015] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND A subgroup of sarcomas is characterized by defining chromosomal translocations, creating fusion transcription factor oncogenes. Resultant fusion oncoproteins associate with chromatin-modifying complexes containing histone deacetylases (HDAC), and lead to epigenetic transcriptional dysregulation. HDAC inhibitors were shown to be effective in vitro, reversing gene repression by these complexes, restoring PTEN expression and apoptosis via the PI3K/Akt/mTOR pathway. PATIENTS AND METHODS SB939 is an oral inhibitor of classes 1 and 2 HDAC. Eligible patients with recurrent or metastatic translocation-associated sarcoma (TAS) by local pathology were treated with 60 mg/day every other day for 3 of 4 weeks. Central pathology review was conducted with fusion oncogenes characterized, and HDAC2 expression correlated with efficacy in pre-specified methods. RESULTS Twenty-two patients were treated with a median of 2 cycles. Fourteen patients were assessable for response with confirmed specific chromosomal translocations; 8 had a best response of stable disease (SD) (median duration 5.4 months) with no confirmed objective responses. The 3-month progression-free survival (PFS) rate was 49%. Among those with HDAC2 score ≥5, 7/10 had SD, versus 0/3 with HDAC2 score <5. SB939 was considered as well tolerated with <10% patients experienced ≥grade 3 toxicity. CONCLUSION This study was stopped prematurely due to prolonged unavailability of SB939. No objective responses were seen. Although the observed SD in HDAC2 high patients was interesting, due to the small sample size, no definitive conclusion can be drawn about the efficacy of SB939 in this patient population. CLINICAL TRIAL NCT01112384.
Collapse
Affiliation(s)
- Q S-C Chu
- Division of Medical Oncology, Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton.
| | - T O Nielsen
- Department of Pathology, British Columbia Cancer Agency, Vancouver
| | - T Alcindor
- Division of Medical Oncology, Department of Oncology, McGill University, Montreal
| | - A Gupta
- Division of Medical Oncology, Department of Oncology, Mount Sinai Hospital/Princess Margaret Hospital, University of Toronto, Toronto, Canada
| | - M Endo
- Department of Orthopedic Surgery, Kyushu University, Fukuoka, Japan
| | - A Goytain
- Department of Pathology, British Columbia Cancer Agency, Vancouver
| | - H Xu
- Investigational New Drug Program, NCIC-Clinical Trials Group, Kingston
| | - S Verma
- Department of Medical Oncology, Ottawa Cancer Centre, University of Ottawa, Ottawa
| | - R Tozer
- Division of Medical Oncology, Department of Oncology, Jurvinski Cancer Centre, McMaster University, Hamilton
| | - M Knowling
- Department of Pathology, British Columbia Cancer Agency, Vancouver
| | - V B Bramwell
- Division of Medical Oncology, Department of Oncology, Tom Baker Cancer Centre, University of Calgary, Calgary, Canada
| | - J Powers
- Investigational New Drug Program, NCIC-Clinical Trials Group, Kingston
| | - L K Seymour
- Investigational New Drug Program, NCIC-Clinical Trials Group, Kingston
| | - E A Eisenhauer
- Investigational New Drug Program, NCIC-Clinical Trials Group, Kingston
| |
Collapse
|
33
|
Kim JW, Kim JY, Kim JE, Kim SK, Chung HT, Park CK. HOXA10 is associated with temozolomide resistance through regulation of the homologous recombinant DNA repair pathway in glioblastoma cell lines. Genes Cancer 2014; 5:165-174. [PMID: 25061500 PMCID: PMC4104759 DOI: 10.18632/genesandcancer.16] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 06/25/2014] [Indexed: 12/30/2022] Open
Abstract
Temozolomide resistance is associated with multiple DNA repair pathways. We investigated homeobox (HOX) genes for their role in temozolomide resistance, focusing on the homologous recombination (HR) pathway, and we tested their therapeutic implications in conjunction with O6-methylguanine DNA methyltransferase (MGMT) status. Two glioblastoma cell lines with different MGMT statuses were used to test the augmented anticancer effect of temozolomide with HOXA10 inhibition. In vitro experiments, including gene expression studies with RNA interference, were performed to verify the related pathway dynamics. HOXA10 inhibition reinforced temozolomide sensitivity independent of MGMT status and was related to the impaired double-strand DNA breakage repair process resulting from the downregulation of Rad51 paralogs. Early growth response 1 (EGR1) and phosphatase and tensin homolog (PTEN) were the regulatory mediators between HOXA10 and the HR pathway. Moreover, HOXA10 inhibition selectively affected the nuclear function of PTEN without interfering with its cytoplasmic function of suppressing the phosphoinositide 3-kinase/Akt pathway. The mechanism of HR pathway regulation by HOXA10 harbors another target mechanism for overcoming temozolomide resistance in glioblastoma patients.
Collapse
Affiliation(s)
- Jin Wook Kim
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
| | - Ji Young Kim
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
| | - Ja Eun Kim
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
| | - Seung-Ki Kim
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea.,Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, Korea
| | - Hyun-Tai Chung
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
| | - Chul-Kee Park
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
34
|
Zhang P, Pollock RE. Epigenetic Regulators: New Therapeutic Targets for Soft Tissue Sarcoma. ACTA ACUST UNITED AC 2014; 1. [PMID: 26078988 DOI: 10.14800/ccm.191] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Soft tissue sarcoma is a malignancy that develops from human soft tissues such as muscle, nerve, fat, and blood vessels. The World Health Organization classification comprises about 50 different histologic types of soft tissue sarcoma. Soft tissue sarcoma is treated most often with surgery. Chemotherapy and radiotherapy have shown only minor effects on patient survival in this disease. The overall 5-year survival rate of soft tissue sarcoma is 50%; it has not changed for the past several decades. A new class of therapeutic targets for soft tissue sarcoma was identified recently. Epigenetic regulators, such as DNA methyltransferases, histone deacetylases, and histone-modifying enzyme enhancer of zeste homolog 2, have been found to be involved in pathogenesis of various soft tissue sarcomas. Small-molecule inhibitors of these epigenetic regulators may provide a new targeted therapy approach to soft tissue sarcomas in the future.
Collapse
Affiliation(s)
- Pingyu Zhang
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Raphael E Pollock
- Department of Surgical Oncology, Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
35
|
Cassier PA, Lefranc A, Amela EY, Chevreau C, Bui BN, Lecesne A, Ray-Coquard I, Chabaud S, Penel N, Berge Y, Dômont J, Italiano A, Duffaud F, Cadore AC, Polivka V, Blay JY. A phase II trial of panobinostat in patients with advanced pretreated soft tissue sarcoma. A study from the French Sarcoma Group. Br J Cancer 2013; 109:909-14. [PMID: 23922114 PMCID: PMC3749588 DOI: 10.1038/bjc.2013.442] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 07/03/2013] [Accepted: 07/10/2013] [Indexed: 12/29/2022] Open
Abstract
Background: Soft tissue sarcomas (STS) are rare tumours for which treatment options are limited in the advanced setting. Histone deacetylase inhibitors have shown activity in preclinical models of STS. Methods: We conducted a single-arm, open-label, multicentre phase II study to assess the efficacy and tolerability of panobinostat given orally, 40 mg thrice weekly in patients with advanced pretreated STS. The primary endpoint was the 3-month progression-free rate. Results: Forty-seven STS patients were enrolled between January 2010 and December 2010. Median age was 59 (range 21–79) years, 22 (47%) patients were males. Panobinostat dose was lowered to 20 mg thrice weekly after nine patients were enrolled, based on the recommendation of an independent safety committee. The most common grade 3/4 adverse events were thrombocytopenia, fatigue, lymphopenia and anaemia. Forty-five patients were evaluable for the primary endpoint. Among them, nine patients (20%, 95% CI (10–35%)) were progression-free at 3 months. No partial response was seen, but 17 patients (36%) had stable disease (SD) as their best response. Six patients were progression-free at 6 months. Conclusion: Panobinostat was poorly tolerated at 40 mg thrice a week. Efficacy in unselected advanced STS was limited, although some patients had prolonged SD.
Collapse
Affiliation(s)
- P A Cassier
- Department of Medicine, Centre Léon Bérard, 28 rue Laennec, 69008 Lyon, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Rota R, Ciarapica R, Miele L, Locatelli F. Notch signaling in pediatric soft tissue sarcomas. BMC Med 2012; 10:141. [PMID: 23158439 PMCID: PMC3520771 DOI: 10.1186/1741-7015-10-141] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 11/16/2012] [Indexed: 02/07/2023] Open
Abstract
Pediatric soft tissue sarcomas are rare tumors of childhood, frequently characterized by specific chromosome translocations. Despite improvements in treatment, their clinical management is often challenging due to the low responsiveness of metastatic forms and aggressive variants to conventional therapeutic approaches, which leads to poor overall survival. It is widely thought that soft tissue sarcomas derive from mesenchymal progenitor cells that, during embryonic life, have developed chromosomal aberrations with de-regulation of the main pathways governing tissue morphogenesis. The Notch signaling pathway is one of the most important molecular networks involved in differentiation processes. Emerging evidence highlights the role of Notch signaling de-regulation in the biology of these pediatric sarcomas. In this review, we present an outline of recently gathered evidence on the role of Notch signaling in soft tissue sarcomas, highlighting its importance in tumor cell biology. The potential challenges and opportunities of targeting Notch signaling in the treatment of pediatric soft tissue sarcomas are also discussed.
Collapse
Affiliation(s)
- Rossella Rota
- Department of Oncohematology, Ospedale Pediatrico Bambino Gesù, IRCCS, Piazza Sant'Onofrio 4, Roma, 00165, Italy.
| | | | | | | |
Collapse
|
37
|
Janeway KA, Maki RG. New Strategies in Sarcoma Therapy: Linking Biology and Novel Agents. Clin Cancer Res 2012; 18:5837-44. [DOI: 10.1158/1078-0432.ccr-12-0875] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
38
|
Jones KB, Su L, Jin H, Lenz C, Randall RL, Underhill TM, Nielsen TO, Sharma S, Capecchi MR. SS18-SSX2 and the mitochondrial apoptosis pathway in mouse and human synovial sarcomas. Oncogene 2012; 32:2365-71, 2375.e1-5. [PMID: 22797074 DOI: 10.1038/onc.2012.247] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Synovial sarcoma is a deadly malignancy with limited sensitivity to traditional cytotoxic chemotherapy. SS18-SSX fusion oncogene expression characterizes human synovial sarcomas and drives oncogenesis in a mouse model. Elevated expression of BCL2 is considered a consistent feature of the synovial sarcoma expression profile. Our objective was to evaluate the expression of apoptotic pathway members in synovial sarcomas and interrogate the impact of modulating SS18-SSX expression on this pathway. We show in human and murine synovial sarcoma cells that SS18-SSX increases BCL2 expression, but represses other anti-apoptotic genes, including MCL1 and BCL2A1. This repression is achieved by directly suppressing expression via binding through activating transcription factor 2 (ATF2) to the cyclic adenosine monophosphate (AMP) response element (CRE) in the promoters of these genes and recruiting TLE1/Groucho. The suppression of these two anti-apoptotic pathways silences the typical routes by which other tumors evade BH3-domain peptidomimetic pharmacotherapy. We show that mouse and human synovial sarcoma cells are sensitive in vitro to ABT-263, a BH3-peptidomimetic, much more than the other tested cancer cell lines. ABT-263 also enhances the sensitivity of these cells to doxorubicin, a traditional cytotoxic chemotherapy used for synovial sarcoma. We also demonstrate the capacity of ABT-263 to stunt synovial sarcomagenesis in vivo in a genetic mouse model. These data recommend pursuit of BH3-peptidomimetic pharmacotherapy in human synovial sarcomas.
Collapse
Affiliation(s)
- K B Jones
- Department of Orthopaedics, University of Utah, Salt Lake City, UT 84112-5331, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Martín Liberal J, Lagares-Tena L, Sáinz-Jaspeado M, Mateo-Lozano S, García del Muro X, Tirado OM. Targeted therapies in sarcomas: challenging the challenge. Sarcoma 2012; 2012:626094. [PMID: 22701332 PMCID: PMC3372278 DOI: 10.1155/2012/626094] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 03/27/2012] [Indexed: 12/16/2022] Open
Abstract
Sarcomas are a heterogeneous group of mesenchymal malignancies that very often lead to death. Nowadays, chemotherapy is the only available treatment for most sarcomas but there are few active drugs and clinical results still remain very poor. Thus, there is an imperious need to find new therapeutic alternatives in order to improve sarcoma patient's outcome. During the last years, there have been described a number of new molecular pathways that have allowed us to know more about cancer biology and tumorigenesis. Sarcomas are one of the tumors in which more advances have been made. Identification of specific chromosomal translocations, some important pathways characterization such as mTOR pathway or the insulin-like growth factor pathway, the stunning development in angiogenesis knowledge, and brand new agents like viruses have lead to the development of new therapeutic options with promising results. This paper makes an exhaustive review of preclinical and clinical evidence of the most recent targeted therapies in sarcomas and provides a future view of treatments that may lead to improve prognosis of patients affected with this disease.
Collapse
Affiliation(s)
- Juan Martín Liberal
- Laboratori d'Oncología Molecular, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Laura Lagares-Tena
- Laboratori d'Oncología Molecular, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Miguel Sáinz-Jaspeado
- Laboratori d'Oncología Molecular, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Silvia Mateo-Lozano
- Nanomedicine Research Program, Molecular Biology and Biochemistry Research Center, CIBBIM-Nanomedicine, Vall d'Hebron Hospital Research Institute, 08035 Barcelona, Spain
| | - Xavier García del Muro
- Laboratori d'Oncología Molecular, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Oscar M. Tirado
- Laboratori d'Oncología Molecular, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain
| |
Collapse
|
40
|
Zhang P, Chen JH, Guo XL. New insights into PTEN regulation mechanisms and its potential function in targeted therapies. Biomed Pharmacother 2012; 66:485-90. [PMID: 22902055 DOI: 10.1016/j.biopha.2012.04.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 04/15/2012] [Indexed: 12/12/2022] Open
Abstract
Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a tumor suppressor gene of phosphatased activity. Its low or lacking expression closely relates with tumor progress and poor prognosis. The regulation and function ascribed to PTEN have become more diverse since its discovery as a putative phosphatase mutated in many human tumors. PTEN function is positively and negatively regulated at the transcriptional level, as well as post-translationally by phosphorylation, oxidation and acetylation. Deregulation of PTEN is implicated in other human diseases in addition to cancers, including diabetes and obesity, modulation of PTEN level has widespread therapeutic applications to those tumorigenesis and non-tumor diseases. This review will summarize the new points on the regulation of PTEN and briefly discuss the potential therapeutic role of PTEN in some diseases.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | | | | |
Collapse
|
41
|
Bennani-Baiti IM. Epigenetic and epigenomic mechanisms shape sarcoma and other mesenchymal tumor pathogenesis. Epigenomics 2012; 3:715-32. [PMID: 22126291 DOI: 10.2217/epi.11.93] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Sarcomas comprise a large number of rare, histogenetically heterogeneous, mesenchymal tumors. Cancers such as Ewing's sarcoma, liposarcoma, rhabdomyosarcoma and synovial sarcoma can be generated by the transduction of mesenchymal stem cell progenitors with sarcoma-pathognomonic oncogenic fusions, a neoplastic transformation process accompanied by profound locus-specific and pangenomic epigenetic alterations. The epigenetic activities of histone-modifying and chromatin-remodeling enzymes such as SUV39H1/KMT1A, EZH2/KMT6A and BMI1 are central to epigenetic-regulated transformation, a property we coin oncoepigenic. Sarcoma-specific oncoepigenic aberrations modulate critical signaling pathways that control cell growth and differentiation including several miRNAs, Wnt, PI3K/AKT, Sav-RASSF1-Hpo and regulators of the G1 and G2/M checkpoints of the cell cycle. Herein an overview of the current knowledge of this rapidly evolving field that will undoubtedly uncover additional oncoepigenic mechanisms and yield druggable targets in the near future is discussed.
Collapse
|
42
|
Downstream and intermediate interactions of synovial sarcoma-associated fusion oncoproteins and their implication for targeted therapy. Sarcoma 2012; 2012:249219. [PMID: 22550415 PMCID: PMC3329658 DOI: 10.1155/2012/249219] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 01/09/2012] [Indexed: 12/14/2022] Open
Abstract
Synovial sarcoma (SS), an aggressive type of soft tissue tumor, occurs mostly in adolescents and young adults. The origin and molecular mechanism of the development of SS remain only partially known. Over 90% of SS cases are characterized by the t(X;18)(p11.2;q11.2) translocation, which results mainly in the formation of
SS18-SSX1 or SS18-SSX2 fusion genes. In recent years, several reports describing direct and indirect interactions of SS18-SSX1/SSX2 oncoproteins have been published. These reports suggest that the fusion proteins particularly affect the cell growth, cell proliferation, TP53 pathway, and chromatin remodeling mechanisms, contributing to SS oncogenesis. Additional research efforts are required to fully explore the protein-protein interactions of SS18-SSX oncoproteins and the pathways that are regulated by these partnerships for the development of effective targeted therapy.
Collapse
|
43
|
Su L, Sampaio AV, Jones KB, Pacheco M, Goytain A, Lin S, Poulin N, Yi L, Rossi FM, Kast J, Capecchi MR, Underhill TM, Nielsen TO. Deconstruction of the SS18-SSX fusion oncoprotein complex: insights into disease etiology and therapeutics. Cancer Cell 2012; 21:333-47. [PMID: 22439931 PMCID: PMC3734954 DOI: 10.1016/j.ccr.2012.01.010] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 11/23/2011] [Accepted: 01/24/2012] [Indexed: 01/27/2023]
Abstract
Synovial sarcoma is a translocation-associated sarcoma where the underlying chromosomal event generates SS18-SSX fusion transcripts. In vitro and in vivo studies have shown that the SS18-SSX fusion oncoprotein is both necessary and sufficient to support tumorigenesis; however, its mechanism of action remains poorly defined. We have purified a core SS18-SSX complex and discovered that SS18-SSX serves as a bridge between activating transcription factor 2 (ATF2) and transducin-like enhancer of split 1 (TLE1), resulting in repression of ATF2 target genes. Disruption of these components by siRNA knockdown or treatment with HDAC inhibitors rescues target gene expression, leading to growth suppression and apoptosis. Together, these studies define a fundamental role for aberrant ATF2 transcriptional dysregulation in the etiology of synovial sarcoma.
Collapse
Affiliation(s)
- Le Su
- Biomedical Research Centre, 2222 Health Sciences Mall, University of British Columbia, Vancouver, BC, Canada, V6T 1Z3
| | - Arthur V. Sampaio
- Biomedical Research Centre, 2222 Health Sciences Mall, University of British Columbia, Vancouver, BC, Canada, V6T 1Z3
| | - Kevin B. Jones
- Department of Orthopaedics and Center for Children’s Cancer Research, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, United States
- Department of Human Genetics and Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT 84112, United States
| | - Marina Pacheco
- Department of Pathology and Laboratory Medicine, 2222 Health Sciences Mall, University of British Columbia, Vancouver, BC, Canada, V6T 1Z3
| | - Angela Goytain
- Department of Pathology and Laboratory Medicine, 2222 Health Sciences Mall, University of British Columbia, Vancouver, BC, Canada, V6T 1Z3
| | - Shujun Lin
- Biomedical Research Centre, 2222 Health Sciences Mall, University of British Columbia, Vancouver, BC, Canada, V6T 1Z3
| | - Neal Poulin
- Department of Pathology and Laboratory Medicine, 2222 Health Sciences Mall, University of British Columbia, Vancouver, BC, Canada, V6T 1Z3
| | - Lin Yi
- Biomedical Research Centre, 2222 Health Sciences Mall, University of British Columbia, Vancouver, BC, Canada, V6T 1Z3
| | - Fabio M. Rossi
- Biomedical Research Centre, 2222 Health Sciences Mall, University of British Columbia, Vancouver, BC, Canada, V6T 1Z3
| | - Juergen Kast
- Biomedical Research Centre, 2222 Health Sciences Mall, University of British Columbia, Vancouver, BC, Canada, V6T 1Z3
| | - Mario R. Capecchi
- Department of Human Genetics and Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT 84112, United States
| | - T. Michael Underhill
- Biomedical Research Centre, 2222 Health Sciences Mall, University of British Columbia, Vancouver, BC, Canada, V6T 1Z3
| | - Torsten O. Nielsen
- Department of Pathology and Laboratory Medicine, 2222 Health Sciences Mall, University of British Columbia, Vancouver, BC, Canada, V6T 1Z3
| |
Collapse
|
44
|
Abstract
Histone deacetylases (HDACs) have a critical role in epigenetic gene silencing, rendering a compact chromatin structure by removing acetyl groups from lysine residues within the tails of core histones, thereby repressing gene expression. Epigenetic transcriptional dysregulation is an important oncogenic mechanism in some sarcomas associated with translocations, for which antitumor activity by HDAC inhibitors has been shown in preclinical studies. Nevertheless, the expression of the protein targets of these drugs has not yet been broadly surveyed in this neoplasia. In this study, we assess the expression of HDAC1 and 2 by immunohistochemistry in a tissue microarray series of 1332 cases, representing 44 categories of malignant and borderline mesenchymal tumors. HDAC2 was the more highly expressed isoform, and was more strongly expressed in translocation-associated sarcomas than in other mesenchymal tumors or normal tissues. HDAC1, in contrast, displayed lower expression in translocation-associated sarcomas than in other mesenchymal tumors or in normal tissues. These results indicate that HDAC1 and HDAC2 are differentially expressed in mesenchymal neoplasms, and suggest that HDAC2 is the isoform more likely contributing to the pathogenesis of many translocation-associated sarcomas and to their response to HDAC inhibitors.
Collapse
Affiliation(s)
- Marina Pacheco
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
45
|
Riedel RF. Targeted agents for sarcoma: is individualized therapy possible in such a diverse tumor type? Semin Oncol 2012; 38 Suppl 3:S30-42. [PMID: 22055970 DOI: 10.1053/j.seminoncol.2011.09.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A wide variety of cytogenetic abnormalities and molecular pathways have been implicated in the pathogenesis of sarcoma, and significant progress has been made in the past decade toward identifying potential therapeutic targets. However, apart from gastrointestinal stromal tumors (GISTs) and dermatofibrosarcoma protuberans (DFSP), little progress has been made toward translating that knowledge into effective therapeutic strategies. The identification of activating KIT mutations in the majority of GISTs was a defining moment that led to the first effective targeted therapy for sarcoma, and the subsequent use of imatinib mesylate has revolutionized the treatment of GISTs. Beyond imatinib, the most promising agents to date--and the agents most extensively studied--are the multitargeted tyrosine kinase inhibitors. Several other classes of agents have also shown some activity in soft tissue sarcomas, including mammalian target of rapamycin inhibitors, inhibitors of growth factor receptors, histone deacetylase inhibitors, agents that modulate the p53 pathway, inhibitors of molecular chaperone proteins (eg, heat shock protein 90 [Hsp90]), and other signal transduction inhibitors. Despite a large number of completed and ongoing phase II studies, few agents have moved to phase III testing, and much work remains to be done to fully validate the identified targets and determine the optimal treatment strategy. Ongoing studies are exploring a wide range of combination strategies. This review will highlight some of the emerging targeted therapies that appear to hold promise and may eventually contribute to improved systemic therapy for sarcoma.
Collapse
Affiliation(s)
- Richard F Riedel
- Duke Sarcoma Program, Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
46
|
Abstract
Soft tissue sarcomas (STS) are malignancies of mesenchymal origin that represent approximately 1% of cancers in adults. Systematic research into the treatment of STS is challenging given its rarity and disease heterogeneity. Despite the ability to histologically subtype STS, only recently has our approach to therapy begun to differentiate along these lines. The purpose of this review is to highlight emerging therapeutic targets and therapies that hold the potential to add to the current state of systemic treatment for STS.
Collapse
Affiliation(s)
- Jason L Smith
- Divisions of Hematology, Medical Oncology, Cellular Therapy, Duke University Medical Center, Durham, NC 27710, USA.
| | | |
Collapse
|
47
|
Jones KB, Haldar M, Schiffman JD, Cannon-Albright L, Lessnick SL, Sharma S, Capecchi MR, Randall RL. Of mice and men: opportunities to use genetically engineered mouse models of synovial sarcoma for preclinical cancer therapeutic evaluation. Cancer Control 2011; 18:196-203. [PMID: 21666582 DOI: 10.1177/107327481101800307] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Synovial sarcoma is a soft tissue malignancy with a predilection for adolescents and young adults. Despite recent improvements in the understanding of its character and etiology, few therapeutic advances have been made. The mortality rate is high among the young population it affects. The low incidence of most subtypes of sarcoma, such as synovial sarcoma, makes disease-specific trials difficult to organize. The biological differences between sarcoma subtypes make inclusion of multiple types in general trials unsatisfactory as well. METHODS A review of the literature regarding targetable pathways in synovial sarcoma was undertaken. A strategy has been devised to utilize available technologies in order to prioritize drug trial planning. RESULTS Cell culture and xenograft research with synovial sarcoma cell lines have identified some critical pathways that may be targetable. Promising therapeutic strategies include newer cytotoxic chemotherapies, antiangiogenic agents, anti-IGF1R pathway agents, anti-Bcl-2/proapoptotic agents, and histone deacetylase complex inhibitors. CONCLUSIONS We propose to prioritize potential therapeutic strategies via preclinical testing of agents in a genetic mouse model of synovial sarcoma. Preclinical optimization of treatment regimens can guide the development of more focused patient trials.
Collapse
Affiliation(s)
- Kevin B Jones
- Department of Orthopaedic Surgery, The Center for Children’s Cancer Research, at The University of Utah, Salt Lake City, Utah, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Seki T, Kokuryo T, Yokoyama Y, Suzuki H, Itatsu K, Nakagawa A, Mizutani T, Miyake T, Uno M, Yamauchi K, Nagino M. Antitumor effects of α-bisabolol against pancreatic cancer. Cancer Sci 2011; 102:2199-205. [PMID: 21883695 DOI: 10.1111/j.1349-7006.2011.02082.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
In the present study, we investigated whether α-bisabolol, a sesquiterpene alcohol present in essential oils derived from a variety of plants, has antitumor effects against pancreatic cancer. α-Bisabolol induced a decrease in cell proliferation and viability in pancreatic cancer cell lines (KLM1, KP4, Panc1, MIA Paca2), but not in pancreatic epithelial cells (ACBRI515). α-Bisabolol treatment induced apoptosis and suppressed Akt activation in pancreatic cancer cell lines. Furthermore, α-bisabolol treatment induced the overexpression of early growth response-1 (EGR1), whereas EGR1 siRNA decreased the α-bisabolol-induced cell death of KLM1 cells. Tumor growth in both subcutaneous and peritoneal xenograft nude mouse models was significantly inhibited by intragastric administration of 1000 mg/kg of α-bisabolol, once a week for three weeks. The results indicate that α-bisabolol could be a novel therapeutic option for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Takashi Seki
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Zac1 is a histone acetylation-regulated NF-κB suppressor that mediates histone deacetylase inhibitor-induced apoptosis. Cell Death Differ 2011; 18:1825-35. [PMID: 21546906 DOI: 10.1038/cdd.2011.51] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Histone deacetylase (HDAC) inhibitors are a class of promising anticancer reagents. They are able to induce apoptosis in embryonic carcinoma (EC) cells. However, the underlying mechanism remains poorly understood. Here we show that increased expression of zinc-finger protein regulator of apoptosis and cell-cycle arrest (Zac1) is implicated in HDAC inhibitor-induced apoptosis in F9 and P19 EC cells. By chromatin immunoprecipitation analysis we identified that increased Zac1 expression is mediated by histone acetylation of the Zac1 promoter region. Knockdown of Zac1 inhibited HDAC inhibitor-induced cell apoptosis. Moreover, HDAC inhibitors repressed nuclear factor-κB (NF-κB) activity, and this effect is abrogated by Zac1 knockdown. Consistently, Zac1 overexpression suppressed cellular NF-κB activity. Further investigation showed that Zac1 inhibits NF-κB activity by interacting with the C-terminus of the p65 subunit, which suppresses the phosphorylation of p65 at Ser468 and Ser536 residues. These results indicate that Zac1 is a histone acetylation-regulated suppressor of NF-κB, which is induced and implicated in HDAC inhibitor-mediated EC cell apoptosis.
Collapse
|
50
|
Suppression of osteosarcoma cell invasion by chemotherapy is mediated by urokinase plasminogen activator activity via up-regulation of EGR1. PLoS One 2011; 6:e16234. [PMID: 21283769 PMCID: PMC3024416 DOI: 10.1371/journal.pone.0016234] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2010] [Accepted: 12/17/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The cellular and molecular mechanisms of tumour response following chemotherapy are largely unknown. We found that low dose anti-tumour agents up-regulate early growth response 1 (EGR1) expression. EGR1 is a member of the immediate-early gene group of transcription factors which modulate transcription of multiple genes involved in cell proliferation, differentiation, and development. It has been reported that EGR1 act as either tumour promoting factor or suppressor. We therefore examined the expression and function of EGR1 in osteosarcoma. METHODS We investigated the expression of EGR1 in human osteosarcoma cell lines and biopsy specimens. We next examined the expression of EGR1 following anti-tumour agents treatment. To examine the function of EGR1 in osteosarcoma, we assessed the tumour growth and invasion in vitro and in vivo. RESULTS Real-time PCR revealed that EGR1 was down-regulated both in osteosarcoma cell lines and osteosarcoma patients' biopsy specimens. In addition, EGR1 was up-regulated both in osteosarcoma patient' specimens and osteosarcoma cell lines following anti-tumour agent treatment. Although forced expression of EGR1 did not prevent osteosarcoma growth, forced expression of EGR1 prevented osteosarcoma cell invasion in vitro. In addition, forced expression of EGR1 promoted down-regulation of urokinase plasminogen activator, urokinase receptor, and urokinase plasminogen activity. Xenograft mice models showed that forced expression of EGR1 prevents osteosarcoma cell migration into blood vessels. CONCLUSIONS These findings suggest that although chemotherapy could not prevent osteosarcoma growth in chemotherapy-resistant patients, it did prevent osteosarcoma cell invasion by down-regulation of urokinase plasminogen activity via up-regulation of EGR1 during chemotherapy periods.
Collapse
|