1
|
Hildebrand EM, Polovnikov K, Dekker B, Liu Y, Lafontaine DL, Fox AN, Li Y, Venev SV, Mirny LA, Dekker J. Mitotic chromosomes are self-entangled and disentangle through a topoisomerase-II-dependent two-stage exit from mitosis. Mol Cell 2024; 84:1422-1441.e14. [PMID: 38521067 PMCID: PMC11756355 DOI: 10.1016/j.molcel.2024.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 10/23/2023] [Accepted: 02/24/2024] [Indexed: 03/25/2024]
Abstract
The topological state of chromosomes determines their mechanical properties, dynamics, and function. Recent work indicated that interphase chromosomes are largely free of entanglements. Here, we use Hi-C, polymer simulations, and multi-contact 3C and find that, by contrast, mitotic chromosomes are self-entangled. We explore how a mitotic self-entangled state is converted into an unentangled interphase state during mitotic exit. Most mitotic entanglements are removed during anaphase/telophase, with remaining ones removed during early G1, in a topoisomerase-II-dependent process. Polymer models suggest a two-stage disentanglement pathway: first, decondensation of mitotic chromosomes with remaining condensin loops produces entropic forces that bias topoisomerase II activity toward decatenation. At the second stage, the loops are released, and the formation of new entanglements is prevented by lower topoisomerase II activity, allowing the establishment of unentangled and territorial G1 chromosomes. When mitotic entanglements are not removed in experiments and models, a normal interphase state cannot be acquired.
Collapse
Affiliation(s)
- Erica M Hildebrand
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | | | - Bastiaan Dekker
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Yu Liu
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Nuclear Dynamics and Cancer Program, Cancer Epigenetics Institute, Fox Chase Cancer Center, Temple Health, Philadelphia, PA 19111, USA
| | - Denis L Lafontaine
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - A Nicole Fox
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Ying Li
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Sergey V Venev
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Leonid A Mirny
- Institute for Medical Engineering and Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Job Dekker
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
2
|
Porto E, Loula P, Strand S, Hankeln T. Molecular analysis of the human cytoglobin mRNA isoforms. J Inorg Biochem 2024; 251:112422. [PMID: 38016326 DOI: 10.1016/j.jinorgbio.2023.112422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/26/2023] [Accepted: 10/29/2023] [Indexed: 11/30/2023]
Abstract
Multiple functions have been proposed for the ubiquitously expressed vertebrate globin cytoglobin (Cygb), including nitric oxide (NO) metabolism, lipid peroxidation/signalling, superoxide dismutase activity, reactive oxygen/nitrogen species (RONS) scavenging, regulation of blood pressure, antifibrosis, and both tumour suppressor and oncogenic effects. Since alternative splicing can expand the biological roles of a gene, we investigated whether this mechanism contributes to the functional diversity of Cygb. By mining of cDNA data and molecular analysis, we identified five alternative mRNA isoforms for the human CYGB gene (V-1 to V-5). Comprehensive RNA-seq analyses of public datasets from human tissues and cells confirmed that the canonical CYGB V-1 isoform is the primary CYGB transcript in the majority of analysed datasets. Interestingly, we revealed that isoform V-3 represented the predominant CYGB variant in hepatoblastoma (HB) cell lines and in the majority of analysed normal and HB liver tissues. CYGB V-3 mRNA is transcribed from an alternate upstream promoter and hypothetically encodes a N-terminally truncated CYGB protein, which is not recognized by some antibodies used in published studies. Little to no transcriptional evidence was found for the other CYGB isoforms. Comparative transcriptomics and flow cytometry on CYGB+/+ and gene-edited CYGB-/- HepG2 HB cells did not unveil a knockout phenotype and, thus, a potential function for CYGB V-3. Our study reveals that the CYGB gene is transcriptionally more complex than previously described as it expresses alternative mRNA isoforms of unknown function. Additional experimental data are needed to clarify the biological meaning of those alternative CYGB transcripts.
Collapse
Affiliation(s)
- Elena Porto
- Institute of Organismic and Molecular Evolution, Molecular Genetics & Genome Analysis Group, Johannes Gutenberg University Mainz, J. J. Becher-Weg 30A, D-55128 Mainz, Germany
| | - Paraskevi Loula
- Institute of Organismic and Molecular Evolution, Molecular Genetics & Genome Analysis Group, Johannes Gutenberg University Mainz, J. J. Becher-Weg 30A, D-55128 Mainz, Germany
| | - Susanne Strand
- Department of Internal Medicine I, Molecular Hepatology, University Medical Center, Johannes Gutenberg University Mainz, Obere Zahlbacher Strasse 63, 55131 Mainz, Germany
| | - Thomas Hankeln
- Institute of Organismic and Molecular Evolution, Molecular Genetics & Genome Analysis Group, Johannes Gutenberg University Mainz, J. J. Becher-Weg 30A, D-55128 Mainz, Germany.
| |
Collapse
|
3
|
Soliman TN, Keifenheim D, Parker PJ, Clarke DJ. Cell cycle responses to Topoisomerase II inhibition: Molecular mechanisms and clinical implications. J Cell Biol 2023; 222:e202209125. [PMID: 37955972 PMCID: PMC10641588 DOI: 10.1083/jcb.202209125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
DNA Topoisomerase IIA (Topo IIA) is an enzyme that alters the topological state of DNA and is essential for the separation of replicated sister chromatids and the integrity of cell division. Topo IIA dysfunction activates cell cycle checkpoints, resulting in arrest in either the G2-phase or metaphase of mitosis, ultimately triggering the abscission checkpoint if non-disjunction persists. These events, which directly or indirectly monitor the activity of Topo IIA, have become of major interest as many cancers have deficiencies in Topoisomerase checkpoints, leading to genome instability. Recent studies into how cells sense Topo IIA dysfunction and respond by regulating cell cycle progression demonstrate that the Topo IIA G2 checkpoint is distinct from the G2-DNA damage checkpoint. Likewise, in mitosis, the metaphase Topo IIA checkpoint is separate from the spindle assembly checkpoint. Here, we integrate mechanistic knowledge of Topo IIA checkpoints with the current understanding of how cells regulate progression through the cell cycle to accomplish faithful genome transmission and discuss the opportunities this offers for therapy.
Collapse
Affiliation(s)
- Tanya N. Soliman
- Barts Cancer Institute, Queen Mary University London, London, UK
| | - Daniel Keifenheim
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | | | - Duncan J. Clarke
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
4
|
Jeong J, Lee JH, Carcamo CC, Parker MW, Berger JM. DNA-Stimulated Liquid-Liquid phase separation by eukaryotic topoisomerase ii modulates catalytic function. eLife 2022; 11:e81786. [PMID: 36342377 PMCID: PMC9674351 DOI: 10.7554/elife.81786] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 11/06/2022] [Indexed: 11/09/2022] Open
Abstract
Type II topoisomerases modulate chromosome supercoiling, condensation, and catenation by moving one double-stranded DNA segment through a transient break in a second duplex. How DNA strands are chosen and selectively passed to yield appropriate topological outcomes - for example, decatenation vs. catenation - is poorly understood. Here, we show that at physiological enzyme concentrations, eukaryotic type IIA topoisomerases (topo IIs) readily coalesce into condensed bodies. DNA stimulates condensation and fluidizes these assemblies to impart liquid-like behavior. Condensation induces both budding yeast and human topo IIs to switch from DNA unlinking to active DNA catenation, and depends on an unstructured C-terminal region, the loss of which leads to high levels of knotting and reduced catenation. Our findings establish that local protein concentration and phase separation can regulate how topo II creates or dissolves DNA links, behaviors that can account for the varied roles of the enzyme in supporting transcription, replication, and chromosome compaction.
Collapse
Affiliation(s)
- Joshua Jeong
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Joyce H Lee
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Claudia C Carcamo
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Matthew W Parker
- Department of Biophysics, University of Texas Southwestern Medical CenterDallasUnited States
| | - James M Berger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of MedicineBaltimoreUnited States
| |
Collapse
|
5
|
Identification of a novel catalytic inhibitor of topoisomerase II alpha that engages distinct mechanisms in p53 wt or p53 -/- cells to trigger G2/M arrest and senescence. Cancer Lett 2022; 526:284-303. [PMID: 34843865 DOI: 10.1016/j.canlet.2021.11.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/10/2021] [Accepted: 11/19/2021] [Indexed: 12/18/2022]
Abstract
We report a novel topoisomerase IIα inhibitor, mercaptopyridine oxide (MPO), which induces G2/M arrest and senescence with distinctly different cell cycle regulators (p21 or p14ARF) in HCT116p 53WT and HCT116 p53-/- cells, respectively. MPO treatment induced defective topoisomerase IIα-mediated decatenation process and inhibition of the enzyme's catalytic activity that stalled entry into mitosis. Topoisomerase IIα inhibition was associated with ROS-mediated activation of ATM-Chk2 kinase axis in HCT116 p53WT cells, but not in HCT116 p53-/- cells displaying early Chk1 activation. Results suggest that E2F1 stabilization might link MPO-induced p53 phospho-activation in HCT116 p53WT cells or p14ARF induction in HCT116 p53-/- cells. Also, interaction between topoisomerase IIα and Chk1 was induced in both cell lines, which could be important for decatenation checkpoint activation, even upon p53 ablation. Notably, TCGA dataset analyses revealed topoisomerase IIα upregulation across a wide array of cancers, which was associated with lower overall survival. Corroborating that increased topoisomerase IIα expression might offer susceptibility to the novel inhibitor, MPO (5 μM) induced strong inhibition in colony forming ability of pancreatic and hepatocellular cancer cell lines. These data highlight a novel topoisomerase IIα inhibitor and provide proof-of-concept for its therapeutic potential against cancers even with loss-of-function of p53.
Collapse
|
6
|
Zhang J, Yuan HJ, Zhu J, Gong S, Luo MJ, Tan JH. Topoisomerase II dysfunction causes metaphase I arrest by activating aurora B, SAC and MPF and prevents PB1 abscission in mouse oocytes†. Biol Reprod 2022; 106:900-909. [PMID: 35084021 DOI: 10.1093/biolre/ioac011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 11/02/2021] [Accepted: 01/13/2022] [Indexed: 11/14/2022] Open
Abstract
Oocyte aneuploidy is caused mainly by chromosome nondisjunction and/or unbalanced sister chromatid pre-division. Although studies in somatic cells have shown that topoisomerase II (TOP2) plays important roles in chromosome condensation and timely separation of centromeres, little is known about its role during oocyte meiosis. Furthermore, because VP-16, which is a TOP2 inhibitor and induces DNA double strand breaks, is often used for ovarian cancer chemotherapy, its effects on oocytes must be studied for ovarian cancer patients to recover ovarian function following chemotherapy. This study showed that inhibiting TOP2 with either ICRF-193 or VP-16 during meiosis I impaired chromatin condensation, chromosome alignment, TOP2α localization and caused metaphase I (MI) arrest and first polar body (PB1) abscission failure. Inhibiting or neutralizing either spindle assembly checkpoint (SAC), Aurora B or maturation-promoting factor (MPF) significantly abolished the effect of ICRF-193 or VP-16 on MI arrest. Treatment with ICRF-193 or VP-16 significantly activated MPF and SAC but the effect disappeared when Aurora B was inhibited. Most of the oocytes matured in the presence of ICRF-193 or VP-16 were arrested at MI, and only 11% to 27% showed PB1 protrusion. Furthermore, most of the PB1 protrusions formed in the presence of ICRF-193 or VP-16 were retracted after further culture for 7 h. In conclusion, TOP2 dysfunction causes MI arrest by activating Aurora B, SAC and MPF and it prevents PB1 abscission by promoting chromatin bridges.
Collapse
Affiliation(s)
- Jie Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, P. R. China
| | - Hong-Jie Yuan
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, P. R. China
| | - Jiang Zhu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, P. R. China
| | - Shuai Gong
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, P. R. China
| | - Ming-Jiu Luo
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, P. R. China
| | - Jing-He Tan
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, P. R. China
| |
Collapse
|
7
|
de Oliveira Lisboa M, Brofman PRS, Schmid-Braz AT, Rangel-Pozzo A, Mai S. Chromosomal Instability in Acute Myeloid Leukemia. Cancers (Basel) 2021; 13:cancers13112655. [PMID: 34071283 PMCID: PMC8198625 DOI: 10.3390/cancers13112655] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/23/2021] [Accepted: 05/26/2021] [Indexed: 12/20/2022] Open
Abstract
Chromosomal instability (CIN), the increasing rate in which cells acquire new chromosomal alterations, is one of the hallmarks of cancer. Many studies highlighted CIN as an important mechanism in the origin, progression, and relapse of acute myeloid leukemia (AML). The ambivalent feature of CIN as a cancer-promoting or cancer-suppressing mechanism might explain the prognostic variability. The latter, however, is described in very few studies. This review highlights the important CIN mechanisms in AML, showing that CIN signatures can occur largely in all the three major AML types (de novo AML, secondary-AML, and therapy-related-AML). CIN features in AML could also be age-related and reflect the heterogeneity of the disease. Although most of these abnormalities show an adverse prognostic value, they also offer a strong new perspective on personalized therapy approaches, which goes beyond assessing CIN in vitro in patient tumor samples to predict prognosis. Current and emerging AML therapies are exploring CIN to improve AML treatment, which includes blocking CIN or increasing CIN beyond the limit threshold to induce cell death. We argue that the characterization of CIN features, not included yet in the routine diagnostic of AML patients, might provide a better stratification of patients and be extended to a more personalized therapeutic approach.
Collapse
Affiliation(s)
- Mateus de Oliveira Lisboa
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica do Paraná—PUCPR, Curitiba 80215-901, Paraná, Brazil; (M.d.O.L.); (P.R.S.B.)
| | - Paulo Roberto Slud Brofman
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica do Paraná—PUCPR, Curitiba 80215-901, Paraná, Brazil; (M.d.O.L.); (P.R.S.B.)
| | - Ana Teresa Schmid-Braz
- Hospital das Clínicas, Universidade Federal do Paraná, Curitiba 80060-240, Paraná, Brazil;
| | - Aline Rangel-Pozzo
- Department of Physiology and Pathophysiology, University of Manitoba, Cell Biology, CancerCare Manitoba Research Institute, Winnipeg, MB R3C 2B7, Canada
- Correspondence: (A.R.-P.); (S.M.); Tel.: +1-(204)787-4125 (S.M.)
| | - Sabine Mai
- Department of Physiology and Pathophysiology, University of Manitoba, Cell Biology, CancerCare Manitoba Research Institute, Winnipeg, MB R3C 2B7, Canada
- Correspondence: (A.R.-P.); (S.M.); Tel.: +1-(204)787-4125 (S.M.)
| |
Collapse
|
8
|
Long Q, Xiao X, Yi P, Liu Y, Varier KM, Rao Q, Song J, Qiu J, Wang C, Liu W, Gajendran B, He Z, Liu S, Li Y. L20, a Calothrixin B analog, induces intrinsic apoptosis on HEL cells through ROS/γ-H2AX/p38 MAPK pathway. Biomed Pharmacother 2021; 137:111336. [DOI: 10.1016/j.biopha.2021.111336] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 12/20/2022] Open
|
9
|
Yan X, Stuurman N, Ribeiro SA, Tanenbaum ME, Horlbeck MA, Liem CR, Jost M, Weissman JS, Vale RD. High-content imaging-based pooled CRISPR screens in mammalian cells. J Cell Biol 2021; 220:211696. [PMID: 33465779 PMCID: PMC7821101 DOI: 10.1083/jcb.202008158] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/17/2020] [Accepted: 12/02/2020] [Indexed: 12/11/2022] Open
Abstract
CRISPR (clustered regularly interspaced short palindromic repeats)-based gene inactivation provides a powerful means for linking genes to particular cellular phenotypes. CRISPR-based screening typically uses large genomic pools of single guide RNAs (sgRNAs). However, this approach is limited to phenotypes that can be enriched by chemical selection or FACS sorting. Here, we developed a microscopy-based approach, which we name optical enrichment, to select cells displaying a particular CRISPR-induced phenotype by automated imaging-based computation, mark them by photoactivation of an expressed photoactivatable fluorescent protein, and then isolate the fluorescent cells using fluorescence-activated cell sorting (FACS). A plugin was developed for the open source software μManager to automate the phenotypic identification and photoactivation of cells, allowing ∼1.5 million individual cells to be screened in 8 h. We used this approach to screen 6,092 sgRNAs targeting 544 genes for their effects on nuclear size regulation and identified 14 bona fide hits. These results present a scalable approach to facilitate imaging-based pooled CRISPR screens.
Collapse
Affiliation(s)
- Xiaowei Yan
- Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA
| | - Nico Stuurman
- Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA
| | - Susana A. Ribeiro
- Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA,Cairn Biosciences, Inc., San Francisco, CA
| | - Marvin E. Tanenbaum
- Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA,Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, Netherlands
| | - Max A. Horlbeck
- Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA,Boston Children's Hospital, Boston, MA
| | - Christina R. Liem
- Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA,University of California, San Diego, San Diego, CA
| | - Marco Jost
- Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA
| | - Jonathan S. Weissman
- Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA,Whitehead Institute and Department of Biology, MIT, Cambridge, MA
| | - Ronald D. Vale
- Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA,Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA,Correspondence to Ronald D. Vale:
| |
Collapse
|
10
|
Johansson M, Azuma Y, Clarke DJ. Role of Aurora B and Haspin kinases in the metaphase Topoisomerase II checkpoint. Cell Cycle 2021; 20:345-352. [PMID: 33459116 DOI: 10.1080/15384101.2021.1875671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
DNA Topoisomerase II (TopoII) uses ATP hydrolysis to decatenate chromosomes so that sister chromatids can faithfully segregate in mitosis. When the TopoII enzyme cycle stalls due to failed ATP hydrolysis, the onset of anaphase is delayed, presumably to allow extra time for decatenation to be completed. Recent evidence revealed that, unlike the spindle assembly checkpoint, this TopoII checkpoint response requires Aurora B and Haspin kinases and is triggered by SUMOylation of the C-terminal domain of TopoII.
Collapse
Affiliation(s)
- M Johansson
- Department of Genetics, Cell Biology & Development, University of Minnesota , Minneapolis, MN, USA
| | - Y Azuma
- Department of Molecular Biosciences, University of Kansas , Lawrence, KS, USA
| | - D J Clarke
- Department of Genetics, Cell Biology & Development, University of Minnesota , Minneapolis, MN, USA
| |
Collapse
|
11
|
Maan M, Agrawal NJ, Padmanabhan J, Leitzinger CC, Rivera-Rivera Y, Saavedra HI, Chellappan SP. Tank Binding Kinase 1 modulates spindle assembly checkpoint components to regulate mitosis in breast and lung cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118929. [PMID: 33310066 DOI: 10.1016/j.bbamcr.2020.118929] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/17/2020] [Accepted: 12/07/2020] [Indexed: 11/25/2022]
Abstract
Error-free progression through mitosis is critical for proper cell division and accurate distribution of the genetic material. The anaphase-promoting complex/cyclosome (APC/C) ubiquitin ligase regulates the progression from metaphase to anaphase and its activation is controlled by the cofactors Cdc20 and Cdh1. Additionally, genome stability is maintained by the spindle assembly checkpoint (SAC), which monitors proper attachment of chromosomes to spindle microtubules prior to cell division. We had shown a role for Tank Binding Kinase 1 (TBK1) in microtubule dynamics and mitosis and here we describe a novel role of TBK1 in regulating SAC in breast and lung cancer cells. TBK1 interacts with and phosphorylates Cdc20 and Cdh1 and depletion of TBK1 elevates SAC components. TBK1 inhibition increases the association of Cdc20 with APC/C and BubR1 indicating inactivation of APC/C; similarly, interaction of Cdh1 with APC/C is also enhanced. TBK1 and TTK inhibition reduces cell viability and enhances centrosome amplification and micronucleation. These results indicate that alterations in TBK1 will impede mitotic progression and combining TBK1 inhibitors with other regulators of mitosis might be effective in eliminating cancer cells.
Collapse
Affiliation(s)
- Meenu Maan
- Department of Tumor Biology, H, Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive, Tampa, FL 33612, United States of America
| | - Neha Jaiswal Agrawal
- Department of Tumor Biology, H, Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive, Tampa, FL 33612, United States of America
| | - Jaya Padmanabhan
- Department of Tumor Biology, H, Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive, Tampa, FL 33612, United States of America
| | - Christelle Colin Leitzinger
- Department of Tumor Biology, H, Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive, Tampa, FL 33612, United States of America
| | - Yainyrette Rivera-Rivera
- Department of Basic Sciences, Division of Pharmacology and Cancer Biology, Ponce Health Sciences University/Ponce Research Institute, Ponce 00716-2348, Puerto Rico
| | - Harold I Saavedra
- Department of Basic Sciences, Division of Pharmacology and Cancer Biology, Ponce Health Sciences University/Ponce Research Institute, Ponce 00716-2348, Puerto Rico
| | - Srikumar P Chellappan
- Department of Tumor Biology, H, Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive, Tampa, FL 33612, United States of America.
| |
Collapse
|
12
|
Hikita K, Yamakage Y, Okunaga H, Motoyama Y, Matsuyama H, Matsuoka K, Murata T, Nakayoshi T, Oda A, Kato K, Tanaka H, Asao N, Dan S, Kaneda N. (S)-Erypoegin K, an isoflavone isolated from Erythrina poeppigiana, is a novel inhibitor of topoisomerase IIα: Induction of G2 phase arrest in human gastric cancer cells. Bioorg Med Chem 2020; 30:115904. [PMID: 33341500 DOI: 10.1016/j.bmc.2020.115904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 10/22/2022]
Abstract
Erypoegin K, an isoflavone isolated from the stem bark of Erythrina poeppigiana, has a single chiral carbon in its structure and exists naturally as a racemic mixture. Our previous study showed (S)-erypoegin K selectively exhibits potent anti-proliferative and apoptosis-inducing activity against human leukemia HL-60 cells. To identify the target molecule of (S)-erypoegin K, we employed the human cancer cell panel analysis (termed JFCR39) coupled with a drug sensitivity database of pharmacologically well-characterized drugs for comparison using the COMPARE algorithm. (S)-erypoegin K exhibited a similar profile to that of etoposide, suggesting the molecular target for erypoegin K may be topoisomerase II (Topo II). Subsequent experiments using purified human Topo IIα established that the (S)-isomer selectively stabilizes the cleavage complex composed of double-stranded plasmid DNA and the enzyme. Moreover, (S)-erypoegin K inhibited decatenation of kinetoplast DNA. Molecular docking studies clearly indicated specific binding of the (S)-isomer to the active site of Topo IIα involving hydrogen bonds that help stabilize the cleavage complex. (S)-erypoegin K displayed potent cytotoxic activity against two human gastric cancer cells GCIY and MKN-1 with IC50 values of 0.270 and 0.327 μM, respectively, and induced enzyme activities of caspase 3 and 9. Cell cycle analysis showed marked cell cycle arrest at G2 phase in both cell lines. (S)-erypoegin K also displayed significant antitumor activity toward GCIY xenografted mice. The present study suggests (S)-erypoegin K acts as a Topo II inhibitor to block the G2/M transition of cancer cells.
Collapse
Affiliation(s)
- Kiyomi Hikita
- Laboratory of Analytical Neurobiology, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan
| | - Yuko Yamakage
- Laboratory of Analytical Neurobiology, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan
| | - Honoka Okunaga
- Laboratory of Analytical Neurobiology, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan
| | - Yui Motoyama
- Laboratory of Analytical Neurobiology, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan
| | - Haruka Matsuyama
- Laboratory of Analytical Neurobiology, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan
| | - Kenta Matsuoka
- Laboratory of Analytical Neurobiology, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan
| | - Tomiyasu Murata
- Laboratory of Analytical Neurobiology, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan
| | - Tomoki Nakayoshi
- Laboratory of Biophysical Chemistry, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan
| | - Akifumi Oda
- Laboratory of Biophysical Chemistry, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan
| | - Kuniki Kato
- Chubu TLO, Nagoya Industrial Science Research Institute, VBL, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Hitoshi Tanaka
- Laboratory of Natural Product Chemistry, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan
| | - Naoki Asao
- Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan; Division of Chemistry and Materials, Graduate School of Science and Technology, Shinshu University, Ueda, Nagano 386-8567, Japan
| | - Shingo Dan
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan
| | - Norio Kaneda
- Laboratory of Analytical Neurobiology, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan.
| |
Collapse
|
13
|
Arroyo M, Cañuelo A, Calahorra J, Hastert F, Sánchez A, Clarke DJ, Marchal J. Mitotic entry upon Topo II catalytic inhibition is controlled by Chk1 and Plk1. FEBS J 2020; 287:4933-4951. [PMID: 32144855 PMCID: PMC7483426 DOI: 10.1111/febs.15280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 01/13/2020] [Accepted: 03/03/2020] [Indexed: 12/11/2022]
Abstract
Catalytic inhibition of topoisomerase II during G2 phase delays onset of mitosis due to the activation of the so-called decatenation checkpoint. This checkpoint is less known compared with the extensively studied G2 DNA damage checkpoint and is partially compromised in many tumor cells. We recently identified MCPH1 as a key regulator that confers cells with the capacity to adapt to the decatenation checkpoint. In the present work, we have explored the contributions of checkpoint kinase 1 (Chk1) and polo-like kinase 1 (Plk1), in order to better understand the molecular basis of decatenation checkpoint. Our results demonstrate that Chk1 function is required to sustain the G2 arrest induced by catalytic inhibition of Topo II. Interestingly, Chk1 loss of function restores adaptation in cells lacking MCPH1. Furthermore, we demonstrate that Plk1 function is required to bypass the decatenation checkpoint arrest in cells following Chk1 inhibition. Taken together, our data suggest that MCPH1 is critical to allow checkpoint adaptation by counteracting Chk1-mediated inactivation of Plk1. Importantly, we also provide evidence that MCPH1 function is not required to allow recovery from this checkpoint, which lends support to the notion that checkpoint adaptation and recovery are different mechanisms distinguished in part by specific effectors.
Collapse
Affiliation(s)
- M. Arroyo
- Departamento de Biología ExperimentalUniversidad de Jaén, Spain
| | - A. Cañuelo
- Departamento de Biología ExperimentalUniversidad de Jaén, Spain
| | - J. Calahorra
- Departamento de Biología ExperimentalUniversidad de Jaén, Spain
| | - F.D. Hastert
- Department of Biology, Technische Universität Darmstadt, Germany
| | - A. Sánchez
- Departamento de Biología ExperimentalUniversidad de Jaén, Spain
| | - D. J. Clarke
- Department of Genetics, Cell Biology and Development, University of Minnesota, US
| | - J.A. Marchal
- Departamento de Biología ExperimentalUniversidad de Jaén, Spain
| |
Collapse
|
14
|
Molinaro C, Martoriati A, Pelinski L, Cailliau K. Copper Complexes as Anticancer Agents Targeting Topoisomerases I and II. Cancers (Basel) 2020; 12:E2863. [PMID: 33027952 PMCID: PMC7601307 DOI: 10.3390/cancers12102863] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/24/2020] [Accepted: 09/29/2020] [Indexed: 12/12/2022] Open
Abstract
Organometallics, such as copper compounds, are cancer chemotherapeutics used alone or in combination with other drugs. One small group of copper complexes exerts an effective inhibitory action on topoisomerases, which participate in the regulation of DNA topology. Copper complexes inhibitors of topoisomerases 1 and 2 work by different molecular mechanisms, analyzed herein. They allow genesis of DNA breaks after the formation of a ternary complex, or act in a catalytic mode, often display DNA intercalative properties and ROS production, and sometimes display dual effects. These amplified actions have repercussions on the cell cycle checkpoints and death effectors. Copper complexes of topoisomerase inhibitors are analyzed in a broader synthetic view and in the context of cancer cell mutations. Finally, new emerging treatment aspects are depicted to encourage the expansion of this family of highly active anticancer drugs and to expend their use in clinical trials and future cancer therapy.
Collapse
Affiliation(s)
- Caroline Molinaro
- Univ. Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France; (C.M.); (A.M.)
| | - Alain Martoriati
- Univ. Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France; (C.M.); (A.M.)
| | - Lydie Pelinski
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, F-59000 Lille, France;
| | - Katia Cailliau
- Univ. Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France; (C.M.); (A.M.)
| |
Collapse
|
15
|
Aquaporin 1 promotes sensitivity of anthracycline chemotherapy in breast cancer by inhibiting β-catenin degradation to enhance TopoIIα activity. Cell Death Differ 2020; 28:382-400. [PMID: 32814878 PMCID: PMC7852611 DOI: 10.1038/s41418-020-00607-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 07/29/2020] [Accepted: 08/06/2020] [Indexed: 12/13/2022] Open
Abstract
Anthracyclines are a class of conventional and commonly used frontline chemotherapy drugs to treat breast cancer. However, the anthracycline-based regimens can only reduce breast cancer mortality by 20–30%. Furthermore, there is no appropriate biomarker for predicting responses to this kind of chemotherapy currently. Here we report our findings that may fill this gap by showing the AQP1 (Aquaporin1) protein as a potential response predictor in the anthracycline chemotherapy. We showed that breast cancer patients with a high level of AQP1 expression who underwent the anthracycline treatment had a better clinical outcome relative to those with a low level of AQP1 expression. In the exploration of the underlying mechanisms, we found that the AQP1 and glycogen synthase kinase-3β (GSK3β) competitively interacted with the 12 armadillo repeats of β-catenin, followed by the inhibition of the β-catenin degradation that led to β-catenin’s accumulation in the cytoplasm and nuclear translocation. The nuclear β-catenin interacted with TopoIIα and enhanced TopoIIα’s activity, which resulted in a high sensitivity of breast cancer cells to anthracyclines. We also found, the miR-320a-3p can attenuate the anthracycline’s chemosensitivity by inhibiting the AQP1 expression. Taken together, our findings suggest the efficacy of AQP1 as a response predictor in the anthracycline chemotherapy. The application of our study includes, but is not limited to, facilitating screening of the most appropriate breast cancer patients (who have a high AQP1 expression) for better anthracycline chemotherapy and improved prognosis purposes.
Collapse
|
16
|
Topoisomerase IIα is essential for maintenance of mitotic chromosome structure. Proc Natl Acad Sci U S A 2020; 117:12131-12142. [PMID: 32414923 DOI: 10.1073/pnas.2001760117] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Topoisomerase IIα (TOP2A) is a core component of mitotic chromosomes and important for establishing mitotic chromosome condensation. The primary roles of TOP2A in mitosis have been difficult to decipher due to its multiple functions across the cell cycle. To more precisely understand the role of TOP2A in mitosis, we used the auxin-inducible degron (AID) system to rapidly degrade the protein at different stages of the human cell cycle. Removal of TOP2A prior to mitosis does not affect prophase timing or the initiation of chromosome condensation. Instead, it prevents chromatin condensation in prometaphase, extends the length of prometaphase, and ultimately causes cells to exit mitosis without chromosome segregation occurring. Surprisingly, we find that removal of TOP2A from cells arrested in prometaphase or metaphase cause dramatic loss of compacted mitotic chromosome structure and conclude that TOP2A is crucial for maintenance of mitotic chromosomes. Treatments with drugs used to poison/inhibit TOP2A function, such as etoposide and ICRF-193, do not phenocopy the effects on chromosome structure of TOP2A degradation by AID. Our data point to a role for TOP2A as a structural chromosome maintenance enzyme locking in condensation states once sufficient compaction is achieved.
Collapse
|
17
|
MCPH1 Lack of Function Enhances Mitotic Cell Sensitivity Caused by Catalytic Inhibitors of Topo II. Genes (Basel) 2020; 11:genes11040406. [PMID: 32276518 PMCID: PMC7231051 DOI: 10.3390/genes11040406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/30/2020] [Accepted: 04/07/2020] [Indexed: 11/23/2022] Open
Abstract
The capacity of Topoisomerase II (Topo II) to remove DNA catenations that arise after replication is essential to ensure faithful chromosome segregation. Topo II activity is monitored during G2 by a specific checkpoint pathway that delays entry into mitosis until the chromosomes are properly decatenated. Recently, we demonstrated that the mitotic defects that are characteristic of cells depleted of MCPH1 function, a protein mutated in primary microcephaly, are not a consequence of a weakened G2 decatenation checkpoint response. However, the mitotic defects could be accounted for by a minor defect in the activity of Topo II during G2/M. To test this hypothesis, we have tracked at live single cell resolution the dynamics of mitosis in MCPH1 depleted HeLa cells upon catalytic inhibition of Topo II. Our analyses demonstrate that neither chromosome alignment nor segregation are more susceptible to minor perturbation in decatenation in MCPH1 deficient cells, as compared with control cells. Interestingly, MCPH1 depleted cells were more prone to mitotic cell death when decatenation was perturbed. Furthermore, when the G2 arrest that was induced by catalytic inhibition of Topo II was abrogated by Chk1 inhibition, the incidence of mitotic cell death was also increased. Taken together, our data suggest that the MCPH1 lack of function increases mitotic cell hypersensitivity to the catalytic inhibition of Topo II.
Collapse
|
18
|
Cilluffo D, Barra V, Spatafora S, Coronnello C, Contino F, Bivona S, Feo S, Di Leonardo A. Aneuploid IMR90 cells induced by depletion of pRB, DNMT1 and MAD2 show a common gene expression signature. Genomics 2020; 112:2541-2549. [PMID: 32057913 DOI: 10.1016/j.ygeno.2020.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 02/03/2020] [Accepted: 02/07/2020] [Indexed: 12/23/2022]
Abstract
Chromosome segregation defects lead to aneuploidy which is a major feature of solid tumors. How diploid cells face chromosome mis-segregation and how aneuploidy is tolerated in tumor cells are not completely defined yet. Thus, an important goal of cancer genetics is to identify gene networks that underlie aneuploidy and are involved in its tolerance. To this aim, we induced aneuploidy in IMR90 human primary cells by depleting pRB, DNMT1 and MAD2 and analyzed their gene expression profiles by microarray analysis. Bioinformatic analysis revealed a common gene expression profile of IMR90 cells that became aneuploid. Gene Set Enrichment Analysis (GSEA) also revealed gene-sets/pathways that are shared by aneuploid IMR90 cells that may be exploited for novel therapeutic approaches in cancer. Furthermore, Protein-Protein Interaction (PPI) network analysis identified TOP2A and KIF4A as hub genes that may be important for aneuploidy establishment.
Collapse
Affiliation(s)
- Danilo Cilluffo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Italy
| | - Viviana Barra
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Italy
| | - Sergio Spatafora
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Italy
| | | | - Flavia Contino
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Italy
| | - Serena Bivona
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Italy; Advanced Technology Network Center (ATEN), University of Palermo, Italy
| | - Salvatore Feo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Italy; Advanced Technology Network Center (ATEN), University of Palermo, Italy
| | - Aldo Di Leonardo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Italy; Centro di OncoBiologia Sperimentale (COBS), Palermo, Italy.
| |
Collapse
|
19
|
Cell Cycle-Dependent Control and Roles of DNA Topoisomerase II. Genes (Basel) 2019; 10:genes10110859. [PMID: 31671531 PMCID: PMC6896119 DOI: 10.3390/genes10110859] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 12/13/2022] Open
Abstract
Type II topoisomerases are ubiquitous enzymes in all branches of life that can alter DNA superhelicity and unlink double-stranded DNA segments during processes such as replication and transcription. In cells, type II topoisomerases are particularly useful for their ability to disentangle newly-replicated sister chromosomes. Growing lines of evidence indicate that eukaryotic topoisomerase II (topo II) activity is monitored and regulated throughout the cell cycle. Here, we discuss the various roles of topo II throughout the cell cycle, as well as mechanisms that have been found to govern and/or respond to topo II function and dysfunction. Knowledge of how topo II activity is controlled during cell cycle progression is important for understanding how its misregulation can contribute to genetic instability and how modulatory pathways may be exploited to advance chemotherapeutic development.
Collapse
|
20
|
Fouda AM, Assiri MA, Mora A, Ali TE, Afifi TH, El-Agrody AM. Microwave synthesis of novel halogenated β-enaminonitriles linked 9-bromo-1H-benzo[f]chromene moieties: Induces cell cycle arrest and apoptosis in human cancer cells via dual inhibition of topoisomerase I and II. Bioorg Chem 2019; 93:103289. [PMID: 31586716 DOI: 10.1016/j.bioorg.2019.103289] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/22/2019] [Accepted: 09/16/2019] [Indexed: 12/19/2022]
Abstract
A novel series of halogenated β-enaminonitriles (4a-m), linked 9-bromo-1H-benzo[f]-hromene moieties, were synthesized via microwave irradiation and were predestined for their cytotoxic activity versus three cancer cell lines, namely: MCF-7, HCT-116, and HepG-2. Several of the tested compounds showed high growth inhibitory activities versus the tumor cell lines. Particularly, compounds 4c, 4d, 4f, 4h, 4j, 4l, and 4m demonstrated superior antitumor activities against the aforementioned cell lines. Moreover, the apoptosis process in all the tested cells was induced by compounds 4c, 4d, 4h, 4l, and 4m, as observed by the Annexin V/PI double staining flow cytometric assay. The DNA flow, cytometric analysis revealed that these compounds prompted cell cycle arrest at the G2/M phases. Furthermore, the topoisomerase catalytic activity assays indicated that these compounds inhibited both the topoisomerase I and II enzymes.
Collapse
Affiliation(s)
- Ahmed M Fouda
- Chemistry Department, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Mohammed A Assiri
- Chemistry Department, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Ahmed Mora
- Chemistry Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt
| | - Tarik E Ali
- Chemistry Department, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia; Department of Chemistry, Faculty of Education, Ain Shams University, Roxy, Cairo, Egypt
| | - Tarek H Afifi
- Chemistry Department, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia
| | - Ahmed M El-Agrody
- Chemistry Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt.
| |
Collapse
|
21
|
Arroyo M, Kuriyama R, Guerrero I, Keifenheim D, Cañuelo A, Calahorra J, Sánchez A, Clarke DJ, Marchal JA. MCPH1 is essential for cellular adaptation to the G 2-phase decatenation checkpoint. FASEB J 2019; 33:8363-8374. [PMID: 30964711 DOI: 10.1096/fj.201802009rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Cellular checkpoints controlling entry into mitosis monitor the integrity of the DNA and delay mitosis onset until the alteration is fully repaired. However, this canonical response can weaken, leading to a spontaneous bypass of the checkpoint, a process referred to as checkpoint adaptation. Here, we have investigated the contribution of microcephalin 1 (MCPH1), mutated in primary microcephaly, to the decatenation checkpoint, a less-understood G2 pathway that delays entry into mitosis until chromosomes are properly disentangled. Our results demonstrate that, although MCPH1 function is dispensable for activation and maintenance of the decatenation checkpoint, it is required for the adaptive response that bypasses the topoisomerase II inhibition----mediated G2 arrest. MCPH1, however, does not confer adaptation to the G2 arrest triggered by the ataxia telangiectasia mutated- and ataxia telangiectasia and rad3 related-based DNA damage checkpoint. In addition to revealing a new role for MCPH1 in cell cycle control, our study provides new insights into the genetic requirements that allow cellular adaptation to G2 checkpoints, a process that remains poorly understood.-Arroyo, M., Kuriyama, R., Guerrero, I., Keifenheim, D., Cañuelo, A., Calahorra, J., Sánchez, A., Clarke, D. J., Marchal, J. A. MCPH1 is essential for cellular adaptation to the G2-phase decatenation checkpoint.
Collapse
Affiliation(s)
- María Arroyo
- Departamento de Biología Experimental, Universidad de Jaén, Jaén, Spain
| | - Ryoko Kuriyama
- Department of Genetics, Cell Biology, and Development, University of Minnesota-Minneapolis, Minneapolis, Minnesota, USA
| | - Israel Guerrero
- Instituto de Investigación y Formación Agraria y Pesquera (IFAPA Centro El Toruño), El Puerto de Santa María, Spain
| | - Daniel Keifenheim
- Department of Genetics, Cell Biology, and Development, University of Minnesota-Minneapolis, Minneapolis, Minnesota, USA
| | - Ana Cañuelo
- Departamento de Biología Experimental, Universidad de Jaén, Jaén, Spain
| | - Jesús Calahorra
- Departamento de Biología Experimental, Universidad de Jaén, Jaén, Spain
| | - Antonio Sánchez
- Departamento de Biología Experimental, Universidad de Jaén, Jaén, Spain
| | - Duncan J Clarke
- Department of Genetics, Cell Biology, and Development, University of Minnesota-Minneapolis, Minneapolis, Minnesota, USA
| | - J Alberto Marchal
- Departamento de Biología Experimental, Universidad de Jaén, Jaén, Spain
| |
Collapse
|
22
|
Kulsoom B, Shamsi TS, Afsar NA. Gene expression of hENT1, dCK, CDA, dCMPD and topoisomerase IIα as an indicator of chemotherapy response in AML treated with cytarabine and daunorubicin. Cancer Manag Res 2018; 10:5573-5589. [PMID: 30519105 PMCID: PMC6235003 DOI: 10.2147/cmar.s181299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Purpose Acute myeloid leukemia patients are commonly treated with cytarabine (Ara-C) and anthracyclines but the sustained remission rate is not very promising. We explored the role of drug-metabolizing enzymes and transporters in the therapeutic response. Patients and methods Bone marrow and peripheral blood samples of 90 newly diagnosed acute myeloid leukemia patients treated with standard 3+7 regimen were analyzed through real-time PCR for expression of human equilibrative nucleoside transporter 1, deoxycytidine kinase, cytidine deaminase (CDA), deoxycytidine monophosphate deaminase (dCMPD) and topoisomerase IIα (Topo-IIa). The expression of these markers was studied in relationship with good (persistent remission) and poor therapeutic response (relapse/resistance). Results High Topo-IIa expression in peripheral blood was associated with good response (P=0.006). Relapse was higher among low expressors of Topo-IIa in peripheral blood (OR: 26.25). Bone marrow Topo-IIa expression followed a similar trend but did not reach statistical significance. In contrast, patients with high bone marrow dCMPD expression had poor response (OR: 3; P=0.043). One-year disease-free survival (DFS) was better among those with high bone marrow Topo-IIa (P=0.04) or CDA (P=0.03) expression. High bone marrow Topo-IIa expression also had better DFS at 6 months (P=0.04) and at 12 months (P=0.04). Conclusion High expression of Topo-IIa in peripheral blood is a favorable indicator of persistent remission, good therapeutic response and DFS. High dCMPD and low CDA expression in bone marrow is associated with poor therapeutic outcome.
Collapse
Affiliation(s)
- Bibi Kulsoom
- Center of Excellence in Molecular Medicine, National Institute of Blood Diseases and Bone Marrow Transplantation, Karachi, Pakistan, .,Department of Biochemistry, Jinnah Medical and Dental College, Karachi, Pakistan,
| | - Tahir Sultan Shamsi
- Center of Excellence in Molecular Medicine, National Institute of Blood Diseases and Bone Marrow Transplantation, Karachi, Pakistan,
| | - Nasir Ali Afsar
- Department of Pharmacology, Jinnah Medical and Dental College, Karachi, Pakistan
| |
Collapse
|
23
|
Zhao L, Jiang L, He L, Wei Q, Bi J, Wang Y, Yu L, He M, Zhao L, Wei M. Identification of a novel cell cycle-related gene signature predicting survival in patients with gastric cancer. J Cell Physiol 2018; 234:6350-6360. [PMID: 30238991 DOI: 10.1002/jcp.27365] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 08/17/2018] [Indexed: 12/15/2022]
Abstract
Gastric cancer (GC) is one of the most fatal cancers in the world. Thousands of biomarkers have been explored that might be related to survival and prognosis via database mining. However, the prediction effect of single gene biomarkers is not specific enough. Increasing evidence suggests that gene signatures are emerging as a possible better alternative. We aimed to develop a novel gene signature to improve the prognosis prediction of GC. Using the messenger RNA (mRNA)-mining approach, we performed mRNA expression profiling in a large GC cohort (n = 375) from The Cancer Genome Atlas (TCGA) database. Gene Set Enrichment Analysis (GSEA) was performed, and we recovered genes related to the G2/M checkpoint, which we identified with a Cox proportional regression model. We identified a set of five genes (MARCKS, CCNF, MAPK14, INCENP, and CHAF1A), which were significantly associated with overall survival (OS) in the test series. Based on this five-gene signature, the test series patients could be classified into high-risk or low-risk subgroups. Multivariate Cox regression analysis indicated that the prognostic power of this five-gene signature was independent of clinical features. In conclusion, we developed a five-gene signature related to the cell cycle that can predict survival for GC. Our findings provide novel insight that is useful for understanding cell cycle mechanisms and for identifying patients with GC with poor prognoses.
Collapse
Affiliation(s)
- Lan Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - Longyang Jiang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - Linxiu He
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - Qian Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - Jia Bi
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - Yan Wang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - Lifeng Yu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - Miao He
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - Lin Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
24
|
Ayaz F, Kheeree R, Isse QA, Ersan RH, Algul O. DNA Base Bioisosteres, Bis-benzoxazoles, Exert Anti-proliferative Effect on Human Prostate and Breast Cancer Cells. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2018. [DOI: 10.18596/jotcsa.429504] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
25
|
The deubiquitylase USP15 regulates topoisomerase II alpha to maintain genome integrity. Oncogene 2018; 37:2326-2342. [PMID: 29429988 PMCID: PMC5916918 DOI: 10.1038/s41388-017-0092-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/25/2017] [Accepted: 11/24/2017] [Indexed: 02/04/2023]
Abstract
Ubiquitin-specific protease 15 (USP15) is a widely expressed deubiquitylase that has been implicated in diverse cellular processes in cancer. Here we identify topoisomerase II (TOP2A) as a novel protein that is regulated by USP15. TOP2A accumulates during G2 and functions to decatenate intertwined sister chromatids at prophase, ensuring the replicated genome can be accurately divided into daughter cells at anaphase. We show that USP15 is required for TOP2A accumulation, and that USP15 depletion leads to the formation of anaphase chromosome bridges. These bridges fail to decatenate, and at mitotic exit form micronuclei that are indicative of genome instability. We also describe the cell cycle-dependent behaviour for two major isoforms of USP15, which differ by a short serine-rich insertion that is retained in isoform-1 but not in isoform-2. Although USP15 is predominantly cytoplasmic in interphase, we show that both isoforms move into the nucleus at prophase, but that isoform-1 is phosphorylated on its unique S229 residue at mitotic entry. The micronuclei phenotype we observe on USP15 depletion can be rescued by either USP15 isoform and requires USP15 catalytic activity. Importantly, however, an S229D phospho-mimetic mutant of USP15 isoform-1 cannot rescue either the micronuclei phenotype, or accumulation of TOP2A. Thus, S229 phosphorylation selectively abrogates this role of USP15 in maintaining genome integrity in an isoform-specific manner. Finally, we show that USP15 isoform-1 is preferentially upregulated in a panel of non-small cell lung cancer cell lines, and propose that isoform imbalance may contribute to genome instability in cancer. Our data provide the first example of isoform-specific deubiquitylase phospho-regulation and reveal a novel role for USP15 in guarding genome integrity.
Collapse
|
26
|
Piskadlo E, Oliveira RA. A Topology-Centric View on Mitotic Chromosome Architecture. Int J Mol Sci 2017; 18:E2751. [PMID: 29258269 PMCID: PMC5751350 DOI: 10.3390/ijms18122751] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/14/2017] [Accepted: 12/15/2017] [Indexed: 02/04/2023] Open
Abstract
Mitotic chromosomes are long-known structures, but their internal organization and the exact process by which they are assembled are still a great mystery in biology. Topoisomerase II is crucial for various aspects of mitotic chromosome organization. The unique ability of this enzyme to untangle topologically intertwined DNA molecules (catenations) is of utmost importance for the resolution of sister chromatid intertwines. Although still controversial, topoisomerase II has also been proposed to directly contribute to chromosome compaction, possibly by promoting chromosome self-entanglements. These two functions raise a strong directionality issue towards topoisomerase II reactions that are able to disentangle sister DNA molecules (in trans) while compacting the same DNA molecule (in cis). Here, we review the current knowledge on topoisomerase II role specifically during mitosis, and the mechanisms that directly or indirectly regulate its activity to ensure faithful chromosome segregation. In particular, we discuss how the activity or directionality of this enzyme could be regulated by the SMC (structural maintenance of chromosomes) complexes, predominantly cohesin and condensin, throughout mitosis.
Collapse
Affiliation(s)
- Ewa Piskadlo
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal.
| | - Raquel A Oliveira
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal.
| |
Collapse
|
27
|
Clarke DJ, Azuma Y. Non-Catalytic Roles of the Topoisomerase IIα C-Terminal Domain. Int J Mol Sci 2017; 18:ijms18112438. [PMID: 29149026 PMCID: PMC5713405 DOI: 10.3390/ijms18112438] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/10/2017] [Accepted: 11/14/2017] [Indexed: 12/26/2022] Open
Abstract
DNA Topoisomerase IIα (Topo IIα) is a ubiquitous enzyme in eukaryotes that performs the strand passage reaction where a double helix of DNA is passed through a second double helix. This unique reaction is critical for numerous cellular processes. However, the enzyme also possesses a C-terminal domain (CTD) that is largely dispensable for the strand passage reaction but is nevertheless important for the fidelity of cell division. Recent studies have expanded our understanding of the roles of the Topo IIα CTD, in particular in mitotic mechanisms where the CTD is modified by Small Ubiquitin-like Modifier (SUMO), which in turn provides binding sites for key regulators of mitosis.
Collapse
Affiliation(s)
- Duncan J Clarke
- Department of Genetics, Cell Biology & Development, University of Minnesota, 420 Washington Ave SE, Minneapolis, MN 55455, USA.
| | - Yoshiaki Azuma
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA.
| |
Collapse
|
28
|
Abstract
YM155 (sepantronium bromide) has been evaluated in clinical trials as a survivin suppressant, but despite positive signals from early work, later studies were negative. Clarification of the mechanism of action of YM155 is important for its further development. YM155 affects cells in a cell cycle-specific manner. When cells are in G1, YM155 prevented their progression through the S phase, leaving the cells at G1/S when exposed to YM155. Passage through mitosis from G2 is also defective following YM155 exposure. In this study, YM155 did not behave like a typical DNA intercalator in viscosity, circular dichroism, and absorption spectroscopy studies. In addition, molecular modeling experiments ruled out YM155 DNA interaction to produce DNA intercalation. We show that YM155 inhibited topoisomerase 2α decatenation and topoisomerase 1-mediated cleavage of DNA, suggesting that YM155 inhibits the enzyme function. Consistent with these findings, DNA double-strand break repair was also inhibited by YM155.
Collapse
|
29
|
Kozuki T, Chikamori K, Surleac MD, Micluta MA, Petrescu AJ, Norris EJ, Elson P, Hoeltge GA, Grabowski DR, Porter ACG, Ganapathi RN, Ganapathi MK. Roles of the C-terminal domains of topoisomerase IIα and topoisomerase IIβ in regulation of the decatenation checkpoint. Nucleic Acids Res 2017; 45:5995-6010. [PMID: 28472494 PMCID: PMC5449615 DOI: 10.1093/nar/gkx325] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 04/14/2017] [Indexed: 12/13/2022] Open
Abstract
Topoisomerase (topo) IIα and IIβ maintain genome stability and are targets for anti-tumor drugs. In this study, we demonstrate that the decatenation checkpoint is regulated, not only by topo IIα, as previously reported, but also by topo IIβ. The decatenation checkpoint is most efficient when both isoforms are present. Regulation of this checkpoint and sensitivity to topo II-targeted drugs is influenced by the C-terminal domain (CTD) of the topo II isoforms and by a conserved non-catalytic tyrosine, Y640 in topo IIα and Y656 in topo IIβ. Deletion of most of the CTD of topo IIα, while preserving the nuclear localization signal (NLS), enhances the decatenation checkpoint and sensitivity to topo II-targeted drugs. In contrast, deletion of most of the CTD of topo IIβ, while preserving the NLS, and mutation of Y640 in topo IIα and Y656 in topo IIβ inhibits these activities. Structural studies suggest that the differential impact of the CTD on topo IIα and topo IIβ function may be due to differences in CTD charge distribution and differential alignment of the CTD with reference to transport DNA. Together these results suggest that topo IIα and topo IIβ cooperate to maintain genome stability, which may be distinctly modulated by their CTDs.
Collapse
Affiliation(s)
- Toshiyuki Kozuki
- Taussig Cancer Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Kenichi Chikamori
- Taussig Cancer Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Marius D Surleac
- Department of Bioinformatics, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Marius A Micluta
- Department of Bioinformatics, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Andrei J Petrescu
- Department of Bioinformatics, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Eric J Norris
- Department of Cancer Pharmacology, Levine Cancer Institute, Carolinas HealthCare System, 1021 Morehead Medical Drive, Charlotte, NC 28204, USA
| | - Paul Elson
- Taussig Cancer Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Gerald A Hoeltge
- Clinical Pathology, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Dale R Grabowski
- Taussig Cancer Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Andrew C G Porter
- Imperial College Faculty of Medicine, Hammersmith Hospital, London W10 ONN, UK
| | - Ram N Ganapathi
- Department of Cancer Pharmacology, Levine Cancer Institute, Carolinas HealthCare System, 1021 Morehead Medical Drive, Charlotte, NC 28204, USA
| | - Mahrukh K Ganapathi
- Department of Cancer Pharmacology, Levine Cancer Institute, Carolinas HealthCare System, 1021 Morehead Medical Drive, Charlotte, NC 28204, USA
| |
Collapse
|
30
|
Komaki Y, Plewa MJ. Investigation of nuclear enzyme topoisomerase as a putative molecular target of monohaloacetonitrile disinfection by-products. J Environ Sci (China) 2017; 58:231-238. [PMID: 28774614 DOI: 10.1016/j.jes.2017.04.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 04/17/2017] [Accepted: 04/20/2017] [Indexed: 05/08/2023]
Abstract
Disinfection by-products occur widely as the unintended effect of water disinfection and are associated with toxicity and adverse human health effects. Yet the molecular mechanisms of their toxicity are not well understood. To investigate the molecular basis of hyperploidy induction by monohaloacetonitriles, the interaction of monohaloacetonitriles with topoisomerase II in Chinese hamster ovary cells was examined. We showed a concentration-dependent inhibition of DNA decatenation activity of topoisomerase under acellular conditions while in vitro monohaloacetonitrile treatment expressed mixed results. The working hypothesis, that topoisomerase II is a molecular target of monohaloacetonitriles, was only partially supported. Nevertheless, this research serves as a starting point toward molecular mechanisms of toxic action of monohaloacetonitriles.
Collapse
Affiliation(s)
- Yukako Komaki
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States; Safe Global Water Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.
| | - Michael J Plewa
- Safe Global Water Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States; Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| |
Collapse
|
31
|
Emanuelli A, Borroni AP, Apel-Sarid L, Shah PA, Ayyathan DM, Koganti P, Levy-Cohen G, Blank M. Smurf2-Mediated Stabilization of DNA Topoisomerase IIα Controls Genomic Integrity. Cancer Res 2017; 77:4217-4227. [PMID: 28611047 DOI: 10.1158/0008-5472.can-16-2828] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 12/13/2016] [Accepted: 06/09/2017] [Indexed: 11/16/2022]
Abstract
DNA topoisomerase IIα (Topo IIα) ensures genomic integrity and unaltered chromosome inheritance and serves as a major target of several anticancer drugs. Topo IIα function is well understood, but how its expression is regulated remains unclear. Here, we identify the E3 ubiquitin ligase Smurf2 as a physiologic regulator of Topo IIα levels. Smurf2 physically interacted with Topo IIα and modified its ubiquitination status to protect Topo IIα from the proteasomal degradation in dose- and catalytically dependent manners. Smurf2-depleted cells exhibited a reduced ability to resolve DNA catenanes and pathological chromatin bridges formed during mitosis, a trait of Topo IIα-deficient cells and a hallmark of chromosome instability. Introducing Topo IIα into Smurf2-depleted cells rescued this phenomenon. Smurf2 was a determinant of Topo IIα protein levels in normal and cancer cells and tissues, and its levels affected cell sensitivity to the Topo II-targeting drug etoposide. Our results identified Smurf2 as an essential regulator of Topo IIα, providing novel insights into its control and into the suggested tumor-suppressor functions of Smurf2. Cancer Res; 77(16); 4217-27. ©2017 AACR.
Collapse
Affiliation(s)
- Andrea Emanuelli
- Laboratory of Molecular and Cellular Cancer Biology, Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel
| | - Aurora P Borroni
- Laboratory of Molecular and Cellular Cancer Biology, Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel
| | - Liat Apel-Sarid
- Department of Pathology, The Galilee Medical Center, Nahariya, Israel
| | - Pooja A Shah
- Laboratory of Molecular and Cellular Cancer Biology, Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel
| | - Dhanoop Manikoth Ayyathan
- Laboratory of Molecular and Cellular Cancer Biology, Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel
| | - Praveen Koganti
- Laboratory of Molecular and Cellular Cancer Biology, Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel
| | - Gal Levy-Cohen
- Laboratory of Molecular and Cellular Cancer Biology, Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel
| | - Michael Blank
- Laboratory of Molecular and Cellular Cancer Biology, Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel.
| |
Collapse
|
32
|
Bower JJ, Vance LD, Psioda M, Smith-Roe SL, Simpson DA, Ibrahim JG, Hoadley KA, Perou CM, Kaufmann WK. Patterns of cell cycle checkpoint deregulation associated with intrinsic molecular subtypes of human breast cancer cells. NPJ Breast Cancer 2017; 3:9. [PMID: 28649649 PMCID: PMC5445620 DOI: 10.1038/s41523-017-0009-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 02/07/2017] [Indexed: 12/31/2022] Open
Abstract
Genomic instability is a hallmark of breast cancer, contributes to tumor heterogeneity, and influences chemotherapy resistance. Although Gap 2 and mitotic checkpoints are thought to prevent genomic instability, the role of these checkpoints in breast cancer is poorly understood. Here, we assess the Gap 2 and mitotic checkpoint functions of 24 breast cancer and immortalized mammary epithelial cell lines representing four of the six intrinsic molecular subtypes of breast cancer. We found that patterns of cell cycle checkpoint deregulation were associated with the intrinsic molecular subtype of breast cancer cell lines. Specifically, the luminal B and basal-like cell lines harbored two molecularly distinct Gap 2/mitosis checkpoint defects (impairment of the decatenation Gap 2 checkpoint and the spindle assembly checkpoint, respectively). All subtypes of breast cancer cell lines examined displayed aberrant DNA synthesis/Gap 2/mitosis progression and the basal-like and claudin-low cell lines exhibited increased percentages of chromatid cohesion defects. Furthermore, a decatenation Gap 2 checkpoint gene expression signature identified in the cell line panel correlated with clinical outcomes in breast cancer patients, suggesting that breast tumors may also harbor defects in decatenation Gap 2 checkpoint function. Taken together, these data imply that pharmacological targeting of signaling pathways driving these phenotypes may lead to the development of novel personalized treatment strategies for the latter two subtypes which currently lack targeted therapeutic options because of their triple negative breast cancer status.
Collapse
Affiliation(s)
- Jacquelyn J. Bower
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Leah D. Vance
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Matthew Psioda
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Stephanie L. Smith-Roe
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, 111 T.W. Alexander Drive, National Institutes of Health, Research Triangle Park, NC 27709 USA
| | - Dennis A. Simpson
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Joseph G. Ibrahim
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
- Center for Environmental Health and Susceptibility, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Katherine A. Hoadley
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Charles M. Perou
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
- Center for Environmental Health and Susceptibility, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - William K. Kaufmann
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
- Center for Environmental Health and Susceptibility, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| |
Collapse
|
33
|
Jain CK, Majumder HK, Roychoudhury S. Natural Compounds as Anticancer Agents Targeting DNA Topoisomerases. Curr Genomics 2017; 18:75-92. [PMID: 28503091 PMCID: PMC5321768 DOI: 10.2174/1389202917666160808125213] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/23/2015] [Accepted: 11/26/2015] [Indexed: 12/14/2022] Open
Abstract
DNA topoisomerases are important cellular enzymes found in almost all types of living cells (eukaryotic and prokaryotic). These enzymes are essential for various DNA metabolic processes e.g. replication, transcription, recombination, chromosomal decatenation etc. These enzymes are important molecular drug targets and inhibitors of these enzymes are widely used as effective anticancer and antibacterial drugs. However, topoisomerase inhibitors have some therapeutic limitations and they exert serious side effects during cancer chemotherapy. Thus, development of novel anticancer topoisomerase inhibitors is necessary for improving cancer chemotherapy. Nature serves as a repertoire of structurally and chemically diverse molecules and in the recent years many DNA topoisomerase inhibitors have been identified from natural sources. The present review discusses anticancer properties and therapeutic importance of eighteen recently identified natural topoisomerase inhibitors (from the year 2009 to 2015). Structural characteristics of these novel inhibitors provide backbones for designing and developing new anticancer drugs.
Collapse
Affiliation(s)
- Chetan Kumar Jain
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata-700032, India
| | - Hemanta Kumar Majumder
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata-700032, India
| | - Susanta Roychoudhury
- Division of Research, Saroj Gupta Cancer Centre & Research Institute, M G Road, Thakurpukur, Kolkata-700 063, India
| |
Collapse
|
34
|
Liberio MS, Sadowski MC, Davis RA, Rockstroh A, Vasireddy R, Lehman ML, Nelson CC. The ascidian natural product eusynstyelamide B is a novel topoisomerase II poison that induces DNA damage and growth arrest in prostate and breast cancer cells. Oncotarget 2016; 6:43944-63. [PMID: 26733491 PMCID: PMC4791278 DOI: 10.18632/oncotarget.6267] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 10/08/2015] [Indexed: 12/25/2022] Open
Abstract
As part of an anti-cancer natural product drug discovery program, we recently identified eusynstyelamide B (EB), which displayed cytotoxicity against MDA-MB-231 breast cancer cells (IC50 = 5 μM) and induced apoptosis. Here, we investigated the mechanism of action of EB in cancer cell lines of the prostate (LNCaP) and breast (MDA-MB-231). EB inhibited cell growth (IC50 = 5 μM) and induced a G2 cell cycle arrest, as shown by a significant increase in the G2/M cell population in the absence of elevated levels of the mitotic marker phospho-histone H3. In contrast to MDA-MB-231 cells, EB did not induce cell death in LNCaP cells when treated for up to 10 days. Transcript profiling and Ingenuity Pathway Analysis suggested that EB activated DNA damage pathways in LNCaP cells. Consistent with this, CHK2 phosphorylation was increased, p21CIP1/WAF1 was up-regulated and CDC2 expression strongly reduced by EB. Importantly, EB caused DNA double-strand breaks, yet did not directly interact with DNA. Analysis of topoisomerase II-mediated decatenation discovered that EB is a novel topoisomerase II poison.
Collapse
Affiliation(s)
- Michelle S Liberio
- Australian Prostate Cancer Research Centre - Queensland, Institute of Health and Biomedical Innovation, Queensland University of Technology, Princess Alexandra Hospital, Translational Research Institute, Brisbane, Queensland, Australia.,Eskitis Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
| | - Martin C Sadowski
- Australian Prostate Cancer Research Centre - Queensland, Institute of Health and Biomedical Innovation, Queensland University of Technology, Princess Alexandra Hospital, Translational Research Institute, Brisbane, Queensland, Australia
| | - Rohan A Davis
- Eskitis Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
| | - Anja Rockstroh
- Australian Prostate Cancer Research Centre - Queensland, Institute of Health and Biomedical Innovation, Queensland University of Technology, Princess Alexandra Hospital, Translational Research Institute, Brisbane, Queensland, Australia
| | - Raj Vasireddy
- Australian Prostate Cancer Research Centre - Queensland, Institute of Health and Biomedical Innovation, Queensland University of Technology, Princess Alexandra Hospital, Translational Research Institute, Brisbane, Queensland, Australia
| | - Melanie L Lehman
- Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Colleen C Nelson
- Australian Prostate Cancer Research Centre - Queensland, Institute of Health and Biomedical Innovation, Queensland University of Technology, Princess Alexandra Hospital, Translational Research Institute, Brisbane, Queensland, Australia
| |
Collapse
|
35
|
Guturi KKN, Bohgaki M, Bohgaki T, Srikumar T, Ng D, Kumareswaran R, El Ghamrasni S, Jeon J, Patel P, Eldin MS, Bristow R, Cheung P, Stewart GS, Raught B, Hakem A, Hakem R. RNF168 and USP10 regulate topoisomerase IIα function via opposing effects on its ubiquitylation. Nat Commun 2016; 7:12638. [PMID: 27558965 PMCID: PMC5007378 DOI: 10.1038/ncomms12638] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Accepted: 07/19/2016] [Indexed: 12/21/2022] Open
Abstract
Topoisomerase IIα (TOP2α) is essential for chromosomal condensation and segregation, as well as genomic integrity. Here we report that RNF168, an E3 ligase mutated in the human RIDDLE syndrome, interacts with TOP2α and mediates its ubiquitylation. RNF168 deficiency impairs decatenation activity of TOP2α and promotes mitotic abnormalities and defective chromosomal segregation. Our data also indicate that RNF168 deficiency, including in human breast cancer cell lines, confers resistance to the anti-cancer drug and TOP2 inhibitor etoposide. We also identify USP10 as a deubiquitylase that negatively regulates TOP2α ubiquitylation and restrains its chromatin association. These findings provide a mechanistic link between the RNF168/USP10 axis and TOP2α ubiquitylation and function, and suggest a role for RNF168 in the response to anti-cancer chemotherapeutics that target TOP2.
Collapse
Affiliation(s)
- Kiran Kumar Naidu Guturi
- Department of Medical Biophysics, Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada M5G 1L7
| | - Miyuki Bohgaki
- Department of Medical Biophysics, Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada M5G 1L7
| | - Toshiyuki Bohgaki
- Department of Medical Biophysics, Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada M5G 1L7
| | - Tharan Srikumar
- Department of Medical Biophysics, Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada M5G 1L7
| | - Deborah Ng
- Department of Medical Biophysics, Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada M5G 1L7
| | - Ramya Kumareswaran
- Department of Medical Biophysics, Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada M5G 1L7
| | - Samah El Ghamrasni
- Department of Medical Biophysics, Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada M5G 1L7
| | - Justin Jeon
- Department of Medical Biophysics, Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada M5G 1L7
| | - Parasvi Patel
- Department of Medical Biophysics, Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada M5G 1L7
| | - Mohamed Saad Eldin
- Department of Medical Biophysics, Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada M5G 1L7
| | - Rob Bristow
- Department of Medical Biophysics, Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada M5G 1L7
| | - Peter Cheung
- Department of Biology, York University, Toronto, Ontario, Canada M3J 1P3
| | - Grant S Stewart
- School of Cancer Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Brian Raught
- Department of Medical Biophysics, Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada M5G 1L7
| | - Anne Hakem
- Department of Medical Biophysics, Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada M5G 1L7
| | - Razqallah Hakem
- Department of Medical Biophysics, Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada M5G 1L7
| |
Collapse
|
36
|
Solhaug A, Eriksen GS, Holme JA. Mechanisms of Action and Toxicity of the Mycotoxin Alternariol: A Review. Basic Clin Pharmacol Toxicol 2016; 119:533-539. [DOI: 10.1111/bcpt.12635] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 06/21/2016] [Indexed: 02/07/2023]
Affiliation(s)
| | | | - Jørn A. Holme
- Division of Environmental medicine; Norwegian Institute of Public Health; Oslo Norway
| |
Collapse
|
37
|
Zhou Q, Abraham AD, Li L, Babalmorad A, Bagby S, Arcaroli JJ, Hansen RJ, Valeriote FA, Gustafson DL, Schaack J, Messersmith WA, LaBarbera DV. Topoisomerase IIα mediates TCF-dependent epithelial-mesenchymal transition in colon cancer. Oncogene 2016; 35:4990-9. [PMID: 26947016 PMCID: PMC5036162 DOI: 10.1038/onc.2016.29] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 12/16/2015] [Accepted: 01/06/2016] [Indexed: 12/23/2022]
Abstract
Aberrant T-cell factor (TCF) transcription is implicated in the majority of colorectal cancers (CRCs). TCF transcription induces epithelial–mesenchymal transition (EMT), promoting a tumor-initiating cell (TIC) phenotype characterized by increased proliferation, multidrug resistance (MDR), invasion and metastasis. The data presented herein characterize topoisomerase IIα (TopoIIα) as a required component of TCF transcription promoting EMT. Using chromatin immunoprecipitation (ChIP) and protein co-immunoprecipitation (co-IP) studies, we show that TopoIIα forms protein–protein interactions with β-catentin and TCF4 and interacts with Wnt response elements (WREs) and promoters of direct target genes of TCF transcription, including: MYC, vimentin, AXIN2 and LEF1. Moreover, both TopoIIα and TCF4 ChIP with the N-cadherin promoter, which is a new discovery indicating that TCF transcription may directly regulate N-cadherin expression. TopoIIα N-terminal ATP-competitive inhibitors, exemplified by the marine alkaloid neoamphimedine (neo), block TCF activity in vitro and in vivo. Neo effectively inhibits TopoIIα and TCF4 from binding WREs/promoter sites, whereas protein–protein interactions remain intact. Neo inhibition of TopoIIα-dependent TCF transcription also correlates with significant antitumor effects in vitro and in vivo, including the reversion of EMT, the loss of TIC-mediated clonogenic colony formation, and the loss of cell motility and invasion. Interestingly, non-ATP-competitive inhibitors of TopoIIα, etoposide and merbarone, were ineffective at preventing TopoIIα-dependent TCF transcription. Thus, we propose that TopoIIα participation in TCF transcription may convey a mechanism of MDR to conventional TopoIIα inhibitors. However, our results indicate that TopoIIα N-terminal ATP-binding sites remain conserved and available for drug targeting. This article defines a new strategy for targeted inhibition of TCF transcription that may lead to effective therapies for the treatment of CRC and potentially other Wnt-dependent cancers.
Collapse
Affiliation(s)
- Q Zhou
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - A D Abraham
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - L Li
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - A Babalmorad
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - S Bagby
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - J J Arcaroli
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Division of Medical Oncology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - R J Hansen
- Division of Medical Oncology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - F A Valeriote
- Colorado State University, Flint Animal Cancer Center, Fort Collins, CO, USA
| | - D L Gustafson
- Division of Medical Oncology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - J Schaack
- Division of Medical Oncology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Josephine Ford Cancer Center, Henry Ford Health Systems, Detroit, MI, USA
| | - W A Messersmith
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Division of Medical Oncology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - D V LaBarbera
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Division of Medical Oncology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
38
|
HROMAS ROBERT, WILLIAMSON ELIZABETH, LEE SUKHEE, NICKOLOFF JAC. PREVENTING THE CHROMOSOMAL TRANSLOCATIONS THAT CAUSE CANCER. TRANSACTIONS OF THE AMERICAN CLINICAL AND CLIMATOLOGICAL ASSOCIATION 2016; 127:176-195. [PMID: 28066052 PMCID: PMC5216476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Approximately half of all cancers harbor chromosomal translocations that can either contribute to their origin or govern their subsequent behavior. Chromosomal translocations by definition can only occur when there are two DNA double-strand breaks (DSBs) on distinct chromosomes that are repaired heterologously. Thus, chromosomal translocations are by their very nature problems of DNA DSB repair. Such DNA DSBs can be from internal or external sources. Internal sources of DNA DSBs that can lead to translocations can occur are inappropriate immune receptor gene maturation during V(D)J recombination or heavy-chain switching. Other internal DNA DSBs can come from aberrant DNA structures, or are generated at collapsed and reversed replication forks. External sources of DNA DSBs that can generate chromosomal translocations are ionizing radiation and cancer chemotherapy. There are several known nuclear and chromatin properties that enhance translocations over homologous chromosome DSB repair. The proximity of the region of the heterologous chromosomes to each other increases translocation rates. Histone methylation events at the DSB also influence translocation frequencies. There are four DNA DSB repair pathways, but it appears that only one, alternative non-homologous end-joining (a-NHEJ) can mediate chromosomal translocations. The rate-limiting, initial step of a-NHEJ is the binding of poly-adenosine diphosphate ribose polymerase 1 (PARP1) to the DSB. In our investigation of methods for preventing oncogenic translocations, we discovered that PARP1 was required for translocations. Significantly, the clinically approved PARP1 inhibitors can block the formation of chromosomal translocations, raising the possibility for the first time that secondary oncogenic translocations can be reduced in high risk patients.
Collapse
Affiliation(s)
- ROBERT HROMAS
- Correspondence and reprint requests: Robert Hromas, MD, FACP,
Department of Medicine, University of Florida College of Medicine, 1600 SW Archer Rd, Gainesville, FL 32610352-265-0655352-265-1107
| | | | | | | |
Collapse
|
39
|
PTEN stabilizes TOP2A and regulates the DNA decatenation. Sci Rep 2015; 5:17873. [PMID: 26657567 PMCID: PMC4674714 DOI: 10.1038/srep17873] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 11/06/2015] [Indexed: 11/12/2022] Open
Abstract
PTEN is a powerful tumor suppressor that antagonizes the cytoplasmic PI3K-AKT pathway and suppresses cellular proliferation. PTEN also plays a role in the maintenance of genomic stability in the nucleus. Here we report that PTEN facilitates DNA decatenation and controls a decatenation checkpoint. Catenations of DNA formed during replication are decatenated by DNA topoisomerase II (TOP2), and this process is actively monitored by a decatenation checkpoint in G2 phase. We found that PTEN deficient cells form ultra-fine bridges (UFBs) during anaphase and these bridges are generated as a result of insufficient decatenation. We show that PTEN is physically associated with a decatenation enzyme TOP2A and that PTEN influences its stability through OTUD3 deubiquitinase. In the presence of PTEN, ubiquitination of TOP2A is inhibited by OTUD3. Deletion or deficiency of PTEN leads to down regulation of TOP2A, dysfunction of the decatenation checkpoint and incomplete DNA decatenation in G2 and M phases. We propose that PTEN controls DNA decatenation to maintain genomic stability and integrity.
Collapse
|
40
|
Topoisomerase 2 Alpha Cooperates with Androgen Receptor to Contribute to Prostate Cancer Progression. PLoS One 2015; 10:e0142327. [PMID: 26560244 PMCID: PMC4641711 DOI: 10.1371/journal.pone.0142327] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 10/19/2015] [Indexed: 11/25/2022] Open
Abstract
Overexpression of TOP2A is associated with risk of systemic progression in prostate cancer patients, and higher levels of TOP2A were found in hormone-resistant cases. To elucidate the mechanism by which high levels of TOP2A contribute to tumor progression we generated TOP2A overexpressing prostate cancer cell lines. We show that TOP2A promotes tumor aggressiveness by inducing chromosomal rearrangements of genes that contribute to a more invasive phenotype. Anti-androgen treatment alone was ineffective in killing TOP2A overexpressing cells due to activation of an androgen receptor network. TOP2A poisons killed tumor cells more efficiently early in the progression course, while at later stages they provided greater benefit when combined with anti-androgen therapy. Mechanistically, we find that TOP2A enhances androgen signaling by facilitating transcription of androgen responsive genes, thereby promoting tumor cell growth. These studies revealed a relationship between TOP2A and androgen receptor signaling pathway that contributes to prostate cancer progression and confers sensitivity to treatments.
Collapse
|
41
|
He X, Riceberg J, Pulukuri SM, Grossman S, Shinde V, Shah P, Brownell JE, Dick L, Newcomb J, Bence N. Characterization of the loss of SUMO pathway function on cancer cells and tumor proliferation. PLoS One 2015; 10:e0123882. [PMID: 25860128 PMCID: PMC4393225 DOI: 10.1371/journal.pone.0123882] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 02/23/2015] [Indexed: 01/01/2023] Open
Abstract
SUMOylation is a post-translational ubiquitin-like protein modification pathway that regulates important cellular processes including chromosome structure, kinetochore function, chromosome segregation, nuclear and sub-nuclear organization, transcription and DNA damage repair. There is increasing evidence that the SUMO pathway is dysregulated in cancer, raising the possibility that modulation of this pathway may have therapeutic potential. To investigate the importance of the SUMO pathway in the context of cancer cell proliferation and tumor growth, we applied lentivirus-based short hairpin RNAs (shRNA) to knockdown SUMO pathway genes in human cancer cells. shRNAs for SAE2 and UBC9 reduced SUMO conjugation activity and inhibited proliferation of human cancer cells. To expand upon these observations, we generated doxycycline inducible conditional shRNA cell lines for SAE2 to achieve acute and reversible SAE2 knockdown. Conditional SAE2 knockdown in U2OS and HCT116 cells slowed cell growth in vitro, and SAE2 knockdown induced multiple terminal outcomes including apoptosis, endoreduplication and senescence. Multinucleated cells became senescent and stained positive for the senescence marker, SA-β Gal, and displayed elevated levels of p53 and p21. In an attempt to explain these phenotypes, we confirmed that loss of SUMO pathway activity leads to a loss of SUMOylated Topoisomerase IIα and the appearance of chromatin bridges which can impair proper cytokinesis and lead to multinucleation. Furthermore, knockdown of SAE2 induces disruption of PML nuclear bodies which may further promote apoptosis or senescence. In an in vivo HCT116 xenograft tumor model, conditional SAE2 knockdown strongly impaired tumor growth. These data demonstrate that the SUMO pathway is required for cancer cell proliferation in vitro and tumor growth in vivo, implicating the SUMO pathway as a potential cancer therapeutic target.
Collapse
Affiliation(s)
- Xingyue He
- Oncology Drug Discovery Unit, Takeda Pharmaceuticals International Co., Cambridge, United States of America
- * E-mail: (XH); (NB)
| | - Jessica Riceberg
- Oncology Drug Discovery Unit, Takeda Pharmaceuticals International Co., Cambridge, United States of America
| | - Sai M. Pulukuri
- Oncology Drug Discovery Unit, Takeda Pharmaceuticals International Co., Cambridge, United States of America
| | - Steve Grossman
- Oncology Drug Discovery Unit, Takeda Pharmaceuticals International Co., Cambridge, United States of America
| | - Vaishali Shinde
- Oncology Drug Discovery Unit, Takeda Pharmaceuticals International Co., Cambridge, United States of America
| | - Pooja Shah
- Oncology Drug Discovery Unit, Takeda Pharmaceuticals International Co., Cambridge, United States of America
| | - James E. Brownell
- Oncology Drug Discovery Unit, Takeda Pharmaceuticals International Co., Cambridge, United States of America
| | - Larry Dick
- Oncology Drug Discovery Unit, Takeda Pharmaceuticals International Co., Cambridge, United States of America
| | - John Newcomb
- Oncology Drug Discovery Unit, Takeda Pharmaceuticals International Co., Cambridge, United States of America
| | - Neil Bence
- Nurix, Inc. San Francisco, United States of America
- * E-mail: (XH); (NB)
| |
Collapse
|
42
|
Mason JM, Dusad K, Wright WD, Grubb J, Budke B, Heyer WD, Connell PP, Weichselbaum RR, Bishop DK. RAD54 family translocases counter genotoxic effects of RAD51 in human tumor cells. Nucleic Acids Res 2015; 43:3180-96. [PMID: 25765654 PMCID: PMC4381078 DOI: 10.1093/nar/gkv175] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 02/20/2015] [Indexed: 12/14/2022] Open
Abstract
The RAD54 family DNA translocases have several biochemical activities. One activity, demonstrated previously for the budding yeast translocases, is ATPase-dependent disruption of RAD51-dsDNA binding. This activity is thought to promote dissociation of RAD51 from heteroduplex DNA following strand exchange during homologous recombination. In addition, previous experiments in budding yeast have shown that the same activity of Rad54 removes Rad51 from undamaged sites on chromosomes; mutants lacking Rad54 accumulate nonrepair-associated complexes that can block growth and lead to chromosome loss. Here, we show that human RAD54 also promotes the dissociation of RAD51 from dsDNA and not ssDNA. We also show that translocase depletion in tumor cell lines leads to the accumulation of RAD51 on chromosomes, forming complexes that are not associated with markers of DNA damage. We further show that combined depletion of RAD54L and RAD54B and/or artificial induction of RAD51 overexpression blocks replication and promotes chromosome segregation defects. These results support a model in which RAD54L and RAD54B counteract genome-destabilizing effects of direct binding of RAD51 to dsDNA in human tumor cells. Thus, in addition to having genome-stabilizing DNA repair activity, human RAD51 has genome-destabilizing activity when expressed at high levels, as is the case in many human tumors.
Collapse
Affiliation(s)
- Jennifer M Mason
- Department of Radiation and Cellular Oncology, University of Chicago, Cummings Life Science Center, Box 13, 920 East 58th St., Chicago, IL 60637, USA
| | - Kritika Dusad
- Department of Radiation and Cellular Oncology, University of Chicago, Cummings Life Science Center, Box 13, 920 East 58th St., Chicago, IL 60637, USA
| | - William Douglass Wright
- Department of Molecular and Cellular Biology, University of California, Davis, Davis CA 95616, USA
| | - Jennifer Grubb
- Department of Radiation and Cellular Oncology, University of Chicago, Cummings Life Science Center, Box 13, 920 East 58th St., Chicago, IL 60637, USA
| | - Brian Budke
- Department of Radiation and Cellular Oncology, University of Chicago, Cummings Life Science Center, Box 13, 920 East 58th St., Chicago, IL 60637, USA
| | - Wolf-Dietrich Heyer
- Department of Molecular and Cellular Biology, University of California, Davis, Davis CA 95616, USA Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Philip P Connell
- Department of Radiation and Cellular Oncology, University of Chicago, Cummings Life Science Center, Box 13, 920 East 58th St., Chicago, IL 60637, USA
| | - Ralph R Weichselbaum
- Department of Radiation and Cellular Oncology, University of Chicago, Cummings Life Science Center, Box 13, 920 East 58th St., Chicago, IL 60637, USA
| | - Douglas K Bishop
- Department of Radiation and Cellular Oncology, University of Chicago, Cummings Life Science Center, Box 13, 920 East 58th St., Chicago, IL 60637, USA Department of Microbiology and Molecular Genetics, University of California, Davis, Davis CA 95616, USA
| |
Collapse
|
43
|
Jain CK, Roychoudhury S, Majumder HK. Selective killing of G2 decatenation checkpoint defective colon cancer cells by catalytic topoisomerase II inhibitor. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:1195-204. [PMID: 25746763 DOI: 10.1016/j.bbamcr.2015.02.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 02/09/2015] [Accepted: 02/25/2015] [Indexed: 12/16/2022]
Abstract
Cancer cells with defective DNA decatenation checkpoint can be selectively targeted by the catalytic inhibitors of DNA topoisomerase IIα (topo IIα) enzyme. Upon treatment with catalytic topo IIα inhibitors, cells with defective decatenation checkpoint fail to arrest their cell cycle in G2 phase and enter into M phase with catenated and under-condensed chromosomes resulting into impaired mitosis and eventually cell death. In the present work we analyzed decatenation checkpoint in five different colon cancer cell lines (HCT116, HT-29, Caco2, COLO 205 and SW480) and in one non-cancerous cell line (HEK293T). Four out of the five colon cancer cell lines i.e. HCT116, HT-29, Caco2, and COLO 205 were found to be compromised for the decatenation checkpoint function at different extents, whereas SW480 and HEK293T cell lines were found to be proficient for the checkpoint function. Upon treatment with ICRF193, decatenation checkpoint defective cell lines failed to arrest the cell cycle in G2 phase and entered into M phase without proper chromosomal decatenation, resulting into the formation of tangled mass of catenated and under-condensed chromosomes. Such cells underwent mitotic catastrophe and rapid apoptosis like cell death and showed higher sensitivity for ICRF193. Our study suggests that catalytic inhibitors of topoisomerase IIα are promising therapeutic agents for the treatment of colon cancers with defective DNA decatenation checkpoint.
Collapse
Affiliation(s)
- Chetan Kumar Jain
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India; Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Susanta Roychoudhury
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India.
| | - Hemanta Kumar Majumder
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India.
| |
Collapse
|
44
|
Adeno-associated virus inverted terminal repeats stimulate gene editing. Gene Ther 2014; 22:190-5. [PMID: 25503695 DOI: 10.1038/gt.2014.109] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 10/09/2014] [Accepted: 11/03/2014] [Indexed: 12/13/2022]
Abstract
Advancements in genome editing have relied on technologies to specifically damage DNA which, in turn, stimulates DNA repair including homologous recombination (HR). As off-target concerns complicate the therapeutic translation of site-specific DNA endonucleases, an alternative strategy to stimulate gene editing based on fragile DNA was investigated. To do this, an episomal gene-editing reporter was generated by a disruptive insertion of the adeno-associated virus (AAV) inverted terminal repeat (ITR) into the egfp gene. Compared with a non-structured DNA control sequence, the ITR induced DNA damage as evidenced by increased gamma-H2AX and Mre11 foci formation. As local DNA damage stimulates HR, ITR-mediated gene editing was investigated using DNA oligonucleotides as repair substrates. The AAV ITR stimulated gene editing >1000-fold in a replication-independent manner and was not biased by the polarity of the repair oligonucleotide. Analysis of additional human DNA sequences demonstrated stimulation of gene editing to varying degrees. In particular, inverted yet not direct, Alu repeats induced gene editing, suggesting a role for DNA structure in the repair event. Collectively, the results demonstrate that inverted DNA repeats stimulate gene editing via double-strand break repair in an episomal context and allude to efficient gene editing of the human chromosome using fragile DNA sequences.
Collapse
|
45
|
Brownlow N, Pike T, Zicha D, Collinson L, Parker PJ. Mitotic catenation is monitored and resolved by a PKCε-regulated pathway. Nat Commun 2014; 5:5685. [PMID: 25483024 PMCID: PMC4272242 DOI: 10.1038/ncomms6685] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 10/27/2014] [Indexed: 12/15/2022] Open
Abstract
Exit from mitosis is controlled by silencing of the spindle assembly checkpoint (SAC). It is important that preceding exit, all sister chromatid pairs are correctly bioriented, and that residual catenation is resolved, permitting complete sister chromatid separation in the ensuing anaphase. Here we determine that the metaphase response to catenation in mammalian cells operates through PKCε. The PKCε-controlled pathway regulates exit from the SAC only when mitotic cells are challenged by retained catenation and this delayed exit is characterized by BubR1-high and Mad2-low kinetochores. In addition, we show that this pathway is necessary to facilitate resolution of retained catenanes in mitosis. When delayed by catenation in mitosis, inhibition of PKCε results in premature entry into anaphase with PICH-positive strands and chromosome bridging. These findings demonstrate the importance of PKCε-mediated regulation in protection from loss of chromosome integrity in cells failing to resolve catenation in G2.
Collapse
Affiliation(s)
- Nicola Brownlow
- Protein Phosphorylation Laboratory, Cancer Research UK London
Research Institute, 44 Lincolns Inn Fields, London
WC2A 3LY, UK
| | - Tanya Pike
- Protein Phosphorylation Laboratory, Cancer Research UK London
Research Institute, 44 Lincolns Inn Fields, London
WC2A 3LY, UK
| | - Daniel Zicha
- Light Microscopy, Cancer Research UK London Research
Institute, London, WC2A 3LY, UK
| | - Lucy Collinson
- Electron Microscopy, Cancer Research UK London Research
Institute, London
WC2A 3LY, UK
| | - Peter J. Parker
- Protein Phosphorylation Laboratory, Cancer Research UK London
Research Institute, 44 Lincolns Inn Fields, London
WC2A 3LY, UK
- Division of Cancer Studies, King’s College London,
New Hunt’s House, Guy’s Campus, London
SE1 1UL, UK
| |
Collapse
|
46
|
Topoisomerase II is required for the proper separation of heterochromatic regions during Drosophila melanogaster female meiosis. PLoS Genet 2014; 10:e1004650. [PMID: 25340780 PMCID: PMC4207608 DOI: 10.1371/journal.pgen.1004650] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 07/21/2014] [Indexed: 01/03/2023] Open
Abstract
Heterochromatic homology ensures the segregation of achiasmate chromosomes during meiosis I in Drosophila melanogaster females, perhaps as a consequence of the heterochromatic threads that connect achiasmate homologs during prometaphase I. Here, we ask how these threads, and other possible heterochromatic entanglements, are resolved prior to anaphase I. We show that the knockdown of Topoisomerase II (Top2) by RNAi in the later stages of meiosis results in a specific defect in the separation of heterochromatic regions after spindle assembly. In Top2 RNAi-expressing oocytes, heterochromatic regions of both achiasmate and chiasmate chromosomes often failed to separate during prometaphase I and metaphase I. Heterochromatic regions were stretched into long, abnormal projections with centromeres localizing near the tips of the projections in some oocytes. Despite these anomalies, we observed bipolar spindles in most Top2 RNAi-expressing oocytes, although the obligately achiasmate 4th chromosomes exhibited a near complete failure to move toward the spindle poles during prometaphase I. Both achiasmate and chiasmate chromosomes displayed defects in biorientation. Given that euchromatic regions separate much earlier in prophase, no defects were expected or observed in the ability of euchromatic regions to separate during late prophase upon knockdown of Top2 at mid-prophase. Finally, embryos from Top2 RNAi-expressing females frequently failed to initiate mitotic divisions. These data suggest both that Topoisomerase II is involved in the resolution of heterochromatic DNA entanglements during meiosis I and that these entanglements must be resolved in order to complete meiosis. Proper chromosome segregation during egg and sperm development is crucial to prevent birth defects and miscarriage. During chromosome replication, DNA entanglements are created that must be resolved before chromosomes can fully separate. In the oocytes of the fruit fly Drosophila melanogaster, DNA entanglements persist between heterochromatic regions of the chromosomes until after spindle assembly and may facilitate the proper segregation of chromosomes during meiosis. Topoisomerase II enzymes can resolve DNA entanglements by cutting and untwisting tangled DNA. Decreasing Topoisomerase II (Top2) levels in the ovaries of fruit flies led to sterility. RNAi knockdown of the Top2 gene in oocytes resulted in chromosomes that failed to fully separate their heterochromatic regions during meiosis I and caused oocytes to arrest in meiosis I. These studies demonstrate that the Top2 enzyme is required for releasing DNA entanglements between homologous chromosomes before the onset of chromosome segregation during Drosophila female meiosis.
Collapse
|
47
|
Chen T, Sun Y, Ji P, Kopetz S, Zhang W. Topoisomerase IIα in chromosome instability and personalized cancer therapy. Oncogene 2014; 34:4019-31. [PMID: 25328138 PMCID: PMC4404185 DOI: 10.1038/onc.2014.332] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 09/08/2014] [Accepted: 09/08/2014] [Indexed: 12/29/2022]
Abstract
Genome instability is a hallmark of cancer cells. Chromosome instability (CIN), which is often mutually exclusive from hypermutation genotypes, represents a distinct subtype of genome instability. Hypermutations in cancer cells are due to defects in DNA repair genes, but the cause of CIN is still elusive. However, because of the extensive chromosomal abnormalities associated with CIN, its cause is likely a defect in a network of genes that regulate mitotic checkpoints and chromosomal organization and segregation. Emerging evidence has shown that the chromosomal decatenation checkpoint, which is critical for chromatin untangling and packing during genetic material duplication, is defective in cancer cells with CIN. The decatenation checkpoint is known to be regulated by a family of enzymes called topoisomerases. Among them, the gene encoding topoisomerase IIα (TOP2A) is commonly altered at both gene copy number and gene expression level in cancer cells. Thus, abnormal alterations of TOP2A, its interacting proteins, and its modifications may play a critical role in CIN in human cancers. Clinically, a large arsenal of topoisomerase inhibitors have been used to suppress DNA replication in cancer. However, they often lead to the secondary development of leukemia because of their effect on the chromosomal decatenation checkpoint. Therefore, topoisomerase drugs must be used judiciously and administered on an individual basis. In this review, we highlight the biological function of TOP2A in chromosome segregation and the mechanisms that regulate this enzyme's expression and activity. We also review the roles of TOP2A and related proteins in human cancers, and raise a perspective for how to target TOP2A in personalized cancer therapy.
Collapse
Affiliation(s)
- T Chen
- 1] Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA [2] Department of Endoscopy Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Y Sun
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - P Ji
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - S Kopetz
- Department of Gastrointestinal Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - W Zhang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
48
|
Mengoli V, Bucciarelli E, Lattao R, Piergentili R, Gatti M, Bonaccorsi S. The analysis of mutant alleles of different strength reveals multiple functions of topoisomerase 2 in regulation of Drosophila chromosome structure. PLoS Genet 2014; 10:e1004739. [PMID: 25340516 PMCID: PMC4207652 DOI: 10.1371/journal.pgen.1004739] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 09/08/2014] [Indexed: 12/14/2022] Open
Abstract
Topoisomerase II is a major component of mitotic chromosomes but its role in the assembly and structural maintenance of chromosomes is rather controversial, as different chromosomal phenotypes have been observed in various organisms and in different studies on the same organism. In contrast to vertebrates that harbor two partially redundant Topo II isoforms, Drosophila and yeasts have a single Topo II enzyme. In addition, fly chromosomes, unlike those of yeast, are morphologically comparable to vertebrate chromosomes. Thus, Drosophila is a highly suitable system to address the role of Topo II in the assembly and structural maintenance of chromosomes. Here we show that modulation of Top2 function in living flies by means of mutant alleles of different strength and in vivo RNAi results in multiple cytological phenotypes. In weak Top2 mutants, meiotic chromosomes of males exhibit strong morphological abnormalities and dramatic segregation defects, while mitotic chromosomes of larval brain cells are not affected. In mutants of moderate strength, mitotic chromosome organization is normal, but anaphases display frequent chromatin bridges that result in chromosome breaks and rearrangements involving specific regions of the Y chromosome and 3L heterochromatin. Severe Top2 depletion resulted in many aneuploid and polyploid mitotic metaphases with poorly condensed heterochromatin and broken chromosomes. Finally, in the almost complete absence of Top2, mitosis in larval brains was virtually suppressed and in the rare mitotic figures observed chromosome morphology was disrupted. These results indicate that different residual levels of Top2 in mutant cells can result in different chromosomal phenotypes, and that the effect of a strong Top2 depletion can mask the effects of milder Top2 reductions. Thus, our results suggest that the previously observed discrepancies in the chromosomal phenotypes elicited by Topo II downregulation in vertebrates might depend on slight differences in Topo II concentration and/or activity.
Collapse
Affiliation(s)
- Valentina Mengoli
- Istituto Pasteur-Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari (IBPM) del CNR, Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza, Università di Roma, Roma, Italy
| | - Elisabetta Bucciarelli
- Istituto Pasteur-Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari (IBPM) del CNR, Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza, Università di Roma, Roma, Italy
| | - Ramona Lattao
- Istituto Pasteur-Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari (IBPM) del CNR, Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza, Università di Roma, Roma, Italy
| | - Roberto Piergentili
- Istituto Pasteur-Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari (IBPM) del CNR, Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza, Università di Roma, Roma, Italy
| | - Maurizio Gatti
- Istituto Pasteur-Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari (IBPM) del CNR, Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza, Università di Roma, Roma, Italy
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia
| | - Silvia Bonaccorsi
- Istituto Pasteur-Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari (IBPM) del CNR, Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza, Università di Roma, Roma, Italy
| |
Collapse
|
49
|
Li L, Abraham AD, Zhou Q, Ali H, O'Brien JV, Hamill BD, Arcaroli JJ, Messersmith WA, LaBarbera DV. An improved high yield total synthesis and cytotoxicity study of the marine alkaloid neoamphimedine: an ATP-competitive inhibitor of topoisomerase IIα and potent anticancer agent. Mar Drugs 2014; 12:4833-50. [PMID: 25244109 PMCID: PMC4178486 DOI: 10.3390/md12094833] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 08/25/2014] [Accepted: 09/05/2014] [Indexed: 12/24/2022] Open
Abstract
Recently, we characterized neoamphimedine (neo) as an ATP-competitive inhibitor of the ATPase domain of human Topoisomerase IIα. Thus far, neo is the only pyridoacridine with this mechanism of action. One limiting factor in the development of neo as a therapeutic agent has been access to sufficient amounts of material for biological testing. Although there are two reported syntheses of neo, both require 12 steps with low overall yields (≤6%). In this article, we report an improved total synthesis of neo achieved in 10 steps with a 25% overall yield. In addition, we report an expanded cytotoxicity study using a panel of human cancer cell lines, including: breast, colorectal, lung, and leukemia. Neo displays potent cytotoxicity (nM IC50 values) in all, with significant potency against colorectal cancer (lowest IC50 = 6 nM). We show that neo is cytotoxic not cytostatic, and that neo exerts cytotoxicity by inducing G2-M cell cycle arrest and apoptosis.
Collapse
Affiliation(s)
- Linfeng Li
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Adedoyin D Abraham
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Qiong Zhou
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Hadi Ali
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Jeremy V O'Brien
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Brayden D Hamill
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - John J Arcaroli
- Division of Medical Oncology, School of Medicine, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Wells A Messersmith
- Division of Medical Oncology, School of Medicine, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Daniel V LaBarbera
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
50
|
Byrne M, Wray J, Reinert B, Wu Y, Nickoloff J, Lee SH, Hromas R, Williamson E. Mechanisms of oncogenic chromosomal translocations. Ann N Y Acad Sci 2014; 1310:89-97. [PMID: 24528169 DOI: 10.1111/nyas.12370] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chromosome translocations are caused by inappropriate religation of two DNA double-strand breaks (DSBs) in heterologous chromosomes. These DSBs can be generated by endogenous or exogenous sources. Endogenous sources of DSBs leading to translocations include inappropriate recombination activating gene (RAG) or activation-induced deaminase (AID) activity during immune receptor maturation. Endogenous DSBs can also occur at noncanonical DNA structures or at collapsed replication forks. Exogenous sources of DSBs leading to translocations include ionizing radiation (IR) and cancer chemotherapy. Spatial proximity of the heterologous chromosomes is also important for translocations. While three distinct pathways for DNA DSB repair exist, mounting evidence supports alternative nonhomologous end joining (aNHEJ) as the predominant pathway through which the majority of translocations occur. Initiated by poly (ADP-ribose) polymerase 1 (PARP1), aNHEJ is utilized less frequently in DNA DSB repair than other forms of DSB repair. We recently found that PARP1 is essential for chromosomal translocations to occur and that small molecule PARP1 inhibitors, already in clinical use, can inhibit translocations generated by IR or topoisomerase II inhibition. These data confirm the central role of PARP1 in aNHEJ-mediated chromosomal translocations and raise the possibility of using clinically available PARP1 inhibitors in patients who are at high risk for secondary oncogenic chromosomal translocations.
Collapse
Affiliation(s)
- Michael Byrne
- Department of Medicine, University of Florida College of Medicine, Gainesville, Florida
| | | | | | | | | | | | | | | |
Collapse
|