1
|
Taghizadieh M, Kalantari M, Bakhshali R, Kobravi S, Khalilollah S, Baghi HB, Bayat M, Nahand JS, Akhavan-Sigari R. To be or not to be: navigating the influence of MicroRNAs on cervical cancer cell death. Cancer Cell Int 2025; 25:153. [PMID: 40251577 PMCID: PMC12008905 DOI: 10.1186/s12935-025-03786-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/08/2025] [Indexed: 04/20/2025] Open
Abstract
With all diagnostic and therapeutic advances, such as surgery, radiation- and chemo-therapy, cervical cancer (CC) is still ranked fourth among the most frequent cancers in women globally. New biomarkers and therapeutic targets are warranted to be discovered for the early detection, treatment, and prognosis of CC. As component of the non-coding RNA's family, microRNAs (miRNAs) participate in several cellular functions such as cell proliferation, gene expression, many signaling cascades, apoptosis, angiogenesis, etc. MiRNAs can suppress or induce programmed cell death (PCD) pathways by altering their regulatory genes. Besides, abnormal expression of miRNAs weakens or promotes various signaling pathways associated with PCD, resulting in the development of human diseases such as CC. For that reason, understanding the effects that miRNAs exert on the various modes of tumor PCD, and evaluating the potential of miRNAs to serve as targets for induction of cell death and reappearance of chemotherapy. The current study aims to define the effect that miRNAs exert on cell apoptosis, autophagy, pyroptosis, ferroptosis, and anoikis in cervical cancer to investigate possible targets for cervical cancer therapy. Manipulating the PCD pathways by miRNAs could be considered a primary therapeutic strategy for cervical cancer.
Collapse
Affiliation(s)
- Mohammad Taghizadieh
- Department of Pathology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoumeh Kalantari
- Department of Biology, Tehran University of health Sciences, Tehran, Iran
| | | | - Sepehr Kobravi
- Department of Oral & Maxillofacial Surgery, Faculty of Dentistry, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Shayan Khalilollah
- Department of Neurosurgery, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hossein Bannazadeh Baghi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mobina Bayat
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center Tuebingen, Tuebingen, Germany
- Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University, Warsaw, Poland
| |
Collapse
|
2
|
Iluta S, Nistor M, Buruiana S, Dima D. Notch and Hedgehog Signaling Unveiled: Crosstalk, Roles, and Breakthroughs in Cancer Stem Cell Research. Life (Basel) 2025; 15:228. [PMID: 40003637 PMCID: PMC11856057 DOI: 10.3390/life15020228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/30/2025] [Accepted: 02/01/2025] [Indexed: 02/27/2025] Open
Abstract
The development of therapies that target cancer stem cells (CSCs) and bulk tumors is both crucial and urgent. Several signaling pathways, like Notch and Hedgehog (Hh), have been strongly associated with CSC stemness maintenance and metastasis. However, the extensive crosstalk present between these two signaling networks complicates the development of long-term therapies that also minimize adverse effects on healthy tissues and are not overcome by therapy resistance from CSCs. The present work aims to overview the roles of Notch and Hh in cancer outburst and the intersection of the two pathways with one another, as well as with other networks, such as Wnt/β-catenin, TGF, and JAK/STAT3, and to explore the shaping of the tumor microenvironment (TME) with specific influence on CSC development and maintenance.
Collapse
Affiliation(s)
- Sabina Iluta
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 400124 Cluj Napoca, Romania;
| | - Madalina Nistor
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400124 Cluj Napoca, Romania;
| | - Sanda Buruiana
- Department of Hematology, Nicolae Testemitanu University of Medicine and Pharmacy, MD-2004 Chisinau, Moldova;
| | - Delia Dima
- Department of Hematology, Ion Chiricuta Oncology Institute, 400015 Cluj Napoca, Romania
| |
Collapse
|
3
|
Shen D, Xia Y, Fu Y, Cao Q, Chen W, Zhu Y, Guo K, Sun L. Hedgehog pathway and cancer: A new area (Review). Oncol Rep 2024; 52:116. [PMID: 38994763 PMCID: PMC11267502 DOI: 10.3892/or.2024.8775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 06/21/2024] [Indexed: 07/13/2024] Open
Abstract
In years of research on classical pathways, the composition, information transmission mechanism, crosstalk with other pathways, and physiological and pathological effects of hedgehog (HH) pathway have been gradually clarified. HH also plays a critical role in tumor formation and development. According to the update of interpretation of tumor phenotypes, the latest relevant studies have been sorted out, to explore the specific mechanism of HH pathway in regulating different tumor phenotypes through gene mutation and signal regulation. The drugs and natural ingredients involved in regulating HH pathway were also reviewed; five approved drugs and drugs under research exert efficacy by blocking HH pathway, and at least 22 natural components have potential to treat tumors by HH pathway. Nevertheless, there is a deficiency of existing studies. The present review confirmed the great potential of HH pathway in future cancer treatment with factual basis.
Collapse
Affiliation(s)
- Deyi Shen
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310006, P.R. China
| | - Yuwei Xia
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Yuhan Fu
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310006, P.R. China
| | - Qiaochang Cao
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310006, P.R. China
| | - Wenqian Chen
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Ying Zhu
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310006, P.R. China
| | - Kaibo Guo
- Department of Cancer Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Leitao Sun
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310006, P.R. China
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| |
Collapse
|
4
|
Luo C, He S, Shi F, Zhou J, Shang L. The Role of TRAIL Signaling in Cancer: Searching for New Therapeutic Strategies. BIOLOGY 2024; 13:521. [PMID: 39056714 PMCID: PMC11274015 DOI: 10.3390/biology13070521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024]
Abstract
Cancer continues to pose a significant threat to global health, with its status as a leading cause of death remaining unchallenged. Within the realm of cancer research, the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) stands out as a critical player, having been identified in the 1990s as the tenth member of the TNF family. This review examines the pivotal role of TRAIL in cancer biology, focusing on its ability to induce apoptosis in malignant cells through both endogenous and exogenous pathways. We provide an in-depth analysis of TRAIL's intracellular signaling and intercellular communication, underscoring its potential as a selective anticancer agent. Additionally, the review explores TRAIL's capacity to reshape the tumor microenvironment, thereby influencing cancer progression and response to therapy. With an eye towards future developments, we discuss the prospects of harnessing TRAIL's capabilities for the creation of tailored, precision-based cancer treatments, aiming to enhance efficacy and improve patient survival rates.
Collapse
Affiliation(s)
- Cheng Luo
- Department of Pathology, National Clinical Research Center for Geriatric Disorders/Xiangya Hospital, Central South University, Changsha 410078, China; (C.L.); (J.Z.)
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha 410078, China; (S.H.); (F.S.)
- Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Shan He
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha 410078, China; (S.H.); (F.S.)
- Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Feng Shi
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha 410078, China; (S.H.); (F.S.)
- Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Jianhua Zhou
- Department of Pathology, National Clinical Research Center for Geriatric Disorders/Xiangya Hospital, Central South University, Changsha 410078, China; (C.L.); (J.Z.)
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha 410078, China; (S.H.); (F.S.)
| | - Li Shang
- Department of Pathology, National Clinical Research Center for Geriatric Disorders/Xiangya Hospital, Central South University, Changsha 410078, China; (C.L.); (J.Z.)
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha 410078, China; (S.H.); (F.S.)
| |
Collapse
|
5
|
Anichini G, Raggi C, Pastore M, Carrassa L, Maresca L, Crivaro E, Lottini T, Duwe L, Andersen JB, Tofani L, Di Tommaso L, Banales JM, Arcangeli A, Marra F, Stecca B. Combined Inhibition of Smoothened and the DNA Damage Checkpoint WEE1 Exerts Antitumor Activity in Cholangiocarcinoma. Mol Cancer Ther 2023; 22:343-356. [PMID: 36807728 PMCID: PMC9978885 DOI: 10.1158/1535-7163.mct-22-0379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 10/24/2022] [Accepted: 12/01/2022] [Indexed: 02/23/2023]
Abstract
Cholangiocarcinoma (CCA) is characterized by resistance to chemotherapy and a poor prognosis. Therefore, treatments that can effectively suppress tumor growth are urgently needed. Aberrant activation of hedgehog (HH) signaling has been implicated in several cancers, including those of the hepatobiliary tract. However, the role of HH signaling in intrahepatic CCA (iCCA) has not been completely elucidated. In this study, we addressed the function of the main transducer Smoothened (SMO) and the transcription factors (TFs) GLI1 and GLI2 in iCCA. In addition, we evaluated the potential benefits of the combined inhibition of SMO and the DNA damage kinase WEE1. Transcriptomic analysis of 152 human iCCA samples showed increased expression of GLI1, GLI2, and Patched 1 (PTCH1) in tumor tissues compared with nontumor tissues. Genetic silencing of SMO, GLI1, and GLI2 inhibited the growth, survival, invasiveness, and self-renewal of iCCA cells. Pharmacologic inhibition of SMO reduced iCCA growth and viability in vitro, by inducing double-strand break DNA damage, leading to mitotic arrest and apoptotic cell death. Importantly, SMO inhibition resulted in the activation of the G2-M checkpoint and DNA damage kinase WEE1, increasing the vulnerability to WEE1 inhibition. Hence, the combination of MRT-92 with the WEE1 inhibitor AZD-1775 showed increased antitumor activity in vitro and in iCCA xenografts compared with single treatments. These data indicate that combined inhibition of SMO and WEE1 reduces tumor burden and may represent a strategy for the clinical development of novel therapeutic approaches in iCCA.
Collapse
Affiliation(s)
- Giulia Anichini
- Core Research Laboratory - Institute for Cancer Research and Prevention (ISPRO), Florence, Italy
| | - Chiara Raggi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Mirella Pastore
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Laura Carrassa
- Core Research Laboratory - Institute for Cancer Research and Prevention (ISPRO), Florence, Italy
| | - Luisa Maresca
- Core Research Laboratory - Institute for Cancer Research and Prevention (ISPRO), Florence, Italy
| | - Enrica Crivaro
- Core Research Laboratory - Institute for Cancer Research and Prevention (ISPRO), Florence, Italy
| | - Tiziano Lottini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Lea Duwe
- Biotech Research and Innovation Centre (BRIC), Dept. of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jesper B Andersen
- Biotech Research and Innovation Centre (BRIC), Dept. of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lorenzo Tofani
- Department of Statistics, University of Florence, Florence, Italy
| | - Luca Di Tommaso
- Pathology Department, Humanitas Clinical and Research Center - IRCCS, Rozzano, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain.,National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), Madrid, Spain.,Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.,Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
| | - Annarosa Arcangeli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Fabio Marra
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Barbara Stecca
- Core Research Laboratory - Institute for Cancer Research and Prevention (ISPRO), Florence, Italy
| |
Collapse
|
6
|
The Role of the Hedgehog Pathway in Cholangiocarcinoma. Cancers (Basel) 2021; 13:cancers13194774. [PMID: 34638259 PMCID: PMC8507550 DOI: 10.3390/cancers13194774] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Cholangiocarcinoma (CCA) is one of the most refractory malignancies with a high mortality rate. Among all the pathways involved in CCA development, emerging evidence highlights Hedgehog (HH) signaling as a substantial player in CCA-genesis and development. The pro-tumoral function of HH provides potential therapeutic implications, and recently the use of HH inhibitors has paved the way for clinical application in various solid tumors. Targeting HH members, namely Hedgehog ligands, SMO transmembrane protein and GLI transcription factors may thus confer therapeutic options for the improvement of CCA treatment outcome. Abstract Cholangiocarcinoma (CCA) is a poorly treatable type of cancer and, along with hepatocellular carcinoma (HCC), is the predominant type of primitive liver cancer in adults. The lack of understanding of CCA biology has slowed down the identification of novel targets and the development of effective treatments. While tumors share some general characteristics, detailed knowledge of specific features is essential for the development of effectively tailored therapeutic approaches. The Hedgehog (HH) signaling cascade regulates stemness biology, embryonal development, tissue homeostasis, and cell proliferation and differentiation. Its aberrant activation has been associated with a variety of solid and hematological human malignancies. Several HH-inhibiting compounds have been indeed developed as potential anticancer agents in different types of tumors, with Smoothened and GLI inhibitors showing the most promising results. Beside its well-established function in other tumors, findings regarding the HH signaling in CCA are still controversial. Here we will give an overview of the most important clinical and molecular features of cholangiocarcinoma, and we will discuss the available evidence of the crosstalk between the HH signaling pathway and the cholangiocarcinoma cell biology.
Collapse
|
7
|
Behind the Adaptive and Resistance Mechanisms of Cancer Stem Cells to TRAIL. Pharmaceutics 2021; 13:pharmaceutics13071062. [PMID: 34371753 PMCID: PMC8309156 DOI: 10.3390/pharmaceutics13071062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/30/2021] [Accepted: 06/30/2021] [Indexed: 12/20/2022] Open
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), also known as Apo-2 ligand (Apo2L), is a member of the TNF cytokine superfamily. TRAIL has been widely studied as a novel strategy for tumor elimination, as cancer cells overexpress TRAIL death receptors, inducing apoptosis and inhibiting blood vessel formation. However, cancer stem cells (CSCs), which are the main culprits responsible for therapy resistance and cancer remission, can easily develop evasion mechanisms for TRAIL apoptosis. By further modifying their properties, they take advantage of this molecule to improve survival and angiogenesis. The molecular mechanisms that CSCs use for TRAIL resistance and angiogenesis development are not well elucidated. Recent research has shown that proteins and transcription factors from the cell cycle, survival, and invasion pathways are involved. This review summarizes the main mechanism of cell adaption by TRAIL to promote response angiogenic or pro-angiogenic intermediates that facilitate TRAIL resistance regulation and cancer progression by CSCs and novel strategies to induce apoptosis.
Collapse
|
8
|
Quiroz-Reyes AG, Delgado-Gonzalez P, Islas JF, Gallegos JLD, Martínez Garza JH, Garza-Treviño EN. Behind the Adaptive and Resistance Mechanisms of Cancer Stem Cells to TRAIL. Pharmaceutics 2021; 13:1062. [DOI: https:/doi.org/10.3390/pharmaceutics13071062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), also known as Apo-2 ligand (Apo2L), is a member of the TNF cytokine superfamily. TRAIL has been widely studied as a novel strategy for tumor elimination, as cancer cells overexpress TRAIL death receptors, inducing apoptosis and inhibiting blood vessel formation. However, cancer stem cells (CSCs), which are the main culprits responsible for therapy resistance and cancer remission, can easily develop evasion mechanisms for TRAIL apoptosis. By further modifying their properties, they take advantage of this molecule to improve survival and angiogenesis. The molecular mechanisms that CSCs use for TRAIL resistance and angiogenesis development are not well elucidated. Recent research has shown that proteins and transcription factors from the cell cycle, survival, and invasion pathways are involved. This review summarizes the main mechanism of cell adaption by TRAIL to promote response angiogenic or pro-angiogenic intermediates that facilitate TRAIL resistance regulation and cancer progression by CSCs and novel strategies to induce apoptosis.
Collapse
|
9
|
Stöhr D, Schmid JO, Beigl TB, Mack A, Maichl DS, Cao K, Budai B, Fullstone G, Kontermann RE, Mürdter TE, Tait SWG, Hagenlocher C, Pollak N, Scheurich P, Rehm M. Stress-induced TRAILR2 expression overcomes TRAIL resistance in cancer cell spheroids. Cell Death Differ 2020; 27:3037-3052. [PMID: 32433558 PMCID: PMC7560834 DOI: 10.1038/s41418-020-0559-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 04/21/2020] [Accepted: 05/06/2020] [Indexed: 11/13/2022] Open
Abstract
The influence of 3D microenvironments on apoptosis susceptibility remains poorly understood. Here, we studied the susceptibility of cancer cell spheroids, grown to the size of micrometastases, to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Interestingly, pronounced, spatially coordinated response heterogeneities manifest within spheroidal microenvironments: In spheroids grown from genetically identical cells, TRAIL-resistant subpopulations enclose, and protect TRAIL-hypersensitive cells, thereby increasing overall treatment resistance. TRAIL-resistant layers form at the interface of proliferating and quiescent cells and lack both TRAILR1 and TRAILR2 protein expression. In contrast, oxygen, and nutrient deprivation promote high amounts of TRAILR2 expression in TRAIL-hypersensitive cells in inner spheroid layers. COX-II inhibitor celecoxib further enhanced TRAILR2 expression in spheroids, likely resulting from increased ER stress, and thereby re-sensitized TRAIL-resistant cell layers to treatment. Our analyses explain how TRAIL response heterogeneities manifest within well-defined multicellular environments, and how spatial barriers of TRAIL resistance can be minimized and eliminated.
Collapse
Affiliation(s)
- Daniela Stöhr
- Institute of Cell Biology and Immunology, University of Stuttgart, 70569, Stuttgart, Germany
| | - Jens O Schmid
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology and University of Tuebingen, 70376, Stuttgart, Germany
- Department of Laboratory Medicine, Robert-Bosch-Hospital, 70376, Stuttgart, Germany
| | - Tobias B Beigl
- Institute of Cell Biology and Immunology, University of Stuttgart, 70569, Stuttgart, Germany
| | - Alexandra Mack
- Institute of Cell Biology and Immunology, University of Stuttgart, 70569, Stuttgart, Germany
| | - Daniela S Maichl
- Institute of Cell Biology and Immunology, University of Stuttgart, 70569, Stuttgart, Germany
| | - Kai Cao
- Cancer Research UK Beatson Institute and Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Beate Budai
- Institute of Cell Biology and Immunology, University of Stuttgart, 70569, Stuttgart, Germany
| | - Gavin Fullstone
- Institute of Cell Biology and Immunology, University of Stuttgart, 70569, Stuttgart, Germany
- Stuttgart Research Center Systems Biology, University of Stuttgart, 70569, Stuttgart, Germany
| | - Roland E Kontermann
- Institute of Cell Biology and Immunology, University of Stuttgart, 70569, Stuttgart, Germany
- Stuttgart Research Center Systems Biology, University of Stuttgart, 70569, Stuttgart, Germany
| | - Thomas E Mürdter
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology and University of Tuebingen, 70376, Stuttgart, Germany
| | - Stephen W G Tait
- Cancer Research UK Beatson Institute and Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Cathrin Hagenlocher
- Institute of Cell Biology and Immunology, University of Stuttgart, 70569, Stuttgart, Germany
| | - Nadine Pollak
- Institute of Cell Biology and Immunology, University of Stuttgart, 70569, Stuttgart, Germany
- Stuttgart Research Center Systems Biology, University of Stuttgart, 70569, Stuttgart, Germany
| | - Peter Scheurich
- Institute of Cell Biology and Immunology, University of Stuttgart, 70569, Stuttgart, Germany
- Stuttgart Research Center Systems Biology, University of Stuttgart, 70569, Stuttgart, Germany
| | - Markus Rehm
- Institute of Cell Biology and Immunology, University of Stuttgart, 70569, Stuttgart, Germany.
- Stuttgart Research Center Systems Biology, University of Stuttgart, 70569, Stuttgart, Germany.
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin D2, Ireland.
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin D2, Ireland.
| |
Collapse
|
10
|
Matissek SJ, Elsawa SF. GLI3: a mediator of genetic diseases, development and cancer. Cell Commun Signal 2020; 18:54. [PMID: 32245491 PMCID: PMC7119169 DOI: 10.1186/s12964-020-00540-x] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 02/27/2020] [Indexed: 02/07/2023] Open
Abstract
The transcription factor GLI3 is a member of the Hedgehog (Hh/HH) signaling pathway that can exist as a full length (Gli3-FL/GLI3-FL) or repressor (Gli3-R/GLI3-R) form. In response to HH activation, GLI3-FL regulates HH genes by targeting the GLI1 promoter. In the absence of HH signaling, GLI3 is phosphorylated leading to its partial degradation and the generation of GLI3-R which represses HH functions. GLI3 is also involved in tissue development, immune cell development and cancer. The absence of Gli3 in mice impaired brain and lung development and GLI3 mutations in humans are the cause of Greig cephalopolysyndactyly (GCPS) and Pallister Hall syndromes (PHS). In the immune system GLI3 regulates B, T and NK-cells and may be involved in LPS-TLR4 signaling. In addition, GLI3 was found to be upregulated in multiple cancers and was found to positively regulate cancerous behavior such as anchorage-independent growth, angiogenesis, proliferation and migration with the exception in acute myeloid leukemia (AML) and medulloblastoma where GLI plays an anti-cancerous role. Finally, GLI3 is a target of microRNA. Here, we will review the biological significance of GLI3 and discuss gaps in our understanding of this molecule. Video Abstract.
Collapse
Affiliation(s)
- Stephan J. Matissek
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, 46 College Rd Rudman 291, Durham, NH 03824 USA
| | - Sherine F. Elsawa
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, 46 College Rd Rudman 291, Durham, NH 03824 USA
| |
Collapse
|
11
|
Singh D, Prasad CB, Biswas D, Tewari M, Kar AG, Ansari MA, Singh S, Narayan G. TRAIL receptors are differentially regulated and clinically significant in gallbladder cancer. Pathology 2020; 52:348-358. [PMID: 32111400 DOI: 10.1016/j.pathol.2019.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/26/2019] [Accepted: 12/01/2019] [Indexed: 12/15/2022]
Abstract
Deregulation of the receptors of TNF-related apoptosis inducing ligand (TRAIL) has been reported in various cancers. In an effort to define the role of these receptors we profiled their expression in gallbladder cancer (GBC) and explored their clinical significance. Expression of TRAIL receptors' mRNA in GBC was analysed through reverse transcriptase polymerase chain reaction (RT-PCR), and protein through western blotting, immunohistochemistry and enzyme-linked immunosorbent assay (ELISA). mRNA data show frequent higher expression of TRAIL receptors in GBC samples. Death receptors DR4 and DR5 showed significant negative correlation with tumour stage, T stage and tumour grade; DcR1 transcript showed positive correlation with tumour stage, N stage, M stage and tumour grade. Similarly, IHC showed frequent positive staining for DR4, DR5 and DcR1in GBC samples. Cytoplasmic and nuclear DR4 protein showed negative correlation with T stage and tumour grade, whereas cytoplasmic DcR1 protein showed positive correlation with tumour stage and N stage. Nuclear DcR1 showed positive correlation with N stage. ELISA results showed significantly higher expression of secretory DcR1 in GBC patients. Kaplan-Meier analysis demonstrated significantly decreased mean survival of patients with positive staining of cytoplasmic DcR1. High level of death receptors identified the patients with early gallbladder cancer, whereas high DcR1 expression served as a prognostic factor for poor outcome.
Collapse
Affiliation(s)
- Deepika Singh
- Cancer Genetics Laboratory, Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Chandra Bhushan Prasad
- Cancer Genetics Laboratory, Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Dipanjan Biswas
- Department of Surgical Oncology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Mallika Tewari
- Department of Surgical Oncology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Amrita Ghosh Kar
- Department of Pathology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Mumtaz Ahmed Ansari
- Department of General Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Sunita Singh
- Department of Zoology, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi, India
| | - Gopeshwar Narayan
- Cancer Genetics Laboratory, Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, India.
| |
Collapse
|
12
|
TRAIL in oncology: From recombinant TRAIL to nano- and self-targeted TRAIL-based therapies. Pharmacol Res 2020; 155:104716. [PMID: 32084560 DOI: 10.1016/j.phrs.2020.104716] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 02/10/2020] [Accepted: 02/17/2020] [Indexed: 12/18/2022]
Abstract
TNF-related apoptosis-inducing ligand (TRAIL) selectively induces the apoptosis pathway in tumor cells leading to tumor cell death. Because TRAIL induction can kill tumor cells, cancer researchers have developed many agents to target TRAIL and some of these agents have entered clinical trials in oncology. Unfortunately, these trials have failed for many reasons, including drug resistance, off-target toxicities, short half-life, and specifically in gene therapy due to the limited uptake of TRAIL genes by cancer cells. To address these drawbacks, translational researchers have utilized drug delivery platforms. Although, these platforms can improve TRAIL-based therapies, they are unable to sufficiently translate the full potential of TRAIL-targeting to clinically viable products. Herein, we first summarize the complex biology of TRAIL signaling, including TRAILs cross-talk with other signaling pathways and immune cells. Next, we focus on known resistant mechanisms to TRAIL-based therapies. Then, we discuss how nano-formulation has the potential to enhance the therapeutic efficacy of TRAIL protein. Finally, we specify strategies with the potential to overcome the challenges that cannot be addressed via nanotechnology alone, including the alternative methods of TRAIL-expressing circulating cells, tumor-targeting bacteria, viruses, and exosomes.
Collapse
|
13
|
Yuan X, Cao X, Yang S. IFT80 is required for stem cell proliferation, differentiation, and odontoblast polarization during tooth development. Cell Death Dis 2019; 10:63. [PMID: 30683845 PMCID: PMC6347632 DOI: 10.1038/s41419-018-0951-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/01/2018] [Indexed: 12/01/2022]
Abstract
Primary cilia and intraflagellar transport (IFT) proteins control a wide variety of processes during tissue development and homeostasis. However, their role in regulation of stem cell properties during tooth development remains elusive. Here, we revealed that dental pulp stem cells (DPSCs) express IFT80, which is required for maintaining DPSC properties. Mice with deletion of IFT80 in odontoblast lineage show impaired molar root development and delayed incisor eruption through reduced DPSC proliferation and differentiation, and disrupted odontoblast polarization. Impaired odontoblast differentiation resulted from disrupted hedgehog (Hh) signaling pathways. Decreased DPSC proliferation is associated with impaired fibroblast growth factor 2 (FGF2) signaling caused by loss of IFT80, leading to the disruption of FGF2-FGFR1-PI3K-AKT signaling in IFT80-deficient DPSCs. The results provide the first evidence that IFT80 controls tooth development through influencing cell proliferation, differentiation, and polarization, and Hh and FGF/AKT signaling pathways, demonstrating that IFT proteins are likely to be the new therapeutic targets for tooth and other tissue repair and regeneration.
Collapse
Affiliation(s)
- Xue Yuan
- Department of Oral Biology, School of Dental Medicine University of Buffalo, State University of New York, Buffalo, NY, USA
| | - Xu Cao
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shuying Yang
- Department of Oral Biology, School of Dental Medicine University of Buffalo, State University of New York, Buffalo, NY, USA.
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
14
|
Gentilini A, Pastore M, Marra F, Raggi C. The Role of Stroma in Cholangiocarcinoma: The Intriguing Interplay between Fibroblastic Component, Immune Cell Subsets and Tumor Epithelium. Int J Mol Sci 2018; 19:ijms19102885. [PMID: 30249019 PMCID: PMC6213545 DOI: 10.3390/ijms19102885] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/18/2018] [Accepted: 09/20/2018] [Indexed: 02/07/2023] Open
Abstract
Cholangiocarcinoma (CCA) is a severe and mostly intractable adenocarcinoma of biliary epithelial cells. A typical feature of CCA is its highly desmoplastic microenvironment containing fibrogenic connective tissue and an abundance of immune cells (T lymphocytes, Natural Killer (NK) cells, and macrophages) infiltrating tumor epithelium. This strong desmoplasia is orchestrated by various soluble factors and signals, suggesting a critical role in shaping a tumor growth-permissive microenvironment that is responsible for CCA poor clinical outcome. Indeed stroma not only provides an abundance of factors that facilitate CCA initiation, growth and progression, but also a prejudicial impact on therapeutic outcome. This review will give an overview of tumor-stroma signaling in a microenvironment critically regulating CCA development and progression. Identification of CCA secreted factors by both the fibroblast component and immune cell subsets might provide ample opportunities for pharmacological targeting of this type of cancer.
Collapse
Affiliation(s)
- Alessandra Gentilini
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50141, Italy.
| | - Mirella Pastore
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50141, Italy.
| | - Fabio Marra
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50141, Italy.
| | - Chiara Raggi
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50141, Italy.
- Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano 20089, Italy.
| |
Collapse
|
15
|
Gundlach JP, Hauser C, Schlegel FM, Böger C, Röder C, Röcken C, Becker T, Egberts JH, Kalthoff H, Trauzold A. Cytoplasmic TRAIL-R1 is a positive prognostic marker in PDAC. BMC Cancer 2018; 18:777. [PMID: 30064384 PMCID: PMC6069838 DOI: 10.1186/s12885-018-4688-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 07/22/2018] [Indexed: 01/08/2023] Open
Abstract
Background The death receptors TRAIL-R1 and TRAIL-R2 are frequently overexpressed in cancer and there is an emerging evidence for their important role in malignant progression, also in the case of pancreatic ductal adenocarcinoma (PDAC). In their canonical localization at the plasma membrane, TRAIL-R1/−R2 may induce cell death and/or pro-inflammatory signaling leading to cell migration, invasion and metastasis. Although, they have repeatedly been found intracellular, in the cytoplasm and in the nucleus, their functions in intracellular locations are still not well understood. Likewise, studies dealing with the prognostic relevance of TRAIL-Rs located in particular cellular compartments are very rare. For PDAC, the correlation of nuclear TRAIL-R2 with worse patients’ prognosis has been shown recently. Corresponding data on TRAIL-R1 are not available so far. Methods In the present study we analyzed the expression of TRAIL-R1 in 106 PDACs and 28 adjacent, peritumoral non-malignant pancreatic ducts with special emphasis on its cytoplasmic and nuclear localization and correlated the immunohistochemical findings with clinico-pathological patient characteristics. Results TRAIL-R1 was found in 93.4% of all PDAC samples. Cytoplasmic staining was present with very similar intensity in tumor and normal tissue. In contrast, nuclear TRAIL-R1 staining was significantly stronger in tumor compared to normal tissue (p = 0.006). Interestingly, we found that the number of cells with cytoplasmic TRAIL-R1 staining negatively correlates with tumor grading (p = 0.043). No such correlation could be detected for nuclear TRAIL-R1. Neither, cytoplasmic nor nuclear TRAIL-R1 staining showed a correlation with other clinico-pathological parameter such as pTNM categories. However, Kaplan-Meier analyses revealed significantly prolonged median survival of patients with positive cytoplasmic TRAIL-R1 expression in more than 80% of tumor cells compared to patients with tumors containing a smaller quantity of cells positively stained for cytoplasmic TRAIL-R1 (20 vs. 8 months; p = 0.004). Conclusion Cytoplasmic TRAIL-R1 is a positive prognostic marker for patients with PDAC. Our findings indicate that loss of cytoplasmic TRAIL-R1 results in recurrent disease with more malignant phenotype thus suggesting anti-tumor activities of cytoplasmic TRAIL-R1 in PDAC.
Collapse
Affiliation(s)
- Jan-Paul Gundlach
- Department of General Surgery, Visceral, Thoracic, Transplantation and Pediatric Surgery, University Hospital Schleswig-Holstein (UKSH), Campus Kiel, Arnold-Heller Str. 3, Haus 18, 24105, Kiel, Germany
| | - Charlotte Hauser
- Department of General Surgery, Visceral, Thoracic, Transplantation and Pediatric Surgery, University Hospital Schleswig-Holstein (UKSH), Campus Kiel, Arnold-Heller Str. 3, Haus 18, 24105, Kiel, Germany
| | - Franka Maria Schlegel
- Institute for Experimental Cancer Research, University of Kiel, Arnold-Heller Str. 3 (Haus 17), D-24105, Kiel, Germany
| | - Christine Böger
- Department of Pathology, University Hospital Schleswig-Holstein (UKSH), Campus Kiel, Arnold-Heller Str. 3, Haus 14, 24105, Kiel, Germany
| | - Christian Röder
- Institute for Experimental Cancer Research, University of Kiel, Arnold-Heller Str. 3 (Haus 17), D-24105, Kiel, Germany
| | - Christoph Röcken
- Department of Pathology, University Hospital Schleswig-Holstein (UKSH), Campus Kiel, Arnold-Heller Str. 3, Haus 14, 24105, Kiel, Germany
| | - Thomas Becker
- Department of General Surgery, Visceral, Thoracic, Transplantation and Pediatric Surgery, University Hospital Schleswig-Holstein (UKSH), Campus Kiel, Arnold-Heller Str. 3, Haus 18, 24105, Kiel, Germany
| | - Jan-Hendrik Egberts
- Department of General Surgery, Visceral, Thoracic, Transplantation and Pediatric Surgery, University Hospital Schleswig-Holstein (UKSH), Campus Kiel, Arnold-Heller Str. 3, Haus 18, 24105, Kiel, Germany
| | - Holger Kalthoff
- Institute for Experimental Cancer Research, University of Kiel, Arnold-Heller Str. 3 (Haus 17), D-24105, Kiel, Germany
| | - Anna Trauzold
- Department of General Surgery, Visceral, Thoracic, Transplantation and Pediatric Surgery, University Hospital Schleswig-Holstein (UKSH), Campus Kiel, Arnold-Heller Str. 3, Haus 18, 24105, Kiel, Germany. .,Institute for Experimental Cancer Research, University of Kiel, Arnold-Heller Str. 3 (Haus 17), D-24105, Kiel, Germany.
| |
Collapse
|
16
|
Mansini AP, Peixoto E, Thelen KM, Gaspari C, Jin S, Gradilone SA. The cholangiocyte primary cilium in health and disease. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1245-1253. [PMID: 28625917 PMCID: PMC5732091 DOI: 10.1016/j.bbadis.2017.06.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 06/08/2017] [Indexed: 12/14/2022]
Abstract
Cholangiocytes, like most cells, express primary cilia extending from their membranes. These organelles function as antennae which detect stimuli from bile and transmit the information into cells regulating several signaling pathways involved in secretion, proliferation and apoptosis. The ability of primary cilia to detect different signals is provided by ciliary associated proteins which are expressed in its membrane. Defects in the structure and/or function of these organelles lead to cholangiociliopathies that result in cholangiocyte hyperproliferation, altered fluid secretion and absorption. Since primary cilia dysfunction has been observed in several epithelial tumors, including cholangiocarcinoma (CCA), primary cilia have been proposed as tumor suppressor organelles. In addition, the loss of cilia is associated with dysregulation of several molecular pathways resulting in CCA development and progression. Thus, restoration of the primary cilia may be a potential therapeutic approach for several ciliopathies and CCA.
Collapse
Affiliation(s)
| | | | | | - Cesar Gaspari
- The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Sujeong Jin
- The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Sergio A Gradilone
- The Hormel Institute, University of Minnesota, Austin, MN, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
17
|
Gao L, Zhang Z, Zhang P, Yu M, Yang T. Role of canonical Hedgehog signaling pathway in liver. Int J Biol Sci 2018; 14:1636-1644. [PMID: 30416378 PMCID: PMC6216024 DOI: 10.7150/ijbs.28089] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 08/01/2018] [Indexed: 12/19/2022] Open
Abstract
Hedgehog (Hh) signaling pathway plays an important role in embryonic development. It becomes reactivated in many types of acute and chronic liver injuries. Hh signaling is required for liver regeneration, regulates capillarisation, controls the fates of hepatic stellate cells, promotes liver fibrosis and liver cancers. In this review, we summarize the current knowledge of the role of canonical Hh signaling pathway in adult liver. This help to understand the pathogenesis of liver diseases and find out the new effective targeted therapeutic strategies for liver diseases treatments.
Collapse
Affiliation(s)
- Lili Gao
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Zhenya Zhang
- Department of general surgery, Hebei Medical University Fourth Hospital, Shijiazhuang, 050011, China
| | - Peng Zhang
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Minghua Yu
- Department of Oncology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
- ✉ Corresponding authors: Dr. Minghua Yu, Department of Oncology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China. Phone: 86-21-68030812; E-mail: and Dr. Tao Yang, Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Shanghai 201399, China. Phone: 86-21-68036516; E-mail:
| | - Tao Yang
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
- ✉ Corresponding authors: Dr. Minghua Yu, Department of Oncology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China. Phone: 86-21-68030812; E-mail: and Dr. Tao Yang, Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Shanghai 201399, China. Phone: 86-21-68036516; E-mail:
| |
Collapse
|
18
|
Fabris L, Spirli C, Cadamuro M, Fiorotto R, Strazzabosco M. Emerging concepts in biliary repair and fibrosis. Am J Physiol Gastrointest Liver Physiol 2017; 313:G102-G116. [PMID: 28526690 PMCID: PMC5582882 DOI: 10.1152/ajpgi.00452.2016] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 04/20/2017] [Accepted: 05/11/2017] [Indexed: 01/31/2023]
Abstract
Chronic diseases of the biliary tree (cholangiopathies) represent one of the major unmet needs in clinical hepatology and a significant knowledge gap in liver pathophysiology. The common theme in cholangiopathies is that the target of the disease is the biliary tree. After damage to the biliary epithelium, inflammatory changes stimulate a reparative response with proliferation of cholangiocytes and restoration of the biliary architecture, owing to the reactivation of a variety of morphogenetic signals. Chronic damage and inflammation will ultimately result in pathological repair with generation of biliary fibrosis and clinical progression of the disease. The hallmark of pathological biliary repair is the appearance of reactive ductular cells, a population of cholangiocyte-like epithelial cells of unclear and likely mixed origin that are able to orchestrate a complex process that involves a number of different cell types, under joint control of inflammatory and morphogenetic signals. Several questions remain open concerning the histogenesis of reactive ductular cells, their role in liver repair, their mechanism of activation, and the signals exchanged with the other cellular elements cooperating in the reparative process. This review contributes to the current debate by highlighting a number of new concepts derived from the study of the pathophysiology of chronic cholangiopathies, such as congenital hepatic fibrosis, biliary atresia, and Alagille syndrome.
Collapse
Affiliation(s)
- Luca Fabris
- Department of Molecular Medicine, University of Padua School of Medicine, Padua, Italy; .,Liver Center, Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut.,International Center for Digestive Health, University of Milan-Bicocca School of Medicine, Milan, Italy; and
| | - Carlo Spirli
- 2Liver Center, Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut; ,3International Center for Digestive Health, University of Milan-Bicocca School of Medicine, Milan, Italy; and
| | - Massimiliano Cadamuro
- 3International Center for Digestive Health, University of Milan-Bicocca School of Medicine, Milan, Italy; and ,4Department of Medicine and Surgery, University of Milan-Bicocca School of Medicine, Milan, Italy
| | - Romina Fiorotto
- 2Liver Center, Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut; ,3International Center for Digestive Health, University of Milan-Bicocca School of Medicine, Milan, Italy; and
| | - Mario Strazzabosco
- 2Liver Center, Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut; ,3International Center for Digestive Health, University of Milan-Bicocca School of Medicine, Milan, Italy; and ,4Department of Medicine and Surgery, University of Milan-Bicocca School of Medicine, Milan, Italy
| |
Collapse
|
19
|
Naoum GE, Buchsbaum DJ, Tawadros F, Farooqi A, Arafat WO. Journey of TRAIL from Bench to Bedside and its Potential Role in Immuno-Oncology. Oncol Rev 2017; 11:332. [PMID: 28584572 PMCID: PMC5432952 DOI: 10.4081/oncol.2017.332] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 02/17/2017] [Accepted: 02/27/2017] [Indexed: 12/21/2022] Open
Abstract
Induction of apoptosis in cancer cells has increasingly been the focus of many therapeutic approaches in oncology field. Since its identification as a TNF family member, TRAIL (TNF-related apoptosis-inducing ligand) paved a new path in apoptosis inducing cancer therapies. Its selective ability to activate extrinsic and intrinsic cell death pathways in cancer cells only, independently from p53 mutations responsible for conventional therapeutics resistance, spotted TRAIL as a potent cancer apoptotic agent. Many recombinant preparations of TRAIL and death receptor targeting monoclonal antibodies have been developed and being tested pre-clinically and clinically both as a single agent and in combinations. Of note, the monoclonal antibodies were not the only type of antibodies developed to target TRAIL receptors. Recent technology has brought forth several single chain variable domains (scFv) designs fused recombinantly to TRAIL as well. Also, it is becoming progressively more understandable that field of nanotechnology has revolutionized cancer diagnosis and therapy. The recent breakthroughs in materials science and protein engineering have helped considerably in strategically loading drugs into nanoparticles or conjugating drugs to their surface. In this review we aim to comprehensively highlight the molecular knowledge of TRAIL in the context of its pathway, receptors and resistance factors. We also aim to review the clinical trials that have been done using TRAIL based therapies and to review various scFv designs, the arsenal of nano-carriers and molecules available to selectively target tumor cells with TRAIL.
Collapse
Affiliation(s)
| | | | | | | | - Waleed O. Arafat
- Alexandria Comprehensive Cancer Center, Alexandria, Egypt
- Univeristy of Alabama, Birmingham, AL, USA
- University of Alexandria, Faculty of Medicine, Egypt
| |
Collapse
|
20
|
Autocrine and Paracrine Mechanisms Promoting Chemoresistance in Cholangiocarcinoma. Int J Mol Sci 2017; 18:ijms18010149. [PMID: 28098760 PMCID: PMC5297782 DOI: 10.3390/ijms18010149] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 12/19/2016] [Accepted: 01/06/2017] [Indexed: 02/07/2023] Open
Abstract
Resistance to conventional chemotherapeutic agents, a typical feature of cholangiocarcinoma, prevents the efficacy of the therapeutic arsenal usually used to combat malignancy in humans. Mechanisms of chemoresistance by neoplastic cholangiocytes include evasion of drug-induced apoptosis mediated by autocrine and paracrine cues released in the tumor microenvironment. Here, recent evidence regarding molecular mechanisms of chemoresistance is reviewed, as well as associations between well-developed chemoresistance and activation of the cancer stem cell compartment. It is concluded that improved understanding of the complex interplay between apoptosis signaling and the promotion of cell survival represent potentially productive areas for active investigation, with the ultimate aim of encouraging future studies to unveil new, effective strategies able to overcome current limitations on treatment.
Collapse
|
21
|
Naoum GE, Tawadros F, Farooqi AA, Qureshi MZ, Tabassum S, Buchsbaum DJ, Arafat W. Role of nanotechnology and gene delivery systems in TRAIL-based therapies. Ecancermedicalscience 2016; 10:660. [PMID: 27594905 PMCID: PMC4990059 DOI: 10.3332/ecancer.2016.660] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Indexed: 12/11/2022] Open
Abstract
Since its identification as a member of the tumour necrosis factor (TNF) family, TRAIL (TNF-related apoptosis-inducing ligand) has emerged as a new avenue in apoptosis-inducing cancer therapies. Its ability to circumvent the chemoresistance of conventional therapeutics and to interact with cancer stem cells (CSCs) self-renewal pathways, amplified its potential as a cancer apoptotic agent. Many recombinant preparations of this death ligand and monoclonal antibodies targeting its death receptors have been tested in monotherapy and combinational clinical trials. Gene therapy is a new approach for cancer treatment which implies viral or non-viral functional transgene induction of apoptosis in cancer cells or repair of the underlying genetic abnormality on a molecular level. The role of this approach in overcoming the traditional barriers of radiation and chemotherapeutics systemic toxicity, risk of recurrence, and metastasis made it a promising platform for cancer treatment. The recent first Food Drug Administration (FDA) approved oncolytic herpes virus for melanoma treatment brings forth the potency of the cancer gene therapy approach in the future. Many gene delivery systems have been studied for intratumoural TRAIL gene delivery alone or in combination with chemotherapeutic agents to produce synergistic cancer cytotoxicity. However, there still remain many obstacles to be conquered for this different gene delivery systems. Nanomedicine on the other hand offers a new frontier for clinical trials and biomedical research. The FDA approved nanodrugs motivates horizon exploration for other nanoscale designed particles’ implications in gene delivery. In this review we aim to highlight the molecular role of TRAIL in apoptosis and interaction with cancer stem cells (CSCs) self-renewal pathways. Finally, we also aim to discuss the different roles of gene delivery systems, mesenchymal cells, and nanotechnology designs in TRAIL gene delivery.
Collapse
Affiliation(s)
| | - Fady Tawadros
- East Tennessee State University, 1276 Gilbreath Dr, Johnson City, TN 37604, USA
| | | | | | - Sobia Tabassum
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad, Pakistan
| | - Donald J Buchsbaum
- University of Alabama at Birmingham, 1720 2nd Ave S, Birmingham, AL 35233, USA
| | - Waleed Arafat
- University of Alabama at Birmingham, 1720 2nd Ave S, Birmingham, AL 35233, USA; University of Alexandria, El-Gaish Rd, Egypt, Alexandria, Egypt
| |
Collapse
|
22
|
Ciliary IFT80 balances canonical versus non-canonical hedgehog signalling for osteoblast differentiation. Nat Commun 2016; 7:11024. [PMID: 26996322 PMCID: PMC4802171 DOI: 10.1038/ncomms11024] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 02/11/2016] [Indexed: 02/06/2023] Open
Abstract
Intraflagellar transport proteins (IFT) are required for hedgehog (Hh) signalling transduction that is essential for bone development, however, how IFT proteins regulate Hh signalling in osteoblasts (OBs) remains unclear. Here we show that deletion of ciliary IFT80 in OB precursor cells (OPC) in mice results in growth retardation and markedly decreased bone mass with impaired OB differentiation. Loss of IFT80 blocks canonical Hh–Gli signalling via disrupting Smo ciliary localization, but elevates non-canonical Hh–Gαi–RhoA–stress fibre signalling by increasing Smo and Gαi binding. Inhibition of RhoA and ROCK activity partially restores osteogenic differentiation of IFT80-deficient OPCs by inhibiting non-canonical Hh–RhoA–Cofilin/MLC2 signalling. Cytochalasin D, an actin destabilizer, dramatically restores OB differentiation of IFT80-deficient OPCs by disrupting actin stress fibres and promoting cilia formation and Hh–Gli signalling. These findings reveal that IFT80 is required for OB differentiation by balancing between canonical Hh–Gli and non-canonical Hh–Gαi–RhoA pathways and highlight IFT80 as a therapeutic target for craniofacial and skeletal abnormalities. Primary cilia are highly conserved microtubule-based organelles that play essential roles in several cellular processes including osteogenesis. Here the authors show that intraflagellar protein IFT80 regulates osteoblast differentiation by balancing signalling though the canonical and non-canonical Hedgehog pathways.
Collapse
|
23
|
Yuan X, Yang S. Deletion of IFT80 Impairs Epiphyseal and Articular Cartilage Formation Due to Disruption of Chondrocyte Differentiation. PLoS One 2015; 10:e0130618. [PMID: 26098911 PMCID: PMC4476593 DOI: 10.1371/journal.pone.0130618] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 05/21/2015] [Indexed: 11/27/2022] Open
Abstract
Intraflagellar transport proteins (IFT) play important roles in cilia formation and organ development. Partial loss of IFT80 function leads Jeune asphyxiating thoracic dystrophy (JATD) or short-rib polydactyly (SRP) syndrome type III, displaying narrow thoracic cavity and multiple cartilage anomalies. However, it is unknown how IFT80 regulates cartilage formation. To define the role and mechanism of IFT80 in chondrocyte function and cartilage formation, we generated a Col2α1; IFT80f/f mouse model by crossing IFT80f/f mice with inducible Col2α1-CreER mice, and deleted IFT80 in chondrocyte lineage by injection of tamoxifen into the mice in embryonic or postnatal stage. Loss of IFT80 in the embryonic stage resulted in short limbs at birth. Histological studies showed that IFT80-deficient mice have shortened cartilage with marked changes in cellular morphology and organization in the resting, proliferative, pre-hypertrophic, and hypertrophic zones. Moreover, deletion of IFT80 in the postnatal stage led to mouse stunted growth with shortened growth plate but thickened articular cartilage. Defects of ciliogenesis were found in the cartilage of IFT80-deficient mice and primary IFT80-deficient chondrocytes. Further study showed that chondrogenic differentiation was significantly inhibited in IFT80-deficient mice due to reduced hedgehog (Hh) signaling and increased Wnt signaling activities. These findings demonstrate that loss of IFT80 blocks chondrocyte differentiation by disruption of ciliogenesis and alteration of Hh and Wnt signaling transduction, which in turn alters epiphyseal and articular cartilage formation.
Collapse
Affiliation(s)
- Xue Yuan
- Department of Oral Biology, School of Dental Medicine, University of Buffalo, State University of New York, Buffalo, NY, United States of America
| | - Shuying Yang
- Department of Oral Biology, School of Dental Medicine, University of Buffalo, State University of New York, Buffalo, NY, United States of America
- Developmental Genomics Group, New York State Center of Excellence in Bioinformatics and Life Sciences, University of Buffalo, State University of New York, Buffalo, NY, United States of America
| |
Collapse
|
24
|
Twomey JD, Kim SR, Zhao L, Bozza WP, Zhang B. Spatial dynamics of TRAIL death receptors in cancer cells. Drug Resist Updat 2015; 19:13-21. [PMID: 25840763 DOI: 10.1016/j.drup.2015.02.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 02/15/2015] [Accepted: 02/20/2015] [Indexed: 12/24/2022]
Abstract
TNF-related apoptosis inducing ligand (TRAIL) selectively induces apoptosis in cancer cells without harming most normal cells. Currently, multiple clinical trials are underway to evaluate the antitumor activity of recombinant human TRAIL (rhTRAIL) and agonistic antibodies that target death receptors (DRs) 4 or 5. It is encouraging that these products have shown a tolerated safety profile in early phase studies. However, their therapeutic potential is likely limited by the emergence of tumor drug resistance phenomena. Increasing evidence indicates that TRAIL DRs are deficient on the plasma membrane of some cancer cells despite their total protein expression. Notably, the lack of surface DR4/DR5 is sufficient to render cancers resistant to TRAIL-induced apoptosis, regardless of the status of other apoptosis signaling components. The current review highlights recent findings on the dynamic expression of TRAIL death receptors, including the regulatory roles of endocytosis, autophagy, and Ras GTPase-mediated signaling events. This information could aid in the identification of novel predictive biomarkers of tumor response as well as the development of combinational drugs to overcome or bypass tumor drug resistance to TRAIL receptor-targeted therapies.
Collapse
Affiliation(s)
- Julianne D Twomey
- Division of Biotechnology Review and Research IV, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, United States
| | - Su-Ryun Kim
- Division of Biotechnology Review and Research IV, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, United States
| | - Liqun Zhao
- Division of Biotechnology Review and Research IV, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, United States
| | - William P Bozza
- Division of Biotechnology Review and Research IV, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, United States
| | - Baolin Zhang
- Division of Biotechnology Review and Research IV, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, United States.
| |
Collapse
|
25
|
Kiesslich T, Mayr C, Wachter J, Bach D, Fuereder J, Wagner A, Alinger B, Pichler M, Di Fazio P, Ocker M, Berr F, Neureiter D. Activated hedgehog pathway is a potential target for pharmacological intervention in biliary tract cancer. Mol Cell Biochem 2014; 396:257-268. [PMID: 25064451 DOI: 10.1007/s11010-014-2161-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 07/14/2014] [Indexed: 02/07/2023]
Abstract
Hedgehog (Hh) signalling contributes to carcinogenesis and represents a valid druggable target in human cancers, possibly also in biliary tract cancer (BTC). We analysed the expression of Hh components in BTC using eight heterogeneously differentiated cell lines, xenograft tumours and a human tissue microarray. The dose-, time- and cell line-dependent effects of two Hh inhibitors (cyclopamine and Gant-61) were analysed in vitro for survival, apoptosis, cell cycle distribution and possible synergism with conventional chemotherapeutic agents. In human BTC samples, the sonic Hh ligand and the Gli1 transcription factor showed increased expression in tumours compared to normal adjacent tissue and were significantly associated with high tumour grade and positive lymph node status. In BTC cell lines, we could confirm the Hh component expression at varying extent within the employed cell lines in vitro and in vivo indicating non-canonical signalling. Both Hh inhibitors showed dose-dependent cytotoxicity above 5 µM with a stronger effect for Gant-61 inducing apoptosis whereas cyclopamine rather inhibited proliferation. Cytotoxicity was associated with low cytokeratin expression and higher mesenchymal marker expression such as vimentin. Additionally, drug combinations of Gant-61 with conventional chemotherapy (cisplatin) exerted synergistic effects. In conclusion, Hh pathway is significantly activated in human BTC tissue compared to normal adjacent tissue. The current data demonstrate for the first time an effective anticancer activity of especially Gant-61 in BTC and suggest second generation Hh pathway inhibitors as a potential novel treatment strategy in BTC.
Collapse
Affiliation(s)
- Tobias Kiesslich
- Department of Internal Medicine I, Paracelsus Medical University/Salzburger Landeskliniken (SALK), Salzburg, Austria
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
van Roosmalen IAM, Quax WJ, Kruyt FAE. Two death-inducing human TRAIL receptors to target in cancer: similar or distinct regulation and function? Biochem Pharmacol 2014; 91:447-56. [PMID: 25150214 DOI: 10.1016/j.bcp.2014.08.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 08/11/2014] [Accepted: 08/11/2014] [Indexed: 12/11/2022]
Abstract
The emergence during evolution of two tumour necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) receptors, receptor-1/DR4 and -2/DR5, able to induce apoptosis has raised the question whether they differ in function and regulation, which is of key importance for selecting either DR4 or DR5 selective pro-apoptotic agents for cancer treatment. In this review we found practically no information regarding possible differences in DR4 and DR5 function based on structural differences. On the other hand, a panel of different DR4 or DR5 selective pro-apoptotic agonists have been developed that were explored for efficacy in different tumour types in a large number of studies. Leukemic cells appear mainly sensitive for DR4-induced apoptosis, contrasting the situation in other tumour types that show heterogeneity in receptor preference and, in some cases, a slight overall preference for DR5. Both receptors were found to mediate intracellular stress-induced apoptosis, although this is most frequently reported for DR5. Interestingly, DR5 was also found to transmit non-apoptotic signalling in resistant tumour cells and recently nuclear localization and a role in microRNA maturation has been described. DR4 expression is most heavily regulated by promoter methylation, intracellular trafficking and post-translational modifications. DR5 expression is predominantly regulated at the transcriptional level, which may reflect its ability to respond to cellular stressors. It will be important to further increase our understanding of the mechanisms determining TRAIL receptor preference in order to select the appropriate TRAIL receptor selective agonists for therapy, and to develop novel strategies to enhance apoptosis activation in tumours.
Collapse
Affiliation(s)
- Ingrid A M van Roosmalen
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; Department of Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Wim J Quax
- Department of Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Frank A E Kruyt
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands.
| |
Collapse
|
27
|
Kim Y, Kim MO, Shin JS, Park SH, Kim SB, Kim J, Park SC, Han CJ, Ryu JK, Yoon YB, Kim YT. Hedgehog signaling between cancer cells and hepatic stellate cells in promoting cholangiocarcinoma. Ann Surg Oncol 2014; 21:2684-98. [PMID: 24682719 DOI: 10.1245/s10434-014-3531-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Indexed: 12/11/2022]
Abstract
BACKGROUND Aberrant Hedgehog (HH) signaling activation is important in cancer growth and mediates the interaction between cancer cells and the surrounding stromal cells. This study investigated the role of HH signaling on the growth of cholangiocarcinoma (CC), focusing on the interaction of CC cells with stromal cells. METHODS To evaluate the interaction between human CC cells (SNU-1196, SNU-246, SNU-308, SNU-1079, and HuCCT-1) and stromal cells (hepatic stellate cell line, Lx-2), co-culture proliferation, migration, and invasion assays were performed. In vivo nude mice experiments were conducted using two groups-HuCCT-1 single implant xenograft (SX) and co-implant xenograft (CX) with HuCCT-1 and Lx-2. RESULTS When HuCCT-1 cells were co-cultured with Lx-2 cells, the expression of HH signaling-related proteins increased in both HuCCT-1 and Lx-2 cells. Co-culture with Lx-2 cells stimulated the proliferation, migration, and invasion of CC cells, and these effects were mediated by HH signaling. Co-culture of HuCCT-1 and Lx-2 cells increased the secretion of several cytokines. In an ectopic xenograft model, Lx-2 co-implantation increased CC tumor growth and stimulated angiogenesis. Cyclopamine attenuated tumor growth in the CX group, but not in the HuCCT-1 mono-implant (SX) group. Cyclopamine treatment decreased CC cell proliferation, suppressed microvessel density, and increased tumor necrosis in the CX group, but not in the SX group. CONCLUSION Hepatic stellate cells stimulate the proliferation, migration, and invasion of CC cells, promote angiogenesis through HH signaling activation, and render CC more susceptible to necrosis by HH inhibitor.
Collapse
Affiliation(s)
- Younjoo Kim
- Division of Gastroenterology, Department of Internal Medicine, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Razumilava N, Gradilone SA, Smoot RL, Mertens JC, Bronk SF, Sirica AE, Gores GJ. Non-canonical Hedgehog signaling contributes to chemotaxis in cholangiocarcinoma. J Hepatol 2014; 60:599-605. [PMID: 24239776 PMCID: PMC3944428 DOI: 10.1016/j.jhep.2013.11.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 10/09/2013] [Accepted: 11/05/2013] [Indexed: 12/18/2022]
Abstract
BACKGROUND & AIMS The Hedgehog signaling pathway contributes to cholangiocarcinoma biology. However, canonical Hedgehog signaling requires cilia, and cholangiocarcinoma cells often do not express cilia. To resolve this paradox, we examined non-canonical (G-protein coupled, pertussis toxin sensitive) Hedgehog signaling in cholangiocarcinoma cells. METHODS Human [non-malignant (H69), malignant (HuCC-T1 and Mz-ChA-1)] and rat [non-malignant (BDE1 and NRC), and malignant (BDEneu)] cell lines were employed for this study. A BDE(ΔLoop2) cell line with the dominant-negative receptor Patched-1 was generated with the Sleeping Beauty transposon transfection system. RESULTS Cilia expression was readily identified in non-malignant, but not in malignant cholangiocarcinoma cell lines. Although the canonical Hh signaling pathway was markedly attenuated in cholangiocarcinoma cells, they were chemotactic to purmorphamine, a small-molecule direct Smoothened agonist. Purmorphamine also induced remodeling of the actin cytoskeleton with formation of filopodia and lamellipodia-like protrusions. All these biological features of cell migration were pertussis toxin sensitive, a feature of G-protein coupled (Gis) receptors. To further test the role of Hedgehog signaling in vivo, we employed a syngeneic orthotopic rat model of cholangiocarcinoma. In vivo, genetic inhibition of the Hedgehog signaling pathway employing BDE(ΔLoop2) cells or pharmacological inhibition with a small-molecule antagonist of Smoothened, vismodegib, was tumor and metastasis suppressive. CONCLUSIONS Cholangiocarcinoma cells exhibit non-canonical Hedgehog signaling with chemotaxis despite impaired cilia expression. This non-canonical Hedgehog signaling pathway appears to contribute to cholangiocarcinoma progression, thereby, supporting a role for Hedgehog pathway inhibition in human cholangiocarcinoma.
Collapse
Affiliation(s)
- Nataliya Razumilava
- Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Sergio A Gradilone
- Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Rory L Smoot
- Department of General Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Joachim C Mertens
- Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA; Division of Gastroenterology and Hepatology, University Hospital Zurich, Switzerland
| | - Steven F Bronk
- Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Alphonse E Sirica
- Department of Pathology, Virginia Commonwealth University, Richmond, VA, USA
| | - Gregory J Gores
- Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
| |
Collapse
|
29
|
Fingas CD, Mertens JC, Razumilava N, Sydor S, Bronk SF, Christensen JD, Rizvi SH, Canbay A, Treckmann JW, Paul A, Sirica AE, Gores GJ. Polo-like kinase 2 is a mediator of hedgehog survival signaling in cholangiocarcinoma. Hepatology 2013; 58:1362-74. [PMID: 23703673 PMCID: PMC3811036 DOI: 10.1002/hep.26484] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Accepted: 04/16/2013] [Indexed: 12/11/2022]
Abstract
UNLABELLED Cholangiocarcinoma (CCA) cells paradoxically express the death ligand tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and thus rely on potent survival signals to circumvent cell death by TRAIL. Hedgehog (Hh) signaling is an important survival pathway in CCA. Herein, we further examine the mechanisms whereby Hh signaling mediates apoptosis resistance in CCA, revealing a pivotal role for the cell division regulating serine/threonine kinase polo-like kinase 2 (PLK2). We employed 50 human CCA samples (25 intrahepatic and 25 extrahepatic CCA) as well as human KMCH-1, Mz-CHA-1, and HUCCT-1 CCA cells for these studies. In vivo experiments were conducted using a syngeneic rat orthotopic CCA model. In human samples, polo-like kinase (PLK)1/2/3-immunoreactive cancer cells were present in the preponderance of intra- and extrahepatic CCA specimens. Inhibition of Hh signaling by cyclopamine reduced PLK2, but not PLK1 or PLK3, messenger RNA and protein expression in vehicle-treated and sonic Hh-treated CCA cells, confirming our previous microarray study. PLK2 regulation by Hh signaling appears to be direct, because the Hh transcription factors, glioma-associated oncogene 1 and 2, bind to the PLK2 promotor. Moreover, inhibition of PLK2 by the PLK inhibitor, BI 6727 (volasertib), or PLK2 knockdown was proapoptotic in CCA cells. BI 6727 administration or PLK2 knockdown decreased cellular protein levels of antiapoptotic myeloid cell leukemia 1 (Mcl-1), an effect reversed by the proteasome inhibitor, MG-132. Finally, BI 6727 administration reduced Mcl-1 protein expression in CCA cells, resulting in CCA cell apoptosis and tumor suppression in vivo. CONCLUSION PLK2 appears to be an important mediator of Hh survival signaling. These results suggest PLK inhibitors to be of therapeutic value for treatment of human CCA.
Collapse
Affiliation(s)
- Christian D. Fingas
- Department of General, Visceral, and Transplantation Surgery, University Hospital Essen, Essen, Germany
| | - Joachim C. Mertens
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, MN
- Division of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Nataliya Razumilava
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, MN
| | - Svenja Sydor
- Department of Gastroenterology and Hepatology, University Hospital Essen, Essen, Germany
| | - Steven F. Bronk
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, MN
| | - John D. Christensen
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, MN
| | - Sumera H. Rizvi
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, MN
| | - Ali Canbay
- Department of Gastroenterology and Hepatology, University Hospital Essen, Essen, Germany
| | - Jürgen W. Treckmann
- Department of General, Visceral, and Transplantation Surgery, University Hospital Essen, Essen, Germany
| | - Andreas Paul
- Department of General, Visceral, and Transplantation Surgery, University Hospital Essen, Essen, Germany
| | - Alphonse E. Sirica
- Division of Cellular and Molecular Pathogenesis, Department of Pathology, Virginia Commonwealth University School of Medicine, Richmond, VA
| | - Gregory J. Gores
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, MN
| |
Collapse
|
30
|
Hirsova P, Ibrahim SH, Bronk SF, Yagita H, Gores GJ. Vismodegib suppresses TRAIL-mediated liver injury in a mouse model of nonalcoholic steatohepatitis. PLoS One 2013; 8:e70599. [PMID: 23894677 PMCID: PMC3718793 DOI: 10.1371/journal.pone.0070599] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 06/19/2013] [Indexed: 01/07/2023] Open
Abstract
Hedgehog signaling pathway activation has been implicated in the pathogenesis of NASH. Despite this concept, hedgehog pathway inhibitors have not been explored. Thus, we examined the effect of vismodegib, a hedgehog signaling pathway inhibitor, in a diet-induced model of NASH. C57BL/6 mice were placed on 3-month chow or FFC (high saturated fats, fructose, and cholesterol) diet. One week prior to sacrifice, mice were treated with vismodegib or vehicle. Mice fed the FFC diet developed significant steatosis, which was unchanged by vismodegib therapy. In contrast, vismodegib significantly attenuated FFC-induced liver injury as manifested by reduced serum ALT and hepatic TUNEL-positive cells. In line with the decreased apoptosis, vismodegib prevented FFC-induced strong upregulation of death receptor DR5 and its ligand TRAIL. In addition, FFC-fed mice, but not chow-fed animals, underwent significant liver injury and apoptosis following treatment with a DR5 agonist; however, this injury was prevented by pre-treatment with vismodegib. Consistent with a reduction in liver injury, vismodegib normalized FFC-induced markers of inflammation including mRNA for TNF-α, IL-1β, IL-6, monocyte chemotactic protein-1 and a variety of macrophage markers. Furthermore, vismodegib in FFC-fed mice abrogated indices of hepatic fibrogenesis. In conclusion, inhibition of hedgehog signaling with vismodegib appears to reduce TRAIL-mediated liver injury in a nutrient excess model of NASH, thereby attenuating hepatic inflammation and fibrosis. We speculate that hedgehog signaling inhibition may be salutary in human NASH.
Collapse
Affiliation(s)
- Petra Hirsova
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Pharmacology, Faculty of Medicine in Hradec Kralove, Charles University in Prague, Hradec Kralove, Czech Republic
| | - Samar H. Ibrahim
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Steven F. Bronk
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Hideo Yagita
- Department of Immunology, School of Medicine, Juntendo University, Tokyo, Japan
| | - Gregory J. Gores
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
31
|
Zheng T, Fu JJ, Hu L, Qiu F, Hu M, Zhu JJ, Hua ZC, Wang H. Nanoarchitectured Electrochemical Cytosensors for Selective Detection of Leukemia Cells and Quantitative Evaluation of Death Receptor Expression on Cell Surfaces. Anal Chem 2013; 85:5609-16. [DOI: 10.1021/ac400994p] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Tingting Zheng
- State Key Laboratory of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, China
- Department of Chemistry and
Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Jia-Ju Fu
- State Key Laboratory of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Lihui Hu
- State Key Laboratory of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Fan Qiu
- State Key Laboratory of Pharmaceutical
Biotechnology, Nanjing University, Nanjing,
Jiangsu 210093, China
| | - Minjin Hu
- Changzhou High-Tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc., Changzhou, Jiangsu 213164, China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Zi-Chun Hua
- State Key Laboratory of Pharmaceutical
Biotechnology, Nanjing University, Nanjing,
Jiangsu 210093, China
| | - Hui Wang
- Department of Chemistry and
Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| |
Collapse
|
32
|
Wang C, Yuan X, Yang S. IFT80 is essential for chondrocyte differentiation by regulating Hedgehog and Wnt signaling pathways. Exp Cell Res 2013; 319:623-32. [PMID: 23333501 PMCID: PMC3908790 DOI: 10.1016/j.yexcr.2012.12.028] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2012] [Revised: 12/17/2012] [Accepted: 12/19/2012] [Indexed: 01/10/2023]
Abstract
Partial mutation of intraflagellar transport 80 (IFT80) in humans causes Jeune asphyxiating thoracic dystrophy (JATD) and short-rib polydactyly (SRP) syndrome type III. These diseases are autosomal recessive chondrodysplasias that share clinical similarities, including shortened long bones and constricted thoracic cage. However, the role and mechanism of IFT80 in the regulation of chondrocyte differentiation and function remain largely unknown. We hypothesize that IFT80 is required for the formation and function of cilia and plays a critical role in chondrogenic differentiation by regulating Hedgehog (Hh) and Wingless (Wnt) signaling pathways. To test this hypothesis, we first analyzed the IFT80 expression pattern and found that IFT80 was predominantly expressed in growth plate chondrocytes and during chondrogenic differentiation. Silencing IFT80 impaired cilia formation and chondrogenic differentiation in mouse bone marrow derived stromal cells (BMSCs), and decreased the expression of chondrocyte marker genes--collagen II and aggrecan. Additionally, silencing IFT80 down-regulated Hh signaling activity whereas up-regulated Wnt signaling activity. The overexpression of Gli2 in IFT80-silenced cells promoted chondrogenesis and recovered the chondrogenic deficiency from IFT80 silencing. Overall, our results demonstrate that IFT80 is essential for chondrocyte differentiation by regulating the Hh and Wnt signaling pathways.
Collapse
Affiliation(s)
- Changdong Wang
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | - Xue Yuan
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | - Shuying Yang
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, NY 14214, USA
- New York State Center of Excellence in Bioinformatics & Life Science, Buffalo, NY 14263, USA
| |
Collapse
|
33
|
Gradilone SA, Radtke BN, Bogert PS, Huang BQ, Gajdos GB, LaRusso NF. HDAC6 inhibition restores ciliary expression and decreases tumor growth. Cancer Res 2013; 73:2259-70. [PMID: 23370327 DOI: 10.1158/0008-5472.can-12-2938] [Citation(s) in RCA: 157] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Primary cilia are multisensory organelles recently found to be absent in some tumor cells, but the mechanisms of deciliation and the role of cilia in tumor biology remain unclear. Cholangiocytes, the epithelial cells lining the biliary tree, normally express primary cilia and their interaction with bile components regulates multiple processes, including proliferation and transport. Using cholangiocarcinoma as a model, we found that primary cilia are reduced in cholangiocarcinoma by a mechanism involving histone deacetylase 6 (HDAC6). The experimental deciliation of normal cholangiocyte cells increased the proliferation rate and induced anchorage-independent growth. Furthermore, deciliation induced the activation of mitogen-activated protein kinase and Hedgehog signaling, two important pathways involved in cholangiocarcinoma development. We found that HDAC6 is overexpressed in cholangiocarcinoma and overexpression of HDAC6 in normal cholangiocytes induced deciliation and increased both proliferation and anchorage-independent growth. To evaluate the effect of cilia restoration on tumor cells, we targeted HDAC6 by short hairpin RNA (shRNA) or by the pharmacologic inhibitor, tubastatin-A. Both approaches restored the expression of primary cilia in cholangiocarcinoma cell lines and decreased cell proliferation and anchorage-independent growth. The effects of tubastatin-A were abolished when cholangiocarcinoma cells were rendered unable to regenerate cilia by stable transfection of IFT88-shRNA. Finally, inhibition of HDAC6 by tubastatin-A also induced a significant decrease in tumor growth in a cholangiocarcinoma animal model. Our data support a key role for primary cilia in malignant transformation, provide a plausible mechanism for their involvement, and suggest that restoration of primary cilia in tumor cells by HDAC6 targeting may be a potential therapeutic approach for cholangiocarcinoma.
Collapse
Affiliation(s)
- Sergio A Gradilone
- Department of Medicine, Division of Gastroenterology and Hepatology, Mayo Center for Cell Signalling in Gastroenterology, Mayo Clinic, Rochester, MN 55905, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Abstract
The incidence of nonalcoholic fatty liver disease is increasing at an astonishing rate in the US population. Although only a small proportion of these patients develop steatohepatitis (NASH), those who do have a greater likelihood of developing end-stage liver disease and complications. Research on liver fibrosis and NASH progression shows that hedgehog (Hh) is reactivated after liver injury to assist in liver repair and regeneration. When the process of tissue repair and regeneration is prolonged or when Hh ligand and related genes are aberrantly regulated and excessive, tissue repair goes awry and NASH progresses to cirrhosis and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Brittany N Bohinc
- Department of Endocrinology, Diabetes and Metabolism, Duke University Hospital, Durham, NC 27710, USA
| | | |
Collapse
|
35
|
Razumilava N, Bronk SF, Smoot RL, Fingas CD, Werneburg NW, Roberts LR, Mott JL. miR-25 targets TNF-related apoptosis inducing ligand (TRAIL) death receptor-4 and promotes apoptosis resistance in cholangiocarcinoma. Hepatology 2012; 55:465-75. [PMID: 21953056 PMCID: PMC3268937 DOI: 10.1002/hep.24698] [Citation(s) in RCA: 163] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 09/15/2011] [Indexed: 12/11/2022]
Abstract
UNLABELLED It has been established that microRNA expression and function contribute to phenotypic features of malignant cells, including resistance to apoptosis. Although targets and functional roles for a number of microRNAs have been described in cholangiocarcinoma, many additional microRNAs dysregulated in this tumor have not been assigned functional roles. In this study, we identify elevated miR-25 expression in malignant cholangiocarcinoma cell lines as well as patient samples. In cultured cells, treatment with the Smoothened inhibitor, cyclopamine, reduced miR-25 expression, suggesting Hedgehog signaling stimulates miR-25 production. Functionally, miR-25 was shown to protect cells against TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis. Correspondingly, antagonism of miR-25 in culture sensitized cells to apoptotic death. Computational analysis identified the TRAIL Death Receptor-4 (DR4) as a potential novel miR-25 target, and this prediction was confirmed by immunoblot, cell staining, and reporter assays. CONCLUSION These data implicate elevated miR-25 levels in the control of tumor cell apoptosis in cholangiocarcinoma. The identification of the novel miR-25 target DR4 provides a mechanism by which miR-25 contributes to evasion of TRAIL-induced cholangiocarcinoma apoptosis.
Collapse
Affiliation(s)
- Nataliya Razumilava
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Fingas CD, Bronk SF, Werneburg NW, Mott JL, Guicciardi ME, Cazanave SC, Mertens JC, Sirica AE, Gores GJ. Myofibroblast-derived PDGF-BB promotes Hedgehog survival signaling in cholangiocarcinoma cells. Hepatology 2011; 54:2076-88. [PMID: 22038837 PMCID: PMC3230714 DOI: 10.1002/hep.24588] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
UNLABELLED Cholangiocarcinoma (CCA) cells paradoxically express the death ligand, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and, therefore, are dependent upon potent survival signals to circumvent TRAIL cytotoxicity. CCAs are also highly desmoplastic cancers with a tumor microenvironment rich in myofibroblasts (MFBs). Herein, we examine a role for MFB-derived CCA survival signals. We employed human KMCH-1, KMBC, HuCCT-1, TFK-1, and Mz-ChA-1 CCA cells, as well as human primary hepatic stellate and myofibroblastic LX-2 cells, for these studies. In vivo experiments were conducted using a syngeneic rat orthotopic CCA model. Coculturing CCA cells with myofibroblastic human primary hepatic stellate cells or LX-2 cells significantly decreased TRAIL-induced apoptosis in CCA cells, a cytoprotective effect abrogated by neutralizing platelet-derived growth factor (PDGF)-BB antiserum. Cytoprotection by PDGF-BB was dependent upon Hedgehog (Hh) signaling, because it was abolished by the smoothened (SMO; the transducer of Hh signaling) inhibitor, cyclopamine. PDGF-BB induced cyclic adenosine monophosphate-dependent protein kinase-dependent trafficking of SMO to the plasma membrane, resulting in glioma-associated oncogene (GLI)2 nuclear translocation and activation of a consensus GLI reporter gene-based luciferase assay. A genome-wide messenger RNA expression analysis identified 67 target genes to be commonly up- (50 genes) or down-regulated (17 genes) by both Sonic hedgehog and PDGF-BB in a cyclopamine-dependent manner in CCA cells. Finally, in a rodent CCA in vivo model, cyclopamine administration increased apoptosis in CCA cells, resulting in tumor suppression. CONCLUSIONS MFB-derived PDGF-BB protects CCA cells from TRAIL cytotoxicity by a Hh-signaling-dependent process. These results have therapeutical implications for the treatment of human CCA.
Collapse
Affiliation(s)
- C D Fingas
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
,Department of General, Visceral, and Transplantation Surgery, University Hospital Essen, Essen, Germany
| | - S F Bronk
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | - N W Werneburg
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | - J L Mott
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | - M E Guicciardi
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | - S C Cazanave
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | - J C Mertens
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | - A E Sirica
- Division of Cellular and Molecular Pathogenesis, Department of Pathology, Virginia Commonwealth University School of Medicine, Richmond, VA
| | - G J Gores
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| |
Collapse
|
37
|
Farooqi AA, Mukhtar S, Riaz AM, Waseem S, Minhaj S, Dilawar BA, Malik BA, Nawaz A, Bhatti S. Wnt and SHH in prostate cancer: trouble mongers occupy the TRAIL towards apoptosis. Cell Prolif 2011; 44:508-15. [PMID: 21973075 DOI: 10.1111/j.1365-2184.2011.00784.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Prostate cancer is a serious molecular disorder that arises because of reduction in tumour suppressors and overexpression of oncogenes. The malignant cells survive within the context of a three-dimensional microenvironment in which they are exposed to mechanical and physical cues. These signals are, nonetheless, deregulated through perturbations to mechanotransduction, from the nanoscale level to the tissue level. Increasingly sophisticated interpretations have uncovered significant contributions of signal transduction cascades in governing prostate cancer progression. To dismantle the major determinants that lie beneath disruption of spatiotemporal patterns of activity, crosstalk between various signalling cascades and their opposing and promoting effects on TRAIL-mediated activities cannot be ruled out. It is important to focus on that molecular multiplicity of cancer cells, various phenotypes reflecting expression of a variety of target oncogenes, reversible to irreversible, exclusive, overlapping or linked, coexist and compete with each other. Comprehensive investigations into TRAIL-mediated mitochondrial dynamics will remain a worthwhile area for underlining causes of tumourigenesis and for unravelling interference options.
Collapse
Affiliation(s)
- A A Farooqi
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Pakistan.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Yuan S, Yu SL, Chen HY, Hsu YC, Su KY, Chen HW, Chen CY, Yu CJ, Shih JY, Chang YL, Cheng CL, Hsu CP, Hsia JY, Lin CY, Wu G, Liu CH, Wang CD, Yang KC, Chen YW, Lai YL, Hsu CC, Lin TC, Yang TY, Chen KC, Hsu KH, Chen JJW, Chang GC, Li KC, Yang PC. Clustered genomic alterations in chromosome 7p dictate outcomes and targeted treatment responses of lung adenocarcinoma with EGFR-activating mutations. J Clin Oncol 2011; 29:3435-42. [PMID: 21810691 DOI: 10.1200/jco.2011.35.3979] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
PURPOSE Although epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) have been proven more effective for patients with lung adenocarcinoma with EGFR-activating mutation rather than wild type, the former group still includes approximately 30% nonresponders. The molecular basis of this substantial response heterogeneity is unknown. Our purpose was to seek molecular aberrations contributing to disease progression at the genome-wide level and identify the prognostic signature unique to patients with EGFR-activating mutation. PATIENTS AND METHODS We first investigated the molecular differences between tumors with EGFR-activating mutation and wild-type tumors by conducting high-density array comparative genomic hybridization on a collection of 138 adenocarcinoma tissues. We then used an independent group of 114 patients to validate the clinical relevance of copy-number alterations (CNAs) in predicting overall and disease-free survival. Finally, focusing on 23 patients with EGFR mutation receiving EGFR-TKI treatment, we investigated the association between CNAs and response to EGFR-TKIs. RESULTS We identified chromosome regions with differential CNAs between tumors with EGFR-activating mutation and wild-type tumors and found the aberration sites to cluster highly on chromosome 7p. A cluster of six representative chromosome 7p genes predicted overall and disease-free survival for patients with EGFR-activating mutation but not for those with wild type. Importantly, simultaneous presence of more genes with increased CNAs in this cluster correlated with less favorable response to EGFR-TKIs in patients with EGFR-activating mutation. CONCLUSION Our results shed light on why responses to EGFR-TKIs are heterogeneous among patients with EGFR-activating mutation. They may lead to better patient management in this population.
Collapse
Affiliation(s)
- Shinsheng Yuan
- National Taiwan University College of Medicine, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
PURPOSE OF REVIEW Cells lining the biliary tree are targets of injury, but also orchestrate liver repair. The latter involves autocrine/paracrine signaling that enhances the viability and growth of residual ductular cells and promotes accumulation of inflammatory and myofibroblastic cells. The mechanisms mediating this so-called 'ductular reaction' need to be better understood to improve injury outcomes. Studies are revealing that ductular cells produce and respond to hedgehog (Hh) ligands, developmental morphogens that control progenitor cell fate and tissue construction during embryogenesis. Because this has potential implications for liver repair, this review will summarize current knowledge about Hh signaling and cholangiocytes. RECENT FINDINGS Diverse types of liver injury stimulate cholangiocytes to generate Hh ligands, and cholangiocyte-derived Hh ligands interact with receptors on cholangiocytes and neighboring cells to modulate virtually every aspect of the ductular reaction to injury. Excessive Hh signaling promotes dysfunctional repair and results in chronic hepatic inflammation, fibrogenesis, and carcinogenesis. SUMMARY The Hh pathway is part of the complex signaling network that orchestrates liver repair. How other pathways and posttranscriptional mechanisms modulate Hh signaling in ductular cells remains unclear. Further research in this area may identify novel therapeutic targets for the treatment of cholangiopathies and cholangiocarcinoma.
Collapse
Affiliation(s)
- Alessia Omenetti
- Division of Gastroenterology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
40
|
Omenetti A, Bass LM, Anders RA, Clemente MG, Francis H, Guy CD, McCall S, Choi SS, Alpini G, Schwarz KB, Diehl AM, Whitington PF. Hedgehog activity, epithelial-mesenchymal transitions, and biliary dysmorphogenesis in biliary atresia. Hepatology 2011; 53:1246-58. [PMID: 21480329 PMCID: PMC3074103 DOI: 10.1002/hep.24156] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
UNLABELLED Biliary atresia (BA) is notable for marked ductular reaction and rapid development of fibrosis. Activation of the Hedgehog (Hh) pathway promotes the expansion of populations of immature epithelial cells that coexpress mesenchymal markers and may be profibrogenic. We examined the hypothesis that in BA excessive Hh activation impedes ductular morphogenesis and enhances fibrogenesis by promoting accumulation of immature ductular cells with a mesenchymal phenotype. Livers and remnant extrahepatic ducts from BA patients were evaluated by quantitative reverse-transcription polymerase chain reaction (QRT-PCR) and immunostaining for Hh ligands, target genes, and markers of mesenchymal cells or ductular progenitors. Findings were compared to children with genetic cholestatic disease, age-matched deceased donor controls, and adult controls. Ductular cells isolated from adult rats with and without bile duct ligation were incubated with Hh ligand-enriched medium ± Hh-neutralizing antibody to determine direct effects of Hh ligands on epithelial to mesenchymal transition (EMT) marker expression. Livers from pediatric controls showed greater innate Hh activation than adult controls. In children with BA, both intra- and extrahepatic ductular cells demonstrated striking up-regulation of Hh ligand production and increased expression of Hh target genes. Excessive accumulation of Hh-producing cells and Hh-responsive cells also occurred in other infantile cholestatic diseases. Further analysis of the BA samples demonstrated that immature ductular cells with a mesenchymal phenotype were Hh-responsive. Treating immature ductular cells with Hh ligand-enriched medium induced mesenchymal genes; neutralizing Hh ligands inhibited this. CONCLUSION BA is characterized by excessive Hh pathway activity, which stimulates biliary EMT and may contribute to biliary dysmorphogenesis. Other cholestatic diseases show similar activation, suggesting that this is a common response to cholestatic injury in infancy.
Collapse
Affiliation(s)
- Alessia Omenetti
- Division of Gastroenterology, Duke University Medical Center, Durham, NC, United States
| | - Lee M Bass
- Pediatrics, Feinberg Medical School of Northwestern University, Children's Memorial Research Center, Chicago, Illinois, United States
| | - Robert A. Anders
- Pathology, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Maria G Clemente
- Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Heather Francis
- R&E, Scott & White Digestive Disease, Medicine, Scott & White, Texas A&M HSC COM, Temple, TX,United States
| | - Cinthya D Guy
- Pathology, Duke University Medical Center, Durham, NC, United States
| | - Shannon McCall
- Pathology, Duke University Medical Center, Durham, NC, United States
| | - Steve S Choi
- Division of Gastroenterology, Duke University Medical Center, Durham, NC, United States., Section of Gastroenterology, Durham Veterans Affairs Medical Center, Durham, NC, United States
| | - Gianfranco Alpini
- Scott & White Digestive Disease Research Center, Research, Medicine, Division Research, Central Texas. Veterans Health Care System, Texas A&M HSC COM, Scott & White, Temple, TX, United States
| | - Kathleen B Schwarz
- Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Anna Mae Diehl
- Division of Gastroenterology, Duke University Medical Center, Durham, NC, United States
| | - Peter F Whitington
- Pediatrics, Feinberg Medical School of Northwestern University, Children's Memorial Research Center, Chicago, Illinois, United States
| |
Collapse
|
41
|
Kurita S, Mott JL, Cazanave SC, Fingas CD, Guicciardi ME, Bronk SF, Roberts LR, Fernandez-Zapico ME, Gores GJ. Hedgehog inhibition promotes a switch from Type II to Type I cell death receptor signaling in cancer cells. PLoS One 2011; 6:e18330. [PMID: 21483830 PMCID: PMC3069071 DOI: 10.1371/journal.pone.0018330] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 02/25/2011] [Indexed: 01/29/2023] Open
Abstract
TRAIL is a promising therapeutic agent for human malignancies. TRAIL often requires mitochondrial dysfunction, referred to as the Type II death receptor pathway, to promote cytotoxicity. However, numerous malignant cells are TRAIL resistant due to inhibition of this mitochondrial pathway. Using cholangiocarcinoma cells as a model of TRAIL resistance, we found that Hedgehog signaling blockade sensitized these cancer cells to TRAIL cytotoxicity independent of mitochondrial dysfunction, referred to as Type I death receptor signaling. This switch in TRAIL requirement from Type II to Type I death receptor signaling was demonstrated by the lack of functional dependence on Bid/Bim and Bax/Bak, proapoptotic components of the mitochondrial pathway. Hedgehog signaling modulated expression of X-linked inhibitor of apoptosis (XIAP), which serves to repress the Type I death receptor pathway. siRNA targeted knockdown of XIAP mimics sensitization to mitochondria-independent TRAIL killing achieved by Hedgehog inhibition. Regulation of XIAP expression by Hedgehog signaling is mediated by the glioma-associated oncogene 2 (GLI2), a downstream transcription factor of Hedgehog. In conclusion, these data provide additional mechanisms modulating cell death by TRAIL and suggest Hedgehog inhibition as a therapeutic approach for TRAIL-resistant neoplasms.
Collapse
Affiliation(s)
- Satoshi Kurita
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Justin L. Mott
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Sophie C. Cazanave
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Christian D. Fingas
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Maria E. Guicciardi
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Steve F. Bronk
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Lewis R. Roberts
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Martin E. Fernandez-Zapico
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, United States of America
- Division of Oncology Research, Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Gregory J. Gores
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
42
|
Omenetti A, Choi S, Michelotti G, Diehl AM. Hedgehog signaling in the liver. J Hepatol 2011; 54:366-73. [PMID: 21093090 PMCID: PMC3053023 DOI: 10.1016/j.jhep.2010.10.003] [Citation(s) in RCA: 215] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 10/05/2010] [Accepted: 10/07/2010] [Indexed: 12/13/2022]
Abstract
Reactivation of Hedgehog (Hh), a morphogenic signaling pathway that controls progenitor cell fate and tissue construction during embryogenesis occurs during many types of liver injury in adult. The net effects of activating the Hedgehog pathway include expansion of liver progenitor populations to promote liver regeneration, but also hepatic accumulation of inflammatory cells, liver fibrogenesis, and vascular remodeling. All of these latter responses are known to be involved in the pathogenesis of cirrhosis. In addition, Hh signaling may play a role in primary liver cancers, such as cholangiocarcinoma and hepatocellular carcinoma. Study of Hedgehog signaling in liver cells is in its infancy. Additional research in this area is justified given growing experimental and clinical data supporting a role for the pathway in regulating outcomes of liver injury.
Collapse
|