1
|
Liu X, Zang L, Yu J, Yu J, Wang S, Zhou L, Song H, Ma Y, Niu X, Li W. Anti-inflammatory effect of proanthocyanidins from blueberry through NF-κβ/NLRP3 signaling pathway in vivo and in vitro. Immunopharmacol Immunotoxicol 2024:1-11. [PMID: 38772618 DOI: 10.1080/08923973.2024.2358770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/18/2024] [Indexed: 05/23/2024]
Abstract
BACKGROUND Systemic inflammatory response syndrome (SIRS) is an uncontrolled systemic inflammatory response. Proanthocyanidins (PC) is a general term of polyphenol compounds widely existed in blueberry fruits and can treat inflammation-related diseases. This study aimed to explore the regulatory effect of PC on lipopolysaccharide (LPS)-induced systemic inflammation and its potential mechanism, providing effective strategies for the further development of PC. METHODS Here, RAW264.7 macrophages were stimulated with LPS to establish an inflammation model in vitro, while endotoxin shock mouse models were constructed by LPS in vivo. The function of PC was investigated by MTT, ELISA kits, H&E staining, immunohistochemistry, and Western blot analysis. RESULTS Functionally, PC could demonstrate the potential to mitigate mortality in mice with endotoxin shock, as well as attenuated the levels of inflammatory cytokines (IL-6, TNF-α) and biochemical indicators (AST, ALT, CRE and BUN). Moreover, it had a significant protective effect on lung and kidney tissues damage. Mechanistically, PC exerted anti-inflammatory effects by inhibiting the activation of the NF-κB/NLRP3 signaling pathway. CONCLUSION PC might have the potential ability of anti-inflammatory effects via modulation of the NF-κB/NLRP3 signaling pathway.
Collapse
Affiliation(s)
- Xinyao Liu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Lulu Zang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Jiabao Yu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Jinjin Yu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Siqi Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Lili Zhou
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Huixin Song
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Yajing Ma
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Xiaofeng Niu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Weifeng Li
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, P.R. China
| |
Collapse
|
2
|
Loza-Valdes A, Mayer AE, Kassouf T, Trujillo-Viera J, Schmitz W, Dziaczkowski F, Leitges M, Schlosser A, Sumara G. A phosphoproteomic approach reveals that PKD3 controls PKA-mediated glucose and tyrosine metabolism. Life Sci Alliance 2021; 4:4/8/e202000863. [PMID: 34145024 PMCID: PMC8321662 DOI: 10.26508/lsa.202000863] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/21/2022] Open
Abstract
Protein kinase D3 (PKD3) regulates hepatic metabolism in a PKA-dependent manner and reveals many other putative PKD3 targets in the liver. Members of the protein kinase D (PKD) family (PKD1, 2, and 3) integrate hormonal and nutritional inputs to regulate complex cellular metabolism. Despite the fact that a number of functions have been annotated to particular PKDs, their molecular targets are relatively poorly explored. PKD3 promotes insulin sensitivity and suppresses lipogenesis in the liver of animals fed a high-fat diet. However, its substrates are largely unknown. Here we applied proteomic approaches to determine PKD3 targets. We identified more than 300 putative targets of PKD3. Furthermore, biochemical analysis revealed that PKD3 regulates cAMP-dependent PKA activity, a master regulator of the hepatic response to glucagon and fasting. PKA regulates glucose, lipid, and amino acid metabolism in the liver, by targeting key enzymes in the respective processes. Among them the PKA targets phenylalanine hydroxylase (PAH) catalyzes the conversion of phenylalanine to tyrosine. Consistently, we showed that PKD3 is activated by glucagon and promotes glucose and tyrosine levels in hepatocytes. Therefore, our data indicate that PKD3 might play a role in the hepatic response to glucagon.
Collapse
Affiliation(s)
- Angel Loza-Valdes
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany.,Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Alexander E Mayer
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Toufic Kassouf
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Jonathan Trujillo-Viera
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Werner Schmitz
- Theodor Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Filip Dziaczkowski
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Michael Leitges
- Tier 1, Canada Research Chair in Cell Signaling and Translational Medicine, Division of BioMedical Sciences/Faculty of Medicine, Craig L Dobbin Genetics Research Centre, Memorial University of Newfoundland, Health Science Centre, St. Johns, Canada
| | - Andreas Schlosser
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Grzegorz Sumara
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany .,Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
3
|
The water-soluble non-starch polysaccharides from natural resources against excessive oxidative stress: A potential health-promoting effect and its mechanisms. Int J Biol Macromol 2021; 171:320-330. [PMID: 33421468 DOI: 10.1016/j.ijbiomac.2021.01.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/26/2020] [Accepted: 01/04/2021] [Indexed: 12/14/2022]
Abstract
The water-soluble non-starch polysaccharides isolated from natural resources have become research hotpots in the field of food science and human health due to widely distributed in nature and low toxicity. It has indicated that the health-promoting effect of water-soluble non-starch polysaccharides were partly attributable to against excessive oxidative stress. Indeed, excessive oxidative stress in the body has been reported in occurrence of disease. The water-soluble non-starch polysaccharides from natural resources exhibit antioxidant activity to against oxidative stress via scavenging free radicals promoting antioxidant enzymes activity and/or regulating antioxidant signaling pathways. In this review, the water-soluble non-starch polysaccharides as medicine agent and the factor affecting antioxidant as well as the relationship between oxidative stress and disease are summarized, and the mechanisms of water-soluble non-starch polysaccharides therapy in disease are also discussed. It will provide a theoretical basis for natural polysaccharides used for the treatment of diseases.
Collapse
|
4
|
Youssef I, Ricort JM. Deciphering the Role of Protein Kinase D1 (PKD1) in Cellular Proliferation. Mol Cancer Res 2019; 17:1961-1974. [PMID: 31311827 DOI: 10.1158/1541-7786.mcr-19-0125] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 06/05/2019] [Accepted: 07/11/2019] [Indexed: 11/16/2022]
Abstract
Protein kinase D1 (PKD1) is a serine/threonine kinase that belongs to the calcium/calmodulin-dependent kinase family, and is involved in multiple mechanisms implicated in tumor progression such as cell motility, invasion, proliferation, protein transport, and apoptosis. While it is expressed in most tissues in the normal state, PKD1 expression may increase or decrease during tumorigenesis, and its role in proliferation is context-dependent and poorly understood. In this review, we present and discuss the current landscape of studies investigating the role of PKD1 in the proliferation of both cancerous and normal cells. Indeed, as a potential therapeutic target, deciphering whether PKD1 exerts a pro- or antiproliferative effect, and under what conditions, is of paramount importance.
Collapse
Affiliation(s)
- Ilige Youssef
- Centre National de la Recherche Scientifique, CNRS UMR_8113, Laboratoire de Biologie et Pharmacologie Appliquée, Cachan, France.,École Normale Supérieure Paris-Saclay, Université Paris-Saclay, Cachan, France
| | - Jean-Marc Ricort
- Centre National de la Recherche Scientifique, CNRS UMR_8113, Laboratoire de Biologie et Pharmacologie Appliquée, Cachan, France. .,École Normale Supérieure Paris-Saclay, Université Paris-Saclay, Cachan, France.,Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, Paris, France
| |
Collapse
|
5
|
Proanthocyanidins against Oxidative Stress: From Molecular Mechanisms to Clinical Applications. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8584136. [PMID: 29750172 PMCID: PMC5884402 DOI: 10.1155/2018/8584136] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 01/14/2018] [Indexed: 12/15/2022]
Abstract
Proanthocyanidins (PCs) are naturally occurring polyphenolic compounds abundant in many vegetables, plant skins (rind/bark), seeds, flowers, fruits, and nuts. Numerous in vitro and in vivo studies have demonstrated myriad effects potentially beneficial to human health, such as antioxidation, anti-inflammation, immunomodulation, DNA repair, and antitumor activity. Accumulation of prooxidants such as reactive oxygen species (ROS) exceeding cellular antioxidant capacity results in oxidative stress (OS), which can damage macromolecules (DNA, lipids, and proteins), organelles (membranes and mitochondria), and whole tissues. OS is implicated in the pathogenesis and exacerbation of many cardiovascular, neurodegenerative, dermatological, and metabolic diseases, both through direct molecular damage and secondary activation of stress-associated signaling pathways. PCs are promising natural agents to safely prevent acute damage and control chronic diseases at relatively low cost. In this review, we summarize the molecules and signaling pathways involved in OS and the corresponding therapeutic mechanisms of PCs.
Collapse
|
6
|
Roy A, Ye J, Deng F, Wang QJ. Protein kinase D signaling in cancer: A friend or foe? Biochim Biophys Acta Rev Cancer 2017; 1868:283-294. [PMID: 28577984 DOI: 10.1016/j.bbcan.2017.05.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 05/26/2017] [Accepted: 05/27/2017] [Indexed: 12/18/2022]
Abstract
Protein kinase D is a family of evolutionarily conserved serine/threonine kinases that belongs to the Ca++/Calmodulin-dependent kinase superfamily. Signal transduction pathways mediated by PKD can be triggered by a variety of stimuli including G protein-coupled receptor agonists, growth factors, hormones, and cellular stresses. The regulatory mechanisms and physiological roles of PKD have been well documented including cell proliferation, survival, migration, angiogenesis, regulation of gene expression, and protein/membrane trafficking. However, its precise roles in disease progression, especially in cancer, remain elusive. A plethora of studies documented the cell- and tissue-specific expressions and functions of PKD in various cancer-associated biological processes, while the causes of the differential effects of PKD have not been thoroughly investigated. In this review, we have discussed the structural-functional properties, activation mechanisms, signaling pathways and physiological functions of PKD in the context of human cancer. Additionally, we have provided a comprehensive review of the reported tumor promoting or tumor suppressive functions of PKD in several major cancer types and discussed the discrepancies that have been raised on PKD as a major regulator of malignant transformation.
Collapse
Affiliation(s)
- Adhiraj Roy
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 15261, USA
| | - Jing Ye
- Department of Anesthesiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Fan Deng
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Qiming Jane Wang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 15261, USA.
| |
Collapse
|
7
|
Choudhary V, Olala LO, Kagha K, Pan ZQ, Chen X, Yang R, Cline A, Helwa I, Marshall L, Kaddour-Djebbar I, McGee-Lawrence ME, Bollag WB. Regulation of the Glycerol Transporter, Aquaporin-3, by Histone Deacetylase-3 and p53 in Keratinocytes. J Invest Dermatol 2017; 137:1935-1944. [PMID: 28526298 DOI: 10.1016/j.jid.2017.04.031] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 04/05/2017] [Accepted: 04/26/2017] [Indexed: 12/31/2022]
Abstract
Aquaporin- (AQP) 3, a water and glycerol channel, plays an important role in epidermal function, with studies showing its involvement in keratinocyte proliferation, differentiation, and migration and in epidermal wound healing and barrier repair. Increasing speculation about the use of histone deacetylase (HDAC) inhibitors to treat skin diseases led us to investigate HDAC's role in the regulation of AQP3. The broad-spectrum HDAC inhibitor suberoylanilide hydroxamic acid induced AQP3 mRNA and protein expression in a dose- and time-dependent manner in normal keratinocytes. The SAHA-induced increase in AQP3 levels resulted in enhanced [3H]glycerol uptake in normal but not in AQP3-knockout keratinocytes, confirming that the expressed AQP3 was functional. Use of HDAC inhibitors with different specificities limited our exploration of the responsible HDAC member to HDAC1, HDAC2, or HDAC3. Cre-recombinase-mediated knockdown and overexpression of HDAC3 suggested a role for HDAC3 in suppressing AQP3 expression basally. Further investigation implicated p53 as a transcription factor involved in regulating HDAC inhibitor-induced AQP3 expression. Thus, our study supports the regulation of AQP3 expression by HDAC3 and p53. Because suberoylanilide hydroxamic acid is already approved to treat cutaneous T-cell lymphoma, it could potentially be used as a therapy for skin diseases like psoriasis, where AQP3 is abnormally expressed.
Collapse
Affiliation(s)
- Vivek Choudhary
- Charlie Norwood VA Medical Center, Augusta, Georgia, USA; Department of Physiology, Augusta University, Augusta, Georgia, USA; Department of Medicine (Dermatology), Augusta University, Augusta, Georgia, USA.
| | - Lawrence O Olala
- Charlie Norwood VA Medical Center, Augusta, Georgia, USA; Department of Physiology, Augusta University, Augusta, Georgia, USA
| | - Karen Kagha
- Department of Physiology, Augusta University, Augusta, Georgia, USA
| | - Zhi-Qiang Pan
- Department of Physiology, Augusta University, Augusta, Georgia, USA; School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xunsheng Chen
- Charlie Norwood VA Medical Center, Augusta, Georgia, USA; Department of Physiology, Augusta University, Augusta, Georgia, USA
| | - Rong Yang
- Department of Physiology, Augusta University, Augusta, Georgia, USA; Department of Physiology, Medical School, Jianghan University, Wuhan, China
| | - Abigail Cline
- Department of Physiology, Augusta University, Augusta, Georgia, USA
| | - Inas Helwa
- Department of Physiology, Augusta University, Augusta, Georgia, USA; Department of Oral Biology, Augusta University, Augusta, Georgia, USA
| | - Lauren Marshall
- Department of Physiology, Augusta University, Augusta, Georgia, USA
| | - Ismail Kaddour-Djebbar
- Charlie Norwood VA Medical Center, Augusta, Georgia, USA; Department of Physiology, Augusta University, Augusta, Georgia, USA
| | | | - Wendy B Bollag
- Charlie Norwood VA Medical Center, Augusta, Georgia, USA; Department of Physiology, Augusta University, Augusta, Georgia, USA; Department of Medicine (Dermatology), Augusta University, Augusta, Georgia, USA; Department of Oral Biology, Augusta University, Augusta, Georgia, USA
| |
Collapse
|
8
|
Döppler H, Storz P. Mitochondrial and Oxidative Stress-Mediated Activation of Protein Kinase D1 and Its Importance in Pancreatic Cancer. Front Oncol 2017; 7:41. [PMID: 28361035 PMCID: PMC5350125 DOI: 10.3389/fonc.2017.00041] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 03/01/2017] [Indexed: 12/31/2022] Open
Abstract
Due to alterations in their metabolic activity and decreased mitochondrial efficiency, cancer cells often show increased generation of reactive oxygen species (ROS), but at the same time, to avoid cytotoxic signaling and to facilitate tumorigenic signaling, have mechanism in place that keep ROS in check. This requires signaling molecules that convey increases in oxidative stress to signal to the nucleus to upregulate antioxidant genes. Protein kinase D1 (PKD1), the serine/threonine kinase, is one of these ROS sensors. In this mini-review, we highlight the mechanisms of how PKD1 is activated in response to oxidative stress, so far known downstream effectors, as well as the importance of PKD1-initiated signaling for development and progression of pancreatic cancer.
Collapse
Affiliation(s)
- Heike Döppler
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic , Jacksonville, FL , USA
| | - Peter Storz
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic , Jacksonville, FL , USA
| |
Collapse
|
9
|
Ryvkin V, Rashel M, Gaddapara T, Ghazizadeh S. Opposing growth regulatory roles of protein kinase D isoforms in human keratinocytes. J Biol Chem 2015; 290:11199-208. [PMID: 25802335 PMCID: PMC4409276 DOI: 10.1074/jbc.m115.643742] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/18/2015] [Indexed: 12/19/2022] Open
Abstract
PKD is a family of three serine/threonine kinases (PKD-1, -2, and -3) involved in the regulation of diverse biological processes including proliferation, migration, secretion, and cell survival. We have previously shown that despite expression of all three isoforms in mouse epidermis, PKD1 plays a unique and critical role in wound healing, phorbol ester-induced hyperplasia, and tumor development. In translating our findings to the human, we discovered that PKD1 is not expressed in human keratinocytes (KCs) and there is a divergence in the expression and function of other PKD isoforms. Contrary to mouse KCs, treatment of cultured human KCs with pharmacological inhibitors of PKDs resulted in growth arrest. We found that PKD2 and PKD3 are expressed differentially in proliferating and differentiating human KCs, with the former uniformly present in both compartments whereas the latter is predominantly expressed in the proliferating compartment. Knockdown of individual PKD isoforms in human KCs revealed contrasting growth regulatory roles for PKD2 and PKD3. Loss of PKD2 enhanced KC proliferative potential while loss of PKD3 resulted in a progressive proliferation defect, loss of clonogenicity and diminished tissue regenerative ability. This proliferation defect was correlated with up-regulation of CDK4/6 inhibitor p15(INK4B) and induction of a p53-independent G1 cell cycle arrest. Simultaneous silencing of PKD isoforms resulted in a more pronounced proliferation defect consistent with a predominant role for PKD3 in proliferating KCs. These data underline the importance and complexity of PKD signaling in human epidermis and suggest a central role for PKD3 signaling in maintaining human epidermal homeostasis.
Collapse
Affiliation(s)
| | - Mohammad Rashel
- Department of Oral Biology and Pathology, Stony Brook University, Stony Brook, New York 11794
| | - Trivikram Gaddapara
- Department of Oral Biology and Pathology, Stony Brook University, Stony Brook, New York 11794
| | - Soosan Ghazizadeh
- From the Graduate Program in Molecular and Cell Biology and Department of Oral Biology and Pathology, Stony Brook University, Stony Brook, New York 11794
| |
Collapse
|
10
|
Choudhary V, Olala LO, Kaddour-Djebbar I, Helwa I, Bollag WB. Protein kinase D1 deficiency promotes differentiation in epidermal keratinocytes. J Dermatol Sci 2014; 76:186-95. [PMID: 25450094 PMCID: PMC4259831 DOI: 10.1016/j.jdermsci.2014.09.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 09/06/2014] [Accepted: 09/19/2014] [Indexed: 01/26/2023]
Abstract
BACKGROUND Protein kinase D (PKD or PKD1) is a serine/threonine protein kinase that has been shown to play a role in a variety of cellular processes; however, the function of PKD1 in the skin has not been fully investigated. The balance between proliferation and differentiation processes in the predominant cells of the epidermis, the keratinocytes, is essential for normal skin function. OBJECTIVE To investigate the effect of PKD1 deficiency on proliferation and differentiation of epidermal keratinocytes. METHODS We utilized a floxed PKD1 mouse model such that infecting epidermal keratinocytes derived from these mice with an adenovirus expressing Cre-recombinase allowed us to determine the effect of PKD1 gene loss in vitro. Proliferation and differentiation were monitored using qRT-PCR, Western blot, transglutaminase activity assays, [3H]thymidine incorporation into DNA and cell cycle analysis. RESULTS A significant decrease in PKD1 mRNA and protein levels was achieved in adenoviral Cre-recombinase-infected cells. Deficiency of PKD1 resulted in significant increases in the mRNA and protein expression of various differentiation markers such as loricrin, involucrin, and keratin 10 either basally and/or upon stimulation of differentiation. PKD1-deficient keratinocytes also showed an increase in transglutaminase expression and activity, indicating an anti-differentiative role of PKD1. Furthermore, the PKD1-deficient keratinocytes exhibited decreased proliferation. However, PKD1 loss had no effect on stem cell marker expression. CONCLUSIONS Cre-recombinase-mediated knockdown represents an additional approach demonstrating that PKD1 is an anti-differentiative, pro-proliferative signal in mouse keratinocytes.
Collapse
Affiliation(s)
- Vivek Choudhary
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA; Department of Physiology, Medical College of Georgia at Georgia Regents University, Augusta, GA 30912, USA; Section of Dermatology, Department of Medicine, Medical College of Georgia at Georgia Regents University, Augusta, GA 30912, USA
| | - Lawrence O Olala
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA; Department of Physiology, Medical College of Georgia at Georgia Regents University, Augusta, GA 30912, USA
| | - Ismail Kaddour-Djebbar
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA; Department of Physiology, Medical College of Georgia at Georgia Regents University, Augusta, GA 30912, USA
| | - Inas Helwa
- Department of Oral Biology, Georgia Regents University, Augusta, GA 30912, USA; Department of Physiology, Medical College of Georgia at Georgia Regents University, Augusta, GA 30912, USA
| | - Wendy B Bollag
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA; Department of Physiology, Medical College of Georgia at Georgia Regents University, Augusta, GA 30912, USA; Section of Dermatology, Department of Medicine, Medical College of Georgia at Georgia Regents University, Augusta, GA 30912, USA; Department of Oral Biology, Georgia Regents University, Augusta, GA 30912, USA; Departments of Cell Biology and Anatomy, and Orthopaedic Surgery, Medical College of Georgia at Georgia Regents University, Augusta, GA 30912, USA.
| |
Collapse
|
11
|
Olala LO, Shapiro BA, Merchen TC, Wynn JJ, Bollag WB. Protein kinase C and Src family kinases mediate angiotensin II-induced protein kinase D activation and acute aldosterone production. Mol Cell Endocrinol 2014; 392:173-81. [PMID: 24859649 PMCID: PMC4120960 DOI: 10.1016/j.mce.2014.05.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 04/26/2014] [Accepted: 05/14/2014] [Indexed: 12/26/2022]
Abstract
Recent evidence has shown a role for the serine/threonine protein kinase D (PKD) in the regulation of acute aldosterone secretion upon angiotensin II (AngII) stimulation. However, the mechanism by which AngII activates PKD remains unclear. In this study, using both pharmacological and molecular approaches, we demonstrate that AngII-induced PKD activation is mediated by protein kinase C (PKC) and Src family kinases in primary bovine adrenal glomerulosa cells and leads to increased aldosterone production. The pan PKC inhibitor Ro 31-8220 and the Src family kinase inhibitors PP2 and Src-1 inhibited both PKD activation and acute aldosterone production. Additionally, like the dominant-negative serine-738/742-to-alanine PKD mutant that cannot be phosphorylated by PKC, the dominant-negative tyrosine-463-to-phenylalanine PKD mutant, which is not phosphorylatable by the Src/Abl pathway, inhibited acute AngII-induced aldosterone production. Taken together, our results demonstrate that AngII activates PKD via a mechanism involving Src family kinases and PKC, to underlie increased aldosterone production.
Collapse
Affiliation(s)
- Lawrence O Olala
- Charlie Norwood VA Medical Center, Augusta, GA 30904, United States; Department of Physiology, Medical College of Georgia at Georgia Regents University, Augusta, GA 30912, United States
| | - Brian A Shapiro
- Institute of Molecular Medicine and Genetics, Medical College of Georgia at Georgia Regents University, Augusta, GA 30912, United States
| | - Todd C Merchen
- Department of Surgery, Medical College of Georgia at Georgia Regents University, Augusta, GA 30912, United States
| | - James J Wynn
- Department of Surgery, Medical College of Georgia at Georgia Regents University, Augusta, GA 30912, United States
| | - Wendy B Bollag
- Charlie Norwood VA Medical Center, Augusta, GA 30904, United States; Department of Physiology, Medical College of Georgia at Georgia Regents University, Augusta, GA 30912, United States; Departments of Cell Biology and Anatomy, Medicine and Orthopaedic Surgery, Medical College of Georgia at Georgia Regents University, Augusta, GA 30912, United States.
| |
Collapse
|
12
|
Chiou YS, Sang S, Cheng KH, Ho CT, Wang YJ, Pan MH. Peracetylated (−)-epigallocatechin-3-gallate (AcEGCG) potently prevents skin carcinogenesis by suppressing the PKD1-dependent signaling pathway in CD34 + skin stem cells and skin tumors. Carcinogenesis 2013; 34:1315-22. [DOI: 10.1093/carcin/bgt042] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
13
|
Olala LO, Seremwe M, Tsai YY, Bollag WB. A role for phospholipase D in angiotensin II-induced protein kinase D activation in adrenal glomerulosa cell models. Mol Cell Endocrinol 2013; 366. [PMID: 23178798 PMCID: PMC3656657 DOI: 10.1016/j.mce.2012.11.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The mineralocorticoid aldosterone plays an important role in regulating blood pressure, with excess causing hypertension and exacerbating cardiovascular disease. Previous studies have indicated a role for both phospholipase D (PLD) and protein kinase D (PKD) in angiotensin II (AngII)-regulated aldosterone production in adrenal glomerulosa cells. Therefore, the relationship between AngII-activated PLD and PKD was determined in two glomerulosa cell models, primary bovine zona glomerulosa (ZG) and HAC15 human adrenocortical carcinoma cells, using two inhibitors, 1-butanol and the reported PLD inhibitor, fluoro-2-indolyl des-chlorohalopemide (FIPI). FIPI was first confirmed to decrease PLD activation in response to AngII in the two glomerulosa cell models. Subsequently, it was shown that both 1-butanol and FIPI inhibited AngII-elicited PKD activation and aldosterone production. These results indicate that PKD is downstream of PLD and suggest that PKD is one of the mechanisms through which PLD promotes aldosterone production in response to AngII in adrenal glomerulosa cells.
Collapse
Affiliation(s)
- Lawrence O. Olala
- Department of Physiology, Georgia Health Sciences University (formerly the Medical College of Georgia), 1120 15th Street, Augusta, GA 30912
| | - Mutsa Seremwe
- Department of Physiology, Georgia Health Sciences University (formerly the Medical College of Georgia), 1120 15th Street, Augusta, GA 30912
| | - Ying-Ying Tsai
- Department of Physiology, Georgia Health Sciences University (formerly the Medical College of Georgia), 1120 15th Street, Augusta, GA 30912
| | - Wendy B. Bollag
- Charlie Norwood VA Medical Center, One Freedom Way, Augusta, GA 30904
- Department of Physiology, Georgia Health Sciences University (formerly the Medical College of Georgia), 1120 15th Street, Augusta, GA 30912
- Departments of Cell Biology and Anatomy, Medicine, Oral Biology and Orthopaedic Surgery, Georgia Health Sciences University, 1120 15th Street, Augusta, GA 30912
- To whom correspondence should be addressed: Wendy Bollag, Georgia Health Sciences University, Department of Physiology, 1120 15th Street, Augusta, GA 30912, TEL: (706) 721-0698, FAX: (706) 721-7299,
| |
Collapse
|
14
|
Zhu JW, Wu XJ, Lu ZF, Luo D, Cai SQ, Zheng M. Role of VEGF receptors in normal and psoriatic human keratinocytes: evidence from irradiation with different UV sources. PLoS One 2013; 8:e55463. [PMID: 23383198 PMCID: PMC3561271 DOI: 10.1371/journal.pone.0055463] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 12/23/2012] [Indexed: 01/04/2023] Open
Abstract
Vascular endothelial growth factor (VEGF) promotes angiogenesis and plays important roles both in physiological and pathological conditions. VEGF receptors (VEGFRs) are high-affinity receptors for VEGF and are originally considered specific to endothelial cells. We previously reported that VEGFRs were also constitutively expressed in normal human keratinocytes and overexpressed in psoriatic epidermis. In addition, UVB can activate VEGFRs in normal keratinocytes, and the activated VEGFR-2 signaling is involved in the pro-survival mechanism. Here, we show that VEGFRs were also upregulated and activated by UVA in normal human keratinocytes via PKC, and interestingly, both the activated VEGFR-1 and VEGFR-2 protected against UVA-induced cell death. As VEGFRs were over-expressed in psoriatic epidermis, we further investigated whether narrowband UVB (NB-UVB) phototherapy or topical halomethasone monohydrate 0.05% cream could affect their expression. Surprisingly, the over-expressed VEGFRs in psoriatic epidermis were significantly attenuated by both treatments. During NB-UVB therapy, VEGFRs declined first in the basal, and then gradually in the upper psoriatic epidermis. VEGFRs were activated in psoriatic epidermis, their activation was enhanced by NB-UVB, but turned undetectable after whole therapy. This process was quite different from that by halomethasone, in which VEGFRs and phospho-VEGFRs decreased in a gradual, homogeneous manner. Our findings further suggest that UV-induced activation of VEGFRs serves as a pro-survival signal for keratinocytes. In addition, VEGFRs may be involved in the pathological process of psoriasis, and UV phototherapy is effective for psoriasis by directly modulating the expression of VEGFRs.
Collapse
Affiliation(s)
- Jian-Wei Zhu
- Department of Dermatology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xian-Jie Wu
- Department of Dermatology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhong-Fa Lu
- Department of Dermatology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Dan Luo
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Sui-Qing Cai
- Department of Dermatology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Min Zheng
- Department of Dermatology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- * E-mail:
| |
Collapse
|
15
|
Zou Z, Zeng F, Xu W, Wang C, Ke Z, Wang QJ, Deng F. PKD2 and PKD3 promote prostate cancer cell invasion by modulating NF-κB- and HDAC1-mediated expression and activation of uPA. J Cell Sci 2012; 125:4800-11. [PMID: 22797919 DOI: 10.1242/jcs.106542] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Although protein kinase D3 (PKD3) has been shown to contribute to prostate cancer cell growth and survival, the role of PKD in prostate cancer cell motility remains unclear. Here, we show that PKD2 and PKD3 promote nuclear factor kappa B (NF-κB) signaling and urokinase-type plasminogen activator (uPA) expression/activation, which are crucial for prostate cancer cell invasion. Silencing of endogenous PKD2 and/or PKD3 markedly decreased prostate cancer cell migration and invasion, reduced uPA and uPA receptor (uPAR) expression and increased plasminogen activator inhibitor-2 (PAI-2) expression. These results were further substantiated by the finding that PKD2 and PKD3 promoted the activity of uPA and matrix metalloproteinase 9 (MMP9). Furthermore, depletion of PKD2 and/or PKD3 decreased the level of binding of the p65 subunit of NF-κB to the promoter of the gene encoding uPA (PLAU), suppressing transcriptional activation of uPA. Endogenous PKD2 and PKD3 interacted with inhibitor of NF-κB (IκB) kinase β (IKKβ); PKD2 mainly regulated the phosphorylated IKK (pIKK)-phosphorylated IκB (pIκB)-IκB degradation cascade, p65 nuclear translocation, and phosphorylation of Ser276 on p65, whereas PKD3 was responsible for the phosphorylation of Ser536 on p65. Conversely, inhibition of uPA transactivation by PKD3 silencing was rescued by constitutive Ser536 p65 phosphorylation, and reduced tumor cell invasion resulting from PKD2 or PKD3 silencing was rescued by ectopic expression of p65. Interestingly, PKD3 interacted with histone deacetylase 1 (HDAC1), suppressing HDAC1 expression and decreasing its binding to the uPA promoter. Moreover, depletion of HDAC1 resulted in recovery of uPA transactivation in PKD3-knockdown cells. Taken together, these data suggest that PKD2 and PKD3 coordinate to promote prostate cancer cell invasion through p65 NF-κB- and HDAC1-mediated expression and activation of uPA.
Collapse
Affiliation(s)
- Zhipeng Zou
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | | | | | | | | | | | | |
Collapse
|
16
|
Steinberg SF. Regulation of protein kinase D1 activity. Mol Pharmacol 2012; 81:284-91. [PMID: 22188925 PMCID: PMC3286295 DOI: 10.1124/mol.111.075986] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 12/21/2011] [Indexed: 12/20/2022] Open
Abstract
Protein kinase D1 (PKD1) is a stress-activated serine/threonine kinase that plays a vital role in various physiologically important biological processes, including cell growth, apoptosis, adhesion, motility, and angiogenesis. Dysregulated PKD1 expression also contributes to the pathogenesis of certain cancers and cardiovascular disorders. Studies to date have focused primarily on the canonical membrane-delimited pathway for PKD1 activation by G protein-coupled receptors or peptide growth factors. Here, agonist-dependent increases in diacylglycerol accumulation lead to the activation of protein kinase C (PKC) and PKC-dependent phosphorylation of PKD1 at two highly conserved serine residues in the activation loop; this modification increases PKD1 catalytic activity, as assessed by PKD1 autophosphorylation at a consensus phosphorylation motif at the extreme C terminus. However, recent studies expose additional controls and consequences for PKD1 activation loop and C-terminal phosphorylation as well as additional autophosphorylation reactions and trans-phosphorylations (by PKC and other cellular enzymes) that contribute to the spatiotemporal control of PKD1 signaling in cells. This review focuses on the multisite phosphorylations that are known or predicted to influence PKD1 catalytic activity and may also influence docking interactions with cellular scaffolds and trafficking to signaling microdomains in various subcellular compartments. These modifications represent novel targets for the development of PKD1-directed pharmaceuticals for the treatment of cancers and cardiovascular disorders.
Collapse
Affiliation(s)
- Susan F Steinberg
- Department of Pharmacology, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
17
|
Activation of VEGFR-2 signaling in response to moderate dose of ultraviolet B promotes survival of normal human keratinocytes. Int J Biochem Cell Biol 2012; 44:246-56. [DOI: 10.1016/j.biocel.2011.10.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 09/24/2011] [Accepted: 10/25/2011] [Indexed: 10/15/2022]
|
18
|
Bollag WB, Bollag RJ. Ultraviolet activation of PKD: implications for skin cancer. Future Oncol 2011; 7:485-7. [PMID: 21463136 DOI: 10.2217/fon.11.16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
19
|
Zheng H, Qian J, Baker DP, Fuchs SY. Tyrosine phosphorylation of protein kinase D2 mediates ligand-inducible elimination of the Type 1 interferon receptor. J Biol Chem 2011; 286:35733-35741. [PMID: 21865166 DOI: 10.1074/jbc.m111.263608] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Type 1 interferons (including IFNα/β) activate their cell surface receptor to induce the intracellular signal transduction pathways that play an important role in host defenses against infectious agents and tumors. The extent of cellular responses to IFNα is limited by several important mechanisms including the ligand-stimulated and specific serine phosphorylation-dependent degradation of the IFNAR1 chain of Type 1 IFN receptor. Previous studies revealed that acceleration of IFNAR1 degradation upon IFN stimulation requires activities of tyrosine kinase TYK2 and serine/threonine protein kinase D2 (PKD2), whose recruitment to IFNAR1 is also induced by the ligand. Here we report that activation of PKD2 by IFNα (but not its recruitment to the receptor) depends on TYK2 catalytic activity. PKD2 undergoes IFNα-inducible tyrosine phosphorylation on specific phospho-acceptor site (Tyr-438) within the plekstrin homology domain. Activated TYK2 is capable of facilitating this phosphorylation in vitro. Tyrosine phosphorylation of PKD2 is required for IFNα-stimulated activation of this kinase as well as for efficient serine phosphorylation and degradation of IFNAR1 and ensuing restriction of the extent of cellular responses to IFNα.
Collapse
Affiliation(s)
- Hui Zheng
- Department of Animal Biology and Mari Lowe Center for Comparative Oncology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Juan Qian
- Department of Animal Biology and Mari Lowe Center for Comparative Oncology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | | | - Serge Y Fuchs
- Department of Animal Biology and Mari Lowe Center for Comparative Oncology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104.
| |
Collapse
|
20
|
Abstract
Protein kinase D1 (PKD1) is a serine-threonine kinase that regulates various functions within the cell, including cell proliferation, apoptosis, adhesion, and cell motility. In normal cells, this protein plays key roles in multiple signaling pathways by relaying information from the extracellular environment and/or upstream kinases and converting them into a regulated intracellular response. The aberrant expression of PKD1 is associated with enhanced cancer phenotypes, such as deregulated cell proliferation, survival, motility, and epithelial mesenchymal transition. In this review, we summarize the structural and functional aspects of PKD1 and highlight the pathobiological roles of this kinase in cancer.
Collapse
Affiliation(s)
- Vasudha Sundram
- Cancer Biology Research Center, Sanford Research/USD, University of South Dakota, Sioux Falls, South Dakota 57105, USA
| | | | | |
Collapse
|