1
|
Chen L, Ruan G, Zhao X, Yi A, Xiao Z, Tian Y, Cheng Y, Chen D, Wei Y. Pseudomonas aeruginosa enhances anti-PD-1 efficacy in colorectal cancer by activating cytotoxic CD8 + T cells. Front Immunol 2025; 16:1553757. [PMID: 40191185 PMCID: PMC11968734 DOI: 10.3389/fimmu.2025.1553757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 03/04/2025] [Indexed: 04/09/2025] Open
Abstract
Background Immune checkpoint therapy for colorectal cancer (CRC) has been found to be unsatisfactory for clinical treatment. Fecal microbiota transplantation (FMT) has been shown to remodel the intestinal flora, which may improve the therapeutic effect of αPD-1. Further exploration of key genera that can sensitize cells to αPD-1 for CRC treatment and preliminary exploration of immunological mechanisms may provide effective guidance for the clinical treatment of CRC. Methods In this study, 16S rRNA gene sequencing was analyzed in the fecal flora of both responders and no-responders to αPD-1 treatment, and the therapeutic effect was experimentally verified. Results Pseudomonas aeruginosa was found to be highly abundant in the fecal flora of treated mice, and Pseudomonas aeruginosa mannose-sensitive hemagglutinin (PA-MSHA) in combination with αPD-1 was effective in the treatment of CRC through the induction of CD8+ T-cell immunological effects. Conclusion The clinical drug PA-MSHA can be used in combination with αPD-1 for the treatment of CRC as a potential clinical therapeutic option.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Dongfeng Chen
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yanling Wei
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
2
|
Bozic D, Živanović J, Živančević K, Baralić K, Đukić-Ćosić D. Trends in Anti-Tumor Effects of Pseudomonas aeruginosa Mannose-Sensitive-Hemagglutinin (PA-MSHA): An Overview of Positive and Negative Effects. Cancers (Basel) 2024; 16:524. [PMID: 38339275 PMCID: PMC10854591 DOI: 10.3390/cancers16030524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 02/12/2024] Open
Abstract
Cancer is a leading cause of death worldwide, for which finding the optimal therapy remains an ongoing challenge. Drug resistance, toxic side effects, and a lack of specificity pose significant difficulties in traditional cancer treatments, leading to suboptimal clinical outcomes and high mortality rates among cancer patients. The need for alternative therapies is crucial, especially for those resistant to conventional methods like chemotherapy and radiotherapy or for patients where surgery is not possible. Over the past decade, a novel approach known as bacteria-mediated cancer therapy has emerged, offering potential solutions to the limitations of conventional treatments. An increasing number of in vitro and in vivo studies suggest that the subtype of highly virulent Pseudomonas aeruginosa bacterium called Pseudomonas aeruginosa mannose-sensitive-hemagglutinin (PA-MSHA) can successfully inhibit the progression of various cancer types, such as breast, lung, and bladder cancer, as well as hepatocellular carcinoma. PA-MSHA inhibits the growth and proliferation of tumor cells and induces their apoptosis. Proposed mechanisms of action include cell-cycle arrest and activation of pro-apoptotic pathways regulated by caspase-9 and caspase-3. Moreover, clinical studies have shown that PA-MSHA improved the effectiveness of chemotherapy and promoted the activation of the immune response in cancer patients without causing severe side effects. Reported adverse reactions were fever, skin irritation, and pain, attributed to the overactivation of the immune response. This review aims to summarize the current knowledge obtained from in vitro, in vivo, and clinical studies available at PubMed, Google Scholar, and ClinicalTrials.gov regarding the use of PA-MSHA in cancer treatment in order to further elucidate its pharmacological and toxicological properties.
Collapse
Affiliation(s)
- Dragica Bozic
- Department of Toxicology “Akademik Danilo Soldatović”, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (J.Ž.); (K.Ž.); (K.B.); (D.Đ.-Ć.)
| | - Jovana Živanović
- Department of Toxicology “Akademik Danilo Soldatović”, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (J.Ž.); (K.Ž.); (K.B.); (D.Đ.-Ć.)
| | - Katarina Živančević
- Department of Toxicology “Akademik Danilo Soldatović”, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (J.Ž.); (K.Ž.); (K.B.); (D.Đ.-Ć.)
- Center for Laser Microscopy, Faculty of Biology, Institute of Physiology and Biochemistry “Ivan Djaja”, University of Belgrade, Studentski trg 16, 11158 Belgrade, Serbia
| | - Katarina Baralić
- Department of Toxicology “Akademik Danilo Soldatović”, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (J.Ž.); (K.Ž.); (K.B.); (D.Đ.-Ć.)
| | - Danijela Đukić-Ćosić
- Department of Toxicology “Akademik Danilo Soldatović”, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (J.Ž.); (K.Ž.); (K.B.); (D.Đ.-Ć.)
- Center for Toxicological Risk Assessment, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| |
Collapse
|
3
|
Zheng X, Fang Y, Zou X, Wang X, Li Z. Therapeutic potential of Pseudomonas aeruginosa-mannose sensitive hemagglutinin (PA-MSHA) in cancer treatment. Microb Pathog 2023; 185:106422. [PMID: 37871855 DOI: 10.1016/j.micpath.2023.106422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
Pseudomonas aeruginosa is a Gram-negative bacteria and it has been demonstrated that immunization with the outer membrane proteins of the microbe produces most of the relevant human antibodies. The peritrichous P. aeruginosa strain with MSHA fimbriae (PA-MSHA strain) has been found to be effective in the inhibition of growth and proliferation of different types of cancer cells. Furthermore, it has been revealed that PA-MSHA exhibits cytotoxicity because of the presence of MSHA and therefore it possesses anti-carcinogenic ability against different types of human cancer cell lines including, gastric, breast, hepatocarcinoma and nasopharyngeal cells. Studies have revealed that PA-MSHA exhibits therapeutic potential against cancer growth by induction of apoptosis, arrest of cell cycle, activating NF-κB/TLR5 pathway, etc. In China, PA-MSHA injections have been approved for the treatment of malignant tumor patients from very long back. The present review article demonstrates the therapeutic potential of PA-MSHA against various types of human cancers and explains the underlying mechanism.
Collapse
Affiliation(s)
- Xun Zheng
- Department of Thyroid & Parathyroid Surgery, West China Hospital, Sichuan University, No 37 Guo Xue Street, 610041, Chengdu, Sichuan, China
| | - Yiqiao Fang
- Department of Thyroid & Parathyroid Surgery, West China Hospital, Sichuan University, No 37 Guo Xue Street, 610041, Chengdu, Sichuan, China
| | - Xiuhe Zou
- Department of Thyroid & Parathyroid Surgery, West China Hospital, Sichuan University, No 37 Guo Xue Street, 610041, Chengdu, Sichuan, China
| | - Xiaofei Wang
- Department of Thyroid & Parathyroid Surgery, West China Hospital, Sichuan University, No 37 Guo Xue Street, 610041, Chengdu, Sichuan, China
| | - Zhihui Li
- Department of Thyroid & Parathyroid Surgery, West China Hospital, Sichuan University, No 37 Guo Xue Street, 610041, Chengdu, Sichuan, China.
| |
Collapse
|
4
|
Rodina A, Xu C, Digwal CS, Joshi S, Patel Y, Santhaseela AR, Bay S, Merugu S, Alam A, Yan P, Yang C, Roychowdhury T, Panchal P, Shrestha L, Kang Y, Sharma S, Almodovar J, Corben A, Alpaugh ML, Modi S, Guzman ML, Fei T, Taldone T, Ginsberg SD, Erdjument-Bromage H, Neubert TA, Manova-Todorova K, Tsou MFB, Young JC, Wang T, Chiosis G. Systems-level analyses of protein-protein interaction network dysfunctions via epichaperomics identify cancer-specific mechanisms of stress adaptation. Nat Commun 2023; 14:3742. [PMID: 37353488 PMCID: PMC10290137 DOI: 10.1038/s41467-023-39241-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 06/05/2023] [Indexed: 06/25/2023] Open
Abstract
Systems-level assessments of protein-protein interaction (PPI) network dysfunctions are currently out-of-reach because approaches enabling proteome-wide identification, analysis, and modulation of context-specific PPI changes in native (unengineered) cells and tissues are lacking. Herein, we take advantage of chemical binders of maladaptive scaffolding structures termed epichaperomes and develop an epichaperome-based 'omics platform, epichaperomics, to identify PPI alterations in disease. We provide multiple lines of evidence, at both biochemical and functional levels, demonstrating the importance of these probes to identify and study PPI network dysfunctions and provide mechanistically and therapeutically relevant proteome-wide insights. As proof-of-principle, we derive systems-level insight into PPI dysfunctions of cancer cells which enabled the discovery of a context-dependent mechanism by which cancer cells enhance the fitness of mitotic protein networks. Importantly, our systems levels analyses support the use of epichaperome chemical binders as therapeutic strategies aimed at normalizing PPI networks.
Collapse
Affiliation(s)
- Anna Rodina
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Chao Xu
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Chander S Digwal
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Suhasini Joshi
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Yogita Patel
- Department of Biochemistry, Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, QC, H3G 0B1, Canada
| | - Anand R Santhaseela
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Sadik Bay
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Swathi Merugu
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Aftab Alam
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Pengrong Yan
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Chenghua Yang
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Tanaya Roychowdhury
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Palak Panchal
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Liza Shrestha
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Yanlong Kang
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Sahil Sharma
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Justina Almodovar
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Adriana Corben
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Maimonides Medical Center, Brooklyn, NY, USA
| | - Mary L Alpaugh
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Rowan University, Glassboro, NJ, USA
| | - Shanu Modi
- Department of Medicine, Division of Solid Tumors, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Monica L Guzman
- Department of Medicine, Division of Hematology Oncology, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Teng Fei
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Tony Taldone
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Stephen D Ginsberg
- Departments of Psychiatry, Neuroscience & Physiology & the NYU Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, 10016, USA
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, 10962, USA
| | - Hediye Erdjument-Bromage
- Department of Neuroscience and Physiology and Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Thomas A Neubert
- Department of Neuroscience and Physiology and Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Katia Manova-Todorova
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Meng-Fu Bryan Tsou
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Jason C Young
- Department of Biochemistry, Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, QC, H3G 0B1, Canada
| | - Tai Wang
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| | - Gabriela Chiosis
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
- Department of Medicine, Division of Solid Tumors, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| |
Collapse
|
5
|
Abstract
BACKGROUND Programmed death ligand 1 (PD-L1) is expressed in hepatocellular carcinoma (HCC) cells. PD-L1 function and structure are regulated through glycosylation and various signaling pathways. However, the relationship between Pseudomonas aeruginosa mannose sensitive hemagglutinin (PA-MSHA), glycosylation and PD-L1 warrants further study. In this study, we investigated the effects of PA-MSHA on the regulation of mannosyl and N-glycosylation to identify the mechanisms underlying its function. METHODS PD-L1, β-catenin, c-Myc, mannosyl, MGAT1 and mannosidase II in HCC were identified by postoperative specimens from the HCC cohort with immunohistochemistry and immunofluorescence. PA-MSHA was used to suppress tumor progression. Alterations to the expression of PD-L1, β-catenin, c-Myc, MGAT1, and mannosidase II at the gene and protein levels were detected by qRT-PCR and Western blot analysis. Soluble PD-L1 (sPD-L1) were detected using enzyme-linked immunosorbent assay. RESULTS Mannosyl and mannosidase II expression levels increased, whereas those of MGAT1 decreased in the HCC cells. The glycosylation-related pathway proteins, namely, β-catenin, c-Myc and PD-L1, had increased expression levels. Moreover, proliferation in the HCC cells was inhibited after PA-MSHA treatment, PD-L1 function was significantly inhibited. Transmission electron microscopy showed that PA-MSHA penetrated into the HCC cytoplasm through the cytomembrane, resulting in apoptosis. Here, PA-MSHA significantly reduced sPD-L1 expression levels in the tumor cells. CONCLUSIONS PA-MSHA plays the role of a lectin, affecting receptors on the cytomembrane. This strain inhibits mannosyl by suppressing β-catenin signaling. We hypothesized that PA-MSHA suppresses PD-L1 by: 1. Inhibiting the glycosylation process; and 2. Suppressing β-catenin and c-Myc, thereby reducing the transcription of this protein.
Collapse
Affiliation(s)
- Hangzhi Wei
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Yudong Mao
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Huihan Zhang
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Fahong Wu
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Youcheng Zhang
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| |
Collapse
|
6
|
PA-MSHA induces inflamed tumor microenvironment and sensitizes tumor to anti-PD-1 therapy. Cell Death Dis 2022; 13:931. [PMID: 36344505 PMCID: PMC9640707 DOI: 10.1038/s41419-022-05368-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/08/2022] [Accepted: 10/21/2022] [Indexed: 11/09/2022]
Abstract
A low response rate to immune checkpoint inhibitor (ICI) therapy has impeded its clinical use. As reported previously, an inflamed tumor microenvironment (TME) was directly correlated with patients' response to immune checkpoint blockade (ICB). Thus, restoring the cytotoxic effect of immune cells in the TME is a promising way to improve the efficacy of ICB and overcome primary resistance to immunotherapy. The effect of Pseudomonas aeruginosa mannose-sensitive-hemagglutinin (PA-MSHA) in facilitating T cell activation was determined in vitro and in vivo. Subsets of immune cells were analyzed by flow cytometry. Proteomics was carried out to comprehensively analyze the discriminated cellular kinases and transcription factors. The combinational efficacy of PA-MSHA and αPD-1 therapy was studied in vivo. In this study we demonstrated that PA-MSHA, which is a clinically used immune adjuvant, effectively induced the anti-tumor immune response and suppressed the growth of non-small cell lung cancer (NSCLC) cells. PA-MSHA showed great potential to sensitize refractory "cold" tumors to immunotherapy. It effectively enhanced macrophage M1 polarization and induced T cell activation. In vivo, in combination with αPD-1, PA-MSHA suppressed tumor growth and prolonged the survival time of allograft model mice. These results indicate that PA-MSHA is a potent agent to stimulate immune cells infiltration into the TME and consequently induces inflammation in tumors. The combination of PA-MSHA with αPD-1 is a potential strategy to enhance the clinical response rate to ICI therapy.
Collapse
|
7
|
Maalouf N, Gur C, Yutkin V, Scaiewicz V, Mandelboim O, Bachrach G. High mannose level in bladder cancer enhances type 1 fimbria–mediated attachment of uropathogenic E. coli. Front Cell Infect Microbiol 2022; 12:968739. [PMID: 36118038 PMCID: PMC9470858 DOI: 10.3389/fcimb.2022.968739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/11/2022] [Indexed: 12/04/2022] Open
Abstract
Bladder cancer is the 4th leading cancer in men. Tumor resection followed by bladder instillation of Bacillus Calmette-Guérin (BCG) is the primary treatment for high-risk patients with Non-Muscle Invasive Bladder Cancer (NMIBC) to prevent recurrence and progression to muscle-invasive disease. This treatment, however, lacks efficiency and causes severe adverse effects. Mannose residues are expressed on bladder surfaces and their levels were indicated to be higher in bladder cancer. Intravesical instillations of a recombinant Pseudomonas aeruginosa (PA) overexpressing the mannose-sensitive hemagglutination fimbriae (PA-MSHA), and of a mannose-specific lectin-drug conjugate showed efficiency against NMIBC in murine models of bladder cancer. Urothelial mannosylation facilitates bladder colonization by Uropathogenic E. coli (UPEC) via the interaction with the FimH mannose lectin, positioned at the tip of type 1 fimbria. A recombinant BCG strain overexpressing FimH on its outer surface, exhibited higher attachment and internalization to bladder cancer cells and increased effectivity in treating bladder cancer in mice. Investigating the pattern of mannose expression in NMIBC is important for improving treatment. Here, using tissue microarrays containing multiple normal and cancerous bladder samples, and lectins, we confirm that human bladder cancer cells express high mannose levels. Using UPEC mutants lacking or overexpressing type 1 fimbria, we also demonstrate that tumor-induced hypermannosylation increases type 1 fimbria mediated UPEC attachment to human and mouse bladder cancer. Our results provide an explanation for the effectiveness of PA-MSHA and the FimH-overexpressing BCG and support the hypothesis that mannose-targeted therapy holds potential for improving bladder cancer treatment.
Collapse
Affiliation(s)
- Naseem Maalouf
- The Institute of Dental Sciences, The Hebrew University-Hadassah School of Dental Medicine, Jerusalem, Israel
| | - Chamutal Gur
- Department of Rheumatology, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Vladimir Yutkin
- Department of Urology, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Viviana Scaiewicz
- The Institute of Dental Sciences, The Hebrew University-Hadassah School of Dental Medicine, Jerusalem, Israel
| | - Ofer Mandelboim
- The Lautenberg Center of General and Tumor Immunology, The Hebrew University Hadassah Medical School, Institute for Medical Research Israel Canada (IMRIC), Jerusalem, Israel
- *Correspondence: Ofer Mandelboim, ; Gilad Bachrach,
| | - Gilad Bachrach
- The Institute of Dental Sciences, The Hebrew University-Hadassah School of Dental Medicine, Jerusalem, Israel
- *Correspondence: Ofer Mandelboim, ; Gilad Bachrach,
| |
Collapse
|
8
|
Pang Z, Gu MD, Tang T. Pseudomonas aeruginosa in Cancer Therapy: Current Knowledge, Challenges and Future Perspectives. Front Oncol 2022; 12:891187. [PMID: 35574361 PMCID: PMC9095937 DOI: 10.3389/fonc.2022.891187] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/04/2022] [Indexed: 12/20/2022] Open
Abstract
Drug resistance, undesirable toxicity and lack of selectivity are the major challenges of conventional cancer therapies, which cause poor clinical outcomes and high mortality in many cancer patients. Development of alternative cancer therapeutics are highly required for the patients who are resistant to the conventional cancer therapies, including radiotherapy and chemotherapy. The success of a new cancer therapy depends on its high specificity to cancer cells and low toxicity to normal cells. Utilization of bacteria has emerged as a promising strategy for cancer treatment. Attenuated or genetically modified bacteria were used to inhibit tumor growth, modulate host immunity, or deliver anti-tumor agents. The bacteria-derived immunotoxins were capable of destructing tumors with high specificity. These bacteria-based strategies for cancer treatment have shown potent anti-tumor effects both in vivo and in vitro, and some of them have proceeded to clinical trials. Pseudomonas aeruginosa, a Gram-negative bacterial pathogen, is one of the common bacteria used in development of bacteria-based cancer therapy, particularly known for the Pseudomonas exotoxin A-based immunotoxins, which have shown remarkable anti-tumor efficacy and specificity. This review concisely summarizes the current knowledge regarding the utilization of P. aeruginosa in cancer treatment, and discusses the challenges and future perspectives of the P. aeruginosa-based therapeutic strategies.
Collapse
Affiliation(s)
- Zheng Pang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Meng-Di Gu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tong Tang
- School of Art & Design, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| |
Collapse
|
9
|
Wang B, He Z, Yu H, Ou Z, Chen J, Yang M, Fan X, Lin T, Huang J. Intravesical Pseudomonas aeruginosa mannose-sensitive Hemagglutinin vaccine triggers a tumor-preventing immune environment in an orthotopic mouse bladder cancer model. Cancer Immunol Immunother 2021; 71:1507-1517. [PMID: 34718847 DOI: 10.1007/s00262-021-03063-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 09/16/2021] [Indexed: 02/02/2023]
Abstract
Bacillus Calmette-Guerin (BCG) immunotherapy can prevent recurrence and progression in selected patients with non-muscle-invasive bladder cancer (NMIBC); however, significant adverse events and treatment failure suggest the need for alternative agents. A commercial anti-infection vaccine comprises a genetically engineered heat-killed Pseudomonas aeruginosa (PA) expressing many mannose-sensitive hemagglutination (MSHA) fimbriae, termed PA-MSHA, which could be a candidate for bladder cancer intravesical therapy. In an immunocompetent orthotopic MB49 bladder cancer model, we characterized the antitumor effects and mechanisms of PA-MSHA compared with those of BCG. Three weekly intravesical PA-MSHA or BCG treatments reduced tumor involvement; however, only PA-MSHA prolonged survival against MB49 implantation significantly. In non-tumor-bearing mice after treatment, flow-cytometry analysis showed PA-MSHA and BCG induced an increased CD4/CD8 ratio, the levels of effector memory T cell phenotypes (CD44, CXCR-3, and IFN-γ), and the proportion of CD11b+Ly6G-Ly6C-IA/IE+ mature macrophages, but a decrease in the proportion of CD11b+Ly6G-Ly6C+IA/IE- monocytic myeloid-derived suppressor cells (Mo-MDSCs) and the expression of suppressive molecules on immune cells (PD-L1, PD-1, TIM-3, and LAG-3). Notably, PA-MSHA, but not BCG, significantly reduced PD-1 and TIM-3 expression on CD4+ T cells, which might account for the better effects of PA-MSHA than BCG. However, in tumor-bearing mice after treatment, the increased proportion of Mo-MDSCs and high expression of PD-L1 might be involved in treatment failure. Thus, modulating the balance among adaptive and innate immune responses was identified as a key process underlying PA-MSHA-mediated treatment efficacy. The results demonstrated mechanisms underlying intravesical PA-MSHA therapy, pointing at its potential as an alternative effective treatment for NMIBC.
Collapse
Affiliation(s)
- Bo Wang
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen (Zhongshan) University, Guangzhou, 510120, People's Republic of China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Zhihua He
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen (Zhongshan) University, Guangzhou, 510120, People's Republic of China.,Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, People's Republic of China
| | - Hao Yu
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen (Zhongshan) University, Guangzhou, 510120, People's Republic of China
| | - Ziwei Ou
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen (Zhongshan) University, Guangzhou, 510120, People's Republic of China
| | - Junyu Chen
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen (Zhongshan) University, Guangzhou, 510120, People's Republic of China
| | - Meihua Yang
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen (Zhongshan) University, Guangzhou, 510120, People's Republic of China
| | - Xinxiang Fan
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen (Zhongshan) University, Guangzhou, 510120, People's Republic of China
| | - Tianxin Lin
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen (Zhongshan) University, Guangzhou, 510120, People's Republic of China. .,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China.
| | - Jian Huang
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen (Zhongshan) University, Guangzhou, 510120, People's Republic of China. .,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China.
| |
Collapse
|
10
|
Genpeng L, Jinen S, Tao W, Zhihui L, Rixiang G, Jianyong L, Jingqiang Z. Intraoperative application of inactivated Pseudomonas aeruginosa in patients undergoing lateral neck dissection for metastatic thyroid cancer: A randomized, parallel group, placebo-controlled trial. Surgery 2020; 168:340-346. [PMID: 32439205 DOI: 10.1016/j.surg.2020.03.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 03/06/2020] [Accepted: 03/14/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND We hypothesize that the intraoperative, prophylactic application of Pseudomonas aeruginosa can decrease postoperative chylous fistula and enhance recovery after surgery in patients with thyroid cancer undergoing lateral neck lymph node dissection. METHOD In this single-center trial, we assigned randomly 200 patients with thyroid cancer who had proven lateral lymph node metastasis to groups receiving either 2 mL Pseudomonas aeruginosa spray (Pseudomonas aeruginosa group) or 2 mL saline spray (control group) in the lateral cervical surgical field. The primary end points were the rate of chylous fistula, mean difference in the duration and volume of drainage fluid, days of postoperative hospital stay, and overall cost. The secondary end points included the red blood cell count and triglyceride level in the drainage, the white blood cell count in the blood, fever, local pain, development of a pleural effusion, and tumor recurrence. RESULTS Patients treated with Pseudomonas aeruginosa had a decrease in macroscopic chylous fistula compared with controls (0 vs 6%, P = .025). There were fewer days to drain-tube removal, a less volume of drainage fluid, fewer postoperative days of hospital stay, and a lesser red blood cell count in the drainage fluid in the Pseudomonas aeruginosa group than in the control group (all P < .05). No severe side effects of the Pseudomonas aeruginosa spray with respect to fever, pain, or pleural effusion were observed. Pseudomonas aeruginosa spraying did not affect postoperative recurrence of the thyroid cancer. CONCLUSION Intraoperative spraying of inactivated Pseudomonas aeruginosa in the lateral neck compartment can decrease the development of chylous fistula and enhance postoperative recovery.
Collapse
Affiliation(s)
- Li Genpeng
- Thyroid Surgery Center, West China Hospital of Sichuan University, Chengdu, China
| | - Song Jinen
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China
| | - Wei Tao
- Thyroid Surgery Center, West China Hospital of Sichuan University, Chengdu, China
| | - Li Zhihui
- Thyroid Surgery Center, West China Hospital of Sichuan University, Chengdu, China
| | - Gong Rixiang
- Thyroid Surgery Center, West China Hospital of Sichuan University, Chengdu, China
| | - Lei Jianyong
- Thyroid Surgery Center, West China Hospital of Sichuan University, Chengdu, China.
| | - Zhu Jingqiang
- Thyroid Surgery Center, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Identification of core genes and clinical roles in pregnancy-associated breast cancer based on integrated analysis of different microarray profile datasets. Biosci Rep 2019; 39:BSR20190019. [PMID: 31171715 PMCID: PMC6591572 DOI: 10.1042/bsr20190019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 05/06/2019] [Accepted: 05/31/2019] [Indexed: 12/18/2022] Open
Abstract
More women are delaying child-birth. Thus, the diagnosis of pregnancy-associated breast cancer (PABC) will continue to increase. The aim of this study was to identify core candidate genes of PABC, and the relevance of the genes on the prognosis of PABC. GSE31192 and GSE53031 microarray profile datasets were downloaded from the Gene Expression Omnibus database and differentially expressed genes were analyzed using the R package and GEO2R tool. Then, Gene Ontology and Kyoto Encyclopedia of Gene and Genome pathway enrichment analyses were performed using the Database for Annotation, Visualization, and Integrated Discovery. Moreover, the Search Tool for the Retrieval of Interacting Genes and the Molecular Complex Detection Cytoscape software plug-in were utilized to visualize protein–protein interactions and to screen candidate genes. A total of 239 DEGs were identified in PABC, including 101 up-regulated genes mainly enriched in fatty acid activation and the fibroblast growth factor signaling pathway, while 138 down-regulated genes particularly involved in activation of DNA fragmentation factor and apoptosis-induced DNA fragmentation. Fourteen hub genes with a high degree of connectivity were selected, including CREB1, ARF3, UBA5, SIAH1, KLHL3, HECTD1, MMP9, TRIM69, MEX3C, ASB6, UBE2Q2, FBXO22, EIF4A3, and PXN. Overall survival (OS) analysis of core candidate genes was performed using the Gene Expression Profiling Interactive Analysis and UALCAN websites. High ASB6 expression was associated with worse OS of PABC patients. Molecular subtypes and menopause status were also associated with worse OS for PABC patients. In conclusion, ASB6 could be a potential predictor and therapeutic target in patient with PABC.
Collapse
|
12
|
Zhao XM, Pan SY, Huang QL, Lu YN, Wu XH, Chang JH, Liu ZB, Cai XW, Liu Q, Wang JL, Fu XL. PA-MSHA in combination with EGFR tyrosine kinase inhibitor: A new strategy to overcome the drug resistance of non-small cell lung cancer cells. Oncotarget 2018; 7:49384-49396. [PMID: 27283902 PMCID: PMC5226515 DOI: 10.18632/oncotarget.9891] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 05/08/2016] [Indexed: 01/08/2023] Open
Abstract
The inhibition of epidermal growth factor receptor (EGFR) signaling by Gefitinib provides a promising treatment strategy for non-small cell lung cancer (NSCLC); however, drug resistance to Gefitinib and other tyrosine kinase inhibitors presents a major issue. Using NSCLC cell lines with differential EGFR status, we examined the potency of PA-MSHA (Pseudomonas aeruginosa-mannose-sensitive hemagglutinin) in combination with Gefitinib on proliferation, apoptosis, cell cycle arrest, EGFR signaling and tumor growth. PC-9, A549, and NCI-H1975 cells were treated with PA-MSHA, Gefetinib, or PA-MSHA plus Gefetinib at different concentrations and times. The effects of the drugs on proliferation, cell cycle distribution and apoptosis were evaluated. The activation of EGFR and apoptotic signaling-related molecules was evaluated by Western blotting in the presence or absence of EGFR siRNA. Tumor growth and pathway signaling activation was assessed by xenografts in nude mice. A time-dependent and concentration-dependent cytotoxic effect of PA-MSHA was observed in all NSCLC cells tested. The combination of PA-MSHA plus Gefitinib enhanced the growth inhibition, sub-G1 content and apoptosis over that observed with either agent alone. Furthermore, the combination of PA-MSHA plus Gefitinib resulted in caspase-3/caspase-9 cleavage and increased inhibition of EGFR-dependent activation of AKT and ERK phosphorylation. Combination treatment was more effective in reducing tumor size and EGFR activation than either agent alone. These data suggest that PA-MSHA and Gefitinib function additively to suppress the proliferative effects of NSCLC cells of differential EGFR status. The combination of PA-MSHA and Gefitinib provides a potential new strategy to conquer drug resistance for anti-EGFR-targeted therapy of NSCLC.
Collapse
Affiliation(s)
- Xin-Min Zhao
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shi-Yun Pan
- Department of Medicine, Beijing Wanter Biopharmaceutical Co., Ltd, Huairou Yanqi Economic-Technical Development Area, Beijing, China
| | - Qi-Ling Huang
- Department of Medicine, Beijing Wanter Biopharmaceutical Co., Ltd, Huairou Yanqi Economic-Technical Development Area, Beijing, China
| | - You-Ni Lu
- Department of Medicine, Beijing Wanter Biopharmaceutical Co., Ltd, Huairou Yanqi Economic-Technical Development Area, Beijing, China
| | - Xiang-Hua Wu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jian-Hua Chang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhe-Bin Liu
- Breast Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xu-Wei Cai
- Radiation Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Qi Liu
- Radiation Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jia-Lei Wang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiao-Long Fu
- Radiation Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
13
|
Li RE, van Vliet SJ, van Kooyk Y. Using the glycan toolbox for pathogenic interventions and glycan immunotherapy. Curr Opin Biotechnol 2017; 51:24-31. [PMID: 29175707 DOI: 10.1016/j.copbio.2017.11.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/29/2017] [Accepted: 11/09/2017] [Indexed: 02/07/2023]
Abstract
Glycans play a crucial role to discern between self and foreign entities by providing key recognition elements for C-type lectin receptors (CLRs) and Siglec receptors expressed on immune cells. The glycan recognition of CLRs has illustrated a potent immune modulatory role affecting not only innate pathogen binding and immune signalling, but also Thelper differentiation, cytokine production and antigen presentation. This broad range of influence has implicated glycans in the pathogenesis of infectious diseases but also revealed their extraordinary properties in cancer. Glycan binding by CLRs and Siglecs can be exploited for immunotherapy and the design of glycan-based therapeutics and their multivalent requirements will aspire new biotechnological approaches to effectively interfere in immunological processes in cancer and infectious diseases.
Collapse
Affiliation(s)
- Rj Eveline Li
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - Sandra J van Vliet
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - Y van Kooyk
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
14
|
Liu J, Duan X. PA-MSHA induces apoptosis and suppresses metastasis by tumor associated macrophages in bladder cancer cells. Cancer Cell Int 2017; 17:76. [PMID: 28824336 PMCID: PMC5561576 DOI: 10.1186/s12935-017-0445-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 08/08/2017] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The aim of the present study was to investigate effects of Pseudomonas aeruginosa-mannose-sensitive hemagglutinin (PA-MSHA) on the inhibition of the proliferation of bladder cancer cell lines and to further define its functional mechanisms. METHODS A rat model of bladder tumor was induced by intravesical N-methyl-N nitrosourea. The dynamic growth of tumor was measured by whole-body fluorescent imaging system. Morphological analysis was observed by hematoxylin-eosin staining and microscopic examination. The expression of Caspase 3 and E-Ca were detected by immunohistochemistry technique. Macrophages were separated by flow cytometry. The expression of cytokines was measured by qRT-PCR and western blot. Apoptosis ability was conducted by means of annexin V and propidium iodide. The abilities of invasion and migration were determined by transwell migration assay and scratch assay. RESULTS PA-MSHA and PA-MSHA + Fisetin groups inhibited the growth of tumor and increased the ratio of M1/M2. For one thing, PA-MSHA suppressed the invasive ability of the bladder tumor cell and promoted bladder tumor cell apoptosis. For another, it facilitated the expression of M1 cytokines and reduced expression of M2 cytokines. Furthermore, treated with PA-MSHA, mouse M1 phagocytosis rates were higher than that of M2 macrophages for bladder cancer lines. CONCLUSIONS The data revealed that PA-MSHA might promote apoptosis and inhibit proliferation, invasion and migration of mouse bladder cancer cells by inducing M1 polarization.
Collapse
Affiliation(s)
- Jianjun Liu
- Department of Urology, Henan Provincial People’s Hospital, No. 7 Weiwu Road, Zhengzhou, 450003 China
| | - Xiaoyu Duan
- Department of Urology, Henan Provincial People’s Hospital, No. 7 Weiwu Road, Zhengzhou, 450003 China
| |
Collapse
|
15
|
Zhao X, Wu X, Yu W, Cai X, Liu Q, Fu X, Liu Z, Hu D, Pan S, Huang Q. PA-MSHA inhibits proliferation and induces apoptosis in human non-small cell lung cancer cell lines with different genotypes. Mol Med Rep 2016; 14:5369-5376. [PMID: 27779712 DOI: 10.3892/mmr.2016.5869] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 07/26/2016] [Indexed: 11/06/2022] Open
Abstract
The present study examined the potential of Pseudomonas aeruginosa-mannose sensitive hemagglutinin (PA-MSHA) to inhibit proliferation and induce apoptosis in non‑small‑cell lung cancer (NSCLC) cell lines. It also investigated its mechanisms of action in different genotypes of human NSCLC. A total of three NSCLC cell lines, PC‑9, A549, and NCI‑H1975, were treated with PA‑MSHA at different concentrations. The anti‑proliferative effect of PA‑MSHA was evaluated using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Cell cycle distribution and apoptosis induced by the treatment were measured by flow cytometry (FCM) with Annexin V/propidium iodide staining. Western blotting was conducted to determine the expression level of apoptosis‑associated proteins. PA‑MSHA was demonstrated to exert a time‑ and concentration‑dependent cytotoxic effect in PC‑9, A549, and NCI‑H1975 cells. The FCM indicated that all the different concentrations of PA‑MSHA used in the present study induce apoptosis and cell cycle arrest of NSCLC cells. Treatment with PA‑MSHA may exert anti‑proliferative effects on NSCLC cells by affecting regulation of the cell cycle and inducing apoptosis that is mediated in part by an intrinsic apoptosis signaling pathway. These data suggest that PA‑MSHA has the potential to inhibit proliferation and induce apoptosis in NSCLC cells. Furthermore, these data provide mechanistic details for the potential application of PA‑MSHA‑based therapeutic strategies for the treatment of different NSCLC genotypes. This present study suggests potential novel strategies to maximize effective therapeutic strategies targeting anti‑epidermal growth factor receptor for future clinical trials.
Collapse
Affiliation(s)
- Xinmin Zhao
- Department of Medical Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Xianghua Wu
- Department of Medical Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Wen Yu
- Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Xuwei Cai
- Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Qi Liu
- Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Xiaolong Fu
- Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Zhebin Liu
- Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Dali Hu
- Department of Medicine, Beijing Wonder Biopharmaceutical Co., Ltd., Beijing 101407, P.R. China
| | - Shiyun Pan
- Department of Medicine, Beijing Wonder Biopharmaceutical Co., Ltd., Beijing 101407, P.R. China
| | - Qiling Huang
- Department of Medicine, Beijing Wonder Biopharmaceutical Co., Ltd., Beijing 101407, P.R. China
| |
Collapse
|
16
|
Wei Y, Liu D, Jin X, Gao P, Wang Q, Zhang J, Zhang N. PA-MSHA inhibits the growth of doxorubicin-resistant MCF-7/ADR human breast cancer cells by downregulating Nrf2/p62. Cancer Med 2016; 5:3520-3531. [PMID: 27758045 PMCID: PMC5224842 DOI: 10.1002/cam4.938] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 09/08/2016] [Accepted: 09/22/2016] [Indexed: 01/09/2023] Open
Abstract
Acquired resistance to doxorubicin in breast cancer is a serious therapeutic problem. In this study, we investigated whether Pseudomonas aeruginosa mannose-sensitive hemagglutinin (PA-MSHA) could inhibit the growth of doxorubicin-resistant breast cancer cells. We found that the expressions of Nrf2 and p62 in breast cancer were higher than that in the corresponding adjacent normal tissues and benign breast epithelial cell. The expressions of Nrf2 and p62 in breast cancer doxorubicin-resistant cells MCF-7/ADR were higher than that in doxorubicin-sensitive cells MCF-7. Silencing of Nrf2 or p62 rendered breast cancer cells more susceptible to doxorubicin. We further demonstrated that PA-MSHA inhibited growth and induced apoptosis of MCF-7/ADR cells but not MCF-7 cells. Subcutaneous administration of PA-MSHA greatly inhibited the growth of xenograft tumors from MCF-7/ADR cells in nude mice. In addition, PA-MSHA could downregulate Nrf2 and p62 in vitro and in vivo. These results suggested that activation of Nrf2 and p62 was associated with doxorubicin resistance in breast cancer. PA-MSHA could inhibit the growth of doxorubicin-resistant MCF-7/ADR cells and its potential mechanism might be due to the suppression of Nrf2/p62. It indicated the possibility of using PA-MSHA in doxorubicin-resistant breast cancer.
Collapse
Affiliation(s)
- Yingze Wei
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Department of Pathology, Nantong Tumor Hospital, Nantong, Jiangsu, China
| | - Danyang Liu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xiaoxia Jin
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Pan Gao
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Qingying Wang
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Jiawen Zhang
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Nong Zhang
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
17
|
Lectin-Glycan Interaction Network-Based Identification of Host Receptors of Microbial Pathogenic Adhesins. mBio 2016; 7:mBio.00584-16. [PMID: 27406561 PMCID: PMC4958244 DOI: 10.1128/mbio.00584-16] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The first step in the infection of humans by microbial pathogens is their adherence to host tissue cells, which is frequently based on the binding of carbohydrate-binding proteins (lectin-like adhesins) to human cell receptors that expose glycans. In only a few cases have the human receptors of pathogenic adhesins been described. A novel strategy—based on the construction of a lectin-glycan interaction (LGI) network—to identify the potential human binding receptors for pathogenic adhesins with lectin activity was developed. The new approach is based on linking glycan array screening results of these adhesins to a human glycoprotein database via the construction of an LGI network. This strategy was used to detect human receptors for virulent Escherichia coli (FimH adhesin), and the fungal pathogens Candida albicans (Als1p and Als3p adhesins) and C. glabrata (Epa1, Epa6, and Epa7 adhesins), which cause candidiasis. This LGI network strategy allows the profiling of potential adhesin binding receptors in the host with prioritization, based on experimental binding data, of the most relevant interactions. New potential targets for the selected adhesins were predicted and experimentally confirmed. This methodology was also used to predict lectin interactions with envelope glycoproteins of human-pathogenic viruses. It was shown that this strategy was successful in revealing that the FimH adhesin has anti-HIV activity. Microbial pathogens may express a wide range of carbohydrate-specific adhesion proteins that mediate adherence to host tissues. Pathogen attachment to host cells is achieved through the binding of these lectin-like adhesins to glycans on human glycoproteins. In only a few cases have the human receptors of pathogenic adhesins been described. We developed a new strategy to predict these interacting receptors. Therefore, we developed a novel LGI network that would allow the mapping of potential adhesin binding receptors in the host with prioritization, based on the experimental binding data, of the most relevant interactions. New potential targets for the selected adhesins (bacterial uroepithelial FimH from E. coli and fungal Epa and Als adhesins from C. glabrata and C. albicans) were predicted and experimentally confirmed. This methodology was also used to predict lectin interactions with human-pathogenic viruses and to discover whether FimH adhesin has anti-HIV activity.
Collapse
|
18
|
Liu J, Gu J, Feng Z, Yang Y, Zhu N, Lu W, Qi F. Both HDAC5 and HDAC6 are required for the proliferation and metastasis of melanoma cells. J Transl Med 2016; 14:7. [PMID: 26747087 PMCID: PMC4706654 DOI: 10.1186/s12967-015-0753-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 12/14/2015] [Indexed: 12/20/2022] Open
Abstract
Background Histone deacetylase (HDAC) inhibitors are widely used in clinical investigation as novel drug targets. For example, panobinostat and vorinostat have been used to treat patients with melanoma. However, HDAC inhibitors are small-molecule compounds without a specific target, and their mechanism of action is unclear. Therefore, it is necessary to investigate which HDACs are required for the proliferation and metastasis of melanoma cells. Methods We used overexpression and knocking down lentivirus to clarify the influence of HDAC5 and HDAC6 in melanoma development. Also, we introduced stable HDAC5 or HDAC6 knockdown cells into null mice and found that the knockdown cells were unable to form solid tumors. Finally, we tested HDAC5 and HDAC6 expression and sub-location in clinical melanoma tissues and tumor adjacent tissues. Results In this study, and found that HDAC5 and HDAC6 were highly expressed in melanoma cells but exhibited low expression levels in normal skin cells. Furthermore, we knocked down HDAC5 or HDAC6 in A375 cells and demonstrated that both HDAC5 and HDAC6 contributed to the proliferation and metastasis of melanoma cells. Conclusions This study demonstrated both HDAC5 and HDAC6 were required for melanoma cell proliferation and metastasis through different signaling pathways. Electronic supplementary material The online version of this article (doi:10.1186/s12967-015-0753-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jiaqi Liu
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
| | - Jianying Gu
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
| | - Zihao Feng
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
| | - Yanhong Yang
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd, Shanghai, 201203, China.
| | - Ningwen Zhu
- Huashan Hospital, Fudan University, 12 Middle Urumqi Rd, Shanghai, 200040, China.
| | - Weiyue Lu
- Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Rd, Shanghai, 201203, China.
| | - Fazhi Qi
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
| |
Collapse
|
19
|
Wang C, Hu Z, Zhu Z, Zhang X, Wei Z, Zhang Y, Hu D, Cai Q. The MSHA strain of Pseudomonas aeruginosa (PA-MSHA) inhibits gastric carcinoma progression by inducing M1 macrophage polarization. Tumour Biol 2015; 37:6913-21. [PMID: 26662800 DOI: 10.1007/s13277-015-4451-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 11/17/2015] [Indexed: 12/18/2022] Open
Abstract
Macrophages play crucial roles in promoting tumor development and progression. In the present study, we found that the mannose-sensitive hemagglutination pilus strain of Pseudomonas aeruginosa (PA-MSHA) was efficient in inducing M1 macrophage polarization. PA-MSHA treatment increases expression of M1-related cytokines and promotes activation of murine peritoneal macrophages (MPM). Interestingly, PA-MSHA inhibits cell proliferation and migration and induces the apoptosis of gastric carcinoma cells. These effects of PA-MSHA on M1 polarization were associated with activation of NF-κB expression. Thus, inducing polarization of M1 by PA-MSHA may be one potential strategy for inhibiting gastric carcinoma progression in mice.
Collapse
Affiliation(s)
- Changming Wang
- Gastrointestinal Surgery Department, Shanghai Changzheng Hospital, Second Military Medical University, No. 415 Fengyang Road, Huangpu District, Shanghai, 200003, China
| | - Zunqi Hu
- Gastrointestinal Surgery Department, Shanghai Changzheng Hospital, Second Military Medical University, No. 415 Fengyang Road, Huangpu District, Shanghai, 200003, China
| | - Zhenxin Zhu
- Gastrointestinal Surgery Department, Shanghai Changzheng Hospital, Second Military Medical University, No. 415 Fengyang Road, Huangpu District, Shanghai, 200003, China
| | - Xin Zhang
- Gastrointestinal Surgery Department, Shanghai Changzheng Hospital, Second Military Medical University, No. 415 Fengyang Road, Huangpu District, Shanghai, 200003, China
| | - Ziran Wei
- Gastrointestinal Surgery Department, Shanghai Changzheng Hospital, Second Military Medical University, No. 415 Fengyang Road, Huangpu District, Shanghai, 200003, China
| | - Yu Zhang
- Gastrointestinal Surgery Department, Shanghai Changzheng Hospital, Second Military Medical University, No. 415 Fengyang Road, Huangpu District, Shanghai, 200003, China
| | - Dali Hu
- Research and Medical Department, Beijing Wanter Bio-pharmaceutical Co., Ltd, Beijing, 101407, China
| | - Qingping Cai
- Gastrointestinal Surgery Department, Shanghai Changzheng Hospital, Second Military Medical University, No. 415 Fengyang Road, Huangpu District, Shanghai, 200003, China.
| |
Collapse
|
20
|
Bemanian V, Sauer T, Touma J, Lindstedt BA, Chen Y, Ødegård HP, Vetvik KM, Bukholm IR, Geisler J. The epidermal growth factor receptor (EGFR / HER-1) gatekeeper mutation T790M is present in European patients with early breast cancer. PLoS One 2015; 10:e0134398. [PMID: 26267891 PMCID: PMC4534377 DOI: 10.1371/journal.pone.0134398] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 07/08/2015] [Indexed: 02/03/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) is one of the major oncogenes identified in a variety of human malignancies including breast cancer (BC). EGFR-mutations have been studied in lung cancer for some years and are established as important markers in guiding therapy with tyrosine kinase inhibitors (TKIs). In contrast, EGFR-mutations have been reported to be rare if not absent in human BC, although recent evidence has suggested a significant worldwide variation in somatic EGFR-mutations. Therefore, we investigated the presence of EGFR-mutations in 131 norwegian patients diagnosed with early breast cancer using real-time PCR methods. In the present study we identified three patients with an EGFR-T790M-mutation. The PCR-findings were confirmed by direct Sanger sequencing. Two patients had triple-negative BC (TNBC) while the third was classified as luminal-A subtype. The difference in incidence of T790M mutations comparing the TNBC subgroup with the other BC subgroups was statistical significant (P = 0.023). No other EGFR mutations were identified in the entire cohort. Interestingly, none of the patients had received any previous cancer treatment. To our best knowledge, the EGFR-T790M-TKI-resistance mutation has not been previously detected in breast cancer patients. Our findings contrast with the observations made in lung cancer patients where the EGFR-T790M-mutation is classified as a typical „second mutation”causing resistance to TKI-therapy during ongoing anticancer therapy. In conclusion, we have demonstrated for the first time that the EGFR-T790M-mutation occurs in primary human breast cancer patients. In the present study the EGFR-T790M mutation was not accompanied by any simultaneous EGFR-activating mutation.
Collapse
Affiliation(s)
- Vahid Bemanian
- Department of Gene Technology, Akershus University Hospital, Lørenskog, Norway
- University of Oslo, Institute of Clinical Medicine, Campus at Akershus University Hospital, Lørenskog, Norway
| | - Torill Sauer
- University of Oslo, Institute of Clinical Medicine, Campus at Akershus University Hospital, Lørenskog, Norway
- Department of Pathology, Akershus University Hospital, Lørenskog, Norway
| | - Joel Touma
- Department of Breast- and Endocrine Surgery, Akershus University Hospital, Lørenskog, Norway
| | - Bjørn Arne Lindstedt
- Department of Gene Technology, Akershus University Hospital, Lørenskog, Norway
- University of Oslo, Institute of Clinical Medicine, Campus at Akershus University Hospital, Lørenskog, Norway
| | - Ying Chen
- Department of Pathology, Akershus University Hospital, Lørenskog, Norway
| | | | - Katja Marjaana Vetvik
- Department of Breast- and Endocrine Surgery, Akershus University Hospital, Lørenskog, Norway
| | - Ida Rashida Bukholm
- University of Oslo, Institute of Clinical Medicine, Campus at Akershus University Hospital, Lørenskog, Norway
- Department of Breast- and Endocrine Surgery, Akershus University Hospital, Lørenskog, Norway
| | - Jürgen Geisler
- University of Oslo, Institute of Clinical Medicine, Campus at Akershus University Hospital, Lørenskog, Norway
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway
- * E-mail:
| |
Collapse
|
21
|
Yang L, Wang F, Wang L, Huang L, Wang J, Zhang B, Zhang Y. CD163+ tumor-associated macrophage is a prognostic biomarker and is associated with therapeutic effect on malignant pleural effusion of lung cancer patients. Oncotarget 2015; 6:10592-10603. [PMID: 25871392 PMCID: PMC4496378 DOI: 10.18632/oncotarget.3547] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 02/13/2015] [Indexed: 12/25/2022] Open
Abstract
CD163+ tumor-associated macrophages (TAMs) play an important role in the progression of cancer. However, the significance of CD163+ TAMs in malignant pleural effusion (MPE) is still unclear. The aim of this study is to evaluate the prognostic value of CD163+ TAMs in MPE, and the regulatory effect of an immune adjuvant (pseudomonas aeruginosa - mannose-sensitive hemagglutinin, PA-MSHA, which is used for MPE treatment in clinic) on CD163+ TAMs in MPE. Here, we found that the percentage of CD163+ TAMs in MPE was significantly higher than that in non-malignant pleural effusion (P<0.001). More importantly, CD163+ TAMs in MPE patients were an independent prognostic factor for progression-free survival. M2-related cytokines were highly expressed in MPE-derived CD163+ TAMs than in MPE-derived CD163- macrophages (P<0.05). CD163+ TAMs frequency in MPE patients was obviously reduced after PA-MSHA treatment in clinic (P<0.05). After treatment with PA-MSHA, M2 macrophages were re-educated to M1 macrophages in vitro. TLR4 blocking antibody inhibited M2 macrophages polarization to M1 macrophages induced by PA-MSHA. These findings highlight that accumulation of CD163+ TAMs in MPE caused by lung cancer is closely correlated with poor prognosis. CD163+ TAMs are associated with therapeutic effect in MPE. PA-MSHA re-educates CD163+ TAMs to M1 macrophages through TLR4-mediated pathway in MPE.
Collapse
MESH Headings
- Antigens, CD/blood
- Antigens, CD/immunology
- Antigens, Differentiation, Myelomonocytic/blood
- Antigens, Differentiation, Myelomonocytic/immunology
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/immunology
- Disease-Free Survival
- Humans
- Lung Neoplasms/blood
- Lung Neoplasms/immunology
- Lung Neoplasms/therapy
- Macrophages/immunology
- Macrophages/metabolism
- Pleural Effusion, Malignant/blood
- Pleural Effusion, Malignant/immunology
- Pleural Effusion, Malignant/therapy
- Prognosis
- Receptors, Cell Surface/blood
- Receptors, Cell Surface/immunology
- CD163 Antigen
Collapse
Affiliation(s)
- Li Yang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Fei Wang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Liping Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Lan Huang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Jing Wang
- Department of Respiration, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Bin Zhang
- Robert H. Lurie Comprehensive Cancer Center, Department of Medicine-Division of Hematology/Oncology, Northwestern University Feinberg School of Medicine, Chicago IL, USA
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| |
Collapse
|
22
|
Li T, Dong ZR, Guo ZY, Wang CH, Zhi XT, Zhou JW, Li DK, Chen ZT, Chen ZQ, Hu SY. Mannose-mediated inhibitory effects of PA-MSHA on invasion and metastasis of hepatocellular carcinoma via EGFR/Akt/IκBβ/NF-κB pathway. Liver Int 2015; 35:1416-29. [PMID: 25066210 DOI: 10.1111/liv.12644] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 07/23/2014] [Indexed: 01/04/2023]
Abstract
BACKGROUND & AIMS Elevation of high-mannose glycans is a common feature of malignant cells and has been suggested to be the basis for alternative cancer therapy for several years. Here we want to investigate the antitumour effect of pseudomonas aeruginosa-mannosesensitive haemagglutinin (PA-MSHA), a genetically engineered heat-inactivated PA strain with mannose-sensitive binding activity, on hepatocellular carcinoma (HCC). METHODS Tumourigenicity and metastatic potentials of HCC were studied after PA-MSHA treatment by utilizing the in vitro/in vivo model of HCC. Expression of apoptosis-associated proteins and epithelial-mesenchymal transition (EMT) related genes were evaluated, and possible signalling pathways involved were investigated. RESULTS PA-MSHA induced significant cell proliferation inhibition and cell cycle arrest of HCC through decreasing the levels of cyclins D1, cyclins E, CDK2, CDK4, proliferating cell nuclear antigen (PCNA), and increasing the level of p21 and p27. Moreover, PA-MSHA suppressed the invasion, migration and adhesion of HCC through inhibiting epithelial-mesenchymal transition (EMT). PA-MSHA also inhibited EGFR/Akt/IκBβ/NF-κB pathway and overexpression of NF-κB significantly abrogated PA-MSHA induced EMT inhibition. In addition, competitive inhibition of the mannose binding activity of PA-MSHA by D-mannose significantly blocked its effect on cell cycle arrest and EMT. PA-MSHA also abrogated lung metastasis of HCC and significantly inhibited tumour growth in the in vivo study. CONCLUSIONS Our study demonstrated the essential role of EGFR/Akt/IκBβ/NF-κB pathway in the inhibitory effect of PA-MSHA on invasion and metastasis of HCC through suppressing EMT, and revealed an attractive prospect of PA-MSHA as a novel candidate agent in the treatment of HCC.
Collapse
Affiliation(s)
- Tao Li
- Department of general surgery, Qilu Hospital, Shandong University, Jinan, 250012, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Chang J, Liu Y, Han B, Zhou C, Bai C, Li J. Pseudomonas aeruginosa preparation plus chemotherapy for advanced non-small-cell lung cancer: a randomized, multicenter, double-blind phase III study. Med Oncol 2015; 32:139. [DOI: 10.1007/s12032-015-0583-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 03/14/2015] [Indexed: 10/23/2022]
|
24
|
Lv F, Cao J, Liu Z, Wang Z, Zhang J, Zhang S, Wang L, Zhao X, Shao Z, Wang B, Hu X. Phase II study of Pseudomonas aeruginosa-Mannose-Sensitive hemagglutinin in combination with capecitabine for Her-2-negative metastatic breast cancer pretreated with anthracycline and taxane. PLoS One 2015; 10:e0118607. [PMID: 25768439 PMCID: PMC4359133 DOI: 10.1371/journal.pone.0118607] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Accepted: 01/21/2015] [Indexed: 11/25/2022] Open
Abstract
Purpose Metastatic breast cancer (MBC) remains an incurable disease despite major therapeutic advances. Pseudomonas aeruginosa–mannose-sensitive hemagglutinin (PA-MSHA) has been established to have anti-proliferative effects against breast cancer cells in preclinical experiments, and is indicated for treatment of cancer in China. We performed a phase II trial combining PA-MSHA with capecitabine in patients with heavily pretreated MBC. Methods Eligibility criteria included human epidermal growth factor receptor 2–negative MBC, prior therapy with anthracyclines and taxanes, at least one prior chemotherapy regimen for metastatic disease or early relapse after a taxane plus anthracycline adjuvant regimen, and adequate organ function and performance status. PA-MSHA 1 mg was administered subcutaneously every other day and capecitabine 1000 mg/m2 orally twice a day for 2 weeks on, 1 week off. The primary end point was progression-free survival. Results A total of 97 patients were enrolled. Median progression-free survival (PFS) was 4.0 months [95 % confidence interval (CI) 3.0–4.9], which was not significantly different from that in historical controls. However, median PFS was significantly longer (8.2 months; 95 % CI 6.7–9.7) in 24 patients with moderate immune-related adverse events (irAEs) such as fever or skin induration at the injection site than in those with no or mild irAEs (3.1 months, 95 % CI 2.5–3.6; p = 0.003). Overall survival was also improved in these patients (25.4 vs. 16.4 months; p = 0.044). PA-MSHA has a good safety profile, with only 6 patients (6.2 %) discontinuing treatment. PA-MSHA did not increase capecitabine-related toxicities such as hand-foot syndrome, nausea, and vomiting. Conclusion Adding PA-MSHA to capecitabine has a good safety profile in patients with heavily pre-treated MBC, although benefit from this regimen might occur only in patients with moderate PA-MSHA–related adverse events. Trial Registration ClinicalTrials.gov NCT01380808
Collapse
Affiliation(s)
- Fangfang Lv
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jun Cao
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhebin Liu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhonghua Wang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jian Zhang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Sheng Zhang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Leiping Wang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xinmin Zhao
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhimin Shao
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Biyun Wang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- * E-mail: (BW); (XH)
| | - Xichun Hu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- * E-mail: (BW); (XH)
| |
Collapse
|
25
|
Zhang M, Luo F, Zhang Y, Wang L, Lin W, Yang M, Hu D, Wu X, Chu Y. Pseudomonas aeruginosa mannose-sensitive hemagglutinin promotes T-cell response via toll-like receptor 4-mediated dendritic cells to slow tumor progression in mice. J Pharmacol Exp Ther 2014; 349:279-87. [PMID: 24623801 DOI: 10.1124/jpet.113.212316] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Pseudomonas aeruginosa-mannose-sensitive hemagglutinin (PA-MSHA) as a drug may kill tumor cells and has been used clinically. However, the antitumor immune response of PA-MSHA is not completely understood. In this study, we found that treating Lewis lung carcinoma (3LL)-bearing mice with PA-MSHA plus 3LL antigen led to slower tumor progression and longer survival. After PA-MSHA treatment, T-cell number and dendritic cell maturation were both increased significantly at the tumor site. In addition, PA-MSHA in vitro stimulation resulted in the maturation of bone marrow-derived dendritic cells (BMDCs) from naive mice, showing higher costimulatory molecule expression, more cytokine secretion, lower endocytic activity, and stronger capacity to enhance T-cell activation. Toll-like receptor (TLR)4 but not TLR2 was required in the maturation process. More importantly, PA-MSHA-induced DCs were essential for PA-MSHA to enhance activation, expansion, and interferon (IFN)-γ secretion of TLR4-mediated T cells, which play a role in the antitumor effect of PA-MSHA. Thus, this study reveals PA-MSHA as a novel TLR4 agonist that elicits antitumor immune response to slow tumor progression.
Collapse
Affiliation(s)
- Min Zhang
- Key Laboratory of Medical Molecular Virology of MOE/MOH, Department of Immunology, School of Basic Medical Sciences and Biotherapy Research Center (M.Z., F.L., Y.Z., L.W., W.L., Y.C.) and Department of General Surgery, Zhongshan Hospital (M.Y.), Fudan University, Shanghai, China; and Beijing Wanter Biopharmaceutical Co., Ltd., Huairou Yanqi Economic-Technical Development Area, Beijing, China (D.H., X.W.)
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Miao ZF, Zhao TT, Miao F, Wang ZN, Xu YY, Mao XY, Gao J, Wu JH, Liu XY, You Y, Xu H, Xu HM. The mannose-sensitive hemagglutination pilus strain of Pseudomonas aeruginosa shift peritoneal milky spot macrophages towards an M1 phenotype to dampen peritoneal dissemination. Tumour Biol 2014; 35:4285-93. [PMID: 24385384 DOI: 10.1007/s13277-013-1559-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 12/13/2013] [Indexed: 11/29/2022] Open
Abstract
Peritoneal dissemination (PD) of tumor cells is the most frequent pattern of gastric cancer recurrence and the leading cause of death. Peritoneal milky spots are deemed as the site of origin of gastric cancer PD wherein the main cellular components are macrophages. A vaccine derived from the mannose-sensitive hemagglutination pilus strain of Pseudomonas aeruginosa (PA-MSHA) has exhibit strong immune modulatory properties. In the present study, we tested the hypothesis whether the PA-MSHA vaccine activated peritoneal milky spot macrophages (PMSM) in a manner that would attenuate PD. It was observed that PA-MSHA activated PMSM towards a classical activation phenotype via a toll-like receptor4/9-dependent mechanism, which increased interleukin-12 levels and promoted the expression of co-stimulatory and antigen-presenting molecules like CD80, CD86, and MHC-II (P < 0.05). In addition, PA-MSHA-treated PMSM exhibited strong nonspecific antitumor effects in both contact-dependent and contact-independent modes of action (P < 0.05). In mice treated with PA-MSHA before inoculating gastric cancer cells, we noted alleviated PD toward the untreated mice. In conclusion, our findings demonstrated that PA-MSHA can stimulate PMSM towards an M1 phenotype and that activated PMSM inhibit gastric cancer growth and PD both in vitro and in vivo. The results of the current study provide a mechanistic insight that is relevant to the potential application of PA-MSHA in the treatment of gastric cancer-mediated PD.
Collapse
Affiliation(s)
- Zhi-Feng Miao
- Department of Surgical Oncology, The First Affiliated Hospital of China Medical University, No.155 North Nanjing Street, Heping District, Shenyang, Liaoning Province, 110001, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Effects of Pseudomonas aeruginosa mannose-sensitive hemagglutinin (PA-MSHA) pretreatment on septic rats. Int Immunopharmacol 2013; 17:836-42. [PMID: 24055021 DOI: 10.1016/j.intimp.2013.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 09/06/2013] [Accepted: 09/10/2013] [Indexed: 11/20/2022]
Abstract
To evaluate the effects of Pseudomonas aeruginosa mannose-sensitive hemagglutinin (PA-MSHA) injection on the survival rate of rats post cecal ligation and puncture (CLP), Sprague-Dawley (SD) rats were subcutaneously injected with 0.125 ml, 0.25 ml or 0.5 ml PA-MSHA for 8 days or 16 days before CLP. The survival rate and physiological appearance of rats in each group were monitored daily post CLP. The expression of Toll-like receptor 4 (TLR4) and cytokines related to inflammation was evaluated. We found that the 0.5 ml-8d (0.5 ml PA-MSHA injected for 8 days) group had the highest 7-day survival rate (91.7%), which was significantly improved compared with the CLP-only group (33.3%). Furthermore, our results showed that PA-MSHA effectively increased serum pro-inflammatory mediators (TNF-α, IL-1β and IL-6) at the early stage (8 days) but increased anti-inflammatory mediators (IL-4 and IL-10) at the late stage (16 days). PA-MSHA significantly up-regulated the mRNA expression of TLR4 at 8 and 16 days. After PA-MSHA pretreatment, CLP had no marked effect on the levels of most inflammatory factors. To explore potential protective mechanisms of PA-MSHA against CLP, we examined the effect of PA-MSHA on murine macrophage-like RAW264.7 cells and found that PA-MSHA induced endotoxin tolerance. In conclusion, this study suggested that precisely controlling the dosage and time of PA-MSHA administration can effectively increase the rat survival rate post CLP, which may be mediated through regulating inflammatory mediators and inducing endotoxin tolerance.
Collapse
|
28
|
Pseudomonas aeruginosa-mannose-sensitive hemagglutinin inhibits epidermal growth factor receptor signaling pathway activation and induces apoptosis in bladder cancer cells in vitro and in vivo. Urol Oncol 2013; 32:36.e11-8. [PMID: 23948182 DOI: 10.1016/j.urolonc.2013.02.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Accepted: 02/18/2013] [Indexed: 11/21/2022]
Abstract
OBJECTIVES Pseudomonas aeruginosa-mannose-sensitive hemagglutinin (PA-MSHA), a peritrichous P. aeruginosa strain with MSHA fimbriae, has been shown to be a valuable anticancer drug in many kinds of cancers. However, the effect of PA-MSHA on bladder cancer has not been elucidated. In this study, we focused on the antitumor activities and related mechanisms of PA-MSHA on bladder cancer in vitro and in vivo. MATERIALS AND METHODS SV-40-immortalized normal uroepithelial cells (SV-HUC-1) and human bladder cancer cell lines (T24, 5637, and HT-1376) were treated with PA-MSHA or PA (heat-killed P. aeruginosa). At first, the effect of PA-MSHA on cancer cell proliferation was measured using Cell Counting Assay Kit-8 (CCK-8), whereas the changes of cell morphology were observed by transmission electron microscopy. The early apoptosis induced by PA-MSHA was evaluated by flow cytometry, and the expression level of apoptosis-related molecules was detected using Western blot assay. We then investigated the activation of the epidermal growth factor receptor signaling pathway stimulated by PA-MSHA; the expression and phosphorylation of several key regulators involved in the EGFR signaling pathway were detected. At last, xenograft tumor in nude mice was used to further investigate the antitumor effect of PA-MSHA in vivo. RESULTS Our results showed that PA-MSHA could efficiently inhibit proliferation and induce apoptosis in human bladder cancer cell lines. Furthermore, cells stimulated with PA-MSHA exhibited an inactivation of EGFR signaling. In vivo, PA-MSHA treatment significantly suppressed tumor growth and induced apoptosis in xenografts tumor in nude mice. CONCLUSIONS PA-MSHA could efficiently inhibit proliferation and induce apoptosis in human bladder cancer cells in vitro and in vivo, which is associated with the inactivation of EGFR signaling pathway, and it might be used as a potential therapeutic agent for bladder cancer.
Collapse
|
29
|
Zhu YP, Bian XJ, Ye DW, Yao XD, Zhang SL, Dai B, Shen YJ. Pseudomonas aeruginosa-mannose-sensitive hemagglutinin inhibits proliferation and induces apoptosis in a caspase-dependent manner in human bladder cancer cell lines. Oncol Lett 2013; 5:1357-1362. [PMID: 23599794 PMCID: PMC3629085 DOI: 10.3892/ol.2013.1201] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 02/14/2013] [Indexed: 11/30/2022] Open
Abstract
The aim of the present study was to investigate the effects of Pseudomonas aeruginosa-mannose-sensitive hemagglutinin (PA-MSHA) on inhibiting the proliferation of bladder cancer cell lines and to further define its functional mechanisms. T24 and 5637 cells were treated with PA-MSHA at various concentrations and times. Cell proliferation was analyzed using Cell Counting Kit-8 (CCK-8) assays. The cell cycle distribution and apoptosis induced by PA-MSHA were measured by flow cytometry with propidium iodide (PI) and annexin V-fluorescein isothiocyanate (FITC) staining. Western blotting was used to evaluate the expression levels of the apoptosis-related molecules and PI3K-AKT-mTOR signaling pathway proteins. A time- and concentration-dependent cytotoxic effect of PA-MSHA was observed in the T24 and 5637 cells. Flow cytometry with PI and annexin V-FITC staining showed that the various concentrations of PA-MSHA were all able to induce the apoptosis and G0-G1 cell cycle arrest of the bladder cancer cells. Cleaved caspase-8 and -9 and Fas protein expression levels were markedly associated with an increase in the apoptosis of the bladder cancer cells. The cells stimulated with PA-MSHA also exhibited a downregulation of PI3K-AKT-mTOR signaling. PA-MSHA inhibits proliferation and induces apoptosis in the T24 and 5637 bladder cancer cell lines by modulating caspase family proteins and affecting the cell cycle regulation machinery. The PI3K-AKT-mTOR signaling pathway may be important in the direct anticancer cytotoxic effect of PA-MSHA.
Collapse
Affiliation(s)
- Yi-Ping Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China ; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | | | | | | | | | | | | |
Collapse
|
30
|
Hou J, Liu Y, Liu Y, Shao Y. The MSHA strain of Pseudomonas aeruginosa activated TLR pathway and enhanced HIV-1 DNA vaccine immunoreactivity. PLoS One 2012; 7:e47724. [PMID: 23077664 PMCID: PMC3471878 DOI: 10.1371/journal.pone.0047724] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 09/14/2012] [Indexed: 12/27/2022] Open
Abstract
The mannose-sensitive hemagglutination pilus strain of Pseudomonas aeruginosa (PA-MSHA) has been shown to trigger naïve immune responses through the activation of monocytes, macrophages, natural killer cells (NK cells) and antigen presenting cells (APCs). Based on the hypothesis that PA-MSHA activates natural immunity through the Toll-like receptor (TLR) pathway, we scanned several critical TLR pathway molecules in mouse splenocytes using high-throughput real-time QRT-PCR and co-stimulatory molecule in bone marrow-derived dendritic cells (BMDCs) following in vitro stimulation by PA-MSHA. PA-MSHA enabled activation of the TLR pathway mediated by NF-κB and JNK signaling in splenocytes, and the co-stimulatory molecule CD86 was up-regulated in BMDCs. We then assessed the adjuvant effect of PA-MSHA for HIV-1 DNA vaccines. In comparison to DNA inoculation alone, co-inoculation with low dosage of PA-MSHA enhanced specific immunoreactivity against HIV-1 Env in both cellular and humoral responses, and promoted antibody avidity maturation. However, high doses of adjuvant resulted in an immunosuppressive effect; a two- or three-inoculation regimen yielded low antibody responses and the two-inoculation regimen exhibited only a slight cellular immunity response. To our knowledge, this is the first report demonstrating the utility of PA-MSHA as an adjuvant to a DNA vaccine. Further research is needed to investigate the exact mechanisms through which PA-MSHA achieves its adjuvant effects on innate immune responses, especially on dendritic cells.
Collapse
Affiliation(s)
- Jue Hou
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yong Liu
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ying Liu
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yiming Shao
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- * E-mail:
| |
Collapse
|
31
|
TIEG1 inhibits breast cancer invasion and metastasis by inhibition of epidermal growth factor receptor (EGFR) transcription and the EGFR signaling pathway. Mol Cell Biol 2011; 32:50-63. [PMID: 22025675 DOI: 10.1128/mcb.06152-11] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
TIEG1 can induce apoptosis of cancer cells, but its role in inhibiting invasion and metastasis has not been reported and is unclear. In this study, we find that decreased TIEG1 expression is associated with increased human epidermal growth factor receptor (EGFR) expression in breast cancer tissues and cell lines. TIEG1 plays an important role in suppressing transcription of EGFR by directly binding to the EGFR promoter. While overexpression of TIEG1 attenuates EGFR expression, knockdown of TIEG1 stimulates EGFR expression. Furthermore, TIEG1 and HDAC1 form a complex, which binds to Sp1 sites on the EGFR promoter and inhibits its transcription by suppressing histone acetylation. TIEG1 significantly inhibits breast cancer cell invasion, suppresses mammary tumorigenesis in xenografts in mice, and decreases lung metastasis by inhibition of EGFR gene transcription and the EGFR signaling pathway. Therefore, TIEG1 is an antimetastasis gene product; regulation of EGFR expression by TIEG1 may be part of an integral signaling pathway that determines and explains breast cancer invasion and metastasis.
Collapse
|