1
|
Daams R, Tran TTP, Jemaà M, Sime W, Mickeviciute R, Ek S, Rönnstrand L, Kazi JU, Massoumi R. Enhancing cell death in B-cell malignancies through targeted inhibition of Bcl-3. Cell Death Dis 2024; 15:690. [PMID: 39327470 PMCID: PMC11427694 DOI: 10.1038/s41419-024-07067-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 08/28/2024] [Accepted: 09/12/2024] [Indexed: 09/28/2024]
Abstract
The t(14;19)(q32;q13) is a rare recurring translocation found in B-cell lymphoproliferative malignancies, involving the Bcl-3 gene. This chromosomal translocation is often found in patients under the age of 50 and causes a more progressive disease. The Bcl-3 gene encodes a protein belonging to the IκB family of proteins, which tightly regulates NFκB signaling by acting as an activator or repressor of transcription. Previously, we developed a second-generation Bcl-3 inhibitor that could directly interfere with Bcl-3 signaling pathway, resulting in reduced melanoma cell proliferation, invasion, and migration. The present study aimed to investigate the effect of a Bcl-3 inhibitor on B-cell lymphoma and leukemia cells. It was found that treatment of cells with this inhibitor caused a decrease in cell proliferation and cell survival. Furthermore, Bcl-3 inhibition in B-cell malignant cells resulted in the loss of mitochondrial membrane potential and functionality, as well as the increased expression of cleaved caspase 3, indicating that cell death occurs through the intrinsic apoptotic pathway. This observation is further supported by reduced expression of cIAP1 protein 1 (cIAP1) upon treatment of cancer cells. Given the current lack of clinical advancements targeting Bcl-3 in oncology, this opens a novel avenue for the development and investigation of highly specific therapeutic interventions against B-cell malignancies.
Collapse
Affiliation(s)
- Renée Daams
- Department of Laboratory Medicine, Translational Cancer Research, Lund University, Medicon Village, Lund, Sweden
| | - Thi Thu Phuong Tran
- Department of Laboratory Medicine, Translational Cancer Research, Lund University, Medicon Village, Lund, Sweden
| | - Mohamed Jemaà
- Department of Laboratory Medicine, Translational Cancer Research, Lund University, Medicon Village, Lund, Sweden
| | - Wondossen Sime
- Department of Laboratory Medicine, Translational Cancer Research, Lund University, Medicon Village, Lund, Sweden
- In Vivo Research Services AB, Scheeletorget 1, Medicon Village, Lund, Sweden
| | - Ruta Mickeviciute
- In Vivo Research Services AB, Scheeletorget 1, Medicon Village, Lund, Sweden
| | - Sara Ek
- Department of Immunotechnology, Faculty of Engineering, Lund University, Medicon Village, Lund, Sweden
| | - Lars Rönnstrand
- Department of Laboratory Medicine, Translational Cancer Research, Lund University, Medicon Village, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
- Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Julhash U Kazi
- Department of Laboratory Medicine, Translational Cancer Research, Lund University, Medicon Village, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Ramin Massoumi
- Department of Laboratory Medicine, Translational Cancer Research, Lund University, Medicon Village, Lund, Sweden.
- In Vivo Research Services AB, Scheeletorget 1, Medicon Village, Lund, Sweden.
| |
Collapse
|
2
|
Saamarthy K, Ahlqvist K, Daams R, Balagunaseelan N, Rinaldo-Matthis A, Kazi JU, Sime W, Massoumi R. Discovery of a small molecule that inhibits Bcl-3-mediated cyclin D1 expression in melanoma cells. BMC Cancer 2024; 24:103. [PMID: 38238702 PMCID: PMC10795364 DOI: 10.1186/s12885-023-11663-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/21/2023] [Indexed: 01/22/2024] Open
Abstract
Molecular targeted therapy using a drug that suppresses the growth and spread of cancer cells via inhibition of a specific protein is a foundation of precision medicine and treatment. High expression of the proto-oncogene Bcl-3 promotes the proliferation and metastasis of cancer cells originating from tissues such as the colon, prostate, breast, and skin. The development of novel drugs targeting Bcl-3 alone or in combination with other therapies can cure these patients or prolong their survival. As a proof of concept, in the present study, we focused on metastatic melanoma as a model system. High-throughput screening and in vitro experiments identified BCL3ANT as a lead molecule that could interfere with Bcl-3-mediated cyclin D1 expression and cell proliferation and migration in melanoma. In experimental animal models of melanoma, it was demonstrated that the use of a Bcl-3 inhibitor can influence the survival of melanoma cells. Since there are no other inhibitors against Bcl-3 in the clinical pipeline for cancer treatment, this presents a unique opportunity to develop a highly specific drug against malignant melanoma to meet an urgent clinical need.
Collapse
Affiliation(s)
- Karunakar Saamarthy
- Department of Laboratory Medicine, Translational Cancer Research, Division of Molecular Tumor Pathology, Lund University, Medicon Village, 22383, Lund, Sweden
| | - Kristofer Ahlqvist
- Department of Laboratory Medicine, Translational Cancer Research, Division of Molecular Tumor Pathology, Lund University, Medicon Village, 22383, Lund, Sweden
| | - Renée Daams
- Department of Laboratory Medicine, Translational Cancer Research, Division of Molecular Tumor Pathology, Lund University, Medicon Village, 22383, Lund, Sweden
| | - Navisraj Balagunaseelan
- Department of Medical Biochemistry and Biophysics, Division of Chemistry II, Karolinska Institutet, Stockholm, Sweden
| | - Agnes Rinaldo-Matthis
- Department of Medical Biochemistry and Biophysics, Division of Chemistry II, Karolinska Institutet, Stockholm, Sweden
| | - Julhash U Kazi
- Department of Laboratory Medicine, Translational Cancer Research, Division of Molecular Tumor Pathology, Lund University, Medicon Village, 22383, Lund, Sweden
| | - Wondossen Sime
- Department of Laboratory Medicine, Translational Cancer Research, Division of Molecular Tumor Pathology, Lund University, Medicon Village, 22383, Lund, Sweden
| | - Ramin Massoumi
- Department of Laboratory Medicine, Translational Cancer Research, Division of Molecular Tumor Pathology, Lund University, Medicon Village, 22383, Lund, Sweden.
| |
Collapse
|
3
|
Kanemaru A, Shinriki S, Kai M, Tsurekawa K, Ozeki K, Uchino S, Suenaga N, Yonemaru K, Miyake S, Masuda T, Kariya R, Okada S, Takeshita H, Seki Y, Yano H, Komohara Y, Yoshida R, Nakayama H, Li JD, Saito H, Jono H. Potential use of EGFR-targeted molecular therapies for tumor suppressor CYLD-negative and poor prognosis oral squamous cell carcinoma with chemoresistance. Cancer Cell Int 2022; 22:358. [PMID: 36376983 PMCID: PMC9664721 DOI: 10.1186/s12935-022-02781-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/04/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Tumor suppressor CYLD dysfunction by loss of its expression, triggers malignant transformation, especially drug resistance and tumor invasion/metastasis. Although loss of CYLD expression is significantly associated with poor prognosis in a large variety of tumors, no clinically-effective treatment for CYLD-negative cancer patients is available. METHODS We focused on oral squamous cell carcinoma (OSCC), and sought to develop novel therapeutic agents for CYLD-negative cancer patients with poor prognosis. CYLD-knockdown OSCC cells by using CYLD-specific siRNA, were used to elucidate and determine the efficacy of novel drug candidates by evaluating cell viability and epithelial-mesenchymal transition (EMT)-like change. Therapeutic effects of candidate drug on cell line-derived xenograft (CDX) model and usefulness of CYLD as a novel biomarker using patient-derived xenograft (PDX) model were further investigated. RESULTS CYLD-knockdown OSCC cells were resistant for all currently-available cytotoxic chemotherapeutic agents for OSCC, such as, cisplatin, 5-FU, carboplatin, docetaxel, and paclitaxel. By using comprehensive proteome analysis approach, we identified epidermal growth factor receptor (EGFR), a receptor tyrosine kinase, played key roles in CYLD-knockdown OSCC cells. Indeed, cell survival rate in the cisplatin-resistant CYLD-knockdown OSCC cells was markedly inhibited by treatment with clinically available EGFR tyrosine kinase inhibitors (EGFR-TKIs), such as gefitinib. In addition, gefitinib was significantly effective for not only cell survival, but also EMT-like changes through inhibiting transforming growth factor-β (TGF-β) signaling in CYLD-knockdown OSCC cells. Thereby, overall survival of CYLD-knockdown CDX models was significantly prolonged by gefitinib treatment. Moreover, we found that CYLD expression was significantly associated with gefitinib response by using PDX models. CONCLUSIONS Our results first revealed that EGFR-targeted molecular therapies, such as EGFR-TKIs, could have potential to be novel therapeutic agents for the CYLD-negative OSCC patients with poor prognosis.
Collapse
Affiliation(s)
- Ayumi Kanemaru
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 2-2-1 Honjo, Chuo-Ku, Kumamoto, 860-0811, Japan
| | - Satoru Shinriki
- Department of Molecular Laboratory Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Mimi Kai
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 2-2-1 Honjo, Chuo-Ku, Kumamoto, 860-0811, Japan
| | - Kanae Tsurekawa
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 2-2-1 Honjo, Chuo-Ku, Kumamoto, 860-0811, Japan
| | - Kazuya Ozeki
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 2-2-1 Honjo, Chuo-Ku, Kumamoto, 860-0811, Japan
| | - Shota Uchino
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 2-2-1 Honjo, Chuo-Ku, Kumamoto, 860-0811, Japan
| | - Naoki Suenaga
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 2-2-1 Honjo, Chuo-Ku, Kumamoto, 860-0811, Japan
| | - Kou Yonemaru
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 2-2-1 Honjo, Chuo-Ku, Kumamoto, 860-0811, Japan
| | - Shunsuke Miyake
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 2-2-1 Honjo, Chuo-Ku, Kumamoto, 860-0811, Japan
- Department of Pharmacy, Kumamoto University Hospital, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Takeshi Masuda
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe honmachi, Chuo-Ku, Kumamoto, 862-0973, Japan
| | - Ryusho Kariya
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Seiji Okada
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Hisashi Takeshita
- Department of Oral & Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Yuki Seki
- Department of Oral & Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Hiromu Yano
- Department of Cell Pathology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Yoshihiro Komohara
- Department of Cell Pathology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Ryoji Yoshida
- Department of Oral & Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Hideki Nakayama
- Department of Oral & Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Jian-Dong Li
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA
| | - Hideyuki Saito
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 2-2-1 Honjo, Chuo-Ku, Kumamoto, 860-0811, Japan
- Department of Pharmacy, Kumamoto University Hospital, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Hirofumi Jono
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 2-2-1 Honjo, Chuo-Ku, Kumamoto, 860-0811, Japan.
- Department of Pharmacy, Kumamoto University Hospital, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan.
| |
Collapse
|
4
|
Truong K, Rajbhandari S, Kim J, Ragunathan A, Ruiz Araujo R. Basal cell carcinomas arising from trichoepitheliomas in a patient with CYLD cutaneous syndrome. Int J Dermatol 2021; 61:615-617. [PMID: 34865211 DOI: 10.1111/ijd.16024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/22/2021] [Accepted: 11/13/2021] [Indexed: 12/01/2022]
Affiliation(s)
- Kelvin Truong
- Department of Dermatology, Westmead Hospital, NSW, Australia.,Sydney Medical School, The University of Sydney, NSW, Australia
| | | | - Jennifer Kim
- Sydney Medical School, The University of Sydney, NSW, Australia.,Department of Tissue Pathology and Diagnostic Oncology, Institute of Clinical Pathology and Medical Research (ICPMR) Westmead Hospital, Westmead, NSW, Australia
| | - Abiramy Ragunathan
- Westmead Familial Cancer Service, The Crown Princess Mary Cancer Centre Westmead, NSW, Australia
| | - Raquel Ruiz Araujo
- Department of Dermatology, Westmead Hospital, NSW, Australia.,Sydney Medical School, The University of Sydney, NSW, Australia
| |
Collapse
|
5
|
Guo JN, Xia BR, Deng SH, Yang C, Pi YN, Cui BB, Jin WL. Deubiquitinating Enzymes Orchestrate the Cancer Stem Cell-Immunosuppressive Niche Dialogue: New Perspectives and Therapeutic Potential. Front Cell Dev Biol 2021; 9:680100. [PMID: 34179009 PMCID: PMC8220152 DOI: 10.3389/fcell.2021.680100] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/17/2021] [Indexed: 11/13/2022] Open
Abstract
Cancer stem cells (CSCs) are sparks for igniting tumor recurrence and the instigators of low response to immunotherapy and drug resistance. As one of the important components of tumor microenvironment, the tumor associated immune microenvironment (TAIM) is driving force for the heterogeneity, plasticity and evolution of CSCs. CSCs create the inhibitory TAIM (ITAIM) mainly through four stemness-related signals (SRSs), including Notch-nuclear factor-κB axis, Hedgehog, Wnt and signal transducer and activator of transcription. Ubiquitination and deubiquitination in proteins related to the specific stemness of the CSCs have a profound impact on the regulation of ITAIM. In regulating the balance between ubiquitination and deubiquitination, it is crucial for deubiquitinating enzymes (DUBs) to cleave ubiquitin chains from substrates. Ubiquitin-specific peptidases (USPs) comprise the largest family of DUBs. Growing evidence suggests that they play novel functions in contribution of ITAIM, including regulating tumor immunogenicity, activating stem cell factors, upregulating the SRSs, stabilizing anti-inflammatory receptors, and regulating anti-inflammatory cytokines. These overactive or abnormal signaling may dampen antitumor immune responses. The inhibition of USPs could play a regulatory role in SRSs and reversing ITAIM, and also have great potential in improving immune killing ability against tumor cells, including CSCs. In this review, we focus on the USPs involved in CSCs signaling pathways and regulating ITAIM, which are promising therapeutic targets in antitumor therapy.
Collapse
Affiliation(s)
- Jun-Nan Guo
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Bai-Rong Xia
- Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, Anhui Provincial Cancer Hospital, University of Science and Technology of China, Hefei, China
| | - Shen-Hui Deng
- Department of Anesthesiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chang Yang
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Ya-Nan Pi
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Bin-Bin Cui
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Wei-Lin Jin
- Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Institute of Cancer Neuroscience, The First Clinical Medical College of Lanzhou University, Lanzhou, China
| |
Collapse
|
6
|
Miyake S, Miwa T, Yoneda G, Kanemaru A, Saito H, Minoda R, Orita Y, Saito H, Jono H. Relationship between clinicopathological characteristics and CYLD expression in patients with cholesteatoma. PLoS One 2020; 15:e0240216. [PMID: 33031450 PMCID: PMC7544047 DOI: 10.1371/journal.pone.0240216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/23/2020] [Indexed: 11/19/2022] Open
Abstract
Middle ear cholesteatoma is a destructive disease in which inflammation plays an important role in development and progression, and there are currently no biomarkers predicting prognosis or recurrence. Cylindromatosis (CYLD), a tumor suppressor deubiquitinase, serves as a negative regulator of inflammation expressed in tissues including the middle ear. To determine the clinical significance of CYLD in acquired cholesteatoma, we evaluated CYLD expression in acquired cholesteatoma tissue by immunostaining and analyzed its correlation with clinicopathological characteristics. Our immunohistochemical analysis revealed that CYLD expression levels were varied in the tissues of acquired cholesteatoma patients. The relative expression levels of CYLD in cholesteatoma exhibited a significant correlation with the grade of otorrhea (R = 0.532, p = 0.039). Moreover, the period of epithelialization was also significantly associated with the relative expression levels of CYLD (R = 0.720, p = 0.002). In addition, CYLD expression tended to be lower in the group with recurrence. These results suggest that low CYLD expression correlates with postoperative recovery of acquired cholesteatoma, while potentially affecting the induction of recurrence. This is the first report showing that low CYLD expression correlates with accelerated disease recovery, and suggests a new aspect of CYLD as a prognostic predictor of acquired cholesteatoma.
Collapse
Affiliation(s)
- Shunsuke Miyake
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
- Department of Pharmacy, Kumamoto University Hospital, Kumamoto, Japan
| | - Toru Miwa
- Department of Otolaryngology-Head and Neck Surgery, Kyoto University, Kyoto, Japan
- Department of Otolaryngology-Head and Neck Surgery, Tazuke Kofukai Medical Research Institute Kitano Hospital, Osaka, Japan
| | - Go Yoneda
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, United States of America
| | - Ayumi Kanemaru
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Haruki Saito
- Department of Otolaryngology-Head and Neck Surgery, Kumamoto University Hospital, Kumamoto, Japan
| | - Ryosei Minoda
- Department of Otolaryngology-Head and Neck Surgery, Kumamoto General Hospital, Kumamoto, Japan
| | - Yorihisa Orita
- Department of Otolaryngology-Head and Neck Surgery, Kumamoto University Hospital, Kumamoto, Japan
| | - Hideyuki Saito
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
- Department of Pharmacy, Kumamoto University Hospital, Kumamoto, Japan
| | - Hirofumi Jono
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
- Department of Pharmacy, Kumamoto University Hospital, Kumamoto, Japan
- * E-mail:
| |
Collapse
|
7
|
Functional analysis of deubiquitylating enzymes in tumorigenesis and development. Biochim Biophys Acta Rev Cancer 2019; 1872:188312. [DOI: 10.1016/j.bbcan.2019.188312] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/16/2019] [Accepted: 08/16/2019] [Indexed: 02/06/2023]
|
8
|
Lee JG, Jung E, Heur M. Fibroblast growth factor 2 induces proliferation and fibrosis via SNAI1-mediated activation of CDK2 and ZEB1 in corneal endothelium. J Biol Chem 2018; 293:3758-3769. [PMID: 29363574 DOI: 10.1074/jbc.ra117.000295] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 01/03/2018] [Indexed: 12/20/2022] Open
Abstract
Investigating stimulation of endogenous wound healing in corneal endothelial cells (CECs) may help address the global shortage of donor corneas by decreasing the number of transplants performed for blindness because of endothelial dysfunction. We previously reported that IL-1β stimulation leads to fibroblast growth factor (FGF2) expression, enhancing migration and proliferation of mammalian CECs. However, FGF2 also promotes the endothelial-mesenchymal transition, which can lead to retrocorneal membrane formation and blindness. This prompted us to investigate downstream FGF2 signaling targets that could be manipulated to prevent retrocorneal membrane formation. FGF2 stimulation altered cell morphology and induced expression of mesenchymal transition marker genes such as snail family transcriptional repressor 1 (SNAI1), SNAI2, zinc finger E-box-binding homeobox 1 (ZEB1), and ZEB2 This, in turn, induced expression of fibronectin, vimentin, and type I collagen, and suppressed E-cadherin in CECs in vitro and ex vivo siRNA-mediated SNAI1 knockdown revealed that SNAI1 induces ZEB1 expression, in turn inducing expression of type I collagen, the major component of retrocorneal membranes, and of cyclin-dependent kinase 2 (CDK2) and cyclin E1, promoting cell proliferation. siRNA-mediated knockdown of SNAI1 or ZEB1, but not of CDK2, inhibited FGF2-dependent expression of fibronectin, vimentin, and type I collagen and of suppression of E-cadherin expression. We conclude that SNAI1 is a key regulator of FGF2-dependent mesenchymal transition in human ex vivo corneal endothelium, with ZEB1 regulating type I collagen expression and CDK2 regulating cell proliferation. These results suggest that SNAI1 promotes fibrosis and cell proliferation in human corneal endothelium through ZEB1 and CDK2.
Collapse
Affiliation(s)
- Jeong Goo Lee
- From the USC Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, California 90033
| | - Eric Jung
- From the USC Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, California 90033
| | - Martin Heur
- From the USC Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, California 90033
| |
Collapse
|
9
|
Kuphal S, Schneider N, Massoumi R, Hellerbrand C, Bosserhoff AK. UVB radiation represses CYLD expression in melanocytes. Oncol Lett 2018; 14:7262-7268. [PMID: 29344161 PMCID: PMC5754916 DOI: 10.3892/ol.2017.7120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 06/21/2017] [Indexed: 11/22/2022] Open
Abstract
CYLD lysine 63 deubiquitinase (CYLD) was originally identified as a tumor suppressor that is mutated in familial cylindromatosis. Unlike in cylindromatosis, downregulation of the deubiquitinase CYLD in melanoma, a highly aggressive tumor, is not caused by mutations in the CYLD gene, but rather by a constitutive and high expression of the snail family transcriptional repressor 1 (SNAIL1). A reduced CYLD level leads to B-cell lymphoma-3/p50/p52-dependent nuclear factor-κB activation, which in turn triggers the expression of genes such as cyclin D1 and N-cadherin. Elevated levels of cyclin D1 and N-cadherin promote melanoma proliferation and invasion. By analyzing the regulation of CYLD expression in melanocytes, the present study identified a signaling pathway that is regulated in response to ultraviolet B (UVB) radiation in melanocytes. UVB light leads to an extracellular signal-regulated kinase-mediated induction of SNAIL1 and subsequent downregulation of CYLD expression in normal human epithelial melanocytes. The UVB-mediated suppression of CYLD in melanocytes may have a key role in the reaction to UV stimuli, and may also potentially be involved in the early malignant transformation processes.
Collapse
Affiliation(s)
- Silke Kuphal
- Emil-Fischer-Center, Institute of Biochemistry, Friedrich Alexander University Erlangen-Nuremberg, D-91054 Erlangen, Germany
| | - Nadja Schneider
- Emil-Fischer-Center, Institute of Biochemistry, Friedrich Alexander University Erlangen-Nuremberg, D-91054 Erlangen, Germany
| | - Ramin Massoumi
- Department of Laboratory Medicine, Translational Cancer Research, Lund University, SE-221 00 Lund, Sweden
| | - Claus Hellerbrand
- Emil-Fischer-Center, Institute of Biochemistry, Friedrich Alexander University Erlangen-Nuremberg, D-91054 Erlangen, Germany
| | - Anja Katrin Bosserhoff
- Emil-Fischer-Center, Institute of Biochemistry, Friedrich Alexander University Erlangen-Nuremberg, D-91054 Erlangen, Germany
| |
Collapse
|
10
|
The TRAF-interacting protein (TRAIP) is a novel E2F target with peak expression in mitosis. Oncotarget 2016; 6:20933-45. [PMID: 26369285 PMCID: PMC4673240 DOI: 10.18632/oncotarget.3055] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 11/08/2014] [Indexed: 12/17/2022] Open
Abstract
The TRAF-interacting protein (TRAIP) is an E3 ubiquitin ligase required for cell proliferation. TRAIP mRNA is downregulated in human keratinocytes after inhibition of the PI3K/AKT/mTOR signaling. Since E2F transcription factors are downstream of PI3K/AKT/mTOR we investigated whether they regulate TRAIP expression. E2F1 expression significantly increased the TRAIP mRNA level in HeLa cells. Reporter assays with the 1400bp 5′-upstream promoter in HeLa cells and human keratinocytes showed that E2F1-, E2F2- and E2F4-induced upregulation of TRAIP expression is mediated by 168bp upstream of the translation start site. Mutating the E2F binding site within this fragment reduced the E2F1- and E2F2-dependent promoter activities and protein-DNA complex formation in gel shift assays. Abundance of TRAIP mRNA and protein was regulated by the cell cycle with a peak in G2/M. Expression of GFP and TRAIP-GFP demonstrated that TRAIP-GFP protein has a lower steady-state concentration than GFP despite similar mRNA levels. Cycloheximide inhibition experiments indicated that the TRAIP protein has a half-life of around four hours. Therefore, the combination of cell cycle-dependent transcription of the TRAIP gene by E2F and rapid protein degradation leads to cell cycle-dependent expression with a maximum in G2/M. These findings suggest that TRAIP has important functions in mitosis and tumorigenesis.
Collapse
|
11
|
Protein arginine methyltransferase 1 interacts with Gli1 and regulates its transcriptional activity. Tumour Biol 2016; 37:9071-6. [PMID: 26762411 DOI: 10.1007/s13277-015-4754-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 12/29/2015] [Indexed: 01/20/2023] Open
Abstract
Protein arginine methylation, which is mediated by the protein arginine methyltransferases (PRMTs), is associated with numerous fundamental cellular processes. Our previous studies have shown that PRMT1 activated Hedgehog signaling in the esophageal squamous cell carcinoma (ESCC) cells and promoted the growth and migration of cancer cells. However, the detailed mechanisms are unknown. In this study, it was found that PRMT1 interacted with the transcriptional factor Gli1 (glioma-associated oncogene homolog 1) in ESCC cells. The DNA-binding domain (DBD) of Gli1 is responsible for its interaction with PRMT1. Moreover, PRMT1 promoted the methylation of Gli1, and knocking down the expression of PRMT1 impaired the transcriptional activity as well as the biological functions of Gli1. Taken together, our study demonstrated that PRMT1 is a positive regulator of Hedgehog signaling, and PRMT1 might be a therapeutic target for ESCC.
Collapse
|
12
|
Mathis BJ, Lai Y, Qu C, Janicki JS, Cui T. CYLD-mediated signaling and diseases. Curr Drug Targets 2016; 16:284-94. [PMID: 25342597 DOI: 10.2174/1389450115666141024152421] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 09/26/2014] [Accepted: 10/03/2014] [Indexed: 02/07/2023]
Abstract
The conserved cylindromatosis (CYLD) codes for a deubiquitinating enzyme and is a crucial regulator of diverse cellular processes such as immune responses, inflammation, death, and proliferation. It directly regulates multiple key signaling cascades, such as the Nuclear Factor kappa B [NFkB] and the Mitogen-Activated Protein Kinase (MAPK) pathways, by its catalytic activity on polyubiquitinated key intermediates. Several lines of emerging evidence have linked CYLD to the pathogenesis of various maladies, including cancer, poor infection control, lung fibrosis, neural development, and now cardiovascular dysfunction. While CYLD-mediated signaling is cell type and stimuli specific, the activity of CYLD is tightly controlled by phosphorylation and other regulators such as Snail. This review explores a broad selection of current and past literature regarding CYLD's expression, function and regulation with emerging reports on its role in cardiovascular disease.
Collapse
Affiliation(s)
| | | | | | | | - Taixing Cui
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29209, USA.
| |
Collapse
|
13
|
Chaudhary SC, Tang X, Arumugam A, Li C, Srivastava RK, Weng Z, Xu J, Zhang X, Kim AL, McKay K, Elmets CA, Kopelovich L, Bickers DR, Athar M. Shh and p50/Bcl3 signaling crosstalk drives pathogenesis of BCCs in Gorlin syndrome. Oncotarget 2015; 6:36789-814. [PMID: 26413810 PMCID: PMC4742211 DOI: 10.18632/oncotarget.5103] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 09/04/2015] [Indexed: 12/12/2022] Open
Abstract
Nevoid basal cell carcinoma syndrome (NBCCS) is a rare autosomal dominant disorder that is due, in large measure, to aberrant Shh signaling driven by mutations in the tumor suppressor gene Ptch1. Here, we describe the development of Ptch1+/-/ SKH-1 mice as a novel model of this disease. These animals manifest many features of NBCCS, including developmental anomalies and are remarkably sensitive to both ultraviolet (UVB) and ionizing radiation that drive the development of multiple BCCs. Just as in patients with NBCCS, Ptch1+/-/SKH-1 also spontaneously develops BCCs and other neoplasms such as rhabdomyomas/rhabdomyosarcomas. Administration of smoothened inhibitors (vismodegib/itraconazole/cyclopamine) or non-steroidal anti-inflammatory drug (sulindac/sulfasalazine) each result in partial resolution of BCCs in these animals. However, combined administration of these agents inhibits the growth of UVB-induced BCCs by >90%. Employing small molecule- and decoy-peptide-based approaches we further affirm that complete remission of BCCs could only be achieved by combined inhibition of p50-NFκB/Bcl3 and Shh signaling. We posit that Ptch1+/-/SKH-1 mice are a novel and relevant animal model for NBCCS. Understanding mechanisms that govern genetic predisposition to BCCs should facilitate our ability to identify and treat NBCCS gene carriers, including those at risk for sporadic BCCs while accelerating development of novel therapeutic modalities for these patients.
Collapse
Affiliation(s)
- Sandeep C. Chaudhary
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA
| | - Xiuwei Tang
- Department of Dermatology, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA
| | - Aadithya Arumugam
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA
| | - Changzhao Li
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA
| | - Ritesh K. Srivastava
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA
| | - Zhiping Weng
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA
| | - Jianmin Xu
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA
| | - Xiao Zhang
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA
- Present address: Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA 90048, USA
| | - Arianna L. Kim
- Department of Dermatology, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA
| | - Kristopher McKay
- Division of Dermatopathology, Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294-4550, USA
| | - Craig A. Elmets
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA
| | - Levy Kopelovich
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - David R. Bickers
- Department of Dermatology, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA
| | - Mohammad Athar
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA
| |
Collapse
|
14
|
Inherited cylindromas: lessons from a rare tumour. Lancet Oncol 2015; 16:e460-e469. [DOI: 10.1016/s1470-2045(15)00245-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 04/09/2015] [Accepted: 04/10/2015] [Indexed: 11/23/2022]
|
15
|
Saamarthy K, Björner S, Johansson M, Landberg G, Massoumi R, Jirström K, Masoumi KC. Early diagnostic value of Bcl-3 localization in colorectal cancer. BMC Cancer 2015; 15:341. [PMID: 25929479 PMCID: PMC4434567 DOI: 10.1186/s12885-015-1342-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2015] [Indexed: 11/29/2022] Open
Abstract
Background B-cell leukemia 3 (Bcl-3) is a member of the inhibitor of κB family, which regulates a wide range of biological processes by functioning as a transcriptional activator or as a repressor of target genes. Elevated expression, sustained nuclear accumulation, and uncontrolled activation of Bcl-3 causes increased cellular proliferation or survival, dependent on the tissue and type of stimuli. Methods We retrospectively reviewed patients who were diagnosed with colorectal cancer at Skåne University Hospital in Malmö between 1st of January 1990 and 31st of December 1991. Bcl-3 localization in colorectal cancer was assessed by immunohistochemistry on tissue microarray and freshly isolated colon from patients. Correlation between Bcl-3 localization and clinicopathological parameters of the cohort were evaluated using the Spearman rank-order correlation coefficient. In addition, Bcl-3 expression and localization in colon adenocarcinoma cells were analysed by western blot, immunohistochemistry and subcellular fractionation separately. Results We found that Bcl-3 was mainly localized in the cytoplasm in the tumour tissue isolated from colon cancer patients. Normal colon samples from the same patients showed Bcl-3 localization in the nucleus. In three out of six colon cancer cell lines, we detected elevated levels of Bcl-3. In these cell lines Bcl-3 was accumulated in the cytosol. We confirmed these findings by analysing Bcl-3 localization in a colon tissue micro array consisting of 270 cases. In these samples Bcl-3 localization correlated with the proliferation marker Ki-67, but not with the apoptotic marker Caspase 3. Conclusion These findings indicate that analysis of the subcellular localization of Bcl-3 could be a potential-early diagnostic marker in colon cancer.
Collapse
Affiliation(s)
- Karunakar Saamarthy
- Department of Laboratory Medicine, Translational Cancer Research, Division of Molecular Tumour Pathology, Lund University, Medicon Village, Building 404:A3, 223 83, Lund, Sweden.
| | - Sofie Björner
- Center for Molecular Pathology, Department of Laboratory Medicine, Lund University, Lund, Skåne University Hospital, 205 02, Malmö, Sweden.
| | - Martin Johansson
- Center for Molecular Pathology, Department of Laboratory Medicine, Lund University, Lund, Skåne University Hospital, 205 02, Malmö, Sweden.
| | - Göran Landberg
- Sahlgrenska Cancer Centre, University of Gothenburg, 405 30, Gothenburg, Sweden.
| | - Ramin Massoumi
- Department of Laboratory Medicine, Translational Cancer Research, Division of Molecular Tumour Pathology, Lund University, Medicon Village, Building 404:A3, 223 83, Lund, Sweden.
| | - Karin Jirström
- Department of Clinical Sciences, Division of Oncology and Pathology, Lund University, Skåne University Hospital, 221 85, Lund, Sweden.
| | - Katarzyna Chmielarska Masoumi
- Department of Laboratory Medicine, Translational Cancer Research, Division of Molecular Tumour Pathology, Lund University, Medicon Village, Building 404:A3, 223 83, Lund, Sweden.
| |
Collapse
|
16
|
Schworer SA, Smirnova II, Kurbatova I, Bagina U, Churova M, Fowler T, Roy AL, Degterev A, Poltorak A. Toll-like receptor-mediated down-regulation of the deubiquitinase cylindromatosis (CYLD) protects macrophages from necroptosis in wild-derived mice. J Biol Chem 2014; 289:14422-33. [PMID: 24706750 DOI: 10.1074/jbc.m114.547547] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Pathogen recognition by the innate immune system initiates the production of proinflammatory cytokines but can also lead to programmed host cell death. Necroptosis, a caspase-independent cell death pathway, can contribute to the host defense against pathogens or cause damage to host tissues. Receptor-interacting protein (RIP1) is a serine/threonine kinase that integrates inflammatory and necroptotic responses. To investigate the mechanisms of RIP1-mediated activation of immune cells, we established a genetic screen on the basis of RIP1-mediated necroptosis in wild-derived MOLF/EiJ mice, which diverged from classical laboratory mice over a million years ago. When compared with C57BL/6, MOLF/EiJ macrophages were resistant to RIP1-mediated necroptosis induced by Toll-like receptors. Using a forward genetic approach in a backcross panel of mice, we identified cylindromatosis (CYLD), a deubiquitinase known to act directly on RIP1 and promote necroptosis in TNF receptor signaling, as the gene conferring the trait. We demonstrate that CYLD is required for Toll-like receptor-induced necroptosis and describe a novel mechanism by which CYLD is down-regulated at the transcriptional level in MOLF/EiJ macrophages to confer protection from necroptosis.
Collapse
Affiliation(s)
- Stephen A Schworer
- From the Graduate Program in Immunology, Medical Scientist Training Program
| | | | - Irina Kurbatova
- the Institute of Biology of the Karelian Research Centre, Russian Academy of Sciences, Petrozavodsk, Republic of Karelia 185910, Russia, and
| | - Uliana Bagina
- the Petrozavodsk State University, Petrozavodsk, Republic of Karelia 185910, Russia
| | - Maria Churova
- the Institute of Biology of the Karelian Research Centre, Russian Academy of Sciences, Petrozavodsk, Republic of Karelia 185910, Russia, and
| | - Trent Fowler
- Department of Developmental, Molecular, and Chemical Biology, and
| | - Ananda L Roy
- From the Graduate Program in Immunology, Department of Developmental, Molecular, and Chemical Biology, and Graduate Program in Genetics, Tufts University School of Medicine, Sackler School of Biomedical Sciences, Tufts University, Boston, Massachusetts 02111
| | - Alexei Degterev
- Department of Developmental, Molecular, and Chemical Biology, and
| | - Alexander Poltorak
- From the Graduate Program in Immunology, the Institute of Biology of the Karelian Research Centre, Russian Academy of Sciences, Petrozavodsk, Republic of Karelia 185910, Russia, and Graduate Program in Genetics, Tufts University School of Medicine, Sackler School of Biomedical Sciences, Tufts University, Boston, Massachusetts 02111,
| |
Collapse
|
17
|
Xia JT, Chen LZ, Jian WH, Wang KB, Yang YZ, He WL, He YL, Chen D, Li W. MicroRNA-362 induces cell proliferation and apoptosis resistance in gastric cancer by activation of NF-κB signaling. J Transl Med 2014; 12:33. [PMID: 24495516 PMCID: PMC3916099 DOI: 10.1186/1479-5876-12-33] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 01/30/2014] [Indexed: 12/25/2022] Open
Abstract
Background According to cancer-related microRNA (miRNA) expression microarray research available in public databases, miR-362 expression is elevated in gastric cancer. However, the expression and biological role of miR-362 in gastric progression remain unclear. Methods miR-362 expression levels in gastric cancer tissues and cell lines were determined using real-time PCR. The roles of miR-362, in promoting gastric cancer cell proliferation and apoptosis resistance, were assessed by different biological assays, such as colony assay, flow cytometry and TUNEL assay. The effect of miR-362 on NF-κB activation was investigated using the luciferase reporter assay, fluorescent immunostaining. Results MiR-362 overexpression induced cell proliferation, colony formation, and resistance to cisplatin-induced apoptosis in BGC-823 and SGC-7901 gastric cancer cells. MiR-362 increased NF-κB activity and relative mRNA expression of NF-κB–regulated genes, and induced nuclear translocation of p65. Expression of the tumor suppressor CYLD was inhibited by miR-362 in gastric cancer cells; miR-362 levels were inversely correlated with CYLD expression in gastric cancer tissue. MiR-362 downregulated CYLD expression by binding its 3′ untranslated region. NF-κB activation was mechanistically associated with siRNA-mediated downregulation of CYLD. MiR-362 inhibitor reversed all the effects of miR-362. Conclusion The results suggest that miR-362 plays an important role in repressing the tumor suppressor CYLD and present a novel mechanism of miRNA-mediated NF-κB activation in gastric cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - De Chen
- Department of General Surgery, The third Affiliated Hospital, Guangzhou Medical University, #63 Duobao Road, Guangzhou, Guangdong 510150, China.
| | | |
Collapse
|
18
|
Agarwal NK, Qu C, Kunkalla K, Kunkulla K, Liu Y, Vega F. Transcriptional regulation of serine/threonine protein kinase (AKT) genes by glioma-associated oncogene homolog 1. J Biol Chem 2013; 288:15390-401. [PMID: 23580656 DOI: 10.1074/jbc.m112.425249] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Aberrant activation of Hedgehog signaling has been described in a growing number of cancers, including malignant lymphomas. Here, we report that canonical Hedgehog signaling modulates the transcriptional expression of AKT genes and that AKT1 is a direct transcriptional target of GLI1. We identified two putative binding sites for GLI1 in the AKT1 promoter region and confirmed their functionality using chromatin immunoprecipitation, luciferase reporter, and site-directed mutagenesis assays. Moreover, we provide evidence that GLI1 contributes to the survival of diffuse large B-cell lymphoma (DLBCL) cells and that this effect occurs in part through promotion of the transcription of AKT genes. This finding is of interest as constitutive activation of AKT has been described in DLBCL, but causative factors that explain AKT expression in this lymphoma type are not completely known. In summary, we demonstrated the existence of a novel cross-talk at the transcriptional level between Hedgehog signaling and AKT with biological significance in DLBCL.
Collapse
Affiliation(s)
- Nitin K Agarwal
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
19
|
Zheng X, Rumie Vittar NB, Gai X, Fernandez-Barrena MG, Moser CD, Hu C, Almada LL, McCleary-Wheeler AL, Elsawa SF, Vrabel AM, Shire AM, Comba A, Thorgeirsson SS, Kim Y, Liu Q, Fernandez-Zapico ME, Roberts LR. The transcription factor GLI1 mediates TGFβ1 driven EMT in hepatocellular carcinoma via a SNAI1-dependent mechanism. PLoS One 2012. [PMID: 23185371 PMCID: PMC3501480 DOI: 10.1371/journal.pone.0049581] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The role of the epithelial-to-mesenchymal transition (EMT) during hepatocellular carcinoma (HCC) progression is well established, however the regulatory mechanisms modulating this phenomenon remain unclear. Here, we demonstrate that transcription factor glioma-associated oncogene 1 (GLI1) modulates EMT through direct up-regulation of SNAI1 and serves as a downstream effector of the transforming growth factor-β1 (TGFβ1) pathway, a well-known regulator of EMT in cancer cells. Overexpression of GLI1 increased proliferation, viability, migration, invasion, and colony formation by HCC cells. Conversely, GLI1 knockdown led to a decrease in all the above-mentioned cancer-associated phenotypes in HCC cells. Further analysis of GLI1 regulated cellular functions showed that this transcription factor is able to induce EMT and identified SNAI1 as a transcriptional target of GLI1 mediating this cellular effect in HCC cells. Moreover, we demonstrated that an intact GLI1-SNAI1 axis is required by TGFβ1 to induce EMT in these cells. Together, these findings define a novel cellular mechanism regulated by GLI1, which controls the growth and EMT phenotype in HCC.
Collapse
Affiliation(s)
- Xin Zheng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, United States of America
- Mayo Clinic Cancer Center, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Natalia B. Rumie Vittar
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, United States of America
- Mayo Clinic Cancer Center, Mayo Clinic, Rochester, Minnesota, United States of America
- Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Xiaohong Gai
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, United States of America
- Mayo Clinic Cancer Center, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Maite G. Fernandez-Barrena
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, United States of America
- Mayo Clinic Cancer Center, Mayo Clinic, Rochester, Minnesota, United States of America
- Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Catherine D. Moser
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, United States of America
- Mayo Clinic Cancer Center, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Chunling Hu
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, United States of America
- Mayo Clinic Cancer Center, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Luciana L. Almada
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, United States of America
- Mayo Clinic Cancer Center, Mayo Clinic, Rochester, Minnesota, United States of America
- Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Angela L. McCleary-Wheeler
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, United States of America
- Mayo Clinic Cancer Center, Mayo Clinic, Rochester, Minnesota, United States of America
- Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Sherine F. Elsawa
- Mayo Clinic Cancer Center, Mayo Clinic, Rochester, Minnesota, United States of America
- Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois, United States of America
| | - Anne M. Vrabel
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, United States of America
- Mayo Clinic Cancer Center, Mayo Clinic, Rochester, Minnesota, United States of America
- Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Abdirashid M. Shire
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, United States of America
- Mayo Clinic Cancer Center, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Andrea Comba
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, United States of America
- Mayo Clinic Cancer Center, Mayo Clinic, Rochester, Minnesota, United States of America
- Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Snorri S. Thorgeirsson
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Youngsoo Kim
- Isis Pharmaceuticals Inc., Carlsbad, California, United States of America
| | - Qingguang Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Martin E. Fernandez-Zapico
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, United States of America
- Mayo Clinic Cancer Center, Mayo Clinic, Rochester, Minnesota, United States of America
- Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Lewis R. Roberts
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, United States of America
- Mayo Clinic Cancer Center, Mayo Clinic, Rochester, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
20
|
Chapard C, Hohl D, Huber M. The role of the TRAF-interacting protein in proliferation and differentiation. Exp Dermatol 2012; 21:321-6. [PMID: 22509826 DOI: 10.1111/j.1600-0625.2012.01477.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ubiquitination of proteins is a post-translational modification, which decides on the cellular fate of the protein. Addition of ubiquitin moieties to proteins is carried out by the sequential action of three enzymes: E1, ubiquitin-activating enzyme; E2, ubiquitin-conjugating enzyme; and E3, ubiquitin ligase. The TRAF-interacting protein (TRAIP, TRIP, RNF206) functions as Really Interesting New Gene (RING)-type E3 ubiquitin ligase, but its physiological substrates are not yet known. TRAIP was reported to interact with TRAF [tumor necrosis factor (TNF) receptor-associated factors] and the two tumor suppressors CYLD and Syk (spleen tyrosine kinase). Ectopically expressed TRAIP was shown to inhibit nuclear factor-kappa B (NF-κB) signalling. However, recent results suggested a role for TRAIP in biological processes other than NF-κB regulation. Knock-down of TRAIP in human epidermal keratinocytes repressed cellular proliferation and induced a block in the G1/S phase of the cell cycle without affecting NF-κB signalling. TRAIP is necessary for embryonal development as mutations affecting the Drosophila homologue of TRAIP are maternal effect-lethal mutants, and TRAIP knock-out mice die in utero because of aberrant regulation of cell proliferation and apoptosis. These findings underline the tight link between TRAIP and cell proliferation. In this review, we summarize the data on TRAIP and put them into a larger perspective regarding the role of TRAIP in the control of tissue homeostasis.
Collapse
Affiliation(s)
- Christophe Chapard
- Service of Dermatology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | | | | |
Collapse
|
21
|
Abstract
The nuclear factor-κB (NF-κB) pathway is a critical regulator of innate and adaptive immunity. Noncanonical K63-linked polyubiquitination plays a key regulatory role in NF-κB signaling pathways by functioning as a scaffold to recruit kinase complexes containing ubiquitin-binding domains. Ubiquitination is balanced by deubiquitinases that cleave polyubiquitin chains and oppose the function of E3 ubiquitin ligases. Deubiquitinases therefore play an important role in the termination of NF-κB signaling and the resolution of inflammation. In this review, we focus on NF-κB regulation by deubiquitinases with an emphasis on A20 and CYLD. Deubiquitinases and the ubiquitin/proteasome components that regulate NF-κB may serve as novel therapeutic targets for inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Edward W Harhaj
- Department of Microbiology and Immunology, Sylvester Comprehensive Cancer Center, The University of Miami, Miller School of Medicine, Miami, FL, USA
| | | |
Collapse
|
22
|
Ahlqvist K, Saamarthy K, Syed Khaja AS, Bjartell A, Massoumi R. Expression of Id proteins is regulated by the Bcl-3 proto-oncogene in prostate cancer. Oncogene 2012; 32:1601-8. [PMID: 22580608 DOI: 10.1038/onc.2012.175] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
B-cell leukemia 3 (Bcl-3) is a member of the inhibitor of κB family, which regulates a wide range of biological processes by functioning as a transcriptional activator or as a repressor of target genes. As high levels of Bcl-3 expression and activation have been detected in different types of human cancer, Bcl-3 has been labeled a proto-oncogene. Our study uncovered a markedly upregulated Bcl-3 expression in human prostate cancer (PCa), where inflammatory cell infiltration was observed. Elevated Bcl-3 expression in PCa was dependent on the proinflammatory cytokine interleukin-6-mediated STAT3 activation. Microarray analyses, using Bcl-3 knockdown in PCa cells, identified the inhibitor of DNA-binding (Id) family of helix-loop-helix proteins as potential Bcl-3-regulated genes. Bcl-3 knockdown reduced the abundance of Id-1 and Id-2 proteins and boosted PCa cells to be more receptive to undergoing apoptosis following treatment with anticancer drug. Our data imply that inactivation of Bcl-3 may lead to sensitization of cancer cells to chemotherapeutic drug-induced apoptosis, thus suggesting a potential therapeutic strategy in PCa treatment.
Collapse
Affiliation(s)
- K Ahlqvist
- Center for Molecular Tumor Pathology, Department of Laboratory Medicine, Lund University, Skåne University Hospital, Malmö, Sweden
| | | | | | | | | |
Collapse
|
23
|
Tumor Suppressor Function of CYLD in Nonmelanoma Skin Cancer. J Skin Cancer 2011; 2011:614097. [PMID: 22235375 PMCID: PMC3246786 DOI: 10.1155/2011/614097] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 09/15/2011] [Accepted: 09/21/2011] [Indexed: 11/18/2022] Open
Abstract
Ubiquitin and ubiquitin-related proteins posttranslationally modify substrates, and thereby alter the functions of their targets. The ubiquitination process is involved in various physiological responses, and dysregulation of components of the ubiquitin system has been linked to many diseases including skin cancer. The ubiquitin pathways activated among skin cancers are highly diverse and may reflect the various characteristics of the cancer type. Basal cell carcinoma and squamous cell carcinoma, the most common types of human skin cancer, are instances where the involvement of the deubiquitination enzyme CYLD has been recently highlighted. In basal cell carcinoma, the tumor suppressor protein CYLD is repressed at the transcriptional levels through hedgehog signaling pathway. Downregulation of CYLD in basal cell carcinoma was also shown to interfere with TrkC expression and signaling, thereby promoting cancer progression. By contrast, the level of CYLD is unchanged in squamous cell carcinoma, instead, catalytic inactivation of CYLD in the skin has been linked to the development of squamous cell carcinoma. This paper will focus on the current knowledge that links CYLD to nonmelanoma skin cancers and will explore recent insights regarding CYLD regulation of NF-κB and hedgehog signaling during the development and progression of these types of human tumors.
Collapse
|
24
|
Fraile JM, Quesada V, Rodríguez D, Freije JMP, López-Otín C. Deubiquitinases in cancer: new functions and therapeutic options. Oncogene 2011; 31:2373-88. [PMID: 21996736 DOI: 10.1038/onc.2011.443] [Citation(s) in RCA: 352] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Deubiquitinases (DUBs) have fundamental roles in the ubiquitin system through their ability to specifically deconjugate ubiquitin from targeted proteins. The human genome encodes at least 98 DUBs, which can be grouped into 6 families, reflecting the need for specificity in their function. The activity of these enzymes affects the turnover rate, activation, recycling and localization of multiple proteins, which in turn is essential for cell homeostasis, protein stability and a wide range of signaling pathways. Consistent with this, altered DUB function has been related to several diseases, including cancer. Thus, multiple DUBs have been classified as oncogenes or tumor suppressors because of their regulatory functions on the activity of other proteins involved in tumor development. Therefore, recent studies have focused on pharmacological intervention on DUB activity as a rationale to search for novel anticancer drugs. This strategy may benefit from our current knowledge of the physiological regulatory mechanisms of these enzymes and the fact that growth of several tumors depends on the normal activity of certain DUBs. Further understanding of these processes may provide answers to multiple remaining questions on DUB functions and lead to the development of DUB-targeting strategies to expand the repertoire of molecular therapies against cancer.
Collapse
Affiliation(s)
- J M Fraile
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología, Universidad de Oviedo, Oviedo, Spain
| | | | | | | | | |
Collapse
|