1
|
Li Q, Dai Y, Xu X, Wu W, Chen W, Wang H, Tan CH, Ye X. Enantioselective Reduction and Sulfenylation of Isoflavanone Derivatives via Bisguanidinium Hypervalent Silicate. Org Lett 2024; 26:6241-6246. [PMID: 38996353 DOI: 10.1021/acs.orglett.4c02202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
In this work, we describe an enantioselective reduction and sulfenylation of isoflavanone derivatives by an ion pair strategy. The chiral cationic catalyst bisguanidinium (BG) is capable of chiral induction in catalytic systems. Silane hydride works as a reductant and helps to form an anionic hypervalent silicate complex and intermediates with substrates to pair with chiral catalyst. A series of umpolung sulfur reagents accomplish electrophilic attack in the presence of a silicate anion. Both chemoselectivity and enantioselectivity are good to excellent to afford a wide scope of 4-oxo-4H-chromene-3-carbonitrile and S-electrophilic reagents. Further transformations were completed to introduce more applications.
Collapse
Affiliation(s)
- Qiaoqiang Li
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
| | - Yuqing Dai
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
| | - Xinru Xu
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
| | - Wentao Wu
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
| | - Wenchao Chen
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
| | - Hong Wang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
| | - Choon-Hong Tan
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Xinyi Ye
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
| |
Collapse
|
2
|
Fakhri S, Moradi SZ, Faraji F, Kooshki L, Webber K, Bishayee A. Modulation of hypoxia-inducible factor-1 signaling pathways in cancer angiogenesis, invasion, and metastasis by natural compounds: a comprehensive and critical review. Cancer Metastasis Rev 2024; 43:501-574. [PMID: 37792223 DOI: 10.1007/s10555-023-10136-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/07/2023] [Indexed: 10/05/2023]
Abstract
Tumor cells employ multiple signaling mediators to escape the hypoxic condition and trigger angiogenesis and metastasis. As a critical orchestrate of tumorigenic conditions, hypoxia-inducible factor-1 (HIF-1) is responsible for stimulating several target genes and dysregulated pathways in tumor invasion and migration. Therefore, targeting HIF-1 pathway and cross-talked mediators seems to be a novel strategy in cancer prevention and treatment. In recent decades, tremendous efforts have been made to develop multi-targeted therapies to modulate several dysregulated pathways in cancer angiogenesis, invasion, and metastasis. In this line, natural compounds have shown a bright future in combating angiogenic and metastatic conditions. Among the natural secondary metabolites, we have evaluated the critical potential of phenolic compounds, terpenes/terpenoids, alkaloids, sulfur compounds, marine- and microbe-derived agents in the attenuation of HIF-1, and interconnected pathways in fighting tumor-associated angiogenesis and invasion. This is the first comprehensive review on natural constituents as potential regulators of HIF-1 and interconnected pathways against cancer angiogenesis and metastasis. This review aims to reshape the previous strategies in cancer prevention and treatment.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Farahnaz Faraji
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Leila Kooshki
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, 6714415153, Iran
| | - Kassidy Webber
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Boulevard, Bradenton, FL, 34211, USA
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Boulevard, Bradenton, FL, 34211, USA.
| |
Collapse
|
3
|
Sun K, Chen P, Zhang L, Lu Z, Jin Q. Deguelin inhibits the proliferation of human multiple myeloma cells by inducing apoptosis and G2/M cell cycle arrest: Involvement of Akt and p38 MAPK signalling pathway. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2024; 74:101-115. [PMID: 38554386 DOI: 10.2478/acph-2024-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/25/2023] [Indexed: 04/01/2024]
Abstract
Deguelin exhibits antiproliferative activity against various cancer cell types. Previous studies have reported that deguelin exhibits pro-apoptotic activity against human cancer cells. The current study aimed at further elaborating the anticancer effects of deguelin against multiple myeloma cells. Cell growth estimations were made through MTT assay. Phase contrast microscopy was used for the analysis of the viability of multiple myeloma cells. Colony formation from multiple myeloma cells was studied using a clonogenic assay. Antioxidative assays for determining levels of glutathione (GSH) and superoxide dismutase (SOD) were carried out after treating multiple myeloma cells with deguelin. The apoptosis of multiple myeloma cells was studied using AO/EB and Annexin V-FITC/PI staining methods. Multiple myeloma cell cycle analysis was performed through flow cytometry. mRNA expression levels were depicted using qRT-PCR. Migration and invasion of multiple myeloma cells were determined with the wound-healing and transwell assays, respectively. Deguelin specifically inhibited the multiple myeloma cell growth while the normal plasma cells were minimally affected. Multiple myeloma cells when treated with deguelin exhibited remarkably lower viability and colony-forming ability. Multiple myeloma cells treated with deguelin produced more SOD and had higher GSH levels. The multiple myeloma cell growth, migration, and invasion were significantly declined by in vitro administration of deguelin. In conclusion, deguelin treatment, when applied in vitro, induced apoptotic cell death and resulted in mitotic cessation at the G2/M phase through modulation of cell cycle regulatory mRNAs in multiple myeloma cells.
Collapse
Affiliation(s)
- Kening Sun
- Department of Orthopedics Ward 3 The General Hospital of Ningxia Medical University, Yinchuan Ningxia, China
| | - Ping Chen
- Medical Experiment Center, General Hospital of Ningxia Medical University, Ningxia, China
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Ningxia China
| | - Liang Zhang
- Department of Orthopedics Ward 3 The General Hospital of Ningxia Medical University, Yinchuan Ningxia, China
| | - Zhidong Lu
- Department of Orthopedics Ward 3 The General Hospital of Ningxia Medical University, Yinchuan Ningxia, China
| | - Qunhua Jin
- Department of Orthopedics Ward 3 The General Hospital of Ningxia Medical University, Yinchuan Ningxia, China
| |
Collapse
|
4
|
Chen F, Zhong Z, Zhang C, Lu Y, Chan YT, Wang N, Zhao D, Feng Y. Potential Focal Adhesion Kinase Inhibitors in Management of Cancer: Therapeutic Opportunities from Herbal Medicine. Int J Mol Sci 2022; 23:13334. [PMID: 36362132 PMCID: PMC9659249 DOI: 10.3390/ijms232113334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/27/2022] [Accepted: 10/29/2022] [Indexed: 08/15/2024] Open
Abstract
Focal adhesion kinase (FAK) is a multifunctional protein involved in cellular communication, integrating and transducing extracellular signals from cell-surface membrane receptors. It plays a central role intracellularly and extracellularly within the tumor microenvironment. Perturbations in FAK signaling promote tumor occurrence and development, and studies have revealed its biological behavior in tumor cell proliferation, migration, and adhesion. Herein we provide an overview of the complex biology of the FAK family members and their context-dependent nature. Next, with a focus on cancer, we highlight the activities of FAK signaling in different types of cancer and how knowledge of them is being used for screening natural compounds used in herbal medicine to fight tumor development.
Collapse
Affiliation(s)
- Feiyu Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Zhangfeng Zhong
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Cheng Zhang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yuanjun Lu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yau-Tuen Chan
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Ning Wang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Di Zhao
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
5
|
Deguelin Attenuates Non-Small-Cell Lung Cancer Cell Metastasis by Upregulating PTEN/KLF4/EMT Signaling Pathway. DISEASE MARKERS 2022; 2022:4090346. [PMID: 35637651 PMCID: PMC9148257 DOI: 10.1155/2022/4090346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/22/2022] [Indexed: 12/11/2022]
Abstract
Non-small-cell lung cancer (NSCLC) is the most common lung cancer and a major cause of cancer mortality worldwide. Deguelin plays a vital inhibitory role in NSCLC initiation and development. However, the downstream mechanism of deguelin-suppressed metastasis of NSCLC cells is still not completely understood. Interestingly, phosphatase and tensin homologue deleted on chromosome 10 (PTEN) and Krüppel-like factor 4 (KLF4) also contribute to inhibition of metastasis in NSCLC cells. Here, we demonstrated that deguelin significantly upregulated PTEN and KLF4 expressions and PTEN positively upregulated KLF4 expression in NSCLC cells including A549 and PC9 cells. Moreover, overexpressions of PTEN and KLF4 inhibited the migration and invasion of NSCLC cells, an effect similar to that of deguelin. Furthermore, overexpressions of PTEN and KLF4 could suppress the epithelial-mesenchymal transition (EMT), an effect also similar to that of deguelin. Additionally, deguelin displayed a significant antitumor ability by upregulating PTEN and KLF4 expressions in mice model with NSCLC cells. Together, these results indicated that deguelin could be a potential therapeutic agent through upregulating PTEN and KLF4 expressions for NSCLC therapy.
Collapse
|
6
|
Dahmardeh Ghalehno A, Boustan A, Abdi H, Aganj Z, Mosaffa F, Jamialahmadi K. The Potential for Natural Products to Overcome Cancer Drug Resistance by Modulation of Epithelial-Mesenchymal Transition. Nutr Cancer 2022; 74:2686-2712. [PMID: 34994266 DOI: 10.1080/01635581.2021.2022169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The acquisition of resistance and ultimately disease relapse after initial response to chemotherapy put obstacles in the way of cancer therapy. Epithelial-mesenchymal transition (EMT) is a biologic process that epithelial cells alter to mesenchymal cells and acquire fibroblast-like properties. EMT plays a significant role in cancer metastasis, motility, and survival. Recently, emerging evidence suggested that EMT pathways are very important in making drug-resistant involved in cancer. Natural products are gradually emerging as a valuable source of safe and effective anticancer compounds. Natural products could interfere with the different processes implicated in cancer drug resistance by reversing the EMT process. In this review, we illustrate the molecular mechanisms of EMT in the emergence of cancer metastasis. We then present the role of natural compounds in the suppression of EMT pathways in different cancers to overcome cancer cell drug resistance and improve tumor chemotherapy. HighlightsDrug-resistance is one of the obstacles to cancer treatment.EMT signaling pathways have been correlated to tumor invasion, metastasis, and drug-resistance.Various studies on the relationship between EMT and resistance to chemotherapy agents were reviewed.Different anticancer natural products with EMT inhibitory properties and drug resistance reversal effects were compared.
Collapse
Affiliation(s)
- Asefeh Dahmardeh Ghalehno
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arad Boustan
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hakimeh Abdi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Aganj
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Mosaffa
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khadijeh Jamialahmadi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
7
|
Lin ZY, Yun QZ, Wu L, Zhang TW, Yao TZ. Pharmacological basis and new insights of deguelin concerning its anticancer effects. Pharmacol Res 2021; 174:105935. [PMID: 34644595 DOI: 10.1016/j.phrs.2021.105935] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/27/2021] [Accepted: 10/07/2021] [Indexed: 12/15/2022]
Abstract
Deguelin is a rotenoid of the flavonoid family, which can be extracted from Lonchocarpus, Derris, or Tephrosia. It possesses the inhibition of cancer cell proliferation by inducing apoptosis through regulating the phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) signaling pathway, the NF-κB signaling pathway, the Wnt signaling pathway, the adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) signaling pathway and epidermal growth factor receptor (EGFR) signaling, activating the p38 mitogen-activated protein kinase (MAPK) pathway, repression of Bmi1, targeting cyclooxygenase-2 (COX-2), targeting galectin-1, promotion of glycogen synthase kinase-3β (GSK3β)/FBW7-mediated Mcl-1 destabilization and targeting mitochondria via down-regulating Hexokinases II-mediated glycolysis, PUMA-mediation, which are some crucial molecules which modulate closely cancer cell growth and metastasis. Deguelin inhibits tumor cell propagation and malignant transformation through targeting angiogenesis, targeting lymphangiogenesis, targeting focal adhesion kinase (FAK), inhibiting the CtsZ/FAK signaling pathway, targeting epithelial-mesenchymal transition (EMT), the NF-κB signaling pathway, regulating NIMA-related kinase 2 (NEK2). In addition, deguelin possesses other biological activities, such as targeting cell cycle arrest, modulation of autophagy, inhibition of hedgehog pathway, inducing differentiation of mutated NPM1 acute myeloid leukemia etc. Therefore, deguelin is a promising chemopreventive agent for cancer therapy.
Collapse
Affiliation(s)
- Zhu Yue Lin
- Pharmacology Department, Dalian Medical University, Dalian 116044, Liaoning, PR China
| | - Qu Zhen Yun
- Pathophysiology Department, Dalian Medical University, Dalian 116044, Liaoning, PR China
| | - Liu Wu
- Pharmacology Department, Dalian Medical University, Dalian 116044, Liaoning, PR China; Pathophysiology Department, Dalian Medical University, Dalian 116044, Liaoning, PR China
| | - Tian Wen Zhang
- Pharmacology Department, Dalian Medical University, Dalian 116044, Liaoning, PR China; Pathophysiology Department, Dalian Medical University, Dalian 116044, Liaoning, PR China
| | - Tang Ze Yao
- Pharmacology Department, Dalian Medical University, Dalian 116044, Liaoning, PR China.
| |
Collapse
|
8
|
Mir MA, Mehraj U, Sheikh BA. Recent Advances in Chemotherapeutic Implications of Deguelin: A Plant-Derived Retinoid. ACTA ACUST UNITED AC 2021. [DOI: 10.2174/2210315510666200128125950] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Deguelin, a plant retinoid has emerged to be a promising therapeutic agent in the treatment
of different cancers. Recent studies demonstrate that deguelin has potential as an angiogenesis
antagonist in malignant and endothelial cells by specifically targeting HGF-c-Met and VEGFVEGFR
pathways. It is reported to have profound therapeutic effects in pancreatic cancer by inactivation
of the hedgehog (Hh) signalling pathway and suppresses the expression of matrix metalloproteinases
such as MMP-2 and MMP-9. The basic underlying mechanisms for deguelin mediated anti-
NSCLC effects were uncovered through its induction of elevated intracellular Reactive Oxygen Species
(ROS) levels and suppression of the PI3K /Akt-HK2 signalling pathway. Deguelin induces cell
apoptosis by targeting various pathways most notably regulating the expression of galectin-1 and
binding directly to anti-apoptotic Bcl-2 (B-cell lymphoma 2), Bcl-xl (B-cell lymphoma-extralarge)
and Mcl-1 (Myeloid Cell Leukemia Sequence 1) in the hydrophobic grooves thereby liberating BAD
and BAX from binding with these proteins. These results derived from the effect of Deguelin on various
cancer cell lines have further elucidated its role as a novel anti-tumorigenic agent targeting angiogenesis,
apoptosis, cell proliferation and migration for cancer chemoprevention. In this review, an
attempt has been made to highlight the potential therapeutic effects of Deguelin in destroying the
cancer cells by inhibiting various tumour promoting pathways and its uses as a therapeutic agent
alone or in combination.
Collapse
Affiliation(s)
- Manzoor A. Mir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar-190006, India
| | - Umar Mehraj
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar-190006, India
| | - Bashir A. Sheikh
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar-190006, India
| |
Collapse
|
9
|
Haque A, Brazeau D, Amin AR. Perspectives on natural compounds in chemoprevention and treatment of cancer: an update with new promising compounds. Eur J Cancer 2021; 149:165-183. [PMID: 33865202 PMCID: PMC8113151 DOI: 10.1016/j.ejca.2021.03.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/04/2021] [Accepted: 03/13/2021] [Indexed: 12/21/2022]
Abstract
Cancer is the second deadliest disease worldwide. Although recent advances applying precision treatments with targeted (molecular and immune) agents are promising, the histological and molecular heterogeneity of cancer cells and huge mutational burdens (intrinsic or acquired after therapy) leading to drug resistance and treatment failure are posing continuous challenges. These recent advances do not negate the need for alternative approaches such as chemoprevention, the pharmacological approach to reverse, suppress or prevent the initial phases of carcinogenesis or the progression of premalignant cells to invasive disease by using non-toxic agents. Although data are limited, the success of several clinical trials in preventing cancer in high-risk populations suggests that chemoprevention is a rational, appealing and viable strategy to prevent carcinogenesis. Particularly among higher-risk groups, the use of safe, non-toxic agents is the utmost consideration because these individuals have not yet developed invasive disease. Natural dietary compounds present in fruits, vegetables and spices are especially attractive for chemoprevention and treatment because of their easy availability, high margin of safety, relatively low cost and widespread human consumption. Hundreds of such compounds have been widely investigated for chemoprevention and treatment in the last few decades. Previously, we reviewed the most widely studied natural compounds and their molecular mechanisms, which were highly exploited by the cancer research community. In the time since our initial review, many promising new compounds have been identified. In this review, we critically review these promising new natural compounds, their molecular targets and mechanisms of anticancer activity that may create novel opportunities for further design and conduct of preclinical and clinical studies.
Collapse
Affiliation(s)
- Abedul Haque
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Daniel Brazeau
- Department of Pharmacy Practice, Administration and Research, School of Pharmacy, Marshall University, Huntington, WV, 25701, USA
| | - Arm R Amin
- Department of Pharmaceutical Sciences and Research, School of Pharmacy, Marshall University, Huntington, WV, 25701, USA.
| |
Collapse
|
10
|
Tuli HS, Mittal S, Loka M, Aggarwal V, Aggarwal D, Masurkar A, Kaur G, Varol M, Sak K, Kumar M, Sethi G, Bishayee A. Deguelin targets multiple oncogenic signaling pathways to combat human malignancies. Pharmacol Res 2021; 166:105487. [PMID: 33581287 DOI: 10.1016/j.phrs.2021.105487] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/23/2021] [Accepted: 02/07/2021] [Indexed: 02/07/2023]
Abstract
Cancer is an anomalous growth and differentiation of cells known to be governed by oncogenic factors. Plant-based natural metabolites have been well recognized to possess chemopreventive properties. Deguelin, a natural rotenoid, is among the class of bioactive phytoconstituents from a diverse range of plants with potential antineoplastic effects in different cancer subtypes. However, the precise mechanisms of how deguelin inhibits tumor progression remains elusive. Deguelin has shown promising results in targeting the hallmarks of tumor progression via inducing tumor apoptosis, cell cycle arrest, and inhibition of angiogenesis and metastasis. Based on initial scientific excerpts, deguelin has been reported to inhibit tumor growth via different signaling pathways, including mitogen-activated protein kinase, phosphoinositide 3-kinase, serine/threonine protein kinase B (also known as Akt), mammalian target of rapamycin, nuclear factor-κB, matrix metalloproteinase (MMP)-2, MMP-9 and caspase-3, caspase-8, and caspase-9. This review summarizes the mechanistic insights of antineoplastic action of deguelin to gain a clear understanding of its therapeutic effects in cancer. The anticancer potential of deguelin with respect to its efficacy in targeting tumorigenesis via nanotechnological approaches is also investigated. The initial scientific findings have presented deguelin as a promising antitumorigenic agent which can be used for monotherapy as well as synergistically to augment efficacy of chemotherapeutic treatment regimes.
Collapse
Affiliation(s)
- Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala 133 207, Haryana, India.
| | - Sonam Mittal
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Mariam Loka
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Vaishali Aggarwal
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA15260, USA
| | - Diwakar Aggarwal
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala 133 207, Haryana, India
| | - Akshara Masurkar
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, Narsee Monjee Institute of Management Studies University, Mumbai 400 056, Maharashtra, India
| | - Ginpreet Kaur
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, Narsee Monjee Institute of Management Studies University, Mumbai 400 056, Maharashtra, India
| | - Mehmet Varol
- Department of Molecular Biology and Genetics, Faculty of Science, Mugla Sitki Kocman University, Mugla TR48000, Turkey
| | | | - Manoj Kumar
- Department of Chemistry, Maharishi Markandeshwar (Deemed to be University), Sadopur 134007, Haryana, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA.
| |
Collapse
|
11
|
An Electrophilic Deguelin Analogue Inhibits STAT3 Signaling in H- Ras-Transformed Human Mammary Epithelial Cells: The Cysteine 259 Residue as a Potential Target. Biomedicines 2020; 8:biomedicines8100407. [PMID: 33053804 PMCID: PMC7600869 DOI: 10.3390/biomedicines8100407] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/04/2020] [Accepted: 10/09/2020] [Indexed: 11/17/2022] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) is a point of convergence for numerous oncogenic signals that are often constitutively activated in many cancerous or transformed cells and some stromal cells in the tumor microenvironment. Persistent STAT3 activation in malignant cells stimulates proliferation, survival, angiogenesis, invasion, and tumor-promoting inflammation. STAT3 undergoes activation through phosphorylation on tyrosine 705, which facilitates its dimerization. Dimeric STAT3 translocates to the nucleus, where it regulates the transcription of genes involved in cell proliferation, survival, etc. In the present study, a synthetic deguelin analogue SH48, discovered by virtual screening, inhibited the phosphorylation, nuclear translocation, and transcriptional activity of STAT3 in H-ras transformed human mammary epithelial MCF-10A cells (MCF10A-ras). We speculated that SH48 bearing an α,β-unsaturated carbonyl group could interact with a thiol residue of STAT3, thereby inactivating this transcription factor. Non-electrophilic analogues of SH48 failed to inhibit STAT3 activation, lending support to the above supposition. By utilizing a biotinylated SH48, we were able to demonstrate the complex formation between SH48 and STAT3. SH48 treatment to MCF10A-ras cells induced autophagy, which was verified by staining with a fluorescent acidotropic probe, LysoTracker Red, as well as upregulating the expression of LC3II and p62. In conclusion, the electrophilic analogue of deguelin interacts with STAT3 and inhibits its activation in MCF10A-ras cells, which may account for its induction of autophagic death.
Collapse
|
12
|
Xiao W, Liu Y, Dai M, Li Y, Peng R, Yu S, Liu H. Rotenone restrains colon cancer cell viability, motility and epithelial‑mesenchymal transition and tumorigenesis in nude mice via the PI3K/AKT pathway. Int J Mol Med 2020; 46:700-708. [PMID: 32626924 PMCID: PMC7307809 DOI: 10.3892/ijmm.2020.4637] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 03/06/2020] [Indexed: 12/11/2022] Open
Abstract
Rotenone, a natural hydrophobic pesticide, has been reported to display anticancer activity in a variety of cancer cells. However, the mechanism of rotenone on colon cancer (CC) cell migration, invasion and metastasis is still unknown. In the present study, the cytotoxicity of rotenone on CC cells were detected by the Cell Counting Kit‑8 assay and confirmed by clone formation assay. The effects of rotenone on CC cell invasion and migration activity were determined in vitro by Transwell invasion and wound healing assays, respectively. In addition, to reveal whether rotenone affected the epithelial‑mesenchymal‑transition (EMT) process, reverse transcription‑quantitative PCR, western blotting and immunofluorescence assays were used to detect the expression of EMT markers. The expression levels of the key markers of the PI3K/AKT pathway after rotenone treatment alone or in combination with a PI3K/AKT signaling activator in CC were also detected by western blotting. Finally, the in vivo antitumor effects of rotenone were evaluated in a subcutaneous xenotransplant tumor model treated with an intraperitoneal injection of rotenone. The results of the present study demonstrated that rotenone treatment induced CC cell cytotoxicity and greater effects were observed with increasing concentrations and inhibited cell proliferation compared with untreated cells. In vitro cell function assays revealed that rotenone inhibited CC cell migration, invasion and EMT compared with untreated cells. Mechanically, the phosphorylation levels of AKT and mTOR were downregulated in rotenone‑treated CC cells compared with untreated cells. Additionally, AKT and mTOR phosphorylation levels were increased by the PI3K/AKT signaling activator insulin‑like growth factor 1 (IGF‑1), which was reversed by rotenone treatment. The cell function assays confirmed that the IGF‑1‑activated cell proliferation, migration and invasion were decreased by rotenone treatment. These results indicated that rotenone affected CC cell proliferation and metastatic capabilities by inhibiting the PI3K/AKT/mTOR signaling pathway. In addition, rotenone inhibited tumor growth and metastatic capability of CC, which was confirmed in a xenograft mouse model. In conclusion, the present study revealed that rotenone inhibited CC cell viability, motility, EMT and metastasis in vitro and in vivo by inhibiting the PI3K/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Wenbo Xiao
- Department of Digestion, University-Town Hospital of Chongqing Medical University, Chongqing 401331
| | | | | | - Yu Li
- Department of Digestion, Rongchang District People's Hospital of Chongqing, Chongqing 402460
| | - Renqun Peng
- Department of Digestion, Rongchang District People's Hospital of Chongqing, Chongqing 402460
| | - Shuangjiang Yu
- Department of Neurosurgery, The First Hospital Affiliated to Army Military Medical University (Southwest Hospital), Chongqing 400038, P.R. China
| | - Hao Liu
- Department of Digestion, Rongchang District People's Hospital of Chongqing, Chongqing 402460
| |
Collapse
|
13
|
Zhang Y, Qin X, Jiang J, Zhao W. MicroRNA-126 exerts antitumor functions in ovarian cancer by targeting EGFL7 and affecting epithelial-to-mesenchymal transition and ERK/MAPK signaling pathway. Oncol Lett 2020; 20:1327-1335. [PMID: 32724375 PMCID: PMC7377137 DOI: 10.3892/ol.2020.11687] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 02/13/2020] [Indexed: 02/03/2023] Open
Abstract
Ovarian cancer (OC) is a common gynecological malignant carcinoma worldwide. Accumulating research has revealed that multiple microRNAs (miRNAs) are abnormally expressed at different levels in various malignancies, playing vital roles in tumorigenesis. This study investigated the regulatory functions and potential mechanism of miR-126 in OC proliferation, invasion and migration. It was found that miR-126 was prominently downregulated in OC. Moreover, the decrease of miR-126 promoted the aggressive phenotypes and indicated poor prognosis of OC patients. Functional assays demonstrated that restoration of miR-126 dramatically repressed OC cell proliferation, migration and invasion. Furthermore, luciferase reporter assay was conducted to verify putative binding sites of miR-126 in the epidermal growth factor-like domain 7 (EGFL7) 3 untranslated region (3'UTR), indicating that EGFL7 was a target gene of miR-126 in OC cells. It was further discovered that miR-126 exerts its function on regulating ERK/MAPK pathway and epithelial-to-mesenchymal transition (EMT) in OC cells. The above findings suggested that miR-126 served as a cancer suppressor in OC, suggesting a promising application of miR-126 in the clinical diagnosis and therapeutics of OC.
Collapse
Affiliation(s)
- Yuhua Zhang
- Reproductive Medicine Centre, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Xiaobo Qin
- Department of Obstetrics and Gynecology, Zhangqiu District Maternal and Child Health Care Hospital, Jinan, Shandong 250200, P.R. China
| | - Juan Jiang
- Department of Nursing, The Third People's Hospital of Qingdao, Qingdao, Shandong 266041, P.R. China
| | - Wenjie Zhao
- Reproductive Medicine Centre, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| |
Collapse
|
14
|
Russell DA, Bridges HR, Serreli R, Kidd SL, Mateu N, Osberger TJ, Sore HF, Hirst J, Spring DR. Hydroxylated Rotenoids Selectively Inhibit the Proliferation of Prostate Cancer Cells. JOURNAL OF NATURAL PRODUCTS 2020; 83:1829-1845. [PMID: 32459967 PMCID: PMC7611836 DOI: 10.1021/acs.jnatprod.9b01224] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Prostate cancer is one of the leading causes of cancer-related death in men. The identification of new therapeutics to selectively target prostate cancer cells is therefore vital. Recently, the rotenoids rotenone (1) and deguelin (2) were reported to selectively kill prostate cancer cells, and the inhibition of mitochondrial complex I was established as essential to their mechanism of action. However, these hydrophobic rotenoids readily cross the blood-brain barrier and induce symptoms characteristic of Parkinson's disease in animals. Since hydroxylated derivatives of 1 and 2 are more hydrophilic and less likely to readily cross the blood-brain barrier, 29 natural and unnatural hydroxylated derivatives of 1 and 2 were synthesized for evaluation. The inhibitory potency (IC50) of each derivative against complex I was measured, and its hydrophobicity (Slog10P) predicted. Amorphigenin (3), dalpanol (4), dihydroamorphigenin (5), and amorphigenol (6) were selected and evaluated in cell-based assays using C4-2 and C4-2B prostate cancer cells alongside control PNT2 prostate cells. These rotenoids inhibit complex I in cells, decrease oxygen consumption, and selectively inhibit the proliferation of prostate cancer cells, leaving control cells unaffected. The greatest selectivity and antiproliferative effects were observed with 3 and 5. The data highlight these molecules as promising therapeutic candidates for further evaluation in prostate cancer models.
Collapse
Affiliation(s)
- David A. Russell
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, U.K
| | - Hannah R. Bridges
- MRC Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, U.K
| | - Riccardo Serreli
- MRC Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, U.K
| | - Sarah L. Kidd
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, U.K
| | - Natalia Mateu
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, U.K
| | - Thomas J. Osberger
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, U.K
| | - Hannah F. Sore
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, U.K
| | - Judy Hirst
- MRC Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, U.K
| | - David R. Spring
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, U.K
| |
Collapse
|
15
|
Fu L, Han B, Zhou Y, Ren J, Cao W, Patel G, Kai G, Zhang J. The Anticancer Properties of Tanshinones and the Pharmacological Effects of Their Active Ingredients. Front Pharmacol 2020; 11:193. [PMID: 32265690 PMCID: PMC7098175 DOI: 10.3389/fphar.2020.00193] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/11/2020] [Indexed: 12/31/2022] Open
Abstract
Cancer is a common malignant disease worldwide with an increasing mortality in recent years. Salvia miltiorrhiza, a well-known traditional Chinese medicine, has been used for the treatment of cardiovascular and cerebrovascular diseases for thousands of years. The liposoluble tanshinones in S. miltiorrhiza are important bioactive components and mainly include tanshinone IIA, dihydrodanshinone, tanshinone I, and cryptotanshinone. Previous studies showed that these four tanshinones exhibited distinct inhibitory effects on tumor cells through different molecular mechanisms in vitro and in vivo. The mechanisms mainly include the inhibition of tumor cell growth, metastasis, invasion, and angiogenesis, apoptosis induction, cell autophagy, and antitumor immunity, and so on. In this review, we describe the latest progress on the antitumor functions and mechanisms of these four tanshinones to provide a deeper understanding of the efficacy. In addition, the important role of tumor immunology is also reviewed.
Collapse
Affiliation(s)
- Li Fu
- School of Life Sciences, Institute of Plant Biotechnology, Shanghai Normal University, Shanghai, China
| | - Bing Han
- Laboratory of Medicinal Plant Biotechnology, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yang Zhou
- School of Life Sciences, Institute of Plant Biotechnology, Shanghai Normal University, Shanghai, China
| | - Jie Ren
- School of Life Sciences, Institute of Plant Biotechnology, Shanghai Normal University, Shanghai, China
| | - Wenzhi Cao
- School of Life Sciences, Institute of Plant Biotechnology, Shanghai Normal University, Shanghai, China
| | - Gopal Patel
- Laboratory of Medicinal Plant Biotechnology, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Guoyin Kai
- School of Life Sciences, Institute of Plant Biotechnology, Shanghai Normal University, Shanghai, China.,Laboratory of Medicinal Plant Biotechnology, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jun Zhang
- School of Life Sciences, Institute of Plant Biotechnology, Shanghai Normal University, Shanghai, China
| |
Collapse
|
16
|
Luzuriaga-Quichimbo CX, Blanco-Salas J, Cerón-Martínez CE, Alías-Gallego JC, Ruiz-Téllez T. Promising Potential of Lonchocarpus utilis against South American Myasis. PLANTS (BASEL, SWITZERLAND) 2019; 9:E33. [PMID: 31881648 PMCID: PMC7020150 DOI: 10.3390/plants9010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/13/2019] [Accepted: 12/17/2019] [Indexed: 11/21/2022]
Abstract
Traditional medicine is especially important in the treatment of neglected tropical diseases because it is the way the majority of populations of affected countries manage primary healthcare. We present a case study that can serve as an example that can be replicated by others in the same situation. It is about the validation of a local remedy for myasis in Amazonian Ecuador, which is contrasted by bibliographic chemical reviews and in silico activity tests. We look for scientific arguments to demonstrate the reason for using extracts of Lonchocarpus utilis against south American myasis (tupe). We provide a summary of the isoflavonoids, prenylated flavonoids, chalcones, and stilbenes that justify the action. We make modeling predictions on the affinity of eight chemical components and enzyme targets using Swiss Target Prediction software. We conclude that the effects of this extract can be reasonably attributed to an effect of the parasite that causes the disease, similar to the one produced by synthetic drugs used by conventional medicine (e.g., Ivermectine).
Collapse
Affiliation(s)
| | - José Blanco-Salas
- Área de Botánica, Facultad de Ciencias, Universidad de Extremadura, Avda. Elvas s/n, 06071 Badajoz, Spain;
| | | | - Juan Carlos Alías-Gallego
- Área de Ecología, Facultad de Ciencias, Universidad de Extremadura, Avda. Elvas s/n, 06071 Badajoz, Spain;
| | - Trinidad Ruiz-Téllez
- Área de Botánica, Facultad de Ciencias, Universidad de Extremadura, Avda. Elvas s/n, 06071 Badajoz, Spain;
| |
Collapse
|
17
|
Varughese RS, Lam WST, Marican AABH, Viganeshwari SH, Bhave AS, Syn NL, Wang J, Wong ALA, Kumar AP, Lobie PE, Lee SC, Sethi G, Goh BC, Wang L. Biopharmacological considerations for accelerating drug development of deguelin, a rotenoid with potent chemotherapeutic and chemopreventive potential. Cancer 2019; 125:1789-1798. [PMID: 30933320 DOI: 10.1002/cncr.32069] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 12/13/2018] [Accepted: 01/07/2019] [Indexed: 12/27/2022]
Abstract
Deguelin is a rotenoid compound that exists in abundant quantities in the bark, roots, and leaves of the Leguminosae family of plants. An analysis of evidence from both in vitro and in vivo studies suggests that deguelin displays potent anticancer activity against multiple cancer types and exhibits chemopreventive potential in Akt-inducible transgenic mouse models. Deguelin appears to impede carcinogenesis by enhancing cell apoptosis and hindering malignant transformation and tumor cell propagation. Crucial oncogenic pathways likely targeted by deguelin include the epithelial-to-mesenchymal transition; angiogenesis-related pathways; and the phosphoinositide 3-kinase/Akt, Wnt, epidermal growth factor receptor, c-Met, and hedgehog signal transduction cascades. This review article provides a comprehensive summary of current preclinical research featuring deguelin as a leading chemotherapeutic and chemopreventive compound, and it highlights the importance of identifying companion molecular biomarkers and performing systemic pharmacokinetic studies for accelerating the process of developing deguelin as a clinical anticancer agent.
Collapse
Affiliation(s)
- Rahel Sarah Varughese
- Cancer Science Institute of Singapore, National University of Singapore, Singapore.,Department of Pharmacology, National University Health System, Singapore
| | - Walter Sze-Tung Lam
- Cancer Science Institute of Singapore, National University of Singapore, Singapore.,Department of Pharmacology, National University Health System, Singapore
| | - Ahmad Abdurrahman Bin Hanifah Marican
- Cancer Science Institute of Singapore, National University of Singapore, Singapore.,Department of Pharmacology, National University Health System, Singapore
| | - S Hema Viganeshwari
- Cancer Science Institute of Singapore, National University of Singapore, Singapore.,Department of Pharmacology, National University Health System, Singapore
| | - Anuja Satish Bhave
- Cancer Science Institute of Singapore, National University of Singapore, Singapore.,Department of Pharmacology, National University Health System, Singapore
| | - Nicholas L Syn
- Cancer Science Institute of Singapore, National University of Singapore, Singapore.,Department of Pharmacology, National University Health System, Singapore
| | - Jigang Wang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Andrea Li-Ann Wong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore.,Department of Haematology-Oncology, National University Health System, Singapore
| | - Alan Prem Kumar
- Cancer Science Institute of Singapore, National University of Singapore, Singapore.,Department of Pharmacology, National University Health System, Singapore
| | - Peter E Lobie
- Cancer Science Institute of Singapore, National University of Singapore, Singapore.,Tsinghua Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
| | - Soo Chin Lee
- Cancer Science Institute of Singapore, National University of Singapore, Singapore.,Department of Haematology-Oncology, National University Health System, Singapore
| | - Gautam Sethi
- Department of Pharmacology, National University Health System, Singapore
| | - Boon Cher Goh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore.,Department of Pharmacology, National University Health System, Singapore.,Department of Haematology-Oncology, National University Health System, Singapore.,Department of Medicine, National University Health System, Singapore
| | - Lingzhi Wang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore.,Department of Pharmacology, National University Health System, Singapore
| |
Collapse
|
18
|
Pal I, Rajesh Y, Banik P, Dey G, Dey KK, Bharti R, Naskar D, Chakraborty S, Ghosh SK, Das SK, Emdad L, Kundu SC, Fisher PB, Mandal M. Prevention of epithelial to mesenchymal transition in colorectal carcinoma by regulation of the E-cadherin-β-catenin-vinculin axis. Cancer Lett 2019; 452:254-263. [PMID: 30904616 DOI: 10.1016/j.canlet.2019.03.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/01/2019] [Accepted: 03/15/2019] [Indexed: 01/21/2023]
Abstract
Epithelial to mesenchymal transition (EMT) is compulsory for metastatic dissemination and is stimulated by TGF-β. Although targeting EMT has significant therapeutic potential, very few pharmacological agents have been shown to exert anti-metastatic effects. BI-69A11, a competitive Akt inhibitor, displays anti-tumor activity toward melanoma and colon carcinoma. This study provides molecular and biochemical insights into the effects of BI-69A11 on EMT in colon carcinoma cells in vitro and in vivo. BI-69A11 inhibited metastasis-associated cellular migration, invasion and adhesion by inhibiting the Akt-β-catenin pathway. The underlying mechanism of BI-69A11-mediated inhibition of EMT included suppression of nuclear transport of β-catenin and diminished phosphorylation of β-catenin, which was accompanied by enhanced E-cadherin-β-catenin complex formation at the plasma membrane. Additionally, BI-69A11 caused increased accumulation of vinculin in the plasma membrane, which fortified focal adhesion junctions leading to inhibition of metastasis. BI-69A11 downregulated activation of the TGF-β-induced non-canonical Akt/NF-κB pathway and blocked TGF-β-induced enhanced expression of Snail causing restoration of E-cadherin. Overall, this study enhances our understanding of the molecular mechanism of BI-69A11-induced reversal of EMT in colorectal carcinoma cells in vitro, in vivo and in TGF-β-induced model systems.
Collapse
Affiliation(s)
- Ipsita Pal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India; Center for Lymphoid Malignancies, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Y Rajesh
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Payel Banik
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Goutam Dey
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | | | - Rashmi Bharti
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Deboki Naskar
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | | | - Sudip K Ghosh
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Swadesh K Das
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, and VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Luni Emdad
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, and VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Subhas Chandra Kundu
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India; I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, AvePark - 4805-017 Barco, Guimaraes, Portugal
| | - Paul B Fisher
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, and VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA.
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India.
| |
Collapse
|
19
|
Chen L, Jiang K, Chen H, Tang Y, Zhou X, Tan Y, Yuan Y, Xiao Q, Ding K. Deguelin induces apoptosis in colorectal cancer cells by activating the p38 MAPK pathway. Cancer Manag Res 2018; 11:95-105. [PMID: 30588113 PMCID: PMC6305136 DOI: 10.2147/cmar.s169476] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Objectives Deguelin, a rotenoid extracted from Mundulea sericea (Leguminosae), exhibits antitumor effects on several types of human cancers. Due to the limited studies of deguelin on colorectal cancer (CRC), the present study was designed to investigate the antitumor effect of deguelin and to explore the underlying mechanism in CRC. Materials and methods Cell viability was assessed by the cell counting kit-8 (CCK-8) assay, and cell apoptosis was determined by the annexin v-propidium iodide staining using flow cytometry and Western blot in CRC cell lines after incubation with deguelin. The antitumor effect of deguelin was further evaluated in tumor xenograft models. Moreover, SB203580, a specific inhibitor of p38 MAPK, was used to confirm the involvement of p38 MAPK pathway in deguelin-induced apoptosis. Results Deguelin significantly inhibited cell proliferation and induced apoptosis in CRC cell lines (SW620 and RKO) in a time-dependent and dose-dependent manner. Western blot analysis also showed that the expression of proapoptotic proteins (cleaved caspase 3 and cleaved PARP) was upregulated, while that of antiapoptotic proteins (Bcl-2 and survivin) was downregulated after deguelin treatment in CRC cell lines. Moreover, oral administration of deguelin significantly suppressed tumor growth and induced apoptosis in subcutaneous xenograft mouse models without obvious toxicity. Additionally, Western blot revealed that deguelin-induced apoptosis might be regulated by the p38 MAPK pathway and inhibition of p38 MAPK could attenuate deguelin-induced proliferative inhibition and apoptosis in CRC cells. Conclusion Collectively, these results demonstrated that deguelin inhibited CRC cell growth by inducing apoptosis via activation of p38 MAPK pathway.
Collapse
Affiliation(s)
- Liubo Chen
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China, ; .,Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China, ;
| | - Kai Jiang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China, ; .,Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China, ;
| | - Haiyan Chen
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China, ; .,Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yang Tang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China, ; .,Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China, ;
| | - Xinyi Zhou
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China, ; .,Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China, ;
| | - Yinuo Tan
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China, ; .,Department of Medical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ying Yuan
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China, ; .,Department of Medical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qian Xiao
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China, ; .,Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China, ;
| | - Kefeng Ding
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China, ; .,Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China, ;
| |
Collapse
|
20
|
Nukui M, O'Connor CM, Murphy EA. The Natural Flavonoid Compound Deguelin Inhibits HCMV Lytic Replication within Fibroblasts. Viruses 2018; 10:v10110614. [PMID: 30405048 PMCID: PMC6265796 DOI: 10.3390/v10110614] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/02/2018] [Accepted: 11/03/2018] [Indexed: 12/12/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous herpesvirus for which there is no vaccine or cure. This viral infection, once acquired, is life-long, residing latently in hematopoietic cells. However, latently infected individuals with weakened immune systems often undergo HCMV reactivation, which can cause serious complications in immunosuppressed and immunocompromised patients. Current anti-viral therapies target late stages of viral replication, and are often met with therapeutic resistance, necessitating the development of novel therapeutics. In this current study, we identified a naturally-occurring flavonoid compound, deguelin, which inhibits HCMV lytic replication. Our findings reveal that nanomolar concentrations of deguelin significantly suppress the production of the infectious virus. Further, we show that deguelin inhibits the lytic cycle during the phase of the replication cycle consistent with early (E) gene and protein expression. Importantly, our data reveal that deguelin inhibits replication of a ganciclovir-resistant strain of HCMV. Together, our findings identify a novel, naturally occurring compound that may prove useful in the treatment of HCMV replication.
Collapse
Affiliation(s)
- Masatoshi Nukui
- Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA.
| | - Christine M O'Connor
- Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA.
| | - Eain A Murphy
- FORGE Life Science, Pennsylvania Biotechnology Center, Doylestown, PA 18901, USA.
| |
Collapse
|
21
|
Li W, Yu X, Xia Z, Yu X, Xie L, Ma X, Zhou H, Liu L, Wang J, Yang Y, Liu H. Repression of Noxa by Bmi1 contributes to deguelin-induced apoptosis in non-small cell lung cancer cells. J Cell Mol Med 2018; 22:6213-6227. [PMID: 30255595 PMCID: PMC6237602 DOI: 10.1111/jcmm.13908] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 08/21/2018] [Indexed: 01/07/2023] Open
Abstract
Deguelin, a natural rotenoid isolated from several plants, has been reported to exert anti‐tumour effects in various cancers. However, the molecular mechanism of this regulation remains to be fully elucidated. Here, we found that deguelin inhibited the growth of non‐small cell lung cancer (NSCLC) cells both in vitro and in vivo by downregulation of Bmi1 expression. Our data showed that Bmi1 is highly expressed in human NSCLC tissues and cell lines. Knockdown of Bmi1 significantly suppressed NSCLC cell proliferation and colony formation. Deguelin treatment attenuated the binding activity of Bmi1 to the Noxa promoter, thus resulting in Noxa transcription and apoptosis activation. Knockdown of Bmi1 promoted Noxa expression and enhanced deguelin‐induced apoptosis, whereas overexpression of Bmi1 down‐regulated Noxa protein level and deguelin‐induced apoptosis. Overall, our study demonstrated a novel apoptotic mechanism for deguelin to exert its anti‐tumour activity in NSCLC cells.
Collapse
Affiliation(s)
- Wei Li
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.,Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xinfang Yu
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Zhenkun Xia
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xinyou Yu
- Shangdong Lvdu Bio-Industry Co., Ltd., Binzhou, Shangdong, China
| | - Li Xie
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xiaolong Ma
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Huiling Zhou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Lijun Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.,Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jian Wang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.,Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yifeng Yang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Haidan Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.,Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
22
|
Li W, Yu X, Ma X, Xie L, Xia Z, Liu L, Yu X, Wang J, Zhou H, Zhou X, Yang Y, Liu H. Deguelin attenuates non-small cell lung cancer cell metastasis through inhibiting the CtsZ/FAK signaling pathway. Cell Signal 2018; 50:131-141. [PMID: 30018008 DOI: 10.1016/j.cellsig.2018.07.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 06/09/2018] [Accepted: 07/05/2018] [Indexed: 01/13/2023]
Abstract
Lung cancer is the leading cause of cancer-related death among both men and women every year, mainly due to metastasis. Although natural compound deguelin has been reported to inhibited cell migration and invasion in various cancer cells, the details of this regulation progress remain to be fully elucidated. In this study, we investigated the underlying mechanism of deguelin-suppressed metastasis of non-small cell lung cancer (NSCLC) cells. Our results demonstrate that deguelin inhibits NSCLC cell migration, invasion, and metastasis both in vitro and in vivo. These inhibitory effects of deguelin were mediated by suppressing of Cathepsin Z (CtsZ) expression and interrupting the interaction of CtsZ with integrin β3. Moreover, deguelin inhibits the activation of CtsZ downstream FAK/Src/Paxillin signaling. Knockdown of CtsZ mimicked the effect of deguelin on NSCLC cells migration and invasion. Our study reveals that deguelin exerts its anti-metastatic effect both in vitro and in vivo is partly dependent on the suppression of CtsZ signaling. Deguelin would be a potential anti-metastasis agent against NSCLC.
Collapse
Affiliation(s)
- Wei Li
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, China
| | - Xinfang Yu
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Xiaolong Ma
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Li Xie
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Zhenkun Xia
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Lijun Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Xinyou Yu
- Shangdong Lvdu Bio-Industry Co., Ltd., Binzhou, Shangdong 256600, China
| | - Jian Wang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Huiling Zhou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Xinmin Zhou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Yifeng Yang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Haidan Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China.
| |
Collapse
|
23
|
Rumman M, Jung KH, Fang Z, Yan HH, Son MK, Kim SJ, Kim J, Park JH, Lim JH, Hong S, Hong SS. HS-173, a novel PI3K inhibitor suppresses EMT and metastasis in pancreatic cancer. Oncotarget 2018; 7:78029-78047. [PMID: 27793006 PMCID: PMC5363641 DOI: 10.18632/oncotarget.12871] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 10/12/2016] [Indexed: 12/30/2022] Open
Abstract
Pancreatic cancer is one of the most aggressive solid malignancies prone to metastasis. Epithelial-mesenchymal transition (EMT) contributes to cancer invasiveness and drug resistance. In this study, we investigated whether HS-173, a novel PI3K inhibitor blocked the process of EMT in pancreatic cancer. HS-173 inhibited the growth of pancreatic cancer cells in a dose- and time-dependent manner. Moreover, it significantly suppressed the TGF-β-induced migration and invasion, as well as reversed TGF-β-induced mesenchymal cell morphology. Also, HS-173 reduced EMT by increasing epithelial markers and decreasing the mesenchymal markers by blocking the PI3K/AKT/mTOR and Smad2/3 signaling pathways in pancreatic cancer cells. In addition, HS-173 clearly suppressed tumor growth without drug toxicity in both xenograft and orthotopic mouse models. Furthermore, to explore the anti-metastatic effect of HS-173, we established pancreatic cancer metastatic mouse models and found that it significantly inhibited metastatic dissemination of the primary tumor to liver and lung. Taken together, our findings demonstrate that HS-173 can efficiently suppress EMT and metastasis by inhibiting PI3K/AKT/mTOR and Smad2/3 signaling pathways, suggesting it can be a potential candidate for the treatment of advanced stage pancreatic cancer.
Collapse
Affiliation(s)
- Marufa Rumman
- Department of Biomedical Sciences, College of Medicine, Inha University, Sinheung-dong, Jung-gu, Incheon 400-712, Republic of Korea
| | - Kyung Hee Jung
- Department of Biomedical Sciences, College of Medicine, Inha University, Sinheung-dong, Jung-gu, Incheon 400-712, Republic of Korea
| | - Zhenghuan Fang
- Department of Biomedical Sciences, College of Medicine, Inha University, Sinheung-dong, Jung-gu, Incheon 400-712, Republic of Korea
| | - Hong Hua Yan
- Department of Biomedical Sciences, College of Medicine, Inha University, Sinheung-dong, Jung-gu, Incheon 400-712, Republic of Korea
| | - Mi Kwon Son
- Department of Biomedical Sciences, College of Medicine, Inha University, Sinheung-dong, Jung-gu, Incheon 400-712, Republic of Korea
| | - Soo Jung Kim
- Department of Biomedical Sciences, College of Medicine, Inha University, Sinheung-dong, Jung-gu, Incheon 400-712, Republic of Korea
| | - Juyoung Kim
- Department of Biomedical Sciences, College of Medicine, Inha University, Sinheung-dong, Jung-gu, Incheon 400-712, Republic of Korea
| | - Jung Hee Park
- Department of Biomedical Sciences, College of Medicine, Inha University, Sinheung-dong, Jung-gu, Incheon 400-712, Republic of Korea
| | - Joo Han Lim
- Department of Biomedical Sciences, College of Medicine, Inha University, Sinheung-dong, Jung-gu, Incheon 400-712, Republic of Korea
| | - Sungwoo Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), and Center for Catalytic Hydrocarbon Functionalizations, Institute of Basic Science (IBS), Daejeon 34141, South Korea
| | - Soon-Sun Hong
- Department of Biomedical Sciences, College of Medicine, Inha University, Sinheung-dong, Jung-gu, Incheon 400-712, Republic of Korea
| |
Collapse
|
24
|
Kang W, Zheng X, Wang P, Guo S. Deguelin exerts anticancer activity of human gastric cancer MGC-803 and MKN-45 cells in vitro. Int J Mol Med 2018; 41:3157-3166. [PMID: 29512685 PMCID: PMC5881843 DOI: 10.3892/ijmm.2018.3532] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 02/05/2018] [Indexed: 01/22/2023] Open
Abstract
During the pathogenesis of gastric cancer, Akt signaling is considered as a pivotal inducer of gastric cancer development. Here we report the identification of anticancer activities of deguelin, a natural agent that inhibits Akt signaling. When applied to MGC-803 and MKN-45 cells, deguelin suppressed the proliferation and arrested cell cycle by p21-mediated inhibition of cyclin E. We further present in vitro evidence that deguelin promoted apoptosis of cancer cells by decreasing the phospho-Akt signaling and affecting expression of the apoptosis-associated genes Bax and Bcl-2. Additionally, deguelin was found to suppress the migration and invasion of gastric cancer cells. Taken together, these results indicated that deguelin exerted anticancer activity of human gastric cancer MGC-803 and MKN-45 cells in vitro.
Collapse
Affiliation(s)
- Wen Kang
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
| | - Xiao Zheng
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
| | - Ping Wang
- Department of Pathology, College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Shanyu Guo
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
| |
Collapse
|
25
|
Deguelin induced differentiation of mutated NPM1 acute myeloid leukemia in vivo and in vitro. Anticancer Drugs 2017; 28:723-738. [PMID: 28471807 DOI: 10.1097/cad.0000000000000494] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Nucleophosmin (NPM1), a restricted nucleolar localization protein, shuttles between the nucleus and the cytoplasm. Mutated (Mt)-NPM1 protein, which has aberrant cytoplasmic dislocation of nucleophosmin, occurs in approximately one-third of acute myeloid leukemia cases. Deguelin, a rotenoid isolated from several plant species, is a strong antitumor agent. NOD/SCID mice xenografted with human Mt-NPM1 OCI/AML3 cell lines served as in-vivo models. Wright-Giemsa staining and flow cytometry analysis were used for differentiation assays. Associated molecular events were assessed by western blot and histological analyses. Kaplan-Meier estimates were used to calculate survival. Deguelin toxicity in mice was assessed by immunohistochemistry staining and serum markers. Clinical samples were differentiated by flow cytometry analysis. Deguelin induced differentiation by downregulating the Mt-NPM1 protein levels, which was accompanied by a decrease in SIRT1, p21, and HDAC1 and an increase in CEBPβ and granulocyte colony-stimulating factor receptor protein expression levels. A low-deguelin dose prolonged survival compared with the control group, and there were no apparent lesions to the brain, liver, heart, and kidney in vivo. In clinical samples, deguelin induced the differentiation of fresh blasts with Mt-NPM1 protein, but not with the wild-type NPM1 protein. Taken together, these findings further provide new evidence that the Mt-NPM1 protein plays an important role in inducing differentiation in vivo and in vitro. Mutated NPM1 protein may be a therapeutic target of deguelin in acute myeloid leukemia with the NPM1 mutation.
Collapse
|
26
|
Russell DA, Fong WJS, Twigg DG, Sore HF, Spring DR. Stereocontrolled Semisyntheses of Elliptone and 12aβ-Hydroxyelliptone. JOURNAL OF NATURAL PRODUCTS 2017; 80:2751-2755. [PMID: 29039664 DOI: 10.1021/acs.jnatprod.7b00527] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Operationally simple, stereocontrolled semisyntheses of the anticancer rotenoids elliptone and 12aβ-hydroxyelliptone, isolated from Derris elliptica and Derris trifoliata, respectively, are described. Inspired by the work of Singhal, elliptone was prepared from rotenone via a dihydroxylation-oxidative cleavage, chemoselective Baeyer-Villiger oxidation, and acid-catalyzed elimination sequence. Elaboration of elliptone to 12aβ-hydroxyelliptone was achieved via a diastereoselective chromium-mediated Étard-like hydroxylation. The semisynthesis of elliptone constitutes an improvement over previous methods in terms of safety, scalability, and yield, while the first synthesis of 12aβ-hydroxyelliptone is also described.
Collapse
Affiliation(s)
- David A Russell
- Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge, CB2 1EW, U.K
| | - Winston J S Fong
- Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge, CB2 1EW, U.K
| | - David G Twigg
- Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge, CB2 1EW, U.K
| | - Hannah F Sore
- Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge, CB2 1EW, U.K
| | - David R Spring
- Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge, CB2 1EW, U.K
| |
Collapse
|
27
|
Park JM, Han YM, Jeong M, Chung MH, Kwon CI, Ko KH, Hahm KB. Synthetic 8-hydroxydeoxyguanosine inhibited metastasis of pancreatic cancer through concerted inhibitions of ERM and Rho-GTPase. Free Radic Biol Med 2017; 110:151-161. [PMID: 28602912 DOI: 10.1016/j.freeradbiomed.2017.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/02/2017] [Accepted: 06/06/2017] [Indexed: 01/10/2023]
Abstract
8-hydroxydeoxyguanosine (8-OHdG) is generated consequent to oxidative stress, but its paradoxical anti-oxidative, anti-inflammatory, and anti-mutagenic effects via Rho-GTPase inhibition were noted in various models of inflammation and cancer. Metastasis occurs through cell detachment, epithelial-mesenchymal transition (EMT), and cell migration; during these processes, changes in cell morphology are initiated through Rho-GTPase-dependent actin cytoskeleton polymerization. In this study, we explored the anti-metastatic mechanisms of 8-OHdG in Panc-1 pancreatic cancer cells. 8-OHdG inhibits cell migration by inactivating ERM and Rho-GTPase proteins, and inhibiting focal adhesion kinase (FAK) and matrix metalloproteinases (MMPs). At 15min, 8-OHdG significantly inactivated ERM (p < 0.05) and led to a significant retardation of wound healing; siERM and H1152 (ROCK inhibitor) had similar effects (p < 0.05). However, FAK inhibitor 14, DPI (NOX inhibitor), and NAC (antioxidant) significantly delayed wound healing without inhibiting ERM or CD44 (p < 0.05). In the experiments on cell migration, siERM, siCD44, DPI, and 8-OHdG significantly inhibited MMPs. 8-OHdG significantly decreased DCF-DA activation in Panc-1 pancreatic cancer cells and down-regulated NOXs (nox-1, nox-2, and nox-3). Finally, all of these anti-migration actions of 8-OHdG resulted in significant inhibition of EMT, as evidenced by the up-regulation of ZO-1 and claudin-1 and down-regulation of vimentin. We found significant inhibition of lung metastasis of Panc-1 cells by 8-OHdG. In conclusion, exogenous 8-OHdG had potent anti-metastasis effects mediated by either ERM or Rho GTPase inhibition in metastasis-prone pancreatic cancer cells.
Collapse
Affiliation(s)
- Jong-Min Park
- CHA Cancer Prevention Research Center, CHA Bio Complex, Seongnam 13488, Republic of Korea
| | - Young-Min Han
- CHA Cancer Prevention Research Center, CHA Bio Complex, Seongnam 13488, Republic of Korea
| | - Migyeong Jeong
- CHA Cancer Prevention Research Center, CHA Bio Complex, Seongnam 13488, Republic of Korea
| | - Myung Hee Chung
- Lee Gil Ya Diabetes and Cancer Institute, Gachon University School of Medicine, Incheon 21999, Republic of Korea
| | - Chang Il Kwon
- CHA University Bundang Medical Center, Digestive Disease Center, Seongnam 13496, Republic of Korea
| | - Kwang Hyun Ko
- CHA University Bundang Medical Center, Digestive Disease Center, Seongnam 13496, Republic of Korea
| | - Ki Baik Hahm
- CHA Cancer Prevention Research Center, CHA Bio Complex, Seongnam 13488, Republic of Korea; CHA University Bundang Medical Center, Digestive Disease Center, Seongnam 13496, Republic of Korea.
| |
Collapse
|
28
|
Screening of a small, well-curated natural product-based library identifies two rotenoids with potent nematocidal activity against Haemonchus contortus. Vet Parasitol 2017; 244:172-175. [DOI: 10.1016/j.vetpar.2017.07.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/05/2017] [Accepted: 07/06/2017] [Indexed: 12/20/2022]
|
29
|
Zhou S, Zhang Z, Zheng P, Zhao W, Han N. MicroRNA-1285-5p influences the proliferation and metastasis of non-small-cell lung carcinoma cells via downregulating CDH1 and Smad4. Tumour Biol 2017. [PMID: 28631567 DOI: 10.1177/1010428317705513] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Abnormal expression of microRNAs has been reported to regulate gene expression and cancer cell growth, invasion, and migration. Recently, upregulation of hsa-miR-1285 was demonstrated in bronchoalveolar lavage fluid samples from patients with lung cancer and downregulation in plasma level of stage-I lung cancer patients. However, the function and the underlying mechanism of miR-1285 in non-small-cell lung carcinoma have not been elucidated. In this study, we found that miR-1285-5p, the mature form of miR-1285, was significantly upregulated in human non-small-cell lung carcinoma cell lines A549 and SK-MES-1. Additionally, cells transfected with the miR-1285-5p inhibitor LV-anti-miR-1285-5p demonstrated significantly inhibited proliferation and invasion and depressed migration. Further analysis demonstrated that the miR-1285-5p precursor LV-miR-1285-5p attenuated the expression of Smad4 and cadherin-1 (CDH1) but that LV-anti-miR-1285-5p showed opposite results. A luciferase reporter assay confirmed that miR-1285-5p targeted Smad4 and CDH1. Mechanism analyses revealed that silence of Smad4 and CDH1 significantly attenuated the inhibitory effects of LV-anti-miR-1285-5p on non-small-cell lung carcinoma growth and invasion. Taken together, our data suggest that miR-1285-5p functions as a tumor promoter in the development of non-small-cell lung carcinoma by targeting Smad4 and CDH1, indicating a novel therapeutic strategy for non-small-cell lung carcinoma patients.
Collapse
Affiliation(s)
- Shixia Zhou
- 1 Department of Oncology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhongmian Zhang
- 1 Department of Oncology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Pengyuan Zheng
- 2 Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenchao Zhao
- 3 Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Na Han
- 1 Department of Oncology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
30
|
Preston S, Korhonen PK, Mouchiroud L, Cornaglia M, McGee SL, Young ND, Davis RA, Crawford S, Nowell C, Ansell BRE, Fisher GM, Andrews KT, Chang BCH, Gijs MAM, Sternberg PW, Auwerx J, Baell J, Hofmann A, Jabbar A, Gasser RB. Deguelin exerts potent nematocidal activity
via
the mitochondrial respiratory chain. FASEB J 2017; 31:4515-4532. [DOI: 10.1096/fj.201700288r] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 06/12/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Sarah Preston
- Faculty of Veterinary and Agricultural SciencesUniversity of MelbourneParkvilleVictoriaAustralia
- Faculty of Science and TechnologyFederation UniversityBallaratVictoriaAustralia
| | - Pasi K. Korhonen
- Faculty of Veterinary and Agricultural SciencesUniversity of MelbourneParkvilleVictoriaAustralia
| | - Laurent Mouchiroud
- Laboratory of Integrative and Systems PhysiologyÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Matteo Cornaglia
- Laboratory of MicrosystemsÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Sean L. McGee
- Metabolic Research UnitMetabolic Reprogramming LaboratorySchool of Medicine, Faculty of Health, Deakin UniversityWaurn PondsVictoriaAustralia
| | - Neil D. Young
- Faculty of Veterinary and Agricultural SciencesUniversity of MelbourneParkvilleVictoriaAustralia
| | - Rohan A. Davis
- Griffith Institute for Drug DiscoveryGriffith UniversityNathanQueenslandAustralia
| | - Simon Crawford
- School of Biosciences, University of MelbourneParkvilleVictoriaAustralia
| | - Cameron Nowell
- Drug Discovery BiologyMonash University Institute of Pharmaceutical SciencesMonash UniversityParkvilleVictoriaAustralia
| | - Brendan R. E. Ansell
- Faculty of Veterinary and Agricultural SciencesUniversity of MelbourneParkvilleVictoriaAustralia
| | - Gillian M. Fisher
- Griffith Institute for Drug DiscoveryGriffith UniversityNathanQueenslandAustralia
| | - Katherine T. Andrews
- Griffith Institute for Drug DiscoveryGriffith UniversityNathanQueenslandAustralia
| | - Bill C. H. Chang
- Faculty of Veterinary and Agricultural SciencesUniversity of MelbourneParkvilleVictoriaAustralia
- Yourgene BioscienceTaipeiTaiwan
| | - Martin A. M. Gijs
- Laboratory of MicrosystemsÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Paul W. Sternberg
- Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaCaliforniaUSA
| | - Johan Auwerx
- Laboratory of Integrative and Systems PhysiologyÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Jonathan Baell
- Medicinal ChemistryMonash University Institute of Pharmaceutical SciencesMonash UniversityParkvilleVictoriaAustralia
| | - Andreas Hofmann
- Faculty of Veterinary and Agricultural SciencesUniversity of MelbourneParkvilleVictoriaAustralia
- Griffith Institute for Drug DiscoveryGriffith UniversityNathanQueenslandAustralia
| | - Abdul Jabbar
- Faculty of Veterinary and Agricultural SciencesUniversity of MelbourneParkvilleVictoriaAustralia
| | - Robin B. Gasser
- Faculty of Veterinary and Agricultural SciencesUniversity of MelbourneParkvilleVictoriaAustralia
| |
Collapse
|
31
|
Zhao D, Han W, Liu X, Cui D, Chen Y. Deguelin inhibits epithelial-to-mesenchymal transition and metastasis of human non-small cell lung cancer cells by regulating NIMA-related kinase 2. Thorac Cancer 2017; 8:320-327. [PMID: 28509438 PMCID: PMC5494456 DOI: 10.1111/1759-7714.12444] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 03/14/2017] [Accepted: 03/19/2017] [Indexed: 12/30/2022] Open
Abstract
Background Non‐small cell lung cancer is a lethal malignancy with a high mortality rate. Deguelin displays an anti‐tumor effect and inhibits metastasis in various cancers. The aberrant expression of NIMA‐related kinase 2 (NEK2) indicates poor prognosis and induces epithelial‐to‐mesenchymal transition (EMT) and metastasis processes. However, the underlying mechanism between deguelin and NEK2 has remained elusive. Methods NSCLC cell lines were treated with deguelin. Wound‐healing and invasion assays were applied to study the inhibitory effect of deguelin on NSCLC cells. EMT markers, E‐cadherin and Vimentin, were also detected by Western blot. NEK2 protein and messenger RNA expression levels were evaluated when NSCLC cells were treated with different concentrations of deguelin. The effect of NEK2 on NSCLC cell metastasis was evaluated through NEK2 knockdown. To investigate whether deguelin induced EMT by regulating NEK2, we overexpressed NEK2 in both NCI‐H520 and SK‐MES‐1 cell lines, and then used real time‐PCR to study the E‐cadherin and Vimentin messenger RNA expression in both NSCLC cells. Results Deguelin inhibited migration and invasion processes in NSCLC cell lines and decreased NEK2 expression in a concentration‐dependent manner. Furthermore, NEK2 knockdown inhibited NSCLC cell migration and invasion. Finally, overexpressing NEK2 in NCI‐H520 and SK‐MES‐1 cells could restore the inhibition of metastasis induced by deguelin. Conclusions Deguelin could inhibit EMT and metastasis, while overexpression of NEK2 promotes these processes. Deguelin could decrease NEK2 expression, while NEK2 overexpression could restore deguelin‐induced inhibition of metastasis.
Collapse
Affiliation(s)
- Dejian Zhao
- Department of Laboratory Medicine, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Clinical in vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, China
| | - Wenzheng Han
- Department of Laboratory Medicine, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Clinical in vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, China
| | - Xia Liu
- Department of Laboratory Medicine, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Clinical in vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, China
| | - Dawei Cui
- Department of Laboratory Medicine, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Clinical in vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, China
| | - Yu Chen
- Department of Laboratory Medicine, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Clinical in vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, China
| |
Collapse
|
32
|
Russell DA, Freudenreich JJ, Ciardiello JJ, Sore HF, Spring DR. Stereocontrolled semi-syntheses of deguelin and tephrosin. Org Biomol Chem 2017; 15:1593-1596. [PMID: 28134391 PMCID: PMC5471929 DOI: 10.1039/c6ob02659a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 01/24/2017] [Indexed: 01/17/2023]
Abstract
We describe stereocontrolled semi-syntheses of deguelin and tephrosin, anti-cancer rotenoids isolated from Tephrosia vogelii. Firstly, we present a new two-step transformation of rotenone into rot-2'-enonic acid via a zinc-mediated ring opening of rotenone hydrobromide. Secondly, following conversion of rot-2'-enonic acid into deguelin, a chromium-mediated hydroxylation provides tephrosin as a single diastereoisomer. An Étard-like reaction mechanism is proposed to account for the stereochemical outcome. Our syntheses of deguelin and tephrosin are operationally simple, scalable and high yielding, offering considerable advantages over previous methods.
Collapse
Affiliation(s)
- David A Russell
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - Julien J Freudenreich
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - Joe J Ciardiello
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - Hannah F Sore
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - David R Spring
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| |
Collapse
|
33
|
Xu XD, Zhao Y, Zhang M, He RZ, Shi XH, Guo XJ, Shi CJ, Peng F, Wang M, Shen M, Wang X, Li X, Qin RY. Inhibition of Autophagy by Deguelin Sensitizes Pancreatic Cancer Cells to Doxorubicin. Int J Mol Sci 2017; 18:ijms18020370. [PMID: 28208617 PMCID: PMC5343905 DOI: 10.3390/ijms18020370] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 02/04/2017] [Accepted: 02/04/2017] [Indexed: 12/19/2022] Open
Abstract
Pancreatic cancer is the fourth most common cause of cancer mortality worldwide. Furthermore, patients with pancreatic cancer experience limited benefit from current chemotherapeutic approaches because of drug resistance. Therefore, an effective therapeutic strategy for patients with pancreatic cancer is urgently required. Deguelin is a natural chemopreventive drug that exerts potent antiproliferative activity in solid tumors by inducing cell death. However, the molecular mechanisms underlying this activity have not been fully elucidated. Here we show that deguelin blocks autophagy and induces apoptosis in pancreatic cancer cells in vitro. Autophagy induced by doxorubicin plays a protective role in pancreatic cancer cells, and suppressing autophagy by chloroquine or silencing autophagy protein 5 enhanced doxorubicin-induced cell death. Similarly, inhibition of autophagy by deguelin also chemosensitized pancreatic cancer cell lines to doxorubicin. These findings suggest that deguelin has potent anticancer effects against pancreatic cancer and potentiates the anti-cancer effects of doxorubicin. These findings provide evidence that combined treatment with deguelin and doxorubicin represents an effective strategy for treating pancreatic cancer.
Collapse
Affiliation(s)
- Xiao Dong Xu
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Yan Zhao
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Min Zhang
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Rui Zhi He
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Xiu Hui Shi
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Xing Jun Guo
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Cheng Jian Shi
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Feng Peng
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Min Wang
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Min Shen
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Xin Wang
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Xu Li
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Ren Yi Qin
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
34
|
Guo Q. Changes in mitochondrial function during EMT induced by TGFβ-1 in pancreatic cancer. Oncol Lett 2017; 13:1575-1580. [PMID: 28454293 PMCID: PMC5403440 DOI: 10.3892/ol.2017.5613] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Accepted: 10/13/2016] [Indexed: 01/14/2023] Open
Abstract
Mitochondrial dysfunction is linked to cancer. Differences in the number, morphology and function of mitochondria have been observed between normal cells and cancer cells. However, changes in mitochondrial function during epithelial-mesenchymal transition (EMT) in pancreatic cancer are less known. In the present study, the cultured human pancreatic cancer cell line Panc-1 was treated with transforming growth factor (TGF)β-1. Mitochondrial functions following TGFβ-1 exposure in pancreatic cancer were investigated. It was noticed that TGFβ-1 treatment induces morphologic changes and a shift from epithelial to mesenchymal phenotype in pancreatic cancer. Furthermore, increased mitochondrial mass was detected in pancreatic cancer following TGFβ-1 treatment. Besides, the production of reactive oxygen species in TGFβ-1-treated pancreatic cancer cells significantly increased compared with the control cells. Our results indicate that the phenomenon of EMT in pancreatic cancer has an association with mitochondrial dysfunction. Mitochondrial dysfunction may be a cause of EMT in pancreatic cancer, which leads to heterogeneity in pancreatic cancer, and may be a potential therapeutic target in the future.
Collapse
Affiliation(s)
- Qingqu Guo
- Department of Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
35
|
Deguelin and Its Role in Chronic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 929:363-375. [DOI: 10.1007/978-3-319-41342-6_16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
|
36
|
Fofaria NM, Frederick DT, Sullivan RJ, Flaherty KT, Srivastava SK. Overexpression of Mcl-1 confers resistance to BRAFV600E inhibitors alone and in combination with MEK1/2 inhibitors in melanoma. Oncotarget 2016; 6:40535-56. [PMID: 26497853 PMCID: PMC4747351 DOI: 10.18632/oncotarget.5755] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 09/20/2015] [Indexed: 01/13/2023] Open
Abstract
Melanoma harboring BRAF mutations frequently develop resistance to BRAF inhibitors, limiting the impact of treatment. Here, we establish a mechanism of resistance and subsequently identified a suitable drug combination to overcome the resistance. Single treatment of BRAF mutant melanoma cell lines with vemurafenib or dabrafenib (BRAF inhibitors) alone or in combination with trametinib (MEK1/2 inhibitor) resulted in overexpression of Mcl-1. Overexpression of Mcl-1 in A375 and SK-MEL-28 by transfection completely blocked BRAF and MEK1/2 inhibitor-mediated inhibition of cell survival and apoptosis. Melanoma cells resistant to BRAF inhibitors showed massive expression of Mcl-1 as compared to respective sensitive cell lines. Silencing of Mcl-1 using siRNA completely sensitized resistant melanoma cells to growth suppression and induction of apoptosis by BRAF inhibitors. In vivo, vemurafenib resistant A375 xenografts implanted in athymic nude mice showed substantial tumor growth inhibition when treated with a combination of vemurafenib and Mcl-1 inhibitor or siRNA. Immunohistochemistry and western blot analyses demonstrated enhanced expression of Mcl-1 and activation of ERK1/2 in vemurafenib-resistant tumors whereas level of Mcl-1 or p-ERK1/2 was diminished in the tumors of mice treated with either of the combination. Biopsied tumors from the patients treated with or resistant to BRAF inhibitors revealed overexpression of Mcl-1. These results suggest that the combination of BRAF inhibitors with Mcl-1 inhibitor may have therapeutic advantage to melanoma patients with acquired resistance to BRAF inhibitors alone or in combination with MEK1/2 inhibitors.
Collapse
Affiliation(s)
- Neel M Fofaria
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Dennie T Frederick
- Harvard Medical School, Boston, Massachusetts, USA.,Division of Medical Oncology, Massachusetts General Hospital Cancer Center, Boston, Massachusetts, USA
| | - Ryan J Sullivan
- Harvard Medical School, Boston, Massachusetts, USA.,Division of Medical Oncology, Massachusetts General Hospital Cancer Center, Boston, Massachusetts, USA
| | - Keith T Flaherty
- Harvard Medical School, Boston, Massachusetts, USA.,Division of Medical Oncology, Massachusetts General Hospital Cancer Center, Boston, Massachusetts, USA
| | - Sanjay K Srivastava
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| |
Collapse
|
37
|
Yan B, Zhao D, Yao Y, Bao Z, Lu G, Zhou J. Deguelin Induces the Apoptosis of Lung Squamous Cell Carcinoma Cells through Regulating the Expression of Galectin-1. Int J Biol Sci 2016; 12:850-60. [PMID: 27313498 PMCID: PMC4910603 DOI: 10.7150/ijbs.14773] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 04/16/2016] [Indexed: 12/13/2022] Open
Abstract
Lung cancer is the leading cause of cancer mortality around the world. Despite advances in the targeted therapy, patients with lung squamous cell carcinoma(SCC) still benefit few from it, and the search for potential effective therapies is imperative. Here, we demonstrated that deguelin induced significant apoptosis of lung SCC cells in vitro. Importantly, we found deguelin down-regulated the expression of galectin-1, which was involved in a wide range of tumorous physiologic process. Thus, we both over-expressed and down-regulated galectin-1 to perform its role in deguelin-induced apoptosis. We found that increased galectin-1 attenuated apoptosis of SCC cells exposed to deguelin, while galectin-1 knockdown sensitized lung cancer cells to deguelin treatment. Additionally, we observed that down-regulation of galectin-1 resulted in suppression of Ras/Raf/ERK pathway which was involved in deguelin-induced cell apoptosis. We also found that deguelin had a significant anti-tumor ability with decline of galectin-1 in vivo. In conclusion, these findings confirm that deguelin may act as a new chemo-preventive agent through inducing apoptosis of lung SCC cells in a galectin-1 dependent manner.
Collapse
Affiliation(s)
- Bing Yan
- 1. Department of Respiratory Diseases, First Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Dejian Zhao
- 2. Department of Clinical Laboratory, First Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Yinan Yao
- 1. Department of Respiratory Diseases, First Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhang Bao
- 1. Department of Respiratory Diseases, First Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Guohua Lu
- 1. Department of Respiratory Diseases, First Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianying Zhou
- 1. Department of Respiratory Diseases, First Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
38
|
Deguelin inhibits vasculogenic function of endothelial progenitor cells in tumor progression and metastasis via suppression of focal adhesion. Oncotarget 2016; 6:16588-600. [PMID: 26078334 PMCID: PMC4599291 DOI: 10.18632/oncotarget.3752] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 04/14/2015] [Indexed: 11/25/2022] Open
Abstract
Deguelin is a nature-derived chemopreventive drug. Endothelial progenitor cells (EPCs) are bone-marrow (BM)-derived key components to induce new blood vessels in early tumorigenesis and metastasis. Here we determined whether deguelin inhibits EPC function in vitro and in vivo at doses not affecting cancer cell apoptosis. Deguelin significantly reduced the number of EPC colony forming units of BM-derived c-kit+/sca-1+ mononuclear cells (MNCs), proliferation, migration, and adhesion to endothelial cell monolayers, and suppressed incorporation of EPC into tube-like vessel networks when co-cultured with endothelial cells. Deguelin caused cell cycle arrest at G1 without induction of apoptosis in EPC. In a mouse tumor xenograft model, tumor growth, lung metastasis and tumor-induced circulating EPCs were supressed by deguelin treatment (2 mg/kg). In mice tranplanted with GFP-expressing BM-MNCs, deguelin reduced the co-localization of CD31 and GFP, suggesting suppression of BM-derived EPC incoporation into tumor vessels. Interestingly, focal adhesion kinase (FAK)-integrin-linked kinase (ILK) activation and actin polymerization were repressed by deguelin. Decreased number of focal adhesions and a depolarized morphology was found in deguelin-treated EPCs. Taken together, our results suggest that the deguelin inhibits tumorigenesis and metastasis via EPC suppression and that suppression of focal adhesion by FAK-integrin-ILK-dependent actin remodeling is a key underlying molecular mechanism.
Collapse
|
39
|
Wu W, Hai Y, Chen L, Liu RJ, Han YX, Li WH, Li S, Lin S, Wu XR. Deguelin-induced blockade of PI3K/protein kinase B/MAP kinase signaling in zebrafish and breast cancer cell lines is mediated by down-regulation of fibroblast growth factor receptor 4 activity. Pharmacol Res Perspect 2016; 4:e00212. [PMID: 27069628 PMCID: PMC4804323 DOI: 10.1002/prp2.212] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 10/18/2015] [Accepted: 10/27/2015] [Indexed: 12/31/2022] Open
Abstract
Deguelin, a natural component derived from leguminous plants, has been used as pesticide in some regions. Accumulating evidence show that deguelin has promising chemopreventive and therapeutic activities against cancer cells. This study shows that low concentrations of deguelin can lead to significant delay in zebrafish embryonic development through growth inhibition and induction of apoptosis. Furthermore, we identified fibroblast growth factor receptor 4 (FGFR4) as the putative target of deguelin. The candidate was initially identified by a microarray approach and then validated through in vitro experiments using hormone‐responsive (MCF‐7) and nonresponsive (MDA‐MB‐231) human breast cancer cell lines. The results show that deguelin suppressed cell proliferation and induced apoptosis in both cancer cell lines, but not in Hs 578Bst cells, by blocking PI3K/AKT and mitogen‐activated protein kinases (MAPK) signaling. The FGFR4 mRNA and protein level also diminished in a dose‐dependent manner. Interestingly, we found that forced FGFR4 overexpression attenuated deguelin‐induced proliferative suppression and apoptotic cell death in both zebrafish and MCF‐7 cell lines, p‐AKT and p‐ERK levels were restored upon FGFR4 overexpression. Taken together, our results strongly suggest that deguelin inhibition of PI3K/AKT and MAPK signaling in zebrafish and breast cancer cell lines is partially mediated through down‐regulation of FGFR4 activity.
Collapse
Affiliation(s)
- Wei Wu
- Department of Pharmacy Guangzhou Liu Hua Qiao Hospital 111 Liuhua Road Guangzhou Guangdong 510010 China
| | - Yang Hai
- Department of Pharmacy Guangzhou Liu Hua Qiao Hospital 111 Liuhua Road Guangzhou Guangdong 510010 China
| | - Lu Chen
- School of Chemical Biology and Biotechnology Peking University Shenzhen Graduate School Shenzhen Guangdong 518055 China
| | - Rui-Jin Liu
- Department of Pharmacy Guangzhou Liu Hua Qiao Hospital 111 Liuhua Road Guangzhou Guangdong 510010 China
| | - Yu-Xiang Han
- School of Chemical Biology and Biotechnology Peking University Shenzhen Graduate School Shenzhen Guangdong 518055 China
| | - Wen-Hao Li
- Department of Pharmacy Guangzhou Liu Hua Qiao Hospital 111 Liuhua Road Guangzhou Guangdong 510010 China
| | - Song Li
- School of Chemical Biology and Biotechnology Peking University Shenzhen Graduate School Shenzhen Guangdong 518055 China
| | - Shuo Lin
- School of Chemical Biology and Biotechnology Peking University Shenzhen Graduate School Shenzhen Guangdong 518055 China; Department of Molecular Cell and Developmental Biology University of California Los Angeles California 90095 USA
| | - Xin-Rong Wu
- Department of Pharmacy Guangzhou Liu Hua Qiao Hospital 111 Liuhua Road Guangzhou Guangdong 510010 China
| |
Collapse
|
40
|
Pan Y, Zhou C, Yuan D, Zhang J, Shao C. Radiation Exposure Promotes Hepatocarcinoma Cell Invasion through Epithelial Mesenchymal Transition Mediated by H2S/CSE Pathway. Radiat Res 2016; 185:96-105. [PMID: 26727544 DOI: 10.1667/rr14177.1] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
There is growing evidence to suggest that radiotherapy can paradoxically promote tumor invasion and metastatic processes, however, the underlying molecular mechanisms remain obscure. In this study, we found that exposure to X rays promoted cell invasion by triggering the epithelial mesenchymal transition (EMT) in two hepatocellular carcinoma (HCC) cell lines, HepG2 and PLC/PRF/5. This was made evident by a reduced expression of E-cadherin and enhanced expressions of N-cadherin, Vimentin and Snail. Moreover, exposure to radiation stimulated the signaling of hydrogen sulfide (H2S), a newly found gas transmitter, by upregulating the expressions of H2S-producing proteins of cysthionine-γ-lyase (CSE), cystathionine-β-synthase (CBS). Inhibition of CSE by siRNA or inhibitor not only increased the radiosensitivity but also strongly suppressed radiation-enhanced invasive properties of HCC cells. Interestingly, we found that H2S/CSE inhibition attenuated radiation-enhanced EMT, and the above effect was an end result of blockage of the radiation-activated pathway of p38 mitogen-activated protein kinase (p38MAPK). Collectively, our findings indicate that radiation could promote HCC cell invasion through EMT mediated by endogenous H2S/CSE signaling via the p38MAPK pathway.
Collapse
Affiliation(s)
- Yan Pan
- Institute of Radiation Medicine, Fudan University, Shanghai 200032, China
| | - Cuiping Zhou
- Institute of Radiation Medicine, Fudan University, Shanghai 200032, China
| | - Dexiao Yuan
- Institute of Radiation Medicine, Fudan University, Shanghai 200032, China
| | - Jianghong Zhang
- Institute of Radiation Medicine, Fudan University, Shanghai 200032, China
| | - Chunlin Shao
- Institute of Radiation Medicine, Fudan University, Shanghai 200032, China
| |
Collapse
|
41
|
Zhao H, Jiao Y, Zhang Z. Deguelin inhibits the migration and invasion of lung cancer A549 and H460 cells via regulating actin cytoskeleton rearrangement. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:15582-15590. [PMID: 26884827 PMCID: PMC4730040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 11/22/2015] [Indexed: 06/05/2023]
Abstract
Deguelin, the main components from Mundulea sericea, was reported to suppress the growth of various cancer cells. However, the effect of Deguelin on tumor cell invasion and metastasis and its mechanism still unclear so far. In this study, we investigated the effects of Deguelin on the cell invasion in human lung cancer A549 and H460 cells. Our results demonstrate that Deguelin can significantly inhibited cell proliferation, cell migration and cell invasion. Moreover, Deguelin could also affected reorganization of the actin cytoskeleton and decreased filopodia and lamellipodia formation. Furthermore, deguelin-treated tumors showed decreased the tumor metastasis related genes such as CD44, MMP2 and MMP9 at protein and mRNA levels and the content of CEA, SCC, NSE, CYFAR21-1. In addition, Deguelin down-regulated protein expression of Rac1 and Rock1, which are impotent in actin cytoskeleton rearrangements and cell motility. Together, our results suggest that Deguelin inhibit tumor growth and metastasis of lung cancer cells and might be a candidate compound for curing lung cancer.
Collapse
Affiliation(s)
- Honggang Zhao
- Department of Nuclear Medicine, The Second Hospital of Tianjin Medical University Tianjin, China
| | - Yan Jiao
- Department of Nuclear Medicine, The Second Hospital of Tianjin Medical University Tianjin, China
| | - Zuncheng Zhang
- Department of Nuclear Medicine, The Second Hospital of Tianjin Medical University Tianjin, China
| |
Collapse
|
42
|
Zhang J, Yao H, Song G, Liao X, Xian Y, Li W. Regulation of epithelial-mesenchymal transition by tumor-associated macrophages in cancer. Am J Transl Res 2015; 7:1699-1711. [PMID: 26692918 PMCID: PMC4656751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 10/11/2015] [Indexed: 06/05/2023]
Abstract
It should be urgently better understood of the mechanism that contributes cancer aggressiveness. Epithelial-mesenchymal transition (EMT) plays a fundamental role in tumor progression and metastasis formation by invasion, resistance to cell death and senescence, resistance to chemotherapy and immunotherapy, immune surveillance, immunosuppression and inflammation, confers stem cell properties. Tumor-associated macrophages (TAMs) are key orchestrators and a set of macrophages in tumor microenvironment. They are major players in the connection between inflammation and cancer. TAMs could promote proliferation, invasion and metastasis of tumor cells, stimulate tumor angiogenesis, and inhibit anti-tumor immune response mediated by T cell followed by promoting tumor progression. Recently, studies showed that TAMs played critical role in the regulation of EMT in cancer, although the underlying mechanism of TAMs-mediated acquisition of EMT has been largely unclear. This review will discuss recent advances in our understanding of the role of TAMs in the regulation of EMT during tumorigenesis and summarize the recent ongoing experimental and pre-clinical TAMs targeted studies.
Collapse
Affiliation(s)
- Jia Zhang
- Second Department of Thoracic Surgery, The First Affiliated Hospital of Xi’an Jiaotong University277# West Yanta Road, Xi’an, Shaanxi 710061, China
| | - Hongmei Yao
- Department of Nutrition, The First Affiliated Hospital of Xi’an Jiaotong University277# West Yanta Road, Xi’an, Shaanxi 710061, China
| | - Ge Song
- Department of Nutrition, The First Affiliated Hospital of Xi’an Jiaotong University277# West Yanta Road, Xi’an, Shaanxi 710061, China
| | - Xia Liao
- Department of Nutrition, The First Affiliated Hospital of Xi’an Jiaotong University277# West Yanta Road, Xi’an, Shaanxi 710061, China
| | - Yao Xian
- Department of Nutrition, The First Affiliated Hospital of Xi’an Jiaotong University277# West Yanta Road, Xi’an, Shaanxi 710061, China
| | - Weimin Li
- Department of Nutrition, The First Affiliated Hospital of Xi’an Jiaotong University277# West Yanta Road, Xi’an, Shaanxi 710061, China
| |
Collapse
|
43
|
Ranjan A, Fofaria NM, Kim SH, Srivastava SK. Modulation of signal transduction pathways by natural compounds in cancer. Chin J Nat Med 2015; 13:730-742. [PMID: 26481373 DOI: 10.1016/s1875-5364(15)30073-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Indexed: 02/07/2023]
Abstract
Cancer is generally regarded as the result of abnormal growth of cells. According to World Health Organization, cancer is the leading cause of mortality worldwide. Mother nature provides a large source of bioactive compounds with excellent therapeutic efficacy. Numerous phytochemicals from nature have been investigated for anticancer properties. In this review article, we discuss several natural compounds, which have shown anti-cancer activity. Natural compounds induce cell cycle arrest, activate intrinsic and extrinsic apoptosis pathways, generate Reactive Oxygen Species (ROS), and down-regulate activated signaling pathways, resulting in inhibition of cell proliferation, progression and metastasis of cancer. Several preclinical studies have suggested that natural compounds can also increase the sensitivity of resistant cancers to available chemotherapy agents. Furthermore, combining FDA approved anti-cancer drugs with natural compounds results in improved efficacy. On the basis of these exciting outcomes of natural compounds against several cancer types, several agents have already advanced to clinical trials. In conclusion, preclinical results and clinical outcomes against cancer suggest promising anticancer efficacy of agents from natural sources.
Collapse
Affiliation(s)
- Alok Ranjan
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Neel M Fofaria
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Sung-Hoon Kim
- Cancer Preventive Material Development Research Center, College of Korean Medicine, Department of Pathology, Kyunghee University, Seoul 131-701, South Korea.
| | - Sanjay K Srivastava
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; Cancer Preventive Material Development Research Center, College of Korean Medicine, Department of Pathology, Kyunghee University, Seoul 131-701, South Korea.
| |
Collapse
|
44
|
Lee SC, Min HY, Choi H, Kim HS, Kim KC, Park SJ, Seong MA, Seo JH, Park HJ, Suh YG, Kim KW, Hong HS, Kim H, Lee MY, Lee J, Lee HY. Synthesis and Evaluation of a Novel Deguelin Derivative, L80, which Disrupts ATP Binding to the C-terminal Domain of Heat Shock Protein 90. Mol Pharmacol 2015; 88:245-55. [PMID: 25976766 DOI: 10.1124/mol.114.096883] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 05/05/2015] [Indexed: 01/14/2023] Open
Abstract
The clinical benefit of current anticancer regimens for lung cancer therapy is still limited due to moderate efficacy, drug resistance, and recurrence. Therefore, the development of effective anticancer drugs for first-line therapy and for optimal second-line treatment is necessary. Because the 90-kDa molecular chaperone heat shock protein (Hsp90) contributes to the maturation of numerous mutated or overexpressed oncogenic proteins, targeting Hsp90 may offer an effective anticancer therapy. Here, we investigated antitumor activities and toxicity of a novel deguelin-derived C-terminal Hsp90 inhibitor, designated L80. L80 displayed significant inhibitory effects on the viability, colony formation, angiogenesis-stimulating activity, migration, and invasion of a panel of non-small cell lung cancer cell lines and their sublines with acquired resistance to paclitaxel with minimal toxicity to normal lung epithelial cells, hippocampal cells, vascular endothelial cells, and ocular cells. Biochemical analyses and molecular docking simulation revealed that L80 disrupted Hsp90 function by binding to the C-terminal ATP-binding pocket of Hsp90, leading to the disruption of the interaction between hypoxia-inducible factor (HIF)-1α and Hsp90, downregulation of HIF-1α and its target genes, including vascular endothelial growth factor (VEGF) and insulin-like growth factor 2 (IGF2), and decreased the expression of various Hsp90 client proteins. Consistent with these in vitro findings, L80 exhibited significant antitumor and antiangiogenic activities in H1299 xenograft tumors. These results suggest that L80 represents a novel C-terminal Hsp90 inhibitor with effective anticancer activities with minimal toxicities.
Collapse
Affiliation(s)
- Su-Chan Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea (S.-C.L., H.-Y.M., H.C., H.S.K., K.-C.K., M.A.S., J.H.S., Y.-G.S., K.-W.K., J.L., H.-Y.L.); School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea (S.-J.P., H.-J.P.); and Medifron-DBT, Ansan, Republic of Korea (H.-S.H., H.K., M.-Y.L.)
| | - Hye-Young Min
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea (S.-C.L., H.-Y.M., H.C., H.S.K., K.-C.K., M.A.S., J.H.S., Y.-G.S., K.-W.K., J.L., H.-Y.L.); School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea (S.-J.P., H.-J.P.); and Medifron-DBT, Ansan, Republic of Korea (H.-S.H., H.K., M.-Y.L.)
| | - Hoon Choi
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea (S.-C.L., H.-Y.M., H.C., H.S.K., K.-C.K., M.A.S., J.H.S., Y.-G.S., K.-W.K., J.L., H.-Y.L.); School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea (S.-J.P., H.-J.P.); and Medifron-DBT, Ansan, Republic of Korea (H.-S.H., H.K., M.-Y.L.)
| | - Ho Shin Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea (S.-C.L., H.-Y.M., H.C., H.S.K., K.-C.K., M.A.S., J.H.S., Y.-G.S., K.-W.K., J.L., H.-Y.L.); School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea (S.-J.P., H.-J.P.); and Medifron-DBT, Ansan, Republic of Korea (H.-S.H., H.K., M.-Y.L.)
| | - Kyong-Cheol Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea (S.-C.L., H.-Y.M., H.C., H.S.K., K.-C.K., M.A.S., J.H.S., Y.-G.S., K.-W.K., J.L., H.-Y.L.); School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea (S.-J.P., H.-J.P.); and Medifron-DBT, Ansan, Republic of Korea (H.-S.H., H.K., M.-Y.L.)
| | - So-Jung Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea (S.-C.L., H.-Y.M., H.C., H.S.K., K.-C.K., M.A.S., J.H.S., Y.-G.S., K.-W.K., J.L., H.-Y.L.); School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea (S.-J.P., H.-J.P.); and Medifron-DBT, Ansan, Republic of Korea (H.-S.H., H.K., M.-Y.L.)
| | - Myeong A Seong
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea (S.-C.L., H.-Y.M., H.C., H.S.K., K.-C.K., M.A.S., J.H.S., Y.-G.S., K.-W.K., J.L., H.-Y.L.); School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea (S.-J.P., H.-J.P.); and Medifron-DBT, Ansan, Republic of Korea (H.-S.H., H.K., M.-Y.L.)
| | - Ji Hae Seo
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea (S.-C.L., H.-Y.M., H.C., H.S.K., K.-C.K., M.A.S., J.H.S., Y.-G.S., K.-W.K., J.L., H.-Y.L.); School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea (S.-J.P., H.-J.P.); and Medifron-DBT, Ansan, Republic of Korea (H.-S.H., H.K., M.-Y.L.)
| | - Hyun-Ju Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea (S.-C.L., H.-Y.M., H.C., H.S.K., K.-C.K., M.A.S., J.H.S., Y.-G.S., K.-W.K., J.L., H.-Y.L.); School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea (S.-J.P., H.-J.P.); and Medifron-DBT, Ansan, Republic of Korea (H.-S.H., H.K., M.-Y.L.)
| | - Young-Ger Suh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea (S.-C.L., H.-Y.M., H.C., H.S.K., K.-C.K., M.A.S., J.H.S., Y.-G.S., K.-W.K., J.L., H.-Y.L.); School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea (S.-J.P., H.-J.P.); and Medifron-DBT, Ansan, Republic of Korea (H.-S.H., H.K., M.-Y.L.)
| | - Kyu-Won Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea (S.-C.L., H.-Y.M., H.C., H.S.K., K.-C.K., M.A.S., J.H.S., Y.-G.S., K.-W.K., J.L., H.-Y.L.); School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea (S.-J.P., H.-J.P.); and Medifron-DBT, Ansan, Republic of Korea (H.-S.H., H.K., M.-Y.L.)
| | - Hyun-Seok Hong
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea (S.-C.L., H.-Y.M., H.C., H.S.K., K.-C.K., M.A.S., J.H.S., Y.-G.S., K.-W.K., J.L., H.-Y.L.); School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea (S.-J.P., H.-J.P.); and Medifron-DBT, Ansan, Republic of Korea (H.-S.H., H.K., M.-Y.L.)
| | - Hee Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea (S.-C.L., H.-Y.M., H.C., H.S.K., K.-C.K., M.A.S., J.H.S., Y.-G.S., K.-W.K., J.L., H.-Y.L.); School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea (S.-J.P., H.-J.P.); and Medifron-DBT, Ansan, Republic of Korea (H.-S.H., H.K., M.-Y.L.)
| | - Min-Young Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea (S.-C.L., H.-Y.M., H.C., H.S.K., K.-C.K., M.A.S., J.H.S., Y.-G.S., K.-W.K., J.L., H.-Y.L.); School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea (S.-J.P., H.-J.P.); and Medifron-DBT, Ansan, Republic of Korea (H.-S.H., H.K., M.-Y.L.)
| | - Jeewoo Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea (S.-C.L., H.-Y.M., H.C., H.S.K., K.-C.K., M.A.S., J.H.S., Y.-G.S., K.-W.K., J.L., H.-Y.L.); School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea (S.-J.P., H.-J.P.); and Medifron-DBT, Ansan, Republic of Korea (H.-S.H., H.K., M.-Y.L.)
| | - Ho-Young Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea (S.-C.L., H.-Y.M., H.C., H.S.K., K.-C.K., M.A.S., J.H.S., Y.-G.S., K.-W.K., J.L., H.-Y.L.); School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea (S.-J.P., H.-J.P.); and Medifron-DBT, Ansan, Republic of Korea (H.-S.H., H.K., M.-Y.L.)
| |
Collapse
|
45
|
Liu YP, Lee JJ, Lai TC, Lee CH, Hsiao YW, Chen PS, Liu WT, Hong CY, Lin SK, Ping Kuo MY, Lu PJ, Hsiao M. Suppressive function of low-dose deguelin on the invasion of oral cancer cells by downregulating tumor necrosis factor alpha-induced nuclear factor-kappa B signaling. Head Neck 2015; 38 Suppl 1:E524-34. [PMID: 25784049 DOI: 10.1002/hed.24034] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2015] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Deguelin has both antiproliferation and antimetastasis activities. However, high-dose deguelin elicits many undesired side effects. The purpose of this study was to investigate whether the low-dose deguelin can prevent the metastasis of oral cancer. METHODS The dose effects of deguelin on metastasis of oral cancer cells were analyzed by in vitro invasion assay and an orthotropic xenograft mouse model. The involvement of tumor necrosis factor alpha (TNF-α)-induced nuclear factor-kappa B (NF-κB) signaling was examined by Western blot and reporter assay. RESULTS Low-dose deguelin, which has minimal cytotoxicity, significantly inhibited the invasion and migration of oral cancer cells. These inhibitory effects of low-dose deguelin were mediated by suppressing TNF-α-induced activation of IκB kinase leading to the inhibition of IκB phosphorylation, NF-κB transcriptional activity, and matrix metalloproteinase-2 (MMP2) expression. The low-dose deguelin treatment significantly inhibited tumor growth and invasion without systemic toxicity. CONCLUSION The low-dose deguelin suppressed the invasion and migration of oral cancer by downregulating TNF-α-induced NF-κB signaling. © 2015 Wiley Periodicals, Inc. Head Neck 38: E524-E534, 2016.
Collapse
Affiliation(s)
- Yu-Peng Liu
- Department of Genome Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Jih-Jong Lee
- Department of Veterinary Medicine, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | | | - Chien-Hsin Lee
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Ya-Wen Hsiao
- Department of Cardiology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Po-Shen Chen
- Graduate School of Biomedical Sciences, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Wei-Ting Liu
- Institute of Pharmacology, National Cheng-Kung University, Tainan, Taiwan
| | - Chi-Yuan Hong
- Institute of Clinical Dentistry, School of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Se-Kwan Lin
- Institute of Clinical Dentistry, School of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Mark-Yen Ping Kuo
- Institute of Clinical Dentistry, School of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Pei-Jung Lu
- Institute of Clinical Medicine, National Cheng-Kung University, Tainan, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
46
|
Beuran M, Negoi I, Paun S, Ion AD, Bleotu C, Negoi RI, Hostiuc S. The epithelial to mesenchymal transition in pancreatic cancer: A systematic review. Pancreatology 2015; 15:217-225. [PMID: 25794655 DOI: 10.1016/j.pan.2015.02.011] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 02/03/2015] [Accepted: 02/23/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND/OBJECTIVES The present article summarizes and analyzes the current knowledge about the role of the epithelial to mesenchymal transition (EMT) in the systemic invasiveness of pancreatic cancer. METHOD An electronic search of PubMed/MEDLINE, EMBASE, and the Web of Science was used to identify relevant original articles and reviews. RESULTS The EMT represents a key step during normal embryogenesis. However, increasing evidence reveals its essential role in the local progression and metastasis of pancreatic cancer. Areas of interest are the cross-linking between cells undergoing the EMT and pancreatic cancer stem cells, and the correlation between the EMT and chemoresistance to standard therapies. During carcinogenesis, malignant pancreatic cells at the primary site acquire the ability to undergo the EMT, a transformation associated with increased mobility. The reverse process at secondary sites, the mesenchymal to epithelial transition (MET), has devastating consequences, allowing neoplastic epithelial cells to invade surrounding tissues and spread to distant sites. Consequences of the EMT are the loss of E-cadherin expression and the acquisition of mesenchymal markers including fibronectin or vimentin. Detailed knowledge of the molecular processes underlying the EMT has opened possibilities for new therapeutic agents. These include an EMT approach for patients with early cancers, to prevent invasion and dissemination, and anti-MET therapy for patients with established metastasis. CONCLUSIONS The current literature shows a strong correlation between the EMT and the systemic aggressiveness of pancreatic tumors. Individualized therapy, targeting the process of EMT and its cross-linking with cancer stem cells, may increase survival of patients with pancreatic cancer.
Collapse
Affiliation(s)
- Mircea Beuran
- Emergency Hospital of Bucharest, Romania; Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Ionut Negoi
- Emergency Hospital of Bucharest, Romania; Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.
| | - Sorin Paun
- Emergency Hospital of Bucharest, Romania; Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Adriana Daniela Ion
- Physiopathology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Coralia Bleotu
- Stefan S. Nicolau Institute of Virology, Romanian Academy, Bucharest, Romania
| | - Ruxandra Irina Negoi
- Embriology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Sorin Hostiuc
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania; National Institute of Legal Medicine Mina Minovici, Bucharest, Romania
| |
Collapse
|
47
|
Fofaria NM, Srivastava SK. STAT3 induces anoikis resistance, promotes cell invasion and metastatic potential in pancreatic cancer cells. Carcinogenesis 2015; 36:142-150. [PMID: 25411359 PMCID: PMC4291051 DOI: 10.1093/carcin/bgu233] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 10/23/2014] [Accepted: 11/11/2014] [Indexed: 12/14/2022] Open
Abstract
Tumor cells need to attain anoikis resistance to survive prior to metastasis making it a vital trait of malignancy. The mechanism by which pancreatic cancer cells resist anoikis and metastasize is not well established. Significant proportion of pancreatic cancer cells resisted anoikis when grown under anchorage-independent conditions. The cells that resisted anoikis showed higher migratory and invasive characteristics than the cells that were cultured under anchorage-dependent condition. Interestingly, anoikis-resistant cells exhibited significantly increased expression and phosphorylation of signal transducer and activation of transcription 3 (STAT3) at Tyr 705, as compared to adherent cells. AG 490 and piplartine (PL) induced significant anoikis in anoikis-resistant pancreatic cancer cells. Silencing STAT3 not only reduced the capacity of pancreatic cancer cells to resist anoikis but also reversed its invasive characteristics. Interleukin-6 treatment and overexpression of STAT3 enhanced anoikis resistance and protected the cells from PL-induced anoikis. PL-treated cells completely failed to develop tumors when injected subcutaneously in immune-compromised mice. Moreover, these cells also failed to metastasize when injected intravenously. On the other hand, untreated anoikis-resistant cells not only formed aggressive tumors but also metastasized substantially to lungs and liver when injected intravenously. Metastatic nodules formed by untreated anoikis-resistant cells in lungs exhibited significant phosphorylation of STAT3 at Tyr705. Taken together, our results established the critical involvement of STAT3 in conferring anoikis resistance to pancreatic cancer cells and increased metastasis.
Collapse
Affiliation(s)
- Neel M Fofaria
- Department of Biomedical Sciences & Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Sanjay K Srivastava
- Department of Biomedical Sciences & Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| |
Collapse
|
48
|
Deguelin inhibits the migration and invasion of U-2 OS human osteosarcoma cells via the inhibition of matrix metalloproteinase-2/-9 in vitro. Molecules 2014; 19:16588-608. [PMID: 25322282 PMCID: PMC6271177 DOI: 10.3390/molecules191016588] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 09/16/2014] [Accepted: 09/23/2014] [Indexed: 11/16/2022] Open
Abstract
Osteosarcoma is the most common malignant primary bone tumor in children and young adults and lung metastasis is the main cause of death in those patients. Deguelin, a naturally occurring rotenoid, is known to be an Akt inhibitor and to exhibit cytotoxic effects, including antiproliferative and anticarcinogenic activities, in several cancers. In the present study, we determined if deguelin would inhibit migration and invasion in U-2 OS human osteosarcoma cells. Deguelin significantly inhibited migration and invasion of U-2 OS human osteosarcoma cells which was associated with a reduction of activities of matrix metalloproteinases-2 (MMP-2) and matrix metalloproteinases-9 (MMP-9). Furthermore, results from western blotting indicated that deguelin decreased the cell proliferation and cell growth-associated protein levels, such as SOS1, PKC, Ras, PI3K, p-AKT(Ser473), IRE-1α, MEKK3, iNOS, COX2, p-ERK1/2, p-JNK1/2, p-p38; the cell motility and focal adhesion-associated protein levels, such as Rho A, FAK, ROCK-1; the invasion-associated protein levels, such as TIMP1, uPA, MMP-2. MMP-9, MMP-13, MMP-1 and VEGF in U-2 OS cells. Confocal microscopy revealed that deguelin reduced NF-κB p65, Rho A and ROCK-1 protein levels in cytosol. MMP-7, MMP-9 and Rho A mRNA levels were suppressed by deguelin. These in vitro results provide evidence that deguelin may have potential as a novel anti-cancer agent for the treatment of osteosarcoma and provides the rationale for in vivo studies in animal models.
Collapse
|
49
|
Fofaria NM, Srivastava SK. Critical role of STAT3 in melanoma metastasis through anoikis resistance. Oncotarget 2014; 5:7051-64. [PMID: 25216522 PMCID: PMC4196183 DOI: 10.18632/oncotarget.2251] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 07/24/2014] [Indexed: 11/28/2022] Open
Abstract
Anoikis is an anchorage-independent cell death. Resistance to anoikis is one of the key features of metastatic cells. Here, we analyzed the role of STAT3 in anoikis resistance in melanoma cells leading to metastasis. When grown under anchorage-independent conditions, significant proportion of cells resisted anoikis and these resistant cells had higher rate of migration and invasion as compared to the cells grown under anchorage-dependent conditions. The anoikis resistant cells also had significantly higher expression and phosphorylation of STAT3 at Y705 than the cells that were attached to the basement membrane. STAT3 inhibitors, AG 490 and piplartine (PL) induced anoikis in a concentration-dependent manner in anoikis resistant cells. Over-expression of STAT3 or treatment with IL-6 not only increased anoikis resistance, but also protected the cancer cells from PL-induced anoikis. On the other hand, silencing STAT3 decreased the potential of cancer cells to resist anoikis and to migrate. STAT3 knock-down cells and PL treated cells did not form tumors as well as failed to metastasize in SCID-NSG mice as compared to untreated anchorage-independent cells, which formed big tumors and extensively metastasized. In summary, our results for the first time establish STAT3 as a critical player that renders anoikis resistance to melanoma cells and enhance their metastatic potential.
Collapse
Affiliation(s)
- Neel M Fofaria
- Department of Biomedical Sciences & Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, USA
| | - Sanjay K Srivastava
- Department of Biomedical Sciences & Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, USA
| |
Collapse
|
50
|
Linghu L, Fan H, Hu Y, Zou Y, Yang P, Lan X, Liao Z, Chen M. Mirabijalone E: a novel rotenoid from Mirabilis himalaica inhibited A549 cell growth in vitro and in vivo. JOURNAL OF ETHNOPHARMACOLOGY 2014; 155:326-333. [PMID: 24882730 DOI: 10.1016/j.jep.2014.05.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 05/20/2014] [Accepted: 05/21/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The roots of Mirabilis himalaica have been used in Tibetan folk medicine for treatment of uterine cancer, nephritis edematous, renal calculus and arthrodynia. In our previous work, the ethanol extract of roots had shown potent cytotoxicity against human cancer cells. However, no information is available on the antitumor effect of Mirabilis himalaica. The aim of the present study was to investigate the active constituents guided by bioassay and evaluate the related antitumor efficacy in vitro and in vivo. MATERIALS AND METHODS The active subextract (ethyl acetate) was subjected to successive chemical separation using a combination of silica gel, LH-20 chromatography and semi-preparative HPLC. The structures were determined by spectroscopic analysis techniques such as nuclear magnetic resonance (NMR) and mass spectrometry. Three human cancer cell lines, A549, HepG2 and HeLa were used for in vitro cytotoxicity evaluation of all isolated compounds by MTT-assay. Then, the potent and novel compound mirabijalone E was employed to the mechanism study againstA549 cells. BrdU immunofluorescence, soft agar assay and cell cycle analysis were employed to detect the cell proliferation effects. Annexin V-FITC/PI staining assay was used for examining apoptotic effects. Expression levels of apoptosis-related proteins were determined by western blot assay. in vivo tumorigenic assay was used to evaluate the xenograft tumor growth treated with mirabijalone E. RESULTS One new rotenoid compound, mirabijalone E, together with eight known rotenoids was isolated from Mirabilis himalaica. Mirabijalone E, 9-O-methyl-inone B, boeravinone C and boeravinone H exhibited cytotoxicity against A 549 and HeLa cells. Further study on mirabijalone E was carried out in vitro and in vivo. Mirabijalone E inhibited A549 cells growth in a time and dose-dependent manner, which arrested cell cycle in S phase. Mechanistically, mirabijalone E treatment resulted in the increase of Bax expression level, the decrease of Bcl-2 level and the activation of caspase-3, which suggested the activation of apoptosis cascades. Consequently, the xenograft treated with mirabijalone E showed markedly suppressed tumor growth. CONCLUSIONS The result suggested that mirabijalone E, together with active compounds, 9-O-methyl-4-hydroxyboeravinone B, boeravinone C and boeravinone H could be a promising candidate for cancer therapy.
Collapse
Affiliation(s)
- Lang Linghu
- Key Laboratory on Luminescence and Real-Time Analysis (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Haixia Fan
- Key Laboratory on Luminescence and Real-Time Analysis (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Yijie Hu
- Key Laboratory on Luminescence and Real-Time Analysis (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Yanling Zou
- Key Laboratory on Luminescence and Real-Time Analysis (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Panpan Yang
- Key Laboratory on Luminescence and Real-Time Analysis (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Xiaozhong Lan
- Agriculture and Animal Husbandry College, Tibet University, Nyingchi, Tibet 860000, PR China
| | - Zhihua Liao
- School of Life Sciences, Southwest University, Chongqing 400715, PR China
| | - Min Chen
- Key Laboratory on Luminescence and Real-Time Analysis (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|