1
|
Adardour M, Mustafa AHM, Oubahmane M, Lahcen MA, Seif EM, Ezzat MAF, Zaballos-García E, Mague JT, Hdoufane I, Cherqaoui D, Krämer OH, Sippl W, Ibrahim HS, Baouid A. Design, synthesis and molecular modeling of new Pyrazolyl-Benzimidazolone hybrids targeting breast Cancer. Bioorg Chem 2025; 157:108269. [PMID: 39978148 DOI: 10.1016/j.bioorg.2025.108269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/05/2025] [Accepted: 02/10/2025] [Indexed: 02/22/2025]
Abstract
Methyl-piperidino-pyrazole (MPP) is a pyrazole derivative acting as a lead estrogen receptor (ER) antagonist and has an anti-breast cancer effect. Since some benzimidazole derivatives were reported for their inhibitory activity against breast cancer, hybrids from these reported compounds (5a-c, 6a-c, 7a-c and 8a-c) were designed to develop anti-breast cancer agents. The synthesis involved 1,3-dipolar cycloaddition of nitrilimines on the benzimidazolone derivatives 2a-b and 3a-b which occurred with chemo- and regioselectivity depending on the dipole and was confirmed by an X-ray structure of 6b. In vitro biological testing of the newly prepared compounds against the 60-cell line panel showed that 5a-c and 6a-c with a partially unsaturated pyrazole ring possessed a high GI% in the T-47D breast cancer cell line with a selectivity margin against different cell lines. Five compounds were selected for apoptotic studies in T-47D cells, of which 6a arrested cells in G1 phase and caused more apoptosis than MPP. The MTT assay revealed that compound 6a has an IC50 = 6.77 ± 0.03 μM against T-47D cells. Furthermore, 6a reduced the estrogen receptor 1 gene expression levels 3-fold in T-47D cells. Molecular dynamics simulations indicated that the complex of the active compound 6a remained stable over the last 150 ns. An analysis of the binding mode revealed that compound 6a exhibited a similar conformation compared to MPP and the co-ligand in the active site of via a specific pose involving noncovalent interactions.
Collapse
Affiliation(s)
- Mohamed Adardour
- Laboratory of Molecular Chemistry, Department of Chemistry, Faculty of Sciences Semlalia, University of Cadi Ayyad, BP. 2390, 40001 Marrakech, Morocco
| | - Al-Hassan M Mustafa
- Department of Toxicology, University Medical Center, 55131 Mainz, Germany; Department of Zoology, Faculty of Science, Aswan University, Aswan 81528, Egypt
| | - Mehdi Oubahmane
- Laboratory of Molecular Chemistry, Department of Chemistry, Faculty of Sciences Semlalia, University of Cadi Ayyad, BP. 2390, 40001 Marrakech, Morocco
| | - Marouane Ait Lahcen
- Laboratory of Molecular Chemistry, Department of Chemistry, Faculty of Sciences Semlalia, University of Cadi Ayyad, BP. 2390, 40001 Marrakech, Morocco
| | - Emad M Seif
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Manal Abdel Fattah Ezzat
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, 11562 Cairo, Egypt
| | - Elena Zaballos-García
- Departamento de Quimica Organica, Facultad de Farmacia, Universidad de Valencia, Ave. Vte. Andres Estelles s/n46100, Valencia, Spain
| | - Joel T Mague
- Department of Chemistry, Tulane University, New Orleans, LA 70118, USA
| | - Ismail Hdoufane
- Laboratory of Molecular Chemistry, Department of Chemistry, Faculty of Sciences Semlalia, University of Cadi Ayyad, BP. 2390, 40001 Marrakech, Morocco.
| | - Driss Cherqaoui
- Laboratory of Molecular Chemistry, Department of Chemistry, Faculty of Sciences Semlalia, University of Cadi Ayyad, BP. 2390, 40001 Marrakech, Morocco
| | - Oliver H Krämer
- Department of Toxicology, University Medical Center, 55131 Mainz, Germany
| | - Wolfgang Sippl
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Hany S Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo 11829, Egypt; Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, 06120 Halle (Saale), Germany.
| | - Abdesselam Baouid
- Laboratory of Molecular Chemistry, Department of Chemistry, Faculty of Sciences Semlalia, University of Cadi Ayyad, BP. 2390, 40001 Marrakech, Morocco
| |
Collapse
|
2
|
Chouhan S, Sridaran D, Weimholt C, Luo J, Li T, Hodgson MC, Santos LN, Le Sommer S, Fang B, Koomen JM, Seeliger M, Qu CK, Yart A, Kontaridis MI, Mahajan K, Mahajan NP. SHP2 as a primordial epigenetic enzyme expunges histone H3 pTyr-54 to amend androgen receptor homeostasis. Nat Commun 2024; 15:5629. [PMID: 38965223 PMCID: PMC11224269 DOI: 10.1038/s41467-024-49978-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/27/2024] [Indexed: 07/06/2024] Open
Abstract
Mutations that decrease or increase the activity of the tyrosine phosphatase, SHP2 (encoded by PTPN11), promotes developmental disorders and several malignancies by varying phosphatase activity. We uncovered that SHP2 is a distinct class of an epigenetic enzyme; upon phosphorylation by the kinase ACK1/TNK2, pSHP2 was escorted by androgen receptor (AR) to chromatin, erasing hitherto unidentified pY54-H3 (phosphorylation of histones H3 at Tyr54) epigenetic marks to trigger a transcriptional program of AR. Noonan Syndrome with Multiple Lentigines (NSML) patients, SHP2 knock-in mice, and ACK1 knockout mice presented dramatic increase in pY54-H3, leading to loss of AR transcriptome. In contrast, prostate tumors with high pSHP2 and pACK1 activity exhibited progressive downregulation of pY54-H3 levels and higher AR expression that correlated with disease severity. Overall, pSHP2/pY54-H3 signaling acts as a sentinel of AR homeostasis, explaining not only growth retardation, genital abnormalities and infertility among NSML patients, but also significant AR upregulation in prostate cancer patients.
Collapse
Affiliation(s)
- Surbhi Chouhan
- Department of Surgery, Washington University in St Louis, St Louis, MO, 63110, USA
- 6601, Cancer Research Building, Washington University in St Louis, St Louis, MO, 63110, USA
| | - Dhivya Sridaran
- Department of Surgery, Washington University in St Louis, St Louis, MO, 63110, USA
- 6601, Cancer Research Building, Washington University in St Louis, St Louis, MO, 63110, USA
| | - Cody Weimholt
- Department of Pathology and Immunology, Washington University in St Louis, St Louis, MO, 63110, USA
| | - Jingqin Luo
- Division of Public Health Sciences, Washington University in St Louis, St Louis, MO, 63110, USA
- Siteman Cancer Center, Washington University in St Louis, St Louis, MO, 63110, USA
| | - Tiandao Li
- Bioinformatics Research Core, Center of Regenerative Medicine, Washington University in St Louis, St Louis, MO, 63110, USA
| | - Myles C Hodgson
- Department of Biomedical Research and Translational Medicine, Masonic Medical Research Institute, 2150 Bleecker St, Utica, NY, 13501, USA
| | - Luana N Santos
- Department of Biomedical Research and Translational Medicine, Masonic Medical Research Institute, 2150 Bleecker St, Utica, NY, 13501, USA
| | - Samantha Le Sommer
- Department of Biomedical Research and Translational Medicine, Masonic Medical Research Institute, 2150 Bleecker St, Utica, NY, 13501, USA
| | - Bin Fang
- Moffitt Cancer Center, SRB3, 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | - John M Koomen
- Moffitt Cancer Center, SRB3, 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | - Markus Seeliger
- Department of Pharmacological Sciences, Stony Brook University Medical School, BST 7-120, Stony Brook, NY, 11794-8651, USA
| | - Cheng-Kui Qu
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Winship Cancer Institute, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Armelle Yart
- UMR 1301-Inserm 5070-CNRS EFS Univ. P. Sabatier, 4bis Ave Hubert Curien, 31100, Toulouse, France
| | - Maria I Kontaridis
- Department of Biomedical Research and Translational Medicine, Masonic Medical Research Institute, 2150 Bleecker St, Utica, NY, 13501, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Division of Cardiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Kiran Mahajan
- Department of Surgery, Washington University in St Louis, St Louis, MO, 63110, USA
- 6601, Cancer Research Building, Washington University in St Louis, St Louis, MO, 63110, USA
| | - Nupam P Mahajan
- Department of Surgery, Washington University in St Louis, St Louis, MO, 63110, USA.
- 6601, Cancer Research Building, Washington University in St Louis, St Louis, MO, 63110, USA.
- Siteman Cancer Center, Washington University in St Louis, St Louis, MO, 63110, USA.
| |
Collapse
|
3
|
Zhou X, Gao F, Xu G, Puyang Y, Rui H, Li J. SIAH1 facilitates the migration and invasion of gastric cancer cells through promoting the ubiquitination and degradation of RECK. Heliyon 2024; 10:e32676. [PMID: 38961977 PMCID: PMC11219971 DOI: 10.1016/j.heliyon.2024.e32676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 07/05/2024] Open
Abstract
Siah E3 ubiquitin protein ligase 1 (SIAH1) has been reported to participate in the development of several human cancers, including gastric cancer. However, the effect and mechanism of SIAH1 on the migration and invasion of gastric cancer cells need be further explored. Here, we first analyzed the clinical value of SIAH1 in gastric cancer, and found that SIAH1 was up-regulated in gastric cancer and associated with a poor prognosis. In addition, silencing of SIAH1 significantly inhibited the migration and invasion of gastric cancer cells through inhibiting the expression of matrix metalloproteinase-9 (MMP9), while overexpression of SIAH1 had the opposite effect. Molecularly, we provided the evidence that reversion-inducing cysteine-rich protein with Kazal motifs (RECK) was a potential substrate of SIAH1. We determined that SIAH1 could destabilize RECK through promoting its ubiquitination and degradation via proteasome pathway. We also found RECK was involved in SIAH1-regulated gastric cancer cell migration and invasion. In conclusion, SIAH1 is up-regulated in gastric cancer, which promotes the migration and invasion of gastric cancer cells through regulating RECK-MMP9 pathway.
Collapse
Affiliation(s)
- Xiaohua Zhou
- School of Medicine, Southeast University, China
- Department of General Surgery, Nanjing Gaochun People's Hospital, China
| | - Fuping Gao
- Department of Pathology, Nanjing Gaochun People's Hospital, China
| | - Guangqi Xu
- Department of General Surgery, Nanjing Gaochun People's Hospital, China
| | - Yongqiang Puyang
- Department of General Surgery, Nanjing Gaochun People's Hospital, China
| | - Hongqing Rui
- Department of General Surgery, Nanjing Gaochun People's Hospital, China
| | - Junsheng Li
- School of Medicine, Southeast University, China
- Department of General Surgery, Affiliated Zhongda Hospital of Southeast University, China
| |
Collapse
|
4
|
Angappulige DH, Mahajan NP, Mahajan K. Epigenetic underpinnings of tumor-immune dynamics in prostate cancer immune suppression. Trends Cancer 2024; 10:369-381. [PMID: 38341319 DOI: 10.1016/j.trecan.2024.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 02/12/2024]
Abstract
Prostate cancer (PC) is immunosuppressive and refractory to immunotherapy. Infiltration of myeloid-derived suppressor cells (MDSCs) and senescent-like neutrophils and T cell exhaustion are observed in the tumor microenvironment (TME) following androgen receptor (AR) antagonism with antiandrogens or androgen ablation. De novo post-translational acetylation of the AR, HOXB13, and H2A at K609, K13, and K130, respectively, and phosphorylation of H4 at Y88 have emerged as key epigenetic modifications associated with castration-resistant PC (CRPC). The resulting chromatin changes are integrated into cellular processes via phosphorylation of the AR, ACK1, ATPF1A, and SREBP1 at Y267, Y284, Y243/Y246, and Y673/Y951, respectively. In this review, we discuss how these de novo epigenetic alterations drive resistance and how efforts aimed at targeting these regulators may overcome immune suppression observed in PC.
Collapse
Affiliation(s)
- Duminduni Hewa Angappulige
- Division of Urologic Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Nupam P Mahajan
- Division of Urologic Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA; Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Kiran Mahajan
- Division of Urologic Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA; Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA.
| |
Collapse
|
5
|
Sawant M, Wilson A, Sridaran D, Mahajan K, O'Conor CJ, Hagemann IS, Luo J, Weimholt C, Li T, Roa JC, Pandey A, Wu X, Mahajan NP. Epigenetic reprogramming of cell cycle genes by ACK1 promotes breast cancer resistance to CDK4/6 inhibitor. Oncogene 2023; 42:2263-2277. [PMID: 37330596 PMCID: PMC10348910 DOI: 10.1038/s41388-023-02747-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 05/16/2023] [Accepted: 06/08/2023] [Indexed: 06/19/2023]
Abstract
Hormone receptor-positive, HER2-negative advanced breast cancers exhibit high sensitivity to CDK4/6 inhibitors such as palbociclib. However, most patients inevitably develop resistance, thus identification of new actionable therapeutic targets to overcome the recurrent disease is an urgent need. Immunohistochemical studies of tissue microarray revealed increased activation of non-receptor tyrosine kinase, ACK1 (also known as TNK2) in most of the breast cancer subtypes, independent of their hormone receptor status. Chromatin immunoprecipitation studies demonstrated that the nuclear target of activated ACK1, pY88-H4 epigenetic marks, were deposited at cell cycle genes, CCNB1, CCNB2 and CDC20, which in turn initiated their efficient transcription. Pharmacological inhibition of ACK1 using its inhibitor, (R)-9b dampened CCNB1, CCNB2 and CDC20 expression, caused G2/M arrest, culminating in regression of palbociclib-resistant breast tumor growth. Further, (R)-9b suppressed expression of CXCR4 receptor, which resulted in significant impairment of metastasis of breast cancer cells to lung. Overall, our pre-clinical data identifies activated ACK1 as an oncogene that epigenetically controls the cell cycle genes governing the G2/M transition in breast cancer cells. ACK1 inhibitor, (R)-9b could be a novel therapeutic option for the breast cancer patients that have developed resistance to CDK4/6 inhibitors.
Collapse
Affiliation(s)
- Mithila Sawant
- Department of Surgery, Washington University in St. Louis, Cancer Research Building, 660 Euclid Ave., St. Louis, MO, 63110, USA
- Division of Urologic Surgery, Washington University in St. Louis, Cancer Research Building, 660 Euclid Ave., St. Louis, MO, 63110, USA
| | - Audrey Wilson
- Department of Surgery, Washington University in St. Louis, Cancer Research Building, 660 Euclid Ave., St. Louis, MO, 63110, USA
- Division of Urologic Surgery, Washington University in St. Louis, Cancer Research Building, 660 Euclid Ave., St. Louis, MO, 63110, USA
| | - Dhivya Sridaran
- Department of Surgery, Washington University in St. Louis, Cancer Research Building, 660 Euclid Ave., St. Louis, MO, 63110, USA
- Division of Urologic Surgery, Washington University in St. Louis, Cancer Research Building, 660 Euclid Ave., St. Louis, MO, 63110, USA
| | - Kiran Mahajan
- Department of Surgery, Washington University in St. Louis, Cancer Research Building, 660 Euclid Ave., St. Louis, MO, 63110, USA
- Division of Urologic Surgery, Washington University in St. Louis, Cancer Research Building, 660 Euclid Ave., St. Louis, MO, 63110, USA
| | - Christopher J O'Conor
- Department of Pathology and Immunology, Washington University in St. Louis, Cancer Research Building, 660 Euclid Ave., St. Louis, MO, 63110, USA
| | - Ian S Hagemann
- Department of Pathology and Immunology, Washington University in St. Louis, Cancer Research Building, 660 Euclid Ave., St. Louis, MO, 63110, USA
| | - Jingqin Luo
- Siteman Cancer Center, Washington University in St. Louis, Cancer Research Building, 660 Euclid Ave., St. Louis, MO, 63110, USA
| | - Cody Weimholt
- Department of Pathology and Immunology, Washington University in St. Louis, Cancer Research Building, 660 Euclid Ave., St. Louis, MO, 63110, USA
- Siteman Cancer Center, Washington University in St. Louis, Cancer Research Building, 660 Euclid Ave., St. Louis, MO, 63110, USA
| | - Tiandao Li
- Bioinformatics Research Core, Center of Regenerative Medicine, Department of Developmental Biology, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Juan Carlos Roa
- Department of Pathology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Akhilesh Pandey
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
- Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Xinyan Wu
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
- Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Nupam P Mahajan
- Department of Surgery, Washington University in St. Louis, Cancer Research Building, 660 Euclid Ave., St. Louis, MO, 63110, USA.
- Division of Urologic Surgery, Washington University in St. Louis, Cancer Research Building, 660 Euclid Ave., St. Louis, MO, 63110, USA.
- Siteman Cancer Center, Washington University in St. Louis, Cancer Research Building, 660 Euclid Ave., St. Louis, MO, 63110, USA.
| |
Collapse
|
6
|
Liu Z, Luo P, Cao K, Hu Q, Hu B, Cui L, Wang X, Shi H, Zhang B, Wang R. SIAH1/CTR9 axis promotes the epithelial-mesenchymal transition of hepatocellular carcinoma. Carcinogenesis 2023; 44:304-316. [PMID: 37038329 DOI: 10.1093/carcin/bgad021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/08/2023] [Accepted: 04/10/2023] [Indexed: 04/12/2023] Open
Abstract
SIAH1 has been reported to participate in several human cancers, including hepatocellular carcinoma (HCC). However, the effect of SIAH1 on the epithelial-mesenchymal transition (EMT) has not been reported in HCC cells. Here, we discovered the inhibitory effect of SIAH1 on HCC cell migration and invasion, which was related with regulating EMT. Molecularly, a yeast two-hybrid experiment indicated that Cln Three Requiring 9 (CTR9) was a potential interacting protein of SIAH1, which was further verified by co-immunoprecipitation assays. Furthermore, SIAH1 inhibited the EMT of HCC cells through negatively regulating CTR9. Importantly, CTR9 was ubiquitinated and degraded by SIAH1 via the proteasome pathway in HCC cells. Additionally, it was showed that SIAH1 mainly mediated the K48-linked polyubiquitination on CTR9. Finally, the protein level of CTR9 was found to be inversely correlated with SIAH1 in human HCC tissues. Summed up all together, these findings reveal that SIAH1/CTR9 axis promotes the EMT of HCC cells and is a promising therapeutic target for HCC therapy.
Collapse
Affiliation(s)
- Zhiyi Liu
- Research Center of Digestive Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Pengchao Luo
- Research Center of Digestive Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Kuan Cao
- Research Center of Digestive Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qinghe Hu
- Research Center of Digestive Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Bin Hu
- Research Center of Digestive Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Licheng Cui
- Research Center of Digestive Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiaotian Wang
- Research Center of Digestive Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hengliang Shi
- Research Center of Digestive Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Central Laboratory, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Bin Zhang
- Research Center of Digestive Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Renhao Wang
- Research Center of Digestive Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
7
|
Kan Y, Paung Y, Seeliger MA, Miller WT. Domain Architecture of the Nonreceptor Tyrosine Kinase Ack1. Cells 2023; 12:900. [PMID: 36980241 PMCID: PMC10047419 DOI: 10.3390/cells12060900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
The nonreceptor tyrosine kinase (NRTK) Ack1 comprises a distinct arrangement of non-catalytic modules. Its SH3 domain has a C-terminal to the kinase domain (SH1), in contrast to the typical SH3-SH2-SH1 layout in NRTKs. The Ack1 is the only protein that shares a region of high homology to the tumor suppressor protein Mig6, a modulator of EGFR. The vertebrate Acks make up the only tyrosine kinase (TK) family known to carry a UBA domain. The GTPase binding and SAM domains are also uncommon in the NRTKs. In addition to being a downstream effector of receptor tyrosine kinases (RTKs) and integrins, Ack1 can act as an epigenetic regulator, modulate the degradation of the epidermal growth factor receptor (EGFR), confer drug resistance, and mediate the progression of hormone-sensitive tumors. In this review, we discuss the domain architecture of Ack1 in relation to other protein kinases that possess such defined regulatory domains.
Collapse
Affiliation(s)
- Yagmur Kan
- Department of Physiology and Biophysics, School of Medicine, Stony Brook University, Stony Brook, NY 11794-8661, USA
| | - YiTing Paung
- Department of Pharmacology, School of Medicine, Stony Brook University, Stony Brook, NY 11794-8661, USA
| | - Markus A. Seeliger
- Department of Pharmacology, School of Medicine, Stony Brook University, Stony Brook, NY 11794-8661, USA
| | - W. Todd Miller
- Department of Physiology and Biophysics, School of Medicine, Stony Brook University, Stony Brook, NY 11794-8661, USA
- Department of Veterans Affairs Medical Center, Northport, NY 11768-2200, USA
| |
Collapse
|
8
|
Chouhan S, Sawant M, Weimholt C, Luo J, Sprung RW, Terrado M, Mueller DM, Earp HS, Mahajan NP. TNK2/ACK1-mediated phosphorylation of ATP5F1A (ATP synthase F1 subunit alpha) selectively augments survival of prostate cancer while engendering mitochondrial vulnerability. Autophagy 2023; 19:1000-1025. [PMID: 35895804 PMCID: PMC9980697 DOI: 10.1080/15548627.2022.2103961] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 11/02/2022] Open
Abstract
The challenge of rapid macromolecular synthesis enforces the energy-hungry cancer cell mitochondria to switch their metabolic phenotypes, accomplished by activation of oncogenic tyrosine kinases. Precisely how kinase activity is directly exploited by cancer cell mitochondria to meet high-energy demand, remains to be deciphered. Here we show that a non-receptor tyrosine kinase, TNK2/ACK1 (tyrosine kinase non receptor 2), phosphorylated ATP5F1A (ATP synthase F1 subunit alpha) at Tyr243 and Tyr246 (Tyr200 and 203 in the mature protein, respectively) that not only increased the stability of complex V, but also increased mitochondrial energy output in cancer cells. Further, phospho-ATP5F1A (p-Y-ATP5F1A) prevented its binding to its physiological inhibitor, ATP5IF1 (ATP synthase inhibitory factor subunit 1), causing sustained mitochondrial activity to promote cancer cell growth. TNK2 inhibitor, (R)-9b reversed this process and induced mitophagy-based autophagy to mitigate prostate tumor growth while sparing normal prostate cells. Further, depletion of p-Y-ATP5F1A was needed for (R)-9b-mediated mitophagic response and tumor growth. Moreover, Tnk2 transgenic mice displayed increased p-Y-ATP5F1A and loss of mitophagy and exhibited formation of prostatic intraepithelial neoplasia (PINs). Consistent with these data, a marked increase in p-Y-ATP5F1A was seen as prostate cancer progressed to the malignant stage. Overall, this study uncovered the molecular intricacy of tyrosine kinase-mediated mitochondrial energy regulation as a distinct cancer cell mitochondrial vulnerability and provided evidence that TNK2 inhibitors can act as "mitocans" to induce cancer-specific mitophagy.Abbreviations: ATP5F1A: ATP synthase F1 subunit alpha; ATP5IF1: ATP synthase inhibitory factor subunit 1; CRPC: castration-resistant prostate cancer; DNM1L: dynamin 1 like; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; Mdivi-1: mitochondrial division inhibitor 1; Mut-ATP5F1A: Y243,246A mutant of ATP5F1A; OXPHOS: oxidative phosphorylation; PC: prostate cancer; PINK1: PTEN induced kinase 1; p-Y-ATP5F1A: phosphorylated tyrosine 243 and 246 on ATP5F1A; TNK2/ACK1: tyrosine kinase non receptor 2; Ub: ubiquitin; WT: wild type.
Collapse
Affiliation(s)
- Surbhi Chouhan
- Department of Surgery, Cancer Research Building, St. Louis, MO, USA
- Division of Urologic Surgery Washington University, St. Louis, MO, USA
| | - Mithila Sawant
- Department of Surgery, Cancer Research Building, St. Louis, MO, USA
- Division of Urologic Surgery Washington University, St. Louis, MO, USA
| | - Cody Weimholt
- Department of Pathology & Immunology Washington University, St. Louis, MO, USA
| | - Jingqin Luo
- Division of Public Health Sciences, Washington University, St. Louis, MO, USA
| | - Robert W. Sprung
- Department of Surgery, Cancer Research Building, St. Louis, MO, USA
| | - Mailyn Terrado
- Center for Genetic Diseases, Chicago Medical School, Rosalind Franklin University, North Chicago, IL, USA
| | - David M. Mueller
- Center for Genetic Diseases, Chicago Medical School, Rosalind Franklin University, North Chicago, IL, USA
| | - H. Shelton Earp
- Lineberger Comprehensive Cancer Center, Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| | - Nupam P. Mahajan
- Department of Surgery, Cancer Research Building, St. Louis, MO, USA
- Division of Urologic Surgery Washington University, St. Louis, MO, USA
- Siteman Cancer Center Washington University, St. Louis, MO, USA
| |
Collapse
|
9
|
Xu Z, Wu Y, Yang M, Wei H, Pu J. CBX2-mediated suppression of SIAH2 triggers WNK1 accumulations to promote glycolysis in hepatocellular carcinoma. Exp Cell Res 2023; 426:113513. [PMID: 36780970 DOI: 10.1016/j.yexcr.2023.113513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 01/19/2023] [Accepted: 02/10/2023] [Indexed: 02/13/2023]
Abstract
Previous studies have highlighted the poor prognosis of liver cancer, and treatment effects are overall limited. We aimed to confirm the biological roles of SIAH2 in liver cancer and provide potential therapeutic targets. Differential analysis was conducted based on public datasets and found that SIAH2 expressed lowly in HCC samples relative to normal tissues, which was demonstrated in tumor samples via immunohistochemistry (IHC). Besides, SIAH2 overexpression could significantly suppress HCC proliferation. SIAH2 deficiency induced cell proliferation, migration and self-renewal abilities in vitro and in vivo. Mechanistically, SIAH2 could interact with WNK1, and trigger the ubiquitination and degradation of WNK1 proteins. In addition, low SIAH2 depended on elevated WNK1 proteins to drive HCC malignant features, including proliferation, migration and stemness. Meanwhile, we further found that CBX2 could regulate SIAH2 expressions. CBX2 cooperated with EZH2 to mediate the H3K27me3 enrichment on the promoter region of SIAH2 to suppress its transcriptional levels. High CBX2/EZH2 levels in HCC correlated with poor prognosis of patients. Gene set enrichment analysis (GSEA) further implicated that WNK1 correlates tightly with glycolytic process in HCC samples. WNK1 overexpression was found to notably enhance glycolytic activity, whereas WNK1 deficiency could significantly suppress the HCC glycolysis activity. Lastly, the subcutaneous tumor model further demonstrated that targeting WNK1 was effective to inhibit the in vivo tumor growth of SIAH2low HCC. Collectively, down-regulated SIAH2 expressions induced by CBX2/EZH2 could drive progression and glycolysis via accumulating WNK1 proteins, indicating that CBX2/SIAH2/WNK1 axis is a potential prognostic biomarker and therapeutic vulnerability for human HCC.
Collapse
Affiliation(s)
- Zuoming Xu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, 533000, China
| | - Yinghong Wu
- Graduate College of Youjiang Medical University for Nationalities, 533000, China
| | - Meng Yang
- Graduate College of Youjiang Medical University for Nationalities, 533000, China
| | - Huamei Wei
- Department of Pathology, Affiliated Hospital of Youjiang Medical University for Nationalitie, 533000, China
| | - Jian Pu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, 533000, China.
| |
Collapse
|
10
|
Mustafa AHM, Krämer OH. Pharmacological Modulation of the Crosstalk between Aberrant Janus Kinase Signaling and Epigenetic Modifiers of the Histone Deacetylase Family to Treat Cancer. Pharmacol Rev 2023; 75:35-61. [PMID: 36752816 DOI: 10.1124/pharmrev.122.000612] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/08/2022] [Accepted: 08/15/2022] [Indexed: 12/13/2022] Open
Abstract
Hyperactivated Janus kinase (JAK) signaling is an appreciated drug target in human cancers. Numerous mutant JAK molecules as well as inherent and acquired drug resistance mechanisms limit the efficacy of JAK inhibitors (JAKi). There is accumulating evidence that epigenetic mechanisms control JAK-dependent signaling cascades. Like JAKs, epigenetic modifiers of the histone deacetylase (HDAC) family regulate the growth and development of cells and are often dysregulated in cancer cells. The notion that inhibitors of histone deacetylases (HDACi) abrogate oncogenic JAK-dependent signaling cascades illustrates an intricate crosstalk between JAKs and HDACs. Here, we summarize how structurally divergent, broad-acting as well as isoenzyme-specific HDACi, hybrid fusion pharmacophores containing JAKi and HDACi, and proteolysis targeting chimeras for JAKs inactivate the four JAK proteins JAK1, JAK2, JAK3, and tyrosine kinase-2. These agents suppress aberrant JAK activity through specific transcription-dependent processes and mechanisms that alter the phosphorylation and stability of JAKs. Pharmacological inhibition of HDACs abrogates allosteric activation of JAKs, overcomes limitations of ATP-competitive type 1 and type 2 JAKi, and interacts favorably with JAKi. Since such findings were collected in cultured cells, experimental animals, and cancer patients, we condense preclinical and translational relevance. We also discuss how future research on acetylation-dependent mechanisms that regulate JAKs might allow the rational design of improved treatments for cancer patients. SIGNIFICANCE STATEMENT: Reversible lysine-ɛ-N acetylation and deacetylation cycles control phosphorylation-dependent Janus kinase-signal transducer and activator of transcription signaling. The intricate crosstalk between these fundamental molecular mechanisms provides opportunities for pharmacological intervention strategies with modern small molecule inhibitors. This could help patients suffering from cancer.
Collapse
Affiliation(s)
- Al-Hassan M Mustafa
- Department of Toxicology, University Medical Center, Mainz, Germany (A.-H.M.M., O.H.K.) and Department of Zoology, Faculty of Science, Aswan University, Aswan, Egypt (A.-H.M.M.)
| | - Oliver H Krämer
- Department of Toxicology, University Medical Center, Mainz, Germany (A.-H.M.M., O.H.K.) and Department of Zoology, Faculty of Science, Aswan University, Aswan, Egypt (A.-H.M.M.)
| |
Collapse
|
11
|
A nomogram for predicting prognosis of multiple myeloma patients based on a ubiquitin-proteasome gene signature. Aging (Albany NY) 2022; 14:9951-9968. [PMID: 36534449 PMCID: PMC9831738 DOI: 10.18632/aging.204432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/21/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Multiple myeloma (MM) is a malignant hematopoietic disease that is usually incurable. However, the ubiquitin-proteasome system (UPS) genes have not yet been established as a prognostic predictor for MM, despite their potential applications in other cancers. METHODS RNA sequencing data and corresponding clinical information were acquired from Multiple Myeloma Research Foundation (MMRF)-COMMPASS and served as a training set (n=787). Validation of the prediction signature were conducted by the Gene Expression Omnibus (GEO) databases (n=1040). To develop a prognostic signature for overall survival (OS), least absolute shrinkage and selection operator regressions, along with Cox regressions, were used. RESULTS A six-gene signature, including KCTD12, SIAH1, TRIM58, TRIM47, UBE2S, and UBE2T, was established. Kaplan-Meier survival analysis of the training and validation cohorts revealed that patients with high-risk conditions had a significantly worse prognosis than those with low-risk conditions. Furthermore, UPS-related signature is associated with a positive immune response. For predicting survival, a simple to use nomogram and the corresponding web-based calculator (https://jiangyanxiamm.shinyapps.io/MMprognosis/) were built based on the UPS signature and its clinical features. Analyses of calibration plots and decision curves showed clinical utility for both training and validation datasets. CONCLUSIONS As a result of these results, we established a genetic signature for MM based on UPS. This genetic signature could contribute to improving individualized survival prediction, thereby facilitating clinical decisions in patients with MM.
Collapse
|
12
|
Sridaran D, Chouhan S, Mahajan K, Renganathan A, Weimholt C, Bhagwat S, Reimers M, Kim EH, Thakur MK, Saeed MA, Pachynski RK, Seeliger MA, Miller WT, Feng FY, Mahajan NP. Inhibiting ACK1-mediated phosphorylation of C-terminal Src kinase counteracts prostate cancer immune checkpoint blockade resistance. Nat Commun 2022; 13:6929. [PMID: 36376335 PMCID: PMC9663509 DOI: 10.1038/s41467-022-34724-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/04/2022] [Indexed: 11/16/2022] Open
Abstract
Solid tumours are highly refractory to immune checkpoint blockade (ICB) therapies due to the functional impairment of effector T cells and their inefficient trafficking to tumours. T-cell activation is negatively regulated by C-terminal Src kinase (CSK); however, the exact mechanism remains unknown. Here we show that the conserved oncogenic tyrosine kinase Activated CDC42 kinase 1 (ACK1) is able to phosphorylate CSK at Tyrosine 18 (pY18), which enhances CSK function, constraining T-cell activation. Mice deficient in the Tnk2 gene encoding Ack1, are characterized by diminished CSK Y18-phosphorylation and spontaneous activation of CD8+ and CD4+ T cells, resulting in inhibited growth of transplanted ICB-resistant tumours. Furthermore, ICB treatment of castration-resistant prostate cancer (CRPC) patients results in re-activation of ACK1/pY18-CSK signalling, confirming the involvement of this pathway in ICB insensitivity. An ACK1 small-molecule inhibitor, (R)-9b, recapitulates inhibition of ICB-resistant tumours, which provides evidence for ACK1 enzymatic activity playing a pivotal role in generating ICB resistance. Overall, our study identifies an important mechanism of ICB resistance and holds potential for expanding the scope of ICB therapy to tumours that are currently unresponsive.
Collapse
Affiliation(s)
- Dhivya Sridaran
- Department of Surgery, Washington University at St Louis, St Louis, MO, 63110, USA
- Division of Urologic Surgery, Washington University at St Louis, St Louis, MO, 63110, USA
| | - Surbhi Chouhan
- Department of Surgery, Washington University at St Louis, St Louis, MO, 63110, USA
- Division of Urologic Surgery, Washington University at St Louis, St Louis, MO, 63110, USA
| | - Kiran Mahajan
- Department of Surgery, Washington University at St Louis, St Louis, MO, 63110, USA
- Division of Urologic Surgery, Washington University at St Louis, St Louis, MO, 63110, USA
- Siteman Cancer Center, Washington University at St Louis, St Louis, MO, 63110, USA
| | - Arun Renganathan
- Department of Surgery, Washington University at St Louis, St Louis, MO, 63110, USA
- Division of Urologic Surgery, Washington University at St Louis, St Louis, MO, 63110, USA
| | - Cody Weimholt
- Department of Surgery, Washington University at St Louis, St Louis, MO, 63110, USA
- Division of Oncology, Department of Medicine, Washington University at St Louis, St Louis, MO, 63110, USA
- Anatomic and Clinical Pathology, Washington University at St Louis, St Louis, MO, 63110, USA
| | - Shambhavi Bhagwat
- Department of Surgery, Washington University at St Louis, St Louis, MO, 63110, USA
- Division of Urologic Surgery, Washington University at St Louis, St Louis, MO, 63110, USA
| | - Melissa Reimers
- Siteman Cancer Center, Washington University at St Louis, St Louis, MO, 63110, USA
- Division of Oncology, Department of Medicine, Washington University at St Louis, St Louis, MO, 63110, USA
| | - Eric H Kim
- Department of Surgery, Washington University at St Louis, St Louis, MO, 63110, USA
- Division of Urologic Surgery, Washington University at St Louis, St Louis, MO, 63110, USA
| | - Manish K Thakur
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Muhammad A Saeed
- Siteman Cancer Center, Washington University at St Louis, St Louis, MO, 63110, USA
| | - Russell K Pachynski
- Siteman Cancer Center, Washington University at St Louis, St Louis, MO, 63110, USA
- Division of Oncology, Department of Medicine, Washington University at St Louis, St Louis, MO, 63110, USA
| | - Markus A Seeliger
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, 11794, USA
- Department of Physiology and Biophysics, School of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
| | - W Todd Miller
- Department of Physiology and Biophysics, School of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
- Department of Veterans Affairs Medical Center, Northport, NY, 11768, USA
| | - Felix Y Feng
- Department of Radiation Oncology, University of California, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
- Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, CA, USA
| | - Nupam P Mahajan
- Department of Surgery, Washington University at St Louis, St Louis, MO, 63110, USA.
- Division of Urologic Surgery, Washington University at St Louis, St Louis, MO, 63110, USA.
- Siteman Cancer Center, Washington University at St Louis, St Louis, MO, 63110, USA.
| |
Collapse
|
13
|
Jeong SY, Hariharasudhan G, Kim MJ, Lim JY, Jung SM, Choi EJ, Chang IY, Kee Y, You HJ, Lee JH. SIAH2 regulates DNA end resection and replication fork recovery by promoting CtIP ubiquitination. Nucleic Acids Res 2022; 50:10469-10486. [PMID: 36155803 PMCID: PMC9561274 DOI: 10.1093/nar/gkac808] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/19/2022] [Accepted: 09/10/2022] [Indexed: 11/16/2022] Open
Abstract
Human CtIP maintains genomic integrity primarily by promoting 5′ DNA end resection, an initial step of the homologous recombination (HR). A few mechanisms have been suggested as to how CtIP recruitment to damage sites is controlled, but it is likely that we do not yet have full understanding of the process. Here, we provide evidence that CtIP recruitment and functioning are controlled by the SIAH2 E3 ubiquitin ligase. We found that SIAH2 interacts and ubiquitinates CtIP at its N-terminal lysine residues. Mutating the key CtIP lysine residues impaired CtIP recruitment to DSBs and stalled replication forks, DSB end resection, overall HR repair capacity of cells, and recovery of stalled replication forks, suggesting that the SIAH2-induced ubiquitination is important for relocating CtIP to sites of damage. Depleting SIAH2 consistently phenocopied these results. Overall, our work suggests that SIAH2 is a new regulator of CtIP and HR repair, and emphasizes that SIAH2-mediated recruitment of the CtIP is an important step for CtIP’s function during HR repair.
Collapse
Affiliation(s)
- Seo-Yeon Jeong
- Laboratory of Genomic Instability and Cancer therapeutics, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea.,Department of Cellular and Molecular Medicine, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea
| | - Gurusamy Hariharasudhan
- Laboratory of Genomic Instability and Cancer therapeutics, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea
| | - Min-Ji Kim
- Laboratory of Genomic Instability and Cancer therapeutics, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea
| | - Ji-Yeon Lim
- Laboratory of Genomic Instability and Cancer therapeutics, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea.,Department of Pharmacology, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea
| | - Sung Mi Jung
- Laboratory of Genomic Instability and Cancer therapeutics, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea.,Department of Cellular and Molecular Medicine, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea
| | - Eun-Ji Choi
- Laboratory of Genomic Instability and Cancer therapeutics, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea.,Department of Cellular and Molecular Medicine, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea
| | - In-Youb Chang
- Department of Anatomy, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea
| | - Younghoon Kee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno-Joongang-daero, Dalseong-gun, Daegu 42988, Republic of Korea
| | - Ho Jin You
- Laboratory of Genomic Instability and Cancer therapeutics, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea.,Department of Pharmacology, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea
| | - Jung-Hee Lee
- Laboratory of Genomic Instability and Cancer therapeutics, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea.,Department of Cellular and Molecular Medicine, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea
| |
Collapse
|
14
|
Liu Q, Luo Q, Feng J, Zhao Y, Ma B, Cheng H, Zhao T, Lei H, Mu C, Chen L, Meng Y, Zhang J, Long Y, Su J, Chen G, Li Y, Hu G, Liao X, Chen Q, Zhu Y. Hypoxia-induced proteasomal degradation of DBC1 by SIAH2 in breast cancer progression. eLife 2022; 11:81247. [PMID: 35913115 PMCID: PMC9377797 DOI: 10.7554/elife.81247] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/19/2022] [Indexed: 11/26/2022] Open
Abstract
DBC1 has been characterized as a key regulator of physiological and pathophysiological activities, such as DNA damage, senescence, and tumorigenesis. However, the mechanism by which the functional stability of DBC1 is regulated has yet to be elucidated. Here, we report that the ubiquitination-mediated degradation of DBC1 is regulated by the E3 ubiquitin ligase SIAH2 and deubiquitinase OTUD5 under hypoxic stress. Mechanistically, hypoxia promoted DBC1 to interact with SIAH2 but not OTUD5, resulting in the ubiquitination and subsequent degradation of DBC1 through the ubiquitin–proteasome pathway. SIAH2 knockout inhibited tumor cell proliferation and migration, which could be rescued by double knockout of SIAH2/CCAR2. Human tissue microarray analysis further revealed that the SIAH2/DBC1 axis was responsible for tumor progression under hypoxic stress. These findings define a key role of the hypoxia-mediated SIAH2-DBC1 pathway in the progression of human breast cancer and provide novel insights into the metastatic mechanism of breast cancer.
Collapse
Affiliation(s)
- Qiangqiang Liu
- College of Life Sciences, Nankai University, Tianjin, China
| | - Qian Luo
- College of Life Sciences, Nankai University, Tianjin, China
| | - Jianyu Feng
- College of Life Sciences, Nankai University, Tianjin, China
| | - Yanping Zhao
- School of Statistics and Data Science, Nankai University, Tianjin, China
| | - Biao Ma
- College of Life Sciences, Nankai University, Tianjin, China
| | | | - Tian Zhao
- College of Life Sciences, Nankai University, Tianjin, China
| | - Hong Lei
- College of Life Sciences, Nankai University, Tianjin, China
| | - Chenglong Mu
- College of Life Sciences, Nankai University, Tianjin, China
| | - Linbo Chen
- College of Life Sciences, Nankai University, Tianjin, China
| | - Yuanyuan Meng
- College of Life Sciences, Nankai University, Tianjin, China
| | - Jiaojiao Zhang
- College of Life Sciences, Nankai University, Tianjin, China
| | - Yijia Long
- College of Life Sciences, Nankai University, Tianjin, China
| | - Jingyi Su
- College of Life Sciences, Nankai University, Tianjin, China
| | - Guo Chen
- College of Life Sciences, Nankai University, Tianjin, China
| | - Yanjun Li
- College of Life Sciences, Nankai University, Tianjin, China
| | - Gang Hu
- School of Statistics and Data Science, Nankai University, Tianjin, China
| | - Xudong Liao
- College of Life Sciences, Nankai University, Tianjin, China
| | - Quan Chen
- College of Life Sciences, Nankai University, Tianjin, China
| | - Yushan Zhu
- College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
15
|
Sawant M, Mahajan K, Renganathan A, Weimholt C, Luo J, Kukshal V, Jez JM, Jeon MS, Zhang B, Li T, Fang B, Luo Y, Lawrence NJ, Lawrence HR, Feng FY, Mahajan NP. Chronologically modified androgen receptor in recurrent castration-resistant prostate cancer and its therapeutic targeting. Sci Transl Med 2022; 14:eabg4132. [PMID: 35704598 PMCID: PMC10259236 DOI: 10.1126/scitranslmed.abg4132] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Resistance to second-generation androgen receptor (AR) antagonists such as enzalutamide is an inevitable consequence in patients with castration-resistant prostate cancer (CRPC). There are no effective therapeutic options for this recurrent disease. The expression of truncated AR variant 7 (AR-V7) has been suggested to be one mechanism of resistance; however, its low frequency in patients with CRPC does not explain the almost universal acquisition of resistance. We noted that the ability of AR to translocate to nucleus in an enzalutamide-rich environment opens up the possibility of a posttranslational modification in AR that is refractory to enzalutamide binding. Chemical proteomics in enzalutamide-resistant CRPC cells revealed acetylation at Lys609 in the zinc finger DNA binding domain of AR (acK609-AR) that not only allowed AR translocation but also galvanized a distinct global transcription program, conferring enzalutamide insensitivity. Mechanistically, acK609-AR was recruited to the AR and ACK1/TNK2 enhancers, up-regulating their transcription. ACK1 kinase-mediated AR Y267 phosphorylation was a prerequisite for AR K609 acetylation, which spawned positive feedback loops at both the transcriptional and posttranslational level that regenerated and sustained high AR and ACK1 expression. Consistent with these findings, oral and subcutaneous treatment with ACK1 small-molecule inhibitor, (R)-9b, not only curbed AR Y267 phosphorylation and subsequent K609 acetylation but also compromised enzalutamide-resistant CRPC xenograft tumor growth in mice. Overall, these data uncover chronological modification events in AR that allows prostate cancer to evolve through progressive stages to reach the resilient recurrent CRPC stage, opening up a therapeutic vulnerability.
Collapse
Affiliation(s)
- Mithila Sawant
- Department of Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA
- Division of Urologic Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Kiran Mahajan
- Department of Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA
- Division of Urologic Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA
- Siteman Cancer Center, Washington University in St. Louis, Cancer Research Building, 660 Euclid Ave., St. Louis, MO 63110, USA
| | - Arun Renganathan
- Department of Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA
- Division of Urologic Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Cody Weimholt
- Department of Anatomic and Clinical Pathology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Jingqin Luo
- Department of Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA
- Siteman Cancer Center, Washington University in St. Louis, Cancer Research Building, 660 Euclid Ave., St. Louis, MO 63110, USA
| | - Vandna Kukshal
- Department of Biology, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63110, USA
| | - Joseph M. Jez
- Department of Biology, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63110, USA
| | - Myung Sik Jeon
- Siteman Cancer Center, Washington University in St. Louis, Cancer Research Building, 660 Euclid Ave., St. Louis, MO 63110, USA
| | - Bo Zhang
- Bioinformatics Research Core, Center of Regenerative Medicine, Department of Developmental Biology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Tiandao Li
- Bioinformatics Research Core, Center of Regenerative Medicine, Department of Developmental Biology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Bin Fang
- Drug Discovery Department, Moffitt Cancer Center, Department of Oncologic Sciences, University of South Florida, 12902 USF Magnolia Drive, Tampa, FL 33612, USA
| | - Yunting Luo
- Drug Discovery Department, Moffitt Cancer Center, Department of Oncologic Sciences, University of South Florida, 12902 USF Magnolia Drive, Tampa, FL 33612, USA
| | - Nicholas J. Lawrence
- Drug Discovery Department, Moffitt Cancer Center, Department of Oncologic Sciences, University of South Florida, 12902 USF Magnolia Drive, Tampa, FL 33612, USA
| | - Harshani R. Lawrence
- Drug Discovery Department, Moffitt Cancer Center, Department of Oncologic Sciences, University of South Florida, 12902 USF Magnolia Drive, Tampa, FL 33612, USA
| | - Felix Y. Feng
- Helen Diller Family Cancer Research Building, 1450 Third Street, Room 383, University of California, San Francisco, CA 94158, USA
| | - Nupam P. Mahajan
- Department of Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA
- Division of Urologic Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA
- Siteman Cancer Center, Washington University in St. Louis, Cancer Research Building, 660 Euclid Ave., St. Louis, MO 63110, USA
| |
Collapse
|
16
|
Gao W, Chen L, Lin L, Yang M, Li T, Wei H, Sha C, Xing J, Zhang M, Zhao S, Chen Q, Xu W, Li Y, Zhu X. SIAH1 reverses chemoresistance in epithelial ovarian cancer via ubiquitination of YBX-1. Oncogenesis 2022; 11:13. [PMID: 35273154 PMCID: PMC8913663 DOI: 10.1038/s41389-022-00387-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 02/07/2022] [Accepted: 02/14/2022] [Indexed: 01/20/2023] Open
Abstract
Chemoresistance is a severe outcome among patients with epithelial ovarian cancer (EOC) that leads to a poor prognosis. YBX-1 has been shown to cause treatment failure and cancer progression in EOC. However, strategies that directly target YBX-1 are not yet conceivable. Here, we identified that SIAH1 which was downregulated in chemoresistant EOC samples and cell lines functioned as novel E3 ligases to trigger degradation of YBX-1 at cytoplasm by RING finger domain. Mechanistic studies show that YBX-1 was ubiquitinated by SIAH1 at lys304 that lead to the instability of its target m5C-modified mRNAs, thus sensitized EOC cells to cDDP. Overexpression of SIAH1 enhanced the antitumor efficacy of cisplatin in vitro and in vivo, which were partially impaired by ectopic expression of YBX-1 or depletion of YBX-1 ubiquitination. In summary, our data identify the SIAH1/YBX-1 interaction as a therapeutic target for overcoming EOC chemoresistance.
Collapse
Affiliation(s)
- Wujiang Gao
- Reproductive Center, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China.,Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lu Chen
- Reproductive Center, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China.,Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Li Lin
- Reproductive Center, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Meiling Yang
- The first people's hospital of Nantong, Nantong, China
| | - Taoqiong Li
- Reproductive Center, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Hong Wei
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Chunli Sha
- Reproductive Center, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jie Xing
- Reproductive Center, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China.,Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Mengxue Zhang
- Reproductive Center, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China.,Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Shijie Zhao
- Reproductive Center, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China.,Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Qi Chen
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Wenlin Xu
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yuefeng Li
- Department of Radiology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiaolan Zhu
- Reproductive Center, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China. .,Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China.
| |
Collapse
|
17
|
Li K, Li J, Ye M, Jin X. The role of Siah2 in tumorigenesis and cancer therapy. Gene 2022; 809:146028. [PMID: 34687788 DOI: 10.1016/j.gene.2021.146028] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 12/12/2022]
Abstract
Seven in absentia homolog 2 (Siah2), an RING E3 ubiquitin ligases, has been characterized to play the vital role in tumorigenesis and cancer progression. Numerous studies have determined that Siah2 promotes tumorigenesis in a variety of human malignancies such as prostate, lung, gastric, and liver cancers. However, several studies revealed that Siah2 exhibited tumor suppressor function by promoting the proteasome-mediated degradation of several oncoproteins, suggesting that Siah2 could exert its biological function according to different stages of tumor development. Moreover, Siah2 is subject to complex regulation, especially the phosphorylation of Siah2 by a variety of protein kinases to regulate its stability and activity. In this review, we describe the structure and regulation of Siah2 in human cancer. Moreover, we highlight the critical role of Siah2 in tumorigenesis. Furthermore, we note that the potential clinical applications of targeting Siah2 in cancer therapy.
Collapse
Affiliation(s)
- Kailang Li
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathphysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Jinyun Li
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathphysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Meng Ye
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathphysiology, Medical School of Ningbo University, Ningbo 315211, China.
| | - Xiaofeng Jin
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathphysiology, Medical School of Ningbo University, Ningbo 315211, China.
| |
Collapse
|
18
|
Ghildiyal R, Sawant M, Renganathan A, Mahajan K, Kim EH, Luo J, Dang HX, Maher CA, Feng FY, Mahajan NP. Loss of long non-coding RNA NXTAR in prostate cancer augments androgen receptor expression and enzalutamide resistance. Cancer Res 2021; 82:155-168. [PMID: 34740892 DOI: 10.1158/0008-5472.can-20-3845] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 04/19/2021] [Accepted: 10/19/2021] [Indexed: 11/16/2022]
Abstract
Androgen receptor (AR) signaling continues to play a dominant role in all stages of prostate cancer (PC), including castration-resistant prostate cancers (CRPC) that have developed resistance to second-generation AR antagonists such as enzalutamide. In this study, we identified a long non-coding RNA (lncRNA), NXTAR (LOC105373241), that is located convergent with the AR gene and is repressed in human prostate tumors and cell lines. NXTAR bound upstream of the AR promoter and promoted EZH2 recruitment, causing significant loss of AR (and AR-V7) expression. Paradoxically, AR bound the NXTAR promoter, and inhibition of AR by the ACK1/TNK2 small molecule inhibitor (R)-9b excluded AR from the NXTAR promoter. The histone acetyltransferase GCN5 bound and deposited H3K14 acetylation marks, enhancing NXTAR expression. Application of an oligonucleotide derived from NXTAR exon 5 (NXTAR-N5) suppressed AR/AR-V7 expression and prostate cancer cell proliferation, indicating the translational relevance of the negative regulation of AR. In addition, pharmacological restoration of NXTAR using (R)-9b abrogated enzalutamide-resistant prostate xenograft tumor growth. Overall, this study uncovers a positive feedback loop, wherein NXTAR acts as a novel prostate tumor-suppressing lncRNA by inhibiting AR/AR-V7 expression, which in turn upregulates NXTAR levels, compromising enzalutamide-resistant prostate cancer. The restoration of NXTAR could serve as a new therapeutic modality for patients who have acquired resistance to second-generation AR antagonists.
Collapse
Affiliation(s)
| | | | | | | | - Eric H Kim
- Siteman Cancer Center, Moffitt Cancer Center
| | - Jingqin Luo
- Division of Public Health Sciences, Department of Surgery, Washington University in St. Louis School of Medicine
| | - Ha X Dang
- Internal Medicine, Washington University in St. Louis
| | | | - Felix Y Feng
- Radiation Oncology, Helen Diller Comprehensive Cancer Center, University of California, San Francisco
| | | |
Collapse
|
19
|
Wachholz V, Mustafa AHM, Zeyn Y, Henninger SJ, Beyer M, Dzulko M, Piée-Staffa A, Brachetti C, Haehnel PS, Sellmer A, Mahboobi S, Kindler T, Brenner W, Nikolova T, Krämer OH. Inhibitors of class I HDACs and of FLT3 combine synergistically against leukemia cells with mutant FLT3. Arch Toxicol 2021; 96:177-193. [PMID: 34665271 PMCID: PMC8748367 DOI: 10.1007/s00204-021-03174-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/29/2021] [Indexed: 12/12/2022]
Abstract
Acute myeloid leukemia (AML) with mutations in the FMS-like tyrosine kinase (FLT3) is a clinically unresolved problem. AML cells frequently have a dysregulated expression and activity of epigenetic modulators of the histone deacetylase (HDAC) family. Therefore, we tested whether a combined inhibition of mutant FLT3 and class I HDACs is effective against AML cells. Low nanomolar doses of the FLT3 inhibitor (FLT3i) AC220 and an inhibition of class I HDACs with nanomolar concentrations of FK228 or micromolar doses of the HDAC3 specific agent RGFP966 synergistically induce apoptosis of AML cells that carry hyperactive FLT3 with an internal tandem duplication (FLT3-ITD). This does not occur in leukemic cells with wild-type FLT3 and without FLT3, suggesting a preferential toxicity of this combination against cells with mutant FLT3. Moreover, nanomolar doses of the new FLT3i marbotinib combine favorably with FK228 against leukemic cells with FLT3-ITD. The combinatorial treatments potentiated their suppressive effects on the tyrosine phosphorylation and stability of FLT3-ITD and its downstream signaling to the kinases ERK1/ERK2 and the inducible transcription factor STAT5. The beneficial pro-apoptotic effects of FLT3i and HDACi against leukemic cells with mutant FLT3 are associated with dose- and drug-dependent alterations of cell cycle distribution and DNA damage. This is linked to a modulation of the tumor-suppressive transcription factor p53 and its target cyclin-dependent kinase inhibitor p21. While HDACi induce p21, AC220 suppresses the expression of p53 and p21. Furthermore, we show that both FLT3-ITD and class I HDAC activity promote the expression of the checkpoint kinases CHK1 and WEE1, thymidylate synthase, and the DNA repair protein RAD51 in leukemic cells. A genetic depletion of HDAC3 attenuates the expression of such proteins. Thus, class I HDACs and hyperactive FLT3 appear to be valid targets in AML cells with mutant FLT3.
Collapse
Affiliation(s)
- Vanessa Wachholz
- Department of Toxicology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Al-Hassan M Mustafa
- Department of Toxicology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany.,Department of Zoology, Faculty of Science, Aswan University, Aswan, Egypt
| | - Yanira Zeyn
- Department of Toxicology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Sven J Henninger
- Department of Toxicology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Mandy Beyer
- Department of Toxicology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Melanie Dzulko
- Department of Toxicology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Andrea Piée-Staffa
- Department of Toxicology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Christina Brachetti
- Department of Toxicology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Patricia S Haehnel
- Department of Hematology, Medical Oncology and Pneumology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany.,German Consortia for Translational Cancer Research, Mainz, Germany
| | - Andreas Sellmer
- Faculty of Chemistry and Pharmacy, Institute of Pharmacy, University of Regensburg, 93040, Regensburg, Germany
| | - Siavosh Mahboobi
- Faculty of Chemistry and Pharmacy, Institute of Pharmacy, University of Regensburg, 93040, Regensburg, Germany
| | - Thomas Kindler
- Department of Hematology, Medical Oncology and Pneumology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany.,German Consortia for Translational Cancer Research, Mainz, Germany
| | - Walburgis Brenner
- Clinic for Obstetrics and Women's Health, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Teodora Nikolova
- Department of Toxicology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Oliver H Krämer
- Department of Toxicology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
20
|
Tahir R, Madugundu AK, Udainiya S, Cutler JA, Renuse S, Wang L, Pearson NA, Mitchell CJ, Mahajan N, Pandey A, Wu X. Proximity-Dependent Biotinylation to Elucidate the Interactome of TNK2 Nonreceptor Tyrosine Kinase. J Proteome Res 2021; 20:4566-4577. [PMID: 34428048 DOI: 10.1021/acs.jproteome.1c00551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nonreceptor tyrosine kinases (NRTKs) represent an important class of signaling molecules driving diverse cellular pathways. Aberrant expression and hyperphosphorylation of TNK2, an NRTK, have been implicated in multiple cancers. However, the exact proteins and cellular events that mediate phenotypic changes downstream of TNK2 are unclear. Biological systems that employ proximity-dependent biotinylation methods, such as BioID, are being increasingly used to map protein-protein interactions, as they provide increased sensitivity in discovering interaction partners. In this study, we employed stable isotope labeling with amino acids in cell culture and BioID coupled to the biotinylation site identification technology (BioSITe) method that we recently developed to quantitatively explore the interactome of TNK2. By performing a controlled comparative analysis between full-length TNK2 and its truncated counterpart, we were able to not only identify site-level biotinylation of previously well-established TNK2 binders and substrates including NCK1, NCK2, CTTN, and STAT3, but also discover several novel TNK2 interacting partners. We also performed co-immunoprecipitation and immunofluorescence analysis to validate the interaction between TNK2 and CLINT1, a novel TNK2 interacting protein. Overall, this work reveals the power of the BioSITe method coupled to BioID and highlights several molecules that warrant further exploration to assess their functional significance in TNK2-mediated signaling.
Collapse
Affiliation(s)
- Raiha Tahir
- Biochemistry, Cellular and Molecular Biology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,Ginkgo Bioworks, Boston, Massachusetts 02210, United States
| | - Anil K Madugundu
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,Institute of Bioinformatics, International Technology Park, Bangalore 560066, Karnataka, India.,Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India.,Center for Molecular Medicine, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bangalore 560029, Karnataka, India.,Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Savita Udainiya
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,Center for Molecular Medicine, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bangalore 560029, Karnataka, India.,Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Jevon A Cutler
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,Pre-Doctoral Training Program in Human Genetics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Santosh Renuse
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55905, United States.,Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Li Wang
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Nicole A Pearson
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55905, United States
| | | | - Nupam Mahajan
- Siteman Cancer Center, Washington University, St. Louis, Missouri 63110, United States
| | - Akhilesh Pandey
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,Center for Molecular Medicine, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bangalore 560029, Karnataka, India.,Departments of Pathology and Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55905, United States.,Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Xinyan Wu
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55905, United States.,Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota 55905, United States
| |
Collapse
|
21
|
Zeng Y, Qiu R, Yang Y, Gao T, Zheng Y, Huang W, Gao J, Zhang K, Liu R, Wang S, Hou Y, Yu W, Leng S, Feng D, Liu W, Zhang X, Wang Y. Regulation of EZH2 by SMYD2-Mediated Lysine Methylation Is Implicated in Tumorigenesis. Cell Rep 2019; 29:1482-1498.e4. [DOI: 10.1016/j.celrep.2019.10.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 06/07/2019] [Accepted: 10/01/2019] [Indexed: 12/13/2022] Open
|
22
|
Research Progress of the Functional Role of ACK1 in Breast Cancer. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1018034. [PMID: 31772931 PMCID: PMC6854235 DOI: 10.1155/2019/1018034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 09/13/2019] [Indexed: 01/25/2023]
Abstract
ACK1 is a nonreceptor tyrosine kinase with a unique structure, which is tightly related to the biological behavior of tumors. Previous studies have demonstrated that ACK1 was involved with multiple signaling pathways of tumor progression. Its crucial role in tumor cell proliferation, apoptosis, invasion, and metastasis was tightly related to the prognosis and clinicopathology of cancer. ACK1 has a unique way of regulating cellular pathways, different from other nonreceptor tyrosine kinases. As an oncogenic kinase, recent studies have shown that ACK1 plays a critical regulatory role in the initiation and progression of tumors. In this review, we will be summarizing the structural characteristics, activation, and regulation of ACK1 in breast cancer, aiming to deeply understand the functional and mechanistic role of ACK1 and provide novel therapeutic strategies for breast cancer treatment.
Collapse
|
23
|
Focus on Cdc42 in Breast Cancer: New Insights, Target Therapy Development and Non-Coding RNAs. Cells 2019; 8:cells8020146. [PMID: 30754684 PMCID: PMC6406589 DOI: 10.3390/cells8020146] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 01/30/2019] [Accepted: 02/08/2019] [Indexed: 12/25/2022] Open
Abstract
Breast cancer is the most common malignant tumors in females. Although the conventional treatment has demonstrated a certain effect, some limitations still exist. The Rho guanosine triphosphatase (GTPase) Cdc42 (Cell division control protein 42 homolog) is often upregulated by some cell surface receptors and oncogenes in breast cancer. Cdc42 switches from inactive guanosine diphosphate (GDP)-bound to active GTP-bound though guanine-nucleotide-exchange factors (GEFs), results in activation of signaling cascades that regulate various cellular processes such as cytoskeletal changes, proliferation and polarity establishment. Targeting Cdc42 also provides a strategy for precise breast cancer therapy. In addition, Cdc42 is a potential target for several types of non-coding RNAs including microRNAs and lncRNAs. These non-coding RNAs is extensively involved in Cdc42-induced tumor processes, while many of them are aberrantly expressed. Here, we focus on the role of Cdc42 in cell morphogenesis, proliferation, motility, angiogenesis and survival, introduce the Cdc42-targeted non-coding RNAs, as well as present current development of effective Cdc42-targeted inhibitors in breast cancer.
Collapse
|
24
|
Leonhardt M, Sellmer A, Krämer OH, Dove S, Elz S, Kraus B, Beyer M, Mahboobi S. Design and biological evaluation of tetrahydro-β-carboline derivatives as highly potent histone deacetylase 6 (HDAC6) inhibitors. Eur J Med Chem 2018; 152:329-357. [PMID: 29738953 DOI: 10.1016/j.ejmech.2018.04.046] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/09/2018] [Accepted: 04/21/2018] [Indexed: 10/17/2022]
Abstract
Various diseases are related to epigenetic modifications. Histone deacetylases (HDACs) and histone acetyl transferases (HATs) determine the pattern of histone acetylation, and thus are involved in the regulation of gene expression. First generation histone deacetylase inhibitors (HDACi) are unselective, hinder all different kinds of zinc dependent HDACs and additionally cause several side effects. Subsequently, selective HDACi are gaining more and more interest. Especially, selective histone deacetylase 6 inhibitors (HDAC6i) are supposed to be less toxic. Here we present a successful optimization study of tubastatin A, the synthesis and biological evaluation of new inhibitors based on hydroxamic acids linked to various tetrahydro-β-carboline derivatives. The potency of our selective HDAC6 inhibitors, exhibiting IC50 values in a range of 1-10 nM towards HDAC6, was evaluated with the help of a recombinant human HDAC6 enzyme assay. Selectivity was proofed in cellular assays by the hyperacetylation of surrogate parameter α-tubulin in the absence of acetylated histone H3 analyzed by Western Blot. We show that all synthesized compounds, with varies modifications of the rigid cap group, were selective and potent HDAC6 inhibitors.
Collapse
Affiliation(s)
- Michel Leonhardt
- Institute of Pharmacy, Department of Pharmaceutical/Medicinal Chemistry I, University of Regensburg, 93040, Regensburg, Germany
| | - Andreas Sellmer
- Institute of Pharmacy, Department of Pharmaceutical/Medicinal Chemistry I, University of Regensburg, 93040, Regensburg, Germany
| | - Oliver H Krämer
- Institute of Toxicology, University Medical Center Mainz, 55131, Mainz, Germany
| | - Stefan Dove
- Institute of Pharmacy, Department of Pharmaceutical/Medicinal Chemistry II, University of Regensburg, 93040, Regensburg, Germany
| | - Sigurd Elz
- Institute of Pharmacy, Department of Pharmaceutical/Medicinal Chemistry I, University of Regensburg, 93040, Regensburg, Germany
| | - Birgit Kraus
- Institute of Pharmacy, Department of Pharmaceutical Biology, University of Regensburg, 93040, Regensburg, Germany
| | - Mandy Beyer
- Institute of Toxicology, University Medical Center Mainz, 55131, Mainz, Germany
| | - Siavosh Mahboobi
- Institute of Pharmacy, Department of Pharmaceutical/Medicinal Chemistry I, University of Regensburg, 93040, Regensburg, Germany.
| |
Collapse
|
25
|
Wu X, Zahari MS, Renuse S, Kelkar DS, Barbhuiya MA, Rojas PL, Stearns V, Gabrielson E, Malla P, Sukumar S, Mahajan NP, Pandey A. The non-receptor tyrosine kinase TNK2/ACK1 is a novel therapeutic target in triple negative breast cancer. Oncotarget 2018; 8:2971-2983. [PMID: 27902967 PMCID: PMC5356856 DOI: 10.18632/oncotarget.13579] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 10/10/2016] [Indexed: 12/04/2022] Open
Abstract
Breast cancer is the most prevalent cancer in women worldwide. About 15-20% of all breast cancers do not express estrogen receptor, progesterone receptor or HER2 receptor and hence are collectively classified as triple negative breast cancer (TNBC). These tumors are often relatively aggressive when compared to other types of breast cancer, and this issue is compounded by the lack of effective targeted therapy. In our previous phosphoproteomic profiling effort, we identified the non-receptor tyrosine kinase TNK2 as activated in a majority of aggressive TNBC cell lines. In the current study, we show that high expression of TNK2 in breast cancer cell lines correlates with high proliferation, invasion and colony forming ability. We demonstrate that knockdown of TNK2 expression can substantially suppress the invasiveness and proliferation advantage of TNBC cells in vitro and tumor formation in xenograft mouse models. Moreover, inhibition of TNK2 with small molecule inhibitor (R)-9bMS significantly compromised TNBC proliferation. Finally, we find that high levels of TNK2 expression in high-grade basal-like breast cancers correlates significantly with poorer patient outcome. Taken together, our study suggests that TNK2 is a novel potential therapeutic target for the treatment of TNBC.
Collapse
Affiliation(s)
- Xinyan Wu
- Department of Biological Chemistry, Johns Hopkins University School of Medicine Baltimore, MD 21205, U.S.A.,McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine Baltimore, MD 21205, U.S.A
| | - Muhammad Saddiq Zahari
- Department of Biological Chemistry, Johns Hopkins University School of Medicine Baltimore, MD 21205, U.S.A.,McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine Baltimore, MD 21205, U.S.A
| | - Santosh Renuse
- Department of Biological Chemistry, Johns Hopkins University School of Medicine Baltimore, MD 21205, U.S.A.,McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine Baltimore, MD 21205, U.S.A.,Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India
| | - Dhanashree S Kelkar
- Department of Biological Chemistry, Johns Hopkins University School of Medicine Baltimore, MD 21205, U.S.A.,McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine Baltimore, MD 21205, U.S.A
| | - Mustafa A Barbhuiya
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine Baltimore, MD 21205, U.S.A
| | - Pamela L Rojas
- Department of Biological Chemistry, Johns Hopkins University School of Medicine Baltimore, MD 21205, U.S.A.,McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine Baltimore, MD 21205, U.S.A
| | - Vered Stearns
- Department of Oncology, Johns Hopkins University School of Medicine Baltimore, MD 21205, U.S.A
| | - Edward Gabrielson
- Department of Oncology, Johns Hopkins University School of Medicine Baltimore, MD 21205, U.S.A.,Department of Pathology, Johns Hopkins University School of Medicine Baltimore, MD 21205, U.S.A
| | - Pavani Malla
- Department of Drug Discovery, Moffitt Cancer Center, Tampa, FL 33612, U.S.A
| | - Saraswati Sukumar
- Department of Oncology, Johns Hopkins University School of Medicine Baltimore, MD 21205, U.S.A
| | - Nupam P Mahajan
- Department of Drug Discovery, Moffitt Cancer Center, Tampa, FL 33612, U.S.A.,Department of Oncologic Sciences, University of South Florida, Tampa, FL 33612, U.S.A
| | - Akhilesh Pandey
- Department of Biological Chemistry, Johns Hopkins University School of Medicine Baltimore, MD 21205, U.S.A.,McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine Baltimore, MD 21205, U.S.A.,Department of Oncology, Johns Hopkins University School of Medicine Baltimore, MD 21205, U.S.A.,Department of Pathology, Johns Hopkins University School of Medicine Baltimore, MD 21205, U.S.A
| |
Collapse
|
26
|
Mahendrarajah N, Borisova ME, Reichardt S, Godmann M, Sellmer A, Mahboobi S, Haitel A, Schmid K, Kenner L, Heinzel T, Beli P, Krämer OH. HSP90 is necessary for the ACK1-dependent phosphorylation of STAT1 and STAT3. Cell Signal 2017; 39:9-17. [DOI: 10.1016/j.cellsig.2017.07.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/07/2017] [Accepted: 07/19/2017] [Indexed: 12/24/2022]
|
27
|
Mahendrarajah N, Paulus R, Krämer OH. Histone deacetylase inhibitors induce proteolysis of activated CDC42-associated kinase-1 in leukemic cells. J Cancer Res Clin Oncol 2016; 142:2263-73. [PMID: 27576506 DOI: 10.1007/s00432-016-2229-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 08/22/2016] [Indexed: 12/19/2022]
Abstract
PURPOSE Activated CDC42-associated kinase-1 (ACK1/TNK2) and epigenetic regulators of the histone deacetylase (HDAC) family regulate the proliferation and survival of leukemic cells. 18 HDACs fall into four classes (I-IV). We tested the impact of clinically relevant histone deacetylase inhibitors (HDACi) on ACK1 and if such drugs combine favorably with the therapeutically used ACK1 inhibitor Dasatinib. METHODS We applied the broad-range HDACi Panobinostat/LBH589 and the class I HDAC-specific inhibitor Entinostat/MS-275 to various acute and chronic myeloid leukemia cells (AML/CML). We also used the replicative stress inducer Hydroxyurea (HU), a standard drug for leukemic patients, and the apoptosis inducer Staurosporine (STS). To assess cytotoxic effects of HDACi, we measured cell cycle profiles and DNA fragmentation by flow cytometry. Western blot was employed to analyze protein expression and phosphorylation. RESULTS LBH589 and MS-275 induce proteolysis of ACK1 in CML and AML cells. Panobinostat more strongly induces apoptosis than Entinostat, and this correlates with a significantly pronounced loss of ACK1. STS and HU also propel the degradation of ACK1 in leukemic cells. Moreover, the caspase inhibitor z-VAD-FMK reduces ACK1 degradation in the presence of HDACi. Concomitant with the attenuation of ACK1, we noticed decreased phosphorylation of STAT3. Direct inhibition of ACK1 with Dasatinib also suppresses STAT3 phosphorylation. Furthermore, Dasatinib and HDACi combinations are effective against CML cells. CONCLUSION HDACs sustain the ACK1-STAT3 signaling node and leukemic cell growth. Consistent with their different effects on ACK1 stability or auto-phosphorylation, Dasatinib and HDACi combinations produce beneficial antileukemic effects.
Collapse
MESH Headings
- Amino Acid Chloromethyl Ketones/administration & dosage
- Amino Acid Chloromethyl Ketones/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Apoptosis/drug effects
- Caspases/metabolism
- Dasatinib/administration & dosage
- Dasatinib/pharmacology
- Histone Deacetylase Inhibitors/administration & dosage
- Histone Deacetylase Inhibitors/pharmacology
- Humans
- Hydroxamic Acids/pharmacology
- Indoles/pharmacology
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/enzymology
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/enzymology
- Panobinostat
- Phosphorylation/drug effects
- Protein-Tyrosine Kinases/metabolism
- STAT3 Transcription Factor/metabolism
Collapse
Affiliation(s)
- Nisintha Mahendrarajah
- Department of Toxicology, University Medical Center of the Johannes Gutenberg University Mainz, Obere Zahlbacher Straße 67, 55131, Mainz, Germany
| | - Ramin Paulus
- Department of Toxicology, University Medical Center of the Johannes Gutenberg University Mainz, Obere Zahlbacher Straße 67, 55131, Mainz, Germany
| | - Oliver H Krämer
- Department of Toxicology, University Medical Center of the Johannes Gutenberg University Mainz, Obere Zahlbacher Straße 67, 55131, Mainz, Germany.
| |
Collapse
|
28
|
Zhang Q, Wang Z, Hou F, Harding R, Huang X, Dong A, Walker JR, Tong Y. The substrate binding domains of human SIAH E3 ubiquitin ligases are now crystal clear. Biochim Biophys Acta Gen Subj 2016; 1861:3095-3105. [PMID: 27776223 DOI: 10.1016/j.bbagen.2016.10.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 10/03/2016] [Accepted: 10/19/2016] [Indexed: 10/20/2022]
Abstract
BACKGROUND Seven in absentia homologs (SIAHs) comprise a family of highly conserved E3 ubiquitin ligases that play an important role in regulating signalling pathways in tumorigenesis, including the DNA damage repair and hypoxia response pathways. SIAH1 and SIAH2 have been found to function as a tumour repressor and a proto-oncogene, respectively, despite the high sequence identity of their substrate binding domains (SBDs). Ubiquitin-specific protease USP19 is a deubiquitinase that forms a complex with SIAHs and counteracts the ligase function. Much effort has been made to find selective inhibitors of the SIAHs E3 ligases. Menadione was reported to inhibit SIAH2 specifically. METHODS We used X-ray crystallography, peptide array, bioinformatic analysis, and biophysical techniques to characterize the structure and interaction of SIAHs with deubiquitinases and literature reported compounds. RESULTS We solved the crystal structures of SIAH1 in complex with a USP19 peptide and of the apo form SIAH2. Phylogenetic analysis revealed the SIAH/USP19 complex is conserved in evolution. We demonstrated that menadione destabilizes both SIAH1 and SIAH2 non-specifically through covalent modification. CONCLUSIONS The SBDs of SIAH E3 ligases are structurally similar with a subtle stability difference. USP19 is the only deubiquitinase that directly binds to SIAHs through the substrate binding pocket. Menadione is not a specific inhibitor for SIAH2. GENERAL SIGNIFICANCE The crystallographic models provide structural insights into the substrate binding of the SIAH family E3 ubiquitin ligases that are critically involved in regulating cancer-related pathways. Our results suggest caution should be taken when using menadione as a specific SIAH2 inhibitor.
Collapse
Affiliation(s)
- Qi Zhang
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Zhongduo Wang
- Fisheries College, Guangdong Ocean University, Zhanjiang, Guangdong 524025, China
| | - Feng Hou
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Rachel Harding
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Xinyi Huang
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Aiping Dong
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - John R Walker
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Yufeng Tong
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5G 1L7, Canada.
| |
Collapse
|
29
|
Zeng QS, Xie BH, Xie YK, Wang XN. Activated Cdc42 kinase 1 and hepatocellular carcinoma. Shijie Huaren Xiaohua Zazhi 2016; 24:3853-3859. [DOI: 10.11569/wcjd.v24.i27.3853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Primary liver cancer includes hepatocellular carcinoma (HCC) and cholangiocellular carcinoma. The incidence of HCC is different between countries and regions. As one of the common malignant tumors in China, HCC has high mortality and is the second most common cause of cancer-related death. Elucidating the molecular mechanism of HCC pathogenesis is important for the diagnosis and treatment of liver cancer in China. The expression of activated Cdc42 kinase 1 (ACK1) has been found in a variety of cancers, and ACK1 participates in the occurrence and development of cancers. However, there are currently few studies about the relationship between ACK1 protein and HCC. This paper reviews the structure characteristics and biological function of ACK1 as well as its relationship with invasion and metastasis of HCC.
Collapse
|
30
|
Kuehn F, Mullins CS, Krohn M, Harnack C, Ramer R, Krämer OH, Klar E, Huehns M, Linnebacher M. Establishment and characterization of HROC69 - a Crohn´s related colonic carcinoma cell line and its matched patient-derived xenograft. Sci Rep 2016; 6:24671. [PMID: 27087592 PMCID: PMC4834534 DOI: 10.1038/srep24671] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 03/23/2016] [Indexed: 02/07/2023] Open
Abstract
Colitis-associated colorectal cancer (CAC) seems to be a rather unique entity and differs in its genetic alterations, tumour formation capacities, and clinical features from sporadic colorectal carcinoma. Most descriptions about tumour biology of CAC refer to ulcerative colitis; data about Crohn´s colitis related carcinomas are scarce. The majority of patients with Crohn´s disease are under immunosuppression which generates a different environment for tumour growth. We first describe the clinical case of a fast growing CAC in a long-term immunosuppressed patient with Crohn´s disease and successful establishment and characterization of carcinoma cell lines along with their corresponding patient-derived xenograft. Subsequently, these tumor models were molecularly and functionally analysed. Beside numerous chromosomal alterations, mutations in TP53, APC, PTEN and SMAD3 were identified. The cell lines express numerous cancer testis antigens, surface molecules involved in immune evasion but low levels of HLA class I molecules. They show strong invasive but in comparison weak migratory activity. The present work is the first description of patient-derived in vitro and in vivo models for CAC from a Crohn´s disease patient. They might be valuable tools for analysis of genetic and epigenetic alterations, biomarker identification, functional testing, including response prediction, and the development of specific therapeutical strategies.
Collapse
Affiliation(s)
- Florian Kuehn
- University Medicine Rostock, Department of General-, Thoracic-, Vascular- and Transplantation Surgery, Rostock, Germany
| | - Christina S. Mullins
- University Medicine Rostock, Department of General Surgery, Molecular Oncology and Immunotherapy, Rostock, Germany
| | - Mathias Krohn
- University Medicine Rostock, Department of General Surgery, Molecular Oncology and Immunotherapy, Rostock, Germany
| | - Christine Harnack
- University Medicine Rostock, Department of General-, Thoracic-, Vascular- and Transplantation Surgery, Rostock, Germany
| | - Robert Ramer
- University Medicine Rostock, Institute of Toxicology and Pharmacology, Rostock, Germany
| | - Oliver H. Krämer
- University Medical Center Mainz, Department of Toxicology, Mainz, Germany
| | - Ernst Klar
- University Medicine Rostock, Department of General-, Thoracic-, Vascular- and Transplantation Surgery, Rostock, Germany
| | - Maja Huehns
- University Medicine Rostock, Institute of Pathology, Rostock, Germany
| | - Michael Linnebacher
- University Medicine Rostock, Department of General Surgery, Molecular Oncology and Immunotherapy, Rostock, Germany
| |
Collapse
|
31
|
Wagner T, Kiweler N, Wolff K, Knauer SK, Brandl A, Hemmerich P, Dannenberg JH, Heinzel T, Schneider G, Krämer OH. Sumoylation of HDAC2 promotes NF-κB-dependent gene expression. Oncotarget 2016; 6:7123-35. [PMID: 25704882 PMCID: PMC4466673 DOI: 10.18632/oncotarget.3344] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 01/04/2015] [Indexed: 01/15/2023] Open
Abstract
The transcription factor nuclear factor-κB (NF-κB) is crucial for the maintenance of homeostasis. It is incompletely understood how nuclear NF-κB and the crosstalk of NF-κB with other transcription factors are controlled. Here, we demonstrate that the epigenetic regulator histone deacetylase 2 (HDAC2) activates NF-κB in transformed and primary cells. This function depends on both, the catalytic activity and an intact HDAC2 sumoylation motif. Several mechanisms account for the induction of NF-κB through HDAC2. The expression of wild-type HDAC2 can increase the nuclear presence of NF-κB. In addition, the ribosomal S6 kinase 1 (RSK1) and the tumor suppressor p53 contribute to the regulation of NF-κB by HDAC2. Moreover, TP53 mRNA expression is positively regulated by wild-type HDAC2 but not by sumoylation-deficient HDAC2. Thus, sumoylation of HDAC2 integrates NF-κB signaling involving p53 and RSK1. Since HDAC2-dependent NF-κB activity protects colon cancer cells from genotoxic stress, our data also suggest that high HDAC2 levels, which are frequently found in tumors, are linked to chemoresistance. Accordingly, inhibitors of NF-κB and of the NF-κB/p53-regulated anti-apoptotic protein survivin significantly sensitize colon carcinoma cells expressing wild-type HDAC2 to apoptosis induced by the genotoxin doxorubicin. Hence, the HDAC2-dependent signaling node we describe here may offer an interesting therapeutic option.
Collapse
Affiliation(s)
- Tobias Wagner
- Centre for Molecular Biomedicine, Institute of Biochemistry and Biophysics, Department of Biochemistry, Friedrich Schiller University of Jena, Jena, Germany
| | - Nicole Kiweler
- Department of Toxicology, University Medical Center, Mainz, Germany
| | - Katharina Wolff
- Centre for Molecular Biomedicine, Institute of Biochemistry and Biophysics, Department of Biochemistry, Friedrich Schiller University of Jena, Jena, Germany
| | - Shirley K Knauer
- Centre for Medical Biotechnology, Molecular Biology II, University of Duisburg-Essen, Essen, Germany
| | - André Brandl
- Centre for Molecular Biomedicine, Institute of Biochemistry and Biophysics, Department of Biochemistry, Friedrich Schiller University of Jena, Jena, Germany
| | - Peter Hemmerich
- Leibniz-Institute for Age Research, Fritz-Lipmann-Institute, Jena, Germany
| | - Jan-Hermen Dannenberg
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Thorsten Heinzel
- Centre for Molecular Biomedicine, Institute of Biochemistry and Biophysics, Department of Biochemistry, Friedrich Schiller University of Jena, Jena, Germany
| | - Günter Schneider
- Klinikum rechts der Isar, II. Medizinische Klinik, Technische Universität München, München, Germany
| | - Oliver H Krämer
- Department of Toxicology, University Medical Center, Mainz, Germany
| |
Collapse
|
32
|
Knauer SK, Mahendrarajah N, Roos WP, Krämer OH. The inducible E3 ubiquitin ligases SIAH1 and SIAH2 perform critical roles in breast and prostate cancers. Cytokine Growth Factor Rev 2015; 26:405-13. [DOI: 10.1016/j.cytogfr.2015.04.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Accepted: 04/27/2015] [Indexed: 12/15/2022]
|
33
|
Lin CH, Lin SY, Chang HW, Ko LJ, Tseng YS, Chang VHS, Yu WCY. CDK2 phosphorylation regulates the protein stability of KLF10 by interfering with binding of the E3 ligase SIAH1. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:1174-81. [PMID: 25728284 DOI: 10.1016/j.bbamcr.2015.02.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 02/15/2015] [Accepted: 02/19/2015] [Indexed: 01/07/2023]
Abstract
Downregulation of multiple cell cycle-regulatory molecules is a dominant event in TGF-β1-mediated growth inhibition of human carcinoma cells. It is known that KLF10 mimics the anti-proliferative and apoptotic effects that TGF-β1 has on epithelial cell growth and the growth of various tumor cells; based on these findings it is considered as a tumor suppressor. KLF10 protein expression is tightly associated with cell cycle-dependent events. However, the regulatory mechanism and its biological meaning have not been identified. In this study, we have demonstrated that KLF10 is a substrate of CDK2/cyclin E and can be phosphorylated. We also have shown that KLF10 efficiently binds to CDK2, while binding much less to CDK4, and displaying no binding to Cdk6. Using mass spectrometry, site direct mutagenesis, in vitro kinase assays and depletion assays, we have established that CDK2 phosphorylates Ser206, which subsequently affects the steady state level of KLF10 in cells. Our studies have also proved that CDK2 up-regulates the protein level of KLF10 through reducing its association with SIAH1, a KLF10 E3-ubiqutin ligase involved in proteasomal degradation. Taken all together, these findings indicate that CDK2-dependent phosphorylation regulates KLF10 stability and that this affects the role of KLF10 in cell.
Collapse
Affiliation(s)
- Ching-Hui Lin
- National Institute of Cancer Research, National Health Research Institutes, Taipei, Taiwan
| | - Shu-Yu Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Hsuen-Wen Chang
- Laboratory Animal Center, Taipei Medical University, Taipei, Taiwan
| | - Li-Jung Ko
- National Institute of Cancer Research, National Health Research Institutes, Taipei, Taiwan
| | - Yan-Shen Tseng
- National Institute of Cancer Research, National Health Research Institutes, Taipei, Taiwan
| | - Vincent H S Chang
- Program for Translation Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.
| | - Winston C Y Yu
- National Institute of Cancer Research, National Health Research Institutes, Taipei, Taiwan; Program for Translation Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
34
|
Abstract
The Janus tyrosine kinases JAK1-3 and tyrosine kinase-2 (TYK2) are frequently hyperactivated in tumors. In lung cancers JAK1 and JAK2 induce oncogenic signaling through STAT3. A putative role of TYK2 in these tumors has not been reported. Here, we show a previously not recognized TYK2-STAT3 signaling node in lung cancer cells. We reveal that the E3 ubiquitin ligase seven-in-absentia-2 (SIAH2) accelerates the proteasomal degradation of TYK2. This mechanism consequently suppresses the activation of STAT3. In agreement with these data the analysis of primary non-small-cell lung cancer (NSCLC) samples from three patient cohorts revealed that compared to lung adenocarcinoma (ADC), lung squamous cell carcinoma (SCC) show significantly higher levels of SIAH2 and reduced STAT3 phosphorylation levels. Thus, SIAH2 is a novel molecular marker for SCC. We further demonstrate that an activation of the oncologically relevant transcription factor p53 in lung cancer cells induces SIAH2, depletes TYK2, and abrogates the tyrosine phosphorylation of STAT1 and STAT3. This mechanism appears to be different from the inhibition of phosphorylated JAKs through the suppressor of cytokine signaling (SOCS) proteins. Our study may help to identify molecular mechanisms affecting lung carcinogenesis and potential therapeutic targets.
Collapse
|
35
|
Mahajan K, Mahajan NP. ACK1/TNK2 tyrosine kinase: molecular signaling and evolving role in cancers. Oncogene 2014; 34:4162-7. [PMID: 25347744 PMCID: PMC4411206 DOI: 10.1038/onc.2014.350] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 09/17/2014] [Accepted: 09/22/2014] [Indexed: 01/11/2023]
Abstract
Deregulated tyrosine kinase signaling alters cellular homeostasis to drive cancer progression. The emergence of a non-receptor tyrosine kinase, ACK1 as an oncogenic kinase, has uncovered novel mechanisms by which tyrosine kinase signaling promotes cancer progression. While early studies focused on ACK1 (also known as activated Cdc42-associated kinase 1 or TNK2) as a cytosolic effecter of activated transmembrane receptor tyrosine kinases (RTKs), wherein it shuttles between the cytosol and the nucleus to rapidly transduce extracellular signals from the RTKs to the intracellular effectors, recent data unfold a new aspect of its functionality as an epigenetic regulator. ACK1 interacts with the Estrogen Receptor (ER)/histone demethylase KDM3A (JHDM2a) complex, modifies KDM3A by tyrosine phosphorylation to regulate transcriptional outcome at HOXA1 locus to promote the growth of tamoxifen-resistant breast cancer. It is also well established that ACK1 regulates the activity of Androgen Receptor (AR) by tyrosine phosphorylation to fuel the growth of hormone-refractory prostate cancers. Further, recent explosion in genomic sequencing has revealed recurrent ACK1 gene amplification and somatic mutations in a variety of human malignancies, providing a molecular basis for its role in neoplastic transformation. In this review, we will discuss the various facets of ACK1 signaling, including its newly uncovered epigenetic regulator function, which enables cells to bypass the blockade to major survival pathways to promote resistance to standard cancer treatments. Not surprisingly, cancer cells appear to acquire an `addiction’ to ACK1 mediated survival, particularly under stress conditions, such as growth factor deprivation or genotoxic insults or hormone deprivation. With the accelerated development of potent and selective ACK1 inhibitors, targeted treatment for cancers harboring aberrant ACK1 activity may soon become a clinical reality.
Collapse
Affiliation(s)
- K Mahajan
- 1] Moffitt Cancer Center, Drug Discovery Department, Tampa, FL, USA [2] Department of Oncologic Sciences, University of South Florida, Tampa, FL, USA
| | - N P Mahajan
- 1] Moffitt Cancer Center, Drug Discovery Department, Tampa, FL, USA [2] Department of Oncologic Sciences, University of South Florida, Tampa, FL, USA
| |
Collapse
|
36
|
Gopalsamy A, Hagen T, Swaminathan K. Investigating the molecular basis of Siah1 and Siah2 E3 ubiquitin ligase substrate specificity. PLoS One 2014; 9:e106547. [PMID: 25202994 PMCID: PMC4159269 DOI: 10.1371/journal.pone.0106547] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 08/07/2014] [Indexed: 11/19/2022] Open
Abstract
The Siah1 and Siah2 E3 ubiquitin ligases play an important role in diverse signaling pathways and have been shown to be deregulated in cancer. The human Siah1 and Siah2 isoforms share high sequence similarity but possess contrary roles in cancer, with Siah1 more often acting as a tumor suppressor while Siah2 functions as a proto-oncogene. The different function of Siah1 and Siah2 in cancer is likely due to the ubiquitination of distinct substrates. Hence, we decided to investigate the molecular basis of the substrate specificity, utilizing the well-characterized Siah2 substrate PHD3. Using chimeric and mutational approaches, we identified critical residues in Siah2 that promote substrate specificity. Thus, we have found that four residues in the N-terminal region of the Siah2 substrate binding domain (SBD) (Ser132, His150, Pro155, Tyr163) are critical for substrate specificity. In the C-terminal region of the SBD, a single residue, Leu250, was identified to promote the specific binding of Siah2 SBD to PHD3. Our study may help to overcome the challenges in the identification of Siah2 specific inhibitors.
Collapse
Affiliation(s)
- Anupriya Gopalsamy
- Department of Obstetrics and Gynecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Thilo Hagen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | |
Collapse
|
37
|
Mahajan K, Lawrence HR, Lawrence NJ, Mahajan NP. ACK1 tyrosine kinase interacts with histone demethylase KDM3A to regulate the mammary tumor oncogene HOXA1. J Biol Chem 2014; 289:28179-91. [PMID: 25148682 DOI: 10.1074/jbc.m114.584425] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Hormone therapy with the selective estrogen-receptor modulator tamoxifen provides a temporary relief for patients with estrogen receptor α (ER)-positive breast cancers. However, a subset of patients exhibiting overexpression of the HER2 receptor tyrosine kinase displays intrinsic resistance to tamoxifen therapy. Therefore, elucidating the mechanisms promoting the estrogen (E2)-independent ER-regulated gene transcription in tamoxifen-resistant breast tumors is essential to identify new therapeutic avenues to overcome drug resistance and ameliorate poor prognosis. The non-receptor tyrosine kinase, ACK1 (also known as TNK2), has emerged as a major integrator of signaling from various receptor tyrosine kinases including HER2. We have uncovered that heregulin-mediated ACK1 activation promoted ER activity in the presence of tamoxifen, which was significantly down-regulated upon ACK1 knockdown or inhibition of ACK1 by small molecule inhibitors, AIM-100 or Dasatinib. We report that ACK1 phosphorylates the ER co-activator, KDM3A, a H3K9 demethylase, at an evolutionary conserved tyrosine 1114 site in a heregulin-dependent manner, even in the presence of tamoxifen. Consistent with this finding, ACK1 activation resulted in a significant decrease in the deposition of dimethyl H3K9 epigenetic marks. Conversely, inhibition of ACK1 by AIM-100 or Dasatinib restored dimethyl H3K9 methylation marks and caused transcriptional suppression of the ER-regulated gene HOXA1. Thus, by its ability to regulate the epigenetic activity of an ER co-activator KDM3A, ACK1 modulates HOXA1 expression in the absence of E2, conferring tamoxifen resistance. These data reveal a novel therapeutic option, suppression of ACK1 signaling by AIM-100 or Dasatinib, to mitigate HOXA1 up-regulation in breast cancer patients displaying tamoxifen resistance.
Collapse
Affiliation(s)
- Kiran Mahajan
- From the Drug Discovery Department, Moffitt Cancer Center, and the Department of Oncologic Sciences, College of Medicine, University of South Florida, Tampa, Florida 33612
| | - Harshani R Lawrence
- From the Drug Discovery Department, Moffitt Cancer Center, and the Department of Oncologic Sciences, College of Medicine, University of South Florida, Tampa, Florida 33612
| | - Nicholas J Lawrence
- From the Drug Discovery Department, Moffitt Cancer Center, and the Department of Oncologic Sciences, College of Medicine, University of South Florida, Tampa, Florida 33612
| | - Nupam P Mahajan
- From the Drug Discovery Department, Moffitt Cancer Center, and the Department of Oncologic Sciences, College of Medicine, University of South Florida, Tampa, Florida 33612
| |
Collapse
|
38
|
Qi J, Kim H, Scortegagna M, Ronai ZA. Regulators and effectors of Siah ubiquitin ligases. Cell Biochem Biophys 2014; 67:15-24. [PMID: 23700162 DOI: 10.1007/s12013-013-9636-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The Siah ubiquitin ligases are members of the RING finger E3 ligases. The Siah E3s are conserved from fly to mammals. Primarily implicated in cellular stress responses, Siah ligases play a key role in hypoxia, through the regulation of HIF-1α transcription stability and activity. Concomitantly, physiological conditions associated with varying oxygen tension often highlight the importance of Siah, as seen in cancer and neurodegenerative disorders. Notably, recent studies also point to the role of these ligases in fundamental processes including DNA damage response, cellular organization and polarity. This review summarizes the current understanding of upstream regulators and downstream effectors of Siah.
Collapse
Affiliation(s)
- Jianfei Qi
- Signal Transduction Program, Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
39
|
Hayes JD, Dinkova-Kostova AT. The Nrf2 regulatory network provides an interface between redox and intermediary metabolism. Trends Biochem Sci 2014; 39:199-218. [PMID: 24647116 DOI: 10.1016/j.tibs.2014.02.002] [Citation(s) in RCA: 1619] [Impact Index Per Article: 147.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 02/03/2014] [Accepted: 02/05/2014] [Indexed: 02/08/2023]
Abstract
Nuclear factor-erythroid 2 p45-related factor 2 (Nrf2, also called Nfe2l2) is a transcription factor that regulates the cellular redox status. Nrf2 is controlled through a complex transcriptional/epigenetic and post-translational network that ensures its activity increases during redox perturbation, inflammation, growth factor stimulation and nutrient/energy fluxes, thereby enabling the factor to orchestrate adaptive responses to diverse forms of stress. Besides mediating stress-stimulated induction of antioxidant and detoxification genes, Nrf2 contributes to adaptation by upregulating the repair and degradation of damaged macromolecules, and by modulating intermediary metabolism. In the latter case, Nrf2 inhibits lipogenesis, supports β-oxidation of fatty acids, facilitates flux through the pentose phosphate pathway, and increases NADPH regeneration and purine biosynthesis; these observations suggest Nrf2 directs metabolic reprogramming during stress.
Collapse
Affiliation(s)
- John D Hayes
- Jacqui Wood Cancer Centre, Division of Cancer Research, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, UK.
| | - Albena T Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cancer Research, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, UK
| |
Collapse
|
40
|
Mahajan K, Mahajan NP. ACK1 tyrosine kinase: targeted inhibition to block cancer cell proliferation. Cancer Lett 2013; 338:185-92. [PMID: 23597703 DOI: 10.1016/j.canlet.2013.04.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 04/03/2013] [Accepted: 04/08/2013] [Indexed: 01/05/2023]
Abstract
ACK1 tyrosine kinase, located on chromosome 3q29, is aberrantly activated, amplified or mutated in a wide variety of human cancers. While the deregulated kinase is oncogenic and its activation correlates with progression to metastatic stage, its inhibition causes cell cycle arrest, sensitizes cells to ionizing radiation and induces apoptosis. Oncogenicity of ACK1 is not only due to its ability to promote activation of critical pro-survival kinases and harmone receptors by phosphorylating at distinct tyrosine residues, but also by employing a similar mechanism to eliminate a tumor suppressor from cancer cells. Despite the substantial data supporting the oncogenic role of ACK1, and the potential clinical benefit of blocking ACK1 in metastatic disease, to date ACK1-specific small molecule inhibitors have not been exploited for cancer therapy. This review highlights recent advances that elucidate how cancer cells employ ACK1 kinase to their advantage and discusses some of the novel ACK1 inhibitors that have shown promise in pre-clinical studies.
Collapse
Affiliation(s)
- Kiran Mahajan
- Drug Discovery Department, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612, USA.
| | | |
Collapse
|