1
|
Liu L, Zhang R, Chen C, Xia C, Yao G, He X, Xia B. The effect of Banxia-houpo decoction on CUMS-induced depression by promoting M2 microglia polarization via TrkA/Akt signalling. J Cell Mol Med 2023; 27:3339-3353. [PMID: 37581474 PMCID: PMC10623515 DOI: 10.1111/jcmm.17906] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/16/2023] Open
Abstract
It has been reported that Banxia-houpo decoction (BXHPD) serves as the anti-depressant treatment for a mild and severe depressive disease with limited side effects. The present study was performed to evaluate the protective effect of BXHPD on chronic unpredicted mild stress (CUMS)-induced depression and explore its effect on TrkA/Akt-mediated microglia polarization. The CUMS procedure was carried out, and the mice were intragastrically treated with BXHPD once daily. The selective TrkA inhibitor GW441756 was applied to further investigate the role of TrkA in BXHPD-mediated microglia polarization. The behaviour test including open field test (OFT), sucrose preference test (SPT), novelty-suppressed feeding test (NSFT), tail suspension test (TST) and forced swim test (FST) was performed. The concentrations of pro-inflammatory cytokines IL-6, TNF-α, IL-1β, IL-12 and anti-inflammatory cytokines IL-4, IL-10 were determined using Enzyme-linked immunosorbent assay. The population of Iba1+ cells and the length of microglia processes were observed under the fluorescence microscope. The mRNA expressions of Arg1, Ym1 and Fizzl1 were measured by PCR. The protein expressions of TrkA, p-Tyr490-TrkA, p-Ser473-Akt, p-Ser473-Akt1, p-Ser474-Akt2, p-CREB and Jmjd3 were detected by western blot. Our results showed that BXHPD attenuated CUMS-induced depressive-like behaviour, promoted anti-inflammatory cytokines, inhibited pro-inflammatory cytokines, suppressed microglia activation, promoted M2 phenotype-specific indices and upregulated the expressions of TrkA, p-Tyr490-TrkA, p-Ser473-Akt, p-Ser473-Akt1, p-Ser474-Akt2, p-CREB and Jmjd3. The above beneficial effect of BXHPD can be blocked by TrkA inhibitor GW441756. This work demonstrated that BXHPD exerted an anti-depressant effect by promoting M2 phenotype microglia polarization via TrkA/Akt pathway.
Collapse
Affiliation(s)
- Li Liu
- School of PharmacyGuangdong Medical UniversityDongguanChina
| | - Rong Zhang
- Neurology DepartmentKunshan Hospital Affiliated to Nanjing University of Chinese MedicineKunshanChina
| | - Chang Chen
- School of Elderly Care Services and ManagementNanjing University of Chinese MedicineNanjingChina
| | - Changbo Xia
- School of Chinese Medicine, School of Integrated Chinese and Western MedicineNanjing University of Chinese MedicineNanjingChina
| | - Guangda Yao
- School of Chinese Medicine, School of Integrated Chinese and Western MedicineNanjing University of Chinese MedicineNanjingChina
| | - Xiaogang He
- Neurology DepartmentKunshan Hospital Affiliated to Nanjing University of Chinese MedicineKunshanChina
| | - Baomei Xia
- School of PharmacyGuangdong Medical UniversityDongguanChina
- Faculty of Rehabilitation ScienceNanjing Normal University of Special EducationNanjingChina
| |
Collapse
|
2
|
Razi S, Yaghmoorian Khojini J, Kargarijam F, Panahi S, Tahershamsi Z, Tajbakhsh A, Gheibihayat SM. Macrophage efferocytosis in health and disease. Cell Biochem Funct 2023; 41:152-165. [PMID: 36794573 DOI: 10.1002/cbf.3780] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/31/2023] [Accepted: 02/06/2023] [Indexed: 02/17/2023]
Abstract
Creating cellular homeostasis within a defined tissue typically relates to the processes of apoptosis and efferocytosis. A great example here is cell debris that must be removed to prevent unwanted inflammatory responses and then reduce autoimmunity. In view of that, defective efferocytosis is often assumed to be responsible for the improper clearance of apoptotic cells (ACs). This predicament triggers off inflammation and even results in disease development. Any disruption of phagocytic receptors, molecules as bridging groups, or signaling routes can also inhibit macrophage efferocytosis and lead to the impaired clearance of the apoptotic body. In this line, macrophages as professional phagocytic cells take the lead in the efferocytosis process. As well, insufficiency in macrophage efferocytosis facilitates the spread of a wide variety of diseases, including neurodegenerative diseases, kidney problems, types of cancer, asthma, and the like. Establishing the functions of macrophages in this respect can be thus useful in the treatment of many diseases. Against this background, this review aimed to recapitulate the knowledge about the mechanisms related to macrophage polarization under physiological or pathological conditions, and shed light on its interaction with efferocytosis.
Collapse
Affiliation(s)
- Shokufeh Razi
- Department of Genetics, Faculty of Basic Sciences, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Javad Yaghmoorian Khojini
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fateme Kargarijam
- Department of Biotechnology, Faculty of Sciences and Advanced Technology in Biology, University of Science and Culture, Tehran, Iran
| | - Susan Panahi
- Department of Microbiology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Zahra Tahershamsi
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mohammad Gheibihayat
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Munich, Germany
| |
Collapse
|
3
|
Olesch C, Brüne B, Weigert A. Keep a Little Fire Burning-The Delicate Balance of Targeting Sphingosine-1-Phosphate in Cancer Immunity. Int J Mol Sci 2022; 23:ijms23031289. [PMID: 35163211 PMCID: PMC8836181 DOI: 10.3390/ijms23031289] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/21/2022] [Accepted: 01/21/2022] [Indexed: 11/16/2022] Open
Abstract
The sphingolipid sphingosine-1-phosphate (S1P) promotes tumor development through a variety of mechanisms including promoting proliferation, survival, and migration of cancer cells. Moreover, S1P emerged as an important regulator of tumor microenvironmental cell function by modulating, among other mechanisms, tumor angiogenesis. Therefore, S1P was proposed as a target for anti-tumor therapy. The clinical success of current cancer immunotherapy suggests that future anti-tumor therapy needs to consider its impact on the tumor-associated immune system. Hereby, S1P may have divergent effects. On the one hand, S1P gradients control leukocyte trafficking throughout the body, which is clinically exploited to suppress auto-immune reactions. On the other hand, S1P promotes pro-tumor activation of a diverse range of immune cells. In this review, we summarize the current literature describing the role of S1P in tumor-associated immunity, and we discuss strategies for how to target S1P for anti-tumor therapy without causing immune paralysis.
Collapse
Affiliation(s)
- Catherine Olesch
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (C.O.); (B.B.)
- Bayer Joint Immunotherapeutics Laboratory, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (C.O.); (B.B.)
- Frankfurt Cancer Institute, Goethe-University Frankfurt, 60596 Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt, 60596 Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (C.O.); (B.B.)
- Frankfurt Cancer Institute, Goethe-University Frankfurt, 60596 Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt, 60596 Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany
- Correspondence:
| |
Collapse
|
4
|
Brisset M, Grandin M, Bernet A, Mehlen P, Hollande F. Dependence receptors: new targets for cancer therapy. EMBO Mol Med 2021; 13:e14495. [PMID: 34542930 PMCID: PMC8573599 DOI: 10.15252/emmm.202114495] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/11/2021] [Accepted: 08/11/2021] [Indexed: 12/22/2022] Open
Abstract
Dependence receptors are known to promote survival and positive signaling such as proliferation, migration, and differentiation when activated, but to actively trigger apoptosis when unbound to their ligand. Their abnormal regulation was shown to be an important feature of tumorigenesis, allowing cancer cells to escape apoptosis triggered by these receptors while promoting in parallel major aspects of tumorigenesis such as proliferation, angiogenesis, invasiveness, and chemoresistance. This involvement in multiple cancer hallmarks has raised interest in dependence receptors as targets for cancer therapy. Although additional studies remain necessary to fully understand the complexity of signaling pathways activated by these receptors and to target them efficiently, it is now clear that dependence receptors represent very exciting targets for future cancer treatment. This manuscript reviews current knowledge on the contribution of dependence receptors to cancer and highlights the potential for therapies that activate pro-apoptotic functions of these proteins.
Collapse
Affiliation(s)
- Morgan Brisset
- Department of Clinical Pathology, Victorian Comprehensive Cancer CentreThe University of MelbourneMelbourneVic.Australia
- University of Melbourne Centre for Cancer ResearchVictorian Comprehensive Cancer CentreMelbourneVic.Australia
| | - Mélodie Grandin
- Department of Clinical Pathology, Victorian Comprehensive Cancer CentreThe University of MelbourneMelbourneVic.Australia
- University of Melbourne Centre for Cancer ResearchVictorian Comprehensive Cancer CentreMelbourneVic.Australia
| | - Agnès Bernet
- Apoptosis, Cancer and Development LaboratoryCentre de Recherche en Cancérologie de Lyon, INSERM U1052‐CNRS UMR5286Centre Léon BérardUniversité de LyonLyonFrance
| | - Patrick Mehlen
- Apoptosis, Cancer and Development LaboratoryCentre de Recherche en Cancérologie de Lyon, INSERM U1052‐CNRS UMR5286Centre Léon BérardUniversité de LyonLyonFrance
| | - Frédéric Hollande
- Department of Clinical Pathology, Victorian Comprehensive Cancer CentreThe University of MelbourneMelbourneVic.Australia
- University of Melbourne Centre for Cancer ResearchVictorian Comprehensive Cancer CentreMelbourneVic.Australia
| |
Collapse
|
5
|
Tajbakhsh A, Gheibi Hayat SM, Movahedpour A, Savardashtaki A, Loveless R, Barreto GE, Teng Y, Sahebkar A. The complex roles of efferocytosis in cancer development, metastasis, and treatment. Biomed Pharmacother 2021; 140:111776. [PMID: 34062411 DOI: 10.1016/j.biopha.2021.111776] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022] Open
Abstract
When tumor cells are killed by targeted therapy, radiotherapy, or chemotherapy, they trigger their primary tumor by releasing pro-inflammatory cytokines. Microenvironmental interactions can also promote tumor heterogeneity and development. In this line, several immune cells within the tumor microenvironment, including macrophages, dendritic cells, regulatory T-cells, and CD8+ and CD4+ T cells, are involved in the clearance of apoptotic tumor cells through a process called efferocytosis. Although the efficiency of apoptotic tumor cell efferocytosis is positive under physiological conditions, there are controversies regarding its usefulness in treatment-induced apoptotic tumor cells (ATCs). Efferocytosis can show the limitation of cytotoxic treatments, such as chemotherapy and radiotherapy. Since cytotoxic treatments lead to extensive cell mortality, efferocytosis, and macrophage polarization toward an M2 phenotype, the immune response may get involved in tumor recurrence and metastasis. Tumor cells can use the anti-inflammatory effect of apoptotic tumor cell efferocytosis to induce an immunosuppressive condition that is tumor-tolerant. Since M2 polarization and efferocytosis are tumor-promoting processes, the receptors on macrophages act as potential targets for cancer therapy. Moreover, researchers have shown that efferocytosis-related molecules/pathways are potential targets for cancer therapy. These include phosphatidylserine and calreticulin, Tyro3, Axl, and Mer tyrosine kinase (MerTK), receptors of tyrosine kinase, indoleamine-2,3-dioxygenase 1, annexin V, CD47, TGF-β, IL-10, and macrophage phenotype switch are combined with conventional therapy, which can be more effective in cancer treatment. Thus, we set out to investigate the advantages and disadvantages of efferocytosis in treatment-induced apoptotic tumor cells.
Collapse
Affiliation(s)
- Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mohammad Gheibi Hayat
- Department of Medical Biotechnology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ahmad Movahedpour
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardashtaki
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Reid Loveless
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland; Health Research Institute, University of Limerick, Limerick, Ireland
| | - Yong Teng
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; Department of Medical Laboratory, Imaging and Radiologic Sciences, College of Allied Health, Augusta University, Augusta, GA 30912, USA
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Sattar RSA, Sumi MP, Nimisha, Apurva, Kumar A, Sharma AK, Ahmad E, Ali A, Mahajan B, Saluja SS. S1P signaling, its interactions and cross-talks with other partners and therapeutic importance in colorectal cancer. Cell Signal 2021; 86:110080. [PMID: 34245863 DOI: 10.1016/j.cellsig.2021.110080] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/25/2021] [Accepted: 07/05/2021] [Indexed: 02/07/2023]
Abstract
Sphingosine-1-Phosphate (S1P) plays an important role in normal physiology, inflammation, initiation and progression of cancer. Deregulation of S1P signaling causes aberrant proliferation, affects survival, leads to angiogenesis and metastasis. Sphingolipid rheostat is crucial for cellular homeostasis. Discrepancy in sphingolipid metabolism is linked to cancer and drug insensitivity. Owing to these diverse functions and being a potent mediator of tumor growth, S1P signaling might be a suitable candidate for anti-tumor therapy or combination therapy. In this review, with a focus on colorectal cancer we have summarized the interacting partners of S1P signaling pathway, its therapeutic approaches along with the contribution of S1P signaling to various cancer hallmarks.
Collapse
Affiliation(s)
- Real Sumayya Abdul Sattar
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Mamta P Sumi
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Nimisha
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Apurva
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Arun Kumar
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Abhay Kumar Sharma
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Ejaj Ahmad
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Asgar Ali
- Department of Biochemistry, All India Institute of Medical Science (AIIMS), Patna, Bihar, India
| | - Bhawna Mahajan
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India; Department of Biochemistry, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Sundeep Singh Saluja
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India; Department of GI Surgery, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India.
| |
Collapse
|
7
|
Zhong L, Zhang Y, Li M, Song Y, Liu D, Yang X, Yang D, Qu H, Lai L, Wang Q, Chen Z. E3 ligase FBXW7 restricts M2-like tumor-associated macrophage polarization by targeting c-Myc. Aging (Albany NY) 2020; 12:24394-24423. [PMID: 33260160 PMCID: PMC7762499 DOI: 10.18632/aging.202293] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 09/24/2020] [Indexed: 06/12/2023]
Abstract
FBXW7 functions as an E3 ubiquitin ligase to mediate oncoprotein degradation via the ubiquitin-proteasome system in cancer cells, effectively inhibiting the growth and survival of tumor cells. However, little is known about the functions of FBXW7 in macrophages and the tumor immune microenvironment. In this study, we find that FBXW7 suppresses M2-like tumor-associated macrophage (TAM) polarization to limit tumor progression. We identified a significant increase in the proportion of M2-like TAMs and aggravated tumor growth in mice with myeloid FBXW7 deficiency by subcutaneous inoculation with Lewis lung carcinoma cells (LLCs). When stimulated with LLCs supernatant in vitro, FBXW7-knockout macrophages displayed increased M2 macrophage polarization and enhanced ability of supporting cancer cells growth. In mechanism, we confirmed that FBXW7 inhibited M2-like TAM polarization by mediating c-Myc degradation via the ubiquitin-proteasome system. These findings highlight the role of FBXW7 in M2-like TAM polarization and provide new insights into the potential targets for cancer immunotherapies.
Collapse
Affiliation(s)
- Lijia Zhong
- Department of Pulmonology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Yuanyuan Zhang
- Department of Pulmonology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Mengyao Li
- Department of Pulmonology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Yinjing Song
- Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Danhui Liu
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xin Yang
- Department of Pulmonology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Dehua Yang
- Department of Pulmonology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Hao Qu
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Lihua Lai
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Qingqing Wang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zhimin Chen
- Department of Pulmonology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| |
Collapse
|
8
|
Zhang L, Dong Y, Wang Y, Hu W, Dong S, Chen Y. Sphingosine-1-phosphate (S1P) receptors: Promising drug targets for treating bone-related diseases. J Cell Mol Med 2020; 24:4389-4401. [PMID: 32155312 PMCID: PMC7176849 DOI: 10.1111/jcmm.15155] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/22/2020] [Accepted: 02/01/2020] [Indexed: 12/20/2022] Open
Abstract
Sphingosine-1-phosphate (S1P) is a natural bioactive lipid molecule and a common first or second messenger in the cardiovascular and immune systems. By binding with its receptors, S1P can serve as mediator of signalling during cell migration, differentiation, proliferation and apoptosis. Although the predominant role of S1P in bone regeneration has been noted in many studies, this role is not as well-known as its roles in the cardiovascular and immune systems. In this review, we summarize previous research on the role of S1P receptors (S1PRs) in osteoblasts and osteoclasts. In addition, S1P is regarded as a bridge between bone resorption and formation, which brings hope to patients with bone-related diseases. Finally, we discuss S1P and its receptors as therapeutic targets for treating osteoporosis, inflammatory osteolysis and bone metastasis based on the biological effects of S1P in osteoclastic/osteoblastic cells, immune cells and tumour cells.
Collapse
Affiliation(s)
- Lincheng Zhang
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing, China.,Battalion One of Basic Medical Sciences, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yutong Dong
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing, China.,Battalion One of Basic Medical Sciences, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yiran Wang
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing, China
| | - Wenhui Hu
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing, China
| | - Shiwu Dong
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing, China.,State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yueqi Chen
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
9
|
Jiang MJ, Gu DN, Dai JJ, Huang Q, Tian L. Dark Side of Cytotoxic Therapy: Chemoradiation-Induced Cell Death and Tumor Repopulation. Trends Cancer 2020; 6:419-431. [PMID: 32348737 DOI: 10.1016/j.trecan.2020.01.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 01/25/2020] [Accepted: 01/27/2020] [Indexed: 12/20/2022]
Abstract
Accelerated tumor repopulation following chemoradiation is often observed in the clinic, but the underlying mechanisms remain unclear. In recent years, dying cells caused by chemoradiation have attracted much attention, and they may manifest diverse forms of cell death and release complex factors and thus orchestrate tumor repopulation cascades. Dying cells potentiate the survival of residual living tumor cells, remodel the tumor microenvironment, boost cell proliferation, and accelerate cancer cell metastasis. Moreover, dying cells also mediate the side effects of chemoradiation. These findings suggest more caution when weighing the benefits of cytotoxic therapy and the need to accordingly develop new strategies for cancer treatment.
Collapse
Affiliation(s)
- Ming-Jie Jiang
- Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China; Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Dian-Na Gu
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China; Department of Chemoradiotherapy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Juan-Juan Dai
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Qian Huang
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China; Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Ling Tian
- Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China; Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China; Department of Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China.
| |
Collapse
|
10
|
Ingawale DK, Mandlik SK. New insights into the novel anti-inflammatory mode of action of glucocorticoids. Immunopharmacol Immunotoxicol 2020; 42:59-73. [PMID: 32070175 DOI: 10.1080/08923973.2020.1728765] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Inflammation is a physiological intrinsic host response to injury meant for removal of noxious stimuli and maintenance of homeostasis. It is a defensive body mechanism that involves immune cells, blood vessels and molecular mediators of inflammation. Glucocorticoids (GCs) are steroidal hormones responsible for regulation of homeostatic and metabolic functions of body. Synthetic GCs are the most useful anti-inflammatory drugs used for the treatment of chronic inflammatory diseases such as asthma, chronic obstructive pulmonary disease (COPD), allergies, multiple sclerosis, tendinitis, lupus, atopic dermatitis, ulcerative colitis, rheumatoid arthritis and osteoarthritis whereas, the long term use of GCs are associated with many side effects. The anti-inflammatory and immunosuppressive (desired) effects of GCs are usually mediated by transrepression mechanism whereas; the metabolic and toxic (undesired) effects are usually manifested by transactivation mechanism. Though GCs are most potent anti-inflammatory and immunosuppressive drugs, the common problem associated with their use is GC resistance. Several research studies are rising to comprehend these mechanisms, which would be helpful in improving the GC resistance in asthma and COPD patients. This review aims to focus on identification of new drug targets in inflammation which will be helpful in the resolution of inflammation. The ample understanding of GC mechanisms of action helps in the development of novel anti-inflammatory drugs for the treatment of inflammatory and autoimmune disease with reduced side effects and minimal toxicity.
Collapse
Affiliation(s)
- Deepa K Ingawale
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Pune, India
| | - Satish K Mandlik
- Department of Pharmacology, Sinhgad College of Pharmacy, Pune, India
| |
Collapse
|
11
|
Schneider G. S1P Signaling in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1223:129-153. [PMID: 32030688 DOI: 10.1007/978-3-030-35582-1_7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sphingosine-1-phosphate (S1P), together with other phosphosphingolipids, has been found to regulate complex cellular function in the tumor microenvironment (TME) where it acts as a signaling molecule that participates in cell-cell communication. S1P, through intracellular and extracellular signaling, was found to promote tumor growth, angiogenesis, chemoresistance, and metastasis; it also regulates anticancer immune response, modulates inflammation, and promotes angiogenesis. Interestingly, cancer cells are capable of releasing S1P and thus modifying the behavior of the TME components in a way that contributes to tumor growth and progression. Therefore, S1P is considered an important therapeutic target, and several anticancer therapies targeting S1P signaling are being developed and tested in clinics.
Collapse
Affiliation(s)
- Gabriela Schneider
- James Graham Brown Cancer Center, Division of Medical Oncology & Hematology, Department of Medicine, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
12
|
Weigert A, Olesch C, Brüne B. Sphingosine-1-Phosphate and Macrophage Biology-How the Sphinx Tames the Big Eater. Front Immunol 2019; 10:1706. [PMID: 31379883 PMCID: PMC6658986 DOI: 10.3389/fimmu.2019.01706] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/08/2019] [Indexed: 12/11/2022] Open
Abstract
The sphingolipid sphingosine-1-phosphate (S1P) is produced by sphingosine kinases to either signal through intracellular targets or to activate a family of specific G-protein-coupled receptors (S1PR). S1P levels are usually low in peripheral tissues compared to the vasculature, forming a gradient that mediates lymphocyte trafficking. However, S1P levels rise during inflammation in peripheral tissues, thereby affecting resident or recruited immune cells, including macrophages. As macrophages orchestrate initiation and resolution of inflammation, the sphingosine kinase/S1P/S1P-receptor axis emerges as an important determinant of macrophage function in the pathogenesis of inflammatory diseases such as cancer, atherosclerosis, and infection. In this review, we therefore summarize the current knowledge how S1P affects macrophage biology.
Collapse
Affiliation(s)
- Andreas Weigert
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany
| | - Catherine Olesch
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany
| | - Bernhard Brüne
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt, Frankfurt, Germany.,Project Group Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology, Frankfurt, Germany.,Frankfurt Cancer Institute, Goethe-University Frankfurt, Frankfurt, Germany
| |
Collapse
|
13
|
Nejatian N, Trautmann S, Thomas D, Pfeilschifter J, Badenhoop K, Koch A, Penna-Martinez M. Vitamin D effects on sphingosine 1-phosphate signaling and metabolism in monocytes from type 2 diabetes patients and controls. J Steroid Biochem Mol Biol 2019; 186:130-135. [PMID: 30336275 DOI: 10.1016/j.jsbmb.2018.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/17/2018] [Accepted: 10/06/2018] [Indexed: 12/21/2022]
Abstract
Elevated sphingosine 1-phopshate (S1P) concentration was observed in type 2 diabetes mellitus (T2D). On the other side, 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) can influence the formation of sphingosine 1-phopshate (S1P) and the expression of S1P receptors, which are known to be involved in T2D. In order to evaluate mechanisms for the antiinflammatory potential of 1,25(OH)2D3, we investigated whether 1,25(OH)2D3 alters S1P signaling and metabolism in human CD14+ monocytes. Primary monocytes isolated from healthy controls (HC) and T2D patients were treated for 24 h with 10 nM 1,25(OH)2D3 in the absence or presence of 500 IU/ml interleukin-(IL)-1β. Thereafter, sphingosine kinase (SPHK)1, SPHK2 and S1P receptor 1-5 (S1P1-5) mRNA expression levels were measured by TaqMan™ analyses. Sphingolipid levels in cell supernatant were determined by high-performance liquid chromatography/tandem mass spectrometry (LC-MS/MS). 1,25(OH)2D3 treatment downregulated S1P1 and S1P2 mRNA expression compared to untreated monocytes of HC and T2D patients. In contrast, SPHK1, S1P3 and S1P4 mRNA expression levels were upregulated by 1,25(OH)2D3 treatment compared to the respective controls. Furthermore, reduced S1P2 and increased S1P3 and S1P4 mRNA expression levels upon treatment with 1,25(OH)2D3 occurred in the presence of IL-1β. Additionally, S1P levels in cell supernatants were decreased in monocytes from HC and T2D patients by 1,25(OH)2D3 with or without IL-1β costimulation. The levels of sphingosine in cell supernatants were not influenced by 1,25(OH)2D3. Overall, our results demonstrate for the first time that 1,25(OH)2D3 treatment can influence S1P receptor and SPHK expression and S1P levels in primary monocytes of both HC and subjects with T2D. These findings justify further investigations into the sphingolipid metabolism and potential benefits of vitamin D treatment in diabetes.
Collapse
Affiliation(s)
- Nojan Nejatian
- Department of Internal Medicine I, Division of Endocrinology, Diabetes and Metabolism, Goethe University Hospital, Frankfurt am Main, Germany.
| | - Sandra Trautmann
- Department of Clinical Pharmacology, Goethe University Hospital, Frankfurt am Main, Germany
| | - Dominique Thomas
- Department of Clinical Pharmacology, Goethe University Hospital, Frankfurt am Main, Germany
| | - Josef Pfeilschifter
- Department of General Pharmacology and Toxicology, Goethe University Hospital, Frankfurt am Main, Germany
| | - Klaus Badenhoop
- Department of Internal Medicine I, Division of Endocrinology, Diabetes and Metabolism, Goethe University Hospital, Frankfurt am Main, Germany
| | - Alexander Koch
- Department of General Pharmacology and Toxicology, Goethe University Hospital, Frankfurt am Main, Germany
| | - Marissa Penna-Martinez
- Department of Internal Medicine I, Division of Endocrinology, Diabetes and Metabolism, Goethe University Hospital, Frankfurt am Main, Germany
| |
Collapse
|
14
|
Kern K, Schäfer SMG, Cohnen J, Pierre S, Osthues T, Tarighi N, Hohmann S, Ferreiros N, Brüne B, Weigert A, Geisslinger G, Sisignano M, Scholich K. The G2A Receptor Controls Polarization of Macrophage by Determining Their Localization Within the Inflamed Tissue. Front Immunol 2018; 9:2261. [PMID: 30327654 PMCID: PMC6174245 DOI: 10.3389/fimmu.2018.02261] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 09/11/2018] [Indexed: 12/17/2022] Open
Abstract
Macrophages are highly versatile cells, which acquire, depending on their microenvironment, pro- (M1-like), or antiinflammatory (M2-like) phenotypes. Here, we studied the role of the G-protein coupled receptor G2A (GPR132), in chemotactic migration and polarization of macrophages, using the zymosan-model of acute inflammation. G2A-deficient mice showed a reduced zymosan-induced thermal hyperalgesia, which was reversed after macrophage depletion. Fittingly, the number of M1-like macrophages was reduced in the inflamed tissue in G2A-deficient mice. However, G2A activation was not sufficient to promote M1-polarization in bone marrow-derived macrophages. While the number of monocyte-derived macrophages in the inflamed paw was not altered, G2A-deficient mice had less macrophages in the direct vicinity of the origin of inflammation, an area marked by the presence of zymosan, neutrophil accumulation and proinflammatory cytokines. Fittingly neutrophil efferocytosis was decreased in G2A-deficient mice and several lipids, which are released by neutrophils and promote G2A-mediated chemotaxis, were increased in the inflamed tissue. Taken together, G2A is necessary to position macrophages in the proinflammatory microenvironment surrounding the center of inflammation. In absence of G2A the macrophages are localized in an antiinflammatory microenvironment and macrophage polarization is shifted toward M2-like macrophages.
Collapse
Affiliation(s)
- Katharina Kern
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt, University Hospital Frankfurt, Frankfurt, Germany
| | - Stephan M G Schäfer
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt, University Hospital Frankfurt, Frankfurt, Germany
| | - Jennifer Cohnen
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt, University Hospital Frankfurt, Frankfurt, Germany
| | - Sandra Pierre
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt, University Hospital Frankfurt, Frankfurt, Germany
| | - Tabea Osthues
- Project Group Translational Medicine and Pharmacology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Frankfurt, Germany
| | - Neda Tarighi
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt, University Hospital Frankfurt, Frankfurt, Germany
| | - Stefan Hohmann
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt, University Hospital Frankfurt, Frankfurt, Germany
| | - Nerea Ferreiros
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt, University Hospital Frankfurt, Frankfurt, Germany
| | - Bernhard Brüne
- Project Group Translational Medicine and Pharmacology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Frankfurt, Germany.,Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany
| | - Andreas Weigert
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany
| | - Gerd Geisslinger
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt, University Hospital Frankfurt, Frankfurt, Germany.,Project Group Translational Medicine and Pharmacology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Frankfurt, Germany
| | - Marco Sisignano
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt, University Hospital Frankfurt, Frankfurt, Germany
| | - Klaus Scholich
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt, University Hospital Frankfurt, Frankfurt, Germany.,Project Group Translational Medicine and Pharmacology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Frankfurt, Germany
| |
Collapse
|
15
|
DHEA inhibits acute microglia-mediated inflammation through activation of the TrkA-Akt1/2-CREB-Jmjd3 pathway. Mol Psychiatry 2018; 23:1410-1420. [PMID: 28894299 DOI: 10.1038/mp.2017.167] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 05/05/2017] [Accepted: 06/20/2017] [Indexed: 12/16/2022]
Abstract
Dehydroepiandrosterone (DHEA) is the most abundant circulating steroid hormone in humans, produced by the adrenals, the gonads and the brain. DHEA was previously shown to bind to the nerve growth factor receptor, tropomyosin-related kinase A (TrkA), and to thereby exert neuroprotective effects. Here we show that DHEA reduces microglia-mediated inflammation in an acute lipopolysaccharide-induced neuro-inflammation model in mice and in cultured microglia in vitro. DHEA regulates microglial inflammatory responses through phosphorylation of TrkA and subsequent activation of a pathway involving Akt1/Akt2 and cAMP response element-binding protein. The latter induces the expression of the histone 3 lysine 27 (H3K27) demethylase Jumonji d3 (Jmjd3), which thereby controls the expression of inflammation-related genes and microglial polarization. Together, our data indicate that DHEA-activated TrkA signaling is a potent regulator of microglia-mediated inflammation in a Jmjd3-dependent manner, thereby providing the platform for potential future therapeutic interventions in neuro-inflammatory pathologies.
Collapse
|
16
|
Treutlein EM, Kern K, Weigert A, Tarighi N, Schuh CD, Nüsing RM, Schreiber Y, Ferreirós N, Brüne B, Geisslinger G, Pierre S, Scholich K. The prostaglandin E2 receptor EP3 controls CC-chemokine ligand 2-mediated neuropathic pain induced by mechanical nerve damage. J Biol Chem 2018; 293:9685-9695. [PMID: 29752406 DOI: 10.1074/jbc.ra118.002492] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 05/09/2018] [Indexed: 01/22/2023] Open
Abstract
Prostaglandin (PG) E2 is an important lipid mediator that is involved in several pathophysiological processes contributing to fever, inflammation, and pain. Previous studies have shown that early and continuous application of nonsteroidal anti-inflammatory drugs significantly reduces pain behavior in the spared nerve injury (SNI) model for trauma-induced neuropathic pain. However, the role of PGE2 and its receptors in the development and maintenance of neuropathic pain is incompletely understood but may help inform strategies for pain management. Here, we sought to define the nociceptive roles of the individual PGE2 receptors (EP1-4) in the SNI model using EP knockout mice. We found that PGE2 levels at the site of injury were increased and that the expression of the terminal synthase for PGE2, cytosolic PGE synthase was up-regulated in resident positive macrophages located within the damaged nerve. Only genetic deletion of the EP3 receptor affected nociceptive behavior and reduced the development of late-stage mechanical allodynia as well as recruitment of immune cells to the injured nerve. Importantly, EP3 activation induced the release of CC-chemokine ligand 2 (CCL2), and antagonists against the CCL2 receptor reduced mechanical allodynia in WT but not in EP3 knockout mice. We conclude that selective inhibition of EP3 might present a potential approach for reducing chronic neuropathic pain.
Collapse
Affiliation(s)
- Elsa-Marie Treutlein
- From the Institute of Clinical Pharmacology, Pharmazentrum Frankfurt, University Hospital Frankfurt, 60590 Frankfurt, Germany
| | - Katharina Kern
- From the Institute of Clinical Pharmacology, Pharmazentrum Frankfurt, University Hospital Frankfurt, 60590 Frankfurt, Germany
| | - Andreas Weigert
- the Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60323 Frankfurt, Germany, and
| | - Neda Tarighi
- From the Institute of Clinical Pharmacology, Pharmazentrum Frankfurt, University Hospital Frankfurt, 60590 Frankfurt, Germany
| | - Claus-Dieter Schuh
- From the Institute of Clinical Pharmacology, Pharmazentrum Frankfurt, University Hospital Frankfurt, 60590 Frankfurt, Germany
| | - Rolf M Nüsing
- From the Institute of Clinical Pharmacology, Pharmazentrum Frankfurt, University Hospital Frankfurt, 60590 Frankfurt, Germany
| | - Yannick Schreiber
- From the Institute of Clinical Pharmacology, Pharmazentrum Frankfurt, University Hospital Frankfurt, 60590 Frankfurt, Germany
| | - Nerea Ferreirós
- From the Institute of Clinical Pharmacology, Pharmazentrum Frankfurt, University Hospital Frankfurt, 60590 Frankfurt, Germany
| | - Bernhard Brüne
- the Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60323 Frankfurt, Germany, and
| | - Gerd Geisslinger
- From the Institute of Clinical Pharmacology, Pharmazentrum Frankfurt, University Hospital Frankfurt, 60590 Frankfurt, Germany.,the Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology, 60596 Frankfurt am Main, Germany
| | - Sandra Pierre
- From the Institute of Clinical Pharmacology, Pharmazentrum Frankfurt, University Hospital Frankfurt, 60590 Frankfurt, Germany
| | - Klaus Scholich
- From the Institute of Clinical Pharmacology, Pharmazentrum Frankfurt, University Hospital Frankfurt, 60590 Frankfurt, Germany,
| |
Collapse
|
17
|
Korbecki J, Gutowska I, Kojder I, Jeżewski D, Goschorska M, Łukomska A, Lubkowska A, Chlubek D, Baranowska-Bosiacka I. New extracellular factors in glioblastoma multiforme development: neurotensin, growth differentiation factor-15, sphingosine-1-phosphate and cytomegalovirus infection. Oncotarget 2018; 9:7219-7270. [PMID: 29467963 PMCID: PMC5805549 DOI: 10.18632/oncotarget.24102] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 01/02/2018] [Indexed: 11/25/2022] Open
Abstract
Recent years have seen considerable progress in understanding the biochemistry of cancer. For example, more significance is now assigned to the tumor microenvironment, especially with regard to intercellular signaling in the tumor niche which depends on many factors secreted by tumor cells. In addition, great progress has been made in understanding the influence of factors such as neurotensin, growth differentiation factor-15 (GDF-15), sphingosine-1-phosphate (S1P), and infection with cytomegalovirus (CMV) on the 'hallmarks of cancer' in glioblastoma multiforme. Therefore, in the present work we describe the influence of these factors on the proliferation and apoptosis of neoplastic cells, cancer stem cells, angiogenesis, migration and invasion, and cancer immune evasion in a glioblastoma multiforme tumor. In particular, we discuss the effect of neurotensin, GDF-15, S1P (including the drug FTY720), and infection with CMV on tumor-associated macrophages (TAM), microglial cells, neutrophil and regulatory T cells (Treg), on the tumor microenvironment. In order to better understand the role of the aforementioned factors in tumoral processes, we outline the latest models of intratumoral heterogeneity in glioblastoma multiforme. Based on the most recent reports, we discuss the problems of multi-drug therapy in treating glioblastoma multiforme.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland.,Department of Biochemistry and Molecular Biology, Faculty of Health Sciences, University of Bielsko-Biała, 43-309 Bielsko-Biała, Poland
| | - Izabela Gutowska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland
| | - Ireneusz Kojder
- Department of Applied Neurocognitivistics, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland.,Department of Neurosurgery, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland
| | - Dariusz Jeżewski
- Department of Applied Neurocognitivistics, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland.,Department of Neurosurgery, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland
| | - Marta Goschorska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| | - Agnieszka Łukomska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland
| | - Anna Lubkowska
- Department of Functional Diagnostics and Physical Medicine, Pomeranian Medical University in Szczecin, 71-210 Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| |
Collapse
|
18
|
Sulciner ML, Serhan CN, Gilligan MM, Mudge DK, Chang J, Gartung A, Lehner KA, Bielenberg DR, Schmidt B, Dalli J, Greene ER, Gus-Brautbar Y, Piwowarski J, Mammoto T, Zurakowski D, Perretti M, Sukhatme VP, Kaipainen A, Kieran MW, Huang S, Panigrahy D. Resolvins suppress tumor growth and enhance cancer therapy. J Exp Med 2017; 215:115-140. [PMID: 29191914 PMCID: PMC5748851 DOI: 10.1084/jem.20170681] [Citation(s) in RCA: 210] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 09/15/2017] [Accepted: 10/11/2017] [Indexed: 12/22/2022] Open
Abstract
Cancer therapy reduces tumor burden by killing tumor cells, yet it simultaneously creates tumor cell debris that may stimulate inflammation and tumor growth. Sulciner et al. demonstrate that specific resolvins (RvD1, RvD2, and RvE1) inhibit tumor growth and enhance cancer therapy through the clearance of tumor cell debris. Cancer therapy reduces tumor burden by killing tumor cells, yet it simultaneously creates tumor cell debris that may stimulate inflammation and tumor growth. Thus, conventional cancer therapy is inherently a double-edged sword. In this study, we show that tumor cells killed by chemotherapy or targeted therapy (“tumor cell debris”) stimulate primary tumor growth when coinjected with a subthreshold (nontumorigenic) inoculum of tumor cells by triggering macrophage proinflammatory cytokine release after phosphatidylserine exposure. Debris-stimulated tumors were inhibited by antiinflammatory and proresolving lipid autacoids, namely resolvin D1 (RvD1), RvD2, or RvE1. These mediators specifically inhibit debris-stimulated cancer progression by enhancing clearance of debris via macrophage phagocytosis in multiple tumor types. Resolvins counterregulate the release of cytokines/chemokines, including TNFα, IL-6, IL-8, CCL4, and CCL5, by human macrophages stimulated with cell debris. These results demonstrate that enhancing endogenous clearance of tumor cell debris is a new therapeutic target that may complement cytotoxic cancer therapies.
Collapse
Affiliation(s)
- Megan L Sulciner
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA.,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA.,Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Molly M Gilligan
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA.,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA.,Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Dayna K Mudge
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA.,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA.,Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Jaimie Chang
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA.,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA.,Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Allison Gartung
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA.,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA.,Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Kristen A Lehner
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA.,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA.,Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Diane R Bielenberg
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Birgitta Schmidt
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Jesmond Dalli
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Emily R Greene
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA.,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA.,Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Yael Gus-Brautbar
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA.,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA.,Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Julia Piwowarski
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA.,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA.,Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Tadanori Mammoto
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - David Zurakowski
- Department of Anesthesia, Boston Children's Hospital, Harvard Medical School, Boston, MA.,Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Mauro Perretti
- The William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, England, UK
| | - Vikas P Sukhatme
- Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA.,Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Arja Kaipainen
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Mark W Kieran
- Division of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA .,Department of Pediatric Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Sui Huang
- Institute of Systems Biology, Seattle, WA
| | - Dipak Panigrahy
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA .,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA.,Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| |
Collapse
|
19
|
Beyond Immune Cell Migration: The Emerging Role of the Sphingosine-1-phosphate Receptor S1PR4 as a Modulator of Innate Immune Cell Activation. Mediators Inflamm 2017; 2017:6059203. [PMID: 28848247 PMCID: PMC5564090 DOI: 10.1155/2017/6059203] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/19/2017] [Accepted: 06/28/2017] [Indexed: 12/11/2022] Open
Abstract
The sphingolipid sphingosine-1-phosphate (S1P) emerges as an important regulator of immunity, mainly by signaling through a family of five specific G protein-coupled receptors (S1PR1–5). While S1P signaling generally has the potential to affect not only trafficking but also differentiation, activation, and survival of a diverse range of immune cells, the specific outcome depends on the S1P receptor repertoire expressed on a given cell. Among the S1PRs, S1PR4 is specifically abundant in immune cells, suggesting a major role of the S1P/S1PR4 axis in immunity. Recent studies indeed highlight its role in activation of immune cells, differentiation, and, potentially, trafficking. In this review, we summarize the emerging data that support a major role of S1PR4 in modulating immunity in humans and mice and discuss therapeutic implications.
Collapse
|
20
|
Killing Is Not Enough: How Apoptosis Hijacks Tumor-Associated Macrophages to Promote Cancer Progression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 930:205-39. [PMID: 27558823 DOI: 10.1007/978-3-319-39406-0_9] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Macrophages are a group of heterogeneous cells of the innate immune system that are crucial to the initiation, progression, and resolution of inflammation. Moreover, they control tissue homeostasis in healthy tissue and command a broad sensory arsenal to detect disturbances in tissue integrity. Macrophages possess a remarkable functional plasticity to respond to irregularities and to initiate programs that allow overcoming them in order to return back to normal. Thus, macrophages kill malignant or transformed cells, rearrange extracellular matrix, take up and recycle cellular as well as molecular debris, initiate cellular growth cascades, and favor directed migration of cells. As an example, apoptotic death of bystander cells is sensed by macrophages, initiating functional responses that support all hallmarks of cancer. In this chapter, we describe how tumor cell apoptosis hijacks tumor-associated macrophages to promote tumor growth. We propose that tumor therapy should not only kill malignant cells but also target the interaction of the host with apoptotic cancer cells, as this might be efficient to limit the protumor action of apoptotic cells and boost the antitumor potential of macrophages. Leaving the apoptotic cell/macrophage interaction untouched might also limit the benefit of conventional tumor cell apoptosis-focused therapy since surviving tumor cells might receive overwhelming support by the wound healing response that apoptotic tumor cells will trigger in local macrophages, thereby enhancing tumor recurrence.
Collapse
|
21
|
Petruzzi MNMR, Cherubini K, Salum FG, de Figueiredo MAZ. Role of tumour-associated macrophages in oral squamous cells carcinoma progression: an update on current knowledge. Diagn Pathol 2017; 12:32. [PMID: 28381274 PMCID: PMC5382416 DOI: 10.1186/s13000-017-0623-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 03/30/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) accounts over 90% of malignant neoplasms of the oral cavity. This pathological entity is associated to a high mortality rate that has remained unchanged over the past decades. Tumour-associated macrophages (TAMs) are believed to have potential involvement in OSCC progression. However, the molecular networks involved in communication between stroma and cancer cells have not yet been fully elucidated. MAIN BODY The role of M2 polarized cells in oral carcinogenesis is supported by a correlation between TAMs accumulation into OSCC stroma and poor clinical outcome. Signalling pathways such as the NF-κB and cytokines released in the tumour microenvironment promote a bidirectional cross-talk between M2 and OSCC cells. These interactions consequently result in an increased proliferation of malignant cells and enhances aggressiveness, thus reducing patients' survival time. CONCLUSIONS Here, we present a comprehensive review of the role of interleukin (IL)-1, IL-4, IL-6, IL-8, IL-10 and the receptor tyrosine kinase Axl in macrophage polarization to an M2 phenotype and OSCC progression. Understanding the molecular basis of oral carcinogenesis and metastatic spread of OSCC would promote the development of targeted treatment contributing to a more favourable prognosis.
Collapse
Affiliation(s)
- Maria Noel Marzano Rodrigues Petruzzi
- grid.412519.aPostgraduate Program in Dentistry, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil ,grid.411379.9Hospital São Lucas da Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690 – Ipiranga, Porto Alegre, RS CEP: 90610-000 Brazil
| | - Karen Cherubini
- grid.412519.aPostgraduate Program in Dentistry, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil ,grid.411379.9Hospital São Lucas da Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690 – Ipiranga, Porto Alegre, RS CEP: 90610-000 Brazil
| | - Fernanda Gonçalves Salum
- grid.412519.aPostgraduate Program in Dentistry, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil ,grid.411379.9Hospital São Lucas da Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690 – Ipiranga, Porto Alegre, RS CEP: 90610-000 Brazil
| | - Maria Antonia Zancanaro de Figueiredo
- grid.412519.aPostgraduate Program in Dentistry, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil ,grid.411379.9Hospital São Lucas da Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690 – Ipiranga, Porto Alegre, RS CEP: 90610-000 Brazil
| |
Collapse
|
22
|
Rodriguez YI, Campos LE, Castro MG, Aladhami A, Oskeritzian CA, Alvarez SE. Sphingosine-1 Phosphate: A New Modulator of Immune Plasticity in the Tumor Microenvironment. Front Oncol 2016; 6:218. [PMID: 27800303 PMCID: PMC5066089 DOI: 10.3389/fonc.2016.00218] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 09/30/2016] [Indexed: 01/01/2023] Open
Abstract
In the last 15 years, increasing evidences demonstrate a strong link between sphingosine-1-phosphate (S1P) and both normal physiology and progression of different diseases, including cancer and inflammation. Indeed, numerous studies show that tissue levels of this sphingolipid metabolite are augmented in many cancers, affecting survival, proliferation, angiogenesis, and metastatic spread. Recent insights into the possible role of S1P as a therapeutic target has attracted enormous attention and opened new opportunities in this evolving field. In this review, we will focus on the role of S1P in cancer, with particular emphasis in new developments that highlight the many functions of this sphingolipid in the tumor microenvironment. We will discuss how S1P modulates phenotypic plasticity of macrophages and mast cells, tumor-induced immune evasion, differentiation and survival of immune cells in the tumor milieu, interaction between cancer and stromal cells, and hypoxic response.
Collapse
Affiliation(s)
- Yamila I Rodriguez
- Instituto Multidisciplinario de Investigaciones Biológicas San Luis (IMIBIO-SL) CONICET , San Luis , Argentina
| | - Ludmila E Campos
- Instituto Multidisciplinario de Investigaciones Biológicas San Luis (IMIBIO-SL) CONICET , San Luis , Argentina
| | - Melina G Castro
- Instituto Multidisciplinario de Investigaciones Biológicas San Luis (IMIBIO-SL) CONICET , San Luis , Argentina
| | - Ahmed Aladhami
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine , Columbia, SC , USA
| | - Carole A Oskeritzian
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine , Columbia, SC , USA
| | - Sergio E Alvarez
- Instituto Multidisciplinario de Investigaciones Biológicas San Luis (IMIBIO-SL) CONICET, San Luis, Argentina; Universidad Nacional de San Luis, San Luis, Argentina
| |
Collapse
|
23
|
Demir IE, Tieftrunk E, Schorn S, Friess H, Ceyhan GO. Nerve growth factor & TrkA as novel therapeutic targets in cancer. Biochim Biophys Acta Rev Cancer 2016; 1866:37-50. [PMID: 27264679 DOI: 10.1016/j.bbcan.2016.05.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/24/2016] [Accepted: 05/28/2016] [Indexed: 12/11/2022]
Abstract
In the past 20years, nerve growth factor (NGF) and its receptors TrkA & p75NTR were recognized to be overexpressed in the overwhelming majority of human solid cancers. Recent studies discovered the presence of overactive TrkA signaling due to TrkA rearrangements or TrkA fusion products in frequent cancers like colorectal cancer, thyroid cancer, or acute myeloid leukemia. Thus, targeting TrkA/NGF via selective small-molecule-inhibitors or antibodies has gained enormous attention in the drug discovery sector. Clinical studies on the anti-cancer impact of NGF-blocking antibodies are likely to be accelerated after the recent removal of clinical holds on these agents by regulatory authorities. Based on these current developments, the present review provides not only a broad overview of the biological effects of NGF-TrkA-p75NTR on cancer cells and their microenvironment, but also explains why NGF and its receptors are going to evoke major interest as promising therapeutic anti-cancer targets in the coming decade.
Collapse
Affiliation(s)
- Ihsan Ekin Demir
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany.
| | - Elke Tieftrunk
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Stephan Schorn
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Helmut Friess
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Güralp O Ceyhan
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| |
Collapse
|
24
|
Olesch C, Sha W, Angioni C, Sha LK, Açaf E, Patrignani P, Jakobsson PJ, Radeke HH, Grösch S, Geisslinger G, von Knethen A, Weigert A, Brüne B. MPGES-1-derived PGE2 suppresses CD80 expression on tumor-associated phagocytes to inhibit anti-tumor immune responses in breast cancer. Oncotarget 2016; 6:10284-96. [PMID: 25871398 PMCID: PMC4496355 DOI: 10.18632/oncotarget.3581] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 02/13/2015] [Indexed: 01/04/2023] Open
Abstract
Prostaglandin E2 (PGE2) favors multiple aspects of tumor development and immune evasion. Therefore, microsomal prostaglandin E synthase (mPGES-1/-2), is a potential target for cancer therapy. We explored whether inhibiting mPGES-1 in human and mouse models of breast cancer affects tumor-associated immunity. A new model of breast tumor spheroid killing by human PBMCs was developed. In this model, tumor killing required CD80 expression by tumor-associated phagocytes to trigger cytotoxic T cell activation. Pharmacological mPGES-1 inhibition increased CD80 expression, whereas addition of PGE2, a prostaglandin E2 receptor 2 (EP2) agonist, or activation of signaling downstream of EP2 reduced CD80 expression. Genetic ablation of mPGES-1 resulted in markedly reduced tumor growth in PyMT mice. Macrophages of mPGES-1−/− PyMT mice indeed expressed elevated levels of CD80 compared to their wildtype counterparts. CD80 expression in tumor-spheroid infiltrating mPGES-1−/− macrophages translated into antigen-specific cytotoxic T cell activation. In conclusion, mPGES-1 inhibition elevates CD80 expression by tumor-associated phagocytes to restrict tumor growth. We propose that mPGES-1 inhibition in combination with immune cell activation might be part of a therapeutic strategy to overcome the immunosuppressive tumor microenvironment.
Collapse
Affiliation(s)
- Catherine Olesch
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany
| | - Weixiao Sha
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany
| | - Carlo Angioni
- Institute of Clinical Pharmacology/ZAFES, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany
| | - Lisa Katharina Sha
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany
| | - Elias Açaf
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany
| | - Paola Patrignani
- Department of Neuroscience, Imaging and Clinical Sciences and Center of Excellence on Aging (CeSI), "G. d'Annunzio" University, Chieti, Italy
| | - Per-Johan Jakobsson
- Department of Medicine, Rheumatology Research Unit, Karolinska Institutet, Stockholm, Sweden
| | - Heinfried H Radeke
- Pharmazentrum Frankfurt/ZAFES, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany
| | - Sabine Grösch
- Institute of Clinical Pharmacology/ZAFES, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany
| | - Gerd Geisslinger
- Institute of Clinical Pharmacology/ZAFES, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany
| | - Andreas von Knethen
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany
| |
Collapse
|
25
|
Mora J, Schlemmer A, Wittig I, Richter F, Putyrski M, Frank AC, Han Y, Jung M, Ernst A, Weigert A, Brüne B. Interleukin-38 is released from apoptotic cells to limit inflammatory macrophage responses. J Mol Cell Biol 2016; 8:426-438. [DOI: 10.1093/jmcb/mjw006] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 09/03/2015] [Accepted: 10/07/2015] [Indexed: 12/21/2022] Open
|
26
|
Dillmann C, Ringel C, Ringleb J, Mora J, Olesch C, Fink AF, Roberts E, Brüne B, Weigert A. S1PR4 Signaling Attenuates ILT 7 Internalization To Limit IFN-α Production by Human Plasmacytoid Dendritic Cells. THE JOURNAL OF IMMUNOLOGY 2016; 196:1579-90. [PMID: 26783340 DOI: 10.4049/jimmunol.1403168] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 12/09/2015] [Indexed: 12/14/2022]
Abstract
Plasmacytoid dendritic cells (pDCs) produce large amounts of type I IFN in response to TLR7/9 ligands. This conveys antiviral effects, activates other immune cells (NK cells, conventional DCs, B, and T cells), and causes the induction and expansion of a strong inflammatory response. pDCs are key players in various type I IFN-driven autoimmune diseases such as systemic lupus erythematosus or psoriasis, but pDCs are also involved in (anti-)tumor immunity. The sphingolipid sphingosine-1-phosphate (S1P) signals through five G-protein-coupled receptors (S1PR1-5) to regulate, among other activities, immune cell migration and activation. The present study shows that S1P stimulation of human, primary pDCs substantially decreases IFN-α production after TLR7/9 activation with different types of CpG oligodeoxynucleotides or tick-borne encephalitis vaccine, which occurred in an S1PR4-dependent manner. Mechanistically, S1PR4 activation preserves the surface expression of the human pDC-specific inhibitory receptor Ig-like transcript 7. We provide novel information that Ig-like transcript 7 is rapidly internalized upon receptor-mediated endocytosis of TLR7/9 ligands to allow high IFN-α production. This is antagonized by S1PR4 signaling, thus decreasing TLR-induced IFN-α secretion. At a functional level, attenuated IFN-α production failed to alter Ag-driven T cell proliferation in pDC-dependent T cell activation assays, but shifted cytokine production of T cells from a Th1 (IFN-γ) to a regulatory (IL-10) profile. In conclusion, S1PR4 agonists block human pDC activation and may therefore be a promising tool to restrict pathogenic IFN-α production.
Collapse
Affiliation(s)
- Christina Dillmann
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, 60590 Frankfurt, Germany; and
| | - Christian Ringel
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, 60590 Frankfurt, Germany; and
| | - Julia Ringleb
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, 60590 Frankfurt, Germany; and
| | - Javier Mora
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, 60590 Frankfurt, Germany; and
| | - Catherine Olesch
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, 60590 Frankfurt, Germany; and
| | - Annika F Fink
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, 60590 Frankfurt, Germany; and
| | - Edward Roberts
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037
| | - Bernhard Brüne
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, 60590 Frankfurt, Germany; and
| | - Andreas Weigert
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, 60590 Frankfurt, Germany; and
| |
Collapse
|
27
|
Bradshaw RA, Pundavela J, Biarc J, Chalkley RJ, Burlingame AL, Hondermarck H. NGF and ProNGF: Regulation of neuronal and neoplastic responses through receptor signaling. Adv Biol Regul 2014; 58:16-27. [PMID: 25491371 DOI: 10.1016/j.jbior.2014.11.003] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 11/04/2014] [Indexed: 12/11/2022]
Abstract
Nerve growth factor (NGF) and its precursor (proNGF) are primarily considered as regulators of neuronal function that induce their responses via the tyrosine kinase receptor TrkA and the pan-neurotrophin receptor p75NTR. It has been generally held that NGF exerts its effects primarily through TrkA, inducing a cascade of tyrosine kinase-initiated responses, while proNGF binds more strongly to p75NTR. When this latter entity interacts with a third receptor, sortilin, apoptotic responses are induced in contrast to the survival/differentiation associated with the other two. Recent studies have outlined portions of the downstream phosphoproteome of TrkA in the neuronal PC12 cells and have clarified the contribution of individual docking sites in the TrkA endodomain. The patterns observed showed a similarity with the profile induced by the epidermal growth factor receptor, which is extensively associated with oncogenesis. Indeed, as with other neurotrophic factors, the distribution of TrkA and p75NTR is not limited to neuronal tissue, thus providing an array of targets outside the nervous systems. One such source is breast cancer cells, in which NGF and proNGF stimulate breast cancer cell survival/growth and enhance cell invasion, respectively. This latter activity is exerted via TrkA (as opposed to p75NTR) in conjunction with sortilin. Another tissue overexpressing proNGF is prostate cancer and here the ability of cancer cells to induce neuritogenesis has been implicated in cancer progression. These studies show that the non-neuronal functions of proNGF/NGF are likely integrated with their neuronal activities and point to the clinical utility of these growth factors and their receptors as biomarkers and therapeutic targets for metastasis and cancer pain.
Collapse
Affiliation(s)
| | - Jay Pundavela
- School of Biomedical Sciences & Pharmacy, Hunter Medical Research Institute, Faculty of Health and Medicine, University of Newcastle, Australia.
| | - Jordane Biarc
- Dept of Pharmaceutical Chemistry, UCSF, San Francisco, CA, USA.
| | | | - A L Burlingame
- Dept of Pharmaceutical Chemistry, UCSF, San Francisco, CA, USA.
| | - Hubert Hondermarck
- School of Biomedical Sciences & Pharmacy, Hunter Medical Research Institute, Faculty of Health and Medicine, University of Newcastle, Australia.
| |
Collapse
|
28
|
Wan S, Liu Y, Weng Y, Wang W, Ren W, Fei C, Chen Y, Zhang Z, Wang T, Wang J, Jiang Y, Zhou L, He T, Zhang Y. BMP9 regulates cross-talk between breast cancer cells and bone marrow-derived mesenchymal stem cells. Cell Oncol (Dordr) 2014; 37:363-75. [PMID: 25209393 DOI: 10.1007/s13402-014-0197-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2014] [Indexed: 11/29/2022] Open
Abstract
PURPOSE Breast cancer cells frequently metastasize to distant organs, including bone. Interactions between breast cancer cells and the bone microenvironment are known to enhance tumor growth and osteolytic damage. Here we investigated whether BMP9 (a secretary protein) may change the bone microenvironment and, by doing so, regulate the cross-talk between breast cancer cells and bone marrow-derived mesenchymal stem cells. METHODS After establishing a co-culture system composed of MDA-MB-231 breast cancer cells and HS-5 bone marrow-derived mesenchymal stem cells, and exposure of this system to BMP9 conditioned media, we assessed putative changes in migration and invasion capacities of MDA-MB-231 cells and concomitant changes in osteogenic marker expression in HS-5 cells and metastases-related genes in MDA-MB-231 cells. RESULTS We found that BMP9 can inhibit the migration and invasion of MDA-MB-231 cells, and promote osteogenesis and proliferation of HS-5 cells, in the co-culture system. We also found that the BMP9-induced inhibition of migration and invasion of MDA-MB-231 cells may be caused by a decreased RANK ligand (RANKL) secretion by HS-5 cells, leading to a block in the AKT signaling pathway. CONCLUSIONS From our data we conclude that BMP9 inhibits the migration and invasion of breast cancer cells, and promotes the osteoblastic differentiation and proliferation of bone marrow-derived mesenchymal stem cells by regulating cross-talk between these two types of cells through the RANK/RANKL signaling axis.
Collapse
Affiliation(s)
- Shaoheng Wan
- Key Laboratory of Diagnostic Medicine designated by the Ministry of Education, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Li H, Hu D, Fan H, Zhang Y, LeSage GD, Caudle Y, Stuart C, Liu Z, Yin D. β-Arrestin 2 negatively regulates Toll-like receptor 4 (TLR4)-triggered inflammatory signaling via targeting p38 MAPK and interleukin 10. J Biol Chem 2014; 289:23075-23085. [PMID: 25012660 DOI: 10.1074/jbc.m114.591495] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The control of IL-10 production in Toll-like receptor (TLR) signals remains to be elucidated. Here, we report that β-arrestin 2 positively regulates TLR-triggered IL-10 production in a p38 mitogen-activated protein kinase (MAPK)-dependent mechanism. In vitro studies with cells including peritoneal macrophages and HEK293/TLR4 cells have demonstrated that β-arrestin 2 forms complexes with p38 and facilitates p38 activation after lipopolysaccharide (LPS) stimulation. Deficiency of β-arrestin 2 and inhibition of p38 MAPK activity both ameliorate TLR4-stimulated IL-10 response. Additionally, in vivo experiments show that mice lacking β-arrestin 2 produce less amount of IL-10, and are more susceptible to LPS-induced septic shock which is further enhanced by blocking IL-10 signal. These results reveal a novel mechanism by which β-arrestin 2 negatively regulates TLR4-mediated inflammatory reactions.
Collapse
Affiliation(s)
- Hui Li
- Department of Internal Medicine, College of Medicine, East Tennessee State University, Johnson City, Tennessee 37614
| | - Dan Hu
- Department of Internal Medicine, College of Medicine, East Tennessee State University, Johnson City, Tennessee 37614,; Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Huimin Fan
- Department of Cardiovascular and Thoracic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China, and
| | - Ying Zhang
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, Maryland 21205
| | - Gene D LeSage
- Department of Internal Medicine, College of Medicine, East Tennessee State University, Johnson City, Tennessee 37614
| | - Yi Caudle
- Department of Internal Medicine, College of Medicine, East Tennessee State University, Johnson City, Tennessee 37614
| | - Charles Stuart
- Department of Internal Medicine, College of Medicine, East Tennessee State University, Johnson City, Tennessee 37614
| | - Zhongmin Liu
- Department of Cardiovascular and Thoracic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China, and.
| | - Deling Yin
- Department of Internal Medicine, College of Medicine, East Tennessee State University, Johnson City, Tennessee 37614,.
| |
Collapse
|
30
|
Schuh CD, Pierre S, Weigert A, Weichand B, Altenrath K, Schreiber Y, Ferreiros N, Zhang DD, Suo J, Treutlein EM, Henke M, Kunkel H, Grez M, Nüsing R, Brüne B, Geisslinger G, Scholich K. Prostacyclin mediates neuropathic pain through interleukin 1β-expressing resident macrophages. Pain 2013; 155:545-555. [PMID: 24333781 DOI: 10.1016/j.pain.2013.12.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 12/03/2013] [Accepted: 12/04/2013] [Indexed: 10/25/2022]
Abstract
Prostacyclin is an important mediator of peripheral pain sensation. Here, we investigated its potential participation in mediating neuropathic pain and found that prostacyclin receptor (IP) knockout mice exhibited markedly decreased pain behavior. Application of an IP antagonist to the injury site or selective IP deficiency in myeloid cells mimicked the antinociceptive effect observed in IP knockout mice. At the site of nerve injury, IP was expressed in interleukin (IL) 1β-containing resident macrophages, which were less common in IP knockout mice. Local administration of the IP agonist cicaprost inhibited macrophage migration in vitro and promoted accumulation of IP- and IL1β-expressing cells as well as an increase of IL1β concentrations at the application site in vivo. Fittingly, the IL1-receptor antagonist anakinra (IL-1ra) decreased neuropathic pain behavior in wild-type mice but not in IP knockout mice. Finally, continuous, but not single administration, of the cyclooxygenase inhibitor meloxicam early after nerve injury decreased pain behavior and the number of resident macrophages. Thus, early synthesis of prostacyclin at the site of injury causes accumulation of IL1β-expressing macrophages as a key step in neuropathic pain after traumatic injury.
Collapse
Affiliation(s)
- Claus Dieter Schuh
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt/ZAFES, Hospital of the Goethe-University, Frankfurt, Germany Institute of Biochemistry I, Goethe-University, Frankfurt, Germany Institute of Biomedical Research, Georg-Speyer-Haus, Frankfurt, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Neurotrophins and their receptors in breast cancer. Cytokine Growth Factor Rev 2012; 23:357-65. [DOI: 10.1016/j.cytogfr.2012.06.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 06/06/2012] [Indexed: 12/21/2022]
|
32
|
Shaping the landscape: metabolic regulation of S1P gradients. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1831:193-202. [PMID: 22735358 DOI: 10.1016/j.bbalip.2012.06.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 06/15/2012] [Accepted: 06/17/2012] [Indexed: 12/11/2022]
Abstract
Sphingosine-1-phosphate (S1P) is a lipid that functions as a metabolic intermediate and a cellular signaling molecule. These roles are integrated when compartments with differing extracellular S1P concentrations are formed that serve to regulate functions within the immune and vascular systems, as well as during pathologic conditions. Gradients of S1P concentration are achieved by the organization of cells with specialized expression of S1P metabolic pathways within tissues. S1P concentration gradients underpin the ability of S1P signaling to regulate in vivo physiology. This review will discuss the mechanisms that are necessary for the formation and maintenance of S1P gradients, with the aim of understanding how a simple lipid controls complex physiology. This article is part of a Special Issue entitled Advances in Lysophospholipid Research.
Collapse
|