1
|
Sharma R, Mishra A, Bhardwaj M, Singh G, Indira Harahap LV, Vanjani S, Pan CH, Nepali K. Medicinal chemistry breakthroughs on ATM, ATR, and DNA-PK inhibitors as prospective cancer therapeutics. J Enzyme Inhib Med Chem 2025; 40:2489720. [PMID: 40256842 PMCID: PMC12013171 DOI: 10.1080/14756366.2025.2489720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/28/2025] [Accepted: 04/01/2025] [Indexed: 04/22/2025] Open
Abstract
This review discusses the critical roles of Ataxia Telangiectasia Mutated Kinase (ATM), ATM and Rad3-related Kinase (ATR), and DNA-dependent protein kinase (DNA-PK) in the DNA damage response (DDR) and their implications in cancer. Emphasis is placed on the intricate interplay between these kinases, highlighting their collaborative and distinct roles in maintaining genomic integrity and promoting tumour development under dysregulated conditions. Furthermore, the review covers ongoing clinical trials, patent literature, and medicinal chemistry campaigns on ATM/ATR/DNA-PK inhibitors as antitumor agents. Notably, the medicinal chemistry campaigns employed robust drug design strategies and aimed at assembling new structural templates with amplified DDR kinase inhibitory ability, as well as outwitting the pharmacokinetic liabilities of the existing DDR kinase inhibitors. Given the success attained through such endeavours, the clinical pipeline of DNA repair kinase inhibitors is anticipated to be supplemented by a reasonable number of tractable entries (DDR kinase inhibitors) soon.
Collapse
Affiliation(s)
- Ram Sharma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Anshul Mishra
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Monika Bhardwaj
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Gurpreet Singh
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, India
| | | | - Sakshi Vanjani
- Molecular Medicine, University of South Florida, Tampa, FL, USA
| | - Chun Hsu Pan
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
2
|
Halim CE, Deng S, Crasta KC, Yap CT. Interplay Between the Cytoskeleton and DNA Damage Response in Cancer Progression. Cancers (Basel) 2025; 17:1378. [PMID: 40282554 DOI: 10.3390/cancers17081378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/14/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025] Open
Abstract
DNA damage has emerged as a critical factor in fuelling the development and progression of cancer. DNA damage response (DDR) pathways lie at the crux of cell fate decisions following DNA damage induction, which can either trigger the repair of detrimental DNA lesions to protect cancer cells or induce the cell death machinery to eliminate damaged cells. Cytoskeletal dynamics have a critical role to play and influence the proper function of DDR pathways. Microfilaments, intermediate filaments, microtubules, and their associated proteins are well involved in the DDR. For instance, they are not only implicated in the recruitment of specific DDR molecules to the sites of DNA damage but also in the regulation of the mobility of the damaged DNA to repair sites in the periphery of the nucleus. The exquisite roles that these cytoskeletal proteins play in different DDR pathways, such as non-homologous end joining (NHEJ), homologous recombination (HR), base excision repair (BER), and nucleotide excision repair (NER), in cancer cells are extensively discussed in this review. Many cancer treatments are reliant upon inducing DNA damage in cancer cells to eliminate them; thus, it is important to shed light on factors that could affect their efficacy. Although the cytoskeleton is intricately involved in the DDR process, this has often been overlooked in cancer research and has not been exploited in developing DDR-targeting cancer therapy. Understanding the interplay between the cytoskeleton and the DDR in cancer will then provide insights into improving the development of cancer therapies that can leverage the synergistic action of DDR inhibitors and cytoskeleton-targeting agents.
Collapse
Affiliation(s)
- Clarissa Esmeralda Halim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Shuo Deng
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Karen Carmelina Crasta
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| | - Celestial T Yap
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- National University Cancer Institute, National University Health System, Singapore 119074, Singapore
| |
Collapse
|
3
|
Barnet-Griness O, Gruber SB, Lipkin SM, Shulman K, Haddad R, Galili R, Rennert G. Ataxia telangiectasia-mutated rs56009889 and risk of common cancers. Eur J Cancer Prev 2025; 34:124-129. [PMID: 39150041 DOI: 10.1097/cej.0000000000000906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
A polymorphic variant in the ataxia telangiectasia-mutated ( ATM ) gene, rs56009889, was recently associated with an increased risk of lung cancer. We studied the role of this variant in the etiology of other cancers. Data from three population-based case-control studies of colon, breast, and lung cancer were used. Participants in these studies (4517 cases, 3383 controls) underwent a genome-wide association study using 500K Illumina OncoArray. The frequency of the AG/AA genotypes differed between Ashkenazi (4.6%) and Sephardi (0.2%) Jews ( P < 0.001). AG/AA frequency was significantly higher in Ashkenazi lung cancer (11.9%) than in controls (2.8%) [adjusted odds ratio (OR) = 5.4]. Females had a higher risk than males (OR = 12.8 versus 3.5). The adjusted OR for colorectal cancer was 1.40 [95% confidence interval (CI) = 1.01-2.0, P = 0.045] and for breast cancer was 1.43 (95% CI = 1.01-2.04, P = 0.046). Never-smokers variant carriers were at higher risk of lung and colon, but not breast, cancer. Cases with the AG/AA genotype had lower mean age at diagnosis, but this difference was significant only for breast cancer (-3.2 years, P = 0.007). No associations were observed with overall survival. Among the breast cancer subjects, the OR for having triple-negative tumors was 0.45 for AG/AA versus GG genotype (95% CI = 0.2-0.9, P = 0.02). We confirm the strong association between ATM rs56009889 and lung cancer risk in Ashkenazi Jews and report a mild association with the risk of breast cancer and colorectal cancer.
Collapse
Affiliation(s)
- Ofra Barnet-Griness
- Department of Community Medicine and Epidemiology, Carmel Medical Center, Haifa, Israel
| | | | - Steven M Lipkin
- Program in Mendelian Genetics, Weill-Cornell Medicine, New York, New York, USA
| | - Katerina Shulman
- Haifa and Western Galilee District Oncology Service, Clalit Health Services
| | | | | | - Gad Rennert
- Department of Community Medicine and Epidemiology, Carmel Medical Center, Haifa, Israel
- Faculty of Medicine, Technion-Israel Institute of Technology
- Association for Promotion of Research in Precision Medicine (APRPM) (A.R.), Haifa, Israel
| |
Collapse
|
4
|
Glaviano A, Singh SK, Lee EHC, Okina E, Lam HY, Carbone D, Reddy EP, O'Connor MJ, Koff A, Singh G, Stebbing J, Sethi G, Crasta KC, Diana P, Keyomarsi K, Yaffe MB, Wander SA, Bardia A, Kumar AP. Cell cycle dysregulation in cancer. Pharmacol Rev 2025; 77:100030. [PMID: 40148026 DOI: 10.1016/j.pharmr.2024.100030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 11/12/2024] [Indexed: 03/29/2025] Open
Abstract
Cancer is a systemic manifestation of aberrant cell cycle activity and dysregulated cell growth. Genetic mutations can determine tumor onset by either augmenting cell division rates or restraining normal controls such as cell cycle arrest or apoptosis. As a result, tumor cells not only undergo uncontrolled cell division but also become compromised in their ability to exit the cell cycle accurately. Regulation of cell cycle progression is enabled by specific surveillance mechanisms known as cell cycle checkpoints, and aberrations in these signaling pathways often culminate in cancer. For instance, DNA damage checkpoints, which preclude the generation and augmentation of DNA damage in the G1, S, and G2 cell cycle phases, are often defective in cancer cells, allowing cell division in spite of the accumulation of genetic errors. Notably, tumors have evolved to become dependent on checkpoints for their survival. For example, checkpoint pathways such as the DNA replication stress checkpoint and the mitotic checkpoint rarely undergo mutations and remain intact because any aberrant activity could result in irreparable damage or catastrophic chromosomal missegregation leading to cell death. In this review, we initially focus on cell cycle control pathways and specific functions of checkpoint signaling involved in normal and cancer cells and then proceed to examine how cell cycle control and checkpoint mechanisms can provide new therapeutic windows that can be exploited for cancer therapy. SIGNIFICANCE STATEMENT: DNA damage checkpoints are often defective in cancer cells, allowing cell division in spite of the accumulation of genetic errors. Conversely, DNA replication stress and mitotic checkpoints rarely undergo mutations because any aberrant activity could result in irreparable damage or catastrophic chromosomal missegregation, leading to cancer cell death. This review focuses on the checkpoint signaling mechanisms involved in cancer cells and how an emerging understanding of these pathways can provide new therapeutic opportunities for cancer therapy.
Collapse
Affiliation(s)
- Antonino Glaviano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Samarendra K Singh
- School of Biotechnology, Institute of Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - E Hui Clarissa Lee
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Elena Okina
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hiu Yan Lam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Daniela Carbone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - E Premkumar Reddy
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Mark J O'Connor
- Discovery Centre, AstraZeneca, Francis Crick Avenue, Cambridge CB2 0AA, United Kingdom
| | - Andrew Koff
- Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York
| | - Garima Singh
- School of Biotechnology, Institute of Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Justin Stebbing
- School of Life Sciences, Anglia Ruskin University, Cambridge, United Kingdom
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Karen Carmelina Crasta
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Centre for Healthy Longevity, National University Health System, Singapore, Singapore
| | - Patrizia Diana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Khandan Keyomarsi
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael B Yaffe
- MIT Center for Precision Cancer Medicine, Koch Institute for Integrative Cancer Research, Broad Institute, Massachusetts Institute of Technology, Cambridge, Boston, Massachusetts
| | - Seth A Wander
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Aditya Bardia
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
5
|
Park J, Peña-Tauber A, Talozzi L, Greicius MD, Le Guen Y. Rare genetic associations with human lifespan in UK Biobank are enriched for oncogenic genes. Nat Commun 2025; 16:2064. [PMID: 40021682 PMCID: PMC11871019 DOI: 10.1038/s41467-025-57315-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 02/18/2025] [Indexed: 03/03/2025] Open
Abstract
Human lifespan is shaped by genetic and environmental factors. To enable precision health, understanding how genetic variants influence mortality is essential. We conducted a survival analysis in European ancestry participants of the UK Biobank, using age-at-death (N=35,551) and last-known-age (N=358,282). The associations identified were predominantly driven by cancer. We found lifespan-associated loci (APOE, ZSCAN23) for common variants and six genes where burden of loss-of-function variants were linked to reduced lifespan (TET2, ATM, BRCA2, CKMT1B, BRCA1, ASXL1). Additionally, eight genes with pathogenic missense variants were associated with reduced lifespan (DNMT3A, SF3B1, TET2, PTEN, SOX21, TP53, SRSF2, RLIM). Many of these genes are involved in oncogenic pathways and clonal hematopoiesis. Our findings highlight the importance of understanding genetic factors driving the most prevalent causes of mortality at a population level, highlighting the potential of early genetic testing to identify germline and somatic variants increasing one's susceptibility to cancer and/or early death.
Collapse
Affiliation(s)
- Junyoung Park
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA.
| | - Andrés Peña-Tauber
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Lia Talozzi
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Michael D Greicius
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Yann Le Guen
- Quantitative Sciences Unit, Department of Medicine, Stanford University, Stanford, CA, 94304, USA
| |
Collapse
|
6
|
Banerjee M, Lykoudi A, Hwang JY, Pan J, Rai SN, Park JW, States JC. Dysregulation of mRNA expression by hsa-miR-186 overexpression in arsenic-induced skin carcinogenesis. Toxicol Appl Pharmacol 2025; 495:117209. [PMID: 39719251 DOI: 10.1016/j.taap.2024.117209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/12/2024] [Accepted: 12/17/2024] [Indexed: 12/26/2024]
Abstract
Dysregulated miRNA expression contributes to development of arsenic-induced cutaneous squamous cell carcinoma (cSCC). hsa-miR-186 (miR-186) is overexpressed in arsenical cSCC tissues as well as in preclinical cell line model of arsenical cSCC. Simultaneous miR-186 overexpression and chronic inorganic trivalent arsenite (iAs; 100 nM) exposure transformed human HaCaT cell line preferentially over miR-186 overexpression or iAs exposure alone. Both iAs and miR-186 regulate the expression of wide range of mRNA targets. However, how their interaction impacts the transcriptome-wide mRNA expression landscape ushering in cancer is unknown. We performed longitudinal RNA-seq analysis in passage-matched HaCaT cell clones (±miR-186 overexpression) with simultaneous chronic iAs exposure (0/100 nM) at 12 and 29 weeks. We determined the impact of each factor and their interaction towards differential gene expression and pathway dysregulation employing two different statistical approaches (t-statistic and 2-factor ANOVA). We show that a core set of pathways are dysregulated deterministically irrespective of the statistical approach chosen, possibly representing necessary changes for transformation. The data suggest that each clonal line could take a unique route to dysregulate this core set of pathways necessary for transformation, highlighting the possible role of stochasticity in cancer development. Evidence is presented to sift the strengths and weaknesses of each statistical methodology in providing biological understanding of events that play crucial roles in carcinogenesis in large datasets with multiple contributing variables.
Collapse
Affiliation(s)
- Mayukh Banerjee
- Department of Pharmacology and Toxicology, University of Louisville, 505 S. Hancock Street, Louisville, KY 40202, USA; Center for Integrative Environmental Health Sciences, University of Louisville, 505 S. Hancock Street, Louisville, KY 40202, USA
| | - Angeliki Lykoudi
- Department of Pharmacology and Toxicology, University of Louisville, 505 S. Hancock Street, Louisville, KY 40202, USA
| | - Jae Y Hwang
- Center for Integrative Environmental Health Sciences, University of Louisville, 505 S. Hancock Street, Louisville, KY 40202, USA; Brown Cancer Center, University of Louisville, 505 S. Hancock Street, Louisville, KY 40202, USA; Department of Medicine, University of Louisville, 505 S. Hancock Street, Louisville, KY 40202, USA
| | - Jianmin Pan
- Center for Integrative Environmental Health Sciences, University of Louisville, 505 S. Hancock Street, Louisville, KY 40202, USA; Cancer Data Science Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Biostatistics and Informatics Shared Resources, University of Cincinnati Cancer Center, Cincinnati, OH, USA; Department of Biostatistics, Health Informatics and Data Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Department of Bioinformatics and Biostatistics, University of Louisville, 505 S. Hancock Street, Louisville, KY 40202, USA
| | - Shesh N Rai
- Center for Integrative Environmental Health Sciences, University of Louisville, 505 S. Hancock Street, Louisville, KY 40202, USA; Cancer Data Science Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Biostatistics and Informatics Shared Resources, University of Cincinnati Cancer Center, Cincinnati, OH, USA; Department of Biostatistics, Health Informatics and Data Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Department of Bioinformatics and Biostatistics, University of Louisville, 505 S. Hancock Street, Louisville, KY 40202, USA
| | - Juw W Park
- Center for Integrative Environmental Health Sciences, University of Louisville, 505 S. Hancock Street, Louisville, KY 40202, USA; Brown Cancer Center, University of Louisville, 505 S. Hancock Street, Louisville, KY 40202, USA; Department of Medicine, University of Louisville, 505 S. Hancock Street, Louisville, KY 40202, USA
| | - J Christopher States
- Department of Pharmacology and Toxicology, University of Louisville, 505 S. Hancock Street, Louisville, KY 40202, USA; Center for Integrative Environmental Health Sciences, University of Louisville, 505 S. Hancock Street, Louisville, KY 40202, USA.
| |
Collapse
|
7
|
Richardson ME, Holdren M, Brannan T, de la Hoya M, Spurdle AB, Tavtigian SV, Young CC, Zec L, Hiraki S, Anderson MJ, Walker LC, McNulty S, Turnbull C, Tischkowitz M, Schon K, Slavin T, Foulkes WD, Cline M, Monteiro AN, Pesaran T, Couch FJ. Specifications of the ACMG/AMP variant curation guidelines for the analysis of germline ATM sequence variants. Am J Hum Genet 2024; 111:2411-2426. [PMID: 39317201 PMCID: PMC11568761 DOI: 10.1016/j.ajhg.2024.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/26/2024] Open
Abstract
The ClinGen Hereditary Breast, Ovarian, and Pancreatic Cancer (HBOP) Variant Curation Expert Panel (VCEP) is composed of internationally recognized experts in clinical genetics, molecular biology, and variant interpretation. This VCEP made specifications for the American College of Medical Genetics and Association for Molecular Pathology (ACMG/AMP) guidelines for the ataxia telangiectasia mutated (ATM) gene according to the ClinGen protocol. These gene-specific rules for ATM were modified from the ACMG/AMP guidelines and were tested against 33 ATM variants of various types and classifications in a pilot curation phase. The pilot revealed a majority agreement between the HBOP VCEP classifications and the ClinVar-deposited classifications. Six pilot variants had conflicting interpretations in ClinVar, and re-evaluation with the VCEP's ATM-specific rules resulted in four that were classified as benign, one as likely pathogenic, and one as a variant of uncertain significance (VUS) by the VCEP, improving the certainty of interpretations in the public domain. Overall, 28 of the 33 pilot variants were not VUS, leading to an 85% classification rate. The ClinGen-approved, modified rules demonstrated value for improved interpretation of variants in ATM.
Collapse
Affiliation(s)
| | - Megan Holdren
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | | - Miguel de la Hoya
- Molecular Oncology Laboratory, Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain
| | - Amanda B Spurdle
- Population Health, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Sean V Tavtigian
- Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | | | | | | | | | - Logan C Walker
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Shannon McNulty
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Clare Turnbull
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | - Marc Tischkowitz
- Department of Medical Genetics, National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK
| | - Katherine Schon
- Department of Medical Genetics, National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK
| | - Thomas Slavin
- City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - William D Foulkes
- Departments of Human Genetics, McGill University, Montreal, QC, Canada
| | - Melissa Cline
- UC Santa Cruz Genomics Institute, Mail Stop: Genomics, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Alvaro N Monteiro
- Department of Cancer Epidemiology, H Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | | | - Fergus J Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
8
|
Du S, Liang Q, Shi J. Progress of ATM inhibitors: Opportunities and challenges. Eur J Med Chem 2024; 277:116781. [PMID: 39173286 DOI: 10.1016/j.ejmech.2024.116781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/29/2024] [Accepted: 08/14/2024] [Indexed: 08/24/2024]
Abstract
Ataxia-telangiectasia mutated (ATM) was first discovered in patients with AT (ataxia telangiectasia), which is characteristic with cerebellar degeneration, immunodeficiency, being susceptible to malignant tumors and sensitive to radiation. ATM kinase could detect DNA double-strand breaks and play a vital role in the DNA damage response. Inhibiting the function of ATM could sensitize tumor cells to both ionizing radiation (IR) and chemotherapy, as well as improve the chemoresistance and radioresistance observed in some patients. As such, ATM is a novel and important target for the cancer therapy. We reviewed ATM inhibitors reported in the last two decades, focusing on their development process, structure-activity relationships, inhibitory efficacy, pharmacokinetics and pharmacodynamics characteristics in the preclinical and clinical studies. We summarized the clinical value of ATM inhibitors in tumors and some neurodegenerative diseases, as well as the main challenges to the development of the drugs, providing directions and references for the future development of ATM inhibitors.
Collapse
Affiliation(s)
- Shan Du
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Qi Liang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| |
Collapse
|
9
|
Wang S, Ilves M, Mäenpää K, Zhao L, El-Nezami H, Karisola P, Alenius H. ZnO Nanoparticles as Potent Inducers of Dermal Immunosuppression in Contact Hypersensitivity in Mice. ACS NANO 2024; 18:29479-29491. [PMID: 39401296 PMCID: PMC11526425 DOI: 10.1021/acsnano.4c04270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 09/27/2024] [Accepted: 10/04/2024] [Indexed: 10/30/2024]
Abstract
Nanosized zinc oxide (nZnO) metal particles are used in skin creams and sunscreens to enhance their texture and optical properties as UV filters. Despite their common use, little is known about the molecular mechanisms of nZnO exposure on damaged skin. We studied the effects of topically applied nZnO particles on allergic skin inflammation in an oxazolone (OXA)-induced contact hypersensitivity (CHS) mouse model. We investigated whether exposure to nZnO during the sensitization or challenge phase would induce immunological changes and modulate transcriptional responses. We followed skin thickness, cellular infiltration, and changes in the local transcriptome up to 28 days after the challenge. The responses peaked at 24 h and were fully resolved by 28 days. Co-exposure to nZnO and hapten did not interfere with the formation of the sensitization process. Conversely, during the hapten challenge, the application of nZnO fully suppressed the development of the CHS response by the inhibition of pro-inflammatory pathways, secretion of pro-inflammatory cytokines, and proliferation of immune cells. In differentiated and stimulated THP-1 cells and the CHS mouse model, we found that nZnO particles and Zn ions contributed to anti-inflammatory responses. The immunosuppressive properties of nZnO in inflamed skin are mediated by impaired IL-1R-, CXCR2-, and LTB4-mediated pathways. nZnO-induced dermal immunosuppression may be beneficial for individuals with contact allergies who use nZnO-containing cosmetic products. Our findings also provide a deeper understanding of the mechanisms of nZnO, which could be considered when developing nanoparticle-containing skin products.
Collapse
Affiliation(s)
- Shuyuan Wang
- School
of Biological Sciences, University of Hong
Kong, Pok Fu Lam Road, 999077 Hong Kong, People’s Republic
of China
- Human
Microbiome Research Program, University
of Helsinki, Haartmaninkatu 3, 00290 Helsinki, Finland
| | - Marit Ilves
- Human
Microbiome Research Program, University
of Helsinki, Haartmaninkatu 3, 00290 Helsinki, Finland
| | - Kuunsäde Mäenpää
- Human
Microbiome Research Program, University
of Helsinki, Haartmaninkatu 3, 00290 Helsinki, Finland
| | - Lan Zhao
- Human
Microbiome Research Program, University
of Helsinki, Haartmaninkatu 3, 00290 Helsinki, Finland
| | - Hani El-Nezami
- School
of Biological Sciences, University of Hong
Kong, Pok Fu Lam Road, 999077 Hong Kong, People’s Republic
of China
- School
of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Piia Karisola
- Human
Microbiome Research Program, University
of Helsinki, Haartmaninkatu 3, 00290 Helsinki, Finland
| | - Harri Alenius
- Human
Microbiome Research Program, University
of Helsinki, Haartmaninkatu 3, 00290 Helsinki, Finland
- Institute
of Environmental Medicine (IMM), Karolinska
Institutet, 171 77 Stockholm, Sweden
| |
Collapse
|
10
|
Li J, Jia Z, Dong L, Cao H, Huang Y, Xu H, Xie Z, Jiang Y, Wang X, Liu J. DNA damage response in breast cancer and its significant role in guiding novel precise therapies. Biomark Res 2024; 12:111. [PMID: 39334297 PMCID: PMC11437670 DOI: 10.1186/s40364-024-00653-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
DNA damage response (DDR) deficiency has been one of the emerging targets in treating breast cancer in recent years. On the one hand, DDR coordinates cell cycle and signal transduction, whose dysfunction may lead to cell apoptosis, genomic instability, and tumor development. Conversely, DDR deficiency is an intrinsic feature of tumors that underlies their response to treatments that inflict DNA damage. In this review, we systematically explore various mechanisms of DDR, the rationale and research advances in DDR-targeted drugs in breast cancer, and discuss the challenges in its clinical applications. Notably, poly (ADP-ribose) polymerase (PARP) inhibitors have demonstrated favorable efficacy and safety in breast cancer with high homogenous recombination deficiency (HRD) status in a series of clinical trials. Moreover, several studies on novel DDR-related molecules are actively exploring to target tumors that become resistant to PARP inhibition. Before further clinical application of new regimens or drugs, novel and standardized biomarkers are needed to develop for accurately characterizing the benefit population and predicting efficacy. Despite the promising efficacy of DDR-related treatments, challenges of off-target toxicity and drug resistance need to be addressed. Strategies to overcome drug resistance await further exploration on DDR mechanisms, and combined targeted drugs or immunotherapy will hopefully provide more precise or combined strategies and expand potential responsive populations.
Collapse
Affiliation(s)
- Jiayi Li
- Department of Breast Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- School of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Ziqi Jia
- Department of Breast Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Lin Dong
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Heng Cao
- Department of Breast Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yansong Huang
- Department of Breast Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- School of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Hengyi Xu
- School of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhixuan Xie
- School of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Yiwen Jiang
- School of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Xiang Wang
- Department of Breast Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jiaqi Liu
- Department of Breast Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
11
|
Lee JH. Targeting the ATM pathway in cancer: Opportunities, challenges and personalized therapeutic strategies. Cancer Treat Rev 2024; 129:102808. [PMID: 39106770 DOI: 10.1016/j.ctrv.2024.102808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/09/2024]
Abstract
Ataxia telangiectasia mutated (ATM) kinase plays a pivotal role in orchestrating the DNA damage response, maintaining genomic stability, and regulating various cellular processes. This review provides a comprehensive analysis of ATM's structure, activation mechanisms, and various functions in cancer development, progression, and treatment. I discuss ATM's dual nature as both a tumor suppressor and potential promoter of cancer cell survival in certain contexts. The article explores the complex signaling pathways mediated by ATM, its interactions with other DNA repair mechanisms, and its influence on cell cycle checkpoints, apoptosis, and metabolism. I examine the clinical implications of ATM alterations, including their impact on cancer predisposition, prognosis, and treatment response. The review highlights recent advances in ATM-targeted therapies, discussing ongoing clinical trials of ATM inhibitors and their potential in combination with other treatment modalities. I also address the challenges in developing effective biomarkers for ATM activity and patient selection strategies for personalized cancer therapy. Finally, I outline future research directions, emphasizing the need for refined biomarker development, optimized combination therapies, and strategies to overcome potential resistance mechanisms. This comprehensive overview underscores the critical importance of ATM in cancer biology and its emerging potential as a therapeutic target in precision oncology.
Collapse
Affiliation(s)
- Ji-Hoon Lee
- Department of Biological Sciences, Research Center of Ecomimetics, Chonnam National University, Gwangju 61186, Republic of Korea.
| |
Collapse
|
12
|
Park J, Peña-Tauber A, Talozzi L, Greicius MD, Guen YL. Genetic associations with human longevity are enriched for oncogenic genes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.30.24311226. [PMID: 39132489 PMCID: PMC11312667 DOI: 10.1101/2024.07.30.24311226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Human lifespan is shaped by both genetic and environmental exposures and their interaction. To enable precision health, it is essential to understand how genetic variants contribute to earlier death or prolonged survival. In this study, we tested the association of common genetic variants and the burden of rare non-synonymous variants in a survival analysis, using age-at-death (N = 35,551, median [min, max] = 72.4 [40.9, 85.2]), and last-known-age (N = 358,282, median [min, max] = 71.9 [52.6, 88.7]), in European ancestry participants of the UK Biobank. The associations we identified seemed predominantly driven by cancer, likely due to the age range of the cohort. Common variant analysis highlighted three longevity-associated loci: APOE, ZSCAN23, and MUC5B. We identified six genes whose burden of loss-of-function variants is significantly associated with reduced lifespan: TET2, ATM, BRCA2, CKMT1B, BRCA1 and ASXL1. Additionally, in eight genes, the burden of pathogenic missense variants was associated with reduced lifespan: DNMT3A, SF3B1, CHL1, TET2, PTEN, SOX21, TP53 and SRSF2. Most of these genes have previously been linked to oncogenic-related pathways and some are linked to and are known to harbor somatic variants that predispose to clonal hematopoiesis. A direction-agnostic (SKAT-O) approach additionally identified significant associations with C1orf52, TERT, IDH2, and RLIM, highlighting a link between telomerase function and longevity as well as identifying additional oncogenic genes. Our results emphasize the importance of understanding genetic factors driving the most prevalent causes of mortality at a population level, highlighting the potential of early genetic testing to identify germline and somatic variants increasing one's susceptibility to cancer and/or early death.
Collapse
Affiliation(s)
- Junyoung Park
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Andrés Peña-Tauber
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Lia Talozzi
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Michael D. Greicius
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Yann Le Guen
- Quantitative Sciences Unit, Department of Medicine, Stanford University, Stanford, CA, 94304, USA
| |
Collapse
|
13
|
Richardson ME, Holdren M, Brannan T, de la Hoya M, Spurdle AB, Tavtigian SV, Young CC, Zec L, Hiraki S, Anderson MJ, Walker LC, McNulty S, Turnbull C, Tischkowitz M, Schon K, Slavin T, Foulkes WD, Cline M, Monteiro AN, Pesaran T, Couch FJ. Specifications of the ACMG/AMP variant curation guidelines for the analysis of germline ATM sequence variants. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.28.24307502. [PMID: 38854136 PMCID: PMC11160822 DOI: 10.1101/2024.05.28.24307502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The ClinGen Hereditary Breast, Ovarian and Pancreatic Cancer (HBOP) Variant Curation Expert Panel (VCEP) is composed of internationally recognized experts in clinical genetics, molecular biology and variant interpretation. This VCEP made specifications for ACMG/AMP guidelines for the ataxia telangiectasia mutated (ATM) gene according to the Food and Drug Administration (FDA)-approved ClinGen protocol. These gene-specific rules for ATM were modified from the American College of Medical Genetics and Association for Molecular Pathology (ACMG/AMP) guidelines and were tested against 33 ATM variants of various types and classifications in a pilot curation phase. The pilot revealed a majority agreement between the HBOP VCEP classifications and the ClinVar-deposited classifications. Six pilot variants had conflicting interpretations in ClinVar and reevaluation with the VCEP's ATM-specific rules resulted in four that were classified as benign, one as likely pathogenic and one as a variant of uncertain significance (VUS) by the VCEP, improving the certainty of interpretations in the public domain. Overall, 28 the 33 pilot variants were not VUS leading to an 85% classification rate. The ClinGen-approved, modified rules demonstrated value for improved interpretation of variants in ATM.
Collapse
Affiliation(s)
| | - Megan Holdren
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | | - Miguel de la Hoya
- Molecular Oncology Laboratory, Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain
| | - Amanda B Spurdle
- Population Health, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Sean V Tavtigian
- Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | | | | | | | | | - Logan C Walker
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Shannon McNulty
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Clare Turnbull
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | - Marc Tischkowitz
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | - Katherine Schon
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | - Thomas Slavin
- City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - William D Foulkes
- Departments of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Melissa Cline
- UC Santa Cruz Genomics Institute, Mail Stop: Genomics, University of California, Santa Cruz, CA, USA
| | - Alvaro N Monteiro
- Department of Cancer Epidemiology, H Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | | | - Fergus J Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
14
|
Zhou Y, Tao L, Qiu J, Xu J, Yang X, Zhang Y, Tian X, Guan X, Cen X, Zhao Y. Tumor biomarkers for diagnosis, prognosis and targeted therapy. Signal Transduct Target Ther 2024; 9:132. [PMID: 38763973 PMCID: PMC11102923 DOI: 10.1038/s41392-024-01823-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 03/07/2024] [Accepted: 04/02/2024] [Indexed: 05/21/2024] Open
Abstract
Tumor biomarkers, the substances which are produced by tumors or the body's responses to tumors during tumorigenesis and progression, have been demonstrated to possess critical and encouraging value in screening and early diagnosis, prognosis prediction, recurrence detection, and therapeutic efficacy monitoring of cancers. Over the past decades, continuous progress has been made in exploring and discovering novel, sensitive, specific, and accurate tumor biomarkers, which has significantly promoted personalized medicine and improved the outcomes of cancer patients, especially advances in molecular biology technologies developed for the detection of tumor biomarkers. Herein, we summarize the discovery and development of tumor biomarkers, including the history of tumor biomarkers, the conventional and innovative technologies used for biomarker discovery and detection, the classification of tumor biomarkers based on tissue origins, and the application of tumor biomarkers in clinical cancer management. In particular, we highlight the recent advancements in biomarker-based anticancer-targeted therapies which are emerging as breakthroughs and promising cancer therapeutic strategies. We also discuss limitations and challenges that need to be addressed and provide insights and perspectives to turn challenges into opportunities in this field. Collectively, the discovery and application of multiple tumor biomarkers emphasized in this review may provide guidance on improved precision medicine, broaden horizons in future research directions, and expedite the clinical classification of cancer patients according to their molecular biomarkers rather than organs of origin.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lei Tao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiahao Qiu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Xu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinyu Yang
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yu Zhang
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
- School of Medicine, Tibet University, Lhasa, 850000, China
| | - Xinyu Tian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinqi Guan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaobo Cen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yinglan Zhao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
15
|
Pike KG, Hunt TA, Barlaam B, Benstead D, Cadogan E, Chen K, Cook CR, Colclough N, Deng C, Durant ST, Eatherton A, Goldberg K, Johnström P, Liu L, Liu Z, Nissink JWM, Pang C, Pass M, Robb GR, Roberts C, Schou M, Steward O, Sykes A, Yan Y, Zhai B, Zheng L. Identification of Novel, Selective Ataxia-Telangiectasia Mutated Kinase Inhibitors with the Ability to Penetrate the Blood-Brain Barrier: The Discovery of AZD1390. J Med Chem 2024; 67:3090-3111. [PMID: 38306388 DOI: 10.1021/acs.jmedchem.3c02277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
The inhibition of ataxia-telangiectasia mutated (ATM) has been shown to chemo- and radio-sensitize human glioma cells in vitro and therefore might provide an exciting new paradigm in the treatment of glioblastoma multiforme (GBM). The effective treatment of GBM will likely require a compound with the potential to efficiently cross the blood-brain barrier (BBB). Starting from clinical candidate AZD0156, 4, we investigated the imidazoquinolin-2-one scaffold with the goal of improving likely CNS exposure in humans. Strategies aimed at reducing hydrogen bonding, basicity, and flexibility of the molecule were explored alongside modulating lipophilicity. These studies identified compound 24 (AZD1390) as an exceptionally potent and selective inhibitor of ATM with a good preclinical pharmacokinetic profile. 24 showed an absence of human transporter efflux in MDCKII-MDR1-BCRP studies (efflux ratio <2), significant BBB penetrance in nonhuman primate PET studies (Kp,uu 0.33) and was deemed suitable for development as a clinical candidate to explore the radiosensitizing effects of ATM in intracranial malignancies.
Collapse
Affiliation(s)
- Kurt G Pike
- Oncology R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | | | | | - David Benstead
- Pharmaceutical Sciences, AstraZeneca, Silk Road Business Park, Macclesfield SK10 2NA, U.K
| | | | - Kan Chen
- Innovation Center China, Asia & Emerging Markets iMED, 199 Liangjing Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China
| | - Calum R Cook
- Pharmaceutical Sciences, AstraZeneca, Silk Road Business Park, Macclesfield SK10 2NA, U.K
| | | | - Chao Deng
- Pharmaron Beijing Co., Ltd., 6 Taihe Road BDA, Beijing 100176, P. R. China
| | | | | | | | - Peter Johnström
- PET Science Centre, Precision Medicine and Biosamples, Oncology R&D, AstraZeneca, Karolinska Institutet, Stockholm SE-171 76, Sweden
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm SE-171 76, Sweden
| | - Libin Liu
- Pharmaron Beijing Co., Ltd., 6 Taihe Road BDA, Beijing 100176, P. R. China
| | - Zhaoqun Liu
- Pharmaron Beijing Co., Ltd., 6 Taihe Road BDA, Beijing 100176, P. R. China
| | | | - Chengling Pang
- Pharmaron Beijing Co., Ltd., 6 Taihe Road BDA, Beijing 100176, P. R. China
| | - Martin Pass
- Oncology R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | | | | | - Magnus Schou
- PET Science Centre, Precision Medicine and Biosamples, Oncology R&D, AstraZeneca, Karolinska Institutet, Stockholm SE-171 76, Sweden
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm SE-171 76, Sweden
| | | | - Andy Sykes
- Oncology R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Yumei Yan
- Innovation Center China, Asia & Emerging Markets iMED, 199 Liangjing Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China
| | - Baochang Zhai
- Pharmaron Beijing Co., Ltd., 6 Taihe Road BDA, Beijing 100176, P. R. China
| | - Li Zheng
- Innovation Center China, Asia & Emerging Markets iMED, 199 Liangjing Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China
| |
Collapse
|
16
|
Jahani-Sherafat S, Azimirad M, Raeisi H, Azizmohammad Looha M, Tavakkoli S, Ahmadi Amoli H, Moghim S, Rostami-Nejad M, Yadegar A, Zali MR. Alterations in the gut microbiota and their metabolites in human intestinal epithelial cells of patients with colorectal cancer. Mol Biol Rep 2024; 51:265. [PMID: 38302841 DOI: 10.1007/s11033-024-09273-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/19/2024] [Indexed: 02/03/2024]
Abstract
BACKGROUND The gut microbiota has become one of the main risk factors for the formation and development of colorectal cancer (CRC). CRC intensification may be due to the microbial pathogens' colonization and their released metabolites. Here, we analyzed Bacteroidetes and Clostridia bacteria in CRC patients and studied bacterial metabolome in cancerous tissues compared to their adjacent normal tissues. METHODS AND RESULTS The population of selected bacteria in biopsy specimens of 30 patients with CRC was studied by RT-qPCR. The mutagenicity and cytotoxicity effects of microbiota metabolites were evaluated by Ames test and MTT Assay, respectively. Moreover, gene expression in carcinogenic pathways was studied by RT-qPCR, and genes with different expressions in tumor and non-tumor tissues were diagnosed. Based on microbiota analysis, the relative abundance of Clostridia and C. difficile was significantly higher in CRC tissue, whereas C. perfringens showed higher relative abundance in normal tissue. AIMES test confirmed the proliferation and mutagenicity effects of the bacterial metabolites in CRC patients. Significant upregulation of C-Myc, GRB2, IL-8, EGFR, PI3K, and AKT and downregulation of ATM were observed in CRC samples compared to the control. CONCLUSIONS The influence of bacterial metabolites on inflammation and altered expression of genes in the cell signaling pathways was observed. The findings confirm the role gut microbiota composition and bacterial metabolites as key players in CRC onset and development.
Collapse
Affiliation(s)
- Somayeh Jahani-Sherafat
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Shahid Arabi Ave., Yemen St, Velenjak, Tehran, Iran
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Microbiology Department, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Masoumeh Azimirad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Shahid Arabi Ave., Yemen St, Velenjak, Tehran, Iran
| | - Hamideh Raeisi
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Shahid Arabi Ave., Yemen St, Velenjak, Tehran, Iran
| | - Mehdi Azizmohammad Looha
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajjad Tavakkoli
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Sharareh Moghim
- Microbiology Department, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Rostami-Nejad
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Celiac Disease and Gluten Related Disorders Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Shahid Arabi Ave., Yemen St, Velenjak, Tehran, Iran.
| | - Mohammad Reza Zali
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Behl T, Kumar A, Vishakha, Sehgal A, Singh S, Sharma N, Yadav S, Rashid S, Ali N, Ahmed AS, Vargas-De-La-Cruz C, Bungau SG, Khan H. Understanding the mechanistic pathways and clinical aspects associated with protein and gene based biomarkers in breast cancer. Int J Biol Macromol 2023; 253:126595. [PMID: 37648139 DOI: 10.1016/j.ijbiomac.2023.126595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/22/2023] [Accepted: 08/27/2023] [Indexed: 09/01/2023]
Abstract
Cancer is one of the most widespread and severe diseases with a huge mortality rate. In recent years, the second-leading mortality rate of any cancer globally has been breast cancer, which is one of the most common and deadly cancers found in women. Detecting breast cancer in its initial stages simplifies treatment, decreases death risk, and recovers survival rates for patients. The death rate for breast cancer has risen to 0.024 % in some regions. Sensitive and accurate technologies are required for the preclinical detection of BC at an initial stage. Biomarkers play a very crucial role in the early identification as well as diagnosis of women with breast cancer. Currently, a wide variety of cancer biomarkers have been discovered for the diagnosis of cancer. For the identification of these biomarkers from serum or other body fluids at physiological amounts, many detection methods have been developed. In the case of breast cancer, biomarkers are especially helpful in discovering those who are more likely to develop the disease, determining prognosis at the time of initial diagnosis and choosing the best systemic therapy. In this study we have compiled various clinical aspects and signaling pathways associated with protein-based biomarkers and gene-based biomarkers.
Collapse
Affiliation(s)
- Tapan Behl
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand, India
| | - Ankush Kumar
- Institute of Pharmaceutical Sciences, IET Bhaddal Technical Campus, Ropar 140108, Punjab, India
| | - Vishakha
- Institute of Pharmaceutical Sciences, IET Bhaddal Technical Campus, Ropar 140108, Punjab, India
| | - Aayush Sehgal
- GHG Khalsa College of Pharmacy, Gurusar Sadhar, 141104 Ludhiana, Punjab, India
| | - Sukhbir Singh
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana Ambala 133203, Haryana, India
| | - Neelam Sharma
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana Ambala 133203, Haryana, India
| | - Shivam Yadav
- School of Pharmacy, Babu Banarasi Das University, Lucknow 226028, Uttar Pradesh, India
| | - Summya Rashid
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia.
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadah 11451, Saudi Arabia
| | - Amira Saber Ahmed
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza 12622, Egypt
| | - Celia Vargas-De-La-Cruz
- Department of Pharmacology, Bromatology and Toxicology, Faculty of Pharmacy and Biochemistry, Universidad Nacional Mayor de San Marcos, Lima 150001, Peru; E-Health Research Center, Universidad de Ciencias y Humanidades, Lima 15001, Peru
| | - Simona Gabriela Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea 410087, Romania; Doctoral School of Biomedical Sciences, University of Oradea, Oradea 410087, Romania
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan.
| |
Collapse
|
18
|
Elkoshi N, Parikh S, Malcov-Brog H, Parikh R, Manich P, Netti F, Maliah A, Elkoshi H, Haj M, Rippin I, Frand J, Perluk T, Haiat-Factor R, Golan T, Regev-Rudzki N, Kiper E, Brenner R, Gonen P, Dror I, Levi H, Hameiri O, Cohen-Gulkar M, Eldar-Finkelman H, Ast G, Nizri E, Ziv Y, Elkon R, Khaled M, Ebenstein Y, Shiloh Y, Levy C. Ataxia Telangiectasia Mutated Signaling Delays Skin Pigmentation upon UV Exposure by Mediating MITF Function toward DNA Repair Mode. J Invest Dermatol 2023; 143:2494-2506.e4. [PMID: 37236596 DOI: 10.1016/j.jid.2023.03.1686] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 05/28/2023]
Abstract
Skin pigmentation is paused after sun exposure; however, the mechanism behind this pausing is unknown. In this study, we found that the UVB-induced DNA repair system, led by the ataxia telangiectasia mutated (ATM) protein kinase, represses MITF transcriptional activity of pigmentation genes while placing MITF in DNA repair mode, thus directly inhibiting pigment production. Phosphoproteomics analysis revealed ATM to be the most significantly enriched pathway among all UVB-induced DNA repair systems. ATM inhibition in mouse or human skin, either genetically or chemically, induces pigmentation. Upon UVB exposure, MITF transcriptional activation is blocked owing to ATM-dependent phosphorylation of MITF on S414, which modifies MITF activity and interactome toward DNA repair, including binding to TRIM28 and RBBP4. Accordingly, MITF genome occupancy is enriched in sites of high DNA damage that are likely repaired. This suggests that ATM harnesses the pigmentation key activator for the necessary rapid, efficient DNA repair, thus optimizing the chances of the cell surviving. Data are available from ProteomeXchange with the identifier PXD041121.
Collapse
Affiliation(s)
- Nadav Elkoshi
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shivang Parikh
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Hagar Malcov-Brog
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Roma Parikh
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Paulee Manich
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Francesca Netti
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Avishai Maliah
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Hana Elkoshi
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Majd Haj
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ido Rippin
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Jacob Frand
- Department of Plastic and Reconstructive Surgery, Edith Wolfson Medical Center, Holon, Israel
| | - Tomer Perluk
- Department of Plastic and Reconstructive Surgery, Edith Wolfson Medical Center, Holon, Israel
| | - Rivi Haiat-Factor
- Department of Plastic and Reconstructive Surgery, Edith Wolfson Medical Center, Holon, Israel
| | - Tamar Golan
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Neta Regev-Rudzki
- Department of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Edo Kiper
- Department of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Ronen Brenner
- Institute of Oncology, Edith Wolfson Medical Center, Holon, Israel
| | - Pinchas Gonen
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Iris Dror
- Department of Biological Chemistry, University of California Loss Angeles School of Medicine, Los Angeles, California, USA
| | - Hagai Levi
- The Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
| | - Ofir Hameiri
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Mazal Cohen-Gulkar
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Hagit Eldar-Finkelman
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Gil Ast
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eran Nizri
- Department of Dermatology, Tel Aviv Sourasky Medical Center Ichilov, Tel Aviv, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yael Ziv
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Rani Elkon
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Mehdi Khaled
- INSERM 1186, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Yuval Ebenstein
- School of Chemistry, Center for Nanoscience and Nanotechnology, Center for Light-Matter Interaction, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yosef Shiloh
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Carmit Levy
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
19
|
Li Q, Zhou J, Li S, Zhang W, Du Y, Li K, Wang Y, Sun Q. DNA polymerase ε harmonizes topological states and R-loops formation to maintain genome integrity in Arabidopsis. Nat Commun 2023; 14:7763. [PMID: 38012183 PMCID: PMC10682485 DOI: 10.1038/s41467-023-43680-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/16/2023] [Indexed: 11/29/2023] Open
Abstract
Genome topology is tied to R-loop formation and genome stability. However, the regulatory mechanism remains to be elucidated. By establishing a system to sense the connections between R-loops and genome topology states, we show that inhibiting DNA topoisomerase 1 (TOP1i) triggers the global increase of R-loops (called topoR-loops) and DNA damages, which are exacerbated in the DNA damage repair-compromised mutant atm. A suppressor screen identifies a mutation in POL2A, the catalytic subunit of DNA polymerase ε, rescuing the TOP1i-induced topoR-loop accumulation and genome instability in atm. Importantly we find that a highly conserved junction domain between the exonuclease and polymerase domains in POL2A is required for modulating topoR-loops near DNA replication origins and facilitating faithful DNA replication. Our results suggest that DNA replication acts in concert with genome topological states to fine-tune R-loops and thereby maintain genome integrity, revealing a likely conserved regulatory mechanism of TOP1i resistance in chemotherapy for ATM-deficient cancers.
Collapse
Affiliation(s)
- Qin Li
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jincong Zhou
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Shuai Li
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Weifeng Zhang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Yingxue Du
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Kuan Li
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
- Chinese Institute for Brain Research, Beijing, 102206, China
| | - Yingxiang Wang
- College of Life Science, South China Agricultural University, Guangdong Laboratory for Lingnan Morden Agriculture, Guangzhou, 510642, China
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Qianwen Sun
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China.
| |
Collapse
|
20
|
Terlizzi C, De Rosa V, Iommelli F, Pezone A, Altobelli GG, Maddalena M, Dimitrov J, De Rosa C, Della Corte CM, Avvedimento VE, Del Vecchio S. ATM inhibition blocks glucose metabolism and amplifies the sensitivity of resistant lung cancer cell lines to oncogene driver inhibitors. Cancer Metab 2023; 11:20. [PMID: 37932830 PMCID: PMC10629204 DOI: 10.1186/s40170-023-00320-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 10/14/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND ATM is a multifunctional serine/threonine kinase that in addition to its well-established role in DNA repair mechanisms is involved in a number of signaling pathways including regulation of oxidative stress response and metabolic diversion of glucose through the pentose phosphate pathway. Oncogene-driven tumorigenesis often implies the metabolic switch from oxidative phosphorylation to glycolysis which provides metabolic intermediates to sustain cell proliferation. The aim of our study is to elucidate the role of ATM in the regulation of glucose metabolism in oncogene-driven cancer cells and to test whether ATM may be a suitable target for anticancer therapy. METHODS Two oncogene-driven NSCLC cell lines, namely H1975 and H1993 cells, were treated with ATM inhibitor, KU55933, alone or in combination with oncogene driver inhibitors, WZ4002 or crizotinib. Key glycolytic enzymes, mitochondrial complex subunits (OXPHOS), cyclin D1, and apoptotic markers were analyzed by Western blotting. Drug-induced toxicity was assessed by MTS assay using stand-alone or combined treatment with KU55933 and driver inhibitors. Glucose consumption, pyruvate, citrate, and succinate levels were also analyzed in response to KU55933 treatment. Both cell lines were transfected with ATM-targeted siRNA or non-targeting siRNA and then exposed to treatment with driver inhibitors. RESULTS ATM inhibition deregulates and inhibits glucose metabolism by reducing HKII, p-PKM2Tyr105, p-PKM2Ser37, E1α subunit of pyruvate dehydrogenase complex, and all subunits of mitochondrial complexes except ATP synthase. Accordingly, glucose uptake and pyruvate concentrations were reduced in response to ATM inhibition, whereas citrate and succinate levels were increased in both cell lines indicating the supply of alternative metabolic substrates. Silencing of ATM resulted in similar changes in glycolytic cascade and OXPHOS levels. Furthermore, the driver inhibitors amplified the effects of ATM downregulation on glucose metabolism, and the combined treatment with ATM inhibitors enhanced the cytotoxic effect of driver inhibitors alone by increasing the apoptotic response. CONCLUSIONS Inhibition of ATM reduced both glycolytic enzymes and OXPHOS levels in oncogene-driven cancer cells and enhanced apoptosis induced by driver inhibitors thus highlighting the possibility to use ATM and the driver inhibitors in combined regimens of anticancer therapy in vivo.
Collapse
Affiliation(s)
- Cristina Terlizzi
- Department of Advanced Biomedical Sciences, University "Federico II", 80131, Naples, Italy
| | - Viviana De Rosa
- Institute of Biostructures and Bioimaging, National Research Council, Naples, Italy
| | - Francesca Iommelli
- Institute of Biostructures and Bioimaging, National Research Council, Naples, Italy
| | - Antonio Pezone
- Department of Biology, University "Federico II", Naples, Italy
| | - Giovanna G Altobelli
- Department of Advanced Biomedical Sciences, University "Federico II", 80131, Naples, Italy
| | - Maurizio Maddalena
- Department of Advanced Biomedical Sciences, University "Federico II", 80131, Naples, Italy
| | - Jelena Dimitrov
- Department of Advanced Biomedical Sciences, University "Federico II", 80131, Naples, Italy
| | - Caterina De Rosa
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | | | | | - Silvana Del Vecchio
- Department of Advanced Biomedical Sciences, University "Federico II", 80131, Naples, Italy.
| |
Collapse
|
21
|
Dong X, Bai Y, Liao Z, Gritsch D, Liu X, Wang T, Borges-Monroy R, Ehrlich A, Serrano GE, Feany MB, Beach TG, Scherzer CR. Circular RNAs in the human brain are tailored to neuron identity and neuropsychiatric disease. Nat Commun 2023; 14:5327. [PMID: 37723137 PMCID: PMC10507039 DOI: 10.1038/s41467-023-40348-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 07/20/2023] [Indexed: 09/20/2023] Open
Abstract
Little is known about circular RNAs (circRNAs) in specific brain cells and human neuropsychiatric disease. Here, we systematically identify over 11,039 circRNAs expressed in vulnerable dopamine and pyramidal neurons laser-captured from 190 human brains and non-neuronal cells using ultra-deep, total RNA sequencing. 1526 and 3308 circRNAs are custom-tailored to the cell identity of dopamine and pyramidal neurons and enriched in synapse pathways. 29% of Parkinson's and 12% of Alzheimer's disease-associated genes produced validated circRNAs. circDNAJC6, which is transcribed from a juvenile-onset Parkinson's gene, is already dysregulated during prodromal, onset stages of common Parkinson's disease neuropathology. Globally, addiction-associated genes preferentially produce circRNAs in dopamine neurons, autism-associated genes in pyramidal neurons, and cancers in non-neuronal cells. This study shows that circular RNAs in the human brain are tailored to neuron identity and implicate circRNA-regulated synaptic specialization in neuropsychiatric diseases.
Collapse
Affiliation(s)
- Xianjun Dong
- APDA Center for Advanced Parkinson Disease Research, Harvard Medical School, Brigham & Women's Hospital, Boston, MA, USA
- Precision Neurology Program, Harvard Medical School and Brigham & Women's Hospital, Boston, MA, USA
- Genomics and Bioinformatics Hub, Harvard Medical School and Brigham & Women's Hospital, Boston, MA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Yunfei Bai
- APDA Center for Advanced Parkinson Disease Research, Harvard Medical School, Brigham & Women's Hospital, Boston, MA, USA
- Precision Neurology Program, Harvard Medical School and Brigham & Women's Hospital, Boston, MA, USA
- State Key Lab of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Zhixiang Liao
- APDA Center for Advanced Parkinson Disease Research, Harvard Medical School, Brigham & Women's Hospital, Boston, MA, USA
- Precision Neurology Program, Harvard Medical School and Brigham & Women's Hospital, Boston, MA, USA
| | - David Gritsch
- APDA Center for Advanced Parkinson Disease Research, Harvard Medical School, Brigham & Women's Hospital, Boston, MA, USA
- Precision Neurology Program, Harvard Medical School and Brigham & Women's Hospital, Boston, MA, USA
| | - Xiaoli Liu
- APDA Center for Advanced Parkinson Disease Research, Harvard Medical School, Brigham & Women's Hospital, Boston, MA, USA
- Precision Neurology Program, Harvard Medical School and Brigham & Women's Hospital, Boston, MA, USA
- Department of Neurology, Zhejiang Hospital, Zhejiang, China
| | - Tao Wang
- APDA Center for Advanced Parkinson Disease Research, Harvard Medical School, Brigham & Women's Hospital, Boston, MA, USA
- Precision Neurology Program, Harvard Medical School and Brigham & Women's Hospital, Boston, MA, USA
- School of Computer Science, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Rebeca Borges-Monroy
- APDA Center for Advanced Parkinson Disease Research, Harvard Medical School, Brigham & Women's Hospital, Boston, MA, USA
- Precision Neurology Program, Harvard Medical School and Brigham & Women's Hospital, Boston, MA, USA
| | - Alyssa Ehrlich
- APDA Center for Advanced Parkinson Disease Research, Harvard Medical School, Brigham & Women's Hospital, Boston, MA, USA
- Precision Neurology Program, Harvard Medical School and Brigham & Women's Hospital, Boston, MA, USA
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Mel B Feany
- Departement of Pathology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Clemens R Scherzer
- APDA Center for Advanced Parkinson Disease Research, Harvard Medical School, Brigham & Women's Hospital, Boston, MA, USA.
- Precision Neurology Program, Harvard Medical School and Brigham & Women's Hospital, Boston, MA, USA.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA.
- Program in Neuroscience, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
22
|
Xun J, Ohtsuka H, Hirose K, Douchi D, Nakayama S, Ishida M, Miura T, Ariake K, Mizuma M, Nakagawa K, Morikawa T, Furukawa T, Unno M. Reduced expression of phosphorylated ataxia-telangiectasia mutated gene is related to poor prognosis and gemcitabine chemoresistance in pancreatic cancer. BMC Cancer 2023; 23:835. [PMID: 37674118 PMCID: PMC10481509 DOI: 10.1186/s12885-023-11294-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 08/12/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND Loss of expression of the gene ataxia-telangiectasia mutated (ATM), occurring in patients with multiple primary malignancies, including pancreatic cancer, is associated with poor prognosis. In this study, we investigated the detailed molecular mechanism through which ATM expression affects the prognosis of patients with pancreatic cancer. METHODS The levels of expression of ATM and phosphorylated ATM in patients with pancreatic cancer who had undergone surgical resection were analyzed using immunohistochemistry staining. RNA sequencing was performed on ATM-knockdown pancreatic-cancer cells to elucidate the mechanism underlying the invlovement of ATM in pancreatic cancer. RESULTS Immunohistochemical analysis showed that 15.3% and 27.8% of clinical samples had low levels of ATM and phosphorylated ATM, respectively. Low expression of phosphorylated ATM substantially reduced overall and disease-free survival in patients with pancreatic cancer. In the pancreatic cancer cell lines with ATM low expression, resistance to gemcitabine was demonstrated. The RNA sequence demonstrated that ATM knockdown induced the expression of MET and NTN1. In ATM knockdown cells, it was also revealed that the protein expression levels of HIF-1α and antiapoptotic BCL-2/BAD were upregulated. CONCLUSIONS These findings demonstrate that loss of ATM expression increases tumor development, suppresses apoptosis, and reduces gemcitabine sensitivity. Additionally, loss of phosphorylated ATM is associated with a poor prognosis in patients with pancreatic cancer. Thus, phosphorylated ATM could be a possible target for pancreatic cancer treatment as well as a molecular marker to track patient prognosis.
Collapse
Affiliation(s)
- Jingyu Xun
- Department of Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Miyagi, Japan
| | - Hideo Ohtsuka
- Department of Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Miyagi, Japan.
| | - Katsuya Hirose
- Department of Investigative Pathology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, Japan
| | - Daisuke Douchi
- Department of Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Miyagi, Japan
| | - Shun Nakayama
- Department of Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Miyagi, Japan
| | - Masaharu Ishida
- Department of Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Miyagi, Japan
| | - Takayuki Miura
- Department of Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Miyagi, Japan
| | - Kyohei Ariake
- Department of Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Miyagi, Japan
| | - Masamichi Mizuma
- Department of Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Miyagi, Japan
| | - Kei Nakagawa
- Department of Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Miyagi, Japan
| | - Takanori Morikawa
- Department of Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Miyagi, Japan
| | - Toru Furukawa
- Department of Investigative Pathology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, Japan
| | - Michiaki Unno
- Department of Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Miyagi, Japan
| |
Collapse
|
23
|
Huang W, Li W, Xu N, Li H, Zhang Z, Zhang X, He T, Yao J, Xu M, He Q, Guo L, Zhang S. Differences in DNA damage repair gene mutations between left- and right-sided colorectal cancer. Cancer Med 2023; 12:10187-10198. [PMID: 37096801 DOI: 10.1002/cam4.5716] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 01/09/2023] [Accepted: 02/09/2023] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is the third leading cause of cancer-related deaths worldwide. Studies have shown that the DNA damage response (DDR) mutation is strongly associated with microsatellite instability (MSI) status and is an indication for patients with CRCs receiving immune checkpoint inhibitor (ICI) treatment. However, DDR mutation in microsatellite stable (MSS) CRC remains unclear. METHODS In this study, Fisher's exact test, Student'st-test, Wilcoxon rank-sum test and Cox proportional hazards regression model were performed, and a p value of < 0.05 was considered statistically significant. RESULTS The most common gene alterations were APC (77%), TP53 (73%), KRAS (48%), and PIK3CA (25%). The mutationfrequency of APC and TP53 in left-sided CRC was significantly higher than that for right-sided CRC, while the mutation frequency of PIK3CA, ACVR2A, FAT4, and RNF43 in right-sided CRC was significantly higher than that for left-sided CRC. DDR mutations occurred in100% of MSI CRCs and in 83.77% of MSS CRCs, with the most frequently mutated DDR genes being ARID1A (7.5%), ATM (5.7%,) and BRCA2 (2.6%). When right- and left-sided CRCs were compared, no significant difference was observed for DDR genes and pathways. A survival analysis indicated that the DDR mutation was not associated with overall survival (OS) in MSS CRCs, while left-sided patients with homologous recombination repair (HRR) pathway mutations had a significantly prolonged OS compared with right-sided CRCs. CONCLUSIONS Here, we found that stage and grade were statistically significant independent prognostic factors in the left-sided CRC and the right-sided CRC, recommending treatment for these patients stratified by stage. For the future, utilizing DDR gene defects for expanding treatment options and improving prognosis is an issue worth exploring.
Collapse
Affiliation(s)
- Wei Huang
- Department of Colorectal & Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wenliang Li
- Department of Colorectal Surgery, Yunnan Cancer Hospital, Yunnan, China
| | - Ning Xu
- Department of Oncology, The First Affiliated Hospital of Kunming Medical University, Yunnan, China
| | - Hui Li
- Department of Colorectal & Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zihan Zhang
- Department of Colorectal & Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaolong Zhang
- Department of Colorectal & Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | | | | | - Mian Xu
- Shanghai OrigiMed Co., Ltd, Shanghai, China
| | | | - Lijie Guo
- Shanghai OrigiMed Co., Ltd, Shanghai, China
| | - Sen Zhang
- Department of Colorectal & Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
24
|
Dey H, Vasudevan K, Doss C. GP, Kumar SU, El Allali A, Alsamman AM, Zayed H. Integrated gene network analysis sheds light on understanding the progression of Osteosarcoma. Front Med (Lausanne) 2023; 10:1154417. [PMID: 37081847 PMCID: PMC10110863 DOI: 10.3389/fmed.2023.1154417] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/20/2023] [Indexed: 04/07/2023] Open
Abstract
Introduction Osteosarcoma is a rare disorder among cancer, but the most frequently occurring among sarcomas in children and adolescents. It has been reported to possess the relapsing capability as well as accompanying collateral adverse effects which hinder the development process of an effective treatment plan. Using networks of omics data to identify cancer biomarkers could revolutionize the field in understanding the cancer. Cancer biomarkers and the molecular mechanisms behind it can both be understood by studying the biological networks underpinning the etiology of the disease. Methods In our study, we aimed to highlight the hub genes involved in gene-gene interaction network to understand their interaction and how they affect the various biological processes and signaling pathways involved in Osteosarcoma. Gene interaction network provides a comprehensive overview of functional gene analysis by providing insight into how genes cooperatively interact to elicit a response. Because gene interaction networks serve as a nexus to many biological problems, their employment of it to identify the hub genes that can serve as potential biomarkers remain widely unexplored. A dynamic framework provides a clear understanding of biological complexity and a pathway from the gene level to interaction networks. Results Our study revealed various hub genes viz. TP53, CCND1, CDK4, STAT3, and VEGFA by analyzing various topological parameters of the network, such as highest number of interactions, average shortest path length, high cluster density, etc. Their involvement in key signaling pathways, such as the FOXM1 transcription factor network, FAK-mediated signaling events, and the ATM pathway, makes them significant candidates for studying the disease. The study also highlighted significant enrichment in GO terms (Biological Processes, Molecular Function, and Cellular Processes), such as cell cycle signal transduction, cell communication, kinase binding, transcription factor activity, nucleoplasm, PML body, nuclear body, etc. Conclusion To develop better therapeutics, a specific approach toward the disease targeting the hub genes involved in various signaling pathways must have opted to unravel the complexity of the disease. Our study has highlighted the candidate hub genes viz. TP53, CCND1 CDK4, STAT3, VEGFA. Their involvement in the major signaling pathways of Osteosarcoma makes them potential candidates to be targeted for drug development. The highly enriched signaling pathways include FOXM1 transcription pathway, ATM signal-ling pathway, FAK mediated signaling events, Arf6 signaling events, mTOR signaling pathway, and Integrin family cell surface interactions. Targeting the hub genes and their associated functional partners which we have reported in our studies may be efficacious in developing novel therapeutic targets.
Collapse
Affiliation(s)
- Hrituraj Dey
- Department of Biotechnology, School of Applied Sciences, REVA University, Bangalore, India
| | - Karthick Vasudevan
- Department of Biotechnology, School of Applied Sciences, REVA University, Bangalore, India
| | - George Priya Doss C.
- Department of Integrative Biology, School of BioSciences and Technology, Vellore Institute of Technology (VIT), Vellore, India
| | - S. Udhaya Kumar
- Department of Integrative Biology, School of BioSciences and Technology, Vellore Institute of Technology (VIT), Vellore, India
| | - Achraf El Allali
- African Genome Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Alsamman M. Alsamman
- Agriculture Genetic Engineering Research Institute (AGERI), Agriculture Research Center (ARC), Giza, Egypt
- International Center for Agricultural Research in the Dry Areas (ICARDA), Giza, Egypt
| | - Hatem Zayed
- Department of Biomedical Sciences College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
25
|
Dong X, Bai Y, Liao Z, Gritsch D, Liu X, Wang T, Borges-Monroy R, Ehrlich A, Serano GE, Feany MB, Beach TG, Scherzer CR. Circular RNAs in the human brain are tailored to neuron identity and neuropsychiatric disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.01.535194. [PMID: 37066229 PMCID: PMC10103951 DOI: 10.1101/2023.04.01.535194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Little is known about circular RNAs (circRNAs) in specific brain cells and human neuropsychiatric disease. Here, we systematically identified over 11,039 circRNAs expressed in vulnerable dopamine and pyramidal neurons laser-captured from 190 human brains and non-neuronal cells using ultra-deep, total RNA sequencing. 1,526 and 3,308 circRNAs were custom-tailored to the cell identity of dopamine and pyramidal neurons and enriched in synapse pathways. 88% of Parkinson's and 80% of Alzheimer's disease-associated genes produced circRNAs. circDNAJC6, produced from a juvenile-onset Parkinson's gene, was already dysregulated during prodromal, onset stages of common Parkinson's disease neuropathology. Globally, addiction-associated genes preferentially produced circRNAs in dopamine neurons, autism-associated genes in pyramidal neurons, and cancers in non-neuronal cells. This study shows that circular RNAs in the human brain are tailored to neuron identity and implicate circRNA- regulated synaptic specialization in neuropsychiatric diseases.
Collapse
Affiliation(s)
- Xianjun Dong
- APDA Center for Advanced Parkinson Disease Research, Harvard Medical School, Brigham & Women’s Hospital, Boston, MA, USA
- Precision Neurology Program, Harvard Medical School and Brigham & Women’s Hospital, Boston, MA, USA
- Genomics and Bioinformatics Hub, Harvard Medical School and Brigham & Women’s Hospital, Boston, MA, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| | - Yunfei Bai
- APDA Center for Advanced Parkinson Disease Research, Harvard Medical School, Brigham & Women’s Hospital, Boston, MA, USA
- Precision Neurology Program, Harvard Medical School and Brigham & Women’s Hospital, Boston, MA, USA
- State Key Lab of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Zhixiang Liao
- APDA Center for Advanced Parkinson Disease Research, Harvard Medical School, Brigham & Women’s Hospital, Boston, MA, USA
- Precision Neurology Program, Harvard Medical School and Brigham & Women’s Hospital, Boston, MA, USA
| | - David Gritsch
- APDA Center for Advanced Parkinson Disease Research, Harvard Medical School, Brigham & Women’s Hospital, Boston, MA, USA
- Precision Neurology Program, Harvard Medical School and Brigham & Women’s Hospital, Boston, MA, USA
| | - Xiaoli Liu
- APDA Center for Advanced Parkinson Disease Research, Harvard Medical School, Brigham & Women’s Hospital, Boston, MA, USA
- Precision Neurology Program, Harvard Medical School and Brigham & Women’s Hospital, Boston, MA, USA
- Department of Neurology, Zhejiang Hospital, Zhejiang, China
| | - Tao Wang
- APDA Center for Advanced Parkinson Disease Research, Harvard Medical School, Brigham & Women’s Hospital, Boston, MA, USA
- Precision Neurology Program, Harvard Medical School and Brigham & Women’s Hospital, Boston, MA, USA
- School of Computer Science, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Rebeca Borges-Monroy
- APDA Center for Advanced Parkinson Disease Research, Harvard Medical School, Brigham & Women’s Hospital, Boston, MA, USA
- Precision Neurology Program, Harvard Medical School and Brigham & Women’s Hospital, Boston, MA, USA
| | - Alyssa Ehrlich
- APDA Center for Advanced Parkinson Disease Research, Harvard Medical School, Brigham & Women’s Hospital, Boston, MA, USA
- Precision Neurology Program, Harvard Medical School and Brigham & Women’s Hospital, Boston, MA, USA
- Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Mel B. Feany
- Departement of Pathology, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Clemens R. Scherzer
- APDA Center for Advanced Parkinson Disease Research, Harvard Medical School, Brigham & Women’s Hospital, Boston, MA, USA
- Precision Neurology Program, Harvard Medical School and Brigham & Women’s Hospital, Boston, MA, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
- Program in Neuroscience, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
26
|
McCann JJ, Fleenor DE, Chen J, Lai CH, Bass TE, Kastan MB. Participation of ATM, SMG1, and DDX5 in a DNA Damage-Induced Alternative Splicing Pathway. Radiat Res 2023; 199:406-421. [PMID: 36921295 PMCID: PMC10162594 DOI: 10.1667/rade-22-00219.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/03/2023] [Indexed: 03/17/2023]
Abstract
Altered cellular responses to DNA damage can contribute to cancer development, progression, and therapeutic resistance. Mutations in key DNA damage response factors occur across many cancer types, and the DNA damage-responsive gene, TP53, is frequently mutated in a high percentage of cancers. We recently reported that an alternative splicing pathway induced by DNA damage regulates alternative splicing of TP53 RNA and further modulates cellular stress responses. Through damage-induced inhibition of the SMG1 kinase, TP53 pre-mRNA is alternatively spliced to generate TP53b mRNA and p53b protein is required for optimal induction of cellular senescence after ionizing radiation-induced DNA damage. Herein, we confirmed and extended these observations by demonstrating that the ATM protein kinase is required for repression of SMG1 kinase activity after ionizing radiation. We found that the RNA helicase and splicing factor, DDX5, interacts with SMG1, is required for alternative splicing of TP53 pre-mRNA to TP53b and TP53c mRNAs after DNA damage, and contributes to radiation-induced cellular senescence. Interestingly, the role of SMG1 in alternative splicing of p53 appears to be distinguishable from its role in regulating nonsense-mediated RNA decay. Thus, ATM, SMG1, and DDX5 participate in a DNA damage-induced alternative splicing pathway that regulates TP53 splicing and modulates radiation-induced cellular senescence.
Collapse
Affiliation(s)
- Jennifer J. McCann
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina 27710
| | - Donald E. Fleenor
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina 27710
| | - Jing Chen
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina 27710
| | - Chun-Hsiang Lai
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina 27710
| | - Thomas E. Bass
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina 27710
| | - Michael B. Kastan
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina 27710
| |
Collapse
|
27
|
Molecular targets that sensitize cancer to radiation killing: From the bench to the bedside. Biomed Pharmacother 2023; 158:114126. [PMID: 36521246 DOI: 10.1016/j.biopha.2022.114126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Radiotherapy is a standard cytotoxic therapy against solid cancers. It uses ionizing radiation to kill tumor cells through damage to DNA, either directly or indirectly. Radioresistance is often associated with dysregulated DNA damage repair processes. Most radiosensitizers enhance radiation-mediated DNA damage and reduce the rate of DNA repair ultimately leading to accumulation of DNA damages, cell-cycle arrest, and cell death. Recently, agents targeting key signals in DNA damage response such as DNA repair pathways and cell-cycle have been developed. This new class of molecularly targeted radiosensitizing agents is being evaluated in preclinical and clinical studies to monitor their activity in potentiating radiation cytotoxicity of tumors and reducing normal tissue toxicity. The molecular pathways of DNA damage response are reviewed with a focus on the repair mechanisms, therapeutic targets under current clinical evaluation including ATM, ATR, CDK1, CDK4/6, CHK1, DNA-PKcs, PARP-1, Wee1, & MPS1/TTK and potential new targets (BUB1, and DNA LIG4) for radiation sensitization.
Collapse
|
28
|
Groelly FJ, Fawkes M, Dagg RA, Blackford AN, Tarsounas M. Targeting DNA damage response pathways in cancer. Nat Rev Cancer 2023; 23:78-94. [PMID: 36471053 DOI: 10.1038/s41568-022-00535-5] [Citation(s) in RCA: 337] [Impact Index Per Article: 168.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/01/2022] [Indexed: 12/12/2022]
Abstract
Cells have evolved a complex network of biochemical pathways, collectively known as the DNA damage response (DDR), to prevent detrimental mutations from being passed on to their progeny. The DDR coordinates DNA repair with cell-cycle checkpoint activation and other global cellular responses. Genes encoding DDR factors are frequently mutated in cancer, causing genomic instability, an intrinsic feature of many tumours that underlies their ability to grow, metastasize and respond to treatments that inflict DNA damage (such as radiotherapy). One instance where we have greater insight into how genetic DDR abrogation impacts on therapy responses is in tumours with mutated BRCA1 or BRCA2. Due to compromised homologous recombination DNA repair, these tumours rely on alternative repair mechanisms and are susceptible to chemical inhibitors of poly(ADP-ribose) polymerase (PARP), which specifically kill homologous recombination-deficient cancer cells, and have become a paradigm for targeted cancer therapy. It is now clear that many other synthetic-lethal relationships exist between DDR genes. Crucially, some of these interactions could be exploited in the clinic to target tumours that become resistant to PARP inhibition. In this Review, we discuss state-of-the-art strategies for DDR inactivation using small-molecule inhibitors and highlight those compounds currently being evaluated in the clinic.
Collapse
Affiliation(s)
- Florian J Groelly
- Genome Stability and Tumourigenesis Group, Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Matthew Fawkes
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Rebecca A Dagg
- Genome Stability and Tumourigenesis Group, Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Andrew N Blackford
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK.
| | - Madalena Tarsounas
- Genome Stability and Tumourigenesis Group, Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK.
| |
Collapse
|
29
|
Tozaki Y, Aoki H, Kato R, Toriuchi K, Arame S, Inoue Y, Hayashi H, Kubota E, Kataoka H, Aoyama M. The Combination of ATM and Chk1 Inhibitors Induces Synthetic Lethality in Colorectal Cancer Cells. Cancers (Basel) 2023; 15:cancers15030735. [PMID: 36765693 PMCID: PMC9913148 DOI: 10.3390/cancers15030735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
Genetic abnormalities induce the DNA damage response (DDR), which enables DNA repair at cell cycle checkpoints. Although the DDR is thought to function in preventing the onset and progression of cancer, DDR-related proteins are also thought to contribute to tumorigenesis, tumor progression, and drug resistance by preventing irreparable genomic abnormalities from inducing cell death. In the present study, the combination of ataxia telangiectasia-mutated serine/threonine kinase (ATM) and checkpoint kinase 1 (Chk1) inhibition exhibited synergistic antitumor effects and induced synergistic lethality in colorectal cancer cells at a low dose. The ATM and Chk1 inhibitors synergistically promoted the activation of cyclin-dependent kinase 1 by decreasing the phosphorylation levels of T14 and Y15. Furthermore, the combined treatment increased the number of sub-G1-stage cells, phospho-histone H2A.X-positive cells, and TdT-mediated dUTP nick-end labeling-positive cells among colon cancer cells, suggesting that the therapy induces apoptosis. Finally, the combined treatment exhibited a robust antitumor activity in syngeneic tumor model mice. These findings should contribute to the development of new treatments for colorectal cancer that directly exploit the genomic instability of cancer cells.
Collapse
Affiliation(s)
- Yuri Tozaki
- Department of Pathobiology, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Hiromasa Aoki
- Department of Pathobiology, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Rina Kato
- Department of Pathobiology, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Kohki Toriuchi
- Department of Pathobiology, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Saki Arame
- Department of Pathobiology, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Yasumichi Inoue
- Department of Cell Signaling, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
- Department of Innovative Therapeutic Sciences, Cooperative Major in Nanopharmaceutical Sciences, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Hidetoshi Hayashi
- Department of Cell Signaling, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
- Department of Innovative Therapeutic Sciences, Cooperative Major in Nanopharmaceutical Sciences, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Eiji Kubota
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Hiromi Kataoka
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Mineyoshi Aoyama
- Department of Pathobiology, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
- Correspondence: ; Tel.: +81-52-836-3451
| |
Collapse
|
30
|
Inchara Moodbagil C, Mahmood R, Kumaraswamy H, Chandramohan V, Dammalli M, Sharath R, Meghana P, Sandeep Kumar Jain R, Prashanth N, Samartha J. Identification of potential inhibitors of ATM kinase : pharmacoinformatics and molecular dynamics simulation approach. MOLECULAR SIMULATION 2023. [DOI: 10.1080/08927022.2023.2165694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- C. Inchara Moodbagil
- Laboratory of Experimental Medicine, Department of PG Studies and Research in Biotechnology, Kuvempu University, Shankarghatta, India
| | - Riaz Mahmood
- Laboratory of Experimental Medicine, Department of PG Studies and Research in Biotechnology, Kuvempu University, Shankarghatta, India
| | - H.M. Kumaraswamy
- Laboratory of Experimental Medicine, Department of PG Studies and Research in Biotechnology, Kuvempu University, Shankarghatta, India
| | - Vivek Chandramohan
- Department of Biotechnology, Siddaganga Institute of Technology, Tumakuru, India
| | - Manjunath Dammalli
- Department of Biotechnology, Siddaganga Institute of Technology, Tumakuru, India
| | - R. Sharath
- Department of Food Technology, Davangere University, Davangere, India
| | - P. Meghana
- Laboratory of Experimental Medicine, Department of PG Studies and Research in Biotechnology, Kuvempu University, Shankarghatta, India
| | - R. Sandeep Kumar Jain
- Laboratory of Experimental Medicine, Department of PG Studies and Research in Biotechnology, Kuvempu University, Shankarghatta, India
| | - N. Prashanth
- Laboratory of Experimental Medicine, Department of PG Studies and Research in Biotechnology, Kuvempu University, Shankarghatta, India
| | - J.R. Samartha
- Laboratory of Experimental Medicine, Department of PG Studies and Research in Biotechnology, Kuvempu University, Shankarghatta, India
| |
Collapse
|
31
|
Shu J, Wang X, Yang X, Zhao G. ATM inhibitor KU60019 synergistically sensitizes lung cancer cells to topoisomerase II poisons by multiple mechanisms. Sci Rep 2023; 13:882. [PMID: 36650267 PMCID: PMC9845372 DOI: 10.1038/s41598-023-28185-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Type II topoisomerases (TOP2) poisons represent one class of the most successful and widely prescribed chemotherapeutics, which is frontline therapy for a myriad of systemic cancers and solid tumors, including lymphomas, leukemias, and lung cancer. Despite this, treatment with this class of drugs induces unwanted side effects (including cardiovascular morbidity and secondary malignancies). Additionally, the emergence of drug resistance also greatly compromises the clinical use of these drugs. To enhance therapeutic efficiency while lowering unwanted side effects, new insights into effective combination therapy are required. In this study we found that KU60019, a novel, and highly specific ATM kinase inhibitor interferes with the association of ATM with TOP2β and stabilizes TOP2β-DNA cleavage complex, thereby impairing the repair of TOP2 poison-induced DSBs and contributes to genome stability, leading to accelerated cell death. In H1299 as well as in A549 lung cancer cell lines, biologically, KU60019 combined with VP-16 (one of the TOP2 poisons) synergistically suppressed the growth of cells and survival and triggered a much higher apoptosis rate. In summary, we provide a proof-of-concept strategy that ATM inhibitors combined with TOP2 poison would synergistically suppresses lung cancer cell survival as well as reduce DNA damage responses, thus may lowering the possibility of cardiotoxicity and secondary malignancy linked to therapy.
Collapse
Affiliation(s)
- Jianfeng Shu
- HwaMei Hospital, University of Chinese Academy of Sciences, 41 Xibei Road, Ningbo, 315010, Zhejiang, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, 315000, Zhejiang, China
| | - Xiaofang Wang
- HwaMei Hospital, University of Chinese Academy of Sciences, 41 Xibei Road, Ningbo, 315010, Zhejiang, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, 315000, Zhejiang, China
| | - Xuejie Yang
- HwaMei Hospital, University of Chinese Academy of Sciences, 41 Xibei Road, Ningbo, 315010, Zhejiang, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, 315000, Zhejiang, China
| | - Guofang Zhao
- HwaMei Hospital, University of Chinese Academy of Sciences, 41 Xibei Road, Ningbo, 315010, Zhejiang, China.
| |
Collapse
|
32
|
Canonical and Noncanonical ER Stress-Mediated Autophagy Is a Bite the Bullet in View of Cancer Therapy. Cells 2022; 11:cells11233773. [PMID: 36497032 PMCID: PMC9738281 DOI: 10.3390/cells11233773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Cancer cells adapt multiple mechanisms to counter intense stress on their way to growth. Tumor microenvironment stress leads to canonical and noncanonical endoplasmic stress (ER) responses, which mediate autophagy and are engaged during proteotoxic challenges to clear unfolded or misfolded proteins and damaged organelles to mitigate stress. In these conditions, autophagy functions as a cytoprotective mechanism in which malignant tumor cells reuse degraded materials to generate energy under adverse growing conditions. However, cellular protection by autophagy is thought to be complicated, contentious, and context-dependent; the stress response to autophagy is suggested to support tumorigenesis and drug resistance, which must be adequately addressed. This review describes significant findings that suggest accelerated autophagy in cancer, a novel obstacle for anticancer therapy, and discusses the UPR components that have been suggested to be untreatable. Thus, addressing the UPR or noncanonical ER stress components is the most effective approach to suppressing cytoprotective autophagy for better and more effective cancer treatment.
Collapse
|
33
|
Arai H, Minami Y, Chi S, Utsu Y, Masuda S, Aotsuka N. Molecular-Targeted Therapy for Tumor-Agnostic Mutations in Acute Myeloid Leukemia. Biomedicines 2022; 10:3008. [PMID: 36551764 PMCID: PMC9775249 DOI: 10.3390/biomedicines10123008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 11/24/2022] Open
Abstract
Comprehensive genomic profiling examinations (CGPs) have recently been developed, and a variety of tumor-agnostic mutations have been detected, leading to the development of new molecular-targetable therapies across solid tumors. In addition, the elucidation of hereditary tumors, such as breast and ovarian cancer, has pioneered a new age marked by the development of new treatments and lifetime management strategies required for patients with potential or presented hereditary cancers. In acute myeloid leukemia (AML), however, few tumor-agnostic or hereditary mutations have been the focus of investigation, with associated molecular-targeted therapies remaining poorly developed. We focused on representative tumor-agnostic mutations such as the TP53, KIT, KRAS, BRCA1, ATM, JAK2, NTRK3, FGFR3 and EGFR genes, referring to a CGP study conducted in Japan, and we considered the possibility of developing molecular-targeted therapies for AML with tumor-agnostic mutations. We summarized the frequency, the prognosis, the structure and the function of these mutations as well as the current treatment strategies in solid tumors, revealed the genetical relationships between solid tumors and AML and developed tumor-agnostic molecular-targeted therapies and lifetime management strategies in AML.
Collapse
Affiliation(s)
- Hironori Arai
- Department of Hematology and Oncology, Japanese Red Cross Narita Hospital, Iidacho 286-0041, Japan
- Department of Hematology, National Cancer Center Hospital East, Kashiwa 277-8577, Japan
| | - Yosuke Minami
- Department of Hematology, National Cancer Center Hospital East, Kashiwa 277-8577, Japan
| | - SungGi Chi
- Department of Hematology, National Cancer Center Hospital East, Kashiwa 277-8577, Japan
| | - Yoshikazu Utsu
- Department of Hematology and Oncology, Japanese Red Cross Narita Hospital, Iidacho 286-0041, Japan
| | - Shinichi Masuda
- Department of Hematology and Oncology, Japanese Red Cross Narita Hospital, Iidacho 286-0041, Japan
| | - Nobuyuki Aotsuka
- Department of Hematology and Oncology, Japanese Red Cross Narita Hospital, Iidacho 286-0041, Japan
| |
Collapse
|
34
|
Chao YY, Huang BM, Peng IC, Lee PR, Lai YS, Chiu WT, Lin YS, Lin SC, Chang JH, Chen PS, Tsai SJ, Wang CY. ATM- and ATR-induced primary ciliogenesis promotes cisplatin resistance in pancreatic ductal adenocarcinoma. J Cell Physiol 2022; 237:4487-4503. [PMID: 36251015 DOI: 10.1002/jcp.30898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 08/31/2022] [Accepted: 09/29/2022] [Indexed: 11/09/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers because of its late diagnosis and chemoresistance. Primary cilia, the cellular antennae, are observed in most human cells to maintain development and differentiation. Primary cilia are gradually lost during the progression of pancreatic cancer and are eventually absent in PDAC. Here, we showed that cisplatin-resistant PDAC regrew primary cilia. Additionally, genetic or pharmacological disruption of primary cilia sensitized PDAC to cisplatin treatment. Mechanistically, ataxia telangiectasia mutated (ATM) and ATM and RAD3-related (ATR), tumor suppressors that initiate DNA damage responses, promoted the excessive formation of centriolar satellites (EFoCS) and autophagy activation. Disruption of EFoCS and autophagy inhibited primary ciliogenesis, sensitizing PDAC cells to cisplatin treatment. Collectively, our findings revealed an unexpected interplay among the DNA damage response, primary cilia, and chemoresistance in PDAC and deciphered the molecular mechanism by which ATM/ATR-mediated EFoCS and autophagy cooperatively regulate primary ciliogenesis.
Collapse
Affiliation(s)
- Yu-Ying Chao
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Cell Biology and Anatomy, National Cheng Kung University, Tainan, Taiwan
| | - Bu-Miin Huang
- Department of Cell Biology and Anatomy, National Cheng Kung University, Tainan, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - I-Chen Peng
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Rong Lee
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Cell Biology and Anatomy, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Shyun Lai
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Tai Chiu
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Syuan Lin
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shih-Chieh Lin
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jung-Hsuan Chang
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Pai-Sheng Chen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shaw-Jenq Tsai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Yih Wang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Cell Biology and Anatomy, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
35
|
Maybee DV, Psaras AM, Brooks TA, Ali MAM. RYBP Sensitizes Cancer Cells to PARP Inhibitors by Regulating ATM Activity. Int J Mol Sci 2022; 23:ijms231911764. [PMID: 36233063 PMCID: PMC9570458 DOI: 10.3390/ijms231911764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Ring1 and YY1 Binding Protein (RYBP) is a member of the non-canonical polycomb repressive complex 1 (PRC1), and like other PRC1 members, it is best described as a transcriptional regulator. Previously, we showed that RYBP, along with other PRC1 members, is also involved in the DNA damage response. RYBP inhibits recruitment of breast cancer gene 1(BRCA1) complex to DNA damage sites through its binding to K63-linked ubiquitin chains. In addition, ataxia telangiectasia mutated (ATM) kinase serves as an important sensor kinase in early stages of DNA damage response. Here, we report that overexpression of RYBP results in inhibition in both ATM activity and recruitment to DNA damage sites. Cells expressing RYBP show less phosphorylation of the ATM substrate, Chk2, after DNA damage. Due to its ability to inhibit ATM activity, we find that RYBP sensitizes cancer cells to poly-ADP-ribose polymerase (PARP) inhibitors. Although we find a synergistic effect between PARP inhibitor and ATM inhibitor in cancer cells, this synergy is lost in cells expressing RYBP. We also show that overexpression of RYBP hinders cancer cell migration through, at least in part, ATM inhibition. We provide new mechanism(s) by which RYBP expression may sensitize cancer cells to DNA damaging agents and inhibits cancer metastasis.
Collapse
|
36
|
Roy A, Bera S, Saso L, Dwarakanath BS. Role of autophagy in tumor response to radiation: Implications for improving radiotherapy. Front Oncol 2022; 12:957373. [PMID: 36172166 PMCID: PMC9510974 DOI: 10.3389/fonc.2022.957373] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Autophagy is an evolutionary conserved, lysosome-involved cellular process that facilitates the recycling of damaged macromolecules, cellular structures, and organelles, thereby generating precursors for macromolecular biosynthesis through the salvage pathway. It plays an important role in mediating biological responses toward various stress, including those caused by ionizing radiation at the cellular, tissue, and systemic levels thereby implying an instrumental role in shaping the tumor responses to radiotherapy. While a successful execution of autophagy appears to facilitate cell survival, abortive or interruptions in the completion of autophagy drive cell death in a context-dependent manner. Pre-clinical studies establishing its ubiquitous role in cells and tissues, and the systemic response to focal irradiation of tumors have prompted the initiation of clinical trials using pharmacologic modifiers of autophagy for enhancing the efficacy of radiotherapy. However, the outcome from the Phase I/II trials in many human malignancies has so far been equivocal. Such observations have not only precluded the advancement of these autophagy modifiers in the Phase III trial but have also raised concerns regarding their introduction as an adjuvant to radiotherapy. This warrants a thorough understanding of the biology of the cancer cells, including its spatio-temporal context, as well as its microenvironment all of which might be the crucial factors that determine the success of an autophagy modifier as an anticancer agent. This review captures the current understanding of the interplay between radiation induced autophagy and the biological responses to radiation damage as well as provides insight into the potentials and limitations of targeting autophagy for improving the radiotherapy of tumors.
Collapse
Affiliation(s)
- Amrita Roy
- Department of Biotechnology, Indian Academy Degree College (Autonomous), Bengaluru, Karnataka, India
- *Correspondence: Amrita Roy, ; ; Soumen Bera, ; ; Bilikere S. Dwarakanath, ;
| | - Soumen Bera
- B. S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, India
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, United States
- *Correspondence: Amrita Roy, ; ; Soumen Bera, ; ; Bilikere S. Dwarakanath, ;
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University, Rome, Italy
| | - Bilikere S. Dwarakanath
- Central Research Facility, Sri Ramachandra Institute of Higher Education and Research Institute, Chennai, India
- *Correspondence: Amrita Roy, ; ; Soumen Bera, ; ; Bilikere S. Dwarakanath, ;
| |
Collapse
|
37
|
Rashid S, Gupta S, McCormick SR, Tsao H. New Insights into Melanoma Tumor Syndromes. JID INNOVATIONS 2022; 2:100152. [DOI: 10.1016/j.xjidi.2022.100152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 06/08/2022] [Accepted: 06/13/2022] [Indexed: 10/14/2022] Open
|
38
|
Matuszyk J. MALAT1-miRNAs network regulate thymidylate synthase and affect 5FU-based chemotherapy. Mol Med 2022; 28:89. [PMID: 35922756 PMCID: PMC9351108 DOI: 10.1186/s10020-022-00516-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/22/2022] [Indexed: 12/12/2022] Open
Abstract
Background The active metabolite of 5-Fluorouracil (5FU), used in the treatment of several types of cancer, acts by inhibiting the thymidylate synthase encoded by the TYMS gene, which catalyzes the rate-limiting step in DNA replication. The major failure of 5FU-based cancer therapy is the development of drug resistance. High levels of TYMS-encoded protein in cancerous tissues are predictive of poor response to 5FU treatment. Expression of TYMS is regulated by various mechanisms, including involving non-coding RNAs, both miRNAs and long non-coding RNAs (lncRNAs). Aim To delineate the miRNAs and lncRNAs network regulating the level of TYMS-encoded protein. Main body Several miRNAs targeting TYMS mRNA have been identified in colon cancers, the levels of which can be regulated to varying degrees by lncRNAs. Due to their regulation by the MALAT1 lncRNA, these miRNAs can be divided into three groups: (1) miR-197-3p, miR-203a-3p, miR-375-3p which are downregulated by MALAT1 as confirmed experimentally and the levels of these miRNAs are actually reduced in colon and gastric cancers; (2) miR-140-3p, miR-330-3p that could potentially interact with MALAT1, but not yet supported by experimental results; (3) miR-192-5p, miR-215-5p whose seed sequences do not recognize complementary response elements within MALAT1. Considering the putative MALAT1-miRNAs interaction network, attention is drawn to the potential positive feedback loop causing increased expression of MALAT1 in colon cancer and hepatocellular carcinoma, where YAP1 acts as a transcriptional co-factor which, by binding to the TCF4 transcription factor/ β-catenin complex, may increase the activation of the MALAT1 gene whereas the MALAT1 lncRNA can inhibit miR-375-3p which in turn targets YAP1 mRNA. Conclusion The network of non-coding RNAs may reduce the sensitivity of cancer cells to 5FU treatment by upregulating the level of thymidylate synthase.
Collapse
Affiliation(s)
- Janusz Matuszyk
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 R. Weigla Street, 53-114, Wroclaw, Poland.
| |
Collapse
|
39
|
Agrawal P, Sambaturu N, Olgun G, Hannenhalli S. A Path-Based Analysis of Infected Cell Line and COVID-19 Patient Transcriptome Reveals Novel Potential Targets and Drugs Against SARS-CoV-2. Front Immunol 2022; 13:918817. [PMID: 35844595 PMCID: PMC9284228 DOI: 10.3389/fimmu.2022.918817] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Most transcriptomic studies of SARS-CoV-2 infection have focused on differentially expressed genes, which do not necessarily reveal the genes mediating the transcriptomic changes. In contrast, exploiting curated biological network, our PathExt tool identifies central genes from the differentially active paths mediating global transcriptomic response. Here we apply PathExt to multiple cell line infection models of SARS-CoV-2 and other viruses, as well as to COVID-19 patient-derived PBMCs. The central genes mediating SARS-CoV-2 response in cell lines were uniquely enriched for ATP metabolic process, G1/S transition, leukocyte activation and migration. In contrast, PBMC response reveals dysregulated cell-cycle processes. In PBMC, the most frequently central genes are associated with COVID-19 severity. Importantly, relative to differential genes, PathExt-identified genes show greater concordance with several benchmark anti-COVID-19 target gene sets. We propose six novel anti-SARS-CoV-2 targets ADCY2, ADSL, OCRL, TIAM1, PBK, and BUB1, and potential drugs targeting these genes, such as Bemcentinib, Phthalocyanine, and Conivaptan.
Collapse
Affiliation(s)
- Piyush Agrawal
- Cancer Data Science Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Narmada Sambaturu
- IISc Mathematics Initiative, Indian Institute of Science, Bangalore, India
| | - Gulden Olgun
- Cancer Data Science Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Sridhar Hannenhalli
- Cancer Data Science Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
40
|
Gulliver C, Hoffmann R, Baillie GS. Ataxia-telangiectasia mutated and ataxia telangiectasia and Rad3-related kinases as therapeutic targets and stratification indicators for prostate cancer. Int J Biochem Cell Biol 2022; 147:106230. [PMID: 35609768 DOI: 10.1016/j.biocel.2022.106230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/05/2022] [Accepted: 05/18/2022] [Indexed: 12/15/2022]
Abstract
The DNA damage response is an integral part of a cells' ability to maintain genomic integrity by responding to and ameliorating DNA damage, or initiating cell death for irrepairably damaged cells. This response is often hijacked by cancer cells to evade cell death allowing mutant cells to persist, as well as in the development of treatment resistance to DNA damaging agents such as chemotherapy and radiation. Prostate cancer (PCa) cells often exhibit alterations in DNA damage response genes including ataxia telangiectasia mutated (ATM), correlating with aggressive disease phenotype. The recent success of Poly (ADP-ribose) polymerase (PARP) inhibition has led to several clinically approved PARP inhibitors for the treatment of men with metastatic PCa, however a key limitation is the development of drug resistance and relapse. An alternative approach is selectively targeting ATM and ataxia telangiectasia and Rad3-related (ATR) which, due to their position at the forefront of the DDR, represent attractive pharmacological targets. ATR inhibition has been shown to act synergistically with PARP inhibition and other cancer treatments to enhance anti-tumour activity. ATM-deficiency is a common characteristic of PCa and a synthetic lethal relationship exists between ATM and ATR, with ATR inhibition inducing selective cell death in ATM-deficient PCa cells. The current research highlights the feasibility of therapeutically targeting ATR in ATM-deficient prostate tumours and in combination with other treatments to enhance overall efficacy and reduce therapeutic resistance. ATM also represents an important molecular biomarker to stratify patients into targeted treatment groups and aid prognosis for personalised medicine.
Collapse
Affiliation(s)
- Chloe Gulliver
- Institute of Cardiovascular and Medical Science, College of Veterinary, Medical and Life Science, University of Glasgow, Glasgow, UK.
| | - Ralf Hoffmann
- Institute of Cardiovascular and Medical Science, College of Veterinary, Medical and Life Science, University of Glasgow, Glasgow, UK; Philips Research Europe, High Tech Campus, Eindhoven, the Netherlands.
| | - George S Baillie
- Institute of Cardiovascular and Medical Science, College of Veterinary, Medical and Life Science, University of Glasgow, Glasgow, UK.
| |
Collapse
|
41
|
Fairhurst RA, Furet P, Imbach-Weese P, Stauffer F, Rueeger H, McCarthy C, Ripoche S, Oswald S, Arnaud B, Jary A, Maira M, Schnell C, Guthy DA, Wartmann M, Kiffe M, Desrayaud S, Blasco F, Widmer T, Seiler F, Gutmann S, Knapp M, Caravatti G. Identification of NVP-CLR457 as an Orally Bioavailable Non-CNS-Penetrant pan-Class IA Phosphoinositol-3-Kinase Inhibitor. J Med Chem 2022; 65:8345-8379. [PMID: 35500094 DOI: 10.1021/acs.jmedchem.2c00267] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Balanced pan-class I phosphoinositide 3-kinase inhibition as an approach to cancer treatment offers the prospect of treating a broad range of tumor types and/or a way to achieve greater efficacy with a single inhibitor. Taking buparlisib as the starting point, the balanced pan-class I PI3K inhibitor 40 (NVP-CLR457) was identified with what was considered to be a best-in-class profile. Key to the optimization to achieve this profile was eliminating a microtubule stabilizing off-target activity, balancing the pan-class I PI3K inhibition profile, minimizing CNS penetration, and developing an amorphous solid dispersion formulation. A rationale for the poor tolerability profile of 40 in a clinical study is discussed.
Collapse
Affiliation(s)
- Robin A Fairhurst
- Novartis Institutes for BioMedical Research, Basel CH-4002, Switzerland
| | - Pascal Furet
- Novartis Institutes for BioMedical Research, Basel CH-4002, Switzerland
| | | | - Frédéric Stauffer
- Novartis Institutes for BioMedical Research, Basel CH-4002, Switzerland
| | - Heinrich Rueeger
- Novartis Institutes for BioMedical Research, Basel CH-4002, Switzerland
| | - Clive McCarthy
- Novartis Institutes for BioMedical Research, Basel CH-4002, Switzerland
| | - Sebastien Ripoche
- Novartis Institutes for BioMedical Research, Basel CH-4002, Switzerland
| | - Susanne Oswald
- Novartis Institutes for BioMedical Research, Basel CH-4002, Switzerland
| | - Bertrand Arnaud
- Novartis Institutes for BioMedical Research, Basel CH-4002, Switzerland
| | - Aline Jary
- Novartis Institutes for BioMedical Research, Basel CH-4002, Switzerland
| | - Michel Maira
- Novartis Institutes for BioMedical Research, Basel CH-4002, Switzerland
| | - Christian Schnell
- Novartis Institutes for BioMedical Research, Basel CH-4002, Switzerland
| | - Daniel A Guthy
- Novartis Institutes for BioMedical Research, Basel CH-4002, Switzerland
| | - Markus Wartmann
- Novartis Institutes for BioMedical Research, Basel CH-4002, Switzerland
| | - Michael Kiffe
- Novartis Institutes for BioMedical Research, Basel CH-4002, Switzerland
| | | | - Francesca Blasco
- Novartis Institutes for BioMedical Research, Basel CH-4002, Switzerland
| | - Toni Widmer
- Novartis Institutes for BioMedical Research, Basel CH-4002, Switzerland
| | - Frank Seiler
- Novartis Institutes for BioMedical Research, Basel CH-4002, Switzerland
| | - Sascha Gutmann
- Novartis Institutes for BioMedical Research, Basel CH-4002, Switzerland
| | - Mark Knapp
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Giorgio Caravatti
- Novartis Institutes for BioMedical Research, Basel CH-4002, Switzerland
| |
Collapse
|
42
|
Wang W, Zhang X, Fang Y, He J, Huang J, Li S, Ma T, Li L. Case Report: Olaparib Shows Satisfactory Clinical Outcomes Against Small Cell Esophageal Carcinoma With ATM Mutation. Front Oncol 2022; 12:808801. [PMID: 35480123 PMCID: PMC9036436 DOI: 10.3389/fonc.2022.808801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 03/07/2022] [Indexed: 11/28/2022] Open
Abstract
Small cell esophageal carcinoma (SCEC) is a rare, undifferential type of cancer, with a high degree of malignancy and early systemic metastasis. Radio-chemotherapy and surgery have been used as the primary treatment strategies for SCEC, but they both result in poor prognosis. There is need to develop an optimal standard treatment for the disease to improve prognosis and limit the related mortality. In this study, we described identification of driver mutations in ATM, a gene involved in homologous recombination deficiency (HRD) pathway, using next-generation sequencing on primary lesion and peripheral blood of a SCEC patient, who experienced recurrence after resection and radio-chemotherapy. In addition, we subjected the patient to olaparib, a PARP inhibitor, for the treatment of tumor with HRD and obtained a partial response. This is the first evidence implicating olaparib in successful treatment of SCEC with ATM mutation. The findings suggest that targeting mutations in HRD genes using olaparib or actionable genetic mutations using corresponding drugs, may be an effective therapeutic option for SCEC, although this requires further investigation.
Collapse
Affiliation(s)
- Weiwei Wang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Xiaoyan Zhang
- Department of Translational Medicine, Genetron Health Technology, Co. Ltd., Beijing, China
| | - Yu Fang
- Department of Translational Medicine, Genetron Health Technology, Co. Ltd., Beijing, China
| | - Jia He
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Jingjing Huang
- Department of Translational Medicine, Genetron Health Technology, Co. Ltd., Beijing, China
| | - Shanqing Li
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Tonghui Ma
- Department of Translational Medicine, Genetron Health Technology, Co. Ltd., Beijing, China
- *Correspondence: Li Li, ; Tonghui Ma,
| | - Li Li
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Beijing, China
- *Correspondence: Li Li, ; Tonghui Ma,
| |
Collapse
|
43
|
Bell HN, Kumar-Sinha C, Mannan R, Zakalik D, Zhang Y, Mehra R, Jagtap D, Dhanasekaran SM, Vaishampayan U. Pathogenic ATM and BAP1 germline mutations in a case of early-onset, familial sarcomatoid renal cancer. Cold Spring Harb Mol Case Stud 2022; 8:mcs.a006203. [PMID: 35483881 PMCID: PMC9059789 DOI: 10.1101/mcs.a006203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/17/2022] [Indexed: 12/11/2022] Open
Abstract
Metastatic renal cell carcinoma (RCC) remains an incurable malignancy, despite recent advances in systemic therapies. Genetic syndromes associated with kidney cancer account for only 5%-8% of all diagnosed kidney malignancies, and genetic predispositions to kidney cancer predisposition are still being studied. Genomic testing for kidney cancer is useful for disease molecular subtyping but provides minimal therapeutic information. Understanding how aberrations drive RCC development and how their contextual influences, such as chromosome loss, genome instability, and DNA methylation changes, may alter therapeutic response is of importance. We report the case of a 36-yr-old female with aggressive, metastatic RCC and a significant family history of cancer, including RCC. This patient harbors a novel, pathogenic, germline ATM mutation along with a rare germline variant of unknown significance in the BAP1 gene. In addition, somatic loss of heterozygosity (LOH) in BAP1 and ATM genes, somatic mutation and LOH in the VHL gene, copy losses in Chromosomes 9p and 14, and genome instability are also noted in the tumor, potentially dictating this patient's aggressive clinical course. Further investigation is warranted to evaluate the association of ATM and BAP1 germline mutations with increased risk of RCC and if these mutations should lead to enhanced and early screening.
Collapse
Affiliation(s)
- Hannah N Bell
- University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Chandan Kumar-Sinha
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA.,Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA.,Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Rahul Mannan
- University of Michigan Medical School, Ann Arbor, Michigan 48109, USA.,Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA.,Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Dana Zakalik
- Oakland University/Beaumont Hospital, Rochester, Michigan 48309, USA
| | - Yuping Zhang
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA.,Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA.,Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Rohit Mehra
- University of Michigan Medical School, Ann Arbor, Michigan 48109, USA.,Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA.,Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Deepa Jagtap
- Oakland University/Beaumont Hospital, Rochester, Michigan 48309, USA
| | - Saravana M Dhanasekaran
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA.,Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA.,Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Ulka Vaishampayan
- University of Michigan Medical School, Ann Arbor, Michigan 48109, USA.,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
44
|
Diverse and precision therapies open new horizons for patients with advanced pancreatic ductal adenocarcinoma. Hepatobiliary Pancreat Dis Int 2022; 21:10-24. [PMID: 34538570 DOI: 10.1016/j.hbpd.2021.08.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 08/31/2021] [Indexed: 02/05/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a common cause of cancer-related death, and most patients are with advanced disease when diagnosed. At present, despite a variety of treatments have been developed for PDAC, few effective treatment options are available; on the other hand, PDAC shows significant resistance to chemoradiotherapy, targeted therapy, and immunotherapy due to its heterogeneous genetic profile, molecular signaling pathways, and complex tumor immune microenvironment. Nevertheless, over the past decades, there have been many new advances in the key theory and understanding of the intrinsic mechanisms and complexity of molecular biology and molecular immunology in pancreatic cancer, based on which more and more diverse new means and reasonable combination strategies for PDAC treatment have been developed and preliminary breakthroughs have been made. With the continuous exploration, from surgical local treatment to comprehensive medical management, the research-diagnosis-management system of pancreatic cancer is improving. This review focused on the variety of treatments for advanced PDAC, including traditional chemotherapy, targeted therapy, immunotherapy, microenvironment matrix regulation as well as the treatment targeting epigenetics, metabolism and cancer stem cells. We pointed out the current research bottlenecks and future exploration directions.
Collapse
|
45
|
El Jabbour T, Misyura M, Cowzer D, Zimmermann M, Rimkunas V, Marra A, Derakhshan F, Selenica P, Parilla M, Setton JS, Ceyhan-Birsoy O, Kemel Y, Catchings A, Ranganathan M, Ku GY, Janjigian YY, Zinda M, Koehler M, Stadler Z, Shia J, Reis-Filho JS, Mandelker D. ATM Germline Mutated Gastroesophageal Junction Adenocarcinomas: Clinical Descriptors, Molecular Characteristics and Potential Therapeutic Implications. J Natl Cancer Inst 2022; 114:761-770. [PMID: 35078243 PMCID: PMC9086803 DOI: 10.1093/jnci/djac024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/22/2021] [Accepted: 01/19/2022] [Indexed: 11/14/2022] Open
Abstract
Background Gastroesophageal junction (GEJ) adenocarcinoma is a rare cancer associated with poor prognosis. The genetic factors conferring predisposition to GEJ adenocarcinoma have yet to be identified. Methods We analyzed germline testing results from 23 381 cancer patients undergoing tumor-normal sequencing, of which 312 individuals had GEJ adenocarcinoma. Genomic profiles and clinico-pathologic features were analyzed for the GEJ adenocarcinomas. Silencing of ATM and ATR was performed using validated short-interfering RNA species in GEJ, esophageal, and gastric adenocarcinoma cell lines. All statistical tests were 2-sided. Results Pathogenic or likely pathogenic ATM variants were identified in 18 of 312 patients (5.8%), and bi-allelic inactivation of ATM through loss of heterozygosity of the wild-type allele was detected in all (16 of 16) samples with sufficient tumor content. Germline ATM-mutated GEJ adenocarcinomas largely lacked somatic mutations in TP53, were more likely to harbor MDM2 amplification, and harbored statistically significantly fewer somatic single nucleotide variants (2.0 mutations/Mb vs 7.9 mutations/Mb; P < .001). A statistically significantly higher proportion of germline ATM-mutated than ATM–wild-type GEJ adenocarcinoma patients underwent a curative resection (10 [100%] vs 92 [86.8%], P = .04; Fisher’s exact test.), A synthetic lethal interaction between short-interfering RNA silencing of ATM and ATR was observed in the models analyzed. Conclusions Our results indicate that germline pathogenic variants in ATM drive oncogenesis in GEJ adenocarcinoma and might result in a distinct clinical phenotype. Given the high prevalence of germline ATM-mutated GEJ adenocarcinomas, genetic testing for individuals with GEJ adenocarcinomas may be considered to better inform prognostication, treatment decisions, and future cancer risk.
Collapse
Affiliation(s)
- Tony El Jabbour
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Maksym Misyura
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Darren Cowzer
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | | - Antonio Marra
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Fatemeh Derakhshan
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Pier Selenica
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Megan Parilla
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jeremy S Setton
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ozge Ceyhan-Birsoy
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yelena Kemel
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Amanda Catchings
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Megha Ranganathan
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Geoffrey Y Ku
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yelena Y Janjigian
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | | - Zsofia Stadler
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jinru Shia
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jorge S Reis-Filho
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Diana Mandelker
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
46
|
Haronikova L, Bonczek O, Zatloukalova P, Kokas-Zavadil F, Kucerikova M, Coates PJ, Fahraeus R, Vojtesek B. Resistance mechanisms to inhibitors of p53-MDM2 interactions in cancer therapy: can we overcome them? Cell Mol Biol Lett 2021; 26:53. [PMID: 34911439 PMCID: PMC8903693 DOI: 10.1186/s11658-021-00293-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/05/2021] [Indexed: 12/13/2022] Open
Abstract
Since the discovery of the first MDM2 inhibitors, we have gained deeper insights into the cellular roles of MDM2 and p53. In this review, we focus on MDM2 inhibitors that bind to the p53-binding domain of MDM2 and aim to disrupt the binding of MDM2 to p53. We describe the basic mechanism of action of these MDM2 inhibitors, such as nutlin-3a, summarise the determinants of sensitivity to MDM2 inhibition from p53-dependent and p53-independent points of view and discuss the problems with innate and acquired resistance to MDM2 inhibition. Despite progress in MDM2 inhibitor design and ongoing clinical trials, their broad use in cancer treatment is not fulfilling expectations in heterogenous human cancers. We assess the MDM2 inhibitor types in clinical trials and provide an overview of possible sources of resistance to MDM2 inhibition, underlining the need for patient stratification based on these aspects to gain better clinical responses, including the use of combination therapies for personalised medicine.
Collapse
Affiliation(s)
- Lucia Haronikova
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic.
| | - Ondrej Bonczek
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
- Department of Medical Biosciences, Umea University, 901 87, Umea, Vasterbotten, Sweden
| | - Pavlina Zatloukalova
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
| | - Filip Kokas-Zavadil
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
| | - Martina Kucerikova
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Philip J Coates
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
| | - Robin Fahraeus
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
- Department of Medical Biosciences, Umea University, 901 87, Umea, Vasterbotten, Sweden
- Inserm UMRS1131, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St. Louis, 75010, Paris, France
| | - Borivoj Vojtesek
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic.
| |
Collapse
|
47
|
Levi H, Bar E, Cohen-Adiv S, Sweitat S, Kanner S, Galron R, Mitiagin Y, Barzilai A. Dysfunction of cerebellar microglia in Ataxia-telangiectasia. Glia 2021; 70:536-557. [PMID: 34854502 DOI: 10.1002/glia.24122] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 12/13/2022]
Abstract
Ataxia-telangiectasia (A-T) is a multisystem autosomal recessive disease caused by mutations in the ATM gene and characterized by cerebellar atrophy, progressive ataxia, immunodeficiency, male and female sterility, radiosensitivity, cancer predisposition, growth retardation, insulin-resistant diabetes, and premature aging. ATM phosphorylates more than 1500 target proteins, which are involved in cell cycle control, DNA repair, apoptosis, modulation of chromatin structure, and other cytoplasmic as well as mitochondrial processes. In our quest to better understand the mechanisms by which ATM deficiency causes cerebellar degeneration, we hypothesized that specific vulnerabilities of cerebellar microglia underlie the etiology of A-T. Our hypothesis is based on the recent finding that dysfunction of glial cells affect a variety of process leading to impaired neuronal functionality (Song et al., 2019). Whereas astrocytes and neurons descend from the neural tube, microglia originate from the hematopoietic system, invade the brain at early embryonic stage, and become the innate immune cells of the central nervous system and important participants in development of synaptic plasticity. Here we demonstrate that microglia derived from Atm-/- mouse cerebellum display accelerated cell migration and are severely impaired in phagocytosis, secretion of neurotrophic factors, and mitochondrial activity, suggestive of apoptotic processes. Interestingly, no microglial impairment was detected in Atm-deficient cerebral cortex, and Atm deficiency had less impact on astroglia than microglia. Collectively, our findings validate the roles of glial cells in cerebellar attrition in A-T.
Collapse
Affiliation(s)
- Hadar Levi
- Department of Neurobiology, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ela Bar
- Department of Neurobiology, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Stav Cohen-Adiv
- Department of Neurobiology, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Suzan Sweitat
- Department of Neurobiology, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Sivan Kanner
- Department of Neurobiology, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ronit Galron
- Department of Neurobiology, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yulia Mitiagin
- Department of Neurobiology, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ari Barzilai
- Department of Neurobiology, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
48
|
Wang M, Chen S, Ao D. Targeting DNA repair pathway in cancer: Mechanisms and clinical application. MedComm (Beijing) 2021; 2:654-691. [PMID: 34977872 PMCID: PMC8706759 DOI: 10.1002/mco2.103] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 02/05/2023] Open
Abstract
Over the last decades, the growing understanding on DNA damage response (DDR) pathways has broadened the therapeutic landscape in oncology. It is becoming increasingly clear that the genomic instability of cells resulted from deficient DNA damage response contributes to the occurrence of cancer. One the other hand, these defects could also be exploited as a therapeutic opportunity, which is preferentially more deleterious in tumor cells than in normal cells. An expanding repertoire of DDR-targeting agents has rapidly expanded to inhibitors of multiple members involved in DDR pathways, including PARP, ATM, ATR, CHK1, WEE1, and DNA-PK. In this review, we sought to summarize the complex network of DNA repair machinery in cancer cells and discuss the underlying mechanism for the application of DDR inhibitors in cancer. With the past preclinical evidence and ongoing clinical trials, we also provide an overview of the history and current landscape of DDR inhibitors in cancer treatment, with special focus on the combination of DDR-targeted therapies with other cancer treatment strategies.
Collapse
Affiliation(s)
- Manni Wang
- Department of BiotherapyCancer CenterWest China HospitalSichuan UniversityChengduChina
| | - Siyuan Chen
- Department of BiotherapyCancer CenterWest China HospitalSichuan UniversityChengduChina
| | - Danyi Ao
- Department of BiotherapyCancer CenterWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
49
|
Baschnagel AM, Elnaggar JH, VanBeek HJ, Kromke AC, Skiba JH, Kaushik S, Abel L, Clark PA, Longhurst CA, Nickel KP, Leal TA, Zhao SG, Kimple RJ. ATR Inhibitor M6620 (VX-970) Enhances the Effect of Radiation in Non-Small Cell Lung Cancer Brain Metastasis Patient-Derived Xenografts. Mol Cancer Ther 2021; 20:2129-2139. [PMID: 34413128 PMCID: PMC8571002 DOI: 10.1158/1535-7163.mct-21-0305] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/17/2021] [Accepted: 08/11/2021] [Indexed: 11/16/2022]
Abstract
M6620, a selective ATP-competitive inhibitor of the ATM and RAD3-related (ATR) kinase, is currently under investigation with radiation in patients with non-small cell lung cancer (NSCLC) brain metastases. We evaluated the DNA damage response (DDR) pathway profile of NSCLC and assessed the radiosensitizing effects of M6620 in a preclinical NSCLC brain metastasis model. Mutation analysis and transcriptome profiling of DDR genes and pathways was performed on NSCLC patient samples. NSCLC cell lines were assessed with proliferation, clonogenic survival, apoptosis, cell cycle, and DNA damage signaling and repair assays. NSCLC brain metastasis patient-derived xenograft models were used to assess intracranial response and overall survival. In vivo IHC was performed to confirm in vitro results. A significant portion of NSCLC patient tumors demonstrated enrichment of DDR pathways. DDR pathways correlated with lung squamous cell histology; and mutations in ATR, ATM, BRCA1, BRCA2, CHEK1, and CHEK2 correlated with enrichment of DDR pathways in lung adenocarcinomas. M6620 reduced colony formation after radiotherapy and resulted in inhibition of DNA DSB repair, abrogation of the radiation-induced G2 cell checkpoint, and formation of dysfunctional micronuclei, leading to enhanced radiation-induced mitotic death. The combination of M6620 and radiation resulted in improved overall survival in mice compared with radiation alone. In vivo IHC revealed inhibition of pChk1 in the radiation plus M6620 group. M6620 enhances the effect of radiation in our preclinical NSCLC brain metastasis models, supporting the ongoing clinical trial (NCT02589522) evaluating M6620 in combination with whole brain irradiation in patients with NSCLC brain metastases.
Collapse
Affiliation(s)
- Andrew M Baschnagel
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin.
- University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Jacob H Elnaggar
- Louisiana State University Health Sciences Center New Orleans, New Orleans, Louisiana
| | - Haley J VanBeek
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Ashley C Kromke
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Justin H Skiba
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Saakshi Kaushik
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Lindsey Abel
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Paul A Clark
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Colin A Longhurst
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Kwangok P Nickel
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Ticiana A Leal
- University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
- Division of Hematology/Oncology, Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Shuang G Zhao
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
- University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Randall J Kimple
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin.
- University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
50
|
Jaiswal SK, Raj S, DePamphilis ML. Developmental Acquisition of p53 Functions. Genes (Basel) 2021; 12:genes12111675. [PMID: 34828285 PMCID: PMC8622856 DOI: 10.3390/genes12111675] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/14/2021] [Accepted: 10/21/2021] [Indexed: 12/12/2022] Open
Abstract
Remarkably, the p53 transcription factor, referred to as “the guardian of the genome”, is not essential for mammalian development. Moreover, efforts to identify p53-dependent developmental events have produced contradictory conclusions. Given the importance of pluripotent stem cells as models of mammalian development, and their applications in regenerative medicine and disease, resolving these conflicts is essential. Here we attempt to reconcile disparate data into justifiable conclusions predicated on reports that p53-dependent transcription is first detected in late mouse blastocysts, that p53 activity first becomes potentially lethal during gastrulation, and that apoptosis does not depend on p53. Furthermore, p53 does not regulate expression of genes required for pluripotency in embryonic stem cells (ESCs); it contributes to ESC genomic stability and differentiation. Depending on conditions, p53 accelerates initiation of apoptosis in ESCs in response to DNA damage, but cell cycle arrest as well as the rate and extent of apoptosis in ESCs are p53-independent. In embryonic fibroblasts, p53 induces cell cycle arrest to allow repair of DNA damage, and cell senescence to prevent proliferation of cells with extensive damage.
Collapse
Affiliation(s)
- Sushil K. Jaiswal
- National Institute of Child Health and Human Development, Bethesda, MD 20892, USA;
- National Human Genome Research Institute, Bethesda, MD 20892, USA
| | - Sonam Raj
- National Cancer Institute, Bethesda, MD 20892, USA;
| | - Melvin L. DePamphilis
- National Institute of Child Health and Human Development, Bethesda, MD 20892, USA;
- Correspondence:
| |
Collapse
|