1
|
Park MN, Choi J, Maharub Hossain Fahim M, Asevedo EA, Nurkolis F, Ribeiro RIMA, Kang HN, Kang S, Syahputra RA, Kim B. Phytochemical synergies in BK002: advanced molecular docking insights for targeted prostate cancer therapy. Front Pharmacol 2025; 16:1504618. [PMID: 40034825 PMCID: PMC11872924 DOI: 10.3389/fphar.2025.1504618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 01/20/2025] [Indexed: 03/05/2025] Open
Abstract
Achyranthes japonica (Miq.) Nakai (AJN) and Melandrium firmum (Siebold and Zucc.) Rohrb. (MFR) are medicinal plants recognized for their bioactive phytochemicals, including ecdysteroids, anthraquinones, and flavonoids. This study investigates the anticancer properties of key constituents of these plants, focusing on the BK002 formulation, a novel combination of AJN and MFR. Specifically, the research employs advanced molecular docking and in silico analyses to assess the interactions of bioactive compounds ecdysterone, inokosterone, and 20-hydroxyecdysone (20-HE) with key prostate cancer-related network proteins, including 5α-reductase, CYP17, DNMT1, Dicer, PD-1, and PD-L1. Molecular docking techniques were applied to evaluate the binding affinities contributions of the bioactive compounds in BK002 against prostate cancer-hub network targets. The primary focus was on enzymes like 5α-reductase and CYP17, which are central to androgen biosynthesis, as well as on cancer-related proteins such as DNA methyltransferase 1 (DNMT1), Dicer, programmed death-1 (PD-1), and programmed death ligand-1 (PD-L1). Based on data from prostate cancer patients, key target networks were identified, followed by in silico analysis of the primary bioactive components of BK002.In silico assessments were conducted to evaluate the safety profiles of these compounds, providing insights into their therapeutic potential. The docking studies revealed that ecdysterone, inokosterone, and 20-hydroxyecdysonec demonstrated strong binding affinities to the critical prostate cancer-related enzymes 5α-reductase and CYP17, contributing to a potential reduction in androgenic activity. These compounds also exhibited significant inhibitory interactions with DNMT1, Dicer, PD-1, and PD-L1, suggesting a capacity to interfere with key oncogenic and immune evasion pathways. Ecdysterone, inokosterone, and 20-hydroxyecdysone have demonstrated the ability to target key oncogenic pathways, and their favorable binding affinity profiles further underscore their potential as novel therapeutic agents for prostate cancer. These findings provide a strong rationale for further preclinical and clinical investigations, supporting the integration of BK002 into therapeutic regimens aimed at modulating tumor progression and immune responses.
Collapse
Affiliation(s)
- Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jinwon Choi
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | | | - Estéfani Alves Asevedo
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- Experimental Pathology Laboratory, Midwest Campus, Federal University of São João del-Rei, Divinópolis, Brazil
| | - Fahrul Nurkolis
- Department of Biological Sciences, State Islamic University of Sunan Kalijaga (UIN Sunan Kalijaga), Yogyakarta, Indonesia
| | | | - Han Na Kang
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Sojin Kang
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Rony Abdi Syahputra
- Department of Biological Sciences, State Islamic University of Sunan Kalijaga (UIN Sunan Kalijaga), Yogyakarta, Indonesia
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Rojo-Pardillo M, Godefroid L, Dom G, Lefort A, Libert F, Robaye B, Maenhaut C. Understanding the Dosage-Dependent Role of Dicer1 in Thyroid Tumorigenesis. Int J Mol Sci 2024; 25:10701. [PMID: 39409030 PMCID: PMC11476720 DOI: 10.3390/ijms251910701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/27/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024] Open
Abstract
Tumors originating from thyroid follicular cells are the most common endocrine tumors, with rising incidence. Despite a generally good prognosis, up to 20% of patients experience recurrence and persistence, highlighting the need to identify the underlying molecular mechanisms. Dicer1 has been found to be altered in papillary thyroid cancer (PTC). Studies suggest that Dicer1 functions as a haploinsufficient tumor suppressor gene: partial loss promotes tumorigenesis, while complete loss prevents it. To investigate the effects of partial or total Dicer1 loss in PTC in vitro, we generated stable Dicer1 (+/-) cell lines from TPC1 using CRISPR-Cas9, though no Dicer1 (-/-) lines could be produced. Therefore, siRNA against Dicer1 was transfected into Dicer1 (+/-) cell lines to further decrease its expression. Transcriptomic analysis revealed changes in proliferation and cell locomotion. BrdU staining indicated a slow-down of the cell cycle, with fewer cells in S phase and more in G0-G1-phase. Additionally, transwell assays showed decreased invasion and migration after Dicer1 knockdown by siRNA. Moreover, Dicer1 overexpression led to decreased proliferation, invasion, and increased apoptosis. Our findings deepen the understanding of Dicer1's role in thyroid cancer, demonstrating that both complete elimination and overexpression of Dicer1 inhibit thyroid oncogenesis, highlighting Dicer1 as a promising target for novel therapeutic strategies.
Collapse
Affiliation(s)
- María Rojo-Pardillo
- IRIBHM J. E. Dumont, Université Libre de Bruxelles, 1070 Brussels, Belgium; (M.R.-P.)
| | - Ludivine Godefroid
- IRIBHM J. E. Dumont, Université Libre de Bruxelles, 1070 Brussels, Belgium; (M.R.-P.)
| | - Geneviève Dom
- IRIBHM J. E. Dumont, Université Libre de Bruxelles, 1070 Brussels, Belgium; (M.R.-P.)
| | - Anne Lefort
- IRIBHM J. E. Dumont, Université Libre de Bruxelles, 1070 Brussels, Belgium; (M.R.-P.)
- BRIGHTcore Facility, 1070 Brussels, Belgium
| | - Frederick Libert
- IRIBHM J. E. Dumont, Université Libre de Bruxelles, 1070 Brussels, Belgium; (M.R.-P.)
- BRIGHTcore Facility, 1070 Brussels, Belgium
| | - Bernard Robaye
- IRIBHM J. E. Dumont, Université Libre de Bruxelles, Campus Charleroi, 6041 Charleroi, Belgium
| | - Carine Maenhaut
- IRIBHM J. E. Dumont, Université Libre de Bruxelles, 1070 Brussels, Belgium; (M.R.-P.)
| |
Collapse
|
3
|
Detassis S, Precazzini F, Grasso M, Del Vescovo V, Maines F, Caffo O, Campomenosi P, Denti MA. Plasma microRNA Signature as Companion Diagnostic for Abiraterone Acetate Treatment in Metastatic Castration-Resistant Prostate Cancer: A Pilot Study. Int J Mol Sci 2024; 25:5573. [PMID: 38891761 PMCID: PMC11171781 DOI: 10.3390/ijms25115573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/09/2024] [Accepted: 05/15/2024] [Indexed: 06/21/2024] Open
Abstract
Abiraterone acetate (AA) serves as a medication for managing persistent testosterone production in patients with metastatic castration-resistant prostate cancer (mCRPC). However, its efficacy varies among individuals; thus, the identification of biomarkers to predict and follow treatment response is required. In this pilot study, we explored the potential of circulating microRNAs (c-miRNAs) to stratify patients based on their responsiveness to AA. We conducted an analysis of plasma samples obtained from a cohort of 33 mCRPC patients before and after three, six, and nine months of AA treatment. Using miRNA RT-qPCR panels for candidate discovery and TaqMan RT-qPCR for validation, we identified promising miRNA signatures. Our investigation indicated that a signature based on miR-103a-3p and miR-378a-5p effectively discriminates between non-responder and responder patients, while also following the drug's efficacy over time. Additionally, through in silico analysis, we identified target genes and transcription factors of the two miRNAs, including PTEN and HOXB13, which are known to play roles in AA resistance in mCRPC. In summary, our study highlights two c-miRNAs as potential companion diagnostics of AA in mCRPC patients, offering novel insights for informed decision-making in the treatment of mCRPC.
Collapse
Affiliation(s)
- Simone Detassis
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, TN, Italy; (S.D.)
- OPTOI Srl, Via Vienna 8, 38100 Trento, TN, Italy
| | - Francesca Precazzini
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, TN, Italy; (S.D.)
- Istituto Zooprofilattico Sperimentale Delle Venezie, Sezione di Bolzano, Via Laura Conti 4, 39100 Bolzano, BZ, Italy
| | - Margherita Grasso
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, TN, Italy; (S.D.)
- L.N.Age Srl-Link Neuroscience and Healthcare, Via Mario Savini 15, 00136 Roma, RO, Italy
| | - Valerio Del Vescovo
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, TN, Italy; (S.D.)
- Kapadi Italy Srl, Corso Italia 22, 20122 Milano, MI, Italy
| | - Francesca Maines
- Division of Oncology, Santa Chiara Hospital, Largo Medaglie D’oro 9, 38122 Trento, TN, Italy
| | - Orazio Caffo
- Division of Oncology, Santa Chiara Hospital, Largo Medaglie D’oro 9, 38122 Trento, TN, Italy
| | - Paola Campomenosi
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Via J.H. Dunant 3, 21100 Varese, VA, Italy
| | - Michela A. Denti
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, TN, Italy; (S.D.)
| |
Collapse
|
4
|
Sáez-Martínez P, Porcel-Pastrana F, Montero-Hidalgo AJ, Lozano de la Haba S, Sanchez-Sanchez R, González-Serrano T, Gómez-Gómez E, Martínez-Fuentes AJ, Jiménez-Vacas JM, Gahete MD, Luque RM. Dysregulation of RNA-Exosome machinery is directly linked to major cancer hallmarks in prostate cancer: Oncogenic role of PABPN1. Cancer Lett 2024; 584:216604. [PMID: 38244911 DOI: 10.1016/j.canlet.2023.216604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/01/2023] [Accepted: 12/15/2023] [Indexed: 01/22/2024]
Abstract
Novel biomarkers and therapeutic strategies for prostate-cancer (PCa) are required to overcome its lethal progression. The dysregulation/implication of the RNA-Exosome-complex (REC; cellular machinery controlling the 3'-5'processing/degradation of most RNAs) in different cancer-types, including PCa, is poorly known. Herein, different cellular/molecular/preclinical approaches with human PCa-samples (tissues and/or plasma of 7 independent cohorts), and in-vitro/in-vivo PCa-models were used to comprehensively characterize the REC-profile and explore its role in PCa. Moreover, isoginkgetin (REC-inhibitor) effects were evaluated on PCa-cells. We demonstrated a specific dysregulation of the REC-components in PCa-tissues, identifying the Poly(A)-Binding-Protein-Nuclear 1 (PABPN1) factor as a critical regulator of major cancer hallmarks. PABPN1 is consistently overexpressed in different human PCa-cohorts and associated with poor-progression, invasion and metastasis. PABPN1 silencing decreased relevant cancer hallmarks in multiple PCa-models (proliferation/migration/tumourspheres/colonies, etc.) through the modulation of key cancer-related lncRNAs (PCA3/FALEC/DLEU2) and mRNAs (CDK2/CDK6/CDKN1A). Plasma PABPN1 levels were altered in patients with metastatic and tumour-relapse. Finally, pharmacological inhibition of REC-activity drastically inhibited PCa-cell aggressiveness. Altogether, the REC is drastically dysregulated in PCa, wherein this novel molecular event/mechanism, especially PABPN1 alteration, may be potentially exploited as a novel prognostic and therapeutic tool for PCa.
Collapse
Affiliation(s)
- Prudencio Sáez-Martínez
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain; Hospital Universitario Reina Sofía (HURS), Cordoba, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Francisco Porcel-Pastrana
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain; Hospital Universitario Reina Sofía (HURS), Cordoba, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Antonio J Montero-Hidalgo
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain; Hospital Universitario Reina Sofía (HURS), Cordoba, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Samanta Lozano de la Haba
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain; Hospital Universitario Reina Sofía (HURS), Cordoba, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Rafael Sanchez-Sanchez
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain; Hospital Universitario Reina Sofía (HURS), Cordoba, Spain; Anatomical Pathology Service, HURS, Cordoba, Spain
| | - Teresa González-Serrano
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain; Hospital Universitario Reina Sofía (HURS), Cordoba, Spain; Anatomical Pathology Service, HURS, Cordoba, Spain
| | - Enrique Gómez-Gómez
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain; Hospital Universitario Reina Sofía (HURS), Cordoba, Spain; Urology Service, HURS/IMIBIC, Cordoba, Spain
| | - Antonio J Martínez-Fuentes
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain; Hospital Universitario Reina Sofía (HURS), Cordoba, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | | | - Manuel D Gahete
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain; Hospital Universitario Reina Sofía (HURS), Cordoba, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Raúl M Luque
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain; Hospital Universitario Reina Sofía (HURS), Cordoba, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain.
| |
Collapse
|
5
|
Takasawa S, Makino M, Yamauchi A, Sakuramoto‐Tsuchida S, Hirota R, Fujii R, Asai K, Takeda Y, Uchiyama T, Shobatake R, Ota H. Intermittent hypoxia increased the expression of ESM1 and ICAM-1 in vascular endothelial cells via the downregulation of microRNA-181a1. J Cell Mol Med 2024; 28:e18039. [PMID: 37968862 PMCID: PMC10805502 DOI: 10.1111/jcmm.18039] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 09/25/2023] [Accepted: 10/19/2023] [Indexed: 11/17/2023] Open
Abstract
Sleep apnea syndrome (SAS) exposes cells throughout the body to intermittent hypoxia (IH). Intermittent hypoxia is a risk factor not only for hypertension and insulin resistance but also for vascular dysfunction. We have reported correlations between IH, insulin resistance and hypertension. However, the details of why IH leads to vascular dysfunction remain unclear. In this study, we investigated inflammation-related transcripts in vascular endothelial cells (human HUEhT-1 and mouse UV2) exposed to IH by real-time RT-PCR and found that intercellular adhesion molecule-1 (ICAM-1) and endothelial cell-specific molecule-1 (ESM1) mRNAs were significantly increased. ELISA confirmed that, in the UV2 cell medium, ICAM-1 and ESM1 were significantly increased by IH. However, the promoter activities of ICAM-1 and ESM1 were not upregulated. On the other hand, IH treatment significantly decreased microRNA (miR)-181a1 in IH-treated cells. The introduction of miR-181a1 mimic but not miR-181a1 mimic NC abolished the IH-induced upregulation of Ican-1 and ESM1. These results indicated that ICAM-1 and ESM1 were upregulated by IH via the IH-induced downregulation of miR-181a1 in vascular endothelial cells and suggested that SAS patients developed atherosclerosis via the IH-induced upregulation of ICAM-1 and ESM1.
Collapse
Grants
- 08102003 Ministry of Education, Culture, Sports, Science and Technology
- 5K19425 Ministry of Education, Culture, Sports, Science and Technology
- 21K16344 Ministry of Education, Culture, Sports, Science and Technology
- 21K15375 Ministry of Education, Culture, Sports, Science and Technology
- Ministry of Education, Culture, Sports, Science and Technology
Collapse
Affiliation(s)
- Shin Takasawa
- Department of BiochemistryNara Medical UniversityNaraJapan
| | - Mai Makino
- Department of BiochemistryNara Medical UniversityNaraJapan
| | - Akiyo Yamauchi
- Department of BiochemistryNara Medical UniversityNaraJapan
| | | | - Rina Hirota
- Department of BiochemistryNara Medical UniversityNaraJapan
| | - Ryusei Fujii
- Department of BiochemistryNara Medical UniversityNaraJapan
| | - Keito Asai
- Department of BiochemistryNara Medical UniversityNaraJapan
| | - Yoshinori Takeda
- Department of BiochemistryNara Medical UniversityNaraJapan
- Department of Obstetrics and GynecologyNara Medical UniversityNaraJapan
| | - Tomoko Uchiyama
- Department of BiochemistryNara Medical UniversityNaraJapan
- Department of Diagnostic PathologyNara Medical UniversityNaraJapan
| | - Ryogo Shobatake
- Department of BiochemistryNara Medical UniversityNaraJapan
- Department of NeurologyNara Medical UniversityNaraJapan
| | - Hiroyo Ota
- Department of BiochemistryNara Medical UniversityNaraJapan
- Department of Respiratory MedicineNara Medical UniversityNaraJapan
| |
Collapse
|
6
|
Kocic G, Hadzi-Djokic J, Colic M, Veljkovic A, Tomovic K, Roumeliotis S, Smelcerovic A, Liakopoulos V. The Role of Nucleases Cleaving TLR3, TLR7/8 and TLR9 Ligands, Dicer RNase and miRNA/piRNA Proteins in Functional Adaptation to the Immune Escape and Xenophagy of Prostate Cancer Tissue. Int J Mol Sci 2022; 24:ijms24010509. [PMID: 36613950 PMCID: PMC9820234 DOI: 10.3390/ijms24010509] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/10/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022] Open
Abstract
The prototypic sensors for the induction of innate and adaptive immune responses are the Toll-like receptors (TLRs). Unusually high expression of TLRs in prostate carcinoma (PC), associated with less differentiated, more aggressive and more propagating forms of PC, changed the previous paradigm about the role of TLRs strictly in immune defense system. Our data reveal an entirely novel role of nucleic acids-sensing Toll-like receptors (NA-TLRs) in functional adaptation of malignant cells for supply and digestion of surrounding metabolic substrates from dead cells as specific mechanism of cancer cells survival, by corresponding ligands accelerated degradation and purine/pyrimidine salvage pathway. The spectrophotometric measurement protocols used for the determination of the activity of RNases and DNase II have been optimized in our laboratory as well as the enzyme-linked immunosorbent method for the determination of NF-κB p65 in prostate tissue samples. The protocols used to determine Dicer RNase, AGO2, TARBP2 and PIWIL4 were based on enzyme-linked immunosorbent assay. The amount of pre-existing acid-soluble oligonucleotides was measured and expressed as coefficient of absorbance. The activities of acid DNase II and RNase T2, and the activities of nucleases cleaving TLR3, TLR7/8 and TLR9 ligands (Poly I:C, poly U and unmethylated CpG), increased several times in PC, compared to the corresponding tumor adjacent and control tissue, exerting very high sensitivity and specificity of above 90%. Consequently higher levels of hypoxanthine and NF-κB p65 were reported in PC, whereas the opposite results were observed for miRNA biogenesis enzyme (Dicer RNase), miRNA processing protein (TARB2), miRNA-induced silencing complex protein (Argonaute-AGO) and PIWI-interacting RNAs silence transposon. Considering the crucial role of purine and pyrimidine nucleotides as energy carriers, subunits of nucleic acids and nucleotide cofactors, future explorations will be aimed to design novel anti-cancer immune strategies based on a specific acid endolysosomal nuclease inhibition.
Collapse
Affiliation(s)
- Gordana Kocic
- Department of Biochemistry, Faculty of Medicine, University of Nis, 18000 Nis, Serbia
- Correspondence: or ; Tel.: +381-63-8122522
| | | | - Miodrag Colic
- Serbian Academy of Sciences and Arts, 11000 Belgrade, Serbia
| | - Andrej Veljkovic
- Department of Biochemistry, Faculty of Medicine, University of Nis, 18000 Nis, Serbia
| | - Katarina Tomovic
- Department of Pharmacy, Faculty of Medicine, University of Nis, 18000 Nis, Serbia
| | - Stefanos Roumeliotis
- Division of Nephrology and Hypertension, 1st Department of Internal Medicine, AHEPA Hospital, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Andrija Smelcerovic
- Department of Chemistry, Faculty of Medicine, University of Nis, 18000 Nis, Serbia
| | - Vassilios Liakopoulos
- Division of Nephrology and Hypertension, 1st Department of Internal Medicine, AHEPA Hospital, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| |
Collapse
|
7
|
Upregulation of Reg IV and Hgf mRNAs by Intermittent Hypoxia via Downregulation of microRNA-499 in Cardiomyocytes. Int J Mol Sci 2022; 23:ijms232012414. [PMID: 36293268 PMCID: PMC9603944 DOI: 10.3390/ijms232012414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 11/17/2022] Open
Abstract
Sleep apnea syndrome (SAS) is characterized by recurrent episodes of oxygen desaturation and reoxygenation (intermittent hypoxia [IH]), and is a risk factor for cardiovascular disease (CVD) and insulin resistance/Type 2 diabetes. However, the mechanisms linking IH stress and CVD remain elusive. We exposed rat H9c2 and mouse P19.CL6 cardiomyocytes to experimental IH or normoxia for 24 h to analyze the mRNA expression of several cardiomyokines. We found that the mRNA levels of regenerating gene IV (Reg IV) and hepatocyte growth factor (Hgf) in H9c2 and P19.CL6 cardiomyocytes were significantly increased by IH, whereas the promoter activities of the genes were not increased. A target mRNA search of microRNA (miR)s revealed that rat and mouse mRNAs have a potential target sequence for miR-499. The miR-499 level of IH-treated cells was significantly decreased compared to normoxia-treated cells. MiR-499 mimic and non-specific control RNA (miR-499 mimic NC) were introduced into P19.CL6 cells, and the IH-induced upregulation of the genes was abolished by introduction of the miR-499 mimic, but not by the miR-499 mimic NC. These results indicate that IH stress downregulates the miR-499 in cardiomyocytes, resulting in increased levels of Reg IV and Hgf mRNAs, leading to the protection of cardiomyocytes in SAS patients.
Collapse
|
8
|
Hua X, Xiang D, Guo M, Qian X, Chen R, Li T, Tian Z, Xu J, Huang C, Xie Q, Huang C. Induction of RAC1 protein translation and MKK7/JNK-dependent autophagy through dicer/miR-145/SOX2/miR-365a axis contributes to isorhapontigenin (ISO) inhibition of human bladder cancer invasion. Cell Death Dis 2022; 13:753. [PMID: 36045117 PMCID: PMC9433410 DOI: 10.1038/s41419-022-05205-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 01/21/2023]
Abstract
Although our previous studies have identified that isorhapontigenin (ISO) is able to initiate autophagy in human bladder cancer (BC) cells by activating JNK/C-Jun/SESN2 axis and possesses an inhibitory effect on BC cell growth, association of autophagy directly with inhibition of BC invasion has never been explored. Also, upstream cascade responsible for ISO activating JNK remains unknown. Thus, we explored both important questions in the current study and discovered that ISO treatment initiated RAC1 protein translation, and its downstream kinase MKK7/JNK phosphorylation/activation, and in turn promoted autophagic responses in human BC cells. Inhibition of autophagy abolished ISO inhibition of BC invasion, revealing that autophagy inhibition was crucial for ISO inhibition of BC invasion. Consistently, knockout of RAC1 also attenuated induction of autophagy and inhibition of BC invasion by ISO treatment. Mechanistic studies showed that upregulation of RAC1 translation was due to ISO inhibition of miR-365a transcription, which reduced miR-365a binding to the 3'-UTR of RAC1 mRNA. Further study indicated that inhibition of miR-365a transcription was caused by downregulation of its transcription factor SOX2, while ISO-promoted Dicer protein translation increased miR-145 maturation, and consequently downregulating SOX2 expression. These findings not only provide a novel insight into the understanding association of autophagy induction with BC invasion inhibition by ISO, but also identify an upstream regulatory cascade, Dicer/miR145/SOX2/miR365a/RAC1, leading to MKK7/JNKs activation and autophagy induction.
Collapse
Affiliation(s)
- Xiaohui Hua
- grid.268099.c0000 0001 0348 3990Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035 China ,grid.186775.a0000 0000 9490 772XDepartment of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui 230032 China
| | - Daimin Xiang
- grid.16821.3c0000 0004 0368 8293State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127 China
| | - Mengxin Guo
- grid.268099.c0000 0001 0348 3990Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035 China
| | - Xiaohui Qian
- grid.268099.c0000 0001 0348 3990Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035 China
| | - Ruifan Chen
- grid.268099.c0000 0001 0348 3990Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035 China
| | - Tengda Li
- grid.268099.c0000 0001 0348 3990Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035 China
| | - Zhongxian Tian
- grid.268099.c0000 0001 0348 3990Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035 China
| | - Jiheng Xu
- grid.268099.c0000 0001 0348 3990Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035 China
| | - Chao Huang
- grid.33199.310000 0004 0368 7223Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Qipeng Xie
- grid.268099.c0000 0001 0348 3990Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035 China
| | - Chuanshu Huang
- grid.268099.c0000 0001 0348 3990Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035 China
| |
Collapse
|
9
|
Rajasekaran S, Khan E, Ching SR, Khan M, Siddiqui J, Gradia DF, Lin C, Bouley SJ, Mercadante D, Manning AL, Gerber AP, Walker J, Miles W. PUMILIO competes with AUF1 to control DICER1 RNA levels and miRNA processing. Nucleic Acids Res 2022; 50:7048-7066. [PMID: 35736218 PMCID: PMC9262620 DOI: 10.1093/nar/gkac499] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 05/27/2022] [Indexed: 12/24/2022] Open
Abstract
DICER1 syndrome is a cancer pre-disposition disorder caused by mutations that disrupt the function of DICER1 in miRNA processing. Studying the molecular, cellular and oncogenic effects of these mutations can reveal novel mechanisms that control cell homeostasis and tumor biology. Here, we conduct the first analysis of pathogenic DICER1 syndrome allele from the DICER1 3'UTR. We find that the DICER1 syndrome allele, rs1252940486, abolishes interaction with the PUMILIO RNA binding protein with the DICER1 3'UTR, resulting in the degradation of the DICER1 mRNA by AUF1. This single mutational event leads to diminished DICER1 mRNA and protein levels, and widespread reprogramming of miRNA networks. The in-depth characterization of the rs1252940486 DICER1 allele, reveals important post-transcriptional regulatory events that control DICER1 levels.
Collapse
Affiliation(s)
- Swetha Rajasekaran
- Department of Cancer Biology and Genetics, The Ohio State University, 460 West 12th Avenue, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, 460 West 12th Avenue, Columbus, OH 43210, USA
| | - Eshan Khan
- Department of Cancer Biology and Genetics, The Ohio State University, 460 West 12th Avenue, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, 460 West 12th Avenue, Columbus, OH 43210, USA
| | - Samuel R Ching
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Misbah Khan
- Department of Cancer Biology and Genetics, The Ohio State University, 460 West 12th Avenue, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, 460 West 12th Avenue, Columbus, OH 43210, USA
| | - Jalal K Siddiqui
- Department of Cancer Biology and Genetics, The Ohio State University, 460 West 12th Avenue, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, 460 West 12th Avenue, Columbus, OH 43210, USA
| | - Daniela F Gradia
- Department of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK
- Department of Genetics, Federal University of Parana, Curitiba, Brazil
| | - Chenyu Lin
- Department of Cancer Biology and Genetics, The Ohio State University, 460 West 12th Avenue, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, 460 West 12th Avenue, Columbus, OH 43210, USA
| | - Stephanie J Bouley
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Dayna L Mercadante
- Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
| | - Amity L Manning
- Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
| | - André P Gerber
- Department of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK
| | - James A Walker
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Wayne O Miles
- To whom correspondence should be addressed. Tel: +1 614 366 2869;
| |
Collapse
|
10
|
Gao J, Shi H, Juhlin CC, Larsson C, Lui WO. Merkel cell polyomavirus T-antigens regulate DICER1 mRNA stability and translation through HSC70. iScience 2021; 24:103264. [PMID: 34761184 PMCID: PMC8567380 DOI: 10.1016/j.isci.2021.103264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/13/2021] [Accepted: 10/09/2021] [Indexed: 01/07/2023] Open
Abstract
Merkel cell carcinoma is an aggressive skin malignancy, mostly caused by Merkel cell polyomavirus (MCPyV). MCPyV T-antigens can induce mature microRNA expressions through the DnaJ domain, but its underlying mechanism is still unknown. Here, we report that the T-antigens induce protein expression and mRNA stability of DICER1, a key factor in microRNA biogenesis, through heat shock cognate 70 (HSC70). HSC70 directly interacts with the AU-rich elements (ARE) of DICER1 mRNA in both coding and 3′ untranslated region in the presence of MCPyV T-antigen. The T-antigen/HSC70 interaction could induce luciferase activity of synthetic ARE-containing reporter, as well as the stability of ARE-containing mRNAs, suggesting a broader role of MCPyV T-antigens in regulating multiple mRNAs via HSC70. These findings highlight a new role for the interaction of HSC70 and MCPyV T-antigens in mRNA regulation and an undescribed regulatory mechanism of DICER1 mRNA stability and translation through its direct interaction with HSC70. MCPyV T-antigen and HSC70 interaction regulates DICER1 expression HSC70 directly binds to ARE in the 3′UTR of DICER1 for expression regulation An unknown motif in DICER1 CDS is also required for its expression regulation by LT The LT-HSC70 interaction can regulate other ARE-containing mRNAs
Collapse
Affiliation(s)
- Jiwei Gao
- Department of Oncology-Pathology, Karolinska Institutet; BioClinicum, Karolinska University Hospital, 171 64 Solna, Sweden
| | - Hao Shi
- Department of Oncology-Pathology, Karolinska Institutet; BioClinicum, Karolinska University Hospital, 171 64 Solna, Sweden
| | - C Christofer Juhlin
- Department of Oncology-Pathology, Karolinska Institutet; BioClinicum, Karolinska University Hospital, 171 64 Solna, Sweden.,Department of Pathology and Cancer Diagnostics, Karolinska University Hospital, 171 64 Solna, Sweden
| | - Catharina Larsson
- Department of Oncology-Pathology, Karolinska Institutet; BioClinicum, Karolinska University Hospital, 171 64 Solna, Sweden
| | - Weng-Onn Lui
- Department of Oncology-Pathology, Karolinska Institutet; BioClinicum, Karolinska University Hospital, 171 64 Solna, Sweden
| |
Collapse
|
11
|
Global miRNA dosage control of embryonic germ layer specification. Nature 2021; 593:602-606. [PMID: 33953397 DOI: 10.1038/s41586-021-03524-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/08/2021] [Indexed: 12/27/2022]
Abstract
MicroRNAs (miRNAs) have essential functions during embryonic development, and their dysregulation causes cancer1,2. Altered global miRNA abundance is found in different tissues and tumours, which implies that precise control of miRNA dosage is important1,3,4, but the underlying mechanism(s) of this control remain unknown. The protein complex Microprocessor, which comprises one DROSHA and two DGCR8 proteins, is essential for miRNA biogenesis5-7. Here we identify a developmentally regulated miRNA dosage control mechanism that involves alternative transcription initiation (ATI) of DGCR8. ATI occurs downstream of a stem-loop in DGCR8 mRNA to bypass an autoregulatory feedback loop during mouse embryonic stem (mES) cell differentiation. Deletion of the stem-loop causes imbalanced DGCR8:DROSHA protein stoichiometry that drives irreversible Microprocessor aggregation, reduced primary miRNA processing, decreased mature miRNA abundance, and widespread de-repression of lipid metabolic mRNA targets. Although global miRNA dosage control is not essential for mES cells to exit from pluripotency, its dysregulation alters lipid metabolic pathways and interferes with embryonic development by disrupting germ layer specification in vitro and in vivo. This miRNA dosage control mechanism is conserved in humans. Our results identify a promoter switch that balances Microprocessor autoregulation and aggregation to precisely control global miRNA dosage and govern stem cell fate decisions during early embryonic development.
Collapse
|
12
|
Abstract
DICER1 is a highly conserved RNaseIII endoribonuclease that has a critical role in the biogenesis of microRNAs (miRNAs). miRNAs are small regulatory RNAs responsible for post-transcriptional gene silencing, controlling more than half of human protein-coding genes. This is achieved through the targeting and regulation of complementary RNA transcripts and has a well-documented role in post-transcriptional gene regulation and transposon repression. DICER1 deficiency results in dysregulation of miRNAs, changing the expression of many genes. DICER1 syndrome represents a collection of benign and malignant tumours arising from an autosomally inherited germline mutation leading to an inherited predisposition to cancer. The syndrome represents an unusual form of Knudson's two-hit hypothesis, where individuals with a pathogenic germline DICER1 variant acquire a second trans-somatic missense DICER1 mutation. This somatic mutation appears to have to occur in one of five hotspots codons and may contribute towards the incomplete penetrance observed within DICER1 syndrome families. In this case, DICER1 is haploinsuffcient with only one deletion required and partial loss of function being advantageous to tumours over complete loss of function. As increasing data emerge reaffirming the pivotal role of DICER1 in the maintenance of human physiology, DICER1 is likely to become an increasingly attractive target for novel therapeutic strategies.
Collapse
Affiliation(s)
- Michelle Thunders
- Pathology and Molecular Medicine, University of Otago, Wellington, New Zealand
| | - Brett Delahunt
- Pathology and Molecular Medicine, University of Otago, Wellington, New Zealand
| |
Collapse
|
13
|
Wang X, Wendel JRH, Emerson RE, Broaddus RR, Creighton CJ, Rusch DB, Buechlein A, DeMayo FJ, Lydon JP, Hawkins SM. Pten and Dicer1 loss in the mouse uterus causes poorly differentiated endometrial adenocarcinoma. Oncogene 2020; 39:6286-6299. [PMID: 32843721 PMCID: PMC7541676 DOI: 10.1038/s41388-020-01434-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/02/2020] [Accepted: 08/13/2020] [Indexed: 12/14/2022]
Abstract
Endometrial cancer remains the most common gynecological malignancy in the United States. While the loss of the tumor suppressor, PTEN (phosphatase and tensin homolog), is well studied in endometrial cancer, recent studies suggest that DICER1, the endoribonuclease responsible for miRNA genesis, also plays a significant role in endometrial adenocarcinoma. Conditional uterine deletion of Dicer1 and Pten in mice resulted in poorly differentiated endometrial adenocarcinomas, which expressed Napsin A and HNF1B (hepatocyte nuclear factor 1 homeobox B), markers of clear-cell adenocarcinoma. Adenocarcinomas were hormone-independent. Treatment with progesterone did not mitigate poorly differentiated adenocarcinoma, nor did it affect adnexal metastasis. Transcriptomic analyses of DICER1 deleted uteri or Ishikawa cells revealed unique transcriptomic profiles and global miRNA downregulation. Computational integration of miRNA with mRNA targets revealed deregulated let-7 and miR-16 target genes, similar to published human DICER1-mutant endometrial cancers from TCGA (The Cancer Genome Atlas). Similar to human endometrial cancers, tumors exhibited dysregulation of ephrin-receptor signaling and transforming growth factor-beta signaling pathways. LIM kinase 2 (LIMK2), an essential molecule in p21 signal transduction, was significantly upregulated and represents a novel mechanism for hormone-independent pathogenesis of endometrial adenocarcinoma. This preclinical mouse model represents the first genetically engineered mouse model of poorly differentiated endometrial adenocarcinoma.
Collapse
Affiliation(s)
- Xiyin Wang
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jillian R H Wendel
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Robert E Emerson
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Russell R Broaddus
- Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Chad J Creighton
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Douglas B Rusch
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN, USA
| | - Aaron Buechlein
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN, USA
| | - Francesco J DeMayo
- National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, USA
| | - John P Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Shannon M Hawkins
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
14
|
Fan X, Bjerke GA, Riemondy K, Wang L, Yi R. A basal-enriched microRNA is required for prostate tumorigenesis in a Pten knockout mouse model. Mol Carcinog 2019; 58:2241-2253. [PMID: 31512783 PMCID: PMC7791532 DOI: 10.1002/mc.23112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) play important roles in prostate cancer development. However, it remains unclear how individual miRNAs contribute to the initiation and progression of prostate cancer. Here we show that a basal layer-enriched miRNA is required for prostate tumorigenesis. We identify miR-205 as the most highly expressed miRNA and enriched in the basal cells of the prostate. Although miR-205 is not required for normal prostate development and homeostasis, genetic deletion of miR-205 in a Pten null tumor model significantly compromises tumor progression and does not promote metastasis. In Pten null basal cells, loss of miR-205 attenuates pAkt levels and promotes cellular senescence. Furthermore, although overexpression of miR-205 in prostate cancer cells with luminal phenotypes inhibits cell growth in both human and mouse, miR-205 has a minimal effect on the growth of a normal human prostate cell line. Taken together, we have provided genetic evidence for a requirement of miR-205 in the progression of Pten null-induced prostate cancer.
Collapse
Affiliation(s)
- Xiying Fan
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Boulder, Colorado
| | - Glen A Bjerke
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Boulder, Colorado
| | - Kent Riemondy
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Boulder, Colorado
| | - Li Wang
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Boulder, Colorado
| | - Rui Yi
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Boulder, Colorado
| |
Collapse
|
15
|
Kladi-Skandali A, Mavridis K, Scorilas A, Sideris DC. Expressional profiling and clinical relevance of RNase κ in prostate cancer: a novel indicator of favorable progression-free survival. J Cancer Res Clin Oncol 2018; 144:2049-2057. [PMID: 30054827 DOI: 10.1007/s00432-018-2719-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 07/19/2018] [Indexed: 01/26/2023]
Abstract
PURPOSE Considering the unmet need for novel molecular tumor markers capable of improving prostate cancer (CaP) patients' management along with the fruitful results regarding the future use of ribonucleases (RNases) as molecular diagnostic and prognostic markers in CaP, we aimed to study the expressional profile of RNase κ in CaP and BPH and to investigate its clinical significance in CaP. METHODS Total RNA was extracted from 212 prostatic tissue samples (101 BPH and 111 CaP) and, following cDNA synthesis, quantitative real-time PCR (qPCR) was performed for the expressional quantification of RNase κ. Extensive statistical analysis, including bootstrap resampling, was performed to investigate the differential expression of RNase κ in patients with BPH and CaP and its associations with patients' clinicopathological and survival data. RESULTS RNase κ was significantly downregulated (P = 0.002) in CaP patients compared to BPH ones. RNase κ overexpression was associated with decreased risk of CaP development and can discriminate between CaP and BPH independently of serum PSA levels (crude odds ratio = 0.93, P = 0.001). RNase κ upregulation was also associated with less advanced (P = 0.018) and less aggressive (P = 0.001) tumors as well as with longer progression-free survival (PFS) (P = 0.003). Finally univariate bootstrap Cox regression confirmed that RNase κ was associated with favorable prognosis (HR = 0.85, P = 0.002). CONCLUSIONS RNase κ is a biomarker of favorable prognosis in CaP, which is significantly associated with less advanced and aggressive disease, as well as with enhanced PFS.
Collapse
Affiliation(s)
- Athina Kladi-Skandali
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Panepistimiopolis, Athens, Greece
| | - Konstantinos Mavridis
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Panepistimiopolis, Athens, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, 70013, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Panepistimiopolis, Athens, Greece
| | - Diamantis C Sideris
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Panepistimiopolis, Athens, Greece.
| |
Collapse
|
16
|
Shan W, Sun C, Zhou B, Guo E, Lu H, Xia M, Li K, Weng D, Lin X, Meng L, Ma D, Chen G. Role of Dicer as a prognostic predictor for survival in cancer patients: a systematic review with a meta-analysis. Oncotarget 2018; 7:72672-72684. [PMID: 27682871 PMCID: PMC5341936 DOI: 10.18632/oncotarget.12183] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Accepted: 09/12/2016] [Indexed: 01/17/2023] Open
Abstract
Objective The role of Dicer in the prognosis of cancer patients remains controversial. This systematic review is attempted to assess the influence of Dicer as a prognostic predictor for survival in diverse types of cancers. Methods Studies were selected as candidates if they published an independent evaluation of Dicer expression level together with the correlation with prognosis in cancers. Random-effect model was applied in this meta-analysis. Heterogeneity between studies was assessed by Q-statistic with P < 0.10 to be statistically significant. Publication bias was investigated using funnel plot and test with Begg's and Egger's test. P < 0.05 was regarded as statistically significant. Results 24 of 44 articles revealed low Dicer status as a predictor of poor prognosis. The aggregate result of overall survival (OS) indicated that low Dicer expression level resulted in poor clinical outcomes, and subgroup of IHC and RT-PCR method both revealed the same result. Overall analysis of progression-free survival (PFS) showed the same result as OS, and both the two subgroups divided by laboratory method revealed positive results. Subgroup analysis by tumor types showed low dicer levels were associated with poor prognosis in ovarian cancer (HR = 1.93, 95% CI: 1.19-3.15), otorhinolaryngological tumors (HR = 2.39, 95% CI: 1.70-3.36), hematological malignancies (HR = 2.45, 95% CI: 1.69-3.56) and neuroblastoma (HR = 4.03, 95% CI: 1.91-8.50). Conclusion Low Dicer status was associated with poor prognosis in ovarian cancer, otorhinolaryngological tumors and ematological malignancies. More homogeneous studies with high quality are needed to further confirm our conclusion and make Dicer a useful parameter in clinical application.
Collapse
Affiliation(s)
- Wanying Shan
- Cancer Biology Medical Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R.China
| | - Chaoyang Sun
- Cancer Biology Medical Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R.China
| | - Bo Zhou
- Cancer Biology Medical Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R.China
| | - Ensong Guo
- Cancer Biology Medical Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R.China
| | - Hao Lu
- Cancer Biology Medical Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R.China
| | - Meng Xia
- Cancer Biology Medical Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R.China
| | - Kezhen Li
- Cancer Biology Medical Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R.China
| | - Danhui Weng
- Cancer Biology Medical Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R.China
| | - Xingguang Lin
- Cancer Biology Medical Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R.China
| | - Li Meng
- Cancer Biology Medical Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R.China
| | - Ding Ma
- Cancer Biology Medical Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R.China
| | - Gang Chen
- Cancer Biology Medical Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R.China
| |
Collapse
|
17
|
Chen X, Li WF, Wu X, Zhang HC, Chen L, Zhang PY, Liu LY, Ma D, Chen T, Zhou L, Xu Y, Zhou MT, Tang KF. Dicer regulates non-homologous end joining and is associated with chemosensitivity in colon cancer patients. Carcinogenesis 2017; 38:873-882. [PMID: 28911000 DOI: 10.1093/carcin/bgx059] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 06/24/2017] [Indexed: 11/14/2022] Open
Abstract
DNA double-strand break (DSB) repair is an important mechanism underlying chemotherapy resistance in human cancers. Dicer participates in DSB repair by facilitating homologous recombination. However, whether Dicer is involved in non-homologous end joining (NHEJ) remains unknown. Here, we addressed whether Dicer regulates NHEJ and chemosensitivity in colon cancer cells. Using our recently developed NHEJ assay, we found that DSB introduction by I-SceI cleavage leads to Dicer upregulation. Dicer knockdown increased SIRT7 binding and decreased the level of H3K18Ac (acetylated lysine 18 of histone H3) at DSB sites, thereby repressing the recruitment of NHEJ factors to DSB sites and inhibiting NHEJ. Dicer overexpression reduced SIRT7 binding and increased the level of H3K18Ac at DSB sites, promoting the recruitment of NHEJ factors to DSBs and moderately enhancing NHEJ. Dicer knockdown and overexpression increased and decreased, respectively, the chemosensitivity of colon cancer cells. Dicer protein expression in colon cancer tissues of patients was directly correlated with chemoresistance. Our findings revealed a function of Dicer in NHEJ-mediated DSB repair and the association of Dicer expression with chemoresistance in colon cancer patients.
Collapse
Affiliation(s)
- Xiao Chen
- Institute of Translational Medicine.,Digestive Cancer Center.,Department of Gastroenterology
| | | | | | - Heng-Chao Zhang
- Institute of Translational Medicine.,Digestive Cancer Center.,Department of Gastroenterology
| | - Li Chen
- Institute of Translational Medicine.,Digestive Cancer Center.,Department of Gastroenterology
| | - Pei-Ying Zhang
- Institute of Translational Medicine.,Digestive Cancer Center.,Department of Gastroenterology
| | - Li-Yuan Liu
- Department of Infection and Liver Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang, P.R. China
| | - Di Ma
- Institute of Translational Medicine.,Digestive Cancer Center.,Department of Gastroenterology
| | - Tongke Chen
- Laboratory Animal Centre, Wenzhou Medical University, Ouhai District, Wenzhou 325035, Zhejiang, P.R. China
| | - Lingli Zhou
- Department of Pathology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang, P.R. China
| | | | - Meng-Tao Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, P.R. China
| | - Kai-Fu Tang
- Institute of Translational Medicine.,Digestive Cancer Center.,Department of Gastroenterology
| |
Collapse
|
18
|
Wang X, Ivan M, Hawkins SM. The role of MicroRNA molecules and MicroRNA-regulating machinery in the pathogenesis and progression of epithelial ovarian cancer. Gynecol Oncol 2017; 147:481-487. [PMID: 28866430 DOI: 10.1016/j.ygyno.2017.08.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/03/2017] [Accepted: 08/26/2017] [Indexed: 12/20/2022]
Abstract
MicroRNA molecules are small, single-stranded RNA molecules that function to regulate networks of genes. They play important roles in normal female reproductive tract biology, as well as in the pathogenesis and progression of epithelial ovarian cancer. DROSHA, DICER, and Argonaute proteins are components of the microRNA-regulatory machinery and mediate microRNA production and function. This review discusses aberrant expression of microRNA molecules and microRNA-regulating machinery associated with clinical features of epithelial ovarian cancer. Understanding the regulation of microRNA molecule production and function may facilitate the development of novel diagnostic and therapeutic strategies to improve the prognosis of women with epithelial ovarian cancer. Additionally, understanding microRNA molecules and microRNA-regulatory machinery associations with clinical features may influence prevention and early detection efforts.
Collapse
Affiliation(s)
- Xiyin Wang
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Mircea Ivan
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States; Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Shannon M Hawkins
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN, United States; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States.
| |
Collapse
|
19
|
Kumar B, Lupold SE. MicroRNA expression and function in prostate cancer: a review of current knowledge and opportunities for discovery. Asian J Androl 2017; 18:559-67. [PMID: 27056344 PMCID: PMC4955179 DOI: 10.4103/1008-682x.177839] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are well-conserved noncoding RNAs that broadly regulate gene expression through posttranscriptional silencing of coding genes. Dysregulated miRNA expression in prostate and other cancers implicates their role in cancer biology. Moreover, functional studies provide support for the contribution of miRNAs to several key pathways in cancer initiation and progression. Comparative analyses of miRNA gene expression between malignant and nonmalignant prostate tissues, healthy controls and prostate cancer (PCa) patients, as well as less aggressive versus more aggressive disease indicate that miRNAs may be future diagnostic or prognostic biomarkers in tumor tissue, blood, or urine. Further, miRNAs may be future therapeutics or therapeutic targets. In this review, we examine the miRNAs most commonly observed to be de-regulated in PCa gene expression analyses and review the potential contribution of these miRNAs to important pathways in PCa initiation and progression.
Collapse
Affiliation(s)
- Binod Kumar
- The James Buchanan Brady Urological Institute, Department of Urology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Shawn E Lupold
- The James Buchanan Brady Urological Institute, Department of Urology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
20
|
Dambal S, Giangreco AA, Acosta AM, Fairchild A, Richards Z, Deaton R, Wagner D, Vieth R, Gann PH, Kajdacsy-Balla A, Van der Kwast T, Nonn L. microRNAs and DICER1 are regulated by 1,25-dihydroxyvitamin D in prostate stroma. J Steroid Biochem Mol Biol 2017; 167:192-202. [PMID: 28089917 PMCID: PMC5304339 DOI: 10.1016/j.jsbmb.2017.01.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 01/06/2017] [Accepted: 01/09/2017] [Indexed: 12/31/2022]
Abstract
Vitamin D deficiency increases the risk of lethal prostate adenocarcinomas (PCa) and the majority of older men are deficient. Although PCa arises from the epithelium, the surrounding stroma has hormonal regulatory control over the epithelium and contributes to carcinogenesis. Herein, we describe regulation of microRNAs (miRs) by the active hormone dihydroxyvitamin D (1,25(OH)2D) in human prostate stroma. 1,25(OH)2D binds the vitamin D receptor (VDR) transcription factor to regulate gene expression, including miRs, which have emerged as potent regulators of protein expression. 1,25(OH)2D-regulated miRs were identified by profiling in primary human prostatic stromal cells (PrS) and three miRs, miR-126-3p, miR 154-5p and miR-21-5p were subsequently validated in laser-capture micro-dissected prostate stromal tissue from a vitamin D3 clinical trial (N=45). Regulation of these miRs by 1,25(OH)2D was VDR-dependent. Network analysis of known and putative mRNA targets of these miRs was enriched with cancer and inflammation pathways, consistent with known roles of stroma and of vitamin D in carcinogenesis. Expression of the miR processing ribonuclease, DICER1, positively correlated with vitamin D metabolite levels in the clinical trial specimens. High epithelial/stromal ratios of DICER1 were significantly associated biochemical recurrence (OR 3.1, p=0.03) in a tissue microarray of 170 matched PCa patients. In summary, these results underscore the role of the prostate stroma in regulating responses to the hormone 1,25(OH)2D and identified miRs and DICER1 as being regulated in human prostate stroma. Regulation of stromal DICER1 by 1,25(OH)2D may also have clinical relevance in protection against aggressive PCa.
Collapse
Affiliation(s)
- Shweta Dambal
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, United States
| | - Angeline A Giangreco
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, United States
| | - Andres M Acosta
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, United States
| | - Andrew Fairchild
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, United States
| | - Zachary Richards
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, United States
| | - Ryan Deaton
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, United States
| | - Dennis Wagner
- Department of Nutritional Sciences, Laboratory Medicine and Pathobiology, University of Toronto, ON, Canada
| | - Reinhold Vieth
- Department of Nutritional Sciences, Laboratory Medicine and Pathobiology, University of Toronto, ON, Canada
| | - Peter H Gann
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, United States; University of Illinois Cancer Center, Chicago, IL, United States
| | - Andre Kajdacsy-Balla
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, United States; University of Illinois Cancer Center, Chicago, IL, United States
| | | | - Larisa Nonn
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, United States; University of Illinois Cancer Center, Chicago, IL, United States.
| |
Collapse
|
21
|
Nikolić Z, Savić Pavićević D, Vučić N, Cerović S, Vukotić V, Brajušković G. Genetic variants in RNA-induced silencing complex genes and prostate cancer. World J Urol 2016; 35:613-624. [PMID: 27498138 DOI: 10.1007/s00345-016-1917-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 07/30/2016] [Indexed: 01/22/2023] Open
Abstract
PURPOSE The purpose of this study is to evaluate the potential association between genetic variants in genes encoding the components of RNA-induced silencing complex and prostate cancer (PCa) risk. Genetic variants chosen for this study are rs3742330 in DICER1, rs4961280 in AGO2, rs784567 in TARBP2, rs7813 in GEMIN4 and rs197414 in GEMIN3. METHODS The study involved 355 PCa patients, 360 patients with benign prostatic hyperplasia and 318 healthy controls. For individuals diagnosed with PCa, clinicopathological characteristics including serum prostate-specific antigen level at diagnosis, Gleason score (GS) and clinical stage were determined. Genotyping was performed using high-resolution melting analysis, PCR-RFLP, TaqMan SNP Genotyping Assay and real-time PCR-based genotyping assay using specific probes. Allelic and genotypic associations were evaluated by unconditional linear and logistic regression methods. RESULTS The study provided no evidence of association between the analyzed genetic variants and PCa risk. Nevertheless, allele A of rs784567 was found to confer the reduced risk of higher serum PSA level at diagnosis (P = 0.046; Difference = -66.64, 95 % CI -131.93 to 1.35, for log-additive model). Furthermore, rs4961280, as well as rs3742330, were shown to be associated with GS. These variants, together with rs7813, were found to be associated with the lower clinical stage of PCa. Also, rs3742330 minor allele G was found to be associated with lower PCa aggressiveness (P = 0.036; OR 0.14, 95 % CI 0.023-1.22, for recessive model). CONCLUSIONS According to our data, rs3742330, rs4961280 and rs7813 qualify for potentially protective genetic variants against PCa progression. These variants were not shown to be associated with PCa risk.
Collapse
Affiliation(s)
- Z Nikolić
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | | | - N Vučić
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - S Cerović
- Institute of Pathology, Military Medical Academy, Belgrade, Serbia
| | - V Vukotić
- Department of Urology, Clinical Centre "dr Dragiša Mišović", Belgrade, Serbia
| | - G Brajušković
- Faculty of Biology, University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
22
|
Depletion of Dicer promotes epithelial ovarian cancer progression by elevating PDIA3 expression. Tumour Biol 2016; 37:14009-14023. [PMID: 27492604 DOI: 10.1007/s13277-016-5218-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 07/14/2016] [Indexed: 10/21/2022] Open
Abstract
Dicer is an essential component of the microRNA (miRNA) processing machinery whose low expression is associated with advanced stage and poor clinical outcome in epithelial ovarian cancer. To investigate the functional relevance of Dicer in epithelial ovarian cancer and to identify its downstream effectors, two-dimensional gel electrophoresis combined with mass spectrometry was used for proteomic profiling. Dicer depletion promoted ovarian cancer cell proliferation and migration accompanied by a global upregulation of proteins. Twenty-six proteins, 7 upregulated and 19 downregulated, were identified. The functions of the identified proteins and their interactions were bioinformatically analyzed. Among them, protein disulfide-isomerase A3 (PDIA3) was considered to be a potential target protein of Dicer. PDIA3 repression by siRNA could significantly relieve the proliferation- and migration-promoting effect mediated by Dicer depletion in vitro and in vivo. Moreover, the miRNAs targeting PDIA3 were decreased in cells with Dicer depletion. In summary, low Dicer expression contributes to epithelial ovarian cancer progression by elevating PDIA3 expression.
Collapse
|
23
|
Gao YE, Wang Y, Chen FQ, Feng JY, Yang G, Feng GX, Yang Z, Ye LH, Zhang XD. Post-transcriptional modulation of protein phosphatase PPP2CA and tumor suppressor PTEN by endogenous siRNA cleaved from hairpin within PTEN mRNA 3'UTR in human liver cells. Acta Pharmacol Sin 2016; 37:898-907. [PMID: 27133296 PMCID: PMC4933753 DOI: 10.1038/aps.2016.18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 03/03/2016] [Indexed: 01/08/2023]
Abstract
Aim: Increasing evidence shows that mRNAs exert regulatory function along with coding proteins. Recently we report that a hairpin within YAP mRNA 3′UTR can modulate the Hippo signaling pathway. PTEN is a tumor suppressor, and is mutated in human cancers. In this study we examined whether PTEN mRNA 3′UTR contained a hairpin structure that could regulate gene regulation at the post-transcriptional level. Methods: The secondary structure of PTEN mRNA 3′UTR was analyzed using RNAdraw and RNAstructure. Function of hairpin structure derived from the PTEN mRNA 3′UTR was examined using luciferase reporter assay, RT-PCR and Western blotting. RNA-immunoprecipitation (RIP) assay was used to analyze the interaction between PTEN mRNA and microprocessor Drosha and DGCR8. Endogenous siRNA (esiRNA) derived from PTEN mRNA 3′UTR was identified by RT-PCR and rt-PCR, and its target genes were predicted using RNAhybrid. Results: A bioinformatics analysis revealed that PTEN mRNA contained a hairpin structure (termed PTEN-sh) within 3′UTR, which markedly increased the reporter activities of AP-1 and NF-κB in 293T cells. Moreover, treatment with PTEN-sh (1 and 2 μg) dose-dependently inhibited the expression of PTEN in human liver L-O2 cells. RIP assay demonstrated that the microprocessor Drosha and DGCR8 was bound to PTEN-sh in L-O2 cells, leading to the cleavage of PTEN-sh from PTEN mRNA 3′UTR. In addition, microprocessor Dicer was involved in the processing of PTEN-sh. Interestingly, esiRNA (termed PTEN-sh-3p21) cleaved from PTEN-sh was identified in 293T cells and human liver tissues, which was found to target the mRNA 3′UTRs of protein phosphatase PPP2CA and PTEN in L-O2 cells. Treatment of L-O2 or Chang liver cells with PTEN-sh-3p21 (50, 100 nmol/L) promoted the cell proliferation in dose- and time-dependent manners. Conclusion: The endogenous siRNA (PTEN-sh-3p21) cleaved from PTEN-sh within PTEN mRNA 3′UTR modulates PPP2CA and PTEN at the post-transcriptional level in liver cells.
Collapse
|
24
|
Abstract
Dicer1 is an RNase III enzyme necessary for microRNA (miRNA) biogenesis, as it cleaves pre-miRNAs into mature miRNAs. miRNAs are important regulators of gene expression. In recent years, several miRNA-independent roles of Dicer1 have been identified. They include the production of endogenous small interfering RNAs, detoxifying retrotransposon-derived transcripts, and binding to new targets; messenger RNAs and long noncoding RNAs. Further, in this review, the functional significance of Dicer1 in the male reproductive tract is discussed. Conditional Dicer1 knock-out mouse models have demonstrated a requisite role for Dicer in male fertility. Deletion of Dicer1 from somatic or germ cells in the testis cause spermatogenic problems rendering male mice infertile. The lack of Dicer1 in the proximal epididymis causes dedifferentiation of the epithelium, with unbalanced sex steroid receptor expression, defects in epithelial lipid homeostasis, and subsequent male infertility. In addition, Dicer1 ablation from the prostate leads to increased apoptosis of the differentiated luminal cells, followed by epithelial hypotrophy of the ventral prostate. However, further studies are needed to clarify which functions of Dicer1 are responsible for the observed phenotypes in the male reproductive tract.
Collapse
Affiliation(s)
| | - Petra Sipilä
- Department of Physiology, Institute of Biomedicine; Laboratory Animal Centre, University of Helsinki, Helsinki, Finland
| |
Collapse
|
25
|
Abstract
The competitive endogenous RNA (ceRNA) hypothesis proposes that transcripts with shared microRNA (miRNA) binding sites compete for post-transcriptional control. This hypothesis has gained substantial attention as a unifying function for long non-coding RNAs, pseudogene transcripts and circular RNAs, as well as an alternative function for messenger RNAs. Empirical evidence supporting the hypothesis is accumulating but not without attracting scepticism. Recent studies that model transcriptome-wide binding-site abundance suggest that physiological changes in expression of most individual transcripts will not compromise miRNA activity. In this Review, we critically evaluate the evidence for and against the ceRNA hypothesis to assess the impact of endogenous miRNA-sponge interactions.
Collapse
Affiliation(s)
- Daniel W Thomson
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst NSW 2010, Australia.,St Vincent's Clinical School, UNSW Australia, Kensington NSW 2052, Australia
| | - Marcel E Dinger
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst NSW 2010, Australia.,St Vincent's Clinical School, UNSW Australia, Kensington NSW 2052, Australia
| |
Collapse
|
26
|
MicroRNA Biogenesis and Hedgehog-Patched Signaling Cooperate to Regulate an Important Developmental Transition in Granule Cell Development. Genetics 2016; 202:1105-18. [PMID: 26773048 DOI: 10.1534/genetics.115.184176] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/10/2016] [Indexed: 12/20/2022] Open
Abstract
The Dicer1, Dcr-1 homolog (Drosophila) gene encodes a type III ribonuclease required for the canonical maturation and functioning of microRNAs (miRNAs). Subsets of miRNAs are known to regulate normal cerebellar granule cell development, in addition to the growth and progression of medulloblastoma, a neoplasm that often originates from granule cell precursors. Multiple independent studies have also demonstrated that deregulation of Sonic Hedgehog (Shh)-Patched (Ptch) signaling, through miRNAs, is causative of granule cell pathologies. In the present study, we investigated the genetic interplay between miRNA biogenesis and Shh-Ptch signaling in granule cells of the cerebellum by way of the Cre/lox recombination system in genetically engineered models of Mus musculus (mouse). We demonstrate that, although the miRNA biogenesis and Shh-Ptch-signaling pathways, respectively, regulate the opposing growth processes of cerebellar hypoplasia and hyperplasia leading to medulloblastoma, their concurrent deregulation was nonadditive and did not bring the growth phenotypes toward an expected equilibrium. Instead, mice developed either hypoplasia or medulloblastoma, but of a greater severity. Furthermore, some genotypes were bistable, whereby subsets of mice developed hypoplasia or medulloblastoma. This implies that miRNAs and Shh-Ptch signaling regulate an important developmental transition in granule cells of the cerebellum. We also conclusively show that the Dicer1 gene encodes a haploinsufficient tumor suppressor gene for Ptch1-induced medulloblastoma, with the monoallielic loss of Dicer1 more severe than biallelic loss. These findings exemplify how genetic interplay between pathways may produce nonadditive effects with a substantial and unpredictable impact on biology. Furthermore, these findings suggest that the functional dosage of Dicer1 may nonadditively influence a wide range of Shh-Ptch-dependent pathologies.
Collapse
|
27
|
Swahari V, Nakamura A, Baran-Gale J, Garcia I, Crowther AJ, Sons R, Gershon TR, Hammond S, Sethupathy P, Deshmukh M. Essential Function of Dicer in Resolving DNA Damage in the Rapidly Dividing Cells of the Developing and Malignant Cerebellum. Cell Rep 2015; 14:216-24. [PMID: 26748703 DOI: 10.1016/j.celrep.2015.12.037] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 10/23/2015] [Accepted: 12/06/2015] [Indexed: 01/09/2023] Open
Abstract
Maintenance of genomic integrity is critical during neurodevelopment, particularly in rapidly dividing cerebellar granule neuronal precursors that experience constitutive replication-associated DNA damage. As Dicer was recently recognized to have an unexpected function in the DNA damage response, we examined whether Dicer was important for preserving genomic integrity in the developing brain. We report that deletion of Dicer in the developing mouse cerebellum resulted in the accumulation of DNA damage leading to cerebellar progenitor degeneration, which was rescued with p53 deficiency; deletion of DGCR8 also resulted in similar DNA damage and cerebellar degeneration. Dicer deficiency also resulted in DNA damage and death in other rapidly dividing cells including embryonic stem cells and the malignant cerebellar progenitors in a mouse model of medulloblastoma. Together, these results identify an essential function of Dicer in resolving the spontaneous DNA damage that occurs during the rapid proliferation of developmental progenitors and malignant cells.
Collapse
Affiliation(s)
- Vijay Swahari
- Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - Ayumi Nakamura
- Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA; Neurobiology Curriculum, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jeanette Baran-Gale
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Idoia Garcia
- Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Neurology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Andrew J Crowther
- Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Neurology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Robert Sons
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Timothy R Gershon
- Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA; Neurobiology Curriculum, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Neurology, University of North Carolina, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Scott Hammond
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Praveen Sethupathy
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Mohanish Deshmukh
- Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA; Neurobiology Curriculum, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
28
|
Zhang PY, Li G, Deng ZJ, Liu LY, Chen L, Tang JZ, Wang YQ, Cao ST, Fang YX, Wen F, Xu Y, Chen X, Shi KQ, Li WF, Xie C, Tang KF. Dicer interacts with SIRT7 and regulates H3K18 deacetylation in response to DNA damaging agents. Nucleic Acids Res 2015; 44:3629-42. [PMID: 26704979 PMCID: PMC4856966 DOI: 10.1093/nar/gkv1504] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 12/10/2015] [Indexed: 01/14/2023] Open
Abstract
Dicer participates in heterochromatin formation in fission yeast and plants. However, whether it has a similar role in mammals remains controversial. Here we showed that the human Dicer protein interacts with SIRT7, an NAD+-dependent H3K18Ac (acetylated lysine 18 of histone H3) deacetylase, and holds a proportion of SIRT7 in the cytoplasm. Dicer knockdown led to an increase of chromatin-associated SIRT7 and simultaneously a decrease of cytoplasmic SIRT7, while its overexpression induced SIRT7 reduction in the chromatin-associated fraction and increment in the cytoplasm. Furthermore, DNA damaging agents promoted Dicer expression, leading to decreased level of chromatin-associated SIRT7 and increased level of H3K18Ac, which can be alleviated by Dicer knockdown. Taken together with that H3K18Ac was exclusively associated with the chromatin, our findings suggest that Dicer induction by DNA damaging treatments prevents H3K18Ac deacetylation, probably by trapping more SIRT7 in the cytoplasm.
Collapse
Affiliation(s)
- Pei-Ying Zhang
- Institute of Translational Medicine, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang, P.R. China Cancer Center, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang, P.R. China
| | - Guiling Li
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325015, Zhejiang, P.R. China
| | - Zhu-Jun Deng
- Institute of Translational Medicine, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang, P.R. China Cancer Center, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang, P.R. China
| | - Li-Yuan Liu
- Department of Infection and Liver Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang, P.R. China
| | - Li Chen
- Institute of Translational Medicine, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang, P.R. China Cancer Center, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang, P.R. China
| | - Jun-Zhou Tang
- Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, P.R. China
| | - Yu-Qun Wang
- Department of Infection and Liver Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang, P.R. China
| | - Su-Ting Cao
- Department of Infection and Liver Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang, P.R. China
| | - Yu-Xiao Fang
- Institute of Translational Medicine, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang, P.R. China Cancer Center, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang, P.R. China
| | - Fuping Wen
- Institute of Translational Medicine, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang, P.R. China
| | - Yunsheng Xu
- Institute of Translational Medicine, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang, P.R. China Department of Dermato-Venereology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang, P.R. China
| | - Xiaoming Chen
- Institute of Translational Medicine, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang, P.R. China Department of Pediatric Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang, P.R. China
| | - Ke-Qing Shi
- Department of Infection and Liver Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang, P.R. China
| | - Wen-Feng Li
- Department of Radiation Oncology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang, P.R. China
| | - Congying Xie
- Department of Radiation Oncology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang, P.R. China
| | - Kai-Fu Tang
- Institute of Translational Medicine, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang, P.R. China Cancer Center, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang, P.R. China Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325015, Zhejiang, P.R. China
| |
Collapse
|
29
|
Belair CD, Paikari A, Moltzahn F, Shenoy A, Yau C, Dall'Era M, Simko J, Benz C, Blelloch R. DGCR8 is essential for tumor progression following PTEN loss in the prostate. EMBO Rep 2015. [PMID: 26206718 DOI: 10.15252/embr.201439925] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In human prostate cancer, the microRNA biogenesis machinery increases with prostate cancer progression. Here, we show that deletion of the Dgcr8 gene, a critical component of this complex, inhibits tumor progression in a Pten-knockout mouse model of prostate cancer. Early stages of tumor development were unaffected, but progression to advanced prostatic intraepithelial neoplasia was severely inhibited. Dgcr8 loss blocked Pten null-induced expansion of the basal-like, but not luminal, cellular compartment. Furthermore, while late-stage Pten knockout tumors exhibit decreased senescence-associated beta-galactosidase activity and increased proliferation, the simultaneous deletion of Dgcr8 blocked these changes resulting in levels similar to wild type. Sequencing of small RNAs in isolated epithelial cells uncovered numerous miRNA changes associated with PTEN loss. Consistent with a Pten-Dgcr8 association, analysis of a large cohort of human prostate tumors shows a strong correlation between Akt activation and increased Dgcr8 mRNA levels. Together, these findings uncover a critical role for microRNAs in enhancing proliferation and enabling the expansion of the basal cell compartment associated with tumor progression following Pten loss.
Collapse
Affiliation(s)
- Cassandra D Belair
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California - San Francisco, San Francisco, CA, USA Center for Reproductive Sciences, University of California - San Francisco, San Francisco, CA, USA Department of Urology, University of California - San Francisco, San Francisco, CA, USA
| | - Alireza Paikari
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California - San Francisco, San Francisco, CA, USA Center for Reproductive Sciences, University of California - San Francisco, San Francisco, CA, USA
| | - Felix Moltzahn
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California - San Francisco, San Francisco, CA, USA Department of Urology, University of California - San Francisco, San Francisco, CA, USA
| | - Archana Shenoy
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California - San Francisco, San Francisco, CA, USA Department of Urology, University of California - San Francisco, San Francisco, CA, USA
| | - Christina Yau
- Department of Medicine, University of California - San Francisco, San Francisco, CA, USA Buck Institute for Research on Aging, Novato, CA, USA
| | - Marc Dall'Era
- Department of Urology, University of California - San Francisco, San Francisco, CA, USA
| | - Jeff Simko
- Department of Urology, University of California - San Francisco, San Francisco, CA, USA Department of Anatomic Pathology, University of California - San Francisco, San Francisco, CA, USA
| | - Christopher Benz
- Department of Medicine, University of California - San Francisco, San Francisco, CA, USA Buck Institute for Research on Aging, Novato, CA, USA
| | - Robert Blelloch
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California - San Francisco, San Francisco, CA, USA Center for Reproductive Sciences, University of California - San Francisco, San Francisco, CA, USA Department of Urology, University of California - San Francisco, San Francisco, CA, USA Department of Anatomic Pathology, University of California - San Francisco, San Francisco, CA, USA
| |
Collapse
|
30
|
Lombard AP, Lim RM, Nakagawa RM, Vidallo KD, Libertini SJ, Platero AJ, Mudryj M. Dicer ablation promotes a mesenchymal and invasive phenotype in bladder cancer cells. Oncol Rep 2015; 34:1526-32. [PMID: 26166215 DOI: 10.3892/or.2015.4117] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 03/16/2015] [Indexed: 11/06/2022] Open
Abstract
Dicer expression is frequently altered in cancer and affects a wide array of cellular functions acting as an oncogene or tumor suppressor in varying contexts. It has been shown that Dicer expression is also deregulated in urothelial cell carcinoma of the bladder (UCCB) but the nature of this deregulation differs between reports. The aim of the present study was to gain a better understanding of the role of Dicer in bladder cancer to help determine its contribution to the disease. The results showed that Dicer transcript levels were decreased in UCCB tumor tissues as compared to normal tissues, suggesting that Dicer is a tumor suppressor. However, consistent with previous results, we demonstrated that knockdown of Dicer decreases cell viability and increases the induction of apoptosis, suggesting that Dicer is an oncogene. To resolve this discrepancy, we assessed the effects of decreased Dicer expression on epithelial-to‑mesenchymal transition, migration and invasion. We showed that decreased Dicer levels promoted a mesenchymal phenotype and increased migration. Additionally, the results showed that Dicer protein ablation leads to increased cell invasion, higher levels of matrix metalloproteinase-2, and decreased levels of key miRNAs shown to inhibit invasion. The results of this study suggest that decreased Dicer levels may portend a more malignant phenotype.
Collapse
Affiliation(s)
- Alan P Lombard
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA
| | - Rebecca M Lim
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA
| | - Rachel M Nakagawa
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA
| | - Kathleen D Vidallo
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA
| | - Stephen J Libertini
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA
| | - Alexander J Platero
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA
| | - Maria Mudryj
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA
| |
Collapse
|
31
|
Expression of dicer and its related miRNAs in the progression of prostate cancer. PLoS One 2015; 10:e0120159. [PMID: 25768283 PMCID: PMC4358996 DOI: 10.1371/journal.pone.0120159] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 02/03/2015] [Indexed: 11/19/2022] Open
Abstract
Dicer is aberrantly expressed in several types of malignancies. Cleaved by Dicer, the small noncoding microRNAs (miRNAs) are considered potential tools for the diagnosis and prognosis of cancer. This study investigated the expression of miRNAs thought to target Dicer. Expression of 1,205 human miRNAs and miRNA*s were examined in four patients with prostate cancer (PCa) by miRNA array in which the threshold was set as two-fold. Seventy-three miRNAs and miRNA*s were significantly down-regulated while 10 were up-regulated in PCa tissues compared with matched histologically normal glands. Of these, miR-29b-1, miR-200a, miR-370, and miR-31, which were the most down/up-regulated and closely potentially target to the Dicer 3' UTR, were investigated further. Tissues of primary tumors and matched normal prostate glands from 185 patients with PCa were collected for further investigation. Dicer mRNA levels were negatively correlated with miR-29b-1 (ρs = -0.177, p = 0.017), miR-200a (ρs = -0.489, p < 0.0001) and miR-31 (ρs = -0.314, p < 0.0001) expression. Compared with adjacent normal glands, PCa tissues showed significantly lower miR-200a and miR-31 expression levels. Furthermore, in metastatic PCa, the expression levels of miR-200a, miR-370, and miR-31 were dramatically higher than in localized PCa. Additionally, elevated expression levels of miR-200a and miR-31 appeared to be associated with castration-resistant PCa. These findings suggest possibilities that miR-200a and miR-31 target Dicer and are involved in the carcinogenesis, migration, and behavior of castration-resistant PCa, indicating that they could be potential biomarkers for monitoring PCa progression.
Collapse
|
32
|
Jiang Z, Kong C, Zhang Z, Zhu Y, Zhang Y, Chen X. Reduction of protein kinase C α (PKC-α) promote apoptosis via down-regulation of Dicer in bladder cancer. J Cell Mol Med 2015; 19:1085-93. [PMID: 25752336 PMCID: PMC4420610 DOI: 10.1111/jcmm.12503] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 10/28/2014] [Indexed: 02/05/2023] Open
Abstract
In clinic, we examined the expression of protein kinase C (PKC)-α and Dicer in the samples of bladder cancer patients, and found that the two proteins have a line correlation. Our study confirmed this correlation existing by clearing the decreasing expression of Dicer after the PKC-α knockdown. Treatment of bladder cancer cell lines (T24, 5637) with the PKC-α or Dicer knockdown and the PKC inhibitors (Calphostin C and Gö 6976) can promote the apoptosis. Inhibition of PKC can increase the activities of caspase-3 and PARP, however, decrease the expression of Dicer. And knockdown of the PKC-α or Dicer can also activate the caspase-3 or the PARP. Considering the reduction of PKC-α can induce the Dicer down-regulation, we make the conclusion that the reduction of PKC-α can promote the apoptosis via the down-regulation of Dicer in bladder cancer.
Collapse
Affiliation(s)
- Zhenming Jiang
- Department of Urology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | | | | | | | | | | |
Collapse
|
33
|
Baril P, Ezzine S, Pichon C. Monitoring the spatiotemporal activities of miRNAs in small animal models using molecular imaging modalities. Int J Mol Sci 2015; 16:4947-72. [PMID: 25749473 PMCID: PMC4394458 DOI: 10.3390/ijms16034947] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 02/17/2015] [Accepted: 02/17/2015] [Indexed: 12/20/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs that regulate gene expression by binding mRNA targets via sequence complementary inducing translational repression and/or mRNA degradation. A current challenge in the field of miRNA biology is to understand the functionality of miRNAs under physiopathological conditions. Recent evidence indicates that miRNA expression is more complex than simple regulation at the transcriptional level. MiRNAs undergo complex post-transcriptional regulations such miRNA processing, editing, accumulation and re-cycling within P-bodies. They are dynamically regulated and have a well-orchestrated spatiotemporal localization pattern. Real-time and spatio-temporal analyses of miRNA expression are difficult to evaluate and often underestimated. Therefore, important information connecting miRNA expression and function can be lost. Conventional miRNA profiling methods such as Northern blot, real-time PCR, microarray, in situ hybridization and deep sequencing continue to contribute to our knowledge of miRNA biology. However, these methods can seldom shed light on the spatiotemporal organization and function of miRNAs in real-time. Non-invasive molecular imaging methods have the potential to address these issues and are thus attracting increasing attention. This paper reviews the state-of-the-art of methods used to detect miRNAs and discusses their contribution in the emerging field of miRNA biology and therapy.
Collapse
Affiliation(s)
- Patrick Baril
- Centre de Biophysique Moléculaire, CNRS UPR4301, Université d'Orléans, 45071 Orléans, France.
| | - Safia Ezzine
- Centre de Biophysique Moléculaire, CNRS UPR4301, Université d'Orléans, 45071 Orléans, France.
| | - Chantal Pichon
- Centre de Biophysique Moléculaire, CNRS UPR4301, Université d'Orléans, 45071 Orléans, France.
| |
Collapse
|
34
|
Zhang Z, Zhang G, Kong C, Bi J, Gong D, Yu X, Shi D, Zhan B, Ye P. EIF2C, Dicer, and Drosha are up-regulated along tumor progression and associated with poor prognosis in bladder carcinoma. Tumour Biol 2015; 36:5071-9. [PMID: 25656609 DOI: 10.1007/s13277-015-3158-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 01/26/2015] [Indexed: 12/13/2022] Open
Abstract
EIF2C, Dicer, and Drosha are microRNA-regulating machinery components, which participate in microRNA intracellular process and transfer. Our research demonstrated the expression and clinical role of the microRNA-regulating machinery in bladder cancer. EIF2C1, EIF2C2, Dicer, and Drosha mRNA and protein levels were analyzed in 100 bladder carcinomas and 50 normal bladder tissues using quantitative polymerase chain reaction and Western blotting. EIF2C2, Dicer, and Drosha mRNAs and proteins were overexpressed in carcinoma compared with normal tissues, whereas EIF2C1 mRNA and protein were not obviously different. Moreover, immunohistochemistry was used to detect the expressions of EIF2C2, Dicer, and Drosha in 100 bladder carcinomas. There were higher EIF2C2, Dicer, and Drosha expressions in carcinomas than in the adjacent normal tissues, positive correlations being noted with clinical stage, histopathologic grade, and recurrence. Higher EIF2C2, Dicer, and Drosha expressions were related to shorter cancer-specific survival and shorter recurrence-free survival. Multivariate Cox analysis showed that EIF2C2 was an important risk factor in bladder cancer. In conclusion, EIF2C2, Dicer, and Drosha are more highly expressed in bladder carcinoma, promote the development of bladder cancer, and suggested a poor prognosis. Their clinical role in bladder carcinoma merits further research.
Collapse
Affiliation(s)
- Zhe Zhang
- Department of Urology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang City, Liaoning Province, 110001, People's Republic of China,
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Wang YJ, McAllister F, Bailey JM, Scott SG, Hendley AM, Leach SD, Ghosh B. Dicer is required for maintenance of adult pancreatic acinar cell identity and plays a role in Kras-driven pancreatic neoplasia. PLoS One 2014; 9:e113127. [PMID: 25405615 PMCID: PMC4236134 DOI: 10.1371/journal.pone.0113127] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 10/20/2014] [Indexed: 11/18/2022] Open
Abstract
The role of miRNA processing in the maintenance of adult pancreatic acinar cell identity and during the initiation and progression of pancreatic neoplasia has not been studied in detail. In this work, we deleted Dicer specifically in adult pancreatic acinar cells, with or without simultaneous activation of oncogenic Kras. We found that Dicer is essential for the maintenance of acinar cell identity. Acinar cells lacking Dicer showed increased plasticity, as evidenced by loss of polarity, initiation of epithelial-to-mesenchymal transition (EMT) and acinar-to-ductal metaplasia (ADM). In the context of oncogenic Kras activation, the initiation of ADM and pancreatic intraepithelial neoplasia (PanIN) were both highly sensitive to Dicer gene dosage. Homozygous Dicer deletion accelerated the formation of ADM but not PanIN. In contrast, heterozygous Dicer deletion accelerated PanIN initiation, revealing complex roles for Dicer in the regulation of both normal and neoplastic pancreatic epithelial identity.
Collapse
Affiliation(s)
- Yue J. Wang
- The McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Florencia McAllister
- The Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Jennifer M. Bailey
- The McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- The Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Sherri-Gae Scott
- The Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Audrey M. Hendley
- The McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Steven D. Leach
- The McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- The Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| | - Bidyut Ghosh
- The Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
36
|
Abstract
Dicer is central to microRNA-mediated silencing and several other RNA interference phenomena that are profoundly embedded in cancer gene networks. Most recently, both germline and somatic mutations in DICER1 have been identified in diverse types of cancer. Although some of the mutations clearly reduce the dosage of this key enzyme, others dictate surprisingly specific changes in select classes of small RNAs. This Review reflects on the molecular properties of the Dicer enzymes in small RNA silencing pathways, and rationalizes the newly discovered mutations on the basis of the activities and functions of its determinants.
Collapse
Affiliation(s)
- William D Foulkes
- 1] Departments of Human Genetics, Medicine and Oncology, McGill University; Lady Davis Institute, Jewish General Hospital and Research Institute, McGill University Health Centre, Montreal, Quebec, Canada. [2]
| | | | - Thomas F Duchaine
- 1] Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada, H3A 1A3. [2]
| |
Collapse
|
37
|
Bian XJ, Zhang GM, Gu CY, Cai Y, Wang CF, Shen YJ, Zhu Y, Zhang HL, Dai B, Ye DW. Down-regulation of Dicer and Ago2 is associated with cell proliferation and apoptosis in prostate cancer. Tumour Biol 2014; 35:11571-8. [DOI: 10.1007/s13277-014-2462-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Accepted: 08/06/2014] [Indexed: 12/20/2022] Open
|
38
|
Tsouko E, Khan AS, White MA, Han JJ, Shi Y, Merchant FA, Sharpe MA, Xin L, Frigo DE. Regulation of the pentose phosphate pathway by an androgen receptor-mTOR-mediated mechanism and its role in prostate cancer cell growth. Oncogenesis 2014; 3:e103. [PMID: 24861463 PMCID: PMC4035695 DOI: 10.1038/oncsis.2014.18] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 04/23/2014] [Indexed: 12/11/2022] Open
Abstract
Cancer cells display an increased demand for glucose. Therefore, identifying the specific aspects of glucose metabolism that are involved in the pathogenesis of cancer may uncover novel therapeutic nodes. Recently, there has been a renewed interest in the role of the pentose phosphate pathway in cancer. This metabolic pathway is advantageous for rapidly growing cells because it provides nucleotide precursors and helps regenerate the reducing agent NADPH, which can contribute to reactive oxygen species (ROS) scavenging. Correspondingly, clinical data suggest glucose-6-phosphate dehydrogenase (G6PD), the rate-limiting enzyme of the pentose phosphate pathway, is upregulated in prostate cancer. We hypothesized that androgen receptor (AR) signaling, which plays an essential role in the disease, mediated prostate cancer cell growth in part by increasing flux through the pentose phosphate pathway. Here, we determined that G6PD, NADPH and ribose synthesis were all increased by AR signaling. Further, this process was necessary to modulate ROS levels. Pharmacological or molecular inhibition of G6PD abolished these effects and blocked androgen-mediated cell growth. Mechanistically, regulation of G6PD via AR in both hormone-sensitive and castration-resistant models of prostate cancer was abolished following rapamycin treatment, indicating that AR increased flux through the pentose phosphate pathway by the mammalian target of rapamycin (mTOR)-mediated upregulation of G6PD. Accordingly, in two separate mouse models of Pten deletion/elevated mTOR signaling, Pb-Cre;Pten(f/f) and K8-CreER(T2);Pten(f/f), G6PD levels correlated with prostate cancer progression in vivo. Importantly, G6PD levels remained high during progression to castration-resistant prostate cancer. Taken together, our data suggest that AR signaling can promote prostate cancer through the upregulation of G6PD and therefore, the flux of sugars through the pentose phosphate pathway. Hence, these findings support a vital role for other metabolic pathways (that is, not glycolysis) in prostate cancer cell growth and maintenance.
Collapse
Affiliation(s)
- E Tsouko
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - A S Khan
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - M A White
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - J J Han
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Y Shi
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - F A Merchant
- Department of Engineering Technology, University of Houston, Houston, TX, USA
| | - M A Sharpe
- Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, USA
| | - L Xin
- 1] Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA [2] Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA [3] Dan L. Duncan Cancer Center, Houston, TX, USA
| | - D E Frigo
- 1] Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, USA [2] Center for Genomic Medicine, Houston Methodist Research Institute, Houston, TX, USA
| |
Collapse
|
39
|
Huang JT, Wang J, Srivastava V, Sen S, Liu SM. MicroRNA Machinery Genes as Novel Biomarkers for Cancer. Front Oncol 2014; 4:113. [PMID: 24904827 PMCID: PMC4032885 DOI: 10.3389/fonc.2014.00113] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 05/01/2014] [Indexed: 12/25/2022] Open
Abstract
MicroRNAs (miRNAs) directly and indirectly affect tumorigenesis. To be able to perform their myriad roles, miRNA machinery genes, such as Drosha, DGCR8, Dicer1, XPO5, TRBP, and AGO2, must generate precise miRNAs. These genes have specific expression patterns, protein-binding partners, and biochemical capabilities in different cancers. Our preliminary analysis of data from The Cancer Genome Atlas consortium on multiple types of cancer revealed significant alterations in these miRNA machinery genes. Here, we review their biological structures and functions with an eye toward understanding how they could serve as cancer biomarkers.
Collapse
Affiliation(s)
- Jing-Tao Huang
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jin Wang
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vibhuti Srivastava
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Subrata Sen
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Song-Mei Liu
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
40
|
Geng L, Sun B, Gao B, Wang Z, Quan C, Wei F, Fang XD. MicroRNA-103 promotes colorectal cancer by targeting tumor suppressor DICER and PTEN. Int J Mol Sci 2014; 15:8458-72. [PMID: 24828205 PMCID: PMC4057742 DOI: 10.3390/ijms15058458] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 04/17/2014] [Accepted: 04/18/2014] [Indexed: 12/24/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of small, noncoding RNAs that act as key regulators in various physiological and pathological processes. However, the regulatory mechanisms for miRNAs in colorectal cancer remain largely unknown. Here, we found that miR-103 is up-regulated in colorectal cancer and its overexpression is closely associated with tumor proliferation and migration. In addition, repressing the expression of miR-103 apparently inhibits colorectal cancer cell proliferation and migration in vitro and HCT-116 xenograft tumor growth in vivo. Subsequent software analysis and dual-luciferase reporter assay identified two tumor suppressor genes DICER and PTEN as direct targets of miR-103, and up-regulation of DICER and PTEN obtained similar results to that occurred in the silencing of miR-103. In addition, restoration of DICER and PTEN can inhibit miR-103-induced colorectal cancer cell proliferation and migration. Our data collectively demonstrate that miR-103 is an oncogene miRNA that promotes colorectal cancer proliferation and migration through down-regulation of the tumor suppressor genes DICER and PTEN. Thus, miR-103 may represent a new potential diagnostic and therapeutic target for colorectal cancer treatment.
Collapse
Affiliation(s)
- Li Geng
- Department of General Surgery, the Second Hospital of Jilin University, Changchun 130041, Jilin, China.
| | - Bing Sun
- Department of Neurology, Changchun Central Hospital, Changchun 130041, Jilin, China.
| | - Bo Gao
- Department of General Surgery, the Second Hospital of Jilin University, Changchun 130041, Jilin, China.
| | - Zheng Wang
- Department of General Surgery, the Second Hospital of Jilin University, Changchun 130041, Jilin, China.
| | - Cheng Quan
- Department of General Surgery, the Second Hospital of Jilin University, Changchun 130041, Jilin, China.
| | - Feng Wei
- Department of Hepatobiliary and Pancreas Surgery, the First Hospital, Jilin University, Changchun 130021, Jilin, China.
| | - Xue-Dong Fang
- Department of General Surgery, the Second Hospital of Jilin University, Changchun 130041, Jilin, China.
| |
Collapse
|
41
|
D-glucuronyl C5-epimerase cell type specifically affects angiogenesis pathway in different prostate cancer cells. Tumour Biol 2013; 35:3237-45. [PMID: 24264315 DOI: 10.1007/s13277-013-1423-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Accepted: 11/12/2013] [Indexed: 01/08/2023] Open
Abstract
D-glucuronyl C5-epimerase (GLCE) is involved in breast and lung carcinogenesis as a potential tumor suppressor gene, acting through inhibition of tumor angiogenesis and invasion/metastasis pathways. However, in prostate tumors, increased GLCE expression is associated with advanced disease, suggesting versatile effects of GLCE in different cancers. To investigate further the potential cancer-promoting effect of GLCE in prostate cancer, GLCE was ectopically re-expressed in morphologically different LNCaP and PC3 prostate cancer cells. Transcriptional profiles of normal PNT2 prostate cells, LNCaP, PC3 and DU145 prostate cancer cells, and GLCE-expressing LNCaP and PC3 cells were determined. Comparative analysis revealed the genes whose expression was changed in prostate cancer cells compared with normal PNT2 cells, and those differently expressed between the cancer cell lines (ACTA2, IL6, SERPINE1, TAGLN, SEMA3A, and CDH2). GLCE re-expression influenced mainly angiogenesis-involved genes (ANGPT1, SERPINE1, IGF1, PDGFB, TNF, IL8, TEK, IFNA1, and IFNB1) but in a cell type-specific manner (from basic deregulation of angiogenesis in LNCaP cells to significant activation in PC3 cells). Invasion/metastasis pathway was also affected (MMP1, MMP2, MMP9, S100A4, ITGA1, ITGB3, ERBB2, and FAS). The obtained results suggest activation of angiogenesis as a main molecular mechanism of pro-oncogenic effect of GLCE in prostate cancer. GLCE up-regulation plus expression pattern of a panel of six genes, discriminating morphologically different prostate cancer cell sub-types, is suggested as a potential marker of aggressive prostate cancer.
Collapse
|
42
|
Tennakoon JB, Shi Y, Han JJ, Tsouko E, White MA, Burns AR, Zhang A, Xia X, Ilkayeva OR, Xin L, Ittmann MM, Rick FG, Schally AV, Frigo DE. Androgens regulate prostate cancer cell growth via an AMPK-PGC-1α-mediated metabolic switch. Oncogene 2013; 33:5251-61. [PMID: 24186207 PMCID: PMC4009392 DOI: 10.1038/onc.2013.463] [Citation(s) in RCA: 176] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 08/28/2013] [Accepted: 09/30/2013] [Indexed: 12/25/2022]
Abstract
Prostate cancer is the most commonly diagnosed malignancy among men in industrialized countries, accounting for the second leading cause of cancer-related deaths. Although we now know that the androgen receptor (AR) is important for progression to the deadly advanced stages of the disease, it is poorly understood what AR-regulated processes drive this pathology. Here we demonstrate that AR regulates prostate cancer cell growth via the metabolic sensor 5'-AMP-activated protein kinase (AMPK), a kinase that classically regulates cellular energy homeostasis. In patients, activation of AMPK correlated with prostate cancer progression. Using a combination of radiolabeled assays and emerging metabolomic approaches, we also show that prostate cancer cells respond to androgen treatment by increasing not only rates of glycolysis, as is commonly seen in many cancers, but also glucose and fatty acid oxidation. Importantly, this effect was dependent on androgen-mediated AMPK activity. Our results further indicate that the AMPK-mediated metabolic changes increased intracellular ATP levels and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α)-mediated mitochondrial biogenesis, affording distinct growth advantages to the prostate cancer cells. Correspondingly, we used outlier analysis to determine that PGC-1α is overexpressed in a subpopulation of clinical cancer samples. This was in contrast to what was observed in immortalized benign human prostate cells and a testosterone-induced rat model of benign prostatic hyperplasia. Taken together, our findings converge to demonstrate that androgens can co-opt the AMPK-PGC-1α signaling cascade, a known homeostatic mechanism, to increase prostate cancer cell growth. The current study points to the potential utility of developing metabolic-targeted therapies directed toward the AMPK-PGC-1α signaling axis for the treatment of prostate cancer.
Collapse
Affiliation(s)
- J B Tennakoon
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Y Shi
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - J J Han
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - E Tsouko
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - M A White
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - A R Burns
- College of Optometry, University of Houston, Houston, TX, USA
| | - A Zhang
- Center for Genomic Medicine, Houston Methodist Research Institute, Houston, TX, USA
| | - X Xia
- Center for Genomic Medicine, Houston Methodist Research Institute, Houston, TX, USA
| | - O R Ilkayeva
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | - L Xin
- 1] Departments of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA [2] Departments of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA [3] Dan L. Duncan Cancer Center, Houston, TX, USA
| | - M M Ittmann
- 1] Departments of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA [2] Dan L. Duncan Cancer Center, Houston, TX, USA [3] Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA
| | - F G Rick
- 1] Veterans Affairs Medical Center and South Florida VA Foundation for Research and Education, Miami, FL, USA [2] Department of Urology, Florida International University, Herbert Wertheim College of Medicine, Miami, FL, USA
| | - A V Schally
- 1] Veterans Affairs Medical Center and South Florida VA Foundation for Research and Education, Miami, FL, USA [2] Department of Pathology, University of Miami, Miller School of Medicine, Miami, FL, USA [3] Divisions of Hematology/Oncology, University of Miami, Miller School of Medicine, Miami, FL, USA [4] Division of Endocrinology, Department of Medicine, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - D E Frigo
- 1] Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, USA [2] Center for Genomic Medicine, Houston Methodist Research Institute, Houston, TX, USA
| |
Collapse
|