1
|
McMenemy CM, Guo D, Quinn JA, Greenhalgh DA. 14-3-3σ/Stratifin and p21 limit AKT-related malignant progression in skin carcinogenesis following MDM2-associated p53 loss. Mol Carcinog 2024; 63:1768-1782. [PMID: 38869281 DOI: 10.1002/mc.23771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/20/2024] [Accepted: 05/28/2024] [Indexed: 06/14/2024]
Abstract
To study mechanisms driving/inhibiting skin carcinogenesis, stage-specific expression of 14-3-3σ (Stratifin) was analyzed in skin carcinogenesis driven by activated rasHa/fos expression (HK1.ras/fos) and ablation of PTEN-mediated AKT regulation (K14.creP/Δ5PTENflx/flx). Consistent with 14-3-3σ roles in epidermal differentiation, HK1.ras hyperplasia and papillomas displayed elevated 14-3-3σ expression in supra-basal keratinocytes, paralleled by supra-basal p-MDM2166 activation and sporadic p-AKT473 expression. In bi-genic HK1.fos/Δ5PTENflx/flx hyperplasia, basal-layer 14-3-3σ expression appeared, and alongside p53/p21, was associated with keratinocyte differentiation and keratoacanthoma etiology. Tri-genic HK1.ras/fos-Δ5PTENflx/flx hyperplasia/papillomas initially displayed increased basal-layer 14-3-3σ, suggesting attempts to maintain supra-basal p-MDM2166 and protect basal-layer p53. However, HK1.ras/fos-Δ5PTENflx/flx papillomas exhibited increasing basal-layer p-MDM2166 activation that reduced p53, which coincided with malignant conversion. Despite p53 loss, 14-3-3σ expression persisted in well-differentiated squamous cell carcinomas (wdSCCs) and alongside elevated p21, limited malignant progression via inhibiting p-AKT1473 expression; until 14-3-3σ/p21 loss facilitated progression to aggressive SCC exhibiting uniform p-AKT1473. Analysis of TPA-promoted HK1.ras-Δ5PTENflx/flx mouse skin, demonstrated early loss of 14-3-3σ/p53/p21 in hyperplasia and papillomas, with increased p-MDM2166/p-AKT1473 that resulted in rapid malignant conversion and progression to poorly differentiated SCC. In 2D/3D cultures, membranous 14-3-3σ expression observed in normal HaCaT and SP1ras61 papilloma keratinocytes was unexpectedly detected in malignant T52ras61/v-fos SCC cells cultured in monolayers, but not invasive 3D-cells. Collectively, these data suggest 14-3-3σ/Stratifin exerts suppressive roles in papillomatogenesis via MDM2/p53-dependent mechanisms; while persistent p53-independent expression in early wdSCC may involve p21-mediated AKT1 inhibition to limit malignant progression.
Collapse
Affiliation(s)
- Carol M McMenemy
- Section of Dermatology and Molecular Carcinogenesis, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, Glasgow University, Glasgow, Scotland
| | - Dajiang Guo
- Section of Dermatology and Molecular Carcinogenesis, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, Glasgow University, Glasgow, Scotland
| | - Jean A Quinn
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland
| | - David A Greenhalgh
- Section of Dermatology and Molecular Carcinogenesis, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, Glasgow University, Glasgow, Scotland
| |
Collapse
|
2
|
Zhang DY, Monteiro MJ, Liu JP, Gu WY. Mechanisms of cancer stem cell senescence: Current understanding and future perspectives. Clin Exp Pharmacol Physiol 2021; 48:1185-1202. [PMID: 34046925 DOI: 10.1111/1440-1681.13528] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 05/24/2021] [Indexed: 12/13/2022]
Abstract
Cancer stem cells (CSCs) are a small population of heterogeneous tumor cells with the capacity of self-renewal and aberrant differentiation for immortality and divergent lineages of cancer cells. In contrast to bulky tumor cells, CSCs remain less differentiated and resistant to therapy even when targeted with tissue-specific antigenic markers. This makes CSCs responsible for not only tumor initiation, development, but also tumor recurrence. Emerging evidence suggests that CSCs can undergo cell senescence, a non-proliferative state of cells in response to stress. While cell senescence attenuates tumor cell proliferation, it is commonly regarded as a tumor suppressive mechanism. However, mounting research indicates that CSC senescence also provides these cells with the capacity to evade cytotoxic effects from cancer therapy, exacerbating cancer relapse and metastasis. Recent studies demonstrate that senescence drives reprogramming of cancer cell toward stemness and promotes CSC generation. In this review, we highlight the origin, heterogeneity and senescence regulatory mechanisms of CSCs, the complex relationship between CSC senescence and tumor therapy, and the recent beneficial effects of senotherapy on eliminating senescent tumor cells.
Collapse
Affiliation(s)
- Da-Yong Zhang
- Department of Clinical Medicine, Zhejiang University City College, Hangzhou, China
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, QLD, Australia
| | - Michael J Monteiro
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, QLD, Australia
| | - Jun-Ping Liu
- Institute of Ageing Research, Hangzhou Normal University, Hangzhou, China
- Department of Immunology, Monash University Faculty of Medicine, Prahran, Vic, Australia
- Hudson Institute of Medical Research, and Department of Molecular and Translational Science, Monash University Faculty of Medicine, Clayton, Vic, Australia
| | - Wen-Yi Gu
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
3
|
Masre SF, Rath N, Olson MF, Greenhalgh DA. Epidermal ROCK2 induces AKT1/GSK3β/β-catenin, NFκB and dermal tenascin C; but enhanced differentiation and p53/p21 inhibit papilloma. Carcinogenesis 2021; 41:1409-1420. [PMID: 31907522 DOI: 10.1093/carcin/bgz205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/21/2019] [Accepted: 01/03/2020] [Indexed: 12/16/2022] Open
Abstract
ROCK2 roles in epidermal differentiation and carcinogenesis have been investigated in mice expressing an RU486-inducible, 4HT-activated ROCK2 transgene (K14.creP/lslROCKer). RU486/4HT-mediated ROCKer activation induced epidermal hyperplasia similar to cutaneous oncogenic rasHa (HK1.ras); however ROCKer did not elicit papillomas. Instead, anomalous basal-layer ROCKer expression corrupted normal ROCK2 roles underlying epidermal rigidity/stiffness and barrier maintanance, resulting in premature keratin K1, loricrin and filaggrin expression. Also, hyperproliferative/stress-associated keratin K6 was reduced; possibly reflecting altered ROCK2 roles in epidermal rigidity and keratinocyte flexibility/migration during wound healing. Consistent with increased proliferation, K14.creP/lslROCKer hyperplasia displayed supra-basal-to-basal increases in activated p-AKT1, inactivated p-GSK3β ser9 and membranous/nuclear β-catenin expression together with weak NFκB, which were absent in equivalent HK1.ras hyperplasia. Furthermore, ROCKer-mediated increases in epidermal rigidity via p-MypT1 inactivation/elevated MLC, coupled to anomalous β-catenin expression, induced tenascin C-positive dermal fibroblasts. Alongside an altered ECM, these latent tenascin C-positive dermal fibroblasts may become putative pre-cancer-associated fibroblasts (pre-CAFs) and establish a susceptibility that subsequently contributes to tumour progression. However, anomalous differentiation was also accompanied by an immediate increase in basal-layer p53/p21 expression; suggesting that while ROCK2/AKT1/β-catenin activation increased keratinocyte proliferation resulting in hyperplasia, compensatory p53/p21 and accelerated differentiation helped inhibit papillomatogenesis.
Collapse
Affiliation(s)
- Siti F Masre
- Section of Dermatology and Molecular Carcinogenesis, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, Glasgow University, Glasgow, UK
| | - Nicola Rath
- Molecular and Cellular Biology Laboratory, Cancer Research UK, Beatson Institute for Cancer Research, Garscube Estate, Glasgow, UK
| | - Michael F Olson
- Department of Chemistry and Biology, Ryerson University, Ryerson MaRS Research Facility MaRS Discovery District, West Tower 661 University Avenue Toronto, Ontario, Canada
| | - David A Greenhalgh
- Section of Dermatology and Molecular Carcinogenesis, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, Glasgow University, Glasgow, UK
| |
Collapse
|
4
|
Unbekandt M, Belshaw S, Bower J, Clarke M, Cordes J, Crighton D, Croft DR, Drysdale MJ, Garnett MJ, Gill K, Gray C, Greenhalgh DA, Hall JAM, Konczal J, Lilla S, McArthur D, McConnell P, McDonald L, McGarry L, McKinnon H, McMenemy C, Mezna M, Morrice NA, Munro J, Naylor G, Rath N, Schüttelkopf AW, Sime M, Olson MF. Discovery of Potent and Selective MRCK Inhibitors with Therapeutic Effect on Skin Cancer. Cancer Res 2018; 78:2096-2114. [PMID: 29382705 PMCID: PMC5901721 DOI: 10.1158/0008-5472.can-17-2870] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/20/2017] [Accepted: 01/24/2018] [Indexed: 01/29/2023]
Abstract
The myotonic dystrophy-related Cdc42-binding kinases MRCKα and MRCKβ contribute to the regulation of actin-myosin cytoskeleton organization and dynamics, acting in concert with the Rho-associated coiled-coil kinases ROCK1 and ROCK2. The absence of highly potent and selective MRCK inhibitors has resulted in relatively little knowledge of the potential roles of these kinases in cancer. Here, we report the discovery of the azaindole compounds BDP8900 and BDP9066 as potent and selective MRCK inhibitors that reduce substrate phosphorylation, leading to morphologic changes in cancer cells along with inhibition of their motility and invasive character. In over 750 human cancer cell lines tested, BDP8900 and BDP9066 displayed consistent antiproliferative effects with greatest activity in hematologic cancer cells. Mass spectrometry identified MRCKα S1003 as an autophosphorylation site, enabling development of a phosphorylation-sensitive antibody tool to report on MRCKα status in tumor specimens. In a two-stage chemical carcinogenesis model of murine squamous cell carcinoma, topical treatments reduced MRCKα S1003 autophosphorylation and skin papilloma outgrowth. In parallel work, we validated a phospho-selective antibody with the capability to monitor drug pharmacodynamics. Taken together, our findings establish an important oncogenic role for MRCK in cancer, and they offer an initial preclinical proof of concept for MRCK inhibition as a valid therapeutic strategy.Significance: The development of selective small-molecule inhibitors of the Cdc42-binding MRCK kinases reveals their essential roles in cancer cell viability, migration, and invasive character. Cancer Res; 78(8); 2096-114. ©2018 AACR.
Collapse
Affiliation(s)
- Mathieu Unbekandt
- Molecular Cell Biology Laboratory, Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Simone Belshaw
- Drug Discovery Unit, Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Justin Bower
- Drug Discovery Unit, Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Maeve Clarke
- Drug Discovery Unit, Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Jacqueline Cordes
- Drug Discovery Unit, Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Diane Crighton
- Drug Discovery Unit, Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Daniel R Croft
- Drug Discovery Unit, Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Martin J Drysdale
- Drug Discovery Unit, Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Mathew J Garnett
- Translational Cancer Genomics, Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Kathryn Gill
- Drug Discovery Unit, Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Christopher Gray
- Drug Discovery Unit, Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - David A Greenhalgh
- Section of Dermatology and Molecular Carcinogenesis, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - James A M Hall
- Translational Cancer Genomics, Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Jennifer Konczal
- Drug Discovery Unit, Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Sergio Lilla
- Mass Spectrometry Facility, Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Duncan McArthur
- Drug Discovery Unit, Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Patricia McConnell
- Drug Discovery Unit, Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Laura McDonald
- Drug Discovery Unit, Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Lynn McGarry
- Screening Facility, Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Heather McKinnon
- Drug Discovery Unit, Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Carol McMenemy
- Section of Dermatology and Molecular Carcinogenesis, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Mokdad Mezna
- Drug Discovery Unit, Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Nicolas A Morrice
- Mass Spectrometry Facility, Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - June Munro
- Molecular Cell Biology Laboratory, Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Gregory Naylor
- Molecular Cell Biology Laboratory, Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Nicola Rath
- Molecular Cell Biology Laboratory, Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | | | - Mairi Sime
- Drug Discovery Unit, Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Michael F Olson
- Molecular Cell Biology Laboratory, Cancer Research UK Beatson Institute, Glasgow, United Kingdom.
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
5
|
Jiang LP, Shen QS, Yang CP, Chen YB. Establishment of basal cell carcinoma animal model in Chinese tree shrew ( Tupaia belangeri chinensis). Zool Res 2018; 38:180-190. [PMID: 28825448 PMCID: PMC5571474 DOI: 10.24272/j.issn.2095-8137.2017.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Basal cell carcinoma (BCC) is the most common skin cancer worldwide, with incidence rates continuing to increase. Ultraviolet radiation is the major environmental risk factor and dysregulation of the Hedgehog (Hh) signaling pathway has been identified in most BCCs. The treatment of locally advanced and metastatic BBCs is still a challenge and requires a better animal model than the widely used rodents for drug development and testing. Chinese tree shrews (Tupaia belangeri chinensis) are closely related to primates, bearing many physiological and biochemical advantages over rodents for characterizing human diseases. Here, we successfully established a Chinese tree shrew BCC model by infecting tail skins with lentiviral SmoA1, an active form of Smoothened (Smo) used to constitutively activate the Hh signaling pathway. The pathological characteristics were verified by immunohistochemical analysis. Interestingly, BCC progress was greatly enhanced by the combined usage of lentiviral SmoA1 and shRNA targeting Chinese tree shrew p53. This work provides a useful animal model for further BCC studies and future drug discoveries.
Collapse
Affiliation(s)
- Li-Ping Jiang
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming Yunnan 650204, China
| | - Qiu-Shuo Shen
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming Yunnan 650204, China
| | - Cui-Ping Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming Yunnan 650204, China.
| | - Yong-Bin Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming Yunnan 650204, China.
| |
Collapse
|
6
|
Page A, Navarro M, Suarez-Cabrera C, Alameda JP, Casanova ML, Paramio JM, Bravo A, Ramirez A. Protective role of p53 in skin cancer: Carcinogenesis studies in mice lacking epidermal p53. Oncotarget 2018; 7:20902-18. [PMID: 26959115 PMCID: PMC4991500 DOI: 10.18632/oncotarget.7897] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Accepted: 02/18/2016] [Indexed: 12/14/2022] Open
Abstract
p53 is a protein that causes cell cycle arrest, apoptosis or senescence, being crucial in the process of tumor suppression in several cell types. Different in vitro and animal models have been designed for the study of p53 role in skin cancer. These models have revealed opposing results, as in some experimental settings it appears that p53 protects against skin cancer, but in others, the opposite conclusion emerges. We have generated cohorts of mice with efficient p53 deletion restricted to stratified epithelia and control littermates expressing wild type p53 and studied their sensitivity to both chemically-induced and spontaneous tumoral transformation, as well as the tumor types originated in each experimental group. Our results indicate that the absence of p53 in stratified epithelia leads to the appearance, in two-stage skin carcinogenesis experiments, of a higher number of tumors that grow faster and become malignant more frequently than tumors arisen in mice with wild type p53 genotype. In addition, the histological diversity of the tumor type is greater in mice with epidermal p53 loss, indicating the tumor suppressive role of p53 in different epidermal cell types. Aging mice with p53 inactivation in stratified epithelia developed spontaneous carcinomas in skin and other epithelia. Overall, these results highlight the truly protective nature of p53 functions in the development of cancer in skin and in other stratified epithelia.
Collapse
Affiliation(s)
- Angustias Page
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain.,Biomedical Research Institute I+12, University Hospital "12 de Octubre", Madrid, Spain
| | - Manuel Navarro
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain.,Biomedical Research Institute I+12, University Hospital "12 de Octubre", Madrid, Spain
| | - Cristian Suarez-Cabrera
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain.,Biomedical Research Institute I+12, University Hospital "12 de Octubre", Madrid, Spain
| | - Josefa P Alameda
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain.,Biomedical Research Institute I+12, University Hospital "12 de Octubre", Madrid, Spain
| | - M Llanos Casanova
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain.,Biomedical Research Institute I+12, University Hospital "12 de Octubre", Madrid, Spain
| | - Jesús M Paramio
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain.,Biomedical Research Institute I+12, University Hospital "12 de Octubre", Madrid, Spain
| | - Ana Bravo
- Department of Veterinary Clinical Sciences, Faculty of Veterinary Medicine, University of Santiago de Compostela, Lugo, Spain
| | - Angel Ramirez
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain.,Biomedical Research Institute I+12, University Hospital "12 de Octubre", Madrid, Spain
| |
Collapse
|
7
|
Masre SF, Rath N, Olson MF, Greenhalgh DA. ROCK2/ras Ha co-operation induces malignant conversion via p53 loss, elevated NF-κB and tenascin C-associated rigidity, but p21 inhibits ROCK2/NF-κB-mediated progression. Oncogene 2017; 36:2529-2542. [PMID: 27991921 DOI: 10.1038/onc.2016.402] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 07/20/2016] [Accepted: 09/23/2016] [Indexed: 02/07/2023]
Abstract
To study ROCK2 activation in carcinogenesis, mice expressing 4-hydroxytamoxifen (4HT)-activated ROCK2 (K14.ROCKer) were crossed with mice expressing epidermal-activated rasHa (HK1.ras1205). At 8 weeks, 4HT-treated K14.ROCKer/HK1.ras1205 cohorts exhibited papillomas similar to HK1.ras1205 controls; however, K14.ROCKer/HK1.ras1205 histotypes comprised a mixed papilloma/well-differentiated squamous cell carcinoma (wdSCC), exhibiting p53 loss, increased proliferation and novel NF-κB expression. By 12 weeks, K14.ROCKer/HK1.ras1205 wdSCCs exhibited increased NF-κB and novel tenascin C, indicative of elevated rigidity; yet despite continued ROCK2 activities/p-Mypt1 inactivation, progression to SCC required loss of compensatory p21 expression. K14.ROCKer/HK1.ras1205 papillomatogenesis also required a wound promotion stimulus, confirmed by breeding K14.ROCKer into promotion-insensitive HK1.ras1276 mice, suggesting a permissive K14.ROCKer/HK1.ras1205 papilloma context (wound-promoted/NF-κB+/p53-/p21+) preceded K14.ROCKer-mediated (p-Mypt1/tenascin C/rigidity) malignant conversion. Malignancy depended on ROCKer/p-Mypt1 expression, as cessation of 4HT treatment induced disorganized tissue architecture and p21-associated differentiation in wdSCCs; yet tenascin C retention in connective tissue extracellular matrix suggests the rigidity laid down for conversion persists. Novel papilloma outgrowths appeared expressing intense, basal layer p21 that confined endogenous ROCK2/p-Mypt1/NF-κB to supra-basal layers, and was paralleled by restored basal layer p53. In later SCCs, 4HT cessation became irrelevant as endogenous ROCK2 expression increased, driving progression via p21 loss, elevated NF-κB expression and tenascin C-associated rigidity, with p-Mypt1 inactivation/actinomyosin-mediated contractility to facilitate invasion. However, p21-associated inhibition of early-stage malignant progression and the intense expression in papilloma outgrowths, identifies a novel, significant antagonism between p21 and rasHa/ROCK2/NF-κB signalling in skin carcinogenesis. Collectively, these data show that ROCK2 activation induces malignancy in rasHa-initiated/promoted papillomas in the context of p53 loss and novel NF-κB expression, whereas increased tissue rigidity and cell motility/contractility help mediate tumour progression.
Collapse
Affiliation(s)
- S F Masre
- Section of Dermatology and Molecular Carcinogenesis, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, Glasgow University, Glasgow, UK
- Biomedical Science Programme, School of Diagnostic and Applied Health Sciences, Faculty of Allied Health Sciences, University of Kebangsaan, National University of Malaysia, Kuala Lumpur, Malaysia
| | - N Rath
- Molecular Cell Biology Laboratory, Cancer Research UK, Beatson Institute for Cancer Research, Garscube Estate, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - M F Olson
- Molecular Cell Biology Laboratory, Cancer Research UK, Beatson Institute for Cancer Research, Garscube Estate, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - D A Greenhalgh
- Section of Dermatology and Molecular Carcinogenesis, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, Glasgow University, Glasgow, UK
| |
Collapse
|
8
|
Gong W, Zheng J, Liu X, Liu Y, Guo J, Gao Y, Tao W, Chen J, Li Z, Ma J, Xue Y. Knockdown of Long Non-Coding RNA KCNQ1OT1 Restrained Glioma Cells' Malignancy by Activating miR-370/CCNE2 Axis. Front Cell Neurosci 2017; 11:84. [PMID: 28381990 PMCID: PMC5360732 DOI: 10.3389/fncel.2017.00084] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 03/10/2017] [Indexed: 02/02/2023] Open
Abstract
Accumulating evidence has highlighted the potential role of long non-coding RNAs (lncRNAs) as biomarkers and therapeutic targets in solid tumors. Here, we elucidated the function and possible molecular mechanisms of lncRNA KCNQ1OT1 in human glioma U87 and U251 cells. Quantitative Real-Time polymerase chain reaction (qRT-PCR) demonstrated that KCNQ1OT1 expression was up-regulated in glioma tissues and cells. Knockdown of KCNQ1OT1 exerted tumor-suppressive function in glioma cells. Moreover, a binding region was confirmed between KCNQ1OT1 and miR-370 by dual-luciferase assays. qRT-PCR showed that miR-370 was down-regulated in human glioma tissue and cells. In addition, restoration of miR-370 exerted tumor-suppressive function via inhibiting cell proliferation, migration and invasion, while promoting the apoptosis of human glioma cells. Knockdown of KCNQ1OT1 decreased the expression level of Cyclin E2 (CCNE2) by binding to miR-370. Further, miR-370 bound to CCNE2 3′UTR region and decreased the expression of CCNE2. These results provided a comprehensive analysis of KCNQ1OT1-miR-370-CCNE2 axis in human glioma cells and might provide a novel strategy for glioma treatment.
Collapse
Affiliation(s)
- Wei Gong
- Department of Neurobiology, College of Basic Medicine, China Medical UniversityShenyang, China; Key Laboratory of Cell Biology, Ministry of Public Health of China, Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical UniversityShenyang, China
| | - Jian Zheng
- Department of Neurosurgery, Shengjing Hospital of China Medical UniversityShenyang, China; Liaoning Research Center for Translational Medicine in Nervous System DiseaseShenyang, China
| | - Xiaobai Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical UniversityShenyang, China; Liaoning Research Center for Translational Medicine in Nervous System DiseaseShenyang, China
| | - Yunhui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical UniversityShenyang, China; Liaoning Research Center for Translational Medicine in Nervous System DiseaseShenyang, China
| | - Junqing Guo
- Department of Neurobiology, College of Basic Medicine, China Medical UniversityShenyang, China; Key Laboratory of Cell Biology, Ministry of Public Health of China, Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical UniversityShenyang, China
| | - Yana Gao
- Department of Neurobiology, College of Basic Medicine, China Medical UniversityShenyang, China; Key Laboratory of Cell Biology, Ministry of Public Health of China, Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical UniversityShenyang, China
| | - Wei Tao
- Department of Neurobiology, College of Basic Medicine, China Medical UniversityShenyang, China; Key Laboratory of Cell Biology, Ministry of Public Health of China, Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical UniversityShenyang, China
| | - Jiajia Chen
- Department of Neurobiology, College of Basic Medicine, China Medical UniversityShenyang, China; Key Laboratory of Cell Biology, Ministry of Public Health of China, Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical UniversityShenyang, China
| | - Zhiqing Li
- Department of Neurobiology, College of Basic Medicine, China Medical UniversityShenyang, China; Key Laboratory of Cell Biology, Ministry of Public Health of China, Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical UniversityShenyang, China
| | - Jun Ma
- Department of Neurobiology, College of Basic Medicine, China Medical UniversityShenyang, China; Key Laboratory of Cell Biology, Ministry of Public Health of China, Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical UniversityShenyang, China
| | - Yixue Xue
- Department of Neurobiology, College of Basic Medicine, China Medical UniversityShenyang, China; Key Laboratory of Cell Biology, Ministry of Public Health of China, Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical UniversityShenyang, China
| |
Collapse
|
9
|
Gorjala P, Cairncross JG, Gary RK. p53-dependent up-regulation of CDKN1A and down-regulation of CCNE2 in response to beryllium. Cell Prolif 2016; 49:698-709. [PMID: 27611480 DOI: 10.1111/cpr.12291] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 08/07/2016] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES Beryllium salts (here, beryllium sulphate) can produce a cytostatic effect in some cell types. The basis for this effect may include increased expression of proliferation inhibitors, reduced expression of proliferation promoters, or both. This study sought to determine the role of p53, the tumour-suppressing transcription factor, in mediating beryllium-induced cytostasis. MATERIALS AND METHODS Human A172 glioma cells express wild-type TP53 gene. Activity of p53 was experimentally manipulated using siRNA and related approaches. Key elements of the beryllium-response were compared in normal and p53-knockdown A172 cells using RT-PCR and Western blotting. RESULTS In A172 cells, 10 μm BeSO4 caused 300% increase in CDKN1A (cyclin-dependent kinase inhibitor p21) mRNA and 90% reduction of CCNE2 (cyclin E2) mRNA. The increased p21 mRNA and reduced cyclin E2 mRNA were each dependent on presence of functional p53. For p21, increased mRNA led to commensurately increased protein levels. In contrast, reduction in cyclin E2 mRNA levels did not lead to corresponding reductions in cyclin E2 protein. The proteasomal inhibitor MG-132 caused p53 protein to increase, but it had no effect on cyclin E2 protein levels. Cycloheximide time course studies indicated that the cyclin E2 protein half-life was more than 12 hours in these cells. CONCLUSIONS Beryllium elicited p53-dependent changes in mRNA levels of key determinants of cell proliferation such as p21 and cyclin E2. However, cyclin E2 protein appeared to be aberrantly regulated in this cell type, as its turnover was unexpectedly slow.
Collapse
Affiliation(s)
- P Gorjala
- Department of Chemistry and Biochemistry, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - J G Cairncross
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - R K Gary
- Department of Chemistry and Biochemistry, University of Nevada Las Vegas, Las Vegas, NV, USA.
| |
Collapse
|
10
|
Zn-driven discovery of a hydrothermal vent fungal metabolite clavatustide C, and an experimental study of the anti-cancer mechanism of clavatustide B. Mar Drugs 2014; 12:3203-17. [PMID: 24879544 PMCID: PMC4071572 DOI: 10.3390/md12063203] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 04/07/2014] [Accepted: 04/24/2014] [Indexed: 01/03/2023] Open
Abstract
A naturally new cyclopeptide, clavatustide C, was produced as a stress metabolite in response to abiotic stress elicitation by one of the hydrothermal vent fluid components Zn in the cultured mycelia of Aspergillus clavatus C2WU, which were isolated from Xenograpsus testudinatus. X. testudinatus lives at extreme, toxic habitat around the sulphur-rich hydrothermal vents in Taiwan Kueishantao. The known compound clavatustide B was also isolated and purified. This is the first example of a new hydrothermal vent microbial secondary metabolite produced in response to abiotic Zn treatment. The structures were established by spectroscopic means. The regulation of G1-S transition in hepatocellular carcinoma cell lines by clavatustide B was observed in our previous study. The purpose of the present study was to verify these results in other types of cancer cell lines and elucidate the possible molecular mechanism for the anti-cancer activities of clavatustide B. In different human cancer cell lines, including pancreatic cancer (Panc-1), gastric cancer (MGC-803), colorectal cancer (SW-480), retinoblastoma (WERI-Rb-1) and prostate cancer (PC3), clavatustide B efficiently suppressed cell proliferations in a dose-dependent manner. Although different cancer cell lines presented variety in Max effect dose and IC50 dose, all cancer cell lines showed a lower Max effect dose and IC50 dose compared with human fibroblasts (hFB) (p < 0.05). Moreover, significant accumulations in G1 phases and a reduction in S phases (p < 0.05) were observed under clavatustide B treatment. The expression levels of 2622 genes including 39 cell cycle-associated genes in HepG2 cells were significantly altered by the treatment with 15 μg/mL clavatustide B after 48 h. CCNE2 (cyclin E2) was proved to be the key regulator of clavatustide B-induced G1-S transition blocking in several cancer cell lines by using real-time PCR.
Collapse
|