1
|
Sun BL, Ding H, Sun X. Histopathologic and genetic distinction of well-differentiated grade 3 neuroendocrine tumor versus poorly-differentiated neuroendocrine carcinoma in high-grade neuroendocrine neoplasms. Am J Clin Pathol 2025:aqaf013. [PMID: 40037757 DOI: 10.1093/ajcp/aqaf013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 02/04/2025] [Indexed: 03/06/2025] Open
Abstract
OBJECTIVES The classification of neuroendocrine neoplasms has evolved significantly. In the current World Health Organization (WHO) classification, well-differentiated grade 3 neuroendocrine tumors (G3-NETs) are distinguished from poorly-differentiated neuroendocrine carcinomas (NECs) based on morphology despite using the same proliferation indices, which poses diagnostic challenges. This review aims to assist pathologists in making an accurate diagnosis, which is crucial for patient management as G3-NETs and NECs have different prognoses and chemotherapy responses. METHODS A literature review and meta-analyses were conducted to summarize current knowledge of G3-NETs and NECs, focusing on histopathologic and genetic characteristics. RESULTS Grade 3 neuroendocrine tumors and NECs are distinct entities with differences in histopathology, genetics, and clinical presentations. Grade 3 neuroendocrine tumors have a lower Ki-67 proliferation index and tumor mutational burden compared to NECs. Distinct gene mutations and pathways have been identified in G3-NETs and NECs, offering potential for developing a diagnostic gene panel. The 2022 WHO classification recognizes the use of immunohistochemistry for somatostatin receptors 2/5, TP53, Rb, Menin, P27, ATRX, and DAXX to distinguish G3-NETs and NECs. In particular, TP53 and ATRX immunohistochemistry may be useful in routine diagnostics. CONCLUSIONS Specific immunohistochemistry and genetic tests should be developed and incorporated into the classification to reliably distinguish G3-NETs from NECs.
Collapse
Affiliation(s)
- Belinda L Sun
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Hongxu Ding
- College of Pharmacy, University of Arizona, Tucson, AZ, United States
| | - Xiaoguang Sun
- Department of Medicine, College of Medicine, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
2
|
Maluchenko A, Maksimov D, Antysheva Z, Krupinova J, Avsievich E, Glazova O, Bodunova N, Karnaukhov N, Feidorov I, Salimgereeva D, Voloshin M, Volchkov P. Molecular Basis of Pancreatic Neuroendocrine Tumors. Int J Mol Sci 2024; 25:11017. [PMID: 39456803 PMCID: PMC11507569 DOI: 10.3390/ijms252011017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/20/2024] [Accepted: 09/21/2024] [Indexed: 10/28/2024] Open
Abstract
Pancreatic neuroendocrine tumors (NETs) are rare well-differentiated neoplasms with limited therapeutic options and unknown cells of origin. The current classification of pancreatic neuroendocrine tumors is based on proliferative grading, and guides therapeutic strategies, however, tumors within grades exhibit profound heterogeneity in clinical manifestation and outcome. Manifold studies have highlighted intra-patient differences in tumors at the genetic and transcriptomic levels. Molecular classification might become an alternative or complementary basis for treatment decisions and reflect tumor biology, actionable cellular processes. Here, we provide a comprehensive review of genomic, transcriptomic, proteomic and epigenomic studies of pancreatic NETs to elucidate patterns shared between proposed subtypes that could form a foundation for new classification. We denote four NET subtypes with distinct molecular features, which were consistently reproduced using various omics technologies.
Collapse
Affiliation(s)
- Alesia Maluchenko
- Moscow Center for Advanced Studies, Kulakova Str. 20, Moscow 123592, Russia; (A.M.); (D.M.); (Z.A.); (E.A.); (O.G.); (P.V.)
| | - Denis Maksimov
- Moscow Center for Advanced Studies, Kulakova Str. 20, Moscow 123592, Russia; (A.M.); (D.M.); (Z.A.); (E.A.); (O.G.); (P.V.)
| | - Zoia Antysheva
- Moscow Center for Advanced Studies, Kulakova Str. 20, Moscow 123592, Russia; (A.M.); (D.M.); (Z.A.); (E.A.); (O.G.); (P.V.)
| | - Julia Krupinova
- Moscow Center for Advanced Studies, Kulakova Str. 20, Moscow 123592, Russia; (A.M.); (D.M.); (Z.A.); (E.A.); (O.G.); (P.V.)
- Moscow Clinical Scientific Center N.A. A.S. Loginov, Moscow 111123, Russia; (N.B.); (N.K.); (I.F.); (D.S.); (M.V.)
| | - Ekaterina Avsievich
- Moscow Center for Advanced Studies, Kulakova Str. 20, Moscow 123592, Russia; (A.M.); (D.M.); (Z.A.); (E.A.); (O.G.); (P.V.)
- Moscow Clinical Scientific Center N.A. A.S. Loginov, Moscow 111123, Russia; (N.B.); (N.K.); (I.F.); (D.S.); (M.V.)
| | - Olga Glazova
- Moscow Center for Advanced Studies, Kulakova Str. 20, Moscow 123592, Russia; (A.M.); (D.M.); (Z.A.); (E.A.); (O.G.); (P.V.)
- Moscow Clinical Scientific Center N.A. A.S. Loginov, Moscow 111123, Russia; (N.B.); (N.K.); (I.F.); (D.S.); (M.V.)
| | - Natalia Bodunova
- Moscow Clinical Scientific Center N.A. A.S. Loginov, Moscow 111123, Russia; (N.B.); (N.K.); (I.F.); (D.S.); (M.V.)
| | - Nikolay Karnaukhov
- Moscow Clinical Scientific Center N.A. A.S. Loginov, Moscow 111123, Russia; (N.B.); (N.K.); (I.F.); (D.S.); (M.V.)
| | - Ilia Feidorov
- Moscow Clinical Scientific Center N.A. A.S. Loginov, Moscow 111123, Russia; (N.B.); (N.K.); (I.F.); (D.S.); (M.V.)
| | - Diana Salimgereeva
- Moscow Clinical Scientific Center N.A. A.S. Loginov, Moscow 111123, Russia; (N.B.); (N.K.); (I.F.); (D.S.); (M.V.)
| | - Mark Voloshin
- Moscow Clinical Scientific Center N.A. A.S. Loginov, Moscow 111123, Russia; (N.B.); (N.K.); (I.F.); (D.S.); (M.V.)
| | - Pavel Volchkov
- Moscow Center for Advanced Studies, Kulakova Str. 20, Moscow 123592, Russia; (A.M.); (D.M.); (Z.A.); (E.A.); (O.G.); (P.V.)
- Moscow Clinical Scientific Center N.A. A.S. Loginov, Moscow 111123, Russia; (N.B.); (N.K.); (I.F.); (D.S.); (M.V.)
| |
Collapse
|
3
|
Fuentes ME, Lu X, Flores NM, Hausmann S, Mazur PK. Combined deletion of MEN1, ATRX and PTEN triggers development of high-grade pancreatic neuroendocrine tumors in mice. Sci Rep 2024; 14:8510. [PMID: 38609433 PMCID: PMC11014914 DOI: 10.1038/s41598-024-58874-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Pancreatic neuroendocrine tumors (PanNETs) are a heterogeneous group of tumors that exhibit an unpredictable and broad spectrum of clinical presentations and biological aggressiveness. Surgical resection is still the only curative therapeutic option for localized PanNET, but the majority of patients are diagnosed at an advanced and metastatic stage with limited therapeutic options. Key factors limiting the development of new therapeutics are the extensive heterogeneity of PanNETs and the lack of appropriate clinically relevant models. In that context, genomic sequencing of human PanNETs revealed recurrent mutations and structural alterations in several tumor suppressors. Here, we demonstrated that combined loss of MEN1, ATRX, and PTEN, tumor suppressors commonly mutated in human PanNETs, triggers the development of high-grade pancreatic neuroendocrine tumors in mice. Histopathological evaluation and gene expression analyses of the developed tumors confirm the presence of PanNET hallmarks and significant overlap in gene expression patterns found in human disease. Thus, we postulate that the presented novel genetically defined mouse model is the first clinically relevant immunocompetent high-grade PanNET mouse model.
Collapse
Affiliation(s)
- Mary Esmeralda Fuentes
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Xiaoyin Lu
- The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Natasha M Flores
- The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Simone Hausmann
- The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Pawel K Mazur
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
| |
Collapse
|
4
|
Forsythe SD, Pu T, Andrews SG, Madigan JP, Sadowski SM. Models in Pancreatic Neuroendocrine Neoplasms: Current Perspectives and Future Directions. Cancers (Basel) 2023; 15:3756. [PMID: 37568572 PMCID: PMC10416968 DOI: 10.3390/cancers15153756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/21/2023] [Accepted: 07/23/2023] [Indexed: 08/13/2023] Open
Abstract
Pancreatic neuroendocrine neoplasms (pNENs) are a heterogeneous group of tumors derived from multiple neuroendocrine origin cell subtypes. Incidence rates for pNENs have steadily risen over the last decade, and outcomes continue to vary widely due to inability to properly screen. These tumors encompass a wide range of functional and non-functional subtypes, with their rarity and slow growth making therapeutic development difficult as most clinically used therapeutics are derived from retrospective analyses. Improved molecular understanding of these cancers has increased our knowledge of the tumor biology for pNENs. Despite these advances in our understanding of pNENs, there remains a dearth of models for further investigation. In this review, we will cover the current field of pNEN models, which include established cell lines, animal models such as mice and zebrafish, and three-dimensional (3D) cell models, and compare their uses in modeling various disease aspects. While no study model is a complete representation of pNEN biology, each has advantages which allow for new scientific understanding of these rare tumors. Future efforts and advancements in technology will continue to create new options in modeling these cancers.
Collapse
Affiliation(s)
- Steven D. Forsythe
- Neuroendocrine Cancer Therapy Section, Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (S.D.F.); (S.G.A.); (J.P.M.)
| | - Tracey Pu
- Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Stephen G. Andrews
- Neuroendocrine Cancer Therapy Section, Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (S.D.F.); (S.G.A.); (J.P.M.)
| | - James P. Madigan
- Neuroendocrine Cancer Therapy Section, Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (S.D.F.); (S.G.A.); (J.P.M.)
| | - Samira M. Sadowski
- Neuroendocrine Cancer Therapy Section, Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (S.D.F.); (S.G.A.); (J.P.M.)
| |
Collapse
|
5
|
Wang Y, Wang F, Qin Y, Lou X, Ye Z, Zhang W, Gao H, Chen J, Xu X, Yu X, Ji S. Recent progress of experimental model in pancreatic neuroendocrine tumors: drawbacks and challenges. Endocrine 2023; 80:266-282. [PMID: 36648608 DOI: 10.1007/s12020-023-03299-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/31/2022] [Indexed: 01/18/2023]
Abstract
The neuroendocrine neoplasm, in general, refers to a heterogeneous group of all tumors originating from peptidergic neurons and neuroendocrine cells. Neuroendocrine neoplasms are divided into two histopathological subtypes: well-differentiated neuroendocrine tumors and poorly differentiated neuroendocrine carcinomas. Pancreatic neuroendocrine tumors account for more than 80% of pancreatic neuroendocrine neoplasms. Due to the greater proportion of pancreatic neuroendocrine tumors compared to pancreatic neuroendocrine carcinoma, this review will only focus on them. The worldwide incidence of pancreatic neuroendocrine tumors is rising year by year due to sensitive detection with an emphasis on medical examinations and the improvement of testing technology. Although the biological behavior of pancreatic neuroendocrine tumors tends to be inert, distant metastasis is common, often occurring very early. Because of the paucity of basic research on pancreatic neuroendocrine tumors, the mechanism of tumor development, metastasis, and recurrence are still unclear. In this context, the representative preclinical models simulating the tumor development process are becoming ever more widely appreciated to address the clinical problems of pancreatic neuroendocrine tumors. So far, there is no comprehensive report on the experimental model of pancreatic neuroendocrine tumors. This article systematically summarizes the characteristics of preclinical models, such as patient-derived cell lines, patient-derived xenografts, genetically engineered mouse models, and patient-derived organoids, and their advantages and disadvantages, to provide a reference for further studies of neuroendocrine tumors. We also highlight the method of establishment of liver metastasis mouse models.
Collapse
Affiliation(s)
- Yan Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Fei Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Yi Qin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Xin Lou
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Zeng Ye
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Wuhu Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Heli Gao
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Jie Chen
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Xiaowu Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Shunrong Ji
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
6
|
Saller J, White D, Hough B, Yoder S, Whiting J, Chen DT, Magliocco A, Coppola D. An miRNA Signature Predicts Grading of Pancreatic Neuroendocrine Neoplasms. Cancer Genomics Proteomics 2023; 20:154-164. [PMID: 36870693 PMCID: PMC9989673 DOI: 10.21873/cgp.20370] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 03/06/2023] Open
Abstract
BACKGROUND/AIM Grading pancreatic neuroendocrine neoplasms (PNENs) via mitotic rate and Ki-67 index score is complicated by interobserver variability. Differentially expressed miRNAs (DEMs) are useful for predicting tumour progression and may be useful for grading. PATIENTS AND METHODS Twelve PNENs were selected. Four patients had grade (G) 1 pancreatic neuroendocrine tumours (PNETs); 4 had G2 PNETs; and 4 had G3 PNENs (2 PNETs and 2 pancreatic neuroendocrine carcinomas). Samples were profiled using the miRNA NanoString Assay. RESULTS There were 6 statistically significant DEMs between different grades of PNENs. MiR1285-5p was the sole miRNA differentially expressed (p=0.03) between G1 and G2 PNETs. Six statistically significant DEMs (miR135a-5p, miR200a-3p, miR3151-5p, miR-345-5p, miR548d-5p and miR9-5p) (p<0.05) were identified between G1 PNETs and G3 PNENs. Finally, 5 DEMs (miR155-5p, miR15b-5p, miR222-3p, miR548d-5p and miR9-5p) (p<0.05) were identified between G2 PNETs and G3 PNENs. CONCLUSION The identified miRNA candidates are concordant with their patterns of dysregulation in other tumour types. The reliability of these DEMs as discriminators of PNEN grades support further investigations using larger patient populations.
Collapse
Affiliation(s)
- James Saller
- Department of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, U.S.A
| | - Daley White
- Department of Biomedical Library, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, U.S.A
| | - Brooke Hough
- Department of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, U.S.A
| | - Sean Yoder
- Molecular Genomics Core, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, U.S.A
| | - Junmin Whiting
- Biostatistics & Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, U.S.A
| | - Dung-Tsa Chen
- Biostatistics & Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, U.S.A
| | | | - Domenico Coppola
- Department of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, U.S.A.; .,Department of Pathology Florida Digestive Health Specialists, Lakewood Ranch, FL, U.S.A
| |
Collapse
|
7
|
Gaspar TB, Lopes JM, Soares P, Vinagre J. An update on genetically engineered mouse models of pancreatic neuroendocrine neoplasms. Endocr Relat Cancer 2022; 29:R191-R208. [PMID: 36197786 DOI: 10.1530/erc-22-0166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/29/2022] [Indexed: 11/09/2022]
Abstract
Pancreatic neuroendocrine neoplasms (PanNENs) are rare and clinically challenging entities. At the molecular level, PanNENs' genetic profile is well characterized, but there is limited knowledge regarding the contribution of the newly identified genes to tumor initiation and progression. Genetically engineered mouse models (GEMMs) are the most versatile tool for studying the plethora of genetic variations influencing PanNENs' etiopathogenesis and behavior over time. In this review, we present the state of the art of the most relevant PanNEN GEMMs available and correlate their findings with the human neoplasms' counterparts. We discuss the historic GEMMs as the most used and with higher translational utility models. GEMMs with Men1 and glucagon receptor gene germline alterations stand out as the most faithful models in recapitulating human disease; RIP-Tag models are unique models of early-onset, highly vascularized, invasive carcinomas. We also include a section of the most recent GEMMs that evaluate pathways related to cell cycle and apoptosis, Pi3k/Akt/mTOR, and Atrx/Daxx. For the latter, their tumorigenic effect is heterogeneous. In particular, for Atrx/Daxx, we will require more in-depth studies to evaluate their contribution; even though they are prevalent genetic events in PanNENs, they have low/inexistent tumorigenic capacity per se in GEMMs. Researchers planning to use GEMMs can find a road map of the main clinical features in this review, presented as a guide that summarizes the chief milestones achieved. We identify pitfalls to overcome, concerning the novel designs and standardization of results, so that future models can replicate human disease more closely.
Collapse
Affiliation(s)
- Tiago Bordeira Gaspar
- i3S - Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- Ipatimup - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto, Porto, Portugal
- FMUP - Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - José Manuel Lopes
- i3S - Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- Ipatimup - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
- FMUP - Faculdade de Medicina da Universidade do Porto, Porto, Portugal
- Department of Pathology, Centro Hospitalar e Universitário de São João, Porto, Portugal
| | - Paula Soares
- i3S - Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- Ipatimup - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
- FMUP - Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - João Vinagre
- i3S - Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- Ipatimup - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
- FMUP - Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| |
Collapse
|
8
|
Preclinical Models of Neuroendocrine Neoplasia. Cancers (Basel) 2022; 14:cancers14225646. [PMID: 36428741 PMCID: PMC9688518 DOI: 10.3390/cancers14225646] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022] Open
Abstract
Neuroendocrine neoplasia (NENs) are a complex and heterogeneous group of cancers that can arise from neuroendocrine tissues throughout the body and differentiate them from other tumors. Their low incidence and high diversity make many of them orphan conditions characterized by a low incidence and few dedicated clinical trials. Study of the molecular and genetic nature of these diseases is limited in comparison to more common cancers and more dependent on preclinical models, including both in vitro models (such as cell lines and 3D models) and in vivo models (such as patient derived xenografts (PDXs) and genetically-engineered mouse models (GEMMs)). While preclinical models do not fully recapitulate the nature of these cancers in patients, they are useful tools in investigation of the basic biology and early-stage investigation for evaluation of treatments for these cancers. We review available preclinical models for each type of NEN and discuss their history as well as their current use and translation.
Collapse
|
9
|
Pastorino L, Grillo F, Albertelli M, Ghiorzo P, Bruno W. Insights into Mechanisms of Tumorigenesis in Neuroendocrine Neoplasms. Int J Mol Sci 2021; 22:10328. [PMID: 34638668 PMCID: PMC8508699 DOI: 10.3390/ijms221910328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/16/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022] Open
Abstract
Genomic studies have identified some of the most relevant genetic players in Neuroendocrine Neoplasm (NEN) tumorigenesis. However, we are still far from being able to draw a model that encompasses their heterogeneity, elucidates the different biological effects consequent to the identified molecular events, or incorporates extensive knowledge of molecular biomarkers and therapeutic targets. Here, we reviewed recent insights in NEN tumorigenesis from selected basic research studies on animal models, highlighting novel players in the intergenic cooperation and peculiar mechanisms including splicing dysregulation, chromatin stability, or cell dedifferentiation. Furthermore, models of tumorigenesis based on composite interactions other than a linear progression of events are proposed, exemplified by the involvement in NEN tumorigenesis of genes regulating complex functions, such as MEN1 or DAXX. Although limited by interspecies differences, animal models have proved helpful for the more in-depth study of every facet of tumorigenesis, showing that the identification of driver mutations is only one of the many necessary steps and that other mechanisms are worth investigating.
Collapse
Affiliation(s)
- Lorenza Pastorino
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy; (L.P.); (P.G.)
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa, V.le Benedetto XV 6, 16132 Genoa, Italy;
| | - Federica Grillo
- Anatomic Pathology Unit, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy;
- Anatomic Pathology Unit, Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, 1632 Genoa, Italy
| | - Manuela Albertelli
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa, V.le Benedetto XV 6, 16132 Genoa, Italy;
- Endocrinology Unit, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Paola Ghiorzo
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy; (L.P.); (P.G.)
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa, V.le Benedetto XV 6, 16132 Genoa, Italy;
| | - William Bruno
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy; (L.P.); (P.G.)
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa, V.le Benedetto XV 6, 16132 Genoa, Italy;
| |
Collapse
|
10
|
Mallya K, Gautam SK, Aithal A, Batra SK, Jain M. Modeling pancreatic cancer in mice for experimental therapeutics. Biochim Biophys Acta Rev Cancer 2021; 1876:188554. [PMID: 33945847 DOI: 10.1016/j.bbcan.2021.188554] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/19/2021] [Accepted: 04/23/2021] [Indexed: 02/06/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy that is characterized by early metastasis, low resectability, high recurrence, and therapy resistance. The experimental mouse models have played a central role in understanding the pathobiology of PDAC and in the preclinical evaluation of various therapeutic modalities. Different mouse models with targetable pathological hallmarks have been developed and employed to address the unique challenges associated with PDAC progression, metastasis, and stromal heterogeneity. Over the years, mouse models have evolved from simple cell line-based heterotopic and orthotopic xenografts in immunocompromised mice to more complex and realistic genetically engineered mouse models (GEMMs) involving multi-gene manipulations. The GEMMs, mostly driven by KRAS mutation(s), have been widely accepted for therapeutic optimization due to their high penetrance and ability to recapitulate the histological, molecular, and pathological hallmarks of human PDAC, including comparable precursor lesions, extensive metastasis, desmoplasia, perineural invasion, and immunosuppressive tumor microenvironment. Advanced GEMMs modified to express fluorescent proteins have allowed cell lineage tracing to provide novel insights and a new understanding about the origin and contribution of various cell types in PDAC pathobiology. The syngeneic mouse models, GEMMs, and target-specific transgenic mice have been extensively used to evaluate immunotherapies and study therapy-induced immune modulation in PDAC yielding meaningful results to guide various clinical trials. The emerging mouse models for parabiosis, hepatic metastasis, cachexia, and image-guided implantation, are increasingly appreciated for their high translational significance. In this article, we describe the contribution of various experimental mouse models to the current understanding of PDAC pathobiology and their utility in evaluating and optimizing therapeutic modalities for this lethal malignancy.
Collapse
Affiliation(s)
- Kavita Mallya
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Shailendra K Gautam
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA.
| | - Abhijit Aithal
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
11
|
Uccella S, La Rosa S, Metovic J, Marchiori D, Scoazec JY, Volante M, Mete O, Papotti M. Genomics of High-Grade Neuroendocrine Neoplasms: Well-Differentiated Neuroendocrine Tumor with High-Grade Features (G3 NET) and Neuroendocrine Carcinomas (NEC) of Various Anatomic Sites. Endocr Pathol 2021; 32:192-210. [PMID: 33433884 DOI: 10.1007/s12022-020-09660-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/21/2020] [Indexed: 02/06/2023]
Abstract
High-grade neuroendocrine neoplasms (HG-NENs) are clinically aggressive diseases, the classification of which has recently been redefined. They now include both poorly differentiated NENs (neuroendocrine carcinoma, NECs) and high proliferating well-differentiated NENs (called grade 3 neuroendocrine tumors, G3 NETs, in the digestive system). In the last decade, the "molecular revolution" that has affected all fields of medical oncology has also shed light in the understanding of HG NENs heterogeneity and has provided new diagnostic and therapeutic tools, useful in the management of these malignancies. Considering the kaleidoscopic aspects of HG NENs in various anatomical sites, this review systematically addresses the genomic landscape of such neoplasm throughout the more common thoracic and digestive locations, as well as it will consider other rare but not exceptional primary sites, including the skin, the head and neck, and the urogenital system. The revision of the available literature will then be oriented to understand the translational relevance of molecular data, by analyzing conceptual issues, clinicopathological correlations, and unmet needs in this field.
Collapse
Affiliation(s)
- Silvia Uccella
- Pathology Unit, Department of Medicine and Surgery, University of Insubria, Varese, Italy.
| | - Stefano La Rosa
- Institute of Pathology, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jasna Metovic
- Department of Oncology, University of Turin, Torino, Italy
| | - Deborah Marchiori
- Pathology Unit, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Jean-Yves Scoazec
- Department of Pathology, Gustave Roussy Cancer Campus, Paris, France
| | - Marco Volante
- Department of Oncology, University of Turin, Torino, Italy
| | - Ozgur Mete
- Department of Pathology, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Mauro Papotti
- Department of Oncology, University of Turin, Torino, Italy
| |
Collapse
|
12
|
Detjen K, Hammerich L, Özdirik B, Demir M, Wiedenmann B, Tacke F, Jann H, Roderburg C. Models of Gastroenteropancreatic Neuroendocrine Neoplasms: Current Status and Future Directions. Neuroendocrinology 2021; 111:217-236. [PMID: 32615560 DOI: 10.1159/000509864] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/23/2020] [Indexed: 11/19/2022]
Abstract
Gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs) are a rare, heterogeneous group of tumors that originate from the endocrine system of the gastrointestinal tract and pancreas. GEP-NENs are subdivided according to their differentiation into well-differentiated neuroendocrine tumors (NETs) and poorly differentiated neuroendocrine carcinomas (NECs). Since GEP-NENs represent rare diseases, only limited data from large prospective, randomized clinical trials are available, and recommendations for treatment of GEP-NEN are in part based on data from retrospective analyses or case series. In this context, tractable disease models that reflect the situation in humans and that allow to recapitulate the different clinical aspects and disease stages of GEP-NET or GEP-NEC are urgently needed. In this review, we highlight available data on mouse models for GEP-NEN. We discuss how these models reflect tumor biology of human disease and whether these models could serve as a tool for understanding the pathogenesis of GEP-NEN and for disease modeling and pharmacosensitivity assays, facilitating prediction of treatment response in patients. In addition, open issues applicable for future developments will be discussed.
Collapse
Affiliation(s)
- Katharina Detjen
- Department of Hepatology and Gastroenterology, Charité - University Medicine Berlin, Campus Virchow Klinikum and Charité Campus Mitte, Berlin, Germany
| | - Linda Hammerich
- Department of Hepatology and Gastroenterology, Charité - University Medicine Berlin, Campus Virchow Klinikum and Charité Campus Mitte, Berlin, Germany
| | - Burcin Özdirik
- Department of Hepatology and Gastroenterology, Charité - University Medicine Berlin, Campus Virchow Klinikum and Charité Campus Mitte, Berlin, Germany
| | - Münevver Demir
- Department of Hepatology and Gastroenterology, Charité - University Medicine Berlin, Campus Virchow Klinikum and Charité Campus Mitte, Berlin, Germany
| | - Bertram Wiedenmann
- Department of Hepatology and Gastroenterology, Charité - University Medicine Berlin, Campus Virchow Klinikum and Charité Campus Mitte, Berlin, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité - University Medicine Berlin, Campus Virchow Klinikum and Charité Campus Mitte, Berlin, Germany
| | - Henning Jann
- Department of Hepatology and Gastroenterology, Charité - University Medicine Berlin, Campus Virchow Klinikum and Charité Campus Mitte, Berlin, Germany
| | - Christoph Roderburg
- Department of Hepatology and Gastroenterology, Charité - University Medicine Berlin, Campus Virchow Klinikum and Charité Campus Mitte, Berlin, Germany,
| |
Collapse
|
13
|
Modelling Pancreatic Neuroendocrine Cancer: From Bench Side to Clinic. Cancers (Basel) 2020; 12:cancers12113170. [PMID: 33126717 PMCID: PMC7693644 DOI: 10.3390/cancers12113170] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 12/11/2022] Open
Abstract
Pancreatic neuroendocrine tumours (pNETs) are a heterogeneous group of epithelial tumours with neuroendocrine differentiation. Although rare (incidence of <1 in 100,000), they are the second most common group of pancreatic neoplasms after pancreatic ductal adenocarcinoma (PDAC). pNET incidence is however on the rise and patient outcomes, although variable, have been linked with 5-year survival rates as low as 40%. Improvement of diagnostic and treatment modalities strongly relies on disease models that reconstruct the disease ex vivo. A key constraint in pNET research, however, is the absence of human pNET models that accurately capture the original tumour phenotype. In attempts to more closely mimic the disease in its native environment, three-dimensional culture models as well as in vivo models, such as genetically engineered mouse models (GEMMs), have been developed. Despite adding significant contributions to our understanding of more complex biological processes associated with the development and progression of pNETs, factors such as ethical considerations and low rates of clinical translatability limit their use. Furthermore, a role for the site-specific extracellular matrix (ECM) in disease development and progression has become clear. Advances in tissue engineering have enabled the use of tissue constructs that are designed to establish disease ex vivo within a close to native ECM that can recapitulate tumour-associated tissue remodelling. Yet, such advanced models for studying pNETs remain underdeveloped. This review summarises the most clinically relevant disease models of pNETs currently used, as well as future directions for improved modelling of the disease.
Collapse
|
14
|
Xu EY, Vosburgh E, Wong C, Tang LH, Notterman DA. Genetic analysis of the cooperative tumorigenic effects of targeted deletions of tumor suppressors Rb1, Trp53, Men1, and Pten in neuroendocrine tumors in mice. Oncotarget 2020; 11:2718-2739. [PMID: 32733644 PMCID: PMC7367653 DOI: 10.18632/oncotarget.27660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/15/2020] [Indexed: 01/29/2023] Open
Abstract
Genetic alterations of tumor suppressor genes (TSGs) are frequently observed to have cumulative or cooperative tumorigenic effects. We examined whether the TSGs Rb1, Trp53, Pten and Men1 have cooperative effects in suppressing neuroendocrine tumors (NETs) in mice. We generated pairwise homozygous deletions of these four genes in insulin II gene expressing cells using the Cre-LoxP system. By monitoring growth and examining the histopathology of the pituitary (Pit) and pancreas (Pan) in these mice, we demonstrated that pRB had the strongest cooperative function with PTEN in suppressing PitNETs and had strong cooperative function with Menin and TRP53, respectively, in suppressing PitNETs and PanNETs. TRP53 had weak cooperative function with PTEN in suppressing pituitary lesions. We also found that deletion of Pten singly led to prolactinomas in female mice, and deletion of Rb1 alone led to islet hyperplasia in pancreas. Collectively, our data indicated that pRB and PTEN pathways play significant roles in suppressing PitNETs, while the Menin-mediated pathway plays a significant role in suppressing PanNETs. Understanding the molecular mechanisms of these genes and pathways on NETs will help us understand the molecular mechanisms of neuroendocrine tumorigenesis and develop effective preclinical murine models for NET therapeutics to improve clinical outcomes in humans.
Collapse
Affiliation(s)
- Eugenia Y Xu
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08903, USA.,Department of Pediatrics, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA.,Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Evan Vosburgh
- Department of Medicine, Veterans Administration Hospital, West Haven, CT 06516, USA.,Department of Medicine, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Chung Wong
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08903, USA.,Current address: Regeneron Inc., Tarrytown, NY 10591, USA
| | - Laura H Tang
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Daniel A Notterman
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
15
|
Yamauchi Y, Kodama Y, Shiokawa M, Kakiuchi N, Marui S, Kuwada T, Sogabe Y, Tomono T, Mima A, Morita T, Matsumori T, Ueda T, Tsuda M, Nishikawa Y, Kuriyama K, Sakuma Y, Ota Y, Maruno T, Uza N, Masuda A, Tatsuoka H, Yabe D, Minamiguchi S, Masui T, Inagaki N, Uemoto S, Chiba T, Seno H. Rb and p53 Execute Distinct Roles in the Development of Pancreatic Neuroendocrine Tumors. Cancer Res 2020; 80:3620-3630. [PMID: 32591410 DOI: 10.1158/0008-5472.can-19-2232] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 02/26/2020] [Accepted: 06/23/2020] [Indexed: 11/16/2022]
Abstract
Pancreatic neuroendocrine tumors (PanNET) were classified into grades (G) 1 to 3 by the World Health Organization in 2017, but the precise mechanisms of PanNET initiation and progression have remained unclear. In this study, we used a genetically engineered mouse model to investigate the mechanisms of PanNET formation. Although pancreas-specific deletion of the Rb gene (Pdx1-Cre;Rbf/f ) in mice did not affect pancreatic exocrine cells, the α-cell/β-cell ratio of islet cells was decreased at 8 months of age. During long-term observation (18-20 months), mice formed well-differentiated PanNET with a Ki67-labeling index of 2.7%. In contrast, pancreas-specific induction of a p53 mutation (Pdx1-Cre;Trp53R172H ) had no effect on pancreatic exocrine and endocrine tissues, but simultaneous induction of a p53 mutation with Rb gene deletion (Pdx1-Cre;Trp53R172H;Rb f/f ) resulted in the formation of aggressive PanNET with a Ki67-labeling index of 24.7% over the short-term (4 months). In Pdx1-Cre;Trp53R172H;Rbf/f mice, mRNA expression of Pten and Tsc2, negative regulators of the mTOR pathway, significantly decreased in the islet cells, and activation of the mTOR pathway was confirmed in subsequently formed PanNET. Thus, by manipulating Rb and p53 genes, we established a multistep progression model from dysplastic islet to indolent PanNET and aggressive metastatic PanNET in mice. These observations suggest that Rb and p53 have distinct roles in the development of PanNET. SIGNIFICANCE: Pancreas-specific manipulation of Rb and p53 genes induced malignant transformation of islet cells, reproducing stepwise progression from microadenomas to indolent (grade 1) and subsequent aggressive PanNETs (grade 2-3).
Collapse
Affiliation(s)
- Yuki Yamauchi
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Shogoin, Sakyo-ku, Kyoto, Japan
| | - Yuzo Kodama
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Shogoin, Sakyo-ku, Kyoto, Japan. .,Department of Gastroenterology, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Hyogo, Japan
| | - Masahiro Shiokawa
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Shogoin, Sakyo-ku, Kyoto, Japan
| | - Nobuyuki Kakiuchi
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Shogoin, Sakyo-ku, Kyoto, Japan
| | - Saiko Marui
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Shogoin, Sakyo-ku, Kyoto, Japan
| | - Takeshi Kuwada
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Shogoin, Sakyo-ku, Kyoto, Japan
| | - Yuko Sogabe
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Shogoin, Sakyo-ku, Kyoto, Japan
| | - Teruko Tomono
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Shogoin, Sakyo-ku, Kyoto, Japan
| | - Atsushi Mima
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Shogoin, Sakyo-ku, Kyoto, Japan
| | - Toshihiro Morita
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Shogoin, Sakyo-ku, Kyoto, Japan
| | - Tomoaki Matsumori
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Shogoin, Sakyo-ku, Kyoto, Japan
| | - Tatsuki Ueda
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Shogoin, Sakyo-ku, Kyoto, Japan
| | - Motoyuki Tsuda
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Shogoin, Sakyo-ku, Kyoto, Japan
| | - Yoshihiro Nishikawa
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Shogoin, Sakyo-ku, Kyoto, Japan
| | - Katsutoshi Kuriyama
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Shogoin, Sakyo-ku, Kyoto, Japan
| | - Yojiro Sakuma
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Shogoin, Sakyo-ku, Kyoto, Japan
| | - Yuji Ota
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Shogoin, Sakyo-ku, Kyoto, Japan
| | - Takahisa Maruno
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Shogoin, Sakyo-ku, Kyoto, Japan
| | - Norimitsu Uza
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Shogoin, Sakyo-ku, Kyoto, Japan
| | - Atsuhiro Masuda
- Department of Gastroenterology, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Hyogo, Japan
| | - Hisato Tatsuoka
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Shogoin, Sakyo-ku, Kyoto, Japan
| | - Daisuke Yabe
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Shogoin, Sakyo-ku, Kyoto, Japan
| | - Sachiko Minamiguchi
- Department of Diagnostic Pathology, Kyoto University Graduate School of Medicine, Shogoin, Sakyo-ku, Kyoto, Japan
| | - Toshihiko Masui
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Kyoto University, Shogoin-Kawahara, Sakyo-ku, Kyoto, Japan
| | - Nobuya Inagaki
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Shogoin, Sakyo-ku, Kyoto, Japan
| | - Shinji Uemoto
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Kyoto University, Shogoin-Kawahara, Sakyo-ku, Kyoto, Japan
| | - Tsutomu Chiba
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Shogoin, Sakyo-ku, Kyoto, Japan.,Kansai Electric Power Hospital, Fukushima-ku, Osaka, Japan
| | - Hiroshi Seno
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Shogoin, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
16
|
Naert T, Dimitrakopoulou D, Tulkens D, Demuynck S, Carron M, Noelanders R, Eeckhout L, Van Isterdael G, Deforce D, Vanhove C, Van Dorpe J, Creytens D, Vleminckx K. RBL1 (p107) functions as tumor suppressor in glioblastoma and small-cell pancreatic neuroendocrine carcinoma in Xenopus tropicalis. Oncogene 2020; 39:2692-2706. [PMID: 32001819 DOI: 10.1038/s41388-020-1173-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 01/13/2020] [Accepted: 01/20/2020] [Indexed: 11/09/2022]
Abstract
Alterations of the retinoblastoma and/or the p53 signaling network are associated with specific cancers such as high-grade astrocytoma/glioblastoma, small-cell lung cancer (SCLC), choroid plexus tumors, and small-cell pancreatic neuroendocrine carcinoma (SC-PaNEC). However, the intricate functional redundancy between RB1 and the related pocket proteins RBL1/p107 and RBL2/p130 in suppressing tumorigenesis remains poorly understood. Here we performed lineage-restricted parallel inactivation of rb1 and rbl1 by multiplex CRISPR/Cas9 genome editing in the true diploid Xenopus tropicalis to gain insight into this in vivo redundancy. We show that while rb1 inactivation is sufficient to induce choroid plexus papilloma, combined rb1 and rbl1 inactivation is required and sufficient to drive SC-PaNEC, retinoblastoma and astrocytoma. Further, using a novel Li-Fraumeni syndrome-mimicking tp53 mutant X. tropicalis line, we demonstrate increased malignancy of rb1/rbl1-mutant glioma towards glioblastoma upon concomitant inactivation of tp53. Interestingly, although clinical SC-PaNEC samples are characterized by abnormal p53 expression or localization, in the current experimental models, the tp53 status had little effect on the establishment and growth of SC-PaNEC, but may rather be essential for maintaining chromosomal stability. SCLC was only rarely observed in our experimental setup, indicating requirement of additional or alternative oncogenic insults. In conclusion, we used CRISPR/Cas9 to delineate the tumor suppressor properties of Rbl1, generating new insights in the functional redundancy within the retinoblastoma protein family in suppressing neuroendocrine pancreatic cancer and glioma/glioblastoma.
Collapse
Affiliation(s)
- Thomas Naert
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Dionysia Dimitrakopoulou
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Dieter Tulkens
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Suzan Demuynck
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Marjolein Carron
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University, Ghent, Belgium
| | - Rivka Noelanders
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Liza Eeckhout
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | | | - Dieter Deforce
- Laboratory for Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
| | - Christian Vanhove
- Cancer Research Institute Ghent, Ghent, Belgium
- Infinity lab, Ghent University Hospital, Ghent, Belgium
| | - Jo Van Dorpe
- Cancer Research Institute Ghent, Ghent, Belgium
- Department of Pathology, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - David Creytens
- Cancer Research Institute Ghent, Ghent, Belgium
- Department of Pathology, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Kris Vleminckx
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
- Cancer Research Institute Ghent, Ghent, Belgium.
- Center for Medical Genetics, Ghent University, Ghent, Belgium.
| |
Collapse
|
17
|
Steglich A, Hickmann L, Linkermann A, Bornstein S, Hugo C, Todorov VT. Beyond the Paradigm: Novel Functions of Renin-Producing Cells. Rev Physiol Biochem Pharmacol 2020; 177:53-81. [PMID: 32691160 DOI: 10.1007/112_2020_27] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The juxtaglomerular renin-producing cells (RPC) of the kidney are referred to as the major source of circulating renin. Renin is the limiting factor in renin-angiotensin system (RAS), which represents a proteolytic cascade in blood plasma that plays a central role in the regulation of blood pressure. Further cells disseminated in the entire organism express renin at a low level as part of tissue RASs, which are thought to locally modulate the effects of systemic RAS. In recent years, it became increasingly clear that the renal RPC are involved in developmental, physiological, and pathophysiological processes outside RAS. Based on recent experimental evidence, a novel concept emerges postulating that next to their traditional role, the RPC have non-canonical RAS-independent progenitor and renoprotective functions. Moreover, the RPC are part of a widespread renin lineage population, which may act as a global stem cell pool coordinating homeostatic, stress, and regenerative responses throughout the organism. This review focuses on the RAS-unrelated functions of RPC - a dynamic research area that increasingly attracts attention.
Collapse
Affiliation(s)
- Anne Steglich
- Experimental Nephrology, Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Linda Hickmann
- Experimental Nephrology, Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Andreas Linkermann
- Experimental Nephrology, Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Stefan Bornstein
- Experimental Nephrology, Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Christian Hugo
- Experimental Nephrology, Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Vladimir T Todorov
- Experimental Nephrology, Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany.
| |
Collapse
|
18
|
Inam R, Gandhi J, Joshi G, Smith NL, Khan SA. Juxtaglomerular Cell Tumor: Reviewing a Cryptic Cause of Surgically Correctable Hypertension. Curr Urol 2019; 13:7-12. [PMID: 31579192 DOI: 10.1159/000499301] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 07/22/2018] [Indexed: 12/16/2022] Open
Abstract
Juxtaglomerular cell tumor (JGCT), or reninoma, is a typically benign neoplasm generally affecting adolescents and young adults due to modified smooth muscle cells from the afferent arteriole of the juxtaglomerular apparatus. Patients experience symptoms related to hypertension and hypoka-lemia due to renin-secretion by the tumor. MRI, PET, CT, and renal vein catheterizations can be used to capture JGCTs, with laparoscopic ultrasonography being most cost-efective. Surgical removal is the best option for management; electrolyte imbalances are a potential complication which may be assuaged via pre-surgical administration of aliskiren, a renin inhibitor. Considering the vast etiology for hypertension and rarity of JGCT, the diagnosing physician must have a high index of suspicion for JGCT. Early recognition and management can help prevent cardiovascular or pregnancy complications and fatalities, vascular invasion and metastasis, improve quality of life, and limit socioeconomic liabilities. Herein we review the epidemiology, genetics, histopathol-ogy, clinical presentation, and management of this rare condition. The impact of genetics on prognosis warrant further research.
Collapse
Affiliation(s)
- Rafid Inam
- Department of Physiology and Biophysics, Stony Brook Renaissance University School of Medicine, Stony Brook, NY, USA
| | - Jason Gandhi
- Department of Physiology and Biophysics, Stony Brook Renaissance University School of Medicine, Stony Brook, NY, USA.,Medical Student Research Institute, St. George's University School of Medicine, Grenada, West Indies
| | - Gunjan Joshi
- Department of Internal Medicine, Stony Brook Southampton Hospital, Southampton, NY
| | | | - Sardar Ali Khan
- Department of Physiology and Biophysics, Stony Brook Renaissance University School of Medicine, Stony Brook, NY, USA.,Department of Urology, Stony Brook Renaissance University School of Medicine, Stony Brook, NY, USA
| |
Collapse
|
19
|
Saller J, Seydafkan S, Shahid M, Gadara M, Cives M, Eschrich SA, Boulware D, Strosberg JR, Aejaz N, Coppola D. EPB41L5 is Associated With the Metastatic Potential of Low-grade Pancreatic Neuroendocrine Tumors. Cancer Genomics Proteomics 2019; 16:309-318. [PMID: 31467225 PMCID: PMC6727072 DOI: 10.21873/cgp.20136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/15/2019] [Accepted: 05/29/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND/AIM Low-grade pancreatic neuroendocrine tumors (LG-PNETs) behave unpredictably. The aim of the study was to identify biomarkers that predict PNET metastasis to improve treatment selection. PATIENTS AND METHODS Five patients with primary non-metastatic LG-PNETs, six with primary LG-PNETs with synchronous or metachronous metastases (M-PNETs), and six metastatic to liver LG-PNETs (ML-PNETs) from the group of six M-PNET patients were selected. RNA data were normalized using iterative rank-order normalization. Student's t-test identified differentially-expressed genes in LG-PNETs versus M-PNETs. A 2-fold difference in expression was considered to be significant. Results were validated with an independent dataset of LG-PNETs and metastatic LG-PNETs. RESULTS Overall, 195 genes had a >2-fold change (in either direction). A total of 29 genes were differentially overexpressed in M-PNETs. Erythrocyte membrane protein band 4.1-like 5 (EPB41L5) had a 2.07-fold change increase in M-PNETs and the smallest p-value. EPB41L5 was not statistically different between M-PNETs and ML-PNETs. EPB41L5 differential expression between primary and metastatic LG-PNETs was confirmed by immunohistochemistry. CONCLUSION These results support further investigation into whether EPB41L5 is a biomarker of PNETs with high risk for metastases.
Collapse
Affiliation(s)
- James Saller
- Department of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, U.S.A
| | - Shabnam Seydafkan
- Department of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, U.S.A
| | - Mohammad Shahid
- Department of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, U.S.A
| | - Manoj Gadara
- Department of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, U.S.A
| | - Mauro Cives
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, U.S.A
| | - Steven A Eschrich
- Department of Bioinformatics and Biostatistics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, U.S.A
| | - David Boulware
- Department of Bioinformatics and Biostatistics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, U.S.A
| | - Jonathan R Strosberg
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, U.S.A
| | - Nasir Aejaz
- Diagnostic and Experimental Pathology, Eli Lilly and Company, Indianapolis, IN, U.S.A
| | - Domenico Coppola
- Department of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, U.S.A.
- Department of Chemical Biology and Molecular Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, U.S.A
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, U.S.A
- Department of Oncological Sciences, University of South Florida, Tampa, FL, U.S.A
| |
Collapse
|
20
|
Buicko JL, Finnerty BM, Zhang T, Kim BJ, Fahey TJ, Nancy Du YC. Insights into the biology and treatment strategies of pancreatic neuroendocrine tumors. ACTA ACUST UNITED AC 2019; 2. [PMID: 31535089 DOI: 10.21037/apc.2019.06.02] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Pancreatic neuroendocrine tumors (PNETs) are the second most common primary pancreatic neoplasms after pancreatic ductal adenocarcinoma. PNETs present with widely various clinical manifestation and unfavorable survival rate. The recent advances in next generation sequencing have significantly increased our understanding of the molecular landscape of PNETs and help guide the development of targeted therapies. This review intends to outline a holistic picture of the tumors by discussing current understanding of clinical presentations, up-to-date treatment strategies, novel mouse models, and molecular biology of PNETs. Furthermore, we will provide insight into the future development of more effective targeted therapies that are necessary to manage PNETs.
Collapse
Affiliation(s)
- Jessica L Buicko
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065, USA
| | | | - Tiantian Zhang
- Department of Pathology & Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Bu Jung Kim
- Department of Pathology & Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Thomas J Fahey
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065, USA
| | - Yi-Chieh Nancy Du
- Department of Pathology & Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
21
|
Belyea BC, Xu F, Sequeira-Lopez MLS, Gomez RA. Leukemia development initiated by deletion of RBP-J: mouse strain, deletion efficiency and cell of origin. Dis Model Mech 2018; 11:dmm.036731. [PMID: 30467111 PMCID: PMC6307899 DOI: 10.1242/dmm.036731] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 11/13/2018] [Indexed: 12/12/2022] Open
Abstract
Conditional deletion of RBP-J, the major transcriptional effector of Notch signaling, specifically within renin-expressing cells leads to the development of B-cell leukemia. However, the influence of contributing factors such as mouse strain, cell of origin and Cre recombinase copy number are unknown. In this study, we compared RBP-J deletion efficiency using one versus two copies of Cre recombinase. Further, we compared the incidence and timing of leukemia development in two unique strains of mice, C57BL/6 and 129/SV, as well as at different B-cell developmental stages. We found that animals expressing two copies of Cre recombinase developed B-cell leukemia at an earlier age and with more fulminant disease, compared with control animals and animals expressing one copy of Cre recombinase. In addition, we found a difference in leukemia incidence between C57BL/6 and 129/SV mouse strains. Whereas deletion of RBP-J in renin-expressing cells of C57BL/6 mice leads to the development of B-cell leukemia, 129/SV mice develop dermatitis with a reactive, myeloproliferative phenotype. The difference in phenotypes is explained, in part, by the differential expression of extra-renal renin; C57BL/6 mice have more renin-expressing cells within hematopoietic tissues. Finally, we found that deletion of RBP-J in Mb1- or CD19-expressing B lymphocytes does not result in leukemia development. Together, these studies establish that renin progenitors are vulnerable cells for neoplastic transformation and emphasize the importance of genetic background on the development of inflammatory and malignant conditions.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Brian Chipman Belyea
- Department of Pediatrics, University of Virginia School of Medicine, MR4 Building, 409 Lane Road, Charlottesville, VA 22908, USA
| | - Fang Xu
- Department of Pediatrics, University of Virginia School of Medicine, MR4 Building, 409 Lane Road, Charlottesville, VA 22908, USA
| | | | - Roberto Ariel Gomez
- Department of Pediatrics, University of Virginia School of Medicine, MR4 Building, 409 Lane Road, Charlottesville, VA 22908, USA
| |
Collapse
|
22
|
Wasserman JK, AlGhamdi D, de Almeida JR, Stockley TL, Perez-Ordonez B. P53 Gene Mutation Identified by Next Generation Sequencing in Poorly Differentiated Neuroendocrine Carcinoma of the Nasal Cavity. Head Neck Pathol 2018; 13:516-522. [PMID: 29845478 PMCID: PMC6684699 DOI: 10.1007/s12105-018-0934-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 05/16/2018] [Indexed: 10/16/2022]
Abstract
Neuroendocrine carcinomas (NECs) are epithelial neoplasms showing morphologic, immunophenotypic or ultrastructural evidence of neuroendocrine differentiation. The 2017 WHO Classification of Head and Neck Tumours classifies NECs into well, moderately and poorly differentiated NECs according to light microscopic features, mitotic rate and presence of tumour necrosis. In this study, we performed next generation sequencing (NGS) using a targeted 161 cancer gene panel on a poorly differentiated NEC of the nasal cavity. The tumour was composed of large cells arranged in poorly formed glands and solid nests. The mitotic count rate was 30/10 HPFs and p53 protein was strongly expressed in all tumour cells. NGS identified a missense mutation, c.764T > G (p.Ile255Ser) in the TP53 gene with an allele frequency of 85%. This mutation results in an isoleucine to serine substitution and a non-functional protein. No other mutations were identified. These results suggest that TP53 mutations may drive oncogenesis in poorly differentiated NECs of the head and neck.
Collapse
Affiliation(s)
- Jason K. Wasserman
- 0000 0004 0474 0428grid.231844.8Laboratory Medicine Program, University Health Network, Toronto, ON Canada ,0000 0001 2157 2938grid.17063.33Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON Canada ,0000 0004 0474 0428grid.231844.8Department of Pathology, University Health Network, 200 Elizabeth Street, Toronto, ON M5G 2C4 Canada
| | - Doaa AlGhamdi
- 0000 0004 0474 0428grid.231844.8Laboratory Medicine Program, University Health Network, Toronto, ON Canada ,0000 0001 2157 2938grid.17063.33Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON Canada
| | - John R. de Almeida
- 0000 0004 0474 0428grid.231844.8Department of Otolaryngology Head and Neck Surgery, Department of Surgical Oncology, University Health Network, Toronto, ON Canada
| | - Tracy L. Stockley
- 0000 0004 0474 0428grid.231844.8Laboratory Medicine Program, University Health Network, Toronto, ON Canada ,0000 0001 2157 2938grid.17063.33Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON Canada
| | - Bayardo Perez-Ordonez
- 0000 0004 0474 0428grid.231844.8Laboratory Medicine Program, University Health Network, Toronto, ON Canada ,0000 0001 2157 2938grid.17063.33Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON Canada
| |
Collapse
|
23
|
Kawasaki K, Fujii M, Sato T. Gastroenteropancreatic neuroendocrine neoplasms: genes, therapies and models. Dis Model Mech 2018; 11:11/2/dmm029595. [PMID: 29590641 PMCID: PMC5894937 DOI: 10.1242/dmm.029595] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs) refer to a group of heterogeneous cancers of neuroendocrine cell phenotype that mainly fall into one of two subtypes: gastroenteropancreatic neuroendocrine tumors (GEP-NETs; well differentiated) or gastroenteropancreatic neuroendocrine carcinomas (GEP-NECs; poorly differentiated). Although originally defined as orphan cancers, their steadily increasing incidence highlights the need to better understand their etiology. Accumulating epidemiological and clinical data have shed light on the pathological characteristics of these diseases. However, the relatively low number of patients has hampered conducting large-scale clinical trials and hence the development of novel treatment strategies. To overcome this limitation, tractable disease models that faithfully reflect clinical features of these diseases are needed. In this Review, we summarize the current understanding of the genetics and biology of these diseases based on conventional disease models, such as genetically engineered mouse models (GEMMs) and cell lines, and discuss the phenotypic differences between the models and affected humans. We also highlight the emerging disease models derived from human clinical samples, including patient-derived xenograft models and organoids, which may provide biological and therapeutic insights into GEP-NENs.
Collapse
Affiliation(s)
- Kenta Kawasaki
- Department of Gastroenterology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Masayuki Fujii
- Department of Gastroenterology, Keio University School of Medicine, Tokyo 160-8582, Japan.,Department of Surgical Oncology, The University of Tokyo, Tokyo 113-8654, Japan
| | - Toshiro Sato
- Department of Gastroenterology, Keio University School of Medicine, Tokyo 160-8582, Japan
| |
Collapse
|
24
|
Fielitz K, Althoff K, De Preter K, Nonnekens J, Ohli J, Elges S, Hartmann W, Klöppel G, Knösel T, Schulte M, Klein-Hitpass L, Beisser D, Reis H, Eyking A, Cario E, Schulte JH, Schramm A, Schüller U. Characterization of pancreatic glucagon-producing tumors and pituitary gland tumors in transgenic mice overexpressing MYCN in hGFAP-positive cells. Oncotarget 2018; 7:74415-74426. [PMID: 27769070 PMCID: PMC5342675 DOI: 10.18632/oncotarget.12766] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 10/13/2016] [Indexed: 01/28/2023] Open
Abstract
Amplification or overexpression of MYCN is involved in development and maintenance of multiple malignancies. A subset of these tumors originates from neural precursors, including the most aggressive forms of the childhood tumors, neuroblastoma and medulloblastoma. In order to model the spectrum of MYCN-driven neoplasms in mice, we transgenically overexpressed MYCN under the control of the human GFAP-promoter that, among other targets, drives expression in neural progenitor cells. However, LSL-MYCN;hGFAP-Cre double transgenic mice did neither develop neural crest tumors nor tumors of the central nervous system, but presented with neuroendocrine tumors of the pancreas and, less frequently, the pituitary gland. Pituitary tumors expressed chromogranin A and closely resembled human pituitary adenomas. Pancreatic tumors strongly produced and secreted glucagon, suggesting that they derived from glucagon- and GFAP-positive islet cells. Interestingly, 3 out of 9 human pancreatic neuroendocrine tumors expressed MYCN, supporting the similarity of the mouse tumors to the human system. Serial transplantations of mouse tumor cells into immunocompromised mice confirmed their fully transformed phenotype. MYCN-directed treatment by AuroraA- or Brd4-inhibitors resulted in significantly decreased cell proliferation in vitro and reduced tumor growth in vivo. In summary, we provide a novel mouse model for neuroendocrine tumors of the pancreas and pituitary gland that is dependent on MYCN expression and that may help to evaluate MYCN-directed therapies.
Collapse
Affiliation(s)
- Kathrin Fielitz
- Department of Pediatric Oncology and Hematology, University Children's Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Kristina Althoff
- Department of Pediatric Oncology and Hematology, University Children's Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Katleen De Preter
- Centre for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Julie Nonnekens
- Genetics and Nuclear Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jasmin Ohli
- Center for Neuropathology, Ludwig-Maximilians University, Munich, Germany
| | - Sandra Elges
- Department of Pathology, University Hospital, Münster, Germany
| | | | - Günter Klöppel
- Department of Pathology, Technical University, Munich, Germany
| | - Thomas Knösel
- Department of Pathology, Ludwig-Maximilians University, Munich, Germany
| | - Marc Schulte
- Department of Pediatric Oncology and Hematology, University Children's Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ludger Klein-Hitpass
- Cell Biology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Daniela Beisser
- Genome Informatics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Henning Reis
- Department of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Annette Eyking
- Division of Gastroenterology and Hepatology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Elke Cario
- Division of Gastroenterology and Hepatology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Johannes H Schulte
- Department of Pediatric Oncology and Hematology, Charité University Medicine, Berlin, Germany
| | - Alexander Schramm
- Department of Pediatric Oncology and Hematology, University Children's Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ulrich Schüller
- Center for Neuropathology, Ludwig-Maximilians University, Munich, Germany.,Institute of Neuropathology, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany.,Research Institute Childrens Cancer Center, Hamburg, Germany.,Department of Pediatric Oncology and Hematology, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
25
|
Aristizabal Prada ET, Auernhammer CJ. Targeted therapy of gastroenteropancreatic neuroendocrine tumours: preclinical strategies and future targets. Endocr Connect 2018; 7:R1-R25. [PMID: 29146887 PMCID: PMC5754510 DOI: 10.1530/ec-17-0286] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 11/16/2017] [Indexed: 12/12/2022]
Abstract
Molecular targeted therapy of advanced neuroendocrine tumours (NETs) of the gastroenteropancreatic (GEP) system currently encompasses approved therapy with the mammalian target of rapamycin (mTOR) inhibitor everolimus and the multi-tyrosinkinase inhibitor sunitinib. However, clinical efficacy of these treatment strategies is limited by low objective response rates and limited progression-free survival due to tumour resistance. Further novel strategies for molecular targeted therapy of NETs of the GEP system are needed. This paper reviews preclinical research models and signalling pathways in NETs of the GEP system. Preclinical and early clinical data on putative novel targets for molecular targeted therapy of NETs of the GEP system are discussed, including PI3K, Akt, mTORC1/mTORC2, GSK3, c-Met, Ras-Raf-MEK-ERK, embryogenic pathways (Hedgehog, Notch, Wnt/beta-catenin, TGF-beta signalling and SMAD proteins), tumour suppressors and cell cycle regulators (p53, cyclin-dependent kinases (CDKs) CDK4/6, CDK inhibitor p27, retinoblastoma protein (Rb)), heat shock protein HSP90, Aurora kinase, Src kinase family, focal adhesion kinase and epigenetic modulation by histone deacetylase inhibitors.
Collapse
Affiliation(s)
- E T Aristizabal Prada
- Department of Internal Medicine IVCampus Grosshadern, University-Hospital, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - C J Auernhammer
- Department of Internal Medicine IVCampus Grosshadern, University-Hospital, Ludwig-Maximilians-University of Munich, Munich, Germany
| |
Collapse
|
26
|
Expression of p53 protein in high-grade gastroenteropancreatic neuroendocrine carcinoma. PLoS One 2017; 12:e0187667. [PMID: 29112960 PMCID: PMC5675414 DOI: 10.1371/journal.pone.0187667] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 10/24/2017] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Gastroenteropancreatic neuroendocrine carcinomas (GEP-NECs) are aggressive, rapidly proliferating tumors. Therapeutic response to current chemotherapy regimens is usually short lasting. The aim of this study was to examine the expression and potential clinical importance of immunoreactive p53 protein in GEP-NEC. MATERIALS AND METHODS Tumor tissues from 124 GEP-NEC patients with locally advanced or metastatic disease treated with platinum-based chemotherapy were collected from Nordic centers and clinical data were obtained from the Nordic NEC register. Tumor proliferation rate and differentiation were re-evaluated. All specimens were immunostained for p53 protein using a commercially available monoclonal antibody. Kaplan-Meier curves and cox regression analyses were used to assess progression-free survival (PFS) and overall survival (OS). RESULTS All tumor tissues were immunoreactive for either one or both neuroendocrine biomarkers (chromogranin A and synaptophysin) and Ki67 index was >20% in all cases. p53 immunoreactivity was only shown in 39% of the cases and was not found to be a prognostic marker for the whole cohort. However, p53 immunoreactivity was correlated with shorter PFS in patients with colorectal tumors (HR = 2.1, p = 0.03) in a univariate analysis as well as to poorer PFS (HR = 2.6, p = 0.03) and OS (HR = 3.4, p = 0.02) in patients with colorectal tumors with distant metastases, a correlation which remained significant in the multivariate analyses. CONCLUSION In this cohort of GEP-NEC patients, p53 expression could not be correlated with clinical outcome. However, in patients with colorectal NECs, p53 expression was correlated with shorter PFS and OS. Further studies are needed to establish the role of immunoreactive p53 as a prognostic marker for GEP-NEC patients.
Collapse
|
27
|
Ototoxic effects and mechanisms of loop diuretics. J Otol 2016; 11:145-156. [PMID: 29937824 PMCID: PMC6002634 DOI: 10.1016/j.joto.2016.10.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 10/17/2016] [Accepted: 10/18/2016] [Indexed: 12/22/2022] Open
Abstract
Over the past two decades considerable progress has been made in understanding the ototoxic effects and mechanisms underlying loop diuretics. As typical representative of loop diuretics ethacrynic acid or furosemide only induces temporary hearing loss, but rarely permanent deafness unless applied in severe acute or chronic renal failure or with other ototoxic drugs. Loop diuretic induce unique pathological changes in the cochlea such as formation of edematous spaces in the epithelium of the stria vascularis, which leads to rapid decrease of the endolymphatic potential and eventual loss of the cochlear microphonic potential, summating potential, and compound action potential. Loop diuretics interfere with strial adenylate cyclase and Na+/K+-ATPase and inhibit the Na-K-2Cl cotransporter in the stria vascularis, however recent reports indicate that one of the earliest effects in vivo is to abolish blood flow in the vessels supplying the lateral wall. Since ethacrynic acid does not damage the stria vascularis in vitro, the changes in Na+/K+-ATPase and Na-K-2Cl seen in vivo may be secondary effects results from strial ischemia and anoxia. Recent observations showing that renin is present in pericytes surrounding stria arterioles suggest that diuretics may induce local vasoconstriction by renin secretion and angiotensin formation. The tight junctions in the blood-cochlea barrier prevent toxic molecules and pathogens from entering cochlea, but when diuretics induce a transient ischemia, the barrier is temporarily disrupted allowing the entry of toxic chemicals or pathogens.
Collapse
|
28
|
Can Molecular Biomarkers Change the Paradigm of Pancreatic Cancer Prognosis? BIOMED RESEARCH INTERNATIONAL 2016; 2016:4873089. [PMID: 27689078 PMCID: PMC5023838 DOI: 10.1155/2016/4873089] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 07/28/2016] [Accepted: 08/03/2016] [Indexed: 12/20/2022]
Abstract
Pancreatic ductal adenocarcinoma is one of the most lethal types of tumour, and its incidence is rising worldwide. Although survival can be improved when these tumours are detected at an early stage, this cancer is usually asymptomatic, and the disease only becomes apparent after metastasis. The only prognostic biomarker approved by the FDA to date is carbohydrate antigen 19-9 (CA19-9); however, the specificity of this biomarker has been called into question, and diagnosis is usually based on clinical parameters. Tumour size, degree of differentiation, lymph node status, presence of distant metastasis at diagnosis, protein levels of KI-67 or C-reactive protein, and mutational status of P53, KRAS, or BRCA2 are the most useful biomarkers in clinical practice. In addition to these, recent translational research has provided evidence of new biomarkers based on different molecules involved in endoplasmic reticulum stress, epithelial-to-mesenchymal transition, and noncoding RNA panels, especially microRNAs and long noncoding RNAs. These new prospects open new paths to tumour detection using minimally or noninvasive techniques such as liquid biopsies. To find sensitive and specific biomarkers to manage these patients constitutes a challenge for the research community and for public health policies.
Collapse
|
29
|
John A, Schwartz R. Glucagonoma syndrome: a review and update on treatment. J Eur Acad Dermatol Venereol 2016; 30:2016-2022. [DOI: 10.1111/jdv.13752] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 12/18/2015] [Indexed: 01/26/2023]
Affiliation(s)
- A.M. John
- Dermatology and Pathology; Rutgers-New Jersey Medical School; Newark NJ USA
| | - R.A. Schwartz
- Dermatology and Pathology; Rutgers-New Jersey Medical School; Newark NJ USA
- Rutgers University School of Public Affairs and Administration; Newark NJ USA
| |
Collapse
|
30
|
Yu R. Animal models of spontaneous pancreatic neuroendocrine tumors. Mol Cell Endocrinol 2016; 421:60-7. [PMID: 26261055 DOI: 10.1016/j.mce.2015.08.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 07/10/2015] [Accepted: 08/04/2015] [Indexed: 01/20/2023]
Abstract
Pancreatic neuroendocrine tumors (PNETs) are usually low-grade neoplasms derived from the endocrine pancreas. PNETs can be functioning and cause well-described hormonal hypersecretion syndromes or non-functioning and cause only tumor mass effect. PNETs appear to be more common recently likely due to incidental detection by imaging. Although the diagnosis and management of PNETs have been evolving rapidly, much remains to be studied in the areas of molecular pathogenesis, molecular markers of tumor behavior, early detection, and targeted drug therapy. Unique challenges facing PNETs studies are long disease course, the deep location of pancreas and difficult access to pancreatic tissue, and the variety of tumors, which make animal models valuable tools for PNETs studies. Existing animal models of PNETs have provided insights into the pathogenesis and natural history of human PNETs. Future studies on animal models of PNETs should address early tumor detection, molecular markers of tumor behavior, and novel targeted therapies.
Collapse
Affiliation(s)
- Run Yu
- Division of Endocrinology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|