1
|
Li L, Zhu F, Liang Y, Chen Y, Pan Y, Jia L, Wang S, Zhao H. SCF β-TrCP targets Ajuba for degradation in a GSK3β-dependent manner in colorectal cancer. Neoplasia 2025; 66:101175. [PMID: 40367710 DOI: 10.1016/j.neo.2025.101175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 05/05/2025] [Indexed: 05/16/2025]
Abstract
Ajuba (ajuba LIM protein, JUB) is a member of the Ajuba family, and its oncogenic biological functions in colorectal cancer (CRC) have been extensively reported including proliferation, metastasis and resistance to chemotherapy. Although considerable studies have reported the regulation of Ajuba at the transcriptional level, the potential mechanisms of regulating Ajuba protein stability have not been fully elucidated to date. Herein, we showed that the mRNA and protein expression of Ajuba is upregulated in CRC tissues, high protein level correlates with unfavorable prognosis. Importantly, we identified Ajuba as a novel substrate of GSK3β kinase and SCFβ-TrCP E3 ubiquitin ligase. Mechanistically, GSK3β phosphorylates Ajuba at serine 163 in the highly conserved degron motif (TS163GIS), which determines the interaction between Ajuba and the C-terminal WD40 domain of β-TrCP, and subsequent ubiquitination and targeted proteasomal degradation of Ajuba by β-TrCP. Conversely, the S163A mutant significantly attenuates the ubiquitination level of Ajuba. Overall, our study reveals a novel regulatory mechanism of Ajuba at post-translational level and sheds light on the role of GSK3β-β-TrCP axis in the turnover of Ajuba in CRC.
Collapse
Affiliation(s)
- Liangshan Li
- Department of Laboratory Medicine, Huadong Hospital, Fudan University, Shanghai, 200040, China; Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Feng Zhu
- Department of Laboratory Medicine, Huadong Hospital, Fudan University, Shanghai, 200040, China; Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Yupei Liang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Yuanyuan Chen
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Yongfu Pan
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Lijun Jia
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; School of Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Shiwen Wang
- Department of Laboratory Medicine, Huadong Hospital, Fudan University, Shanghai, 200040, China; Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Hu Zhao
- Department of Laboratory Medicine, Huadong Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
2
|
Akao K, Sato T, Mishiro-Sato E, Mukai S, Ghani FI, Kondo-Ida L, Imaizumi K, Sekido Y. TEAD-Independent Cell Growth of Hippo-Inactive Mesothelioma Cells: Unveiling Resistance to TEAD Inhibitor K-975 through MYC Signaling Activation. Mol Cancer Ther 2025; 24:709-719. [PMID: 39686607 DOI: 10.1158/1535-7163.mct-24-0308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/30/2024] [Accepted: 12/11/2024] [Indexed: 12/18/2024]
Abstract
Inactivation of tumor-suppressive Hippo signaling pathway is frequently observed in mesothelioma, which leads to the activation of yes-associated protein (YAP) and TAZ (also known as WW domain-containing transcription regulator 1; YAP/TAZ) transcriptional coactivators. YAP/TAZ form complexes with TEAD family members, DNA-binding proteins, to activate transcription, which promotes cancer cell growth and proliferation. Recently developed TEAD inhibitors exhibit antitumor activity by inhibiting the formation of the transcription complex through binding to TEAD; however, the antitumor activity of TEAD inhibitors against mesothelioma remains to be fully elucidated. Here, we show that the TEAD inhibitor K-975 acts as a pan-TEAD inhibitor and selectively inhibits the binding of TEAD-binding proteins, especially YAP/TAZ, in mesothelioma cells. In studies using a panel of mesothelioma cell lines, K-975 showed a significant growth inhibitory effect on Hippo-inactivated mesothelioma cells, but some of these cell lines exhibited primary resistance to K-975. Differential gene expression analysis revealed that cells resistant to K-975 exhibited activation of MYC signaling in the presence of K-975, and cells overexpressed with MYC showed strong drug resistance, in vitro and in vivo. Our study revealed the features of a subset of mesothelioma cells that proliferate in a TEAD-independent manner and provides important insights for the successful development of therapeutic strategies for mesothelioma with Hippo pathway inactivation.
Collapse
Affiliation(s)
- Ken Akao
- Division of Cancer Biology, Aichi Cancer Center Research Institute, Nagoya, Japan
- Department of Respiratory Medicine, Fujita Health University School of Medicine, Toyoake, Japan
| | - Tatsuhiro Sato
- Division of Cancer Biology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Emi Mishiro-Sato
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
| | - Satomi Mukai
- Division of Cancer Biology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Farhana Ishrat Ghani
- Division of Cancer Biology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Lisa Kondo-Ida
- Division of Cancer Biology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Kazuyoshi Imaizumi
- Department of Respiratory Medicine, Fujita Health University School of Medicine, Toyoake, Japan
| | - Yoshitaka Sekido
- Division of Cancer Biology, Aichi Cancer Center Research Institute, Nagoya, Japan
- Department of Cancer Genetics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
3
|
Kato T, Tanaka I, Huang H, Okado S, Imamura Y, Nomata Y, Takenaka H, Watanabe H, Kawasumi Y, Nakanishi K, Kadomatsu Y, Ueno H, Nakamura S, Mizuno T, Chen-Yoshikawa TF. Molecular Mechanisms of Tumor Progression and Novel Therapeutic and Diagnostic Strategies in Mesothelioma. Int J Mol Sci 2025; 26:4299. [PMID: 40362535 PMCID: PMC12072309 DOI: 10.3390/ijms26094299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 04/27/2025] [Accepted: 04/29/2025] [Indexed: 05/15/2025] Open
Abstract
Mesothelioma is characterized by the inactivation of tumor suppressor genes, with frequent mutations in neurofibromin 2 (NF2), BRCA1-associated protein 1 (BAP1), and cyclin-dependent kinase inhibitor 2A (CDKN2A). These mutations lead to disruptions in the Hippo signaling pathway and histone methylation, thereby promoting tumor growth. NF2 mutations result in Merlin deficiency, leading to uncontrolled cell proliferation, whereas BAP1 mutations impair chromatin remodeling and hinder DNA damage repair. Emerging molecular targets in mesothelioma include mesothelin (MSLN), oxytocin receptor (OXTR), protein arginine methyltransferase (PRMT5), and carbohydrate sulfotransferase 4 (CHST4). MSLN-based therapies, such as antibody-drug conjugates and immunotoxins, have shown efficacy in clinical trials. OXTR, upregulated in mesothelioma, is correlated with poor prognosis and represents a novel therapeutic target. PRMT5 inhibition is being explored in tumors with MTAP deletions, commonly co-occurring with CDKN2A loss. CHST4 expression is associated with improved prognosis, potentially influencing tumor immunity. Immune checkpoint inhibitors targeting PD-1/PD-L1 have shown promise in some cases; however, resistance mechanisms remain a challenge. Advances in multi-omics approaches have improved our understanding of mesothelioma pathogenesis. Future research will aim to identify novel therapeutic targets and personalized treatment strategies, particularly in the context of epigenetic therapy and combination immunotherapy.
Collapse
Affiliation(s)
- Taketo Kato
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; (T.K.); (H.H.); (S.O.); (Y.I.); (Y.N.); (H.T.); (H.W.); (Y.K.); (K.N.); (Y.K.); (H.U.); (S.N.); (T.M.)
| | - Ichidai Tanaka
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan;
| | - Heng Huang
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; (T.K.); (H.H.); (S.O.); (Y.I.); (Y.N.); (H.T.); (H.W.); (Y.K.); (K.N.); (Y.K.); (H.U.); (S.N.); (T.M.)
| | - Shoji Okado
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; (T.K.); (H.H.); (S.O.); (Y.I.); (Y.N.); (H.T.); (H.W.); (Y.K.); (K.N.); (Y.K.); (H.U.); (S.N.); (T.M.)
| | - Yoshito Imamura
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; (T.K.); (H.H.); (S.O.); (Y.I.); (Y.N.); (H.T.); (H.W.); (Y.K.); (K.N.); (Y.K.); (H.U.); (S.N.); (T.M.)
| | - Yuji Nomata
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; (T.K.); (H.H.); (S.O.); (Y.I.); (Y.N.); (H.T.); (H.W.); (Y.K.); (K.N.); (Y.K.); (H.U.); (S.N.); (T.M.)
| | - Hirofumi Takenaka
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; (T.K.); (H.H.); (S.O.); (Y.I.); (Y.N.); (H.T.); (H.W.); (Y.K.); (K.N.); (Y.K.); (H.U.); (S.N.); (T.M.)
| | - Hiroki Watanabe
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; (T.K.); (H.H.); (S.O.); (Y.I.); (Y.N.); (H.T.); (H.W.); (Y.K.); (K.N.); (Y.K.); (H.U.); (S.N.); (T.M.)
| | - Yuta Kawasumi
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; (T.K.); (H.H.); (S.O.); (Y.I.); (Y.N.); (H.T.); (H.W.); (Y.K.); (K.N.); (Y.K.); (H.U.); (S.N.); (T.M.)
| | - Keita Nakanishi
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; (T.K.); (H.H.); (S.O.); (Y.I.); (Y.N.); (H.T.); (H.W.); (Y.K.); (K.N.); (Y.K.); (H.U.); (S.N.); (T.M.)
| | - Yuka Kadomatsu
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; (T.K.); (H.H.); (S.O.); (Y.I.); (Y.N.); (H.T.); (H.W.); (Y.K.); (K.N.); (Y.K.); (H.U.); (S.N.); (T.M.)
| | - Harushi Ueno
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; (T.K.); (H.H.); (S.O.); (Y.I.); (Y.N.); (H.T.); (H.W.); (Y.K.); (K.N.); (Y.K.); (H.U.); (S.N.); (T.M.)
| | - Shota Nakamura
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; (T.K.); (H.H.); (S.O.); (Y.I.); (Y.N.); (H.T.); (H.W.); (Y.K.); (K.N.); (Y.K.); (H.U.); (S.N.); (T.M.)
| | - Tetsuya Mizuno
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; (T.K.); (H.H.); (S.O.); (Y.I.); (Y.N.); (H.T.); (H.W.); (Y.K.); (K.N.); (Y.K.); (H.U.); (S.N.); (T.M.)
| | - Toyofumi Fengshi Chen-Yoshikawa
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; (T.K.); (H.H.); (S.O.); (Y.I.); (Y.N.); (H.T.); (H.W.); (Y.K.); (K.N.); (Y.K.); (H.U.); (S.N.); (T.M.)
| |
Collapse
|
4
|
Sato K, Faraji F, Cervantes-Villagrana RD, Wu X, Koshizuka K, Ishikawa T, Iglesias-Bartolome R, Chen L, Miliani de Marval PL, Gwaltney SL, Adler B, Gutkind JS. Targeting YAP/TAZ-TEAD signaling as a therapeutic approach in head and neck squamous cell carcinoma. Cancer Lett 2025; 612:217467. [PMID: 39826667 PMCID: PMC12044704 DOI: 10.1016/j.canlet.2025.217467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/30/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
Genetic alterations in Hippo pathway and the consequent activation of YAP/TAZ-TEAD are frequently observed in HPV-negative head and neck squamous cell carcinoma (HNSCC) patients. These include loss-of-function mutation and/or copy number loss of FAT1, and amplification of YAP1 and WWTR1 (encoding TAZ), thus raising the possibility that HNSCC cells may be dependent on YAP/TAZ-TEAD-mediated transcriptional programs. In this regard, the recent development of small molecule TEAD inhibitors (smTEADi) provides an opportunity to therapeutically target Hippo pathway dysregulation in human malignancies. This prompted us to explore the potential benefit of pharmacologically targeting the YAP/TAZ-TEAD axis in this disease. Here, we provide the pre-clinical evidence for the antitumor activity of novel smTEADi, SW-682 in HPV-negative HNSCC. By the use of multiple complementary experimental approaches, including siRNA knockdown, expression of a genetically encoded TEAD inhibitor peptide (pTEADi), and SW-682, we revealed that disruption of YAP/TAZ-TEAD interaction suppresses YAP/TAZ-TEAD-dependent target gene transcription and growth of HNSCC tumors. HNSCC cells with genetic alterations in FAT1 were more sensitive to TEADi compared to FAT1-wild type cells. Mechanistically, TEADi suppressed cell cycle progression and promoted the expression of terminal differentiation gene programs, resulting in tumor growth inhibition. A HNSCC-specific TEADi target gene set was defined from RNA-seq data, which is highly expressed in HNSCC tissues and predicts poor prognosis of HPV-negative HNSCC patients. Our results underscore that YAP/TAZ-TEAD-mediated growth-promoting programs represent a vulnerability in HPV-negative HNSCC, thus providing a pre-clinical rationale for the future evaluation of YAP/TAZ-TEAD targeting strategies as a therapeutic approach for HPV-negative HNSCC patients.
Collapse
Affiliation(s)
- Kuniaki Sato
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA; Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Farhoud Faraji
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA; Department of Otolaryngology-Head and Neck Surgery, UC San Diego Health, La Jolla, CA, USA
| | - Rodolfo Daniel Cervantes-Villagrana
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA; Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Xingyu Wu
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA; Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Keiichi Koshizuka
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA; Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Tomohiko Ishikawa
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA; Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Ramiro Iglesias-Bartolome
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lei Chen
- SpringWorks Therapeutics, Inc., Stamford, CT, USA
| | | | | | | | - J Silvio Gutkind
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA; Department of Pharmacology, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
5
|
Liang X, Liu X, Zhang L, Liu J, Yan R, Li H, Zeng X, Wang H. Targeting the Ajuba/Notch axis increases the sensitivity of colon cancer cells to 5-fluorouracil. Cytojournal 2024; 21:44. [PMID: 39737130 PMCID: PMC11683402 DOI: 10.25259/cytojournal_44_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 10/09/2024] [Indexed: 01/01/2025] Open
Abstract
Objective Colorectal cancer is severely challenging because of the insufficient understanding of the mechanism underlying its resistance to clinical chemotherapy. The purpose of our study is to investigate the role of the LIM protein Ajuba (JUB) in the chemoresistance of colon cancer and its potential effect on clinical treatment. Material and Methods The protein levels of JUB in colon cancer tissues were evaluated using Western blot analysis and immunohistochemistry assays. The correlation between JUB and the prognosis of patients with colorectal cancer was determined using Kaplan-Meier plot analysis. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays were employed to determine the 50% inhibitory concentration of 5-fluorouracil (5-FU) and thus assess the effect of JUB on the effectiveness of 5-FU. In addition, the rate of cellular apoptosis was measured using fluorescence-activated cell sorting assays. Side population and sphere formation analyses were conducted to determine the role of JUB in promoting the stem cell-like traits of colon cancer cells. In vivo assays were performed and detect whether the downregulation of JUB induces 5-FU sensitivity. Moreover, luciferase and Western blot assays were employed to uncover the mechanism through which JUB promotes chemoresistance in colon cancer. Results JUB expression was upregulated in chemoresistant colon cancer (P < 0.001) and correlated with relapse-free survival (P = 0.000002). Functionally, the upregulation of JUB conferred 5-FU resistance to colon cancer cells in vitro, whereas the downregulation of JUB induced 5-FU sensitivity in colon cancer cells in vivo. The high expression of JUB promoted the tumorigenic capability of colon cancer cells. Furthermore, the increased expression of JUB activated multiple downstream genes of the Notch signaling pathway with increased expression in JUB-overexpressing cells but reduced expression in JUB-silenced cells. Importantly, the inhibition of Notch signaling using a small-molecule inhibitor significantly suppressed JUB-induced chemoresistance. Conclusion Results suggest that JUB plays an important role and may serve as a biomarker for the clinical treatment of patients with 5-FU-resistant colon cancer.
Collapse
Affiliation(s)
- Xinghua Liang
- The First Clinical Medical College, Jinan University, Guangzhou, China
- Department of Gastroenterology, The Fourth Affiliated Hospital of Guangzhou Medical University (Zengcheng District People`s Hospital of Guangzhou), Guangzhou, China
| | - Xuelian Liu
- Department of Gastroenterology, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Long Zhang
- Department of Endoscopy Center, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Junhao Liu
- Department of General Surgery, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Rong Yan
- Department of Gastroenterology, The Fourth Affiliated Hospital of Guangzhou Medical University (Zengcheng District People`s Hospital of Guangzhou), Guangzhou, China
| | - Haiyan Li
- Department of Gastroenterology, The Fourth Affiliated Hospital of Guangzhou Medical University (Zengcheng District People`s Hospital of Guangzhou), Guangzhou, China
| | - Xiancheng Zeng
- Department of General Surgery, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Hong Wang
- The First Clinical Medical College, Jinan University, Guangzhou, China
- Department of Gastroenterology, Guangzhou First People`s Hospital, Guangzhou, China
| |
Collapse
|
6
|
Sun Y, Chen H, Chen S, Xu X, Zhang W, Li Y. The Hippo signaling pathway contributes to the 2,5-Hexadion-induced apoptosis of ovarian granulosa cells. J Ovarian Res 2023; 16:161. [PMID: 37563629 PMCID: PMC10416496 DOI: 10.1186/s13048-023-01249-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 07/27/2023] [Indexed: 08/12/2023] Open
Abstract
Although n-hexane can induce ovarian damage by inducing ovarian granulosa cell (GC) apoptosis, the mechanism underlying this induction of apoptosis has not been fully elucidated. In this study, rat ovarian GCs were exposed to different concentrations of 2,5-hexanedione (2,5-HD) (the main metabolite of n-hexane) in vitro to observe apoptosis, and the mechanism was further explored via mRNA microarray analysis. Hoechst 33258 staining and flow cytometry suggested that the apoptosis rate of ovarian GC apoptosis was significantly increased in the 2,5-HD-treated group. Subsequently, microarray analysis revealed that a total of 5677 mRNAs were differentially expressed, and further GO and KEGG analyses revealed that the differentially expressed genes were significantly enriched in many signaling pathways, including the Hippo pathway. A total of 7 differentially expressed genes that function upstream of the Hippo signaling pathway (Nf2, Wwc1, Ajuba, Llgl1, Dlg3, Rassf6 and Rassf1) were selected to confirm the microarray results by qRT-PCR, and the expression of these genes did change. Subsequently, the expression of key effector genes (Yap1, Mst1 and Lats1) and target genes (Ctgf and Puma) of the Hippo signaling was measured, and the results suggested that the mRNA and protein levels of Yap1, Mst1, Lats1, and Ctgf were significantly decreased while those of Puma were significantly increased after 2,5-HD treatment. Further CO-IP analysis suggested that the interaction between YAP1 and TEAD was significantly reduced after 2,5-HD treatment, while the interaction between YAP1 and P73 was not affected. In summary, during the 2,5-HD-induced apoptosis of ovarian GCs, the Hippo signaling pathway is inhibited, and downregulation of the pro-proliferation gene Ctgf and upregulated of the pro-apoptosis gene Puma are important. Decreased Ctgf expression was associated with decreased binding of YAP1 to TEAD. However, increased PUMA expression was not associated with YAP1 binding to P73.
Collapse
Affiliation(s)
- Yi Sun
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China
- Key Laboratory of Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Huiting Chen
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China
| | - Sichuan Chen
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China
| | - Xueming Xu
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China
| | - Wenchang Zhang
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China.
| | - Yuchen Li
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China.
| |
Collapse
|
7
|
Rodríguez TC, Kwan S, Smith JL, Dadafarin S, Wu CH, Sontheimer EJ, Xue W. Multiomics characterization of mouse hepatoblastoma identifies yes-associated protein 1 target genes. Hepatology 2023; 78:58-71. [PMID: 35932276 PMCID: PMC10205091 DOI: 10.1002/hep.32713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 12/08/2022]
Abstract
BACKGROUND AND AIMS Hepatoblastoma (HB) is the most common primary liver malignancy in childhood and lacks targeted therapeutic options. We previously engineered, to our knowledge, the first yes-associated protein 1 (YAP1) S127A -inducible mouse model of HB, demonstrating tumor regression and redifferentiation after YAP1 withdrawal through genome-wide enhancer modulation. Probing accessibility, transcription, and YAP1 binding at regulatory elements in HB tumors may provide more insight into YAP1-driven tumorigenesis and expose exploitable vulnerabilities in HB. APPROACH AND RESULTS Using a multiomics approach, we integrated high-throughput transcriptome and chromatin profiling of our murine HB model to identify dynamic activity at candidate cis -regulatory elements (cCREs). We observed that 1301 of 305,596 cCREs exhibit "tumor-modified" (TM) accessibility in HB. We mapped 241 TM enhancers to corresponding genes using accessibility and histone H3K27Ac profiles. Anti-YAP1 cleavage under targets and tagmentation in tumors revealed 66 YAP1-bound TM cCRE/gene pairs, 31 of which decrease expression after YAP1 withdrawal. We validated the YAP1-dependent expression of a putative YAP1 target, Jun dimerization protein 2 (JDP2), in human HB cell lines using YAP1 and LATS1/2 small interfering RNA knockdown. We also confirmed YAP1-induced activity of the Jdp2 TM enhancer in vitro and discovered an analogous human enhancer in silico. Finally, we used transcription factor (TF) footprinting to identify putative YAP1 cofactors and characterize HB-specific TF activity genome wide. CONCLUSIONS Our chromatin-profiling techniques define the regulatory frameworks underlying HB and identify YAP1-regulated gene/enhancer pairs. JDP2 is an extensively validated target with YAP1-dependent expression in human HB cell lines and hepatic malignancies.
Collapse
Affiliation(s)
- Tomás C. Rodríguez
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605
| | - SuetYan Kwan
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605
| | - Jordan L. Smith
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605
| | | | - Chern-Horng Wu
- Division of Internal Medicine and Primary Care, Tufts Medical Center, 800 Washington, Boston, MA, 02111
| | - Erik J. Sontheimer
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605
| | - Wen Xue
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605
| |
Collapse
|
8
|
Ooki A, Osumi H, Chin K, Watanabe M, Yamaguchi K. Potent molecular-targeted therapies for advanced esophageal squamous cell carcinoma. Ther Adv Med Oncol 2023; 15:17588359221138377. [PMID: 36872946 PMCID: PMC9978325 DOI: 10.1177/17588359221138377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 10/21/2022] [Indexed: 01/15/2023] Open
Abstract
Esophageal cancer (EC) remains a public health concern with a high mortality and disease burden worldwide. Esophageal squamous cell carcinoma (ESCC) is a predominant histological subtype of EC that has unique etiology, molecular profiles, and clinicopathological features. Although systemic chemotherapy, including cytotoxic agents and immune checkpoint inhibitors, is the main therapeutic option for recurrent or metastatic ESCC patients, the clinical benefits are limited with poor prognosis. Personalized molecular-targeted therapies have been hampered due to the lack of robust treatment efficacy in clinical trials. Therefore, there is an urgent need to develop effective therapeutic strategies. In this review, we summarize the molecular profiles of ESCC based on the findings of pivotal comprehensive molecular analyses, highlighting potent therapeutic targets for establishing future precision medicine for ESCC patients, with the most recent results of clinical trials.
Collapse
Affiliation(s)
- Akira Ooki
- Department of Gastroenterological Chemotherapy,
Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31
Ariake, Koto-ku, Tokyo 135-8550, Japan
| | - Hiroki Osumi
- Department of Gastroenterological Chemotherapy,
Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo,
Japan
| | - Keisho Chin
- Department of Gastroenterological Chemotherapy,
Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo,
Japan
| | - Masayuki Watanabe
- Department of Gastroenterological Surgery,
Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo,
Japan
| | - Kensei Yamaguchi
- Department of Gastroenterological Chemotherapy,
Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo,
Japan
| |
Collapse
|
9
|
Desai P, Awatiger MM, Mane DR. Evaluation of Immunoexpression of AJUBA Protein in Normal Oral Mucosa and Oral Squamous Cell Carcinoma. Appl Immunohistochem Mol Morphol 2023; 31:1-8. [PMID: 36222508 DOI: 10.1097/pai.0000000000001077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/18/2022] [Indexed: 12/13/2022]
Abstract
AJUBA is multifunctional scaffold protein which belongs to Zyxin family of proteins. It is known to have dual role in cancer as a tumor promoter and tumor suppressor. AJUBA has a key role in systemic malignancies like esophageal squamous cell carcinoma, colorectal cancer, cervical, breast, prostate cancer, etc. But there is very sparse literature available regarding its expression profile in oral squamous cell carcinoma (OSCC) and moreover its expression has not been observed in normal oral mucosa (NOM). Thus, the aim of this research is to explore the expression profile of AJUBA by immunohistochemical method in NOM and OSCC. Furthermore, we also evaluated the association of AJUBA expression with clinicopathologic parameters. A total of 84 samples of formalin fixed paraffin embedded tissue blocks comprising of 42 cases each of NOM and OSCC were subjected to detect immunoexpression of AJUBA. We found enhanced intense immune-expression of AJUBA in OSCC cases than compared with NOM and found to be statistically significant. The parameters specific to histologic tumor grade and inflammatory response in OSCC also found to have statistically significant with AJUBA expression. Our study is first of its kind to reveal AJUBA expression in basal and suprabasal layer of NOM suggestive of its definitive role in differentiation and stratification process. We also observed its intense expression in peripheral cell of tumor islands of OSCC cases, which can suggest its possible role in tumor growth and progression.
Collapse
Affiliation(s)
- Priyanka Desai
- Department of Oral Pathology and Microbiology, KLE VK Institute of Dental Sciences, KLE Academy of Higher Education and Research, Belagavi, Karnataka, India
| | | | | |
Collapse
|
10
|
Hu L, Sun Y, Liu S, Erb H, Singh A, Mao J, Luo X, Wu X. Discovery of a new class of reversible TEA domain transcription factor inhibitors with a novel binding mode. eLife 2022; 11:e80210. [PMID: 36398861 PMCID: PMC9728997 DOI: 10.7554/elife.80210] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 11/11/2022] [Indexed: 11/19/2022] Open
Abstract
The TEA domain (TEAD) transcription factor forms a transcription co-activation complex with the key downstream effector of the Hippo pathway, YAP/TAZ. TEAD-YAP controls the expression of Hippo-responsive genes involved in cell proliferation, development, and tumorigenesis. Hyperactivation of TEAD-YAP activities is observed in many human cancers and is associated with cancer cell proliferation, survival, and immune evasion. Therefore, targeting the TEAD-YAP complex has emerged as an attractive therapeutic approach. We previously reported that the mammalian TEAD transcription factors (TEAD1-4) possess auto-palmitoylation activities and contain an evolutionarily conserved palmitate-binding pocket (PBP), which allows small-molecule modulation. Since then, several reversible and irreversible inhibitors have been reported by binding to PBP. Here, we report a new class of TEAD inhibitors with a novel binding mode. Representative analog TM2 shows potent inhibition of TEAD auto-palmitoylation both in vitro and in cells. Surprisingly, the co-crystal structure of the human TEAD2 YAP-binding domain (YBD) in complex with TM2 reveals that TM2 adopts an unexpected binding mode by occupying not only the hydrophobic PBP, but also a new side binding pocket formed by hydrophilic residues. RNA-seq analysis shows that TM2 potently and specifically suppresses TEAD-YAP transcriptional activities. Consistently, TM2 exhibits strong antiproliferation effects as a single agent or in combination with a MEK inhibitor in YAP-dependent cancer cells. These findings establish TM2 as a promising small-molecule inhibitor against TEAD-YAP activities and provide new insights for designing novel TEAD inhibitors with enhanced selectivity and potency.
Collapse
Affiliation(s)
- Lu Hu
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical SchoolCharlestownUnited States
| | - Yang Sun
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical SchoolCharlestownUnited States
| | - Shun Liu
- Departments of Pharmacology & Biophysics, University of Texas Southwestern Medical CenterDallasUnited States
| | - Hannah Erb
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical SchoolCharlestownUnited States
| | - Alka Singh
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Junhao Mao
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Xuelian Luo
- Departments of Pharmacology & Biophysics, University of Texas Southwestern Medical CenterDallasUnited States
| | - Xu Wu
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical SchoolCharlestownUnited States
| |
Collapse
|
11
|
Kirichenko E, Irvine KD. AJUBA and WTIP can compete with LIMD1 for junctional localization and LATS regulation. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000666. [PMID: 36439396 PMCID: PMC9685415 DOI: 10.17912/micropub.biology.000666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/08/2022] [Accepted: 11/08/2022] [Indexed: 01/25/2023]
Abstract
Each of the three mammalian Ajuba family proteins, AJUBA, LIMD1 and WTIP, exhibit tension-dependent localization to adherens junctions, and can associate with Lats kinases. However, only LIMD1 has been directly demonstrated to directly regulate Lats activity in vivo. To assess the relationship of LIMD1 to AJUBA and WTIP, and the potential contributions of AJUBA and WTIP to Lats regulation, we examined the consequences of over-expressing AJUBA and WTIP in MCF10A cells. Over-expression of either AJUBA or WTIP reduced junctional localization of LIMD1, implying that these proteins can compete for binding to adherens junctions. This over-expression also reduced junctional localization of LATS1, implying that AJUBA or WTIP are unable to efficiently recruit Lats kinases to adherens junctions. This over-expression was also associated with increased YAP1 phosphorylation and decreased YAP1 nuclear localization, consistent with increased Lats kinase activity. These observations indicate that AJUBA and WTIP compete with LIMD1 for association with adherens junctions but have activities distinct from LIMD1 in Hippo pathway regulation. They further suggest that the ability of Ajuba family proteins to associate with Lats kinases in solution is not sufficient to enable regulation in vivo, and that tumor suppressor activities of AJUBA and WTIP could stem in part from competition with LIMD1 for regulation of Lats kinases at cell junctions.
Collapse
Affiliation(s)
- Elmira Kirichenko
- Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, 190 Frelinghusen Rd, Piscataway NJ 08854 USA
| | - Kenneth D Irvine
- Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, 190 Frelinghusen Rd, Piscataway NJ 08854 USA
,
Correspondence to: Kenneth D Irvine (
)
| |
Collapse
|
12
|
Song N, Liu J, Zhang K, Yang J, Cui K, Miao Z, Zhao F, Meng H, Chen L, Chen C, Li Y, Shao M, Su W, Wang H. The LIM Protein AJUBA is a Potential Oncogenic Target and Prognostic Marker in Human Cancer via Pan-Cancer Analysis. Front Cell Dev Biol 2022; 10:921897. [PMID: 35898403 PMCID: PMC9309301 DOI: 10.3389/fcell.2022.921897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 06/02/2022] [Indexed: 12/02/2022] Open
Abstract
Purpose: The LIM (Lin-11, Isl1, MEC-3) domain protein AJUBA is involved in multiple biological functions, and its aberrant expression is related to the occurrence and progression of various cancers. However, there are no analytical studies on AJUBA in pan-cancer. Methods: We performed a comprehensive pan-cancer analysis and explored the potential oncogenic roles of AJUBA, including gene expression, genetic mutation, protein phosphorylation, clinical diagnostic biomarker, prognosis, and AJUBA-related immune infiltration based on The Cancer Genome Atlas and Genotype-Tissue Expression databases. Results: The results revealed that the expression of AJUBA highly correlated with poor clinical outcomes in patients with different types of cancer. Meanwhile, AJUBA expression was positively correlated with cancer-associated fibroblasts in many human cancers, such as breast invasive carcinoma, colon adenocarcinoma, brain lower-grade glioma, lung adenocarcinoma (LUAD), and ovarian serous cystadenocarcinoma (OV). Gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses showed that AJUBA is mainly involved in protein serine/threonine kinase activity, cell–cell junction, covalent chromatin modification, and Hippo signaling pathway. Conclusion: The pan-cancer study reveals the oncogenic roles of AJUBA and provides a comprehensive understanding of the molecular biological genetic information of AJUBA in various tumors.
Collapse
Affiliation(s)
- Na Song
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
- Key Laboratory of Clinical Molecular Pathology, Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Jia Liu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Ke Zhang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Jie Yang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Kai Cui
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Zhuang Miao
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Feiyue Zhao
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Hongjing Meng
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Lu Chen
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Chong Chen
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Yushan Li
- School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Minglong Shao
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Wei Su
- Key Laboratory of Clinical Molecular Pathology, Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Haijun Wang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
- Key Laboratory of Clinical Molecular Pathology, Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- *Correspondence: Haijun Wang,
| |
Collapse
|
13
|
YAP1 maintains active chromatin state in head and neck squamous cell carcinomas that promotes tumorigenesis through cooperation with BRD4. Cell Rep 2022; 39:110970. [PMID: 35705032 DOI: 10.1016/j.celrep.2022.110970] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 02/23/2022] [Accepted: 05/25/2022] [Indexed: 11/21/2022] Open
Abstract
Analysis of The Cancer Genome Atlas and other published data of head and neck squamous cell carcinoma (HNSCC) reveals somatic alterations of the Hippo-YAP pathway in approximately 50% of HNSCC. Better strategies to target the YAP1 transcriptional complex are sought. Here, we show that FAT1, an upstream inhibitor of YAP1, is mutated either by missense or by truncating mutation in 29% of HNSCC. Comprehensive proteomic and drug-screening studies across pan-cancer models confirm that FAT1-mutant HNSCC exhibits selective and higher sensitivity to BRD4 inhibition by JQ1. Epigenomic analysis reveals an active chromatin state in FAT1-mutant HNSCC cells that is driven by the YAP/TAZ transcriptional complex through recruitment of BRD4 to deposit active histone marks, thereby maintaining an oncogenic transcriptional state. This study reveals a detailed cooperative mechanism between YAP1 and BRD4 in HNSCC and suggests a specific therapeutic opportunity for the treatment of this subset of head and neck cancer patients.
Collapse
|
14
|
Dommann N, Gavini J, Sánchez-Taltavull D, Baier FA, Birrer F, Loforese G, Candinas D, Stroka D. LIM protein Ajuba promotes liver cell proliferation through its involvement in DNA replication and DNA damage control. FEBS Lett 2022; 596:1746-1764. [PMID: 35535434 DOI: 10.1002/1873-3468.14371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/31/2022] [Accepted: 04/11/2022] [Indexed: 11/08/2022]
Abstract
The LIM-domain protein Ajuba is associated with cell proliferation, a fundamental process of tissue regeneration and cancer. We report that in the liver, Ajuba expression is increased during regeneration and in tumor cells and tissues. Knockout of Ajuba using CRISPR/Cas9 is embryonic lethal in mice. shRNA targeting of Ajuba reduces cell proliferation, delays cell entry into S-phase, reduces cell survival and tumor growth in vivo, and increases expression of the DNA damage marker γH2AX. Ajuba binding partners include proteins involved in DNA replication and damage, such as SKP2, MCM2, MCM7 and RPA70. Taken together, our data support that Ajuba promotes liver cell proliferation associated with development, regeneration, and tumor growth and is involved in DNA replication and damage repair.
Collapse
Affiliation(s)
- Noëlle Dommann
- Department of Visceral Surgery and Medicine, University of Bern, Inselspital, Bern University Hospital, Switzerland
| | - Jacopo Gavini
- Department of Visceral Surgery and Medicine, University of Bern, Inselspital, Bern University Hospital, Switzerland
| | - Daniel Sánchez-Taltavull
- Department of Visceral Surgery and Medicine, University of Bern, Inselspital, Bern University Hospital, Switzerland
| | - Felix Alexander Baier
- Department of Visceral Surgery and Medicine, University of Bern, Inselspital, Bern University Hospital, Switzerland
| | - Fabienne Birrer
- Department of Visceral Surgery and Medicine, University of Bern, Inselspital, Bern University Hospital, Switzerland
| | - Giulio Loforese
- Department of Visceral Surgery and Medicine, University of Bern, Inselspital, Bern University Hospital, Switzerland
| | - Daniel Candinas
- Department of Visceral Surgery and Medicine, University of Bern, Inselspital, Bern University Hospital, Switzerland
| | - Deborah Stroka
- Department of Visceral Surgery and Medicine, University of Bern, Inselspital, Bern University Hospital, Switzerland
| |
Collapse
|
15
|
Kim CL, Lim SB, Kim K, Jeong HS, Mo JS. Phosphorylation analysis of the Hippo-YAP pathway using Phos-tag. J Proteomics 2022; 261:104582. [DOI: 10.1016/j.jprot.2022.104582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 03/22/2022] [Accepted: 03/31/2022] [Indexed: 10/18/2022]
|
16
|
You W, Di A, Zhang L, Zhao G. Effects of wogonin on the growth and metastasis of colon cancer through the Hippo signaling pathway. Bioengineered 2022; 13:2586-2597. [PMID: 35037825 PMCID: PMC8973922 DOI: 10.1080/21655979.2021.2019173] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Wogonin is an effective component of Scutellaria baicalensis Georgi, which exhibits anti-tumor activity. The aim of this study was to explore the effects of wogonin on colon cancer (CC). Human CC cell lines, SW480 and HCT116, were cultured, and MTT assay was performed to detect cell survival. RT-qPCR and Western blotting were used to measure mRNA and protein expression, respectively. The migration and invasion abilities of the CC cells were determined by a transwell assay. Immunofluorescence staining was performed to determine the localization of IRF3. Xenograft mice were used to investigate the effects of wogonin on CC in vivo. Wogonin inhibited the survival and metastasis of CC cells. In addition, wogonin suppressed epithelial-mesenchymal transition (EMT). Furthermore, the protein expression of YAP1 and IRF3 was downregulated, and p-YAP1 was upregulated after wogonin treatment. Wogonin also suppressed IRF3 expression in the nuclei of CC cells and overexpression of YAP1 reversed the effects of wogonin in CC cells. Finally, wogonin inhibited the tumor growth in the mice and overexpression of YAP1 reversed the wogonin effects. Thus, these results showed that wogonin relieved the carcinogenic behaviors and EMT of CC cells via the IRF3-mediated Hippo signaling pathway.
Collapse
Affiliation(s)
- Wenli You
- Department of Chinese Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Aiting Di
- Department of Chinese Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lize Zhang
- Department of Chinese Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Gang Zhao
- Department of Chinese Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
17
|
Zhang J, Guo Y, Ma Y, Wang L, Li W, Zhang M, Zhao J, Hu Y, Yu H, Hu G. miR-433-3p Targets AJUBA to Inhibit Malignant Progression of Glioma. Neuroimmunomodulation 2022; 29:44-54. [PMID: 34518486 DOI: 10.1159/000518084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 06/18/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Glioma is the most aggressive and malignant type of tumors among primary intracranial tumors. miR-433-3p has been verified to be correlated with the formation and progression of many types of cancers. METHODS In this study, the effects of miR-433-3p and AJUBA on the proliferation, migration, and invasion of glioma and the molecular mechanisms were investigated. We analyzed bioinformatics databases and conducted cell biology experiments to determine that compared with adjacent tissue and normal cells, the expression level of miR-433-3p in glioma tissue and cells was lower, while the expression level of AJUBA was higher. Overexpressing miR-433-3p could significantly inhibit the proliferation, migration, and invasion of glioma cells and promote cell apoptosis. RESULTS In addition, after overexpressing miR-433-3p and AJUBA, it was found that overexpressing AJUBA could attenuate the inhibitory effect of overexpressing miR-433-3p on the proliferation, migration, and invasion of glioma cells, which suggested that miR-433-3p regulated the biological function of glioma by downregulating AJUBA expression. CONCLUSION These results proved that miR-433-3p could target to inhibit the expression of AJUBA, thus inhibiting the biological function and malignant progression of glioma.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Oncology, Tangshan Central Hospital, Tangshan, China
| | - Yihang Guo
- Department of Oncology, Tangshan Central Hospital, Tangshan, China
| | - Yanrong Ma
- Department of Oncology, Tangshan Central Hospital, Tangshan, China
| | - Lipeng Wang
- Department of Oncology, Tangshan Central Hospital, Tangshan, China
| | - Weiyuan Li
- Department of Oncology, Tangshan Central Hospital, Tangshan, China
| | - Manyu Zhang
- Department of Oncology, Tangshan Central Hospital, Tangshan, China
| | - Jiaming Zhao
- Department of Oncology, Tangshan Central Hospital, Tangshan, China
| | - Yueming Hu
- Department of Oncology, Tangshan Central Hospital, Tangshan, China
| | - Hongmei Yu
- Shanghai Engineering Research Center of Pharmaceutical Translation, Shanghai, China
| | - Guozhi Hu
- Department of Oncology, Tangshan Central Hospital, Tangshan, China
| |
Collapse
|
18
|
Okazaki Y. Asbestos‐induced mesothelial injury and carcinogenesis: Involvement of iron and reactive oxygen species. Pathol Int 2021; 72:83-95. [DOI: 10.1111/pin.13196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 12/11/2021] [Indexed: 11/27/2022]
Affiliation(s)
- Yasumasa Okazaki
- Department of Pathology and Biological Responses Nagoya University Graduate School of Medicine Showa‐Ku Nagoya Japan
| |
Collapse
|
19
|
Wang F, Zhao J, Zhang M, Yang J, Zeng G. Genome-wide analysis of the mouse LIM gene family reveals its roles in regulating pathological cardiac hypertrophy. FEBS Lett 2021; 595:2271-2289. [PMID: 34328660 DOI: 10.1002/1873-3468.14168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/27/2021] [Accepted: 07/17/2021] [Indexed: 11/08/2022]
Abstract
LIM-domain proteins have been shown to be associated with heart development and diseases. Systematic studies of LIM family members at the genome-wide level, which are crucial to further understand their functions in cardiac hypertrophy, are currently lacking. Here, 70 LIM genes were identified and characterised in mice. The expression patterns of LIM genes differ greatly during cardiac development and in the case of hypertrophy. Both Crip2 and Xirp2 are differentially expressed in cardiac hypertrophy and during heart failure. In addition, the hypertrophic state of cardiomyocytes is controlled by the relative expression levels of Crip2 and Xirp2. This study provides a foundation for further understanding of the special roles of LIM proteins in mammalian cardiac development and hypertrophy.
Collapse
Affiliation(s)
- Fangfang Wang
- Department of Cardiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Jieqiong Zhao
- Department of Cardiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Mingming Zhang
- Department of Cardiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Jingxiao Yang
- Department of Cardiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Guangwei Zeng
- Department of Cardiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
- Department of Cardiology, Xi'an International Medical Center Hospital, Northwest University, Xi'an, China
| |
Collapse
|
20
|
Kodama Y, Tanaka I, Sato T, Hori K, Gen S, Morise M, Matsubara D, Sato M, Sekido Y, Hashimoto N. Oxytocin receptor is a promising therapeutic target of malignant mesothelioma. Cancer Sci 2021; 112:3520-3532. [PMID: 34115916 PMCID: PMC8409407 DOI: 10.1111/cas.15025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/10/2021] [Accepted: 06/10/2021] [Indexed: 02/06/2023] Open
Abstract
Malignant mesothelioma (MM) is one of the most aggressive tumors. We conducted bioinformatics analysis using Cancer Cell Line Encyclopedia (CCLE) datasets to identify new molecular markers in MM. Overexpression of oxytocin receptor (OXTR), which is a G‐protein–coupled receptor for the hormone and neurotransmitter oxytocin, mRNA was distinctively identified in MM cell lines. Therefore, we assessed the role of OXTR and its clinical relevance in MM. Kaplan‐Meier and Cox regression analyses were applied to assess the association between overall survival and OXTR mRNA expression using The Cancer Genome Atlas (TCGA) datasets. The function of OXTR and the efficacy of its antagonists were investigated in vitro and in vivo using MM cell lines. Consistent with the findings from CCLE datasets analysis, OXTR mRNA expression was highly increased in MM tissues compared with other cancer types in the TCGA datasets, and MM cases with high OXTR expression showed poor overall survival. Moreover, OXTR knockdown dramatically decreased MM cell proliferation in cells with high OXTR expression via tumor cell cycle disturbance, whereas oxytocin treatment significantly increased MM cell growth. OXTR antagonists, which have high selectivity for OXTR, inhibited the growth of MM cell lines with high OXTR expression, and oral administration of the OXTR antagonist, cligosiban, significantly suppressed MM tumor progression in a xenograft model. Our findings suggest that OXTR plays a crucial role in MM cell proliferation and is a promising therapeutic target that may broaden potential therapeutic options and could be a prognostic biomarker of MM.
Collapse
Affiliation(s)
- Yuta Kodama
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ichidai Tanaka
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tatsuhiro Sato
- Division of Cancer Biology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Kazumi Hori
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Soei Gen
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahiro Morise
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Daisuke Matsubara
- Department of Diagnostic Pathology, Tsukuba University, Tsukuba, Japan
| | - Mitsuo Sato
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshitaka Sekido
- Division of Cancer Biology, Aichi Cancer Center Research Institute, Nagoya, Japan.,Department of Molecular and Cellular Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Naozumi Hashimoto
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
21
|
Le Y, He Y, Bai M, Wang Y, Wu J, Yu L. Knockout of Ajuba Attenuates the Growth and Migration of Hepatocellular Carcinoma Cells. Cytogenet Genome Res 2021; 160:650-658. [PMID: 33640888 DOI: 10.1159/000512264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 10/12/2020] [Indexed: 11/19/2022] Open
Abstract
Ajuba has been found to be mutated or aberrantly regulated in several human cancers and plays important roles in cancer progression via different signaling pathways. However, little is known about the role of Ajuba in hepatocellular carcinoma (HCC). Here, we found an upregulation of Ajuba expression in HCC tissues compared with normal liver tissues, while a poor prognosis was observed in HCC patients with high Ajuba expression. Knockout of Ajuba in HCC cells inhibited cell growth in vitro and in vivo, suppressed cell migration, and enhanced the cell apoptosis under stress. Moreover, re-expression of Ajuba in Ajuba-deficient cells could restore the phenotype of Ajuba-deficient cells. In conclusion, these results indicate that Ajuba is upregulated in HCC and promotes cell growth and migration of HCC cells, suggesting that Ajuba could possibly be a new target for HCC diagnosis and treatment.
Collapse
Affiliation(s)
- Yichen Le
- School of Life Sciences, Fudan University, Shanghai, China
| | - Yi He
- School of Life Sciences, Fudan University, Shanghai, China
| | - Meirong Bai
- School of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Ying Wang
- School of Life Sciences, Fudan University, Shanghai, China
| | - Jiaxue Wu
- School of Life Sciences, Fudan University, Shanghai, China,
| | - Long Yu
- School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
22
|
Wang X, Chen Y, Liu W, Liu T, Sun D. Hsa_circ_0128846 promotes tumorigenesis of colorectal cancer by sponging hsa-miR-1184 and releasing AJUBA and inactivating Hippo/YAP signalling. J Cell Mol Med 2020; 24:9908-9924. [PMID: 32681581 PMCID: PMC7520282 DOI: 10.1111/jcmm.15590] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 06/13/2020] [Accepted: 06/17/2020] [Indexed: 12/24/2022] Open
Abstract
Hsa_circ_0128846 was found to be the most significantly up-regulated circRNA in our bioinformatics analysis. However, the role of hsa_circ_0128846 in colorectal cancer has not been explored. We thus aim to explore the influence and mechanism of hsa_circ_0128846 in colorectal cancer by sponging its downstream miRNA target miR-1184. We collected 40 colorectal cancer patients' tumour tissues to analyse the expression of hsa_circ_0128846, miR-1184 and AJUBA using qRT-PCR and Western blot where needed. Then, we constructed stably transfected SW480 and HCT116 cells to study the influence of hsa_circ_0128846, miR-1184 and AJUBA on colorectal cancer cell phenotypes. To obtain reliable results, a plethora of experiments including RNA immunoprecipitation assay, flow cytometry, EdU incorporation assay, wound healing migration assay, transwell invasion assay and live imaging of nude mice xenograft assay were performed. The binding relationship between hsa_circ_0128846, miR-1184 and AJUBA mRNA in colorectal cancer was validated by reported gene assay. In colorectal cancer tissues, circ_0128846 and AJUBA were both significantly up-regulated, while miR-1184 was significantly down-regulated compared with healthy tissues. Meanwhile, hsa_circ_0128846 can absorb miR-1184 to promote the progression of CRC in vivo and SW480 and HCT116 cell phenotypes in vitro. The knockdown of AJUBA, a downstream target of miR-1184, reversed the effect of miR-1184 in CRC cells via enhancing the phosphorylation of the Hippo/YAP signalling pathway proteins MST1, LATS1 and YAP. This study revealed that hsa_circ_0128846 contributed to the development of CRC by decreasing the expression of miR-1184, thereby increasing AJUBA expression and inactivating Hippo/YAP signalling.
Collapse
Affiliation(s)
- Xu Wang
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun, China
| | - Yujia Chen
- Department of Gastrointestinal Surgery, The First Hospital of Jilin University, Changchun, China
| | - Wei Liu
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, China
| | - Tao Liu
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun, China
| | - Di Sun
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
23
|
Dommann N, Sánchez-Taltavull D, Eggs L, Birrer F, Brodie T, Salm L, Baier FA, Medová M, Humbert M, Tschan MP, Beldi G, Candinas D, Stroka D. The LIM Protein Ajuba Augments Tumor Metastasis in Colon Cancer. Cancers (Basel) 2020; 12:cancers12071913. [PMID: 32679899 PMCID: PMC7409172 DOI: 10.3390/cancers12071913] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/12/2020] [Accepted: 07/13/2020] [Indexed: 12/13/2022] Open
Abstract
Colorectal cancer, along with its high potential for recurrence and metastasis, is a major health burden. Uncovering proteins and pathways required for tumor cell growth is necessary for the development of novel targeted therapies. Ajuba is a member of the LIM domain family of proteins whose expression is positively associated with numerous cancers. Our data shows that Ajuba is highly expressed in human colon cancer tissue and cell lines. Publicly available data from The Cancer Genome Atlas shows a negative correlation between survival and Ajuba expression in patients with colon cancer. To investigate its function, we transduced SW480 human colon cancer cells, with lentiviral constructs to knockdown or overexpress Ajuba protein. The transcriptome of the modified cell lines was analyzed by RNA sequencing. Among the pathways enriched in the differentially expressed genes, were cell proliferation, migration and differentiation. We confirmed our sequencing data with biological assays; cells depleted of Ajuba were less proliferative, more sensitive to irradiation, migrated less and were less efficient in colony formation. In addition, loss of Ajuba expression decreased the tumor burden in a murine model of colorectal metastasis to the liver. Taken together, our data supports that Ajuba promotes colon cancer growth, migration and metastasis and therefore is a potential candidate for targeted therapy.
Collapse
Affiliation(s)
- Noëlle Dommann
- Department of Biomedical Research, Visceral and Transplantation Surgery, University of Bern, Clinic of Visceral Surgery and Medicine, Bern University Hospital, 3008 Bern, Switzerland; (N.D.); (D.S.-T.); (L.E.); (F.B.); (T.B.); (L.S.); (F.A.B.); (G.B.); (D.C.)
| | - Daniel Sánchez-Taltavull
- Department of Biomedical Research, Visceral and Transplantation Surgery, University of Bern, Clinic of Visceral Surgery and Medicine, Bern University Hospital, 3008 Bern, Switzerland; (N.D.); (D.S.-T.); (L.E.); (F.B.); (T.B.); (L.S.); (F.A.B.); (G.B.); (D.C.)
| | - Linda Eggs
- Department of Biomedical Research, Visceral and Transplantation Surgery, University of Bern, Clinic of Visceral Surgery and Medicine, Bern University Hospital, 3008 Bern, Switzerland; (N.D.); (D.S.-T.); (L.E.); (F.B.); (T.B.); (L.S.); (F.A.B.); (G.B.); (D.C.)
| | - Fabienne Birrer
- Department of Biomedical Research, Visceral and Transplantation Surgery, University of Bern, Clinic of Visceral Surgery and Medicine, Bern University Hospital, 3008 Bern, Switzerland; (N.D.); (D.S.-T.); (L.E.); (F.B.); (T.B.); (L.S.); (F.A.B.); (G.B.); (D.C.)
| | - Tess Brodie
- Department of Biomedical Research, Visceral and Transplantation Surgery, University of Bern, Clinic of Visceral Surgery and Medicine, Bern University Hospital, 3008 Bern, Switzerland; (N.D.); (D.S.-T.); (L.E.); (F.B.); (T.B.); (L.S.); (F.A.B.); (G.B.); (D.C.)
| | - Lilian Salm
- Department of Biomedical Research, Visceral and Transplantation Surgery, University of Bern, Clinic of Visceral Surgery and Medicine, Bern University Hospital, 3008 Bern, Switzerland; (N.D.); (D.S.-T.); (L.E.); (F.B.); (T.B.); (L.S.); (F.A.B.); (G.B.); (D.C.)
| | - Felix Alexander Baier
- Department of Biomedical Research, Visceral and Transplantation Surgery, University of Bern, Clinic of Visceral Surgery and Medicine, Bern University Hospital, 3008 Bern, Switzerland; (N.D.); (D.S.-T.); (L.E.); (F.B.); (T.B.); (L.S.); (F.A.B.); (G.B.); (D.C.)
| | - Michaela Medová
- Department of Biomedical Research, Radiation Oncology, University of Bern, Bern University Hospital, 3008 Bern, Switzerland;
| | - Magali Humbert
- Institute of Pathology, University of Bern, 3008 Bern, Switzerland; (M.H.); (M.P.T.)
| | - Mario P. Tschan
- Institute of Pathology, University of Bern, 3008 Bern, Switzerland; (M.H.); (M.P.T.)
| | - Guido Beldi
- Department of Biomedical Research, Visceral and Transplantation Surgery, University of Bern, Clinic of Visceral Surgery and Medicine, Bern University Hospital, 3008 Bern, Switzerland; (N.D.); (D.S.-T.); (L.E.); (F.B.); (T.B.); (L.S.); (F.A.B.); (G.B.); (D.C.)
| | - Daniel Candinas
- Department of Biomedical Research, Visceral and Transplantation Surgery, University of Bern, Clinic of Visceral Surgery and Medicine, Bern University Hospital, 3008 Bern, Switzerland; (N.D.); (D.S.-T.); (L.E.); (F.B.); (T.B.); (L.S.); (F.A.B.); (G.B.); (D.C.)
| | - Deborah Stroka
- Department of Biomedical Research, Visceral and Transplantation Surgery, University of Bern, Clinic of Visceral Surgery and Medicine, Bern University Hospital, 3008 Bern, Switzerland; (N.D.); (D.S.-T.); (L.E.); (F.B.); (T.B.); (L.S.); (F.A.B.); (G.B.); (D.C.)
- Correspondence: ; Tel.: +41-31-632-27-48
| |
Collapse
|
24
|
Ajuba: An emerging signal transducer in oncogenesis. Pharmacol Res 2019; 151:104546. [PMID: 31740385 DOI: 10.1016/j.phrs.2019.104546] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/05/2019] [Accepted: 11/13/2019] [Indexed: 12/12/2022]
Abstract
The LIM protein Ajuba contains an unstructured proline/glycine-rich preLIM region in the N terminus and conserved tandem LIM motifs in the C terminus. Additionally, Ajuba contains both nuclear export sequences (NES) and nuclear localization sequences (NLS), which enable Ajuba shuttle between the cytoplasm and the nucleus. Thus, Ajuba can act as a versatile scaffold participating in assembly of variety of protein complexes to execute multiple cellular functions including cell adhesion, motility, mitosis, survival, gene expression, microRNA processing and mechanical force sensing. Numerous studies have demonstrated that Ajuba plays important roles in oncogenesis and progression by regulating major signalling pathways such as Wnt, RAS/ERK, JAK/STAT and Hippo, and by acting as a co-regulator of key transcription factors such as Snail, Sp1 and nuclear hormone receptors. Clinically, Ajuba is highly expressed in various types of tumors and can be a marker for prognosis and diagnosis. In this review, we aim to summarize the up-to-date literatures on the signaling pathways mediated by Ajuba and its associated protein complexes in oncogenesis, and to discuss Ajuba as a potential target for new therapeutics to treat cancers.
Collapse
|
25
|
Molina-Castro SE, Tiffon C, Giraud J, Boeuf H, Sifre E, Giese A, Belleannée G, Lehours P, Bessède E, Mégraud F, Dubus P, Staedel C, Varon C. The Hippo Kinase LATS2 Controls Helicobacter pylori-Induced Epithelial-Mesenchymal Transition and Intestinal Metaplasia in Gastric Mucosa. Cell Mol Gastroenterol Hepatol 2019; 9:257-276. [PMID: 31669263 PMCID: PMC6957828 DOI: 10.1016/j.jcmgh.2019.10.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Gastric carcinoma is related mostly to CagA+-Helicobacter pylori infection, which disrupts the gastric mucosa turnover and elicits an epithelial-mesenchymal transition (EMT) and preneoplastic transdifferentiation. The tumor suppressor Hippo pathway controls stem cell homeostasis; its core, constituted by the large tumor suppressor 2 (LATS2) kinase and its substrate Yes-associated protein 1 (YAP1), was investigated in this context. METHODS Hippo, EMT, and intestinal metaplasia marker expression were investigated by transcriptomic and immunostaining analyses in human gastric AGS and MKN74 and nongastric immortalized RPE1 and HMLE epithelial cell lines challenged by H pylori, and on gastric tissues of infected patients and mice. LATS2 and YAP1 were silenced using small interfering RNAs. A transcriptional enhanced associated domain (TEAD) reporter assay was used. Cell proliferation and invasion were evaluated. RESULTS LATS2 and YAP1 appear co-overexpressed in the infected mucosa, especially in gastritis and intestinal metaplasia. H pylori via CagA stimulates LATS2 and YAP1 in a coordinated biphasic pattern, characterized by an early transient YAP1 nuclear accumulation and stimulated YAP1/TEAD transcription, followed by nuclear LATS2 up-regulation leading to YAP1 phosphorylation and targeting for degradation. LATS2 and YAP1 reciprocally positively regulate each other's expression. Loss-of-function experiments showed that LATS2 restricts H pylori-induced EMT marker expression, invasion, and intestinal metaplasia, supporting a role of LATS2 in maintaining the epithelial phenotype of gastric cells and constraining H pylori-induced preneoplastic changes. CONCLUSIONS H pylori infection engages a number of signaling cascades that alienate mucosa homeostasis, including the Hippo LATS2/YAP1/TEAD pathway. In the host-pathogen conflict, which generates an inflammatory environment and perturbations of the epithelial turnover and differentiation, Hippo signaling appears as a protective pathway, limiting the loss of gastric epithelial cell identity that precedes gastric carcinoma development.
Collapse
Affiliation(s)
- Silvia Elena Molina-Castro
- INSERM, UMR1053, Bordeaux Research in Translational Oncology, BaRITOn, University of Bordeaux, Bordeaux, France,University of Costa Rica, San José, Costa Rica
| | - Camille Tiffon
- INSERM, UMR1053, Bordeaux Research in Translational Oncology, BaRITOn, University of Bordeaux, Bordeaux, France
| | - Julie Giraud
- INSERM, UMR1053, Bordeaux Research in Translational Oncology, BaRITOn, University of Bordeaux, Bordeaux, France
| | - Hélène Boeuf
- INSERM, UMR1026, Bioingénierie tissulaire (BioTis), University of Bordeaux, Bordeaux, France
| | - Elodie Sifre
- INSERM, UMR1053, Bordeaux Research in Translational Oncology, BaRITOn, University of Bordeaux, Bordeaux, France
| | - Alban Giese
- INSERM, UMR1053, Bordeaux Research in Translational Oncology, BaRITOn, University of Bordeaux, Bordeaux, France
| | | | - Philippe Lehours
- INSERM, UMR1053, Bordeaux Research in Translational Oncology, BaRITOn, University of Bordeaux, Bordeaux, France,Centre Hospitalier Universitaire (CHU) de Bordeaux, Bordeaux, France
| | - Emilie Bessède
- INSERM, UMR1053, Bordeaux Research in Translational Oncology, BaRITOn, University of Bordeaux, Bordeaux, France,Centre Hospitalier Universitaire (CHU) de Bordeaux, Bordeaux, France
| | - Francis Mégraud
- INSERM, UMR1053, Bordeaux Research in Translational Oncology, BaRITOn, University of Bordeaux, Bordeaux, France,Centre Hospitalier Universitaire (CHU) de Bordeaux, Bordeaux, France
| | - Pierre Dubus
- INSERM, UMR1053, Bordeaux Research in Translational Oncology, BaRITOn, University of Bordeaux, Bordeaux, France,Centre Hospitalier Universitaire (CHU) de Bordeaux, Bordeaux, France
| | - Cathy Staedel
- INSERM, UMR1212, University of Bordeaux, Bordeaux, France,Cathy Staedel, PhD, INSERM U1212, “ARN: Régulations naturelle et artificielle” (ARNA)-Unités Mixtes de Recherche (UMR) Centre national de la recherche scientifique (CNRS) 5320, University of Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux Cedex, France. fax: +33 5 57 57 10 15.
| | - Christine Varon
- INSERM, UMR1053, Bordeaux Research in Translational Oncology, BaRITOn, University of Bordeaux, Bordeaux, France,Correspondence Address correspondence to: Christine Varon, PhD, INSERM U1053 Bordeaux Research in Translational Oncology (BaRITOn), University of Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux Cedex, France. fax: +33 5 56 79 60 18.
| |
Collapse
|
26
|
Xu B, Li Q, Chen N, Zhu C, Meng Q, Ayyanathan K, Qian W, Jia H, Wang J, Ni P, Hou Z. The LIM protein Ajuba recruits DBC1 and CBP/p300 to acetylate ERα and enhances ERα target gene expression in breast cancer cells. Nucleic Acids Res 2019; 47:2322-2335. [PMID: 30597111 PMCID: PMC6412004 DOI: 10.1093/nar/gky1306] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/14/2018] [Accepted: 12/21/2018] [Indexed: 11/13/2022] Open
Abstract
Estrogen/ERα signaling is critical for breast cancer progression and therapeutic treatments. Thus, identifying new regulators of this pathway will help to develop new therapeutics to overcome chemotherapy resistance of the breast cancer cells. Here, we report Ajuba directly interacts with ERα to potentiate ERα target gene expression, and biologically Ajuba promotes breast cancer cell growth and contributes to tamoxifen resistance of these cells. Ajuba constitutively binds the DBD and AF2 regions of ERα, and these interactions can be markedly enhanced by estrogen treatment. Mechanistically, Ajuba recruits DBC1 and CBP/p300 and forms a ternary complex to co-activate ERα transcriptional activity and concomitantly enhances ERα acetylation. Moreover, components of this complex can be found at endogenous promoters containing functional ERα responsive elements. Taken together, these data demonstrate that Ajuba functions as a novel co-activator of ERα and that Ajuba/DBC1/CBP/p300 ternary complex may be a new target for developing therapeutics to treat breast cancer.
Collapse
Affiliation(s)
- Beihui Xu
- Faculty of Medical Laboratory Science, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Hongqiao Institute of Medicine, Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Department of Clinical Laboratory, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qi Li
- Hongqiao Institute of Medicine, Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ning Chen
- Faculty of Medical Laboratory Science, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chunxiao Zhu
- Department of Allergy, Linyi Hospital of Traditional Chinese Medicine, Shandong Province, China
| | - Qingrong Meng
- Department of Gynecology, Lanling People's Hospital, Shandong Province, China
| | | | - Wenli Qian
- Hongqiao Institute of Medicine, Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hao Jia
- Hongqiao Institute of Medicine, Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jiamin Wang
- Hongqiao Institute of Medicine, Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Peihua Ni
- Faculty of Medical Laboratory Science, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhaoyuan Hou
- Hongqiao Institute of Medicine, Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Department of Gynecology, Lanling People's Hospital, Shandong Province, China.,Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry & Molecular Cellular Biology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
27
|
Li H, Fu L, Liu B, Lin X, Dong Q, Wang E. Ajuba overexpression regulates mitochondrial potential and glucose uptake through YAP/Bcl-xL/GLUT1 in human gastric cancer. Gene 2019; 693:16-24. [DOI: 10.1016/j.gene.2019.01.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 12/28/2018] [Accepted: 01/22/2019] [Indexed: 02/06/2023]
|
28
|
Guan Y, Li T, Zhang H, Zhu F, Omenn GS. Prioritizing predictive biomarkers for gene essentiality in cancer cells with mRNA expression data and DNA copy number profile. Bioinformatics 2018; 34:3975-3982. [PMID: 29912344 PMCID: PMC6247930 DOI: 10.1093/bioinformatics/bty467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 05/15/2018] [Accepted: 06/12/2018] [Indexed: 01/02/2023] Open
Abstract
Motivation Finding driver genes that are responsible for the aberrant proliferation rate of cancer cells is informative for both cancer research and the development of targeted drugs. The established experimental and computational methods are labor-intensive. To make algorithms feasible in real clinical settings, methods that can predict driver genes using less experimental data are urgently needed. Results We designed an effective feature selection method and used Support Vector Machines (SVM) to predict the essentiality of the potential driver genes in cancer cell lines with only 10 genes as features. The accuracy of our predictions was the highest in the Broad-DREAM Gene Essentiality Prediction Challenge. We also found a set of genes whose essentiality could be predicted much more accurately than others, which we called Accurately Predicted (AP) genes. Our method can serve as a new way of assessing the essentiality of genes in cancer cells. Availability and implementation The raw data that support the findings of this study are available at Synapse. https://www.synapse.org/#! Synapse: syn2384331/wiki/62825. Source code is available at GitHub. https://github.com/GuanLab/DREAM-Gene-Essentiality-Challenge. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Yuanfang Guan
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Tingyang Li
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Hongjiu Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Fan Zhu
- Key Laboratory of Big Data and Intelligent Computing, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - Gilbert S Omenn
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Departments of Internal Medicine and Human Genetics and School of Public Health, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
29
|
TAZ activation by Hippo pathway dysregulation induces cytokine gene expression and promotes mesothelial cell transformation. Oncogene 2018; 38:1966-1978. [PMID: 30401981 DOI: 10.1038/s41388-018-0417-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 07/03/2018] [Accepted: 07/05/2018] [Indexed: 12/13/2022]
Abstract
Malignant mesothelioma (MM) constitutes a very aggressive tumor that is caused by asbestos exposure after long latency. The NF2 tumor suppressor gene is mutated in 40-50% of MM; moreover, one of its downstream signaling cascades, the Hippo signaling pathway, is also frequently inactivated in MM cells. Although the YAP transcriptional coactivator, which is regulated by the Hippo pathway, can function as a pro-oncogenic protein, the role of TAZ, a paralog of YAP, in MM cells has not yet been clarified. Here, we show that TAZ is expressed and underphosphorylated (activated) in the majority of MM cells compared to immortalized mesothelial cells. ShRNA-mediated TAZ knockdown highly suppressed cell proliferation, anchorage-independent growth, cell motility, and invasion in MM cells harboring activated TAZ. Conversely, transduction of an activated form of TAZ in immortalized mesothelial cells enhanced these in vitro phenotypes and conferred tumorigenicity in vivo. Microarray analysis determined that activated TAZ most significantly enhanced the transcription of genes related to "cytokine-cytokine receptor interaction." Among selected cytokines, we found that IL-1 signaling activation plays a major role in proliferation in TAZ-activated MM cells. Both IL1B knockdown and an IL-1 receptor antagonist significantly suppressed malignant phenotypes of immortalized mesothelial cells and MM cells with activated TAZ. Overall, these results indicate an oncogenic role for TAZ in MMs via transcriptional induction of distinct pro-oncogenic genes including cytokines. Among these, IL-1 signaling appears as one of the most important cascades, thus potentially serving as a target pathway in MM cells harboring Hippo pathway inactivation.
Collapse
|
30
|
Liu XL, Zuo R, Ou WB. The hippo pathway provides novel insights into lung cancer and mesothelioma treatment. J Cancer Res Clin Oncol 2018; 144:2097-2106. [PMID: 30073421 DOI: 10.1007/s00432-018-2727-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 07/30/2018] [Indexed: 12/31/2022]
Abstract
PURPOSE Lung cancer and mesothelioma are two types of respiratory disease that have fatal courses and poor prognoses. Although a substantial number of targeted small molecules and antibody drugs have been developed, the 5-year survival rates of these patients remain relatively low. Moreover, most patients inevitably develop clinical resistance to treatment. Therefore, novel therapeutic options and cancer prognostic biomarkers are urgently needed. METHODS In this review, we summarized the recent literature from various electronic databases, including PubMed, and highlighted the most advanced findings regarding the hippo pathway in lung cancer and mesothelioma. CONCLUSION The hippo signaling transduction pathway has been demonstrated to play crucial roles in lung cancer and mesothelioma pathogenesis, including tumor development and multidrug resistance, and is emerging as a promising therapeutic target, potentially providing new tools for the detection of these tumors at an early stage.
Collapse
Affiliation(s)
- Xiao-Lan Liu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Rui Zuo
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Wen-Bin Ou
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China.
| |
Collapse
|
31
|
Korfei M. The underestimated danger of E-cigarettes - also in the absence of nicotine. Respir Res 2018; 19:159. [PMID: 30157845 PMCID: PMC6114529 DOI: 10.1186/s12931-018-0870-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 08/20/2018] [Indexed: 12/28/2022] Open
Affiliation(s)
- Martina Korfei
- Department of Internal Medicine II, Klinikstrasse 36, 35392, Giessen, Germany. .,Biomedical Research Center Seltersberg (BFS), Justus-Liebig-University Giessen, Schubertstrasse 81, 35392, Giessen, Germany. .,Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), 35392, Giessen, Germany.
| |
Collapse
|
32
|
Liu M, Jiang K, Lin G, Liu P, Yan Y, Ye T, Yao G, Barr MP, Liang D, Wang Y, Gong P, Meng S, Piao H. Ajuba inhibits hepatocellular carcinoma cell growth via targeting of β-catenin and YAP signaling and is regulated by E3 ligase Hakai through neddylation. J Exp Clin Cancer Res 2018; 37:165. [PMID: 30041665 PMCID: PMC6057013 DOI: 10.1186/s13046-018-0806-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 06/20/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Aberrant activation of β-catenin and Yes-associated protein (YAP) signaling pathways has been associated with hepatocellular carcinoma (HCC) progression. The LIM domain protein Ajuba regulates β-catenin and YAP signaling and is implicated in tumorigenesis. However, roles and mechanism of Ajuba expression in HCC cells remain unclear. The E3 ligase Hakai has been shown to interact with other Ajuba family members and whether Hakai interacts and regulates Ajuba is unknown. METHODS HCC cell lines stably depleted of Ajuba or Hakai were established using lentiviruses expressing shRNAs against Ajuba or Hakai. The effects of Ajuba on HCC cells were determined by a number of cell-based analyses including anchorage-independent growth, three dimension cultures and trans-well invasion assay. In vivo tumor growth was determined in a xenograft model and Ajuba expression in tumor sections was examined by immunohistochemistry. Co-immunoprecipitation, confocal microscopy and immunoblot assay were used to examine the expression and interaction between Ajuba and Hakai. RESULTS Depletion of Ajuba in HCC cells significantly enhanced anchorage-independent growth, invasion, the formation of spheroids and tumor growth in a xenograft model, suggesting a tumor suppressor function for Ajuba in HCC. Mechanistically, Ajuba depletion triggered E-cadherin loss and β-catenin translocation with increased Cyclin D1 levels. In addition, depletion of Ajuba upregulated the levels of YAP and its target gene CYR61. Furthermore, siRNA-mediated knockdown of either β-catenin or YAP attenuated the pro-tumor effects by Ajuba depletion on HCC cells. Notably, Ajuba stability in HCC cells was regulated by Hakai, an E3 ligase for E-cadherin. Hakai interacted with Ajuba via its HYB domain and induced Ajuba neddylation, which was antagonized by the neddylation inhibitor, MLN4924, but not MG132. We further show that overexpression of Hakai in HCC cells markedly increased anchorage-independent growth, spheroid-formation ability and tumor growth in xenografts whereas Hakai depletion resulted in these opposite effects, indicating an oncogenic role for Hakai in HCC. Hakai also induced β-catenin translocation with increased levels of Cyclin D1. CONCLUSIONS Our data suggest a role for Ajuba and Hakai in HCC, and uncover the mechanism underlying the regulation of Ajuba stability.
Collapse
Affiliation(s)
- Min Liu
- Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, 9 Lvshun Road South, Dalian, 116044 China
| | - Ke Jiang
- Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, 9 Lvshun Road South, Dalian, 116044 China
- Department of neurosurgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, No. 44 Xiaoheyan Road, Dadong District, Shenyang, 110042 Liaoning Province China
| | - Guibin Lin
- Huizhou No. 3 People’s Hospital, Affiliated Hospital of Guangzhou Medical University, No. 1 Xuebei Street, Qiaodong Road, Huizhou, 615000 China
| | - Peng Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Dalian Medical University, No. 222 Zhongshan Road, Dalian, 116021 China
| | - Yumei Yan
- The First Department of Ultrasound, The First Affiliated Hospital, Dalian Medical University, No. 222 Zhongshan Road, Dalian, 116021 China
| | - Tian Ye
- Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, 9 Lvshun Road South, Dalian, 116044 China
| | - Gang Yao
- Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, 9 Lvshun Road South, Dalian, 116044 China
| | - Martin P. Barr
- Thoracic Oncology Research Group, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St. James’s Hospital & Trinity College, Dublin, Ireland
| | - Dapeng Liang
- Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, 9 Lvshun Road South, Dalian, 116044 China
| | - Yang Wang
- Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, 9 Lvshun Road South, Dalian, 116044 China
| | - Peng Gong
- Department of general surgery, Shenzhen University General Hospital, No. 1098 Xueyuan Road, Shenzhen, 518055 China
- Carson International Cancer Research Centre, Shenzhen University School of Medicine, No.3688 Nanhai Road, Shenzhen, 518060 China
| | - Songshu Meng
- Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, 9 Lvshun Road South, Dalian, 116044 China
| | - Haozhe Piao
- Department of neurosurgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, No. 44 Xiaoheyan Road, Dadong District, Shenyang, 110042 Liaoning Province China
| |
Collapse
|
33
|
Song J, Xie LX, Zhang XY, Hu P, Long MF, Xiong F, Huang J, Ye XQ. Role of YAP in lung cancer resistance to cisplatin. Oncol Lett 2018; 16:3949-3954. [PMID: 30128013 DOI: 10.3892/ol.2018.9141] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 06/20/2018] [Indexed: 12/13/2022] Open
Abstract
Yes-associated protein (YAP) serves a critical role in the initiation and progression of a variety of types of cancer via modulating the expression of genes involved in cell proliferation and the downregulation of apoptosis. Recent studies have suggested that YAP is responsible for the development of drug resistance and cancer metastasis and recurrence. However, the association between YAP and chemoresistance in lung cancer, particularly in lung cancer stem cells (LCSCs) remains largely unknown. In the current study, lung cancer cell spheres were established using the A549 cell line, which demonstrated stem cell properties. It was revealed that YAP was overexpressed in lung cancer spheres compared with normal A549 adherent cells and was associated with enhanced cisplatin (CDDP) resistance. Knockdown of YAP effectively sensitized the adherent A549 and tumor spheres to CDDP treatment and resulted in enhanced cell death. These results suggest that YAP serves a critical role in LCSCs drug resistance and YAP targeting could become a promising adjuvant to current the chemotherapy for lung cancer.
Collapse
Affiliation(s)
- Juan Song
- Department of Respiratory Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Li-Xia Xie
- Department of Respiratory Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xin-Yi Zhang
- Department of Respiratory Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Ping Hu
- Department of Respiratory Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Mei-Fang Long
- Department of Respiratory Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Fang Xiong
- Department of Respiratory Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Juan Huang
- Department of Respiratory Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xiao-Qun Ye
- Department of Respiratory Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
34
|
Ohara Y, Chew SH, Misawa N, Wang S, Somiya D, Nakamura K, Kajiyama H, Kikkawa F, Tsuyuki Y, Jiang L, Yamashita K, Sekido Y, Lipson KE, Toyokuni S. Connective tissue growth factor-specific monoclonal antibody inhibits growth of malignant mesothelioma in an orthotopic mouse model. Oncotarget 2018; 9:18494-18509. [PMID: 29719620 PMCID: PMC5915087 DOI: 10.18632/oncotarget.24892] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 03/09/2018] [Indexed: 12/14/2022] Open
Abstract
Malignant mesothelioma is an aggressive neoplasm with no particularly effective treatments. We previously reported that overexpression of connective tissue growth factor (CTGF/CCN2) promotes mesothelioma growth, thus suggesting it as a novel molecular target. A human monoclonal antibody that antagonizes CTGF (FG-3019, pamrevlumab) attenuates malignant properties of different kinds of human cancers and is currently under clinical trial for the treatment of pancreatic cancer. This study reports the effects of FG-3019 on human mesothelioma in vitro and in vivo. We analyzed the effects of FG-3019 on the proliferation, apoptosis, migration/invasion, adhesion and anchorage-independent growth in three human mesothelioma cell lines, among which ACC-MESO-4 was most efficiently blocked with FG-3019 and was chosen for in vivo experiments. We also evaluated the coexistent effects of fibroblasts on mesothelioma in vitro, which are also known to produce CTGF in various pathologic situations. Coexistent fibroblasts in transwell systems remarkably promoted the proliferation and migration/invasion of mesothelioma cells. In orthotopic nude mice model, FG-3019 significantly inhibited mesothelioma growth. Histological analyses revealed that FG-3019 not only inhibited the proliferation but also induced apoptosis in both mesothelioma cells and fibroblasts. Our data suggest that FG-3019 antibody therapy could be a novel additional choice for the treatment of mesothelioma.
Collapse
Affiliation(s)
- Yuuki Ohara
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Shan Hwu Chew
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Nobuaki Misawa
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Shenqi Wang
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Daiki Somiya
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Kae Nakamura
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Fumitaka Kikkawa
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Yuta Tsuyuki
- Department of Pathology and Laboratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Li Jiang
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Kyoko Yamashita
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Yoshitaka Sekido
- Division of Molecular Oncology, Aichi Cancer Center Research Institute, Nagoya 464-8681, Japan
| | | | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Sydney Medical School, The University of Sydney, Sydney 2006, Australia
| |
Collapse
|
35
|
NF2/Merlin Inactivation and Potential Therapeutic Targets in Mesothelioma. Int J Mol Sci 2018; 19:ijms19040988. [PMID: 29587439 PMCID: PMC5979333 DOI: 10.3390/ijms19040988] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/19/2018] [Accepted: 03/19/2018] [Indexed: 12/14/2022] Open
Abstract
The neurofibromatosis type 2 (NF2) gene encodes merlin, a tumor suppressor protein frequently inactivated in schwannoma, meningioma, and malignant mesothelioma (MM). The sequence of merlin is similar to that of ezrin/radixin/moesin (ERM) proteins which crosslink actin with the plasma membrane, suggesting that merlin plays a role in transducing extracellular signals to the actin cytoskeleton. Merlin adopts a distinct closed conformation defined by specific intramolecular interactions and regulates diverse cellular events such as transcription, translation, ubiquitination, and miRNA biosynthesis, many of which are mediated through Hippo and mTOR signaling, which are known to be closely involved in cancer development. MM is a very aggressive tumor associated with asbestos exposure, and genetic alterations in NF2 that abrogate merlin’s functional activity are found in about 40% of MMs, indicating the importance of NF2 inactivation in MM development and progression. In this review, we summarize the current knowledge of molecular events triggered by NF2/merlin inactivation, which lead to the development of mesothelioma and other cancers, and discuss potential therapeutic targets in merlin-deficient mesotheliomas.
Collapse
|
36
|
Targeting the Hippo Pathway Is a New Potential Therapeutic Modality for Malignant Mesothelioma. Cancers (Basel) 2018; 10:cancers10040090. [PMID: 29565815 PMCID: PMC5923345 DOI: 10.3390/cancers10040090] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/20/2018] [Accepted: 03/21/2018] [Indexed: 12/14/2022] Open
Abstract
Malignant mesothelioma (MM) constitutes a very aggressive tumor that arises from the pleural or peritoneal cavities and is highly refractory to conventional therapies. Several key genetic alterations are associated with the development and progression of MM including mutations of the CDKN2A/ARF, NF2, and BAP1 tumor-suppressor genes. Notably, activating oncogene mutations are very rare; thus, it is difficult to develop effective inhibitors to treat MM. The NF2 gene encodes merlin, a protein that regulates multiple cell-signaling cascades including the Hippo pathway. MMs also exhibit inactivation of Hippo pathway components including LATS1/2, strongly suggesting that merlin-Hippo pathway dysregulation plays a key role in the development and progression of MM. Furthermore, Hippo pathway inactivation has been shown to result in constitutive activation of the YAP1/TAZ transcriptional coactivators, thereby conferring malignant phenotypes to mesothelial cells. Critical YAP1/TAZ target genes, including prooncogenic CCDN1 and CTGF, have also been shown to enhance the malignant phenotypes of MM cells. Together, these data indicate the Hippo pathway as a therapeutic target for the treatment of MM, and support the development of new strategies to effectively target the activation status of YAP1/TAZ as a promising therapeutic modality for this formidable disease.
Collapse
|
37
|
Shi X, Chen Z, Hu X, Luo M, Sun Z, Li J, Shi S, Feng X, Zhou C, Li Z, Yang W, Li Y, Wang P, Zhou F, Gao Y, He J. AJUBA promotes the migration and invasion of esophageal squamous cell carcinoma cells through upregulation of MMP10 and MMP13 expression. Oncotarget 2017; 7:36407-36418. [PMID: 27172796 PMCID: PMC5095009 DOI: 10.18632/oncotarget.9239] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 04/22/2016] [Indexed: 12/21/2022] Open
Abstract
The LIM-domain protein AJUBA has been reported to be involved in cell-cell adhesion, proliferation, migration and cell fate decision by acting as a scaffold or adaptor protein. We previously identified AJUBA as a putative cancer gene in esophageal squamous cell carcinoma (ESCC). However, the function and underlying mechanisms of AJUBA in ESCC remain largely unknown. In the present study, we detected AJUBA levels in ESCC tumor tissues and in corresponding adjacent non-tumor tissues by immunohistochemistry (IHC) and investigated the function and mechanism of AJUBA in ESCC cells. The IHC results showed that AJUBA levels were significantly higher in ESCC tissues compared with corresponding adjacent non-tumor tissues (P < 0.001). Both in vitro and in vivo experiments showed that AJUBA promoted cell growth and colony formation, inhibited cisplatin-induced apoptosis of ESCC cells, and promoted ESCC cell migration and invasion. RNA sequencing was used to reveal the oncogenic pathways of AJUBA that were involved, and MMP10 and MMP13 were identified as two of the downstream targets of AJUBA. Thus, AJUBA upregulates the levels of MMP10 and MMP13 by activating ERK1/2. Taken together, these findings revealed that AJUBA serves as oncogenic gene in ESCC and may serve as a new target for ESCC therapy.
Collapse
Affiliation(s)
- Xuejiao Shi
- Department of Thoracic Surgery, Cancer Institute and Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Zhaoli Chen
- Department of Thoracic Surgery, Cancer Institute and Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xueda Hu
- Department of Thoracic Surgery, Cancer Institute and Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Mei Luo
- Department of Thoracic Surgery, Cancer Institute and Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Zengmiao Sun
- Department of Thoracic Surgery, Cancer Institute and Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jiagen Li
- Department of Thoracic Surgery, Cancer Institute and Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Susheng Shi
- Department of Pathology, Cancer Institute and Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoli Feng
- Department of Pathology, Cancer Institute and Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Chengcheng Zhou
- Department of Thoracic Surgery, Cancer Institute and Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Zitong Li
- Department of Thoracic Surgery, Cancer Institute and Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Wenhui Yang
- Department of Thoracic Surgery, Cancer Institute and Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yuan Li
- Department of Thoracic Surgery, Cancer Institute and Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Pan Wang
- Department of Thoracic Surgery, Cancer Institute and Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Fang Zhou
- Department of Thoracic Surgery, Cancer Institute and Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yibo Gao
- Department of Thoracic Surgery, Cancer Institute and Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jie He
- Department of Thoracic Surgery, Cancer Institute and Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
38
|
Regulation of PD-L1 expression by matrix stiffness in lung cancer cells. Biochem Biophys Res Commun 2017; 495:2344-2349. [PMID: 29274784 DOI: 10.1016/j.bbrc.2017.12.115] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 12/20/2017] [Indexed: 12/14/2022]
Abstract
Expression of programmed death-ligand 1 (PD-L1) in tumor cells such as lung cancer cells plays an important role in mechanisms underlying evasion of an immune check point system. Lung cancer tissue with increased deposition of extracellular matrix is much stiffer than normal lung tissue. There is emerging evidence that the matrix stiffness of cancer tissue affects the phenotypes and properties of cancer cells. Nevertheless, the effects of substrate rigidity on expression of PD-L1 in lung cancer cells remain elusive. We evaluated the effects of substrate stiffness on PD-L1 expression in HCC827 lung adenocarcinoma cells by using polyacrylamide hydrogels with stiffnesses of 2 and 25 kPa. Expression of PD-L1 protein was higher on the stiffer substrates (25 kPa gel and plastic dish) than on the soft 2 kPa gel. PD-L1 expression was reduced by detachment of cells adhering to the substrate. Interferon-γ enhanced expression of PD-L1 protein cultured on stiff (25 kPa gel and plastic dishes) and soft (2 kPa gel) substrates and in the cell adhesion-free condition. As the stiffness of substrates increased, formation of actin stress fiber and cell growth were enhanced. Transfection of the cells with short interfering RNA for PD-L1 inhibited cell growth without affecting stress fiber formation. Treatment of the cells with cytochalasin D, an inhibitor of actin polymerization, significantly reduced PD-L1 protein levels. Taken together, a stiff substrate enhanced PD-L1 expression via actin-dependent mechanisms in lung cancer cells. It is suggested that stiffness as a tumor environment regulates PD-L1 expression, which leads to evasion of the immune system and tumor growth.
Collapse
|
39
|
Comprehensive genomic analysis of Oesophageal Squamous Cell Carcinoma reveals clinical relevance. Sci Rep 2017; 7:15324. [PMID: 29127303 PMCID: PMC5681595 DOI: 10.1038/s41598-017-14909-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 10/18/2017] [Indexed: 12/27/2022] Open
Abstract
Oesophageal carcinoma is the fourth leading cause of cancer-related death in China, and more than 90% of these tumours are oesophageal squamous cell carcinoma (ESCC). Although several ESCC genomic sequencing studies have identified mutated somatic genes, the number of samples in each study was relatively small, and the molecular basis of ESCC has not been fully elucidated. Here, we performed an integrated analysis of 490 tumours by combining the genomic data from 7 previous ESCC projects. We identified 18 significantly mutated genes (SMGs). PTEN, DCDC1 and CUL3 were first reported as SMGs in ESCC. Notably, the AJUBA mutations and mutational signature4 were significantly correlated with a poorer survival in patients with ESCC. Hierarchical clustering analysis of the copy number alteration (CNA) of cancer gene census (CGC) genes in ESCC patients revealed three subtypes, and subtype3 exhibited more CNAs and marked for worse prognosis compared with subtype2. Moreover, database annotation suggested that two significantly differential CNA genes (PIK3CA and FBXW7) between subtype3 and subtype2 may serve as therapeutic drug targets. This study has extended our knowledge of the genetic basis of ESCC and shed some light into the clinical relevance, which would help improve the therapy and prognosis of ESCC patients.
Collapse
|
40
|
Bi L, Ma F, Tian R, Zhou Y, Lan W, Song Q, Cheng X. AJUBA increases the cisplatin resistance through hippo pathway in cervical cancer. Gene 2017; 644:148-154. [PMID: 29126926 DOI: 10.1016/j.gene.2017.11.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 10/29/2017] [Accepted: 11/07/2017] [Indexed: 02/07/2023]
Abstract
Though LIM-domain protein AJUBA was identified as a putative oncogene, the function and underlying mechanisms of AJUBA in cervical cancer remain largely unknown. Firstly, AJUBA expression was detected via real-time quantitative PCR in patients' samples. Furthermore, Hela and Siha cells were transfected with AJUBA-overexpressing plasmids, and then exposed to cisplatin, the apoptosis was measured by cytometry assay. In addition, the expression of YAP and TAZ was disclosed through western blot assay. Our results revealed that AJUBA expression was significantly higher in the cervical cancer patients resistant to cisplatin treatment compared with cervical cancer patients sensitive to cisplatin treatment. In addition, overall survival time was significantly shorter in the cervical cancer patients with high AJUBA expression compare with those with low AJUBA expression using kaplan-meier analysis. Hela and Siha cells transfected with AJUBA-expressing plasmids exposed to cisplatin treatment had higher survival rate compared with the cells transfected with empty vector control. Mechanistic studies revealed the AJUBA upregulated the downstream targets YAP and TAZ. These results suggest that high AJUBA level enhances cervical cancer cells drug resistance to cisplatin, also associates with decreased patient survival times.
Collapse
Affiliation(s)
- Lihong Bi
- Department of Gynecology, PKUCare Luzhong Hospital, Zibo, Shandong, China
| | - Feng Ma
- Department of Oncology, PKUCare Luzhong Hospital, Zibo, Shandong, China.
| | - Rui Tian
- Department of Gynecology, PKUCare Luzhong Hospital, Zibo, Shandong, China
| | - Yanli Zhou
- Department of Pharmacy, Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong, China
| | - Weiguang Lan
- Department of Oncology, Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong, China
| | - Quanmao Song
- Department of Oncology, PKUCare Luzhong Hospital, Zibo, Shandong, China
| | - Xiankui Cheng
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China.
| |
Collapse
|
41
|
Weghorn D, Sunyaev S. Bayesian inference of negative and positive selection in human cancers. Nat Genet 2017; 49:1785-1788. [DOI: 10.1038/ng.3987] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 10/11/2017] [Indexed: 12/13/2022]
|
42
|
Zhang W, Dai Y, Hsu P, Wang H, Cheng L, Yang Y, Wang Y, Xu Z, Liu S, Chan G, Hu B, Li H, Jablons DM, You L. Targeting YAP in malignant pleural mesothelioma. J Cell Mol Med 2017; 21:2663-2676. [PMID: 28470935 PMCID: PMC5661117 DOI: 10.1111/jcmm.13182] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 03/04/2017] [Indexed: 12/28/2022] Open
Abstract
Malignant mesothelioma is an aggressive cancer that is resistant to current therapy. The poor prognosis of mesothelioma has been associated with elevated Yes-associated protein (YAP) activity. In this study, we evaluated the effect of targeting YAP in mesothelioma. First, we comprehensively studied YAP activity in five mesothelioma cell lines (211H, H2052, H290, MS-1 and H2452) and one normal mesothelial cell line (LP9). We found decreased phospho-YAP to YAP protein ratio and consistently increased GTIIC reporter activity in 211H, H2052 and H290 compared to LP9. The same three cell lines (IC50 s < 1 μM) were more sensitive than LP9 (IC50 = 3.5 μM) to the YAP/TEAD inhibitor verteporfin. We also found that verteporfin significantly reduced YAP protein level, mRNA levels of YAP downstream genes and GTIIC reporter activity in the same three cell lines, indicating inhibition of YAP signaling by verteporfin. Verteporfin also impaired invasion and tumoursphere formation ability of H2052 and H290. To validate the effect of specific targeting YAP in mesothelioma cells, we down-regulated YAP by siRNA. We found siYAP significantly decreased YAP transcriptional activity and impaired invasion and tumoursphere formation ability of H2052 and H290. Furthermore, forced overexpression of YAP rescued GTIIC reporter activity and cell viability after siYAP targeting 3'UTR of YAP. Finally, we found concurrent immunohistochemistry staining of ROCK2 and YAP (P < 0.05). Inhibition of ROCK2 decreased GTIIC reporter activity in H2052 and 211H suggesting that Rho/ROCK signaling also contributed to YAP activation in mesothelioma cells. Our results indicate that YAP may be a potential therapeutic target in mesothelioma.
Collapse
MESH Headings
- 3' Untranslated Regions
- Adaptor Proteins, Signal Transducing/antagonists & inhibitors
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Antineoplastic Agents/pharmacology
- Cell Line, Tumor
- DNA-Binding Proteins/antagonists & inhibitors
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Epithelial Cells/drug effects
- Epithelial Cells/metabolism
- Epithelial Cells/pathology
- Gene Expression Regulation, Neoplastic
- Genes, Reporter
- Humans
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Mesothelioma/genetics
- Mesothelioma/metabolism
- Mesothelioma/pathology
- Mesothelioma, Malignant
- Nuclear Proteins/antagonists & inhibitors
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Phosphoproteins/antagonists & inhibitors
- Phosphoproteins/genetics
- Phosphoproteins/metabolism
- Phosphorylation
- Porphyrins/pharmacology
- Prognosis
- RNA, Messenger/antagonists & inhibitors
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Signal Transduction
- Spheroids, Cellular/drug effects
- Spheroids, Cellular/metabolism
- Spheroids, Cellular/pathology
- TEA Domain Transcription Factors
- Transcription Factors/antagonists & inhibitors
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Verteporfin
- YAP-Signaling Proteins
- rho-Associated Kinases/genetics
- rho-Associated Kinases/metabolism
- rhoA GTP-Binding Protein/genetics
- rhoA GTP-Binding Protein/metabolism
Collapse
Affiliation(s)
- Wen‐Qian Zhang
- Thoracic Oncology LaboratoryDepartment of Surgery, Comprehensive Cancer CenterUniversity of CaliforniaSan FranciscoCAUSA
- Department of Thoracic SurgeryBeijing Chao‐Yang HospitalAffiliated with Capital University of Medical ScienceBeijingChina
| | - Yu‐Yuan Dai
- Thoracic Oncology LaboratoryDepartment of Surgery, Comprehensive Cancer CenterUniversity of CaliforniaSan FranciscoCAUSA
| | - Ping‐Chih Hsu
- Thoracic Oncology LaboratoryDepartment of Surgery, Comprehensive Cancer CenterUniversity of CaliforniaSan FranciscoCAUSA
- Department of Thoracic MedicineChang Gung Memorial HospitalLinkou, TaoyuanTaiwan
| | - Hui Wang
- Thoracic Oncology LaboratoryDepartment of Surgery, Comprehensive Cancer CenterUniversity of CaliforniaSan FranciscoCAUSA
- Department of RespirationThe Second Hospital of Shandong UniversityJinanChina
| | - Li Cheng
- Thoracic Oncology LaboratoryDepartment of Surgery, Comprehensive Cancer CenterUniversity of CaliforniaSan FranciscoCAUSA
- Department of GastroenterologyShanghai General HospitalShang Jiao Tong UniversityShanghaiChina
| | - Yi‐Lin Yang
- Thoracic Oncology LaboratoryDepartment of Surgery, Comprehensive Cancer CenterUniversity of CaliforniaSan FranciscoCAUSA
| | - Yu‐Cheng Wang
- Thoracic Oncology LaboratoryDepartment of Surgery, Comprehensive Cancer CenterUniversity of CaliforniaSan FranciscoCAUSA
| | - Zhi‐Dong Xu
- Thoracic Oncology LaboratoryDepartment of Surgery, Comprehensive Cancer CenterUniversity of CaliforniaSan FranciscoCAUSA
| | - Shu Liu
- Thoracic Oncology LaboratoryDepartment of Surgery, Comprehensive Cancer CenterUniversity of CaliforniaSan FranciscoCAUSA
| | - Geraldine Chan
- Thoracic Oncology LaboratoryDepartment of Surgery, Comprehensive Cancer CenterUniversity of CaliforniaSan FranciscoCAUSA
| | - Bin Hu
- Department of Thoracic SurgeryBeijing Chao‐Yang HospitalAffiliated with Capital University of Medical ScienceBeijingChina
| | - Hui Li
- Department of Thoracic SurgeryBeijing Chao‐Yang HospitalAffiliated with Capital University of Medical ScienceBeijingChina
| | - David M. Jablons
- Thoracic Oncology LaboratoryDepartment of Surgery, Comprehensive Cancer CenterUniversity of CaliforniaSan FranciscoCAUSA
| | - Liang You
- Thoracic Oncology LaboratoryDepartment of Surgery, Comprehensive Cancer CenterUniversity of CaliforniaSan FranciscoCAUSA
| |
Collapse
|
43
|
Mandaviya PR, Aïssi D, Dekkers KF, Joehanes R, Kasela S, Truong V, Stolk L, Heemst DV, Ikram MA, Lindemans J, Slagboom PE, Trégouët DA, Uitterlinden AG, Wei C, Wells P, Gagnon F, van Greevenbroek MM, Heijmans BT, Milani L, Morange PE, van Meurs JB, Heil SG. Homocysteine levels associate with subtle changes in leukocyte DNA methylation: an epigenome-wide analysis. Epigenomics 2017; 9:1403-1422. [PMID: 28990796 DOI: 10.2217/epi-2017-0038] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
AIM Homocysteine (Hcy) is a sensitive marker of one-carbon metabolism. Higher Hcy levels have been associated with global DNA hypomethylation. We investigated the association between plasma Hcy and epigenome-wide DNA methylation in leukocytes. METHODS Methylation was measured using Illumina 450 k arrays in 2035 individuals from six cohorts. Hcy-associated differentially methylated positions and regions were identified using meta-analysis. RESULTS Three differentially methylated positions cg21607669 (SLC27A1), cg26382848 (AJUBA) and cg10701000 (KCNMA1) at chromosome 19, 14 and 10, respectively, were significantly associated with Hcy. In addition, we identified 68 Hcy-associated differentially methylated regions, the most significant of which was a 1.8-kb spanning domain (TNXB/ATF6B) at chromosome 6. CONCLUSION We identified novel epigenetic loci associated with Hcy levels, of which specific role needs to be further validated.
Collapse
Affiliation(s)
- Pooja R Mandaviya
- Department of Clinical Chemistry, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Dylan Aïssi
- Sorbonne Universités, UPMC Univ. Paris 06, INSERM, UMR_S 1166, Team Genomics & Pathophysiology of Cardiovascular Diseases, Paris, France.,ICAN Institute for Cardiometabolism & Nutrition, Paris, France
| | - Koen F Dekkers
- Molecular Epidemiology Section, Department of Medical Statistics & Bioinformatics, Leiden University Medical Center, Leiden, The Netherlands
| | - Roby Joehanes
- Institute for Aging Research, Hebrew SeniorLife, Harvard Medical School, Boston, MA, USA
| | - Silva Kasela
- Estonian Genome Center, University of Tartu, Tartu, Estonia.,Institute of Molecular & Cell Biology, University of Tartu, Tartu, Estonia
| | - Vinh Truong
- Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - Lisette Stolk
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Diana van Heemst
- Department of Gerontology & Geriatrics Section, Leiden University Medical Center, Leiden, The Netherlands
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jan Lindemans
- Department of Clinical Chemistry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - P Eline Slagboom
- Molecular Epidemiology Section, Department of Medical Statistics & Bioinformatics, Leiden University Medical Center, Leiden, The Netherlands
| | - David-Alexandre Trégouët
- Sorbonne Universités, UPMC Univ. Paris 06, INSERM, UMR_S 1166, Team Genomics & Pathophysiology of Cardiovascular Diseases, Paris, France.,ICAN Institute for Cardiometabolism & Nutrition, Paris, France
| | - André G Uitterlinden
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Chen Wei
- Department of Epidemiology, Tulane University, New Orleans, LA, USA
| | - Phil Wells
- Department of Medicine, Ottawa Hospital Research Institute, Ottawa, Canada
| | - France Gagnon
- Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - Marleen Mj van Greevenbroek
- Department of Internal Medicine & School for Cardiovascular Diseases (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - Bastiaan T Heijmans
- Molecular Epidemiology Section, Department of Medical Statistics & Bioinformatics, Leiden University Medical Center, Leiden, The Netherlands
| | - Lili Milani
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Pierre-Emmanuel Morange
- Laboratory of Haematology, La Timone Hospital, Marseille, France.,Institut National pour la Santé et la Recherche Médicale (INSERM), Unité Mixte de Recherche en Santé (UMR_S) 1062, Nutrition Obesity & Risk of Thrombosis, Aix-Marseille University, Marseille, France
| | - Joyce Bj van Meurs
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Sandra G Heil
- Department of Clinical Chemistry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | |
Collapse
|
44
|
Shigeeda W, Shibazaki M, Yasuhira S, Masuda T, Tanita T, Kaneko Y, Sato T, Sekido Y, Maesawa C. Hyaluronic acid enhances cell migration and invasion via the YAP1/TAZ-RHAMM axis in malignant pleural mesothelioma. Oncotarget 2017; 8:93729-93740. [PMID: 29212185 PMCID: PMC5706831 DOI: 10.18632/oncotarget.20750] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/29/2017] [Indexed: 12/03/2022] Open
Abstract
Most malignant mesotheliomas (MPMs) frequently show activated forms of Yes-associated protein 1 (YAP1) and transcriptional co-activator with PDZ-binding motif (TAZ), which transcriptionally regulates the receptor for hyaluronic acid-mediated motility (RHAMM). As RHAMM is involved in cell migration and invasion in various tumors, we speculated that hyaluronic acid (HA) in pleural fluid might affect the progression of mesothelioma by stimulating cell migration and invasion through RHAMM. The level of RHAMM expression was decreased by YAP1/TAZ knockdown, and conversely increased by forced expression of the active form of YAP1, suggesting that RHAMM was regulated by YAP1/TAZ in MPM cells. Cell migration and invasion were also decreased by YAP1/TAZ or RHAMM knockdown. Notably, HA treatment increased cell motility and invasion, and this was abolished by RHAMM knockdown, suggesting that HA may augment local progression of MPM cells via RHAMM. Furthermore, treatment with fluvastatin, which regulates RHAMM transcription by modulating YAP1/TAZ activity, decreased the motility and invasion of MPM cells. Collectively, these data suggest that HA is an “unfavorable” factor because it promotes malignancy in mesothelioma and that the YAP1/TAZ-RHAMM axis may have potential value as a therapeutic target for inhibition of disease progression in MPM.
Collapse
Affiliation(s)
- Wataru Shigeeda
- Department of Tumor Biology, Institute of Biomedical Science, Iwate Medical University, Iwate, Japan.,Department of Thoracic Surgery, School of Medicine, Iwate Medical University, Iwate, Japan
| | - Masahiko Shibazaki
- Department of Tumor Biology, Institute of Biomedical Science, Iwate Medical University, Iwate, Japan
| | - Shinji Yasuhira
- Department of Tumor Biology, Institute of Biomedical Science, Iwate Medical University, Iwate, Japan
| | - Tomoyuki Masuda
- Department of Pathology, School of Medicine, Iwate Medical University, Iwate, Japan
| | - Tatsuo Tanita
- Department of Thoracic Surgery, School of Medicine, Iwate Medical University, Iwate, Japan
| | - Yuka Kaneko
- Department of Tumor Biology, Institute of Biomedical Science, Iwate Medical University, Iwate, Japan
| | - Tatsuhiro Sato
- Division of Molecular Oncology, Aichi Cancer Center Research Institute, Nagoya, Aichi, Japan
| | - Yoshitaka Sekido
- Division of Molecular Oncology, Aichi Cancer Center Research Institute, Nagoya, Aichi, Japan
| | - Chihaya Maesawa
- Department of Tumor Biology, Institute of Biomedical Science, Iwate Medical University, Iwate, Japan
| |
Collapse
|
45
|
E-cadherin expression is correlated with focal adhesion kinase inhibitor resistance in Merlin-negative malignant mesothelioma cells. Oncogene 2017; 36:5522-5531. [PMID: 28553954 DOI: 10.1038/onc.2017.147] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 03/13/2017] [Accepted: 04/14/2017] [Indexed: 12/15/2022]
Abstract
Malignant mesothelioma (MM) is an aggressive tumor commonly caused by asbestos exposure after a long latency. Focal adhesion kinase (FAK) inhibitors inhibit the cell growth of Merlin-deficient MM cells; however, their clinical efficacy has not been clearly determined. The aim of this study was to evaluate the growth inhibitory effect of the FAK inhibitor VS-4718 on MM cell lines and identify biomarkers for its efficacy. Although most Merlin-deficient cell lines were sensitive to VS-4718 compared with control MeT-5A cells, a subset of these cell lines exhibited resistance to this drug. Microarray and qRT-PCR analyses using RNA isolated from Merlin-deficient MM cell lines revealed a significant correlation between E-cadherin mRNA levels and VS-4718 resistance. Merlin- and E-cadherin-negative Y-MESO-22 cells underwent apoptosis upon treatment with a low concentration of VS-4718, whereas Merlin-negative, E-cadherin-positive Y-MESO-9 cells did not undergo VS-4718-induced apoptosis. Furthermore, E-cadherin knockdown in Merlin-negative MM cells significantly sensitized cells to VS-4718 and induced apoptotic cell death upon VS-4718 treatment. Together, our results suggest that E-cadherin serves as a predictive biomarker for molecular target therapy with FAK inhibitors for patients with mesothelioma and that its expression endows MM cells with resistance to FAK inhibitors.
Collapse
|
46
|
Jiménez AP, Traum A, Boettger T, Hackstein H, Richter AM, Dammann RH. The tumor suppressor RASSF1A induces the YAP1 target gene ANKRD1 that is epigenetically inactivated in human cancers and inhibits tumor growth. Oncotarget 2017; 8:88437-88452. [PMID: 29179447 PMCID: PMC5687617 DOI: 10.18632/oncotarget.18177] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 05/12/2017] [Indexed: 12/20/2022] Open
Abstract
The Hippo pathway regulates organ size, growth and comprises several tumor related factors, including the oncoprotein YAP1 and the tumor suppressor RASSF1A. RASSF1A is frequently epigenetically inactivated in cancer. In our study, we analyzed the effect of RASSF1A on the function of YAP1. Expression of YAP1 resulted in the downregulation of several tumor suppressor genes and induction of S-phase. Co-expression with RASSF1A normalized the expression levels of these tumor suppressors and induced a G0-G1 arrest and apoptosis. This effect was associated with the reduction of MDM2 and the increase of p53. These data suggest that the tumor suppressor RASSF1A inhibits the oncogenic potential of YAP1. Additionally, we could show that ANKRD1 is a YAP1 target gene that is induced by RASSF1A. Further analysis revealed that ANKRD1 is epigenetically inactivated in human cancer. ANKRD1 expression induced the expression of TP53 as well as BAX and CDKN1A and reduced colony formation of cancer cells. We found that ANKRD1 interacts with p53 and is involved in the destabilization of MDM2. Additionally, our data indicate that the tumor-suppressive effect of ANKRD1 depends on the presence of p53. These results suggest that ANKRD1 is a tumor-suppressive downstream target of the Hippo pathway that is epigenetically silenced in human cancer.
Collapse
Affiliation(s)
- Adriana P Jiménez
- Institute for Genetics, Justus-Liebig University Giessen, D-35392 Giessen, Germany
| | - Annalena Traum
- Institute for Genetics, Justus-Liebig University Giessen, D-35392 Giessen, Germany
| | - Thomas Boettger
- Department I-Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, D-61231 Bad Nauheim, Germany
| | - Holger Hackstein
- Clinical Immunology, Biomedizinisches Forschungszentrum Seltersberg, D-35392 Giessen, Germany
| | - Antje M Richter
- Institute for Genetics, Justus-Liebig University Giessen, D-35392 Giessen, Germany
| | - Reinhard H Dammann
- Institute for Genetics, Justus-Liebig University Giessen, D-35392 Giessen, Germany.,German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center, D-35392 Giessen, Germany
| |
Collapse
|
47
|
Zhang M, Singh R, Peng S, Mazumdar T, Sambandam V, Shen L, Tong P, Li L, Kalu NN, Pickering CR, Frederick M, Myers JN, Wang J, Johnson FM. Mutations of the LIM protein AJUBA mediate sensitivity of head and neck squamous cell carcinoma to treatment with cell-cycle inhibitors. Cancer Lett 2017; 392:71-82. [PMID: 28126323 PMCID: PMC5404895 DOI: 10.1016/j.canlet.2017.01.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/13/2017] [Accepted: 01/16/2017] [Indexed: 01/22/2023]
Abstract
The genomic alterations identified in head and neck squamous cell carcinoma (HNSCC) tumors have not resulted in any changes in clinical care, making the development of biomarker-driven targeted therapy for HNSCC a major translational gap in knowledge. To fill this gap, we used 59 molecularly characterized HNSCC cell lines and found that mutations of AJUBA, SMAD4 and RAS predicted sensitivity and resistance to treatment with inhibitors of polo-like kinase 1 (PLK1), checkpoint kinases 1 and 2, and WEE1. Inhibition or knockdown of PLK1 led to cell-cycle arrest at the G2/M transition and apoptosis in sensitive cell lines and decreased tumor growth in an orthotopic AJUBA-mutant HNSCC mouse model. AJUBA protein expression was undetectable in most AJUBA-mutant HNSCC cell lines, and total PLK1 and Bora protein expression were decreased. Exogenous expression of wild-type AJUBA in an AJUBA-mutant cell line partially rescued the phenotype of PLK1 inhibitor-induced apoptosis and decreased PLK1 substrate inhibition, suggesting a threshold effect in which higher drug doses are required to affect PLK1 substrate inhibition. PLK1 inhibition was an effective therapy for HNSCC in vitro and in vivo. However, biomarkers to guide such therapy are lacking. We identified AJUBA, SMAD4 and RAS mutations as potential candidate biomarkers of response of HNSCC to treatment with these mitotic inhibitors.
Collapse
Affiliation(s)
- Ming Zhang
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Otolaryngology-Head & Neck Surgery, Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, People's Republic of China
| | - Ratnakar Singh
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shaohua Peng
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Tuhina Mazumdar
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Vaishnavi Sambandam
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Li Shen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Pan Tong
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lerong Li
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nene N Kalu
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Curtis R Pickering
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Mitchell Frederick
- Department of Otolaryngology, Baylor College of Medicine, Houston, TX, USA
| | - Jeffrey N Myers
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Faye M Johnson
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030, USA.
| |
Collapse
|
48
|
Tranchant R, Quetel L, Tallet A, Meiller C, Renier A, de Koning L, de Reynies A, Le Pimpec-Barthes F, Zucman-Rossi J, Jaurand MC, Jean D. Co-occurring Mutations of Tumor Suppressor Genes, LATS2 and NF2, in Malignant Pleural Mesothelioma. Clin Cancer Res 2016; 23:3191-3202. [PMID: 28003305 DOI: 10.1158/1078-0432.ccr-16-1971] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 11/18/2016] [Accepted: 12/09/2016] [Indexed: 11/16/2022]
Abstract
Purpose: To better define malignant pleural mesothelioma (MPM) heterogeneity and identify molecular subtypes of MPM, we focus on the tumor suppressor gene LATS2, a member of the Hippo signaling pathway, which plays a key role in mesothelial carcinogenesis.Experimental Design: Sixty-one MPM primary cultures established in our laboratory were screened for mutations in LATS2 Gene inactivation was modeled using siRNAs. Gene and protein expressions were analyzed by quantitative RT-PCR, Western blot analysis, and reverse phase protein array. Cell proliferation, viability, apoptosis, mobility, and invasion were determined after siRNA knockdown or YAP (verteporfin), mTOR (rapamycin), and mTOR/PI3K/AKT (PF-04691502) inhibitor treatment.Results: The LATS2 gene was altered in 11% of MPM by point mutations and large exon deletions. Genetic data coupled with transcriptomic data allowed the identification of a new MPM molecular subgroup, C2LN, characterized by a co-occurring mutation in the LATS2 and NF2 genes in the same MPM. MPM patients of this subgroup presented a poor prognosis. Coinactivation of LATS2 and NF2 leads to loss of cell contact inhibition between MPM cells. Hippo signaling pathway activity, mTOR expression, and phosphorylation were altered in the C2LN MPM subgroup. MPMs of this new subgroup show higher sensitivity to PF-04691502 inhibitor. The MOK gene was identified as a potential biomarker of the C2LN MPM subgroup and PF-04691502 sensitivity.Conclusions: We identified a new MPM molecular subgroup that shares common genetic and transcriptomic characteristics. Our results made it possible to highlight a greater sensitivity to an anticancer compound for this MPM subgroup and to identify a specific potential biomarker. Clin Cancer Res; 23(12); 3191-202. ©2016 AACR.
Collapse
Affiliation(s)
- Robin Tranchant
- Génomique Fonctionnelle des Tumeurs Solides, INSERM, UMR-1162, Equipe labellisée Ligue Contre le Cancer, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Labex Immuno-oncology, Paris, France.,Institut Universitaire d'Hématologie, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,Université Paris 13, Sorbonne Paris Cité, Saint-Denis, France
| | - Lisa Quetel
- Génomique Fonctionnelle des Tumeurs Solides, INSERM, UMR-1162, Equipe labellisée Ligue Contre le Cancer, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Labex Immuno-oncology, Paris, France.,Institut Universitaire d'Hématologie, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,Université Paris 13, Sorbonne Paris Cité, Saint-Denis, France
| | - Anne Tallet
- Génomique Fonctionnelle des Tumeurs Solides, INSERM, UMR-1162, Equipe labellisée Ligue Contre le Cancer, Paris, France
| | - Clement Meiller
- Génomique Fonctionnelle des Tumeurs Solides, INSERM, UMR-1162, Equipe labellisée Ligue Contre le Cancer, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Labex Immuno-oncology, Paris, France.,Institut Universitaire d'Hématologie, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,Université Paris 13, Sorbonne Paris Cité, Saint-Denis, France
| | - Annie Renier
- Génomique Fonctionnelle des Tumeurs Solides, INSERM, UMR-1162, Equipe labellisée Ligue Contre le Cancer, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Labex Immuno-oncology, Paris, France.,Institut Universitaire d'Hématologie, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,Université Paris 13, Sorbonne Paris Cité, Saint-Denis, France
| | - Leanne de Koning
- Translational Research Department, Institut Curie, PSL Research University, Paris, France
| | - Aurelien de Reynies
- Programme Cartes d'Identité des Tumeurs (CIT), Ligue Nationale Contre Le Cancer, Paris, France
| | - Francoise Le Pimpec-Barthes
- Génomique Fonctionnelle des Tumeurs Solides, INSERM, UMR-1162, Equipe labellisée Ligue Contre le Cancer, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Labex Immuno-oncology, Paris, France.,Institut Universitaire d'Hématologie, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,Université Paris 13, Sorbonne Paris Cité, Saint-Denis, France.,Département de Chirurgie Thoracique, Hopital Européen Georges Pompidou, Paris, France.,Assistance Publique-Hopitaux de Paris, Hopital Européen Georges Pompidou, Paris, France
| | - Jessica Zucman-Rossi
- Génomique Fonctionnelle des Tumeurs Solides, INSERM, UMR-1162, Equipe labellisée Ligue Contre le Cancer, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Labex Immuno-oncology, Paris, France.,Institut Universitaire d'Hématologie, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,Université Paris 13, Sorbonne Paris Cité, Saint-Denis, France.,Assistance Publique-Hopitaux de Paris, Hopital Européen Georges Pompidou, Paris, France
| | - Marie-Claude Jaurand
- Génomique Fonctionnelle des Tumeurs Solides, INSERM, UMR-1162, Equipe labellisée Ligue Contre le Cancer, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Labex Immuno-oncology, Paris, France.,Institut Universitaire d'Hématologie, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,Université Paris 13, Sorbonne Paris Cité, Saint-Denis, France
| | - Didier Jean
- Génomique Fonctionnelle des Tumeurs Solides, INSERM, UMR-1162, Equipe labellisée Ligue Contre le Cancer, Paris, France. .,Université Paris Descartes, Sorbonne Paris Cité, Labex Immuno-oncology, Paris, France.,Institut Universitaire d'Hématologie, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,Université Paris 13, Sorbonne Paris Cité, Saint-Denis, France
| |
Collapse
|
49
|
Horie M, Saito A, Ohshima M, Suzuki HI, Nagase T. YAP and TAZ modulate cell phenotype in a subset of small cell lung cancer. Cancer Sci 2016; 107:1755-1766. [PMID: 27627196 PMCID: PMC5198951 DOI: 10.1111/cas.13078] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/24/2016] [Accepted: 09/09/2016] [Indexed: 02/02/2023] Open
Abstract
Small cell lung cancer (SCLC) is a highly aggressive and metastatic malignancy that shows rapid development of chemoresistance and a high rate of recurrence. Recent genome and transcriptome studies have provided the whole landscape of genomic alterations and gene expression changes in SCLC. In light of the inter‐individual heterogeneity of SCLC, subtyping of SCLC might be helpful for prediction of therapeutic response and prognosis. Based on the transcriptome data of SCLC cell lines, we undertook transcriptional network‐defined SCLC classification and identified a unique SCLC subgroup characterized by relatively high expression of Hippo pathway regulators Yes‐associated protein (YAP) and transcriptional coactivator with PDZ‐binding motif (TAZ) (YAP/TAZ subgroup). The YAP/TAZ subgroup displayed adherent cell morphology, lower expression of achaete‐scute complex homolog 1 (ASCL1) and neuroendocrine markers, and higher expression of laminin and integrin. YAP knockdown caused cell morphological alteration reminiscent of floating growth pattern in many SCLC cell lines, and microarray analyses revealed a subset of genes regulated by YAP, including Ajuba LIM protein (AJUBA). AJUBA also contributed to cell morphology regulation. Of clinical importance, SCLC cell lines of the YAP/TAZ subgroup showed unique patterns of drug sensitivity. Our findings shed light on a subtype of SCLC with YAP and TAZ expression, and delineate molecular networks underlying the heterogeneity of SCLC.
Collapse
Affiliation(s)
- Masafumi Horie
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Division for Health Service Promotion, The University of Tokyo, Tokyo, Japan
| | - Akira Saito
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Division for Health Service Promotion, The University of Tokyo, Tokyo, Japan
| | - Mitsuhiro Ohshima
- Department of Biochemistry, Ohu University School of Pharmaceutical Sciences, Koriyama, Japan
| | - Hiroshi I Suzuki
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Takahide Nagase
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
50
|
Wang S, Jiang L, Han Y, Chew SH, Ohara Y, Akatsuka S, Weng L, Kawaguchi K, Fukui T, Sekido Y, Yokoi K, Toyokuni S. Urokinase-type plasminogen activator receptor promotes proliferation and invasion with reduced cisplatin sensitivity in malignant mesothelioma. Oncotarget 2016; 7:69565-69578. [PMID: 27602956 PMCID: PMC5342498 DOI: 10.18632/oncotarget.11829] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 08/25/2016] [Indexed: 11/25/2022] Open
Abstract
Malignant mesothelioma (MM) is a rare neoplasm associated with asbestos exposure. The prognosis of MM is poor because it is aggressive and highly resistant to chemotherapy. Using a rat model of asbestos-induced MM, we found elevated urokinase-type plasminogen activator receptor (uPAR; Plaur) expression in rat tissues, which was associated with poor prognosis. The proliferation, migration and invasion of MM cells were suppressed by uPAR knockdown and increased by overexpression experiments, irrespective of urokinase-type plasminogen activator (uPA; Plau) levels. More importantly, we found that uPAR expression is associated with sensitivity to cisplatin in MM through the PI3K/AKT pathway, which was demonstrated with specific inhibitors, LY294002 and Akti-1/2. uPAR knockdown significantly increased sensitivity to cisplatin whereas its overexpression significantly decreased cisplatin sensitivity. Furthermore, sera and tissues from MM patients showed significantly high uPAR levels, which suggested the pathogenic role of uPAR in the tumor biology of human MM. In conclusion, our findings indicate that uPAR levels are associated with malignant characteristics and cisplatin sensitivity of MM. In addition to the potential use of uPAR as a prognostic marker, the combination of uPAR abrogation and cisplatin may reveal a promising therapeutic approach for MM.
Collapse
Affiliation(s)
- Shenqi Wang
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, 466–8550, Japan
| | - Li Jiang
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, 466–8550, Japan
| | - Yipeng Han
- Department of Tumor Pathology, Nagoya University Graduate School of Medicine, Nagoya, 466–8550, Japan
| | - Shan Hwu Chew
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, 466–8550, Japan
| | - Yuuki Ohara
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, 466–8550, Japan
| | - Shinya Akatsuka
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, 466–8550, Japan
| | - Liang Weng
- Department of Tumor Pathology, Nagoya University Graduate School of Medicine, Nagoya, 466–8550, Japan
| | - Koji Kawaguchi
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya, 466–8550, Japan
| | - Takayuki Fukui
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya, 466–8550, Japan
| | - Yoshitaka Sekido
- Department of Cancer Genetics, Nagoya University Graduate School of Medicine, Nagoya, 466–8550, Japan
- Division of Molecular Oncology, Aichi Cancer Center Research Institute, Nagoya, 464–8681, Japan
| | - Kohei Yokoi
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya, 466–8550, Japan
| | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, 466–8550, Japan
| |
Collapse
|