1
|
Ghisai SA, Barin N, van Hijfte L, Verhagen K, de Wit M, van den Bent MJ, Hoogstrate Y, French PJ. Transcriptomic analysis of EGFR co-expression and activation in glioblastoma reveals associations with its ligands. Neurooncol Adv 2025; 7:vdae229. [PMID: 39959305 PMCID: PMC11829203 DOI: 10.1093/noajnl/vdae229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2025] Open
Abstract
Background Approximately half of the isocitrate dehydrogenase (IDH)-wildtype glioblastomas (GBMs) exhibit EGFR amplification. Additionally, genomic changes that occur in the extracellular domain of EGFR can lead to ligand-hypersensitivity (R108K/A289V/G598V) or ligand-independence (EGFRvIII). Unlike in lung adenocarcinoma (LUAD), clinical trials with epidermal growth factor receptor (EGFR) inhibitors showed no survival benefit for GBM and it remains unclear why. We aimed to elucidate differences in molecular mechanisms of EGFR activation and regulation between GBM and LUAD. Methods We used RNA-sequencing (RNA-seq) data to find EGFR co-regulated genes and pathways in GBM and compare EGFR signaling patterns between GBM and LUAD. Cellular origins of expression signals were determined by analyzing single-cell RNA-seq data. Results We identified 2 ligands (BTC/EREG) among the significant EGFR predictor genes (TCGA-GBM: n = 169, Intellance-2: n = 166). Their expression was inversely correlated with EGFR amplification and incidence of ligand-sensitive mutations. Ligands were expressed by nonmalignant cells and differed in their primary source of expression (BTC: neurons, EREG: myeloid). High expression of MDM2 and CDK4 was less common in EGFR-amplified GBMs with ligand-sensitive mutations compared with those without these mutations. Our analyses revealed distinct transcriptional profiles between GBM and LUAD when comparing tumors carrying activating mutations. Conclusions BTC and EREG are negatively associated with EGFR expression in GBM. These findings emphasize the role of ligands in regulating EGFR, where EGFR activation seems to be modulated by the highly varying levels of EGFR amplification, the sensitivity of the receptor toward ligands, and ligand expression levels. Ligand expression levels and EGFR mutations could refine patient stratification for EGFR-targeted therapies in GBM.
Collapse
Affiliation(s)
- Santoesha A Ghisai
- Department of Neurology, Erasmus Medical Center Cancer Institute, Rotterdam, The Netherlands
| | - Nastaran Barin
- Department of Precision and Microsystems Engineering, Delft University of Technology, Delft, The Netherlands
- Department of Neurology, Erasmus Medical Center Cancer Institute, Rotterdam, The Netherlands
| | - Levi van Hijfte
- Department of Tumor Immunology, Erasmus Medical Center Cancer Institute, Rotterdam, The Netherlands
- Department of Neurology, Erasmus Medical Center Cancer Institute, Rotterdam, The Netherlands
| | - Kim Verhagen
- Department of Neurology, Erasmus Medical Center Cancer Institute, Rotterdam, The Netherlands
| | - Maurice de Wit
- Department of Neurology, Erasmus Medical Center Cancer Institute, Rotterdam, The Netherlands
| | - Martin J van den Bent
- Department of Neurology, Erasmus Medical Center Cancer Institute, Rotterdam, The Netherlands
| | - Youri Hoogstrate
- Department of Neurology, Erasmus Medical Center Cancer Institute, Rotterdam, The Netherlands
| | - Pim J French
- Department of Neurology, Erasmus Medical Center Cancer Institute, Rotterdam, The Netherlands
| |
Collapse
|
2
|
Zeng Y, Tan P, Ren C, Gao L, Chen Y, Hu S, Tang N, Chen C, Du S. Comprehensive Analysis of Expression and Prognostic Value of MS4As in Glioma. Front Genet 2022; 13:795844. [PMID: 35734424 PMCID: PMC9207330 DOI: 10.3389/fgene.2022.795844] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 04/25/2022] [Indexed: 12/27/2022] Open
Abstract
Glioma is the most common malignancy of the nervous system with high mortality rates. The MS4A family members have been reported as potential prognostic biomarkers in several cancers; however, the relationship between the MS4A family and glioma has not been clearly confirmed. In our study, we explored the prognostic value of MS4As as well as their potential pro-cancer mechanisms of glioma. Using bioinformatics analysis methods based on the data from public databases, we found that the expression of MS4A4A, MS4A4E, MS4A6A, MS4A7, TMEM176A, and TMEM176B was significantly overexpressed in glioma tissues compared with that of normal tissues. The Kaplan–Meier method and Cox proportional hazards models revealed that high levels of MS4As can be associated with a poorer prognosis; TMEM176A, TMEM176B, age, WHO grade, and IDH status were identified as independent prognostic factors. Enrichment analysis predicted that MS4As were related to tumor-related pathways and immune response, which might regulate the process of MS4As promoting tumorigenesis. Additionally, we analyzed the correlations of MS4A expression with immune cells and immune inhibitory molecules. Finally, data from the cell culture suggested that knockdown of the TMEM176B gene contributes to the decreased proliferation and migration of glioma cells. In conclusion, MS4A4A, MS4A4E, MS4A6A, MS4A7, TMEM176A, and TMEM176B may act as potential diagnostic or prognostic biomarkers in glioma and play a role in forming the immune microenvironment in gliomas.
Collapse
Affiliation(s)
- Yingying Zeng
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Peixin Tan
- Department of Radiology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Chen Ren
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lianxuan Gao
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yulei Chen
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shushu Hu
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Nan Tang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chen Chen
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shasha Du
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Radiology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- *Correspondence: Shasha Du,
| |
Collapse
|
3
|
Xu B, Huo Z, Huang H, Ji W, Bian Z, Jiao J, Sun J, Shao J. The expression and prognostic value of the epidermal growth factor receptor family in glioma. BMC Cancer 2021; 21:451. [PMID: 33892666 PMCID: PMC8063311 DOI: 10.1186/s12885-021-08150-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 04/05/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The epidermal growth factor receptor (EGFR) family belongs to the transmembrane protein receptor of the tyrosine kinase I subfamily and has 4 members: EGFR/ERBB1, ERBB2, ERBB3, and ERBB4. The EGFR family is closely related to the occurrence and development of a variety of cancers. MATERIALS/METHODS In this study, we used multiple online bioinformatics websites, including ONCOMINE, TCGA, CGGA, TIMER, cBioPortal, GeneMANIA and DAVID, to study the expression profiles, prognostic values and immune infiltration correlations of the EGFR family in glioma. RESULTS We found that EGFR and ERBB2 mRNA expression levels were higher in glioblastoma (GBM, WHO IV) than in other grades (WHO grade II & III), while the ERBB3 and ERBB4 mRNA expression levels were the opposite. EGFR and ERBB2 were notably downregulated in IDH mutant gliomas, while ERBB3 and ERBB4 were upregulated, which was associated with a poor prognosis. In addition, correlation analysis between EGFR family expression levels and immune infiltrating levels in glioma showed that EGFR family expression and immune infiltrating levels were significantly correlated. The PPI network of the EGFR family in glioma and enrichment analysis showed that the EGFR family and its interactors mainly participated in the regulation of cell motility, involving integrin receptors and Rho family GTPases. CONCLUSIONS In summary, the results of this study indicate that the EGFR family members may become potential therapeutic targets and new prognostic markers for glioma.
Collapse
Affiliation(s)
- Bin Xu
- Department of Neurosurgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, No. 299 Qing Yang Road, Wuxi, 214023, Jiangsu, China
| | - Zhengyuan Huo
- Department of Neurosurgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, No. 299 Qing Yang Road, Wuxi, 214023, Jiangsu, China
| | - Hui Huang
- Department of Neurosurgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, No. 299 Qing Yang Road, Wuxi, 214023, Jiangsu, China
| | - Wei Ji
- Department of Neurosurgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, No. 299 Qing Yang Road, Wuxi, 214023, Jiangsu, China
| | - Zheng Bian
- Department of Neurosurgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, No. 299 Qing Yang Road, Wuxi, 214023, Jiangsu, China
| | - Jiantong Jiao
- Department of Neurosurgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, No. 299 Qing Yang Road, Wuxi, 214023, Jiangsu, China
| | - Jun Sun
- Department of Neurosurgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, No. 299 Qing Yang Road, Wuxi, 214023, Jiangsu, China.
| | - Junfei Shao
- Department of Neurosurgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, No. 299 Qing Yang Road, Wuxi, 214023, Jiangsu, China.
| |
Collapse
|
4
|
Structural studies of full-length receptor tyrosine kinases and their implications for drug design. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 124:311-336. [PMID: 33632469 DOI: 10.1016/bs.apcsb.2020.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Receptor tyrosine kinases (RTKs) are important drug targets for cancer and immunological disorders. Crystal structures of individual RTK domains have contributed greatly to the structure-based drug design of clinically used drugs. Low-resolution structures from electron microscopy are now available for the RTKs, EGFR, PDGFR, and Kit. However, there are still no high-resolution structures of full-length RTKs due to the technical challenges of working with these complex, membrane proteins. Here, we review what has been learned from structural studies of these three RTKs regarding their mechanisms of ligand binding, activation, oligomerization, and inhibition. We discuss the implications for drug design. More structural data on full-length RTKs may facilitate the discovery of druggable sites and drugs with improved specificity and effectiveness against resistant mutants.
Collapse
|
5
|
Chi AS, Cahill DP, Reardon DA, Wen PY, Mikkelsen T, Peereboom DM, Wong ET, Gerstner ER, Dietrich J, Plotkin SR, Norden AD, Lee EQ, Nayak L, Tanaka S, Wakimoto H, Lelic N, Koerner MV, Klofas LK, Bertalan MS, Arrillaga-Romany IC, Betensky RA, Curry WT, Borger DR, Balaj L, Kitchen RR, Chakrabortty SK, Valentino MD, Skog J, Breakefield XO, Iafrate AJ, Batchelor TT. Exploring Predictors of Response to Dacomitinib in EGFR-Amplified Recurrent Glioblastoma. JCO Precis Oncol 2020; 4:1900295. [PMID: 32923886 DOI: 10.1200/po.19.00295] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2020] [Indexed: 01/16/2023] Open
Abstract
PURPOSE Despite the high frequency of EGFR genetic alterations in glioblastoma (GBM), EGFR-targeted therapies have not had success in this disease. To improve the likelihood of efficacy, we targeted adult patients with recurrent GBM enriched for EGFR gene amplification, which occurs in approximately half of GBM, with dacomitinib, a second-generation, irreversible epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor that penetrates the blood-brain barrier, in a multicenter phase II trial. PATIENTS AND METHODS We retrospectively explored whether previously described EGFR extracellular domain (ECD)-sensitizing mutations in the context of EGFR gene amplification could predict response to dacomitinib, and in a predefined subset of patients, we measured post-treatment intratumoral dacomitinib levels to verify tumor penetration. RESULTS We found that dacomitinib effectively penetrates contrast-enhancing GBM tumors. Among all 56 treated patients, 8 (14.3%) had a clinical benefit as defined by a duration of treatment of at least 6 months, of whom 5 (8.9%) remained progression free for at least 1 year. Presence of EGFRvIII or EGFR ECD missense mutation was not associated with clinical benefit. We evaluated the pretreatment transcriptome in circulating extracellular vesicles (EVs) by RNA sequencing in a subset of patients and identified a signature that distinguished patients who had durable benefit versus those with rapid progression. CONCLUSION While dacomitinib was not effective in most patients with EGFR-amplified GBM, a subset experienced a durable, clinically meaningful benefit. Moreover, EGFRvIII and EGFR ECD mutation status in archival tumors did not predict clinical benefit. RNA signatures in circulating EVs may warrant investigation as biomarkers of dacomitinib efficacy in GBM.
Collapse
Affiliation(s)
- Andrew S Chi
- Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Daniel P Cahill
- Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - David A Reardon
- Dana-Farber/Brigham and Women's Cancer Center and Harvard Medical School, Boston, MA
| | - Patrick Y Wen
- Dana-Farber/Brigham and Women's Cancer Center and Harvard Medical School, Boston, MA
| | - Tom Mikkelsen
- Ontario Brain Institute, Toronto, Ontario, Canada.,Henry Ford Hospital, Detroit, MI
| | | | - Eric T Wong
- Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | | | - Jorg Dietrich
- Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Scott R Plotkin
- Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Andrew D Norden
- Dana-Farber/Brigham and Women's Cancer Center and Harvard Medical School, Boston, MA
| | - Eudocia Q Lee
- Dana-Farber/Brigham and Women's Cancer Center and Harvard Medical School, Boston, MA
| | - Lakshmi Nayak
- Dana-Farber/Brigham and Women's Cancer Center and Harvard Medical School, Boston, MA
| | - Shota Tanaka
- Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Hiroaki Wakimoto
- Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Nina Lelic
- Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Mara V Koerner
- Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Lindsay K Klofas
- Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Mia S Bertalan
- Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | | | | | - William T Curry
- Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Darrel R Borger
- Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Leonora Balaj
- Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | | | | | | | | | | | - A John Iafrate
- Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Tracy T Batchelor
- Massachusetts General Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
6
|
Investigation of dacomitinib on reducing cell necrosis and enhancing cell apoptosis in C6 glioma rat model by MRI. Biosci Rep 2019; 39:BSR20190006. [PMID: 30782784 PMCID: PMC6400661 DOI: 10.1042/bsr20190006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 01/31/2019] [Accepted: 02/02/2019] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Glioma is one of the most epidemic and obstinate types of cancer in the central nervous system (CNS) with poor survival rate. Dacomitinib inhibited cell viability and proliferation of epidermal growth factor receptor (EGFR)-amplified glioma. In the present study, the regional effects of Dacomitinib on tumor necrosis was investigated. METHODS A C6 rat glioma model was evaluated using proton magnetic resonance spectroscopy (1H-MRS), diffusion weighted imaging (DWI), and morphological T2-weighted imaging (T2W). The effects of Dacomitinib on glioma cells were investigated using methods of immunohistochemistry and Hematoxylin and Eosin (H&E) staining. RESULTS The obtained data indicated that metabolite ratios were significantly decreased (all P<0.05) in the Dacomitinib-treated group compared with C6 glioma control group. The ADC value of necrotic core in Dacomitinib group was significantly lower than that in control group. In addition, the expression of Ki-67 in Dacomitinib-treated group (50.32 ± 5.61) was significantly lower than that in control group (P<0.05). The apoptotic index (AI) (28.01 ± 2.37) in Dacomitinib-treated group was significantly higher than that in control group (11.58 ± 3.17). CONCLUSION The results demonstrated that the Dacomitinib could suppress glioma cell necrosis and proliferation.
Collapse
|
7
|
Sepúlveda JM, Sánchez-Gómez P, Vaz Salgado MÁ, Gargini R, Balañá C. Dacomitinib: an investigational drug for the treatment of glioblastoma. Expert Opin Investig Drugs 2018; 27:823-829. [PMID: 30247945 DOI: 10.1080/13543784.2018.1528225] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
INTRODUCTION Standard treatment of newly diagnosed glioblastoma (GB) is surgery with radiotherapy and temozolomide, but tumors will recur with a median overall survival of only 15 months. It seems imperative to explore new possibilities of treatment based on targetable alterations known to be present in GB. Among others, Epidermal Growth Factor Receptor or EGFR (HER1) mutations or amplifications are the most prevalent alterations in GB. In fact, around 40% of GB cases show amplification of EGFR gene, and half of these patients carry the EGFRvIII mutation, a deletion that generates a continuous activation of the tyrosine kinase domain of the receptor. Areas covered: We review the current knowledge about Dacomitinib, an oral, irreversible, second-generation, pan-HER tyrosine kinase inhibitor, in the treatment of glioblastoma. Dacomitinib has noteworthy antiglioma activity in preclinical models and has been tested in one phase II trial in patients with recurrent GB with EGFR amplification. Expert opinion: Despite the poor global results of Dacomitinib in recurrent GB shown in a phase II trial, some patients had a significant benefit. Therefore, it is necessary to improve the knowledge about the mechanisms of failure or resistance to EGFR inhibitors in GB.
Collapse
Affiliation(s)
| | - Pilar Sánchez-Gómez
- b Neurooncology Unit , Instituto de Salud Carlos III, UFIEC , Madrid , Spain
| | | | - Ricardo Gargini
- d Molecular neuropathology , Centro de Biología Molecular, CSIC , Madrid , Spain
| | - Carmen Balañá
- e Neurooncology and Sarcomas , Catalan Institute of Oncology (ICO) Badalona , Barcelona , Spain
| |
Collapse
|
8
|
Differential Sensitivity of Human Hepatocellular Carcinoma Xenografts to an IGF-II Neutralizing Antibody May Involve Activated STAT3. Transl Oncol 2018; 11:971-978. [PMID: 29933129 PMCID: PMC6020079 DOI: 10.1016/j.tranon.2018.05.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/24/2018] [Accepted: 05/24/2018] [Indexed: 01/11/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is highly refractory to current therapeutics used in the clinic. DX-2647, a recombinant human antibody, potently neutralizes the action of insulin-like growth factor-II (IGF-II), a ligand for three cell-surface receptors (IGF-IR, insulin receptor A and B isoforms, and the cation-independent mannose-6-phosphate receptor) which is overexpressed in primary human HCC. DX-2647 impaired the growth of tumor xenografts of the HCC cell line, Hep3B; however, xenografts of the HCC cell line, HepG2, were largely unresponsive to DX-2647 treatment. Analysis of a number of aspects of the IGF signaling axis in both cell lines did not reveal any significant differences between the two. However, while DX-2647 abolished phospho (p)-IGF-IR, p-IR and p-AKT signaling in both cell lines, HepG2 showed high levels of p-STAT3, which was unaffected by DX-2647 treatment and was absent from the Hep3B cell line. The driver of p-STAT3 was found to be a secreted cytokine, and treatment of HepG2 cells with a pan- JAK kinase inhibitor resulted in a loss of p-STAT3. These findings implicate the activation of STAT3 as one pathway that may mediate resistance to IGF-II-targeted therapy in HCC.
Collapse
|
9
|
Endersby R, Whitehouse J, Hii H, Greenall SA, Johns TG, Gottardo NG. A Pre-Clinical Assessment of the Pan-ERBB Inhibitor Dacomitinib in Pediatric and Adult Brain Tumors. Neoplasia 2018; 20:432-442. [PMID: 29574250 PMCID: PMC5916087 DOI: 10.1016/j.neo.2018.02.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/16/2018] [Accepted: 02/19/2018] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma in adults, and medulloblastoma and pineoblastoma that mainly affect children, are aggressive brain tumors. The survival for patients with glioblastoma remains dismal. While the cure rate for medulloblastoma exceeds 70%, this figure has stagnated over the past few decades and survivors still contend with significant long-term debilitating side effects. The prognosis for pineoblastoma is age-dependent, with little chance of a cure for children younger than three years. More effective molecularly targeted strategies are urgently required to treat these cancers. Hyper-activation of epidermal growth factor receptor (EGFR) signaling is characteristic of several different classes of human cancers, including a subset of glioblastoma and medulloblastoma. This has provided the impetus for the development of a suite of EGFR pathway blockers, including second generation irreversible inhibitors, such as dacomitinib. We have developed a comprehensive drug evaluation pipeline, including in vitro interaction analyses and orthotopic xenograft mouse models, to address the efficacy of drugs for brain tumor treatment, enabling the exclusion of potentially ineffective treatments and prioritization of truly beneficial novel treatments for clinical trial. We used this system to examine the effects of dacomitinib as a single agent, or in combination with conventional chemotherapeutics, on the growth of human adult and pediatric brain tumor cell lines. Dacomitinib inhibited EGFR or EGFRvIII activity in vitro in all three tumor types tested, and as a single agent induced a modest increase in survival time for mice bearing glioblastoma, which accurately predicted human clinical trial data. For pediatric medulloblastoma, dacomitinib blocked EGFR/HER signalling in orthotopic xenografts and extended median survival as a single agent, however was antagonistic when used in combination with standard frontline medulloblastoma chemotherapies. The findings caution against the use of dacomitinib for pediatric brain tumor clinical trials.
Collapse
Affiliation(s)
- Raelene Endersby
- Brain Tumor Research Program, Telethon Kids Cancer Centre, Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia
| | - Jacqueline Whitehouse
- Brain Tumor Research Program, Telethon Kids Cancer Centre, Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia
| | - Hilary Hii
- Brain Tumor Research Program, Telethon Kids Cancer Centre, Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia
| | - Sameer A Greenall
- Oncogenic Signaling Laboratory, Monash Institute of Medical Research, Clayton, Victoria, Australia
| | - Terrance G Johns
- Brain Tumor Research Program, Telethon Kids Cancer Centre, Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia; Oncogenic Signaling Laboratory, Monash Institute of Medical Research, Clayton, Victoria, Australia
| | - Nicholas G Gottardo
- Brain Tumor Research Program, Telethon Kids Cancer Centre, Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia; Department of Pediatric Oncology and Hematology, Princess Margaret Hospital for Children, Subiaco, Western Australia, Australia; Division of Paediatrics, School of Medicine, University of Western Australia, Crawley, Western Australia, Australia.
| |
Collapse
|
10
|
Tamura S, Wang Y, Veeneman B, Hovelson D, Bankhead A, Broses LJ, Lorenzatti Hiles G, Liebert M, Rubin JR, Day KC, Hussain M, Neamati N, Tomlins S, Palmbos PL, Grivas P, Day ML. Molecular Correlates of In Vitro Responses to Dacomitinib and Afatinib in Bladder Cancer. Bladder Cancer 2018; 4:77-90. [PMID: 29430509 PMCID: PMC5798519 DOI: 10.3233/blc-170144] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background: The HER family of proteins (EGFR, HER2, HER3 and HER4) have long been thought to be therapeutic targets for bladder cancer, but previous clinical trials targeting these proteins have been disappointing. Second generation agents may be more effective. Objective: The aim of this study was to evaluate responses to two second-generation irreversible tyrosine kinase inhibitors, dacomitinib and afatinib, in bladder cancer cell lines. Methods: Cell lines were characterized by targeted next generation DNA sequencing, RNA sequencing, western blotting and flow cytometry. Cell survival responses to dacomitinib or afatinib were determined using (3-[4,5-dimethylthioazol-2-yl]-2,5-diphenyl tetrazolium bromide) (MTT) or [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) and phenazine methosylfate (PMS) cell survival assays. Results: Only two cell lines of 12 tested were sensitive to afatinib. Sensitivity to afatinib was significantly associated with mutation in either HER2 or HER3 (p < 0.05). The two cell lines sensitive to afatinib were also responsive to dacomitinib ralong with an additional 4 other cell lines out of 16 tested. No characteristic was associated with dacomitinib sensitivity. Molecular profiling demonstrated that only two genes were high in both afatinib and dacomitinib sensitive cells. Further rhigher expression of RAS pathway genes was noted for dacomitinib responsive cells. Conclusions: This study confirms that cell line screening can be useful in pre-clinical evaluation of targeted small molecule inhibitors and suggests that compounds with similar structure(s) and target(s) may have distinct sensitivity profiles. Further rcombinational targeting of additional molecularly relevant pathways may be important in enhancing responses to HER targeted agents in bladder cancer.
Collapse
Affiliation(s)
- Shuzo Tamura
- Department of Medicinal Chemistry, School of Pharmacy, University of Michigan, Ann Arbor, MI, USA.,Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA.,Current address: Yokohama City University, Yokohama City, Japan
| | - Yin Wang
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA.,Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Brendan Veeneman
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI, USA.,Current Address: Pfizer, Pearl River, NY, USA
| | - Daniel Hovelson
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Armand Bankhead
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA.,Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Luke J Broses
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA.,Department of Urology, University of Michigan, Ann Arbor, MI, USA
| | - Guadalupe Lorenzatti Hiles
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA.,Department of Urology, University of Michigan, Ann Arbor, MI, USA
| | - Monica Liebert
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA.,Department of Urology, University of Michigan, Ann Arbor, MI, USA
| | - John R Rubin
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA.,Department of Urology, University of Michigan, Ann Arbor, MI, USA
| | - Kathleen C Day
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA.,Department of Urology, University of Michigan, Ann Arbor, MI, USA
| | - Maha Hussain
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA.,Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.,Department of Urology, University of Michigan, Ann Arbor, MI, USA.,Current Address: Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Nouri Neamati
- Department of Medicinal Chemistry, School of Pharmacy, University of Michigan, Ann Arbor, MI, USA.,Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Scott Tomlins
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Philip L Palmbos
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA.,Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Petros Grivas
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA.,Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.,Current address: University of Washington, Seattle, WA, USA
| | - Mark L Day
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA.,Department of Urology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
11
|
Stec W, Rosiak K, Treda C, Smolarz M, Peciak J, Pacholczyk M, Lenart A, Grzela D, Stoczynska-Fidelus E, Rieske P. Cyclic trans-phosphorylation in a homodimer as the predominant mechanism of EGFRvIII action and regulation. Oncotarget 2018; 9:8560-8572. [PMID: 29492217 PMCID: PMC5823601 DOI: 10.18632/oncotarget.24058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 12/29/2017] [Indexed: 11/25/2022] Open
Abstract
Despite intensive research no therapies targeted against the oncogenic EGFRvIII are present in the clinic. One of the reasons is the elusive nature of the molecular structure and activity of the truncated receptor. The recent publications indicate the EGF-bound wild-type EGFR to trans-phosphorylate the EGFRvIII initiating aberrant signaling cascade. The elevated stability of the mutant receptor contributes towards oncogenic potential, preventing termination of signaling by receptor degradation. Here, we show that inhibition of phosphatases leads to a marked increase in phosphorylation of wild-type EGFR and EGFRvIII, indicating that both undergo cyclic rounds of phosphorylation and dephosphorylation on all investigated tyrosine residues, including Tyr1045. Still, we observe elevated stability of the mutant receptor, suggesting phosphorylation as insufficient to cause degradation. Hyperphosphorylation of EGFRvIII was hindered only by EGFR tyrosine kinase inhibitors. Co-immunoprecipitation as well as semi-native Western blotting structural analyses together with functional investigation of EGFRvIII's phosphorylation following depletion of wild-type EGFR by shRNA or EGF-mediated degradation indicated homodimerization as the predominant quaternary structure of the mutant receptor. Dimers were observed only under non-reducing conditions, suggesting that homodimerization is mediated by covalent bonds. Previous reports indicated cysteine at position 16 to mediate covalent homodimerization. Upon its substitution to serine, we have observed impaired formation of dimers and lower phosphorylation levels of the mutated oncogene. Based on the obtained results we propose that EGFRvIII is predominantly regulated dynamically by phosphatases that counteract the process of trans-phosphorylation occurring within the homodimers.
Collapse
Affiliation(s)
- Wojciech Stec
- Research and Development Unit, Celther Polska Ltd., Lodz, Poland
| | - Kamila Rosiak
- Research and Development Unit, Celther Polska Ltd., Lodz, Poland.,Department of Tumor Biology, Medical University of Lodz, Lodz, Poland
| | - Cezary Treda
- Research and Development Unit, Celther Polska Ltd., Lodz, Poland.,Department of Tumor Biology, Medical University of Lodz, Lodz, Poland
| | - Maciej Smolarz
- Research and Development Unit, Celther Polska Ltd., Lodz, Poland
| | - Joanna Peciak
- Research and Development Unit, Celther Polska Ltd., Lodz, Poland.,Department of Tumor Biology, Medical University of Lodz, Lodz, Poland
| | - Marcin Pacholczyk
- Research and Development Unit, Celther Polska Ltd., Lodz, Poland.,Institute of Automatic Control, Silesian University of Technology, Gliwice, Poland
| | - Anna Lenart
- Research and Development Unit, Celther Polska Ltd., Lodz, Poland
| | - Dawid Grzela
- Research and Development Unit, Celther Polska Ltd., Lodz, Poland
| | - Ewelina Stoczynska-Fidelus
- Research and Development Unit, Celther Polska Ltd., Lodz, Poland.,Department of Tumor Biology, Medical University of Lodz, Lodz, Poland
| | - Piotr Rieske
- Research and Development Unit, Celther Polska Ltd., Lodz, Poland.,Department of Tumor Biology, Medical University of Lodz, Lodz, Poland.,Research and Development Unit, Personather Ltd., Lodz, Poland
| |
Collapse
|
12
|
Activation of the EGF Receptor by Ligand Binding and Oncogenic Mutations: The "Rotation Model". Cells 2017; 6:cells6020013. [PMID: 28574446 PMCID: PMC5492017 DOI: 10.3390/cells6020013] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 05/17/2017] [Accepted: 05/31/2017] [Indexed: 01/17/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) plays vital roles in cellular processes including cell proliferation, survival, motility, and differentiation. The dysregulated activation of the receptor is often implicated in human cancers. EGFR is synthesized as a single-pass transmembrane protein, which consists of an extracellular ligand-binding domain and an intracellular kinase domain separated by a single transmembrane domain. The receptor is activated by a variety of polypeptide ligands such as epidermal growth factor and transforming growth factor α. It has long been thought that EGFR is activated by ligand-induced dimerization of the receptor monomer, which brings intracellular kinase domains into close proximity for trans-autophosphorylation. An increasing number of diverse studies, however, demonstrate that EGFR is present as a pre-formed, yet inactive, dimer prior to ligand binding. Furthermore, recent progress in structural studies has provided insight into conformational changes during the activation of a pre-formed EGFR dimer. Upon ligand binding to the extracellular domain of EGFR, its transmembrane domains rotate or twist parallel to the plane of the cell membrane, resulting in the reorientation of the intracellular kinase domain dimer from a symmetric inactive configuration to an asymmetric active form (the “rotation model”). This model is also able to explain how oncogenic mutations activate the receptor in the absence of the ligand, without assuming that the mutations induce receptor dimerization. In this review, we discuss the mechanisms underlying the ligand-induced activation of the preformed EGFR dimer, as well as how oncogenic mutations constitutively activate the receptor dimer, based on the rotation model.
Collapse
|
13
|
A novel, somatic, transforming mutation in the extracellular domain of Epidermal Growth Factor Receptor identified in myeloproliferative neoplasm. Sci Rep 2017; 7:2467. [PMID: 28550306 PMCID: PMC5446393 DOI: 10.1038/s41598-017-02655-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 04/18/2017] [Indexed: 11/08/2022] Open
Abstract
We describe a novel ERBB1/EGFR somatic mutation (p. C329R; c.985 T > C) identified in a patient with JAK2V617F Polycythaemia Vera (PV). This substitution affects a conserved cysteine residue in EGFR domain 2 and leads to the formation of a ligand-independent covalent receptor dimer, associated with increased transforming potential. Aberrant signalling from the EGFRC329R receptor is cell type-dependent and in the TF1.8 erythroid cell line expression of this mutant suppresses EPO-induced differentiation. Clonal analysis shows that the dominant JAK2V617F-positive clone in this PV patient harbors EGFRC329R, thus this mutation may contribute to clonal expansion. Somatic mutations affecting other ERBB and related receptor tyrosine kinases are observed in myeloproliferative neoplasms (MPN), and we show elevated EGFR levels in MPN samples, consistent with previous reports. Thus activation of this group of receptors, via multiple mechanisms, may contribute to clonal growth and survival of the JAK2V617F disease clone in MPN.
Collapse
|
14
|
Cyclin-dependent kinase 7 is a therapeutic target in high-grade glioma. Oncogenesis 2017; 6:e336. [PMID: 28504693 PMCID: PMC5523066 DOI: 10.1038/oncsis.2017.33] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 02/16/2017] [Accepted: 03/27/2017] [Indexed: 12/12/2022] Open
Abstract
High-grade glioma (HGG) is an incurable brain cancer. The transcriptomes of cells within HGG tumors are highly heterogeneous. This renders the tumors unresponsive or able to adapt to therapeutics targeted at single pathways, thereby causing treatment failure. To overcome this, we focused on cyclin-dependent kinase 7 (CDK7), a ubiquitously expressed molecule involved in two major drivers of HGG pathogenesis: cell cycle progression and RNA polymerase-II-based transcription. We tested the activity of THZ1, an irreversible CDK7 inhibitor, on patient-derived primary HGG cell lines and ex vivo HGG patient tissue slices, using proliferation assays, microarray analysis, high-resolution respirometry, cell cycle analysis and in vivo tumor orthografts. The cellular processes affected by CDK7 inhibition were analyzed by reverse transcriptase–quantitative PCR, western blot, flow cytometry and immunofluorescence. THZ1 perturbed the transcriptome and disabled CDK activation, leading to cell cycle arrest at G2 and DNA damage. THZ1 halted transcription of the nuclear-encoded mitochondrial ribosomal genes, reducing mitochondrial translation and oxidative respiration. It also inhibited the expression of receptor tyrosine kinases such as epidermal growth factor receptor (EGFR) and platelet-derived growth factor receptor-α (PDGFR-α), reducing signaling flux through the AKT, extracellular-signal-regulated kinase 1/2 (ERK1/2) and signal transducer and activator of transcription 3 (STAT3) downstream pathways. Finally, THZ1 disrupted nucleolar, Cajal body and nuclear speckle formation, resulting in reduced cytosolic translation and malfunction of the spliceosome and thus leading to aberrant mRNA processing. These findings indicate that CDK7 is crucial for gliomagenesis, validate CDK7 as a therapeutic target and provide new insight into the cellular processes that are affected by THZ1 and induce antitumor activity.
Collapse
|
15
|
Aptamer targeting EGFRvIII mutant hampers its constitutive autophosphorylation and affects migration, invasion and proliferation of glioblastoma cells. Oncotarget 2016; 6:37570-87. [PMID: 26461476 PMCID: PMC4741949 DOI: 10.18632/oncotarget.6066] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 09/23/2015] [Indexed: 12/21/2022] Open
Abstract
Glioblastoma Multiforme (GBM) is the most common and aggressive human brain tumor, associated with very poor survival despite surgery, radiotherapy and chemotherapy.The epidermal growth factor receptor (EGFR) and the platelet-derived growth factor receptor β (PDGFRβ) are hallmarks in GBM with driving roles in tumor progression. In approximately half of the tumors with amplified EGFR, the EGFRvIII truncated extracellular mutant is detected. EGFRvIII does not bind ligands, is highly oncogenic and its expression confers resistance to EGFR tyrosine kinase inhibitors (TKIs). It has been demonstrated that EGFRvIII-dependent cancers may escape targeted therapy by developing dependence on PDGFRβ signaling, thus providing a strong rationale for combination therapy aimed at blocking both EGFRvIII and PDGFRβsignaling.We have recently generated two nuclease resistant RNA aptamers, CL4 and Gint4.T, as high affinity ligands and inhibitors of the human wild-type EGFR (EGFRwt) and PDGFRβ, respectively.Herein, by different approaches, we demonstrate that CL4 aptamer binds to the EGFRvIII mutant even though it lacks most of the extracellular domain. As a consequence of binding, the aptamer inhibits EGFRvIII autophosphorylation and downstream signaling pathways, thus affecting migration, invasion and proliferation of EGFRvIII-expressing GBM cell lines.Further, we show that targeting EGFRvIII by CL4, as well as by EGFR-TKIs, erlotinib and gefitinib, causes upregulation of PDGFRβ. Importantly, CL4 and gefitinib cooperate with the anti-PDGFRβ Gint4.T aptamer in inhibiting cell proliferation.The proposed aptamer-based strategy could have impact on targeted molecular cancer therapies and may result in progresses against GBMs.
Collapse
|
16
|
Abstract
INTRODUCTION Despite substantial improvements in standards of care, the most common aggressive pediatric and adult high-grade gliomas (HGG) carry uniformly fatal diagnoses due to unique treatment limitations, high recurrence rates and the absence of effective treatments following recurrence. Recent advancements in our understanding of the pathophysiology, genetics and epigenetics as well as mechanisms of immune surveillance during gliomagenesis have created new knowledge to design more effective and target-directed therapies to improve patient outcomes. AREAS COVERED In this review, the authors discuss the critical genetic, epigenetic and immunologic aberrations found in gliomas that appear rational and promising for therapeutic developments in the presence and future. The current state of the latest therapeutic developments including tumor-specific targeted drug therapies, metabolic targeting, epigenetic modulation and immunotherapy are summarized and suggestions for future directions are offered. Furthermore, they highlight contemporary issues related to the clinical development, such as challenges in clinical trials and toxicities. EXPERT OPINION The commitment to understanding the process of gliomagenesis has created a catalogue of aberrations that depict multiple mechanisms underlying this disease, many of which are suitable to therapeutic inhibition and are currently tested in clinical trials. Thus, future treatment endeavors will employ multiple treatment modalities that target disparate tumor characteristics personalized to the patient's individual tumor.
Collapse
Affiliation(s)
- Verena Staedtke
- a Department of Neurology , Johns Hopkins Medical Institutions , Baltimore , MD , USA
| | - Ren-Yuan Bai
- b Department of Neurosurgery , Johns Hopkins Medical Institutions , Baltimore , MD , USA
| | - John Laterra
- a Department of Neurology , Johns Hopkins Medical Institutions , Baltimore , MD , USA.,c Department of Oncology , Johns Hopkins Medical Institutions , Baltimore , MD , USA.,d Department of Neuroscience , Johns Hopkins Medical Institutions , Baltimore , MD , USA
| |
Collapse
|
17
|
Venkatesan S, Lamfers MLM, Dirven CMF, Leenstra S. Genetic biomarkers of drug response for small-molecule therapeutics targeting the RTK/Ras/PI3K, p53 or Rb pathway in glioblastoma. CNS Oncol 2016; 5:77-90. [PMID: 26986934 DOI: 10.2217/cns-2015-0005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Glioblastoma is the most deadly and frequently occurring primary malignant tumor of the central nervous system. Genomic studies have shown that mutated oncogenes and tumor suppressor genes in glioblastoma mainly occur in three pathways: the RTK/Ras/PI3K signaling, the p53 and the Rb pathways. In this review, we summarize the modulatory effects of genetic aberrations in these three pathways to drugs targeting these specific pathways. We also provide an overview of the preclinical efforts made to identify genetic biomarkers of response and resistance. Knowledge of biomarkers will finally promote patient stratification in clinical trials, a prerequisite for trial design in the era of precision medicine.
Collapse
Affiliation(s)
- Subramanian Venkatesan
- Department of Neurosurgery, Brain Tumor Center of the Erasmus Medical Center, Rotterdam, The Netherlands.,UCL Cancer Institute, Paul O'Gorman Building, London, UK
| | - Martine L M Lamfers
- Department of Neurosurgery, Brain Tumor Center of the Erasmus Medical Center, Rotterdam, The Netherlands
| | - Clemens M F Dirven
- Department of Neurosurgery, Brain Tumor Center of the Erasmus Medical Center, Rotterdam, The Netherlands
| | - Sieger Leenstra
- Department of Neurosurgery, Brain Tumor Center of the Erasmus Medical Center, Rotterdam, The Netherlands.,Department of Neurosurgery, Elisabeth Hospital, Tilburg, The Netherlands
| |
Collapse
|
18
|
Wang X, Zhang W, Tang J, Huang R, Li J, Xu D, Xie Y, Jiang R, Deng L, Zhang X, Chai Y, Qin X, Sun B. LINC01225 promotes occurrence and metastasis of hepatocellular carcinoma in an epidermal growth factor receptor-dependent pathway. Cell Death Dis 2016; 7:e2130. [PMID: 26938303 PMCID: PMC4823934 DOI: 10.1038/cddis.2016.26] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 01/08/2016] [Accepted: 01/13/2016] [Indexed: 12/17/2022]
Abstract
The long noncoding RNAs (lncRNAs) have long been clarified to participate in hepatocellular carcinoma (HCC) as a biomarker. We carried out the present study in order to identify HCC-related lncRNAs and elucidate the functional roles in the development and progression of HCC. Our previous study has provided that LINC01225 may be an HCC-related gene. Here, we verified that LINC01225 was upregulated in HCC. Knockdown of LINC01225 resulted in inhibited cell proliferation and invasion with activated apoptosis and cell cycle arrest in vitro. Overexpression of LINC01225 in LINC01225 knockdown cells presented that attenuated cell proliferation and invasion were restored and enhanced. Subcutaneous and tail vein/intraperitoneal injection xenotransplantation model in vivo validated reduced tumor progression and metastasis. Investigation of mechanism found that LINC01225 could bind to epidermal growth factor receptor (EGFR) and increase the protein level of EGFR, and subsequently fine tune the EGFR/Ras/Raf-1/MEK/MAPK signaling pathway. Analysis with clinicopathological information suggested a high expression of LINC01225 is positively associated with poor prognosis. We also proved that LINC01225 was stably expressed in serum and can act as a novel biomarker in predicting the diagnosis of HCC. As a conclusion, LINC01225 plays a crucial role in HCC and can act as a biomarker for the diagnosis and prognosis of HCC.
Collapse
Affiliation(s)
- X Wang
- Liver Transplantation Center of the First Affiliated Hospital and Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, P.R. China
| | - W Zhang
- Liver Transplantation Center of the First Affiliated Hospital and Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, P.R. China
| | - J Tang
- Liver Transplantation Center of the First Affiliated Hospital and Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, P.R. China
| | - R Huang
- Liver Transplantation Center of the First Affiliated Hospital and Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, P.R. China
| | - J Li
- Department of General Surgery, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, P.R. China
| | - D Xu
- Department of Rheumatology, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China
| | - Y Xie
- Liver Transplantation Center of the First Affiliated Hospital and Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, P.R. China
| | - R Jiang
- Liver Transplantation Center of the First Affiliated Hospital and Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, P.R. China
| | - L Deng
- Liver Transplantation Center of the First Affiliated Hospital and Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, P.R. China
| | - X Zhang
- The Affiliated Changzhou NO.2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu Province, P.R. China
| | - Y Chai
- Liver Transplantation Center of the First Affiliated Hospital and Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, P.R. China
| | - X Qin
- The Affiliated Changzhou NO.2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu Province, P.R. China
| | - B Sun
- Liver Transplantation Center of the First Affiliated Hospital and Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, P.R. China
| |
Collapse
|
19
|
Zahonero C, Aguilera P, Ramírez-Castillejo C, Pajares M, Bolós MV, Cantero D, Perez-Nuñez A, Hernández-Laín A, Sánchez-Gómez P, Sepúlveda JM. Preclinical Test of Dacomitinib, an Irreversible EGFR Inhibitor, Confirms Its Effectiveness for Glioblastoma. Mol Cancer Ther 2015; 14:1548-58. [PMID: 25939761 DOI: 10.1158/1535-7163.mct-14-0736] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 04/27/2015] [Indexed: 11/16/2022]
Abstract
Glioblastomas (GBM) are devastating tumors in which there has been little clinical improvement in the last decades. New molecularly directed therapies are under development. EGFR is one of the most promising targets, as this receptor is mutated and/or overexpressed in nearly half of the GBMs. However, the results obtained with first-generation tyrosine-kinase inhibitors have been disappointing with no clear predictive markers of tumor response. Here, we have tested the antitumoral efficacy of a second-generation inhibitor, dacomitinib (PF299804, Pfizer), that binds in an irreversible way to the receptor. Our results confirm that dacomitinib has an effect on cell viability, self-renewal, and proliferation in EGFR-amplified ± EGFRvIII GBM cells. Moreover, systemic administration of dacomitinib strongly impaired the in vivo tumor growth rate of these EGFR-amplified cell lines, with a decrease in the expression of stem cell-related markers. However, continuous administration of the compound was required to maintain the antitumor effect. The data presented here confirm that dacomitinib clearly affects receptor signaling in vivo and that its strong antitumoral effect is independent of the presence of mutant receptor isoforms although it could be affected by the PTEN status (as it is less effective in a PTEN-deleted GBM line). Dacomitinib is being tested in second line for EGFR-amplified GBMs. We hope that our results could help to select retrospectively molecular determinants of this response and to implement future trials with dacomitinib (alone or in combination with other inhibitors) in newly diagnosed GBMs.
Collapse
Affiliation(s)
- Cristina Zahonero
- Neuro-Oncology Unit, Instituto de Salud Carlos III-UFIEC, Madrid, Spain
| | - Pilar Aguilera
- Neuro-Oncology Unit, Instituto de Salud Carlos III-UFIEC, Madrid, Spain
| | | | - Marta Pajares
- Neuro-Oncology Unit, Instituto de Salud Carlos III-UFIEC, Madrid, Spain
| | | | - Diana Cantero
- Unidad Multidisciplinar de Neurooncología, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Angel Perez-Nuñez
- Unidad Multidisciplinar de Neurooncología, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Aurelio Hernández-Laín
- Unidad Multidisciplinar de Neurooncología, Hospital Universitario 12 de Octubre, Madrid, Spain
| | | | - Juan Manuel Sepúlveda
- Unidad Multidisciplinar de Neurooncología, Hospital Universitario 12 de Octubre, Madrid, Spain.
| |
Collapse
|
20
|
Yoshida Y, Ozawa T, Yao TW, Shen W, Brown D, Parsa AT, Raizer JJ, Cheng SY, Stegh AH, Mazar AP, Giles FJ, Sarkaria JN, Butowski N, Nicolaides T, James CD. NT113, a pan-ERBB inhibitor with high brain penetrance, inhibits the growth of glioblastoma xenografts with EGFR amplification. Mol Cancer Ther 2014; 13:2919-29. [PMID: 25313012 DOI: 10.1158/1535-7163.mct-14-0306] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This report describes results from our analysis of the activity and biodistribution of a novel pan-ERBB inhibitor, NT113, when used in treating mice with intracranial glioblastoma (GBM) xenografts. Approaches used in this investigation include: bioluminescence imaging (BLI) for monitoring intracranial tumor growth and response to therapy; determination of survival benefit from treatment; analysis of tumor IHC reactivity for indication of treatment effect on proliferation and apoptotic response; Western blot analysis for determination of effects of treatment on ERBB and ERBB signaling mediator activation; and high-performance liquid chromatography for determination of NT113 concentration in tissue extracts from animals receiving oral administration of inhibitor. Our results show that NT113 is active against GBM xenografts in which wild-type EGFR or EGFRvIII is highly expressed. In experiments including lapatinib and/or erlotinib, NT113 treatment was associated with the most substantial improvement in survival, as well as the most substantial tumor growth inhibition, as indicated by BLI and IHC results. Western blot analysis results indicated that NT113 has inhibitory activity, both in vivo and in vitro, on ERBB family member phosphorylation, as well as on the phosphorylation of downstream signaling mediator Akt. Results from the analysis of animal tissues revealed significantly higher NT113 normal brain-to-plasma and intracranial tumor-to-plasma ratios for NT113, relative to erlotinib, indicating superior NT113 partitioning to intracranial tissue compartments. These data provide a strong rationale for the clinical investigation of NT113, a novel ERBB inhibitor, in treating patients with GBM.
Collapse
Affiliation(s)
- Yasuyuki Yoshida
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California
| | - Tomoko Ozawa
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California
| | - Tsun-Wen Yao
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California. Department of Pediatrics, University of California San Francisco, San Francisco, California
| | - Wang Shen
- NewGen Therapeutics, Inc., Menlo Park, California
| | - Dennis Brown
- NewGen Therapeutics, Inc., Menlo Park, California
| | - Andrew T Parsa
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Jeffrey J Raizer
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Shi-Yuan Cheng
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Alexander H Stegh
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Andrew P Mazar
- Northwestern Medicine Developmental Therapeutics Institute, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Francis J Giles
- Northwestern Medicine Developmental Therapeutics Institute, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Nicholas Butowski
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California
| | - Theodore Nicolaides
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California. Department of Pediatrics, University of California San Francisco, San Francisco, California.
| | - C David James
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois. Northwestern Medicine Developmental Therapeutics Institute, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.
| |
Collapse
|