1
|
Chen W, Wang YJ. Multifaceted roles of OCT4 in tumor microenvironment: biology and therapeutic implications. Oncogene 2025; 44:1213-1229. [PMID: 40229384 DOI: 10.1038/s41388-025-03408-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 03/28/2025] [Accepted: 04/04/2025] [Indexed: 04/16/2025]
Abstract
OCT4 (Octamer-binding transcription factor 4, encoded by the POU5F1 gene) is a master transcription factor for maintaining the self-renewal and pluripotency of pluripotent stem cells, as well as a pioneer factor regulating epigenetics-driven cell reprogramming and cell fate conversion. It is also detected in a variety of cancer tissues and particularly in a small subpopulation of cancer cells known as cancer stem cells (CSCs). Accumulating evidence has revealed that CSCs are a dynamic population, exhibiting shift between multipotency and differentiation states, or quiescence and proliferation states. Such cellular plasticity of CSCs is profoundly influenced by dynamic interplay between CSCs and the tumor microenvironment (TME). Here, we review recent evidence showing that OCT4 expressed in CSCs plays a multifaceted role in shaping the TME by interacting with the cellular TME components, including cancer-associated fibroblasts, tumor endothelial cells, tumor-infiltrating immune cells, as well as the non-cellular TME components, such as extracellular matrix (ECM), metabolites, soluble factors (e.g., growth factors, cytokines and chemokines), and intra-tumoral microbiota. Together, OCT4 regulates crucial processes encompassing ECM remodeling, epithelial-mesenchymal transition, metabolic reprogramming, angiogenesis, and immune responses. The complex and bidirectional interactions between OCT4-expressing CSCs and the TME create a supportive niche for tumor growth, invasion, and resistance to therapy. Better understanding OCT4's roles in such interactions can provide deeper insights into potential therapeutic strategies and targets for disrupting the supportive environment of tumors. The emerging therapies targeting OCT4 in CSCs might hold promise to resensitize therapeutic-resistant cancer cells, and to eradicate all cancer cells when combined with other therapies targeting the bulk of differentiated cancer cells as well as the TME.
Collapse
Affiliation(s)
- Wenjie Chen
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ying-Jie Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Jain P, Pillai M, Duddu AS, Somarelli JA, Goyal Y, Jolly MK. Dynamical hallmarks of cancer: Phenotypic switching in melanoma and epithelial-mesenchymal plasticity. Semin Cancer Biol 2023; 96:48-63. [PMID: 37788736 DOI: 10.1016/j.semcancer.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/24/2023] [Accepted: 09/28/2023] [Indexed: 10/05/2023]
Abstract
Phenotypic plasticity was recently incorporated as a hallmark of cancer. This plasticity can manifest along many interconnected axes, such as stemness and differentiation, drug-sensitive and drug-resistant states, and between epithelial and mesenchymal cell-states. Despite growing acceptance for phenotypic plasticity as a hallmark of cancer, the dynamics of this process remains poorly understood. In particular, the knowledge necessary for a predictive understanding of how individual cancer cells and populations of cells dynamically switch their phenotypes in response to the intensity and/or duration of their current and past environmental stimuli remains far from complete. Here, we present recent investigations of phenotypic plasticity from a systems-level perspective using two exemplars: epithelial-mesenchymal plasticity in carcinomas and phenotypic switching in melanoma. We highlight how an integrated computational-experimental approach has helped unravel insights into specific dynamical hallmarks of phenotypic plasticity in different cancers to address the following questions: a) how many distinct cell-states or phenotypes exist?; b) how reversible are transitions among these cell-states, and what factors control the extent of reversibility?; and c) how might cell-cell communication be able to alter rates of cell-state switching and enable diverse patterns of phenotypic heterogeneity? Understanding these dynamic features of phenotypic plasticity may be a key component in shifting the paradigm of cancer treatment from reactionary to a more predictive, proactive approach.
Collapse
Affiliation(s)
- Paras Jain
- Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India
| | - Maalavika Pillai
- Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India; Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Center for Synthetic Biology, Northwestern University, Chicago, IL 60611, USA
| | | | - Jason A Somarelli
- Department of Medicine, Duke Cancer Institute, Duke University, Durham, NC 27710, USA
| | - Yogesh Goyal
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Center for Synthetic Biology, Northwestern University, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Mohit Kumar Jolly
- Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
3
|
Travnickova J, Muise S, Wojciechowska S, Brombin A, Zeng Z, Young AIJ, Wyatt C, Patton EE. Fate mapping melanoma persister cells through regression and into recurrent disease in adult zebrafish. Dis Model Mech 2022; 15:276219. [PMID: 35929478 PMCID: PMC9509888 DOI: 10.1242/dmm.049566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/28/2022] [Indexed: 11/23/2022] Open
Abstract
Melanoma heterogeneity and plasticity underlie therapy resistance. Some tumour cells possess innate resistance, while others reprogramme during drug exposure and survive to form persister cells, a source of potential cancer cells for recurrent disease. Tracing individual melanoma cell populations through tumour regression and into recurrent disease remains largely unexplored, in part, because complex animal models are required for live imaging of cell populations over time. Here, we applied tamoxifen-inducible creERt2/loxP lineage tracing to a zebrafish model of MITF-dependent melanoma regression and recurrence to image and trace cell populations in vivo through disease stages. Using this strategy, we show that melanoma persister cells at the minimal residual disease site originate from the primary tumour. Next, we fate mapped rare MITF-independent persister cells and demonstrate that these cells directly contribute to progressive disease. Multiplex immunohistochemistry confirmed that MITF-independent persister cells give rise to Mitfa+ cells in recurrent disease. Taken together, our work reveals a direct contribution of persister cell populations to recurrent disease, and provides a resource for lineage-tracing methodology in adult zebrafish cancer models. Summary: We fate map melanoma cells from the primary tumour into a persister cell state and show that persister cells directly contribute to recurrent disease.
Collapse
Affiliation(s)
- Jana Travnickova
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital Campus, EH4 2XU, Edinburgh, UK.,Edinburgh Cancer Research, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, EH4 2XU, Edinburgh, UK
| | - Sarah Muise
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital Campus, EH4 2XU, Edinburgh, UK.,Edinburgh Cancer Research, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, EH4 2XU, Edinburgh, UK
| | - Sonia Wojciechowska
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital Campus, EH4 2XU, Edinburgh, UK.,Edinburgh Cancer Research, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, EH4 2XU, Edinburgh, UK
| | - Alessandro Brombin
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital Campus, EH4 2XU, Edinburgh, UK.,Edinburgh Cancer Research, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, EH4 2XU, Edinburgh, UK
| | - Zhiqiang Zeng
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital Campus, EH4 2XU, Edinburgh, UK.,Edinburgh Cancer Research, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, EH4 2XU, Edinburgh, UK
| | - Adelaide I J Young
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital Campus, EH4 2XU, Edinburgh, UK.,Edinburgh Cancer Research, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, EH4 2XU, Edinburgh, UK
| | - Cameron Wyatt
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital Campus, EH4 2XU, Edinburgh, UK
| | - E Elizabeth Patton
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital Campus, EH4 2XU, Edinburgh, UK.,Edinburgh Cancer Research, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, EH4 2XU, Edinburgh, UK
| |
Collapse
|
4
|
Kramer ET, Godoy PM, Kaufman CK. Transcriptional profile and chromatin accessibility in zebrafish melanocytes and melanoma tumors. G3 (BETHESDA, MD.) 2022; 12:jkab379. [PMID: 34791221 PMCID: PMC8727958 DOI: 10.1093/g3journal/jkab379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/02/2021] [Indexed: 11/14/2022]
Abstract
Transcriptional and epigenetic characterization of melanocytes and melanoma cells isolated from their in vivo context promises to unveil key differences between these developmentally related normal and cancer cell populations. We therefore engineered an enhanced Danio rerio (zebrafish) melanoma model with fluorescently labeled melanocytes to allow for isolation of normal (wild type) and premalignant (BRAFV600E-mutant) populations for comparison to fully transformed BRAFV600E-mutant, p53 loss-of-function melanoma cells. Using fluorescence-activated cell sorting to isolate these populations, we performed high-quality RNA- and ATAC-seq on sorted zebrafish melanocytes vs. melanoma cells, which we provide as a resource here. Melanocytes had consistent transcriptional and accessibility profiles, as did melanoma cells. Comparing melanocytes and melanoma, we note 4128 differentially expressed genes and 56,936 differentially accessible regions with overall gene expression profiles analogous to human melanocytes and the pigmentation melanoma subtype. Combining the RNA- and ATAC-seq data surprisingly revealed that increased chromatin accessibility did not always correspond with increased gene expression, suggesting that though there is widespread dysregulation in chromatin accessibility in melanoma, there is a potentially more refined gene expression program driving cancerous melanoma. These data serve as a resource to identify candidate regulators of the normal vs. diseased states in a genetically controlled in vivo context.
Collapse
Affiliation(s)
- Eva T Kramer
- Division of Medical Oncology, Departments of Medicine and Developmental Biology, Washington University in Saint Louis, St Louis, MO 63110, USA
| | - Paula M Godoy
- Division of Medical Oncology, Departments of Medicine and Developmental Biology, Washington University in Saint Louis, St Louis, MO 63110, USA
| | - Charles K Kaufman
- Division of Medical Oncology, Departments of Medicine and Developmental Biology, Washington University in Saint Louis, St Louis, MO 63110, USA
| |
Collapse
|
5
|
Quek C, Bai X, Long GV, Scolyer RA, Wilmott JS. High-Dimensional Single-Cell Transcriptomics in Melanoma and Cancer Immunotherapy. Genes (Basel) 2021; 12:1629. [PMID: 34681023 PMCID: PMC8535767 DOI: 10.3390/genes12101629] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 12/19/2022] Open
Abstract
Recent advances in single-cell transcriptomics have greatly improved knowledge of complex transcriptional programs, rapidly expanding our knowledge of cellular phenotypes and functions within the tumour microenvironment and immune system. Several new single-cell technologies have been developed over recent years that have enabled expanded understanding of the mechanistic cells and biological pathways targeted by immunotherapies such as immune checkpoint inhibitors, which are now routinely used in patient management with high-risk early-stage or advanced melanoma. These technologies have method-specific strengths, weaknesses and capabilities which need to be considered when utilising them to answer translational research questions. Here, we provide guidance for the implementation of single-cell transcriptomic analysis platforms by reviewing the currently available experimental and analysis workflows. We then highlight the use of these technologies to dissect the tumour microenvironment in the context of cancer patients treated with immunotherapy. The strategic use of single-cell analytics in clinical settings are discussed and potential future opportunities are explored with a focus on their use to rationalise the design of novel immunotherapeutic drug therapies that will ultimately lead to improved cancer patient outcomes.
Collapse
Affiliation(s)
- Camelia Quek
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2006, Australia; (X.B.); (G.V.L.); (R.A.S.); (J.S.W.)
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
| | - Xinyu Bai
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2006, Australia; (X.B.); (G.V.L.); (R.A.S.); (J.S.W.)
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
| | - Georgina V. Long
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2006, Australia; (X.B.); (G.V.L.); (R.A.S.); (J.S.W.)
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
- Royal North Shore and Mater Hospitals, Sydney, NSW 2065, Australia
| | - Richard A. Scolyer
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2006, Australia; (X.B.); (G.V.L.); (R.A.S.); (J.S.W.)
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
- Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and NSW Health Pathology, Sydney, NSW 2050, Australia
| | - James S. Wilmott
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2006, Australia; (X.B.); (G.V.L.); (R.A.S.); (J.S.W.)
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
6
|
Qin W, Stärk HJ, Müller S, Reemtsma T, Wagner S. Determination of elemental distribution and evaluation of elemental concentration in single Saccharomyces cerevisiae cells using single cell-inductively coupled plasma mass spectrometry. Metallomics 2021; 13:6292270. [PMID: 34086951 DOI: 10.1093/mtomcs/mfab032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/12/2021] [Accepted: 05/20/2021] [Indexed: 11/12/2022]
Abstract
Single-cell analysis using inductively coupled plasma mass spectrometry (SC-ICP-MS) is a method to obtain qualitative and quantitative information of the elemental content and distribution of single cells. Six intrinsic target elements were analyzed in yeast cells at different cell growth phases cultured in medium with different phosphorus concentrations (0, 7, 14 mM) to study its effect on cell growth and composition. SC-ICP-MS results were compared with those obtained by the acid digestion and the average ratio was 0.81. The limits of detection of this method were 0.08, 2.54, 12.5, 0.02, 0.02, and 0.08 fg cell-1 for Mg, P, K, Mn, Cu, and Zn, respectively. During the exponential growth phase, the cells exhibited higher elemental contents, wider distribution for most elements, and larger cell size in comparison to the stationary growth phase. Phosphorus-free conditions reduced the average P content in single cells of stationary growth phase from 650 to 80 fg. Phosphorus deficiency led to decreasing intracellular concentrations not only of P but also of K and Cu, and to increasing Zn concentration after 48 h. Mg maintained its concentration at ∼0.11 fg µm-3 and did not change significantly under the three investigated conditions after 48 h. Accordingly, Mg content was successfully used to estimate the intracellular concentration of other intrinsic elements in single yeast cells. SC-ICP-MS is suited to determine target elements in single yeast cells, and allows the study of heterogeneity of cell composition and effects of stressors on the elemental content, distribution, and concentrations of intrinsic elements.
Collapse
Affiliation(s)
- Wen Qin
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Hans-Joachim Stärk
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Susann Müller
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Thorsten Reemtsma
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstrasse 15, 04318 Leipzig, Germany.,Institute of Analytical Chemistry, University of Leipzig, Linnéstrasse 3, 04103 Leipzig, Germany
| | - Stephan Wagner
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| |
Collapse
|
7
|
Yingjuan W, Li Z, Wei C, Xiaoyuan W. Identification of prognostic genes and construction of a novel gene signature in the skin melanoma based on the tumor microenvironment. Medicine (Baltimore) 2021; 100:e26017. [PMID: 34032721 PMCID: PMC8154473 DOI: 10.1097/md.0000000000026017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 04/29/2021] [Indexed: 01/04/2023] Open
Abstract
Skin melanoma remains a highly prevalent and yet deadly form of cancer, with the exact degree of melanoma-associated mortality being strongly dependent upon the local tumor microenvironment. The exact composition of stromal and immune cells within this microenvironmental region has the potential to profoundly impact melanoma progression and prognosis. As such, the present study was designed with the goal of clarifying the predictive relevance of stromal and immune cell-related genes in melanoma patients through comprehensive bioinformatics analyses. We therefore analyzed melanoma sample gene expression within The Cancer Genome Atlas database and employed the ESTIMATE algorithm as a means of calculating both stromal and immune scores that were in turn used for identifying differentially expressed genes (DEGs). Subsequently, univariate analyses were used to detect DEGs associated with melanoma patient survival, and through additional functional enrichment analyses, we determined that these survival-related DEGs are largely related to inflammatory and immune responses. A prognostic signature comprised of 10 genes (IL15, CCL8, CLIC2, SAMD9L, TLR2, HLA.DQB1, IGHV1-18, RARRES3, GBP4, APOBEC3G) was generated. This 10-gene signature effectively separated melanoma patients into low- and high-risk groups based upon their survival. These low- and high-risk groups also exhibited distinct immune statuses and differing degrees of immune cell infiltration. In conclusion, our results offer novel insights into a number of microenvironment-associated genes that impact survival outcomes in melanoma patients, potentially highlighting these genes as viable therapeutic targets.
Collapse
|
8
|
Wessely A, Steeb T, Berking C, Heppt MV. How Neural Crest Transcription Factors Contribute to Melanoma Heterogeneity, Cellular Plasticity, and Treatment Resistance. Int J Mol Sci 2021; 22:ijms22115761. [PMID: 34071193 PMCID: PMC8198848 DOI: 10.3390/ijms22115761] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 12/14/2022] Open
Abstract
Cutaneous melanoma represents one of the deadliest types of skin cancer. The prognosis strongly depends on the disease stage, thus early detection is crucial. New therapies, including BRAF and MEK inhibitors and immunotherapies, have significantly improved the survival of patients in the last decade. However, intrinsic and acquired resistance is still a challenge. In this review, we discuss two major aspects that contribute to the aggressiveness of melanoma, namely, the embryonic origin of melanocytes and melanoma cells and cellular plasticity. First, we summarize the physiological function of epidermal melanocytes and their development from precursor cells that originate from the neural crest (NC). Next, we discuss the concepts of intratumoral heterogeneity, cellular plasticity, and phenotype switching that enable melanoma to adapt to changes in the tumor microenvironment and promote disease progression and drug resistance. Finally, we further dissect the connection of these two aspects by focusing on the transcriptional regulators MSX1, MITF, SOX10, PAX3, and FOXD3. These factors play a key role in NC initiation, NC cell migration, and melanocyte formation, and we discuss how they contribute to cellular plasticity and drug resistance in melanoma.
Collapse
Affiliation(s)
- Anja Wessely
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (A.W.); (T.S.); (C.B.)
- Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
| | - Theresa Steeb
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (A.W.); (T.S.); (C.B.)
- Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
| | - Carola Berking
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (A.W.); (T.S.); (C.B.)
- Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
| | - Markus Vincent Heppt
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (A.W.); (T.S.); (C.B.)
- Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Correspondence: ; Tel.: +49-9131-85-35747
| |
Collapse
|
9
|
Oba J, Woodman SE. The genetic and epigenetic basis of distinct melanoma types. J Dermatol 2021; 48:925-939. [PMID: 34008215 DOI: 10.1111/1346-8138.15957] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 04/14/2021] [Indexed: 12/12/2022]
Abstract
Melanoma represents the deadliest skin cancer. Recent therapeutic developments, including targeted and immune therapies have revolutionized clinical management and improved patient outcome. This progress was achieved by rigorous molecular and functional studies followed by robust clinical trials. The identification of key genomic alterations and gene expression profiles have propelled the understanding of distinct characteristics within melanoma subtypes. The aim of this review is to summarize and highlight the main genetic and epigenetic findings of melanomas and highlight their pathological and therapeutic importance.
Collapse
Affiliation(s)
- Junna Oba
- Genomics Unit, Keio Cancer Center, Keio University School of Medicine, Tokyo, Japan
| | - Scott E Woodman
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
10
|
Pedri D, Karras P, Landeloos E, Marine JC, Rambow F. Epithelial-to-mesenchymal-like transition events in melanoma. FEBS J 2021; 289:1352-1368. [PMID: 33999497 DOI: 10.1111/febs.16021] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 05/11/2021] [Accepted: 05/14/2021] [Indexed: 11/30/2022]
Abstract
Epithelial-to-mesenchymal transition (EMT), a process through which epithelial tumor cells acquire mesenchymal phenotypic properties, contributes to both metastatic dissemination and therapy resistance in cancer. Accumulating evidence indicates that nonepithelial tumors, including melanoma, can also gain mesenchymal-like properties that increase their metastatic propensity and decrease their sensitivity to therapy. In this review, we discuss recent findings, illustrating the striking similarities-but also knowledge gaps-between the biology of mesenchymal-like state(s) in melanoma and mesenchymal state(s) from epithelial cancers. Based on this comparative analysis, we suggest hypothesis-driven experimental approaches to further deepen our understanding of the EMT-like process in melanoma and how such investigations may pave the way towards the identification of clinically relevant biomarkers for prognosis and new therapeutic strategies.
Collapse
Affiliation(s)
- Dennis Pedri
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium.,Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Belgium.,Laboratory of Membrane Trafficking, Center for Brain and Disease Research, VIB, Leuven, Belgium
| | - Panagiotis Karras
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium.,Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Belgium
| | - Ewout Landeloos
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium.,Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Belgium
| | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium.,Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Belgium
| | - Florian Rambow
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium.,Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Belgium
| |
Collapse
|
11
|
Melixetian M, Bossi D, Mihailovich M, Punzi S, Barozzi I, Marocchi F, Cuomo A, Bonaldi T, Testa G, Marine JC, Leucci E, Minucci S, Pelicci PG, Lanfrancone L. Long non-coding RNA TINCR suppresses metastatic melanoma dissemination by preventing ATF4 translation. EMBO Rep 2021; 22:e50852. [PMID: 33586907 PMCID: PMC7926219 DOI: 10.15252/embr.202050852] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 12/20/2022] Open
Abstract
Transition from proliferative‐to‐invasive phenotypes promotes metastasis and therapy resistance in melanoma. Reversion of the invasive phenotype, however, is challenged by the poor understanding of mechanisms underlying its maintenance. Here, we report that the lncRNA TINCR is down‐regulated in metastatic melanoma and its silencing increases the expression levels of invasive markers, in vitro migration, in vivo tumor growth, and resistance to BRAF and MEK inhibitors. The critical mediator is ATF4, a central player of the integrated stress response (ISR), which is activated in TINCR‐depleted cells in the absence of starvation and eIF2α phosphorylation. TINCR depletion increases global protein synthesis and induces translational reprogramming, leading to increased translation of mRNAs encoding ATF4 and other ISR proteins. Strikingly, re‐expression of TINCR in metastatic melanoma suppresses the invasive phenotype, reduces numbers of tumor‐initiating cells and metastasis formation, and increases drug sensitivity. Mechanistically, TINCR interacts with mRNAs associated with the invasive phenotype, including ATF4, preventing their binding to ribosomes. Thus, TINCR is a suppressor of the melanoma invasive phenotype, which functions in nutrient‐rich conditions by repressing translation of selected ISR RNAs.
Collapse
Affiliation(s)
- Marine Melixetian
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Daniela Bossi
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Marija Mihailovich
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Simona Punzi
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Iros Barozzi
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Federica Marocchi
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Alessandro Cuomo
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Tiziana Bonaldi
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Giuseppe Testa
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy.,Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
| | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, Department of Oncology, KULeuven, Leuven, Belgium.,Center for Cancer Biology, VIB, Leuven, Belgium
| | - Eleonora Leucci
- Laboratory for RNA Cancer Biology, Department of Oncology, KULeuven, Leuven, Belgium
| | - Saverio Minucci
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy.,Department of Biosciences, University of Milan, Milan, Italy
| | - Pier Giuseppe Pelicci
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy.,Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
| | - Luisa Lanfrancone
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| |
Collapse
|
12
|
Feijtel D, Doeswijk GN, Verkaik NS, Haeck JC, Chicco D, Angotti C, Konijnenberg MW, de Jong M, Nonnekens J. Inter and intra-tumor somatostatin receptor 2 heterogeneity influences peptide receptor radionuclide therapy response. Theranostics 2021; 11:491-505. [PMID: 33391488 PMCID: PMC7738856 DOI: 10.7150/thno.51215] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/28/2020] [Indexed: 12/24/2022] Open
Abstract
Patients with neuroendocrine tumors (NETs) can be treated with peptide receptor radionuclide therapy (PRRT). Here, the somatostatin analogue octreotate radiolabeled with lutetium-177 is targeted to NET cells by binding to the somatostatin receptor subtype 2 (SST2). During radioactive decay, DNA damage is induced, leading to NET cell death. Although the therapy proves to be effective, mortality rates remain high. To appropriately select more optimal treatment strategies, it is essential to first better understand the radiobiological responses of tumor cells to PRRT. Methods: We analyzed PRRT induced radiobiological responses in SST2 expressing cells and xenografted mice using SPECT/MRI scanning and histological and molecular analyses. We measured [177Lu]Lu-DOTA-TATE uptake and performed analyses to visualize induction of DNA damage, cell death and other cellular characteristics. Results: The highest accumulation of radioactivity was measured in the tumor and kidneys. PRRT induced DNA damage signaling and repair in a time-dependent manner. We observed intra-tumor heterogeneity of DNA damage and apoptosis, which was not attributed to proliferation or bioavailability. We found a strong correlation between high DNA damage levels and high SST2 expression. PRRT elicited a different therapeutic response between models with different SST2 expression levels. Heterogeneous SST2 expression levels were also confirmed in patient NETs. Conclusion: Heterogeneous SST2 expression levels within NETs cause differentially induced DNA damage levels, influence recurrent tumor phenotypes and impact the therapeutic response in different models and potentially in patients. Our results contribute to a better understanding of PRRT effects, which might impact future therapeutic outcome of NET patients.
Collapse
|
13
|
Deciphering Melanoma Cell States and Plasticity with Zebrafish Models. J Invest Dermatol 2020; 141:1389-1394. [PMID: 33340501 PMCID: PMC8168147 DOI: 10.1016/j.jid.2020.12.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 12/27/2022]
Abstract
Dynamic cellular heterogeneity underlies melanoma progression and therapy resistance. Advances in single-cell technologies have revealed an increasing number of tumor and microenvironment cell states in melanoma, but little is understood about their function in vivo. Zebrafish models are a powerful system for discovery, live imaging, and functional investigation of cell states throughout melanoma progression and treatment. By capturing dynamic melanoma states in living animals, zebrafish have the potential to resolve the complexity of melanoma heterogeneity from a single cell through disease processes within the context of the whole body, revealing novel cancer biology and therapeutic targets.
Collapse
|
14
|
Diener J, Sommer L. Reemergence of neural crest stem cell-like states in melanoma during disease progression and treatment. Stem Cells Transl Med 2020; 10:522-533. [PMID: 33258291 PMCID: PMC7980219 DOI: 10.1002/sctm.20-0351] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/28/2020] [Accepted: 11/04/2020] [Indexed: 12/14/2022] Open
Abstract
Melanoma is the deadliest of all skin cancers due to its high metastatic potential. In recent years, advances in targeted therapy and immunotherapy have contributed to a remarkable progress in the treatment of metastatic disease. However, intrinsic or acquired resistance to such therapies remains a major obstacle in melanoma treatment. Melanoma disease progression, beginning from tumor initiation and growth to acquisition of invasive phenotypes and metastatic spread and acquisition of treatment resistance, has been associated with cellular dedifferentiation and the hijacking of gene regulatory networks reminiscent of the neural crest (NC)—the developmental structure which gives rise to melanocytes and hence melanoma. This review summarizes the experimental evidence for the involvement of NC stem cell (NCSC)‐like cell states during melanoma progression and addresses novel approaches to combat the emergence of stemness characteristics that have shown to be linked with aggressive disease outcome and drug resistance.
Collapse
Affiliation(s)
- Johanna Diener
- University of Zurich, Institute of Anatomy, Zürich, Switzerland
| | - Lukas Sommer
- University of Zurich, Institute of Anatomy, Zürich, Switzerland
| |
Collapse
|
15
|
Simmons JL, Neuendorf HM, Boyle GM. BRN2 and MITF together impact AXL expression in melanoma. Exp Dermatol 2020; 31:89-93. [PMID: 33119145 DOI: 10.1111/exd.14225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/13/2020] [Accepted: 10/23/2020] [Indexed: 12/23/2022]
Abstract
The inverse relationship between transcription factor MITF and receptor tyrosine kinase AXL has received much attention recently. It is thought that melanoma tumors showing AXLhigh /MITFlow levels are resistant to therapy. We show here that a population of cells within melanoma tumors with extremely high expression of AXL are negative/low for both MITF and the transcription factor BRN2. Depletion of both transcription factors from cultured melanoma cell lines produced an increase in AXL expression greater than depletion of MITF alone. Further, re-expression of BRN2 led to decreased AXL expression, indicating a role for BRN2 in regulation of AXL levels unrelated to effects on MITF level. As AXL has been recognized as a marker of therapy resistance, these cells may represent a population of cells responsible for disease relapse and as potential targets for therapeutic treatment.
Collapse
Affiliation(s)
- Jacinta L Simmons
- Cancer Drug Mechanisms Group, QIMR Berghofer Medical Research Institute, Brisbane, Qld, Australia.,School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Qld, Australia.,School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, Qld, Australia
| | - Hannah M Neuendorf
- Cancer Drug Mechanisms Group, QIMR Berghofer Medical Research Institute, Brisbane, Qld, Australia.,School of Environment and Science, Griffith University, Brisbane, Qld, Australia
| | - Glen M Boyle
- Cancer Drug Mechanisms Group, QIMR Berghofer Medical Research Institute, Brisbane, Qld, Australia.,School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Qld, Australia.,School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, Qld, Australia
| |
Collapse
|
16
|
Intrinsic Balance between ZEB Family Members Is Important for Melanocyte Homeostasis and Melanoma Progression. Cancers (Basel) 2020; 12:cancers12082248. [PMID: 32796736 PMCID: PMC7465899 DOI: 10.3390/cancers12082248] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 02/07/2023] Open
Abstract
It has become clear that cellular plasticity is a main driver of cancer therapy resistance. Consequently, there is a need to mechanistically identify the factors driving this process. The transcription factors of the zinc-finger E-box-binding homeobox family, consisting of ZEB1 and ZEB2, are notorious for their roles in epithelial-to-mesenchymal transition (EMT). However, in melanoma, an intrinsic balance between ZEB1 and ZEB2 seems to determine the cellular state by modulating the expression of the master regulator of melanocyte homeostasis, microphthalmia-associated transcription factor (MITF). ZEB2 drives MITF expression and is associated with a differentiated/proliferative melanoma cell state. On the other hand, ZEB1 is correlated with low MITF expression and a more invasive, stem cell-like and therapy-resistant cell state. This intrinsic balance between ZEB1 and ZEB2 could prove to be a promising therapeutic target for melanoma patients. In this review, we will summarise what is known on the functional mechanisms of these transcription factors. Moreover, we will look specifically at their roles during melanocyte-lineage development and homeostasis. Finally, we will overview the current literature on ZEB1 and ZEB2 in the melanoma context and link this to the 'phenotype-switching' model of melanoma cellular plasticity.
Collapse
|
17
|
Bristot IJ, Kehl Dias C, Chapola H, Parsons RB, Klamt F. Metabolic rewiring in melanoma drug-resistant cells. Crit Rev Oncol Hematol 2020; 153:102995. [PMID: 32569852 DOI: 10.1016/j.critrevonc.2020.102995] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 12/16/2022] Open
Abstract
Several evidences indicate that melanoma, one of the deadliest types of cancer, presents the ability to transiently shift its phenotype under treatment or microenvironmental pressure to an invasive and treatment-resistant phenotype, which is characterized by cells with slow division cycle (also called slow-cycling cells) and high-OXPHOS metabolism. Many cellular marks have been proposed to track this phenotype, such as the expression levels of the master regulator of melanocyte differentiation (MITF) and the epigenetic factor JARID1B. It seems that the slow-cycling phenotype does not necessarily present a single gene expression signature. However, many lines of evidence lead to a common metabolic rewiring process in resistant cells that activates mitochondrial metabolism and changes the mitochondrial network morphology. Here, we propose that mitochondria-targeted drugs could increase not only the efficiency of target therapy, bypassing the dynamics between fast-cycling and slow-cycling, but also the sensitivity to immunotherapy by modulation of the melanoma microenvironment.
Collapse
Affiliation(s)
- Ivi Juliana Bristot
- Laboratório de Bioquímica Celular, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; National Institutes of Science & Technology - Translational Medicine (INCT- TM), 90035-903, Porto Alegre, RS, Brazil.
| | - Camila Kehl Dias
- Laboratório de Bioquímica Celular, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; National Institutes of Science & Technology - Translational Medicine (INCT- TM), 90035-903, Porto Alegre, RS, Brazil
| | - Henrique Chapola
- Laboratório de Bioquímica Celular, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; National Institutes of Science & Technology - Translational Medicine (INCT- TM), 90035-903, Porto Alegre, RS, Brazil
| | - Richard B Parsons
- Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, London SE1 9NH, UK
| | - Fábio Klamt
- Laboratório de Bioquímica Celular, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; National Institutes of Science & Technology - Translational Medicine (INCT- TM), 90035-903, Porto Alegre, RS, Brazil
| |
Collapse
|
18
|
Bonzon D, Muller G, Bureau JB, Uffer N, Beuchat N, Barrandon Y, Renaud P. Impedance-Based Single-Cell Pipetting. SLAS Technol 2020; 25:222-233. [PMID: 32172665 DOI: 10.1177/2472630320911636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Many biological methods are based on single-cell isolation. In single-cell line development, the gold standard involves the dilution of cells by means of a pipet. This process is time-consuming as it is repeated over several weeks to ensure clonality. Here, we report the modeling, designing, and testing of a disposable pipet tip integrating a cell sensor based on the Coulter principle. We investigate, test, and discuss the effects of design parameters on the sensor performances with an analytical model. We also describe a system that enables the dispensing of single cells using an instrumented pipet coupled with the sensing tip. Most importantly, this system allows the recording of an impedance trace to be used as proof of single-cell isolation. We assess the performances of the system with beads and cells. Finally, we show that the electrical detection has no effect on cell viability.
Collapse
Affiliation(s)
- David Bonzon
- Laboratory of Microsystems 4, IMT, STI, Ecole Polytechnique Fédérale de Lausanne, Lausanne, VD, Switzerland.,SEED Biosciences SA, Épalinges, Switzerland.,SEED Biosciences SA, Renens, Switzerland
| | - Georges Muller
- SEED Biosciences SA, Épalinges, Switzerland.,SEED Biosciences SA, Renens, Switzerland.,Laboratory of Stem Cell Dynamics, IBI, Ecole Polytechnique Fédérale de Lausanne, Lausanne, VD, Switzerland
| | - Jean-Baptiste Bureau
- Laboratory of Stem Cell Dynamics, IBI, Ecole Polytechnique Fédérale de Lausanne, Lausanne, VD, Switzerland
| | - Nicolas Uffer
- SEED Biosciences SA, Épalinges, Switzerland.,Laboratory of Stem Cell Dynamics, IBI, Ecole Polytechnique Fédérale de Lausanne, Lausanne, VD, Switzerland
| | - Nicolas Beuchat
- Laboratory of Microsystems 4, IMT, STI, Ecole Polytechnique Fédérale de Lausanne, Lausanne, VD, Switzerland
| | - Yann Barrandon
- Laboratory of Stem Cell Dynamics, IBI, Ecole Polytechnique Fédérale de Lausanne, Lausanne, VD, Switzerland.,Institute of Medical Biology, A*STAR, Duke-NUS Graduate Medical School, Singapore.,Department of Plastic, Reconstructive and Aesthetic Surgery, Singapore General Hospital, Singapore
| | - Philippe Renaud
- Laboratory of Microsystems 4, IMT, STI, Ecole Polytechnique Fédérale de Lausanne, Lausanne, VD, Switzerland
| |
Collapse
|
19
|
Zhang Y, Takahashi Y, Hong SP, Liu F, Bednarska J, Goff PS, Novak P, Shevchuk A, Gopal S, Barozzi I, Magnani L, Sakai H, Suguru Y, Fujii T, Erofeev A, Gorelkin P, Majouga A, Weiss DJ, Edwards C, Ivanov AP, Klenerman D, Sviderskaya EV, Edel JB, Korchev Y. High-resolution label-free 3D mapping of extracellular pH of single living cells. Nat Commun 2019; 10:5610. [PMID: 31811139 PMCID: PMC6898398 DOI: 10.1038/s41467-019-13535-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 11/13/2019] [Indexed: 01/05/2023] Open
Abstract
Dynamic mapping of extracellular pH (pHe) at the single-cell level is critical for understanding the role of H+ in cellular and subcellular processes, with particular importance in cancer. While several pHe sensing techniques have been developed, accessing this information at the single-cell level requires improvement in sensitivity, spatial and temporal resolution. We report on a zwitterionic label-free pH nanoprobe that addresses these long-standing challenges. The probe has a sensitivity > 0.01 units, 2 ms response time, and 50 nm spatial resolution. The platform was integrated into a double-barrel nanoprobe combining pH sensing with feedback-controlled distance dependance via Scanning Ion Conductance Microscopy. This allows for the simultaneous 3D topographical imaging and pHe monitoring of living cancer cells. These classes of nanoprobes were used for real-time high spatiotemporal resolution pHe mapping at the subcellular level and revealed tumour heterogeneity of the peri-cellular environments of melanoma and breast cancer cells.
Collapse
Affiliation(s)
- Yanjun Zhang
- Department of Medicine, Imperial College London, London, W12 0NN, UK.
- Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| | - Yasufumi Takahashi
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Saitama, 332-0012, Japan
| | - Sung Pil Hong
- Department of Surgery and Cancer, Imperial College London, London, W12 0NN, UK
| | - Fengjie Liu
- Department of Earth Science & Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Joanna Bednarska
- Department of Medicine, Imperial College London, London, W12 0NN, UK
| | - Philip S Goff
- Cell Biology Research Centre, Molecular and Clinical Sciences Research Institute, St George's, University of London, London, SW17 0RE, UK
| | - Pavel Novak
- Department of Medicine, Imperial College London, London, W12 0NN, UK
- National University of Science and Technology "MISIS", Leninskiy prospect 4, 119991, Moscow, Russian Federation
| | - Andrew Shevchuk
- Department of Medicine, Imperial College London, London, W12 0NN, UK
| | - Sahana Gopal
- Department of Medicine, Imperial College London, London, W12 0NN, UK
| | - Iros Barozzi
- Department of Surgery and Cancer, Imperial College London, London, W12 0NN, UK
| | - Luca Magnani
- Department of Surgery and Cancer, Imperial College London, London, W12 0NN, UK
| | - Hideki Sakai
- Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
| | - Yoshimoto Suguru
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Takuto Fujii
- Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
| | - Alexander Erofeev
- National University of Science and Technology "MISIS", Leninskiy prospect 4, 119991, Moscow, Russian Federation
- Department of Chemistry, Lomonosov Moscow State University, Leninskiye gory 1-3, GSP-1, 119991, Moscow, Russian Federation
| | - Peter Gorelkin
- National University of Science and Technology "MISIS", Leninskiy prospect 4, 119991, Moscow, Russian Federation
| | - Alexander Majouga
- Department of Chemistry, Lomonosov Moscow State University, Leninskiye gory 1-3, GSP-1, 119991, Moscow, Russian Federation
| | - Dominik J Weiss
- Department of Earth Science & Engineering, Imperial College London, London, SW7 2AZ, UK
| | | | - Aleksandar P Ivanov
- Department of Chemistry, Imperial College London, Molecular Science Research Hub, London, W12 0BZ, UK
| | - David Klenerman
- Department of Chemistry, University of Cambridge, London, CB2 1EW, UK
| | - Elena V Sviderskaya
- Cell Biology Research Centre, Molecular and Clinical Sciences Research Institute, St George's, University of London, London, SW17 0RE, UK.
| | - Joshua B Edel
- Department of Chemistry, Imperial College London, Molecular Science Research Hub, London, W12 0BZ, UK.
| | - Yuri Korchev
- Department of Medicine, Imperial College London, London, W12 0NN, UK.
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan.
| |
Collapse
|
20
|
Louphrasitthiphol P, Chauhan J, Goding CR. ABCB5 is activated by MITF and β-catenin and is associated with melanoma differentiation. Pigment Cell Melanoma Res 2019; 33:112-118. [PMID: 31595650 DOI: 10.1111/pcmr.12830] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/11/2019] [Accepted: 09/27/2019] [Indexed: 12/14/2022]
Abstract
Defining markers of different phenotypic states in melanoma is important for understanding disease progression, determining the response to therapy, and defining the molecular mechanisms underpinning phenotype-switching driven by the changing intratumor microenvironment. The ABCB5 transporter is implicated in drug-resistance and has been identified as a marker of melanoma-initiating cells. Indeed ongoing studies are using ABCB5 to define stem cell populations. However, we show here that the ABCB5 is a direct target for the microphthalmia-associated transcription factor MITF and its expression can be induced by β-catenin, a key activator and co-factor for MITF. Consequently, ABCB5 mRNA expression is primarily associated with melanoma cells exhibiting differentiation markers. The results suggest first that ABCB5 is unlikely to represent a marker of de-differentiated melanoma stem cells, and second that ABCB5 may contribute to the non-genetic drug-resistance associated with highly differentiated melanoma cells. To reconcile the apparently conflicting observations in the field, we propose a model in which ABCB5 may mark a slow-cycling differentiated population of melanoma cells.
Collapse
Affiliation(s)
- Pakavarin Louphrasitthiphol
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Jagat Chauhan
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Colin R Goding
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
21
|
Travnickova J, Wojciechowska S, Khamseh A, Gautier P, Brown DV, Lefevre T, Brombin A, Ewing A, Capper A, Spitzer M, Dilshat R, Semple CA, Mathers ME, Lister JA, Steingrimsson E, Voet T, Ponting CP, Patton EE. Zebrafish MITF-Low Melanoma Subtype Models Reveal Transcriptional Subclusters and MITF-Independent Residual Disease. Cancer Res 2019; 79:5769-5784. [PMID: 31582381 DOI: 10.1158/0008-5472.can-19-0037] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 06/28/2019] [Accepted: 09/23/2019] [Indexed: 12/17/2022]
Abstract
The melanocyte-inducing transcription factor (MITF)-low melanoma transcriptional signature is predictive of poor outcomes for patients, but little is known about its biological significance, and animal models are lacking. Here, we used zebrafish genetic models with low activity of Mitfa (MITF-low) and established that the MITF-low state is causal of melanoma progression and a predictor of melanoma biological subtype. MITF-low zebrafish melanomas resembled human MITF-low melanomas and were enriched for stem and invasive (mesenchymal) gene signatures. MITF-low activity coupled with a p53 mutation was sufficient to promote superficial growth melanomas, whereas BRAFV600E accelerated MITF-low melanoma onset and further promoted the development of MITF-high nodular growth melanomas. Genetic inhibition of MITF activity led to rapid regression; recurrence occurred following reactivation of MITF. At the regression site, there was minimal residual disease that was resistant to loss of MITF activity (termed MITF-independent cells) with very low-to-no MITF activity or protein. Transcriptomic analysis of MITF-independent residual disease showed enrichment of mesenchymal and neural crest stem cell signatures similar to human therapy-resistant melanomas. Single-cell RNA sequencing revealed MITF-independent residual disease was heterogeneous depending on melanoma subtype. Further, there was a shared subpopulation of residual disease cells that was enriched for a neural crest G0-like state that preexisted in the primary tumor and remained present in recurring melanomas. These findings suggest that invasive and stem-like programs coupled with cellular heterogeneity contribute to poor outcomes for MITF-low melanoma patients and that MITF-independent subpopulations are an important therapeutic target to achieve long-term survival outcomes. SIGNIFICANCE: This study provides a useful model for MITF-low melanomas and MITF-independent cell populations that can be used to study the mechanisms that drive these tumors as well as identify potential therapeutic options.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/79/22/5769/F1.large.jpg.
Collapse
Affiliation(s)
- Jana Travnickova
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom.,CRUK Edinburgh Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Sonia Wojciechowska
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom.,CRUK Edinburgh Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Ava Khamseh
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom.,Higgs Centre for Theoretical Physics, School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
| | - Philippe Gautier
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Daniel V Brown
- Department of Human Genetics, University of Leuven, KU Leuven, Leuven, Belgium.,Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Thomas Lefevre
- Department of Human Genetics, University of Leuven, KU Leuven, Leuven, Belgium
| | - Alessandro Brombin
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom.,CRUK Edinburgh Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Ailith Ewing
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Amy Capper
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom.,CRUK Edinburgh Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Michaela Spitzer
- Open Targets, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom; and European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Ramile Dilshat
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Colin A Semple
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Marie E Mathers
- Department of Pathology, Western General Hospital, Edinburgh, United Kingdom
| | - James A Lister
- Department of Human and Molecular Genetics and Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Eiríkur Steingrimsson
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Thierry Voet
- Department of Human Genetics, University of Leuven, KU Leuven, Leuven, Belgium.,Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Chris P Ponting
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - E Elizabeth Patton
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom. .,CRUK Edinburgh Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
22
|
Abstract
An incomplete view of the mechanisms that drive metastasis, the primary cause of cancer-related death, has been a major barrier to development of effective therapeutics and prognostic diagnostics. Increasing evidence indicates that the interplay between microenvironment, genetic lesions, and cellular plasticity drives the metastatic cascade and resistance to therapies. Here, using melanoma as a model, we outline the diversity and trajectories of cell states during metastatic dissemination and therapy exposure, and highlight how understanding the magnitude and dynamics of nongenetic reprogramming in space and time at single-cell resolution can be exploited to develop therapeutic strategies that capitalize on nongenetic tumor evolution.
Collapse
Affiliation(s)
- Florian Rambow
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, Vlaams Instituut voor Biotechnologie (VIB), Herestraat 49, 3000 Leuven, Belgium
- Laboratory for Molecular Cancer Biology, Department of Oncology, KULeuven, Herestraat 49, B-3000 Leuven, Belgium
| | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, Vlaams Instituut voor Biotechnologie (VIB), Herestraat 49, 3000 Leuven, Belgium
- Laboratory for Molecular Cancer Biology, Department of Oncology, KULeuven, Herestraat 49, B-3000 Leuven, Belgium
| | - Colin R Goding
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom
| |
Collapse
|
23
|
Campoy EM, Branham MT, Mayorga LS, Roqué M. Intratumor heterogeneity index of breast carcinomas based on DNA methylation profiles. BMC Cancer 2019; 19:328. [PMID: 30953488 PMCID: PMC6451266 DOI: 10.1186/s12885-019-5550-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 03/28/2019] [Indexed: 01/02/2023] Open
Abstract
Background Cancer cells evolve and constitute heterogeneous populations that fluctuate in space and time and are subjected to selection generating intratumor heterogeneity. This phenomenon is determined by the acquisition of genetic/epigenetic alterations and their selection over time which has clinical implications on drug resistance. Methods DNA extracted from different tumor cell populations (breast carcinomas, cancer cell lines and cellular clones) were analyzed by MS-MLPA. Methylation profiles were used to generate a heterogeneity index to quantify the magnitude of epigenetic heterogeneity in these populations. Cellular clones were obtained from single cells derived of MDA-MB 231 cancer cell lines applying serial limiting dilution method and morphology was analyzed by optical microscopy and flow cytometry. Clones characteristics were examined through cellular proliferation, migration capacity and apoptosis. Heterogeneity index was also calculated from beta values derived from methylation profiles of TCGA tumors. Results The study of methylation profiles of 23 fresh breast carcinomas revealed heterogeneous allele populations in these tumor pieces. With the purpose to measure the magnitude of epigenetic heterogeneity, we developed an heterogeneity index based on methylation information and observed that all tumors present their own heterogeneity level. Applying the index calculation in pure cancer cell populations such as cancer cell lines (MDA-MB 231, MCF-7, T47D, HeLa and K-562), we also observed epigenetic heterogeneity. In addition, we detected that clones obtained from the MDA-MB 231 cancer cell line generated their own new heterogeneity over time. Using TCGA tumors, we determined that the heterogeneity index correlated with prognostic and predictive factors like tumor size (p = 0.0088), number of affected axillary nodes (p = 0.007), estrogen receptor expression (p < 0.0001) and HER2 positivity (p = 0.0007). When we analyzed molecular subtypes we found that they presented different heterogeneity levels. Interestingly, we also observed that all mentioned tumor cell populations shared a similar Heterogeneity index (HI) mean. Conclusions Our results show that each tumor presents a unique epigenetic heterogeneity level, which is associated with prognostic and predictive factors. We also observe that breast tumor subtypes differ in terms of epigenetic heterogeneity, which could serve as a new contribution to understand the different prognosis of these groups.
Collapse
Affiliation(s)
- Emanuel M Campoy
- IHEM-CONICET, Av del libertador, 80, Mendoza, Argentina. .,Facultad de Ciencias Médicas, Av del Libertador 80, Universidad Nacional de Cuyo, Mendoza, Argentina.
| | | | - Luis S Mayorga
- IHEM-CONICET, Av del libertador, 80, Mendoza, Argentina.,Facultad de Ciencias Médicas, Av del Libertador 80, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - María Roqué
- IHEM-CONICET, Av del libertador, 80, Mendoza, Argentina.,Facultad de Ciencias Exactas y Naturales, Padre Jorge Contreras 1300, Universidad Nacional de Cuyo, Mendoza, Argentina
| |
Collapse
|
24
|
Perera RM, Di Malta C, Ballabio A. MiT/TFE Family of Transcription Factors, Lysosomes, and Cancer. ANNUAL REVIEW OF CANCER BIOLOGY 2019; 3:203-222. [PMID: 31650096 PMCID: PMC6812561 DOI: 10.1146/annurev-cancerbio-030518-055835] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cancer cells have an increased demand for energy sources to support accelerated rates of growth. When nutrients become limiting, cancer cells may switch to nonconventional energy sources that are mobilized through nutrient scavenging pathways involving autophagy and the lysosome. Thus, several cancers are highly reliant on constitutive activation of these pathways to degrade and recycle cellular materials. Here, we focus on the MiT/TFE family of transcription factors, which control transcriptional programs for autophagy and lysosome biogenesis and have emerged as regulators of energy metabolism in cancer. These new findings complement earlier reports that chromosomal translocations and amplifications involving the MiT/TFE genes contribute to the etiology and pathophysiology of renal cell carcinoma, melanoma, and sarcoma, suggesting pleiotropic roles for these factors in a wider array of cancers. Understanding the interplay between the oncogenic and stress-adaptive roles of MiT/TFE factors could shed light on fundamental mechanisms of cellular homeostasis and point to new strategies for cancer treatment.
Collapse
Affiliation(s)
- Rushika M Perera
- Department of Anatomy and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California 94143, USA
| | - Chiara Di Malta
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Naples, Italy
- Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, 80138Naples, Italy
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Naples, Italy
- Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, 80138Naples, Italy
- Department of Molecular and Human Genetics and Neurological Research Institute, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
25
|
Yang X, Liang R, Liu C, Liu JA, Cheung MPL, Liu X, Man OY, Guan XY, Lung HL, Cheung M. SOX9 is a dose-dependent metastatic fate determinant in melanoma. J Exp Clin Cancer Res 2019; 38:17. [PMID: 30642390 PMCID: PMC6330758 DOI: 10.1186/s13046-018-0998-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/06/2018] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND In this research, we aimed to resolve contradictory results whether SOX9 plays a positive or negative role in melanoma progression and determine whether SOX9 and its closely related member SOX10 share the same or distinct targets in mediating their functions in melanoma. METHODS Immunofluorescence, TCGA database and qPCR were used to analyze the correlation between the expression patterns and levels of SOX9, SOX10 and NEDD9 in melanoma patient samples. AlamarBlue, transwell invasion and colony formation assays in melanoma cell lines were conducted to investigate the epistatic relationship between SOX10 and NEDD9, as well as the effects of graded SOX9 expression levels. Lung metastasis was determined by tail vein injection assay. Live cell imaging was conducted to monitor dynamics of melanoma migratory behavior. RHOA and RAC1 activation assays measured the activity of Rho GTPases. RESULTS High SOX9 expression was predominantly detected in patients with distant melanoma metastases whereas SOX10 was present in the different stages of melanoma. Both SOX9 and SOX10 exhibited distinct but overlapping expression patterns with metastatic marker NEDD9. Accordingly, SOX10 was required for NEDD9 expression, which partly mediated its oncogenic functions in melanoma cells. Compensatory upregulation of SOX9 expression in SOX10-inhibited melanoma cells reduced growth and migratory capacity, partly due to elevated expression of cyclin-dependent kinase inhibitor p21 and lack of NEDD9 induction. Conversely, opposite phenomenon was observed when SOX9 expression was further elevated to a range of high SOX9 expression levels in metastatic melanoma specimens, and that high levels of SOX9 can restore melanoma progression in the absence of SOX10 both in vitro and in vivo. In addition, overexpression of SOX9 can also promote invasiveness of the parental melanoma cells by modulating the expression of various matrix metalloproteinases. SOX10 or high SOX9 expression regulates melanoma mesenchymal migration through the NEDD9-mediated focal adhesion dynamics and Rho GTPase signaling. CONCLUSIONS These results unravel NEDD9 as a common target for SOX10 or high SOX9 to partly mediate their oncogenic events, and most importantly, reconcile previous discrepancies that suboptimal level of SOX9 expression is anti-metastatic whereas high level of SOX9 is metastatic in a heterogeneous population of melanoma.
Collapse
Affiliation(s)
- Xintao Yang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong, China
| | - Rui Liang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong, China
| | - Chunxi Liu
- Department of Anesthesiology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang China
| | - Jessica Aijia Liu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong, China
| | - May Pui Lai Cheung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong, China
| | - Xuelai Liu
- Department of Pediatric Surgery, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei China
| | - On Ying Man
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong, China
| | - Xin-Yuan Guan
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Hong Lok Lung
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong, China
| | - Martin Cheung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong, China
| |
Collapse
|
26
|
Hu J, Xu Y, Gou T, Zhou S, Mu Y. High throughput single cell separation and identification using a self-priming isometric and Equant screw valve-based (SIES) microfluidic chip. Analyst 2019; 143:5792-5798. [PMID: 30352109 DOI: 10.1039/c8an01464g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The emergence of various single cell separation and identification platforms has greatly promoted the development of single cell research. Among these platforms, microfluidic chip-based strategies occupy a significant position in single cell separation and identification. Here, we proposed a self-priming isometric and Equant screw valve-based microfluidic chip (SIES chip) for high throughput single cell isolation and identification. With several special designs, such as a peripheral water tank to balance negative pressure distribution in a marginal area of the chip, a screw valve to preserve the suction power during the step-by-step sample loading, and multistage branching "T" shape channels to separate cells evenly into the chambers, up to 2000 single cells can be well dispersed and analyzed at the same time using this chip. We applied this chip for the isolation and identification of single A549 cells targeting the activated leukocyte cell adhesion molecule (ALCAM) gene. The results showed that only a small proportion (approximately 5.1%) of A549 cells expressed ALCAM, which can potentially provide a reference for A549 cell reclassification. Besides being inexpensive, user-friendly and portable, our chip can be used in some resource-limited settings and may have a great potential in POC (Point-of-Care) applications.
Collapse
Affiliation(s)
- Jiumei Hu
- Research Center for Analytical Instrumentation, Institute of Cyber Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, Zhejiang, P. R. China.
| | | | | | | | | |
Collapse
|
27
|
Liu W, Li Z, Liu Y, Wei Q, Liu Y, Ren L, Wang C, Yu Y. One step DNA amplification of mammalian cells in picoliter microwell arrays. RSC Adv 2019; 9:2865-2869. [PMID: 35520517 PMCID: PMC9059946 DOI: 10.1039/c8ra06717a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 12/23/2018] [Indexed: 12/20/2022] Open
Abstract
One-step PCR of a single cell in a picoliter microwell array was developed and applied to detect a target with the sensitivity of a single copy.
Collapse
Affiliation(s)
- Wenwen Liu
- State Key Laboratory on Integrated Optoelectronics
- Institute of Semiconductors
- Chinese Academy of Sciences
- Beijing
- China
| | - Zhao Li
- State Key Laboratory on Integrated Optoelectronics
- Institute of Semiconductors
- Chinese Academy of Sciences
- Beijing
- China
| | - Yuanjie Liu
- State Key Laboratory on Integrated Optoelectronics
- Institute of Semiconductors
- Chinese Academy of Sciences
- Beijing
- China
| | - Qingquan Wei
- State Key Laboratory on Integrated Optoelectronics
- Institute of Semiconductors
- Chinese Academy of Sciences
- Beijing
- China
| | - Yong Liu
- State Key Laboratory on Integrated Optoelectronics
- Institute of Semiconductors
- Chinese Academy of Sciences
- Beijing
- China
| | - Lufeng Ren
- State Key Laboratory on Integrated Optoelectronics
- Institute of Semiconductors
- Chinese Academy of Sciences
- Beijing
- China
| | - Chenyu Wang
- State Key Laboratory on Integrated Optoelectronics
- Institute of Semiconductors
- Chinese Academy of Sciences
- Beijing
- China
| | - Yude Yu
- State Key Laboratory on Integrated Optoelectronics
- Institute of Semiconductors
- Chinese Academy of Sciences
- Beijing
- China
| |
Collapse
|
28
|
Metzger P, Kirchleitner SV, Koenig LM, Hörth C, Kobold S, Endres S, Schnurr M, Duewell P. Dying cells expose a nuclear antigen cross-reacting with anti-PD-1 monoclonal antibodies. Sci Rep 2018; 8:8810. [PMID: 29892077 PMCID: PMC5995819 DOI: 10.1038/s41598-018-27125-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/29/2018] [Indexed: 12/16/2022] Open
Abstract
Checkpoint molecules such as programmed death 1 (PD-1) dampen excessive T cell activation to preserve immune homeostasis. PD-1-specific monoclonal antibodies have revolutionized cancer therapy, as they reverse tumour-induced T cell exhaustion and restore CTL activity. Based on this success, deciphering underlying mechanisms of PD-1-mediated immune functions has become an important field of immunological research. Initially described for T cells, there is emerging evidence of unconventional PD-1 expression by myeloid as well as tumor cells, yet, with cell-intrinsic functions in various animal tumor models. Here, we describe positive PD-1 antibody staining of various murine immune and tumour cells that is, unlike for T cells, not the PD-1 receptor and restricted to cells with low forward scatter characteristics. Based on flow cytometry and various approaches, including two established murine anti-PD-1 antibody clones, CRISPR/Cas9 genome editing and confocal imaging, we describe a staining pattern assigned to a nuclear antigen cross-reacting with anti-PD-1 monoclonal antibodies. Lack of PD-1 expression was further underlined by the analysis of PD-1 expression from B16-F10-derived 3D cultures and ex vivo tumours. Thus, our data provide multiple lines of evidence that PD-1 expression by non-T cells is unlikely to be the case and, taking recent data of PD-1 tumour cell-intrinsic functions into account, suggest that other antibody-mediated pathways might apply.
Collapse
Affiliation(s)
- Philipp Metzger
- Center of Integrated Protein Science Munich (CIPSM) and Division of Clinical Pharmacology, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Sabrina V Kirchleitner
- Center of Integrated Protein Science Munich (CIPSM) and Division of Clinical Pharmacology, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Lars M Koenig
- Center of Integrated Protein Science Munich (CIPSM) and Division of Clinical Pharmacology, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Christine Hörth
- Center of Integrated Protein Science Munich (CIPSM) and Division of Clinical Pharmacology, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Sebastian Kobold
- Center of Integrated Protein Science Munich (CIPSM) and Division of Clinical Pharmacology, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Stefan Endres
- Center of Integrated Protein Science Munich (CIPSM) and Division of Clinical Pharmacology, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Max Schnurr
- Center of Integrated Protein Science Munich (CIPSM) and Division of Clinical Pharmacology, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany.
| | - Peter Duewell
- Center of Integrated Protein Science Munich (CIPSM) and Division of Clinical Pharmacology, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany.
| |
Collapse
|
29
|
Fane ME, Chhabra Y, Smith AG, Sturm RA. BRN2, a POUerful driver of melanoma phenotype switching and metastasis. Pigment Cell Melanoma Res 2018; 32:9-24. [PMID: 29781575 DOI: 10.1111/pcmr.12710] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 04/18/2018] [Accepted: 04/25/2018] [Indexed: 12/30/2022]
Abstract
The POU domain family of transcription factors play a central role in embryogenesis and are highly expressed in neural crest cells and the developing brain. BRN2 is a class III POU domain protein that is a key mediator of neuroendocrine and melanocytic development and differentiation. While BRN2 is a central regulator in numerous developmental programs, it has also emerged as a major player in the biology of tumourigenesis. In melanoma, BRN2 has been implicated as one of the master regulators of the acquisition of invasive behaviour within the phenotype switching model of progression. As a mediator of melanoma cell phenotype switching, it coordinates the transition to a dedifferentiated, slow cycling and highly motile cell type. Its inverse expression relationship with MITF is believed to mediate tumour progression and metastasis within this model. Recent evidence has now outlined a potential epigenetic switching mechanism in melanoma cells driven by BRN2 expression that induces melanoma cell invasion. We summarize the role of BRN2 in tumour cell dissemination and metastasis in melanoma, while also examining it as a potential metastatic regulator in other tumour models.
Collapse
Affiliation(s)
- Mitchell E Fane
- School of Biomedical Sciences, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia.,Dermatology Research Centre, UQ Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Yash Chhabra
- School of Biomedical Sciences, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia.,Dermatology Research Centre, UQ Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Aaron G Smith
- School of Biomedical Sciences, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Richard A Sturm
- Dermatology Research Centre, UQ Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
30
|
Ahmed F, Haass NK. Microenvironment-Driven Dynamic Heterogeneity and Phenotypic Plasticity as a Mechanism of Melanoma Therapy Resistance. Front Oncol 2018; 8:173. [PMID: 29881716 PMCID: PMC5976798 DOI: 10.3389/fonc.2018.00173] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/03/2018] [Indexed: 12/11/2022] Open
Abstract
Drug resistance constitutes a major challenge in designing melanoma therapies. Microenvironment-driven tumor heterogeneity and plasticity play a key role in this phenomenon. Melanoma is highly heterogeneous with diverse genomic alterations and expression of different biological markers. In addition, melanoma cells are highly plastic and capable of adapting quickly to changing microenvironmental conditions. These contribute to variations in therapy response and durability between individual melanoma patients. In response to changing microenvironmental conditions, like hypoxia and nutrient starvation, proliferative melanoma cells can switch to an invasive slow-cycling state. Cells in this state are more aggressive and metastatic, and show increased intrinsic drug resistance. During continuous treatment, slow-cycling cells are enriched within the tumor and give rise to a new proliferative subpopulation with increased drug resistance, by exerting their stem cell-like behavior and phenotypic plasticity. In melanoma, the proliferative and invasive states are defined by high and low microphthalmia-associated transcription factor (MITF) expression, respectively. It has been observed that in MITFhigh melanomas, inhibition of MITF increases the efficacy of targeted therapies and delays the acquisition of drug resistance. Contrarily, MITF is downregulated in melanomas with acquired drug resistance. According to the phenotype switching theory, the gene expression profile of the MITFlow state is predominantly regulated by WNT5A, AXL, and NF-κB signaling. Thus, different combinations of therapies should be effective in treating different phases of melanoma, such as the combination of targeted therapies with inhibitors of MITF expression during the initial treatment phase, but with inhibitors of WNT5A/AXL/NF-κB signaling during relapse.
Collapse
Affiliation(s)
- Farzana Ahmed
- The University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Nikolas K. Haass
- The University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia
- Discipline of Dermatology, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
31
|
Gerber T, Willscher E, Loeffler-Wirth H, Hopp L, Schadendorf D, Schartl M, Anderegg U, Camp G, Treutlein B, Binder H, Kunz M. Mapping heterogeneity in patient-derived melanoma cultures by single-cell RNA-seq. Oncotarget 2018; 8:846-862. [PMID: 27903987 PMCID: PMC5352202 DOI: 10.18632/oncotarget.13666] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 11/12/2016] [Indexed: 01/21/2023] Open
Abstract
Recent technological advances in single-cell genomics make it possible to analyze cellular heterogeneity of tumor samples. Here, we applied single-cell RNA-seq to measure the transcriptomes of 307 single cells cultured from three biopsies of three different patients with a BRAF/NRAS wild type, BRAF mutant/NRAS wild type and BRAF wild type/NRAS mutant melanoma metastasis, respectively. Analysis based on self-organizing maps identified sub-populations defined by multiple gene expression modules involved in proliferation, oxidative phosphorylation, pigmentation and cellular stroma. Gene expression modules had prognostic relevance when compared with gene expression data from published melanoma samples and patient survival data. We surveyed kinome expression patterns across sub-populations of the BRAF/NRAS wild type sample and found that CDK4 and CDK2 were consistently highly expressed in the majority of cells, suggesting that these kinases might be involved in melanoma progression. Treatment of cells with the CDK4 inhibitor palbociclib restricted cell proliferation to a similar, and in some cases greater, extent than MAPK inhibitors. Finally, we identified a low abundant sub-population in this sample that highly expressed a module containing ABC transporter ABCB5, surface markers CD271 and CD133, and multiple aldehyde dehydrogenases (ALDHs). Patient-derived cultures of the BRAF mutant/NRAS wild type and BRAF wild type/NRAS mutant metastases showed more homogeneous single-cell gene expression patterns with gene expression modules for proliferation and ABC transporters. Taken together, our results describe an intertumor and intratumor heterogeneity in melanoma short-term cultures which might be relevant for patient survival, and suggest promising targets for new treatment approaches in melanoma therapy.
Collapse
Affiliation(s)
- Tobias Gerber
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology Leipzig, 04103 Leipzig, Germany
| | - Edith Willscher
- Interdisciplinary Center for Bioinformatics, University of Leipzig, 04107 Leipzig, Germany
| | - Henry Loeffler-Wirth
- Interdisciplinary Center for Bioinformatics, University of Leipzig, 04107 Leipzig, Germany
| | - Lydia Hopp
- Interdisciplinary Center for Bioinformatics, University of Leipzig, 04107 Leipzig, Germany
| | - Dirk Schadendorf
- Department of Dermatology, Venereology and Allergology, University Hospital Essen, 45147 Essen, Germany
| | - Manfred Schartl
- Department of Physiological Chemistry, University of Würzburg, Biozentrum, Am Hubland, 97074 Würzburg, Germany.,Comprehensive Cancer Center Mainfranken, University Clinic Würzburg, 97080 Würzburg, Germany.,Institute for Advanced Study, 3572 Texas A&M University, College Station, Texas 77843-3572, USA
| | - Ulf Anderegg
- Department of Dermatology, Venereology and Allergology, University of Leipzig, 04103 Leipzig, Germany
| | - Gray Camp
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology Leipzig, 04103 Leipzig, Germany
| | - Barbara Treutlein
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology Leipzig, 04103 Leipzig, Germany
| | - Hans Binder
- Interdisciplinary Center for Bioinformatics, University of Leipzig, 04107 Leipzig, Germany
| | - Manfred Kunz
- Department of Dermatology, Venereology and Allergology, University of Leipzig, 04103 Leipzig, Germany
| |
Collapse
|
32
|
Patange S, Girvan M, Larson DR. Single-cell systems biology: probing the basic unit of information flow. ACTA ACUST UNITED AC 2017; 8:7-15. [PMID: 29552672 DOI: 10.1016/j.coisb.2017.11.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Gene expression varies across cells in a population or a tissue. This heterogeneity has come into sharp focus in recent years through developments in new imaging and sequencing technologies. However, our ability to measure variation has outpaced our ability to interpret it. Much of the variability may arise from random effects occurring in the processes of gene expression (transcription, RNA processing and decay, translation). The molecular basis of these effects is largely unknown. Likewise, a functional role of this variability in growth, differentiation and disease has only been elucidated in a few cases. In this review, we highlight recent experimental and theoretical advances for measuring and analyzing stochastic variation.
Collapse
Affiliation(s)
- Simona Patange
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute. Bethesda, MD 20892
- Institute for Physical Science and Technology, University of Maryland, College Park, MD
| | - Michelle Girvan
- Institute for Physical Science and Technology, University of Maryland, College Park, MD
- Department of Physics, University of Maryland. College Park, MD
| | - Daniel R Larson
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute. Bethesda, MD 20892
| |
Collapse
|
33
|
Fortis SP, Mahaira LG, Anastasopoulou EA, Voutsas IF, Perez SA, Baxevanis CN. Immune profiling of melanoma tumors reflecting aggressiveness in a preclinical model. Cancer Immunol Immunother 2017; 66:1631-1642. [PMID: 28871365 PMCID: PMC11028901 DOI: 10.1007/s00262-017-2056-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 08/23/2017] [Indexed: 10/18/2022]
Abstract
Melanoma, like most solid tumors, is highly heterogeneous in terms of invasive, proliferative, and tumor-initiating potential. This heterogeneity is the outcome of differential gene expression resulting from conditions in the tumor microenvironment and the selective pressure of the immune system. To investigate possible signatures combining immune-related gene expression and lymphocyte infiltration, we established a preclinical model using B16.F1-derived clones, in the context of melanoma aggressiveness. Combinatorial analyses revealed that tumors concomitantly expressing low levels of Tnf-a, Pd-1, Il-10, Il-1ra, Ccl5, Ido, high Il-9, and with low infiltration by CD45+, CD3+, CD4+ and CD8+ cells and a high CD4+:CD8+ T cell ratio exhibited the most aggressive growth characteristics. Overall, these results support the notion that the intratumoral immunologic network molds aggressive melanoma phenotypes.
Collapse
Affiliation(s)
- Sotirios P Fortis
- Cancer Immunology and Immunotherapy Center, "Saint Savas" Cancer Hospital, 171 Alexandras Avenue, 11522, Athens, Greece
| | - Louisa G Mahaira
- Cancer Immunology and Immunotherapy Center, "Saint Savas" Cancer Hospital, 171 Alexandras Avenue, 11522, Athens, Greece
| | - Eleftheria A Anastasopoulou
- Cancer Immunology and Immunotherapy Center, "Saint Savas" Cancer Hospital, 171 Alexandras Avenue, 11522, Athens, Greece
| | - Ioannis F Voutsas
- Cancer Immunology and Immunotherapy Center, "Saint Savas" Cancer Hospital, 171 Alexandras Avenue, 11522, Athens, Greece
| | - Sonia A Perez
- Cancer Immunology and Immunotherapy Center, "Saint Savas" Cancer Hospital, 171 Alexandras Avenue, 11522, Athens, Greece
| | - Constantin N Baxevanis
- Cancer Immunology and Immunotherapy Center, "Saint Savas" Cancer Hospital, 171 Alexandras Avenue, 11522, Athens, Greece.
| |
Collapse
|
34
|
Bevilacqua C, Ducos B. Laser microdissection: A powerful tool for genomics at cell level. Mol Aspects Med 2017; 59:5-27. [PMID: 28927943 DOI: 10.1016/j.mam.2017.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 09/13/2017] [Indexed: 12/18/2022]
Abstract
Laser microdissection (LM) has become widely democratized over the last fifteen years. Instruments have evolved to offer more powerful and efficient lasers as well as new options for sample collection and preparation. Technological evolutions have also focused on the post-microdissection analysis capabilities, opening up investigations in all disciplines of experimental and clinical biology, thanks to the advent of new high-throughput methods of genome analysis, including RNAseq and proteomics, now globally known as microgenomics, i.e. analysis of biomolecules at the cell level. In spite of the advances these rapidly developing methods have allowed, the workflow for sampling and collection by LM remains a critical step in insuring sample integrity in terms of histology (accurate cell identification) and biochemistry (reliable analyzes of biomolecules). In this review, we describe the sample processing as well as the strengths and limiting factors of LM applied to the specific selection of one or more cells of interest from a heterogeneous tissue. We will see how the latest developments in protocols and methods have made LM a powerful and sometimes essential tool for genomic and proteomic analyzes of tiny amounts of biomolecules extracted from few cells isolated from a complex tissue, in their physiological context, thus offering new opportunities for understanding fundamental physiological and/or patho-physiological processes.
Collapse
Affiliation(s)
- Claudia Bevilacqua
- GABI, Plateforme @BRIDGE, INRA, AgroParisTech, Université Paris-Saclay, Domaine de Vilvert, 78350 Jouy en Josas, France.
| | - Bertrand Ducos
- LPS-ENS, CNRS UMR 8550, UPMC, Université Denis Diderot, PSL Research University, 24 Rue Lhomond, 75005 Paris France; High Throughput qPCR Core Facility, IBENS, 46 Rue d'Ulm, 75005 Paris France; Laser Microdissection Facility of Montagne Sainte Geneviève, CIRB Collège de France, Place Marcellin Berthelot, 75005 Paris France.
| |
Collapse
|
35
|
Grzywa TM, Paskal W, Włodarski PK. Intratumor and Intertumor Heterogeneity in Melanoma. Transl Oncol 2017; 10:956-975. [PMID: 29078205 PMCID: PMC5671412 DOI: 10.1016/j.tranon.2017.09.007] [Citation(s) in RCA: 206] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/14/2017] [Accepted: 09/17/2017] [Indexed: 12/25/2022] Open
Abstract
Melanoma is a cancer that exhibits one of the most aggressive and heterogeneous features. The incidence rate escalates. A high number of clones harboring various mutations contribute to an exceptional level of intratumor heterogeneity of melanoma. It also refers to metastases which may originate from different subclones of primary lesion. Such component of the neoplasm biology is termed intertumor and intratumor heterogeneity. These levels of tumor heterogeneity hinder accurate diagnosis and effective treatment. The increasing number of research on the topic reflects the need for understanding limitation or failure of contemporary therapies. Majority of analyses concentrate on mutations in cancer-related genes. Novel high-throughput techniques reveal even higher degree of variations within a lesion. Consolidation of theories and researches indicates new routes for treatment options such as targets for immunotherapy. The demand for personalized approach in melanoma treatment requires extensive knowledge on intratumor and intertumor heterogeneity on the level of genome, transcriptome/proteome, and epigenome. Thus, achievements in exploration of melanoma variety are described in details. Particularly, the issue of tumor heterogeneity or homogeneity given BRAF mutations is discussed.
Collapse
Affiliation(s)
- Tomasz M Grzywa
- The Department of Histology and Embryology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, 02-091 Warsaw, Poland
| | - Wiktor Paskal
- The Department of Histology and Embryology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, 02-091 Warsaw, Poland
| | - Paweł K Włodarski
- The Department of Histology and Embryology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, 02-091 Warsaw, Poland.
| |
Collapse
|
36
|
The impact of melanoma genetics on treatment response and resistance in clinical and experimental studies. Cancer Metastasis Rev 2017; 36:53-75. [PMID: 28210865 DOI: 10.1007/s10555-017-9657-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Recent attempts to characterize the melanoma mutational landscape using high-throughput sequencing technologies have identified new genes and pathways involved in the molecular pathogenesis of melanoma. Apart from mutated BRAF, NRAS, and KIT, a series of new recurrently mutated candidate genes with impact on signaling pathways have been identified such as NF1, PTEN, IDH1, RAC1, ARID2, and TP53. Under targeted treatment using BRAF and MEK1/2 inhibitors either alone or in combination, a majority of patients experience recurrences, which are due to different genetic mechanisms such as gene amplifications of BRAF or NRAS, MEK1/2 and PI3K mutations. In principle, resistance mechanisms converge on two signaling pathways, MAPK and PI3K-AKT-mTOR pathways. Resistance may be due to small subsets of resistant cells within a heterogeneous tumor mass not identified by sequencing of the bulk tumor. Future sequencing studies addressing tumor heterogeneity, e.g., by using single-cell sequencing technology, will most likely improve this situation. Gene expression patterns of metastatic lesions were also shown to predict treatment response, e.g., a MITF-low/NF-κB-high melanoma phenotype is resistant against classical targeted therapies. Finally, more recent treatment approaches using checkpoint inhibitors directed against PD-1 and CTLA-4 are very effective in melanoma and other tumor entities. Here, the mutational and neoantigen load of melanoma lesions may help to predict treatment response. Taken together, the new sequencing, molecular, and bioinformatic technologies exploiting the melanoma genome for treatment decisions have significantly improved our understanding of melanoma pathogenesis, treatment response, and resistance for either targeted treatment or immune checkpoint blockade.
Collapse
|
37
|
Ennen M, Keime C, Gambi G, Kieny A, Coassolo S, Thibault-Carpentier C, Margerin-Schaller F, Davidson G, Vagne C, Lipsker D, Davidson I. MITF-High and MITF-Low Cells and a Novel Subpopulation Expressing Genes of Both Cell States Contribute to Intra- and Intertumoral Heterogeneity of Primary Melanoma. Clin Cancer Res 2017; 23:7097-7107. [PMID: 28855355 DOI: 10.1158/1078-0432.ccr-17-0010] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 07/21/2017] [Accepted: 08/22/2017] [Indexed: 11/16/2022]
Abstract
Purpose: Understanding tumor heterogeneity is an important challenge in current cancer research. Transcription and epigenetic profiling of cultured melanoma cells have defined at least two distinct cell phenotypes characterized by distinctive gene expression signatures associated with high or low/absent expression of microphthalmia-associated transcription factor (MITF). Nevertheless, heterogeneity of cell populations and gene expression in primary human tumors is much less well characterized.Experimental Design: We performed single-cell gene expression analyses on 472 cells isolated from needle biopsies of 5 primary human melanomas, 4 superficial spreading, and one acral melanoma. The expression of MITF-high and MITF-low signature genes was assessed and compared to investigate intra- and intertumoral heterogeneity and correlated gene expression profiles.Results: Single-cell gene expression analyses revealed varying degrees of intra- and intertumor heterogeneity conferred by the variable expression of distinct sets of genes in different tumors. Expression of MITF partially correlated with that of its known target genes, while SOX10 expression correlated best with PAX3 and ZEB2 Nevertheless, cells simultaneously expressing MITF-high and MITF-low signature genes were observed both by single-cell analyses and RNAscope.Conclusions: Single-cell analyses can be performed on limiting numbers of cells from primary human melanomas revealing their heterogeneity. Although tumors comprised variable proportions of cells with the MITF-high and MITF-low gene expression signatures characteristic of melanoma cultures, primary tumors also comprised cells expressing markers of both signatures defining a novel cell state in tumors in vivoClin Cancer Res; 23(22); 7097-107. ©2017 AACR.
Collapse
Affiliation(s)
- Marie Ennen
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS, INSERM, Université de Strasbourg, Illkirch, France.,Equipe Labéllisée de la Ligue Contre le Cancer, Paris, France
| | - Céline Keime
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS, INSERM, Université de Strasbourg, Illkirch, France.,Equipe Labéllisée de la Ligue Contre le Cancer, Paris, France
| | - Giovanni Gambi
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS, INSERM, Université de Strasbourg, Illkirch, France.,Equipe Labéllisée de la Ligue Contre le Cancer, Paris, France
| | - Alice Kieny
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS, INSERM, Université de Strasbourg, Illkirch, France.,Equipe Labéllisée de la Ligue Contre le Cancer, Paris, France.,Faculté de Médecine and Service de Dermatologie, Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Sebastien Coassolo
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS, INSERM, Université de Strasbourg, Illkirch, France.,Equipe Labéllisée de la Ligue Contre le Cancer, Paris, France
| | - Christelle Thibault-Carpentier
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS, INSERM, Université de Strasbourg, Illkirch, France.,Equipe Labéllisée de la Ligue Contre le Cancer, Paris, France
| | - Fanny Margerin-Schaller
- Faculté de Médecine and Service de Dermatologie, Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Guillaume Davidson
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS, INSERM, Université de Strasbourg, Illkirch, France.,Equipe Labéllisée de la Ligue Contre le Cancer, Paris, France
| | - Constance Vagne
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS, INSERM, Université de Strasbourg, Illkirch, France.,Equipe Labéllisée de la Ligue Contre le Cancer, Paris, France
| | - Dan Lipsker
- Faculté de Médecine and Service de Dermatologie, Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Irwin Davidson
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS, INSERM, Université de Strasbourg, Illkirch, France. .,Equipe Labéllisée de la Ligue Contre le Cancer, Paris, France
| |
Collapse
|
38
|
Bektik E, Dennis A, Prasanna P, Madabhushi A, Fu JD. Single cell qPCR reveals that additional HAND2 and microRNA-1 facilitate the early reprogramming progress of seven-factor-induced human myocytes. PLoS One 2017; 12:e0183000. [PMID: 28796841 PMCID: PMC5552090 DOI: 10.1371/journal.pone.0183000] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 07/27/2017] [Indexed: 01/04/2023] Open
Abstract
The direct reprogramming of cardiac fibroblasts into induced cardiomyocyte (CM)-like cells (iCMs) holds great promise in restoring heart function. We previously found that human fibroblasts could be reprogrammed toward CM-like cells by 7 reprogramming factors; however, iCM reprogramming in human fibroblasts is both more difficult and more time-intensive than that in mouse cells. In this study, we investigated if additional reprogramming factors could quantitatively and/or qualitatively improve 7-factor-mediated human iCM reprogramming by single-cell quantitative PCR. We first validated 46 pairs of TaqMan® primers/probes that had sufficient efficiency and sensitivity to detect the significant difference of gene expression between individual H9 human embryonic stem cell (ESC)-differentiated CMs (H9CMs) and human fibroblasts. The expression profile of these 46 genes revealed an improved reprogramming in 12-week iCMs compared to 4-week iCMs reprogrammed by 7 factors, indicating a prolonged stochastic phase during human iCM reprogramming. Although none of additional one reprogramming factor yielded a greater number of iCMs, our single-cell qPCR revealed that additional HAND2 or microRNA-1 could facilitate the silencing of fibroblast genes and yield a better degree of reprogramming in more reprogrammed iCMs. Noticeably, the more HAND2 expressed, the higher-level were cardiac genes activated in 7Fs+HAND2-reprogrammed iCMs. In conclusion, HAND2 and microRNA-1 could help 7 factors to facilitate the early progress of iCM-reprogramming from human fibroblasts. Our study provides valuable information to further optimize a method of direct iCM-reprogramming in human cells.
Collapse
Affiliation(s)
- Emre Bektik
- Department of Medicine, Heart and Vascular Research Center, MetroHealth Campus, Case Western Reserve University, Cleveland, Ohio, United States of America
- School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Japan
| | - Adrienne Dennis
- Department of Medicine, Heart and Vascular Research Center, MetroHealth Campus, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Prateek Prasanna
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Anant Madabhushi
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Ji-Dong Fu
- Department of Medicine, Heart and Vascular Research Center, MetroHealth Campus, Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
39
|
The master role of microphthalmia-associated transcription factor in melanocyte and melanoma biology. J Transl Med 2017; 97:649-656. [PMID: 28263292 DOI: 10.1038/labinvest.2017.9] [Citation(s) in RCA: 205] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 01/07/2017] [Accepted: 01/10/2017] [Indexed: 12/20/2022] Open
Abstract
Certain transcription factors have vital roles in lineage development, including specification of cell types and control of differentiation. Microphthalmia-associated transcription factor (MITF) is a key transcription factor for melanocyte development and differentiation. MITF regulates expression of numerous pigmentation genes to promote melanocyte differentiation, as well as fundamental genes for maintaining cell homeostasis, including genes encoding proteins involved in apoptosis (eg, BCL2) and the cell cycle (eg, CDK2). Loss-of-function mutations of MITF cause Waardenburg syndrome type IIA, whose phenotypes include depigmentation due to melanocyte loss, whereas amplification or specific mutation of MITF can be an oncogenic event that is seen in a subset of familial or sporadic melanomas. In this article, we review basic features of MITF biological function and highlight key unresolved questions regarding this remarkable transcription factor.
Collapse
|
40
|
Abstract
Melanoma is a malignant tumor of melanocytes and is considered to be the most aggressive cancer among all skin diseases. The pathogenesis of melanoma has not been well documented, which may restrict the research and development of biomarkers and therapies. To date, several genetic and epigenetic factors have been identified as contributing to the development and progression of melanoma. Besides the findings on genetic susceptibilities, the recent progress in epigenetic studies has revealed that loss of the DNA hydroxymethylation mark, 5-hydroxymethylcytosine (5-hmC), along with high levels of DNA methylation at promoter regions of several tumor suppressor genes in melanoma, may serve as biomarkers for melanoma. Moreover, 5-Aza-2′-deoxycytidine, an epigenetic modifier causing DNA demethylation, and ten-eleven translocation family dioxygenase (TET), which catalyzes the generation of 5-hmC, demonstrate therapeutic potential in melanoma treatment. In this review, we will summarize the latest progress in research on DNA methylation/hydroxymethylation in melanoma, and we will discuss and provide insight for epigenetic biomarkers and therapies for melanoma. Particularly, we will discuss the role of DNA hydroxymethylation in melanoma infiltrating immune cells, which may also serve as a potential target for melanoma treatment.
Collapse
|
41
|
Noguchi K, Dalton AC, Howley BV, McCall BJ, Yoshida A, Diehl JA, Howe PH. Interleukin-like EMT inducer regulates partial phenotype switching in MITF-low melanoma cell lines. PLoS One 2017; 12:e0177830. [PMID: 28545079 PMCID: PMC5435346 DOI: 10.1371/journal.pone.0177830] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 05/03/2017] [Indexed: 01/06/2023] Open
Abstract
ILEI (FAM3C) is a secreted factor that contributes to the epithelial-to-mesenchymal transition (EMT), a cell biological process that confers metastatic properties to a tumor cell. Initially, we found that ILEI mRNA is highly expressed in melanoma metastases but not in primary tumors, suggesting that ILEI contributes to the malignant properties of melanoma. While melanoma is not an epithelial cell-derived tumor and does not undergo a traditional EMT, melanoma undergoes a similar process known as phenotype switching in which high (micropthalmia-related transcription factor) MITF expressing (MITF-high) proliferative cells switch to a low expressing (MITF-low) invasive state. We observed that MITF-high proliferative cells express low levels of ILEI (ILEI-low) and MITF-low invasive cells express high levels of ILEI (ILEI-high). We found that inducing phenotype switching towards the MITF-low invasive state increases ILEI mRNA expression, whereas phenotype switching towards the MITF-high proliferative state decreases ILEI mRNA expression. Next, we used in vitro assays to show that knockdown of ILEI attenuates invasive potential but not MITF expression or chemoresistance. Finally, we used gene expression analysis to show that ILEI regulates several genes involved in the MITF-low invasive phenotype including JARID1B, HIF-2α, and BDNF. Gene set enrichment analysis suggested that ILEI-regulated genes are enriched for JUN signaling, a known regulator of the MITF-low invasive phenotype. In conclusion, we demonstrate that phenotype switching regulates ILEI expression, and that ILEI regulates partial phenotype switching in MITF-low melanoma cell lines.
Collapse
Affiliation(s)
- Ken Noguchi
- Department of Biochemistry and Molecular Biology, College of Medicine, Medical University of South Carolina, Charleston, SC, United States of America
| | - Annamarie C. Dalton
- Department of Biochemistry and Molecular Biology, College of Medicine, Medical University of South Carolina, Charleston, SC, United States of America
| | - Breege V. Howley
- Department of Biochemistry and Molecular Biology, College of Medicine, Medical University of South Carolina, Charleston, SC, United States of America
| | - Buckley J. McCall
- Department of Biochemistry and Molecular Biology, College of Medicine, Medical University of South Carolina, Charleston, SC, United States of America
| | - Akihiro Yoshida
- Department of Biochemistry and Molecular Biology, College of Medicine, Medical University of South Carolina, Charleston, SC, United States of America
| | - J. Alan Diehl
- Department of Biochemistry and Molecular Biology, College of Medicine, Medical University of South Carolina, Charleston, SC, United States of America
- Hollings Cancer Center, Charleston, SC, United States of America
| | - Philip H. Howe
- Department of Biochemistry and Molecular Biology, College of Medicine, Medical University of South Carolina, Charleston, SC, United States of America
- Hollings Cancer Center, Charleston, SC, United States of America
- * E-mail:
| |
Collapse
|
42
|
Abstract
Cutaneous melanoma (CM) and uveal melanoma (UM) derive from cutaneous and uveal melanocytes that share the same embryonic origin and display the same cellular function. However, the etiopathogenesis and biological behaviors of these melanomas are very different. CM and UM display distinct landscapes of genetic alterations and show different metastatic routes and tropisms. Hence, therapeutic improvements achieved in the last few years for the treatment of CM have failed to ameliorate the clinical outcomes of patients with UM. The scope of this review is to discuss the differences in tumorigenic processes (etiologic factors and genetic alterations) and tumor biology (gene expression and signaling pathways) between CM and UM. We develop hypotheses to explain these differences, which might provide important clues for research avenues and the identification of actionable vulnerabilities suitable for the development of new therapeutic strategies for metastatic UM.
Collapse
Affiliation(s)
- Charlotte Pandiani
- U1065, Institut National de la Santé et de la Recherche Médicale Centre Méditerranéen de Médecine Moléculaire, Université Côte d'Azur, 06200 Nice, France
| | - Guillaume E Béranger
- U1065, Institut National de la Santé et de la Recherche Médicale Centre Méditerranéen de Médecine Moléculaire, Université Côte d'Azur, 06200 Nice, France
| | - Justine Leclerc
- U1065, Institut National de la Santé et de la Recherche Médicale Centre Méditerranéen de Médecine Moléculaire, Université Côte d'Azur, 06200 Nice, France
| | - Robert Ballotti
- U1065, Institut National de la Santé et de la Recherche Médicale Centre Méditerranéen de Médecine Moléculaire, Université Côte d'Azur, 06200 Nice, France
| | - Corine Bertolotto
- U1065, Institut National de la Santé et de la Recherche Médicale Centre Méditerranéen de Médecine Moléculaire, Université Côte d'Azur, 06200 Nice, France
| |
Collapse
|
43
|
Kroneis T, Jonasson E, Andersson D, Dolatabadi S, Ståhlberg A. Global preamplification simplifies targeted mRNA quantification. Sci Rep 2017; 7:45219. [PMID: 28332609 PMCID: PMC5362892 DOI: 10.1038/srep45219] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/20/2017] [Indexed: 01/09/2023] Open
Abstract
The need to perform gene expression profiling using next generation sequencing and quantitative real-time PCR (qPCR) on small sample sizes and single cells is rapidly expanding. However, to analyse few molecules, preamplification is required. Here, we studied global and target-specific preamplification using 96 optimised qPCR assays. To evaluate the preamplification strategies, we monitored the reactions in real-time using SYBR Green I detection chemistry followed by melting curve analysis. Next, we compared yield and reproducibility of global preamplification to that of target-specific preamplification by qPCR using the same amount of total RNA. Global preamplification generated 9.3-fold lower yield and 1.6-fold lower reproducibility than target-specific preamplification. However, the performance of global preamplification is sufficient for most downstream applications and offers several advantages over target-specific preamplification. To demonstrate the potential of global preamplification we analysed the expression of 15 genes in 60 single cells. In conclusion, we show that global preamplification simplifies targeted gene expression profiling of small sample sizes by a flexible workflow. We outline the pros and cons for global preamplification compared to target-specific preamplification.
Collapse
Affiliation(s)
- Thomas Kroneis
- Sahlgrenska Cancer Center, Department of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Medicinaregatan 1F, 413 90, Gothenburg, Sweden.,Institute of Cell Biology, Histology and Embryology, Medical University of Graz, Harrachgasse 21, 8010, Graz, Austria
| | - Emma Jonasson
- Sahlgrenska Cancer Center, Department of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Medicinaregatan 1F, 413 90, Gothenburg, Sweden
| | - Daniel Andersson
- Sahlgrenska Cancer Center, Department of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Medicinaregatan 1F, 413 90, Gothenburg, Sweden
| | - Soheila Dolatabadi
- Sahlgrenska Cancer Center, Department of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Medicinaregatan 1F, 413 90, Gothenburg, Sweden
| | - Anders Ståhlberg
- Sahlgrenska Cancer Center, Department of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Medicinaregatan 1F, 413 90, Gothenburg, Sweden
| |
Collapse
|
44
|
Cintra Lopes Carapeto F, Neves Comodo A, Germano A, Pereira Guimarães D, Barcelos D, Fernandes M, Landman G. Marker Protein Expression Combined With Expression Heterogeneity is a Powerful Indicator of Malignancy in Acral Lentiginous Melanomas. Am J Dermatopathol 2017; 39:114-120. [PMID: 28134728 DOI: 10.1097/dad.0000000000000635] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PATIENTS AND METHODS Samples of acral lentiginous melanomas (ALMs) were obtained from the Department of Pathology at Escola Paulista de Medicina-Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil. Demographic, clinical, and follow-up data were obtained from the charts of Hospital São Paulo. From 2 tissue microarrays containing 60 nevi and quadruplicate samples of ≥1.0-mm of 49 ALM, sections were stained to evaluate SCF, KIT, BRAF, CYCLIND1, MYC, and PTEN immunohistochemical protein expression. RESULTS Nevi and ALM from 2006 to 2010 were reviewed and collected. All specimens were in the vertical growth phase, and histopathological parameters indicated that tumors were at an advanced stage at diagnosis. Average tumor thickness was 6.95 mm, 63% were ulcerated, average mitotic index was 5 mitotic cells per mm, and 43% were at Clark's level V. Compared with nevi, the χ test showed that ALM significantly correlated with SCF protein expression (P = 0.001) and expression heterogeneity (P < 0.000). Similar findings were observed for KIT (P = 0.005, P = 0.003, respectively), MYC (P < 0.000, P < 0.000), and PTEN (P = 0.005, P < 0.000). Malignancy did not correlate with BRAF and CYCLIN D1 expression (P = 0.053 and P = 0.259, respectively), but it did significantly correlate with their heterogeneous expression (P < 0.000, P = 0.024, respectively). Combined protein expression had an odds ratio of greater malignancy when BRAF and MYC were positive and/or heterogeneously expressed (OR of 78 and 95, respectively). DISCUSSION AND CONCLUSION We show that marker protein expression, when combined with heterogeneous expression as shown by immunohistochemistry, is a powerful indicator of malignancy in ALMs, especially, when protein pairs are combined.
Collapse
|
45
|
Khoo BL, Chaudhuri PK, Lim CT, Warkiani ME. Advancing Techniques and Insights in Circulating Tumor Cell (CTC) Research. CANCER DRUG DISCOVERY AND DEVELOPMENT 2017:71-94. [DOI: 10.1007/978-3-319-45397-2_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
46
|
Perkins G, Lu H, Garlan F, Taly V. Droplet-Based Digital PCR: Application in Cancer Research. Adv Clin Chem 2016; 79:43-91. [PMID: 28212714 DOI: 10.1016/bs.acc.2016.10.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The efficient characterization of genetic and epigenetic alterations in oncology, virology, or prenatal diagnostics requires highly sensitive and specific high-throughput approaches. Nevertheless, with the use of conventional methods, sensitivity and specificity were largely limited. By partitioning individual target molecules within distinct compartments, digital PCR (dPCR) could overcome these limitations and detect very rare sequences with unprecedented precision and sensitivity. In dPCR, the sample is diluted such that each individual partition will contain no more than one target sequence. Following the assay reaction, the dPCR process provides an absolute value and analyzable quantitative data. The recent coupling of dPCR with microfluidic systems in commercial platforms should lead to an essential tool for the management of patients with cancer, especially adapted to the analysis of precious samples. Applications in cancer research range from the analysis of tumor heterogeneity to that of a range of body fluids. Droplet-based dPCR is indeed particularly appropriate for the emerging field of liquid biopsy analysis. In this review, following an overview of the development in dPCR technology and different strategies based on the use of microcompartments, we will focus particularly on the applications and latest development of microfluidic droplet-based dPCR in oncology.
Collapse
Affiliation(s)
- G Perkins
- Université Sorbonne Paris Cité, INSERM UMR-S1147, CNRS SNC 5014, Centre Universitaire des Saints-Pères, Equipe labélisée LIGUE Contre le Cancer, Paris, France; European Georges Pompidou Hospital, AP-HP - Paris Descartes University, Paris, France
| | - H Lu
- Université Sorbonne Paris Cité, INSERM UMR-S1147, CNRS SNC 5014, Centre Universitaire des Saints-Pères, Equipe labélisée LIGUE Contre le Cancer, Paris, France
| | - F Garlan
- Université Sorbonne Paris Cité, INSERM UMR-S1147, CNRS SNC 5014, Centre Universitaire des Saints-Pères, Equipe labélisée LIGUE Contre le Cancer, Paris, France
| | - V Taly
- Université Sorbonne Paris Cité, INSERM UMR-S1147, CNRS SNC 5014, Centre Universitaire des Saints-Pères, Equipe labélisée LIGUE Contre le Cancer, Paris, France.
| |
Collapse
|
47
|
Kawakami A, Fisher DE. Bioinformatic Analysis of Gene Expression for Melanoma Treatment. J Invest Dermatol 2016; 136:2342-2344. [PMID: 27884291 PMCID: PMC5217826 DOI: 10.1016/j.jid.2016.09.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 09/02/2016] [Indexed: 12/29/2022]
Abstract
Bioinformatic analysis of genome-wide gene expression allows us to characterize cells, including melanomas. Gene expression profiles have been generated in various stages of melanomas and analyzed by researchers in unique ways. Lauss et al. compared their melanoma subtypes with those of The Cancer Genome Atlas Network and found consistency between the two studies.
Collapse
Affiliation(s)
- Akinori Kawakami
- Department of Dermatology, Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - David E Fisher
- Department of Dermatology, Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA.
| |
Collapse
|
48
|
Gangavarapu KJ, Miller A, Huss WJ. Gene Expression in Single Cells Isolated from the CWR-R1 Prostate Cancer Cell Line and Human Prostate Tissue Based on the Side Population Phenotype. ACTA ACUST UNITED AC 2016; 5. [PMID: 27785389 PMCID: PMC5076885 DOI: 10.4172/2168-9431.1000150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Defining biological signals at the single cell level can identify cancer initiating driver mutations. Techniques to isolate single cells such as microfluidics sorting and magnetic capturing systems have limitations such as: high cost, labor intense, and the requirement of a large number of cells. Therefore, the goal of our current study is to identify a cost and labor effective, reliable, and reproducible technique that allows single cell isolation for analysis to promote regular laboratory use, including standard reverse transcription PCR (RT-PCR). In the current study, we utilized single prostate cells isolated from the CWR-R1 prostate cancer cell line and human prostate clinical specimens, based on the ATP binding cassette (ABC) transporter efflux of dye cycle violet (DCV), side population assay. Expression of four genes: ABCG2; Aldehyde dehydrogenase1A1 (ALDH1A1); androgen receptor (AR); and embryonic stem cell marker, Oct-4, were determined. Results from the current study in the CWR-R1 cell line showed ABCG2 and ALDH1A1 gene expression in 67% of single side population cells and in 17% or 100% of non-side population cells respectively. Studies using single cells isolated from clinical specimens showed that the Oct-4 gene is detected in only 22% of single side population cells and in 78% of single non-side population cells. Whereas, AR gene expression is in 100% single side population and non-side population cells isolated from the same human prostate clinical specimen. These studies show that performing RT-PCR on single cells isolated by FACS can be successfully conducted to determine gene expression in single cells from cell lines and enzymatically digested tissue. While these studies provide a simple yes/no expression readout, the more sensitive quantitative RT-PCR would be able to provide even more information if necessary.
Collapse
Affiliation(s)
- Kalyan J Gangavarapu
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY-14263, USA
| | - Austin Miller
- Department of Biostatistics, Roswell Park Cancer Institute, Buffalo, NY-14263, USA
| | - Wendy J Huss
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY-14263, USA; Department of Urologic Oncology, Roswell Park Cancer Institute, Buffalo, NY-14263, USA
| |
Collapse
|
49
|
Ramalingam N, Fowler B, Szpankowski L, Leyrat AA, Hukari K, Maung MT, Yorza W, Norris M, Cesar C, Shuga J, Gonzales ML, Sanada CD, Wang X, Yeung R, Hwang W, Axsom J, Devaraju NSGK, Angeles ND, Greene C, Zhou MF, Ong ES, Poh CC, Lam M, Choi H, Htoo Z, Lee L, Chin CS, Shen ZW, Lu CT, Holcomb I, Ooi A, Stolarczyk C, Shuga T, Livak KJ, Larsen C, Unger M, West JAA. Fluidic Logic Used in a Systems Approach to Enable Integrated Single-Cell Functional Analysis. Front Bioeng Biotechnol 2016; 4:70. [PMID: 27709111 PMCID: PMC5030342 DOI: 10.3389/fbioe.2016.00070] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/23/2016] [Indexed: 12/18/2022] Open
Abstract
The study of single cells has evolved over the past several years to include expression and genomic analysis of an increasing number of single cells. Several studies have demonstrated wide spread variation and heterogeneity within cell populations of similar phenotype. While the characterization of these populations will likely set the foundation for our understanding of genomic- and expression-based diversity, it will not be able to link the functional differences of a single cell to its underlying genomic structure and activity. Currently, it is difficult to perturb single cells in a controlled environment, monitor and measure the response due to perturbation, and link these response measurements to downstream genomic and transcriptomic analysis. In order to address this challenge, we developed a platform to integrate and miniaturize many of the experimental steps required to study single-cell function. The heart of this platform is an elastomer-based integrated fluidic circuit that uses fluidic logic to select and sequester specific single cells based on a phenotypic trait for downstream experimentation. Experiments with sequestered cells that have been performed include on-chip culture, exposure to various stimulants, and post-exposure image-based response analysis, followed by preparation of the mRNA transcriptome for massively parallel sequencing analysis. The flexible system embodies experimental design and execution that enable routine functional studies of single cells.
Collapse
Affiliation(s)
- Naveen Ramalingam
- New Technologies Research Department, Fluidigm Corporation , South San Francisco, CA , USA
| | - Brian Fowler
- New Technologies Research Department, Fluidigm Corporation , South San Francisco, CA , USA
| | - Lukasz Szpankowski
- New Technologies Research Department, Fluidigm Corporation , South San Francisco, CA , USA
| | - Anne A Leyrat
- New Technologies Research Department, Fluidigm Corporation , South San Francisco, CA , USA
| | - Kyle Hukari
- New Technologies Research Department, Fluidigm Corporation , South San Francisco, CA , USA
| | - Myo Thu Maung
- New Technologies Research Department, Fluidigm Corporation , South San Francisco, CA , USA
| | - Wiganda Yorza
- New Technologies Research Department, Fluidigm Corporation , South San Francisco, CA , USA
| | - Michael Norris
- New Technologies Research Department, Fluidigm Corporation , South San Francisco, CA , USA
| | - Chris Cesar
- New Technologies Research Department, Fluidigm Corporation , South San Francisco, CA , USA
| | - Joe Shuga
- New Technologies Research Department, Fluidigm Corporation , South San Francisco, CA , USA
| | - Michael L Gonzales
- New Technologies Research Department, Fluidigm Corporation , South San Francisco, CA , USA
| | - Chad D Sanada
- New Technologies Research Department, Fluidigm Corporation , South San Francisco, CA , USA
| | - Xiaohui Wang
- New Technologies Research Department, Fluidigm Corporation , South San Francisco, CA , USA
| | - Rudy Yeung
- New Technologies Research Department, Fluidigm Corporation , South San Francisco, CA , USA
| | - Win Hwang
- New Technologies Research Department, Fluidigm Corporation , South San Francisco, CA , USA
| | - Justin Axsom
- New Technologies Research Department, Fluidigm Corporation , South San Francisco, CA , USA
| | | | - Ninez Delos Angeles
- New Technologies Research Department, Fluidigm Corporation , South San Francisco, CA , USA
| | - Cassandra Greene
- New Technologies Research Department, Fluidigm Corporation , South San Francisco, CA , USA
| | - Ming-Fang Zhou
- New Technologies Research Department, Fluidigm Corporation , South San Francisco, CA , USA
| | - Eng-Seng Ong
- New Technologies Research Department, Fluidigm Corporation , South San Francisco, CA , USA
| | - Chang-Chee Poh
- New Technologies Research Department, Fluidigm Corporation , South San Francisco, CA , USA
| | - Marcos Lam
- New Technologies Research Department, Fluidigm Corporation , South San Francisco, CA , USA
| | - Henry Choi
- New Technologies Research Department, Fluidigm Corporation , South San Francisco, CA , USA
| | - Zaw Htoo
- New Technologies Research Department, Fluidigm Corporation , South San Francisco, CA , USA
| | - Leo Lee
- New Technologies Research Department, Fluidigm Corporation , South San Francisco, CA , USA
| | - Chee-Sing Chin
- New Technologies Research Department, Fluidigm Corporation , South San Francisco, CA , USA
| | - Zhong-Wei Shen
- New Technologies Research Department, Fluidigm Corporation , South San Francisco, CA , USA
| | - Chong T Lu
- New Technologies Research Department, Fluidigm Corporation , South San Francisco, CA , USA
| | - Ilona Holcomb
- New Technologies Research Department, Fluidigm Corporation , South San Francisco, CA , USA
| | - Aik Ooi
- New Technologies Research Department, Fluidigm Corporation , South San Francisco, CA , USA
| | - Craig Stolarczyk
- New Technologies Research Department, Fluidigm Corporation , South San Francisco, CA , USA
| | - Tony Shuga
- New Technologies Research Department, Fluidigm Corporation , South San Francisco, CA , USA
| | - Kenneth J Livak
- New Technologies Research Department, Fluidigm Corporation , South San Francisco, CA , USA
| | - Cate Larsen
- New Technologies Research Department, Fluidigm Corporation , South San Francisco, CA , USA
| | - Marc Unger
- New Technologies Research Department, Fluidigm Corporation , South San Francisco, CA , USA
| | - Jay A A West
- New Technologies Research Department, Fluidigm Corporation , South San Francisco, CA , USA
| |
Collapse
|
50
|
A Microchip for Integrated Single-Cell Gene Expression Profiling and Genotoxicity Detection. SENSORS 2016; 16:s16091489. [PMID: 27649175 PMCID: PMC5038763 DOI: 10.3390/s16091489] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 08/28/2016] [Accepted: 09/06/2016] [Indexed: 01/02/2023]
Abstract
Microfluidics-based single-cell study is an emerging approach in personalized treatment or precision medicine studies. Single-cell gene expression holds a potential to provide treatment selections with maximized efficacy to help cancer patients based on a genetic understanding of their disease. This work presents a multi-layer microchip for single-cell multiplexed gene expression profiling and genotoxicity detection. Treated by three drug reagents (i.e., methyl methanesulfonate, docetaxel and colchicine) with varied concentrations and time lengths, individual human cancer cells (MDA-MB-231) are lysed on-chip, and the released mRNA templates are captured and reversely transcribed into single strand DNA. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), cyclin-dependent kinase inhibitor 1A (CDKN1A), and aurora kinase A (AURKA) genes from single cells are amplified and real-time quantified through multiplex polymerase chain reaction. The microchip is capable of integrating all steps of single-cell multiplexed gene expression profiling, and providing precision detection of drug induced genotoxic stress. Throughput has been set to be 18, and can be further increased following the same approach. Numerical simulation of on-chip single cell trapping and heat transfer has been employed to evaluate the chip design and operation.
Collapse
|