1
|
Obinata D, Yamada Y, Sumiyoshi T, Tanegashima T, Watanabe R, Kobayashi H, Ito D, Urabe F. Recent advances in basic research on prostate cancer: Where we are heading? Int J Urol 2025; 32:219-228. [PMID: 39474871 DOI: 10.1111/iju.15628] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/17/2024] [Indexed: 03/21/2025]
Abstract
In the over 80 years since androgens were found to play a pivotal role in prostate cancer (PCa) progression, androgen deprivation therapy (ADT) has been a cornerstone in treating advanced PCa. Castration-resistant PCa persists, however, with some of these tumors evolving to androgen receptor (AR)-independent forms like neuroendocrine PCa. The development of novel diagnostic and therapeutic approaches to PCa is therefore crucial. This review provides an overview of recent basic research in PCa, focusing on two main areas: PCa cells and their tumor microenvironments. The first section describes current knowledge on the intricate mechanisms of AR signaling pathways, emphasizing the roles of coactivators and chromatin state alterations in gene regulation. Genomic analyses have revealed recurrent mutations and copy number alterations critical for precision medicine. Liquid biopsy has become a promising tool for real-time tumor monitoring, identifying genetic alterations in circulating-tumor DNA or extracellular vesicles. The second section describes the tumor microenvironment of PCa, highlighting its immunosuppressive landscape and the potential of combining ADT with immunotherapy. Advanced techniques, including single-cell RNA sequencing and spatial transcriptomics offer insights into cellular heterogeneity and interactions within the tumor microenvironment, paving the way for novel therapeutic strategies. Integration of these diverse research areas will provide a comprehensive understanding of the current state and future directions of PCa research, underscoring the importance of personalized medicine and the dynamic nature of cancer treatment strategies.
Collapse
Affiliation(s)
- Daisuke Obinata
- Department of Urology, Nihon University School of Medicine, Tokyo, Japan
| | - Yasutaka Yamada
- Department of Urology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Takayuki Sumiyoshi
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tokiyoshi Tanegashima
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ryuta Watanabe
- Department of Urology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Hiroaki Kobayashi
- Department of Urology, National Defense Medical College, Saitama, Japan
| | - Daisuke Ito
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Fumihiko Urabe
- Department of Urology, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
2
|
Yamamoto S, Obinata D, Takayama K, Funakoshi D, Fujiwara K, Hara M, Takahashi S, Inoue S. Anillin actin-binding protein expression correlates with poor prognosis for prostate cancer patients. Asian J Urol 2024; 11:569-574. [PMID: 39533998 PMCID: PMC11551517 DOI: 10.1016/j.ajur.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/12/2023] [Indexed: 11/16/2024] Open
Abstract
Objective Octamer transcription factor 1 (OCT1), a transcription factor that interacts with androgen receptor, is involved in prostate cancer (PCa) progression. The OCT1 target gene, Anillin actin-binding protein (ANLN), is highly expressed in castration-resistant PCa tissue; however, it remains unclear whether ANLN expression in hormone-sensitive PCa tissue could be used as a predictive biomarker for poor prognosis of patients. We aimed to investigate ANLN expression in PCa tissue obtained via radical prostatectomy and its correlation with clinical parameters. Methods Immunohistochemical staining for ANLN was performed on 86 PCa specimens, followed by evaluation using immunoreactivity (IR) scores. Prognosis was analyzed by the log-rank test using the Kaplan-Meier method to generate a cancer-specific survival curve. The correlations between ANLN IR and clinical parameters as well as OCT1 IR were analyzed using the Chi-squared test. Results The median IR score was 0 for ANLN. Accordingly, given the low median IR score, an IR score of ≥3 was defined as positive. There were 17 (19.8%) ANLN-positive cases, and these cases had a significantly poorer prognosis. Multivariate analysis revealed that the Gleason score, pathological tumor and lymph node stages, and positive ANLN expression were significant predictors of poor prognosis. Notably, patients with both positive ANLN and high OCT1 expression had a significantly decreased overall survival (p=0.001). Conclusion ANLN, which is a OCT1 target gene especially in castration-resistant PCa, is expressed in a small number of hormone-sensitive PCa cases. Both positive ANLN expression and high OCT1 expression are significantly correlated with poor prognosis for PCa patients.
Collapse
Affiliation(s)
- Shinichiro Yamamoto
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, Japan
- Department of Urology, Nihon University School of Medicine, 30-1, Ooyaguchikamicho, Itabashi-ku, Tokyo, Japan
| | - Daisuke Obinata
- Department of Urology, Nihon University School of Medicine, 30-1, Ooyaguchikamicho, Itabashi-ku, Tokyo, Japan
| | - Kenichi Takayama
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, Japan
| | - Daigo Funakoshi
- Department of Urology, Nihon University School of Medicine, 30-1, Ooyaguchikamicho, Itabashi-ku, Tokyo, Japan
| | - Kyoko Fujiwara
- Department of Anatomy, Nihon University School of Dentistry, 1-8-13, Kanda Surugadai, Chiyoda-ku, Tokyo, Japan
| | - Makoto Hara
- Division of Neurology, Department of Medicine, Nihon University School of Medicine, 30-1, Ooyaguchikamicho, Itabashi-ku, Tokyo, Japan
| | - Satoru Takahashi
- Department of Urology, Nihon University School of Medicine, 30-1, Ooyaguchikamicho, Itabashi-ku, Tokyo, Japan
| | - Satoshi Inoue
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, Japan
- Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama, Japan
| |
Collapse
|
3
|
Jian J, Wang X, Zhang J, Zhou C, Hou X, Huang Y, Hou J, Lin Y, Wei X. Molecular landscape for risk prediction and personalized therapeutics of castration-resistant prostate cancer: at a glance. Front Endocrinol (Lausanne) 2024; 15:1360430. [PMID: 38887275 PMCID: PMC11180744 DOI: 10.3389/fendo.2024.1360430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 05/20/2024] [Indexed: 06/20/2024] Open
Abstract
Prostate cancer (PCa) is commonly occurred with high incidence in men worldwide, and many patients will be eventually suffered from the dilemma of castration-resistance with the time of disease progression. Castration-resistant PCa (CRPC) is an advanced subtype of PCa with heterogeneous carcinogenesis, resulting in poor prognosis and difficulties in therapy. Currently, disorders in androgen receptor (AR)-related signaling are widely acknowledged as the leading cause of CRPC development, and some non-AR-based strategies are also proposed for CRPC clinical analyses. The initiation of CRPC is a consequence of abnormal interaction and regulation among molecules and pathways at multi-biological levels. In this study, CRPC-associated genes, RNAs, proteins, and metabolites were manually collected and integrated by a comprehensive literature review, and they were functionally classified and compared based on the role during CRPC evolution, i.e., drivers, suppressors, and biomarkers, etc. Finally, translational perspectives for data-driven and artificial intelligence-powered CRPC systems biology analysis were discussed to highlight the significance of novel molecule-based approaches for CRPC precision medicine and holistic healthcare.
Collapse
Affiliation(s)
- Jingang Jian
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Urology, The Fourth Affiliated Hospital of Soochow University, Suzhou, China
| | - Xin’an Wang
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jun Zhang
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Chenchao Zhou
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiaorui Hou
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Urology, The Fourth Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuhua Huang
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jianquan Hou
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Urology, The Fourth Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuxin Lin
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Xuedong Wei
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
4
|
Obinata D, Takayama K, Inoue S, Takahashi S. Exploring androgen receptor signaling pathway in prostate cancer: A path to new discoveries. Int J Urol 2024; 31:590-597. [PMID: 38345202 DOI: 10.1111/iju.15424] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 01/29/2024] [Indexed: 06/06/2024]
Abstract
Androgen deprivation therapy has achieved significant success in treating prostate cancer through strategies centered on the androgen receptor. However, the emergence of castration-resistant prostate cancer highlights this therapy limitation, underscoring the need to elucidate the mechanisms of treatment resistance. This review aimed to focus on multifaceted resistance mechanisms, including androgen receptor overexpression, splice variants, missense mutations, the involvement of the glucocorticoid receptor, and alterations in coregulators and transcription factors, revealing their roles in castration-resistant prostate cancer progression. These mechanisms promote cell survival and proliferation, depending on the androgen receptor signaling pathway, leading to resistance to conventional therapies. Amplification and mutations in the androgen receptor gene facilitate selective adaptation in treatment-resistant cells, consequently diminishing therapeutic efficacy. Furthermore, the activation of glucocorticoid receptors and aberrant regulation of specific coregulators and transcription factors contribute to the activation of androgen receptor-independent signaling pathways, promoting cell survival and proliferation. These findings hold promise for identifying new targets for treating castration-resistant prostate cancer and developing personalized treatment strategies. The development of future therapies will hinge on precisely targeting the androgen receptor signaling pathway, necessitating a deeper understanding of the molecular targets unique to castration-resistant prostate cancer.
Collapse
MESH Headings
- Humans
- Male
- Receptors, Androgen/metabolism
- Receptors, Androgen/genetics
- Signal Transduction
- Prostatic Neoplasms, Castration-Resistant/genetics
- Prostatic Neoplasms, Castration-Resistant/pathology
- Prostatic Neoplasms, Castration-Resistant/metabolism
- Prostatic Neoplasms, Castration-Resistant/therapy
- Prostatic Neoplasms, Castration-Resistant/drug therapy
- Drug Resistance, Neoplasm/genetics
- Cell Proliferation
- Androgen Antagonists/therapeutic use
- Gene Expression Regulation, Neoplastic
- Receptors, Glucocorticoid/metabolism
- Receptors, Glucocorticoid/genetics
- Prostatic Neoplasms/therapy
- Prostatic Neoplasms/metabolism
- Prostatic Neoplasms/pathology
- Prostatic Neoplasms/genetics
Collapse
Affiliation(s)
- Daisuke Obinata
- Department of Urology, Nihon University School of Medicine, Tokyo, Japan
| | - Kenichi Takayama
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Satoshi Inoue
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Satoru Takahashi
- Department of Urology, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
5
|
Obinata D, Takayama K, Lawrence MG, Funakoshi D, Hara M, Niranjan B, Teng L, Taylor RA, Risbridger GP, Takahashi S, Inoue S. Patient-derived castration-resistant prostate cancer model revealed CTBP2 upregulation mediated by OCT1 and androgen receptor. BMC Cancer 2024; 24:554. [PMID: 38698344 PMCID: PMC11067191 DOI: 10.1186/s12885-024-12298-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 04/22/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND Prostate cancer is dependent on androgen receptor (AR) signaling, and androgen deprivation therapy (ADT) has proven effective in targeting prostate cancer. However, castration-resistant prostate cancer (CRPC) eventually emerges. AR signaling inhibitors (ARSI) have been also used, but resistance to these agents develops due to genetic AR alterations and epigenetic dysregulation. METHODS In this study, we investigated the role of OCT1, a member of the OCT family, in an AR-positive CRPC patient-derived xenograft established from a patient with resistance to ARSI and chemotherapy. We conducted a genome-wide analysis chromatin immunoprecipitation followed by sequencing and bioinformatic analyses using public database. RESULTS Genome-wide analysis of OCT1 target genes in PDX 201.1 A revealed distinct OCT1 binding sites compared to treatment-naïve cells. Bioinformatic analyses revealed that OCT1-regulated genes were associated with cell migration and immune system regulation. In particular, C-terminal Binding Protein 2 (CTBP2), an OCT1/AR target gene, was correlated with poor prognosis and immunosuppressive effects in the tumor microenvironment. Metascape revealed that CTBP2 knockdown affects genes related to the immune response to bacteria. Furthermore, TISIDB analysis suggested the relationship between CTBP2 expression and immune cell infiltration in prostate cancer, suggesting that it may contribute to immune evasion in CRPC. CONCLUSIONS Our findings shed light on the genome-wide network of OCT1 and AR in AR-positive CRPC and highlight the potential role of CTBP2 in immune response and tumor progression. Targeting CTBP2 may represent a promising therapeutic approach for aggressive AR-positive CRPC. Further validation will be required to explore novel therapeutic strategies for CRPC management.
Collapse
Affiliation(s)
- Daisuke Obinata
- Department of Urology, Nihon University School of Medicine, 30-1, Ooyaguchikamicho, Itabashi-ku, Tokyo, 173-8610, Japan
- Monash Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, VIC, 3800, Australia
| | - Kenichi Takayama
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakae-cho, Itabashi-ku Tokyo, Tokyo, 173-0015, Japan
| | - Mitchell G Lawrence
- Monash Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, VIC, 3800, Australia
- Cancer Research Division, Peter MacCallum Cancer Centre, 305 Grattan Street, Parkville, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, 305 Grattan Street, Parkville, VIC, 3010, Australia
- Cabrini Institute, Cabrini Health, 183 Wattletree Road, Malvern, VIC, 3144, Australia
| | - Daigo Funakoshi
- Department of Urology, Nihon University School of Medicine, 30-1, Ooyaguchikamicho, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Makoto Hara
- Division of Neurology, Department of Medicine, Nihon University School of Medicine, 30-1, Ooyaguchikamicho, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Birunthi Niranjan
- Monash Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, VIC, 3800, Australia
| | - Linda Teng
- Monash Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, VIC, 3800, Australia
| | - Renea A Taylor
- Cancer Research Division, Peter MacCallum Cancer Centre, 305 Grattan Street, Parkville, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, 305 Grattan Street, Parkville, VIC, 3010, Australia
- Cabrini Institute, Cabrini Health, 183 Wattletree Road, Malvern, VIC, 3144, Australia
- Monash Biomedicine Discovery Institute, Department of Physiology, Monash University, Wellington Road, Clayton, VIC, 3800, Australia
| | - Gail P Risbridger
- Monash Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, VIC, 3800, Australia
- Cancer Research Division, Peter MacCallum Cancer Centre, 305 Grattan Street, Parkville, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, 305 Grattan Street, Parkville, VIC, 3010, Australia
- Cabrini Institute, Cabrini Health, 183 Wattletree Road, Malvern, VIC, 3144, Australia
| | - Satoru Takahashi
- Department of Urology, Nihon University School of Medicine, 30-1, Ooyaguchikamicho, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Satoshi Inoue
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakae-cho, Itabashi-ku Tokyo, Tokyo, 173-0015, Japan.
- Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama, 350-1241, Japan.
| |
Collapse
|
6
|
Safi R, Menéndez P, Pol A. Lipid droplets provide metabolic flexibility for cancer progression. FEBS Lett 2024; 598:1301-1327. [PMID: 38325881 DOI: 10.1002/1873-3468.14820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 02/09/2024]
Abstract
A hallmark of cancer cells is their remarkable ability to efficiently adapt to favorable and hostile environments. Due to a unique metabolic flexibility, tumor cells can grow even in the absence of extracellular nutrients or in stressful scenarios. To achieve this, cancer cells need large amounts of lipids to build membranes, synthesize lipid-derived molecules, and generate metabolic energy in the absence of other nutrients. Tumor cells potentiate strategies to obtain lipids from other cells, metabolic pathways to synthesize new lipids, and mechanisms for efficient storage, mobilization, and utilization of these lipids. Lipid droplets (LDs) are the organelles that collect and supply lipids in eukaryotes and it is increasingly recognized that the accumulation of LDs is a new hallmark of cancer cells. Furthermore, an active role of LD proteins in processes underlying tumorigenesis has been proposed. Here, by focusing on three major classes of LD-resident proteins (perilipins, lipases, and acyl-CoA synthetases), we provide an overview of the contribution of LDs to cancer progression and discuss the role of LD proteins during the proliferation, invasion, metastasis, apoptosis, and stemness of cancer cells.
Collapse
Affiliation(s)
- Rémi Safi
- Josep Carreras Leukemia Research Institute, Barcelona, Spain
- Lipid Trafficking and Disease Group, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Pablo Menéndez
- Josep Carreras Leukemia Research Institute, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, Spain
- Consorcio Investigación Biomédica en Red de Cancer, CIBER-ONC, ISCIII, Barcelona, Spain
- Spanish Network for Advanced Cell Therapies (TERAV), Barcelona, Spain
| | - Albert Pol
- Lipid Trafficking and Disease Group, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, Spain
| |
Collapse
|
7
|
Liang J, Liao Y, Wang P, Yang K, Wang Y, Wang K, Zhong B, Zhou D, Cao Q, Li J, Zhao Y, Jiang N. Ferroptosis landscape in prostate cancer from molecular and metabolic perspective. Cell Death Discov 2023; 9:128. [PMID: 37061523 PMCID: PMC10105735 DOI: 10.1038/s41420-023-01430-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 04/17/2023] Open
Abstract
Prostate cancer is a major disease that threatens men's health. Its rapid progression, easy metastasis, and late castration resistance have brought obstacles to treatment. It is necessary to find new effective anticancer methods. Ferroptosis is a novel iron-dependent programmed cell death that plays a role in various cancers. Understanding how ferroptosis is regulated in prostate cancer will help us to use it as a new way to kill cancer cells. In this review, we summarize the regulation and role of ferroptosis in prostate cancer and the relationship with AR from the perspective of metabolism and molecular pathways. We also discuss the feasibility of ferroptosis in prostate cancer treatment and describe current limitations and prospects, providing a reference for future research and clinical application of ferroptosis.
Collapse
Affiliation(s)
- Jiaming Liang
- Tianjin institute of Urology, The Second Hospital of Tianjin Medical University, 300211, Tianjin, China
| | - Yihao Liao
- Tianjin institute of Urology, The Second Hospital of Tianjin Medical University, 300211, Tianjin, China
| | - Pu Wang
- Tianjin institute of Urology, The Second Hospital of Tianjin Medical University, 300211, Tianjin, China
| | - Kun Yang
- School of Future Technology, Xi'an Jiaotong University, 710049, Xi'an, Shaanxi, China
| | - Youzhi Wang
- Tianjin institute of Urology, The Second Hospital of Tianjin Medical University, 300211, Tianjin, China
| | - Keke Wang
- Department of Urology, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Boqiang Zhong
- Tianjin institute of Urology, The Second Hospital of Tianjin Medical University, 300211, Tianjin, China
| | - Diansheng Zhou
- Tianjin institute of Urology, The Second Hospital of Tianjin Medical University, 300211, Tianjin, China
| | - Qian Cao
- Tianjin institute of Urology, The Second Hospital of Tianjin Medical University, 300211, Tianjin, China
| | - Junbo Li
- Tianjin institute of Urology, The Second Hospital of Tianjin Medical University, 300211, Tianjin, China
| | - Yang Zhao
- Department of Radiology, Tianjin Medical University Second Hospital, Tianjin, China
| | - Ning Jiang
- Tianjin institute of Urology, The Second Hospital of Tianjin Medical University, 300211, Tianjin, China.
| |
Collapse
|
8
|
ACSL3 and ACSL4, Distinct Roles in Ferroptosis and Cancers. Cancers (Basel) 2022; 14:cancers14235896. [PMID: 36497375 PMCID: PMC9739553 DOI: 10.3390/cancers14235896] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
The long-chain fatty acyl CoA synthetase (ACSLs) family of enzymes contributes significantly to lipid metabolism and produces acyl-coenzyme A by catalyzing fatty acid oxidation. The dysregulation of ACSL3 and ACSL4, which belong to the five isoforms of ACSLs, plays a key role in cancer initiation, development, metastasis, and tumor immunity and may provide several possible therapeutic strategies. Moreover, ACSL3 and ACSL4 are crucial for ferroptosis, a non-apoptotic cell death triggered by the accumulation of membrane lipid peroxides due to iron overload. Here, we present a summary of the current knowledge on ACSL3 and ACSL4 and their functions in various cancers. Research on the molecular mechanisms involved in the regulation of ferroptosis is critical to developing targeted therapies for cancer.
Collapse
|
9
|
Antitumor effects of pyrrole-imidazole polyamide modified with alkylating agent on prostate cancer cells. Biochem Biophys Res Commun 2022; 623:9-16. [PMID: 35868070 DOI: 10.1016/j.bbrc.2022.07.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 11/21/2022]
Abstract
Androgens and androgen receptor (AR) have a central role in prostate cancer progression by regulating its downstream signaling. Although androgen depletion therapy (ADT) is the primary treatment for most prostate cancers, they acquires resistance to ADT and become castration resistant prostate cancers (CRPC). AR complex formation with multiple transcription factors is important for enhancer activity and transcriptional regulation, which can contribute to cancer progression and resistance to ADT. We previously demonstrated that OCT1 collaborates with AR in prostate cancer, and that a pyrrole-imidazole (PI) polyamide (PIP) targeting OCT1 inhibits cell and castration-resistant tumor growth (Obinata D et al. Oncogene 2016). PIP can bind to DNA non-covalently without a drug delivery system unlike most DNA targeted therapeutics. In the present study, we developed a PIP modified with a DNA alkylating agent, chlorambucil (ChB) (OCT1-PIP-ChB). Then its effect on the growth of prostate cancer LNCaP, 22Rv1, and PC3 cells, pancreatic cancer BxPC3 cells, and colon cancer HCT116 cells, as well as non-cancerous MCF-10A epithelial cells, were analyzed. It was shown that the IC50s of OCT1-PIP-ChB for 22Rv1 and LNCaP were markedly lower compared to other cells, including non-cancerous MCF-10A cells. Comprehensive gene expression analysis of CRPC model 22Rv1 cells treated with IC50 concentrations of OCT1-PIP-ChB revealed that the gene group involved in DNA double-strand break repair was the most enriched among gene sets repressed by OCT1-PIP-ChB treatment. Importantly, in vivo study using 22Rv1 xenografts, we showed that OCT1-PIP-ChB significantly reduced tumor growth compared to the control group without showing obvious adverse effects. Thus, the PIP combined with ChB can exert a significant inhibitory effect on prostate cancer cell proliferation and castration-resistant tumor growth, suggesting a potential role as a therapeutic agent.
Collapse
|
10
|
Obinata D, Funakoshi D, Takayama K, Hara M, Niranjan B, Teng L, Lawrence MG, Taylor RA, Risbridger GP, Suzuki Y, Takahashi S, Inoue S. OCT1-target neural gene PFN2 promotes tumor growth in androgen receptor-negative prostate cancer. Sci Rep 2022; 12:6094. [PMID: 35413990 PMCID: PMC9005514 DOI: 10.1038/s41598-022-10099-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/23/2022] [Indexed: 12/12/2022] Open
Abstract
Androgen and androgen receptor (AR) targeted therapies are the main treatment for most prostate cancer (PC) patients. Although AR signaling inhibitors are effective, tumors can evade this treatment by transforming to an AR-negative PC via lineage plasticity. OCT1 is a transcription factor interacting with the AR to enhance signaling pathways involved in PC progression, but its role in the emergence of the AR-negative PC is unknown. We performed chromatin immunoprecipitation sequencing (ChIP-seq) in patient-derived castration-resistant AR-negative PC cells to identify genes that are regulated by OCT1. Interestingly, a group of genes associated with neural precursor cell proliferation was significantly enriched. Then, we focused on neural genes STNB1 and PFN2 as OCT1-targets among them. Immunohistochemistry revealed that both STNB1 and PFN2 are highly expressed in human AR-negative PC tissues. Knockdown of SNTB1 and PFN2 by siRNAs significantly inhibited migration of AR-negative PC cells. Notably, knockdown of PFN2 showed a marked inhibitory effect on tumor growth in vivo. Thus, we identified OCT1-target genes in AR-negative PC using a patient-derived model, clinicopathologial analysis and an animal model.
Collapse
Affiliation(s)
- Daisuke Obinata
- Department of Urology, Nihon University School of Medicine, 30-1, Ooyaguchikamicho, Itabashi-ku, Tokyo, 173-8610, Japan.,Prostate Cancer Research Group, Monash Biomedicine Discovery Institute Cancer Program, Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, VIC, 3800, Australia
| | - Daigo Funakoshi
- Department of Urology, Nihon University School of Medicine, 30-1, Ooyaguchikamicho, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Kenichi Takayama
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Makoto Hara
- Division of Neurology, Department of Medicine, Nihon University School of Medicine, 30-1, Ooyaguchikamicho, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Birunthi Niranjan
- Prostate Cancer Research Group, Monash Biomedicine Discovery Institute Cancer Program, Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, VIC, 3800, Australia
| | - Linda Teng
- Prostate Cancer Research Group, Monash Biomedicine Discovery Institute Cancer Program, Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, VIC, 3800, Australia
| | - Mitchell G Lawrence
- Prostate Cancer Research Group, Monash Biomedicine Discovery Institute Cancer Program, Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, VIC, 3800, Australia.,Cancer Research Division, Peter MacCallum Cancer Centre, 305 Grattan Street, Parkville, VIC, 3000, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, 305 Grattan Street, Parkville, VIC, 3010, Australia.,Melbourne Urological Research Alliance (MURAL), Monash Biomedicine Discovery Institute Cancer Program, Monash University, Wellington Road, Clayton, VIC, 3800, Australia.,Cabrini Institute, Cabrini Health, 183 Wattletree Road, Malvern, VIC, 3144, Australia
| | - Renea A Taylor
- Cancer Research Division, Peter MacCallum Cancer Centre, 305 Grattan Street, Parkville, VIC, 3000, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, 305 Grattan Street, Parkville, VIC, 3010, Australia.,Melbourne Urological Research Alliance (MURAL), Monash Biomedicine Discovery Institute Cancer Program, Monash University, Wellington Road, Clayton, VIC, 3800, Australia.,Cabrini Institute, Cabrini Health, 183 Wattletree Road, Malvern, VIC, 3144, Australia.,Prostate Cancer Research Group, Monash Biomedicine Discovery Institute Cancer Program, Department of Physiology, Monash University, Wellington Road, Clayton, VIC, 3800, Australia
| | - Gail P Risbridger
- Prostate Cancer Research Group, Monash Biomedicine Discovery Institute Cancer Program, Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, VIC, 3800, Australia.,Cancer Research Division, Peter MacCallum Cancer Centre, 305 Grattan Street, Parkville, VIC, 3000, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, 305 Grattan Street, Parkville, VIC, 3010, Australia.,Melbourne Urological Research Alliance (MURAL), Monash Biomedicine Discovery Institute Cancer Program, Monash University, Wellington Road, Clayton, VIC, 3800, Australia.,Cabrini Institute, Cabrini Health, 183 Wattletree Road, Malvern, VIC, 3144, Australia
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences Graduate School of Frontier Sciences, University of Tokyo, 5-1-5, Kashiwanoha, Chiba, Chiba, 277-8562, Japan
| | - Satoru Takahashi
- Department of Urology, Nihon University School of Medicine, 30-1, Ooyaguchikamicho, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Satoshi Inoue
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan. .,Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka, Saitama, 350-1241, Japan.
| |
Collapse
|
11
|
Feng D, Shi X, Xiong Q, Zhang F, Li D, Wei W, Yang L. A Ferroptosis-Related Gene Prognostic Index Associated With Biochemical Recurrence and Radiation Resistance for Patients With Prostate Cancer Undergoing Radical Radiotherapy. Front Cell Dev Biol 2022; 10:803766. [PMID: 35223835 PMCID: PMC8867172 DOI: 10.3389/fcell.2022.803766] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/04/2022] [Indexed: 12/16/2022] Open
Abstract
Background: Ferroptosis is a new type of programmed cell death which has been reported to be involved in the development of various cancers. In this study, we attempted to explore the possible links between ferroptosis and prostate cancer (PCa), and a novel ferroptosis-related gene prognostic index (FGPI) was constructed to predict biochemical recurrence (BCR) and radiation resistance for PCa patients undergoing radical radiotherapy (RRT). Moreover, the tumor immune microenvironment (TME) of PCa was analyzed. Methods: We merged four GEO datasets by removing batch effects. All analyses were conducted with R version 3.6.3 and its suitable packages. Cytoscape 3.8.2 was used to establish a network of transcriptional factor and competing endogenous RNA. Results: We established the FGPI based on ACSL3 and EPAS1. We observed that FGPI was an independent risk factor of BCR for PCa patients (HR: 3.03; 95% CI: 1.68–5.48), consistent with the result of internal validation (HR: 3.44; 95% CI: 1.68–7.05). Furthermore, FGPI showed high ability to identify radiation resistance (AUC: 0.963; 95% CI: 0.882–1.00). LncRNA PART1 was significantly associated with BCR and might modulate the mRNA expression of EPAS1 and ACSL3 through interactions with 60 miRNAs. Gene set enrichment analysis indicated that FGPI was enriched in epithelial–mesenchymal transition, allograft rejection, TGF beta signaling pathway, and ECM receptor interaction. Immune checkpoint and m6A analyses showed that PD-L2, CD96, and METTL14 were differentially expressed between BCR and no BCR groups, among which CD96 was significantly associated with BCR-free survival (HR: 1.79; 95% CI: 1.06–3.03). We observed that cancer-related fibroblasts (CAFs), macrophages, stromal score, immune score, estimate score, and tumor purity were differentially expressed between BCR and no BCR groups and closely related to BCR-free survival (HRs were 2.17, 1.79, 2.20, 1.93, 1.92, and 0.52 for cancer-related fibroblasts, macrophages, stromal score, immune score, estimate score, and tumor purity, respectively). Moreover, cancer-related fibroblasts (coefficient: 0.20), stromal score (coefficient: 0.14), immune score (coefficient: 0.14), estimate score (coefficient: 0.15), and tumor purity (coefficient: −0.15) were significantly related to FGPI, among which higher positive correlation between cancer-related fibroblasts and FGPI was observed. Conclusion: We found that FGPI based on ACSL3 and EPAS1 might be used to predict BCR and radiation resistance for PCa patients. CD96 and PD-L2 might be a possible target for drug action. Besides, we highlighted the importance of immune evasion in the process of BCR.
Collapse
|
12
|
Ho KH, Shih CM, Liu AJ, Chen KC. Hypoxia-inducible lncRNA MIR210HG interacting with OCT1 is involved in glioblastoma multiforme malignancy. Cancer Sci 2021; 113:540-552. [PMID: 34897892 PMCID: PMC8819343 DOI: 10.1111/cas.15240] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/07/2021] [Accepted: 11/29/2021] [Indexed: 12/28/2022] Open
Abstract
An insufficient oxygen supply within the intratumoral environment, also known as hypoxia, induces glioblastoma multiforme (GBM) invasion, stemness, and temozolomide (TMZ) drug resistance. Long noncoding (lnc)RNAs have been reported to be involved in hypoxia and GBM progression. However, their roles in hypoxic GBM malignancy are still unclear. We investigated the mechanisms of hypoxia-mediated lncRNAs in regulating GBM processes. Using The Cancer Genome Atlas (TCGA) and data mining, hypoxia-correlated lncRNAs were identified. A hypoxia-upregulated lncRNA, MIR210HG, locating in nuclear regions, predicted poor prognoses of patients and modulated hypoxia-promoted glioma stemness, TMZ resistance, and invasion. Depletion of hypoxic MIR210HG suppressed GBM and patient-derived cell growth and increased TMZ sensitivity in vitro and vivo. Using RNA sequencing and gene set enrichment analysis (GSEA), MIR210HG-upregulated genes significantly belonged to the targets of octamer transcription factor 1 (OCT1) transcription factor. The direct interaction between OCT1 and MIR210HG was also validated. Two well-established worse prognostic factors of GBM, insulin-like growth factor-binding protein 2 (IGFBP2) and fibroblast growth factor receptor 1 (FGFR1), were identified as downstream targets of OCT1 through MIR210HG mediation in hypoxia. Consequently, the lncRNA MIR210HG is upregulated by hypoxia and interacts with OCT1 for modulating hypoxic GBM, leading to poor prognoses. These findings might provide a better understanding in functions of hypoxia/MIR210HG signaling for regulating GBM malignancy.
Collapse
Affiliation(s)
- Kuo-Hao Ho
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chwen-Ming Shih
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ann-Jeng Liu
- Department of Neurosurgery, Taipei City Hospital Ren-Ai Branch, Taipei, Taiwan
| | - Ku-Chung Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
13
|
Ogura T, Azuma K, Sato J, Kinowaki K, Takayama KI, Takeiwa T, Kawabata H, Inoue S. OCT1 Is a Poor Prognostic Factor for Breast Cancer Patients and Promotes Cell Proliferation via Inducing NCAPH. Int J Mol Sci 2021; 22:ijms222111505. [PMID: 34768935 PMCID: PMC8584020 DOI: 10.3390/ijms222111505] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/16/2021] [Accepted: 10/21/2021] [Indexed: 01/17/2023] Open
Abstract
Octamer transcription factor 1 (OCT1) is a transcriptional factor reported to be a poor prognostic factor in various cancers. However, the clinical value of OCT1 in breast cancer is not fully understood. In the present study, an immunohistochemical study of OCT1 protein was performed using estrogen receptor (ER)-positive breast cancer tissues from 108 patients. Positive OCT1 immunoreactivity (IR) was associated with the shorter disease-free survival (DFS) of patients (p = 0.019). Knockdown of OCT1 inhibited cell proliferation in MCF-7 breast cancer cells as well as its derivative long-term estrogen-deprived (LTED) cells. On the other hand, the overexpression of OCT1 promoted cell proliferation in MCF-7 cells. Using microarray analysis, we identified the non-structural maintenance of chromosomes condensin I complex subunit H (NCAPH) as a novel OCT1-taget gene in MCF-7 cells. Immunohistochemical analysis showed that NCAPH IR was significantly positively associated with OCT1 IR (p < 0.001) and that positive NCAPH IR was significantly related to the poor DFS rate of patients (p = 0.041). The knockdown of NCAPH inhibited cell proliferation in MCF-7 and LTED cells. These results demonstrate that OCT1 and its target gene NCAPH are poor prognostic factors and potential therapeutic targets for patients with ER-positive breast cancer.
Collapse
Affiliation(s)
- Takuya Ogura
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan; (T.O.); (K.A.); (K.-I.T.); (T.T.)
- Department of Breast and Endocrine Surgery, Toranomon Hospital, 2-2-2 Toranomon, Minato-ku, Tokyo 105-8470, Japan;
- Department of Systems BioMedicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Kotaro Azuma
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan; (T.O.); (K.A.); (K.-I.T.); (T.T.)
| | - Junichiro Sato
- Department of Pathology, Toranomon Hospital, 2-2-2 Toranomon, Minato-ku, Tokyo 105-8470, Japan; (J.S.); (K.K.)
| | - Keiichi Kinowaki
- Department of Pathology, Toranomon Hospital, 2-2-2 Toranomon, Minato-ku, Tokyo 105-8470, Japan; (J.S.); (K.K.)
| | - Ken-Ichi Takayama
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan; (T.O.); (K.A.); (K.-I.T.); (T.T.)
| | - Toshihiko Takeiwa
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan; (T.O.); (K.A.); (K.-I.T.); (T.T.)
| | - Hidetaka Kawabata
- Department of Breast and Endocrine Surgery, Toranomon Hospital, 2-2-2 Toranomon, Minato-ku, Tokyo 105-8470, Japan;
| | - Satoshi Inoue
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan; (T.O.); (K.A.); (K.-I.T.); (T.T.)
- Division of Systems Medicine and Gene Therapy, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama 350-1241, Japan
- Correspondence: ; Tel.: +81-3-3964-3241
| |
Collapse
|
14
|
Quan J, Bode AM, Luo X. ACSL family: The regulatory mechanisms and therapeutic implications in cancer. Eur J Pharmacol 2021; 909:174397. [PMID: 34332918 DOI: 10.1016/j.ejphar.2021.174397] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/14/2021] [Accepted: 07/28/2021] [Indexed: 12/29/2022]
Abstract
Accumulating evidence shows that deregulation of fatty acid (FA) metabolism is associated with the development of cancer. Long-chain acyl-coenzyme A synthases (ACSLs) are responsible for activating long-chain FAs and are frequently deregulated in cancers. Among the five mammalian ACSL family members, ACSL1 is involved in the TNFα-mediated pro-inflammatory phenotype and mainly facilitates cancer progression. ACSL3 is an androgen-responsive gene. High ACSL3 expression has been detected in a variety of cancers, including melanoma, triple-negative breast cancer (TNBC) and high-grade non-small cell lung carcinoma (NSCLC), and correlates with worse prognosis of patients with these diseases. ACSL4 can exert opposing roles acting as a tumor suppressor or as an oncogene depending on the specific cancer type and tissue environment. Moreover, ACSL4 behaves as a crucial regulator in ferroptosis that is defined as a cell death process caused by iron-dependent peroxidation of lipids. ACSL5 is nuclear-coded and expressed in the mitochondria and physiologically participates in the pro-apoptotic sensing of cells. ACSL5 mainly acts as a tumor suppressor in cancers. ACSL6 downregulation has been observed in many forms of cancers, except in colorectal cancer (CRC). Here, we address the differential regulatory mechanisms of the ACSL family members as well as their functions in carcinogenesis. Moreover, we enumerate the clinical therapeutic implications of ACSLs, which might serve as valuable biomarkers and therapeutic targets for precision cancer treatment.
Collapse
Affiliation(s)
- Jing Quan
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, PR China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, PR China; Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, Hunan, 410078, China
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, MN, 55912, USA
| | - Xiangjian Luo
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, PR China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, PR China; Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, Hunan, 410078, China; Molecular Imaging Research Center of Central South University, Changsha, Hunan, 410078, China.
| |
Collapse
|
15
|
Emami NC, Cavazos TB, Rashkin SR, Cario CL, Graff RE, Tai CG, Mefford JA, Kachuri L, Wan E, Wong S, Aaronson D, Presti J, Habel LA, Shan J, Ranatunga DK, Chao CR, Ghai NR, Jorgenson E, Sakoda LC, Kvale MN, Kwok PY, Schaefer C, Risch N, Hoffmann TJ, Van Den Eeden SK, Witte JS. A Large-Scale Association Study Detects Novel Rare Variants, Risk Genes, Functional Elements, and Polygenic Architecture of Prostate Cancer Susceptibility. Cancer Res 2021; 81:1695-1703. [PMID: 33293427 PMCID: PMC8137514 DOI: 10.1158/0008-5472.can-20-2635] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/27/2020] [Accepted: 12/02/2020] [Indexed: 11/16/2022]
Abstract
To identify rare variants associated with prostate cancer susceptibility and better characterize the mechanisms and cumulative disease risk associated with common risk variants, we conducted an integrated study of prostate cancer genetic etiology in two cohorts using custom genotyping microarrays, large imputation reference panels, and functional annotation approaches. Specifically, 11,984 men (6,196 prostate cancer cases and 5,788 controls) of European ancestry from Northern California Kaiser Permanente were genotyped and meta-analyzed with 196,269 men of European ancestry (7,917 prostate cancer cases and 188,352 controls) from the UK Biobank. Three novel loci, including two rare variants (European ancestry minor allele frequency < 0.01, at 3p21.31 and 8p12), were significant genome wide in a meta-analysis. Gene-based rare variant tests implicated a known prostate cancer gene (HOXB13), as well as a novel candidate gene (ILDR1), which encodes a receptor highly expressed in prostate tissue and is related to the B7/CD28 family of T-cell immune checkpoint markers. Haplotypic patterns of long-range linkage disequilibrium were observed for rare genetic variants at HOXB13 and other loci, reflecting their evolutionary history. In addition, a polygenic risk score (PRS) of 188 prostate cancer variants was strongly associated with risk (90th vs. 40th-60th percentile OR = 2.62, P = 2.55 × 10-191). Many of the 188 variants exhibited functional signatures of gene expression regulation or transcription factor binding, including a 6-fold difference in log-probability of androgen receptor binding at the variant rs2680708 (17q22). Rare variant and PRS associations, with concomitant functional interpretation of risk mechanisms, can help clarify the full genetic architecture of prostate cancer and other complex traits. SIGNIFICANCE: This study maps the biological relationships between diverse risk factors for prostate cancer, integrating different functional datasets to interpret and model genome-wide data from over 200,000 men with and without prostate cancer.See related commentary by Lachance, p. 1637.
Collapse
Affiliation(s)
- Nima C Emami
- Program in Biological and Medical Informatics, University of California San Francisco, San Francisco, California
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California
| | - Taylor B Cavazos
- Program in Biological and Medical Informatics, University of California San Francisco, San Francisco, California
| | - Sara R Rashkin
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California
| | - Clinton L Cario
- Program in Biological and Medical Informatics, University of California San Francisco, San Francisco, California
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California
| | - Rebecca E Graff
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California
| | - Caroline G Tai
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California
| | - Joel A Mefford
- Program in Pharmaceutical Sciences and Pharmacogenomics, University of California San Francisco, San Francisco, California
| | - Linda Kachuri
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California
| | - Eunice Wan
- Institute for Human Genetics, University of California San Francisco, San Francisco, California
| | - Simon Wong
- Institute for Human Genetics, University of California San Francisco, San Francisco, California
| | - David Aaronson
- Department of Urology, Kaiser Oakland Medical Center, Oakland, California
| | - Joseph Presti
- Department of Urology, Kaiser Oakland Medical Center, Oakland, California
| | - Laurel A Habel
- Division of Research, Kaiser Permanente Northern California, Oakland, California
| | - Jun Shan
- Division of Research, Kaiser Permanente Northern California, Oakland, California
| | - Dilrini K Ranatunga
- Division of Research, Kaiser Permanente Northern California, Oakland, California
| | - Chun R Chao
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, California
| | - Nirupa R Ghai
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, California
| | - Eric Jorgenson
- Division of Research, Kaiser Permanente Northern California, Oakland, California
| | - Lori C Sakoda
- Division of Research, Kaiser Permanente Northern California, Oakland, California
| | - Mark N Kvale
- Institute for Human Genetics, University of California San Francisco, San Francisco, California
| | - Pui-Yan Kwok
- Program in Pharmaceutical Sciences and Pharmacogenomics, University of California San Francisco, San Francisco, California
- Institute for Human Genetics, University of California San Francisco, San Francisco, California
| | - Catherine Schaefer
- Division of Research, Kaiser Permanente Northern California, Oakland, California
| | - Neil Risch
- Program in Biological and Medical Informatics, University of California San Francisco, San Francisco, California
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California
- Program in Pharmaceutical Sciences and Pharmacogenomics, University of California San Francisco, San Francisco, California
- Institute for Human Genetics, University of California San Francisco, San Francisco, California
- Division of Research, Kaiser Permanente Northern California, Oakland, California
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Thomas J Hoffmann
- Program in Biological and Medical Informatics, University of California San Francisco, San Francisco, California
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California
- Institute for Human Genetics, University of California San Francisco, San Francisco, California
| | - Stephen K Van Den Eeden
- Division of Research, Kaiser Permanente Northern California, Oakland, California
- Department of Urology, University of California San Francisco, San Francisco, California
| | - John S Witte
- Program in Biological and Medical Informatics, University of California San Francisco, San Francisco, California.
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California
- Program in Pharmaceutical Sciences and Pharmacogenomics, University of California San Francisco, San Francisco, California
- Institute for Human Genetics, University of California San Francisco, San Francisco, California
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
- Department of Urology, University of California San Francisco, San Francisco, California
| |
Collapse
|
16
|
Immunohistochemical staining reveals differential expression of ACSL3 and ACSL4 in hepatocellular carcinoma and hepatic gastrointestinal metastases. Biosci Rep 2021; 40:222647. [PMID: 32286604 PMCID: PMC7198044 DOI: 10.1042/bsr20200219] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 12/24/2022] Open
Abstract
Long-chain fatty acyl CoA synthetases (ACSLs) activate fatty acids by CoA addition thus facilitating their intracellular metabolism. Dysregulated ACSL expression features in several cancers and can affect processes such as ferroptosis, fatty acid β-oxidation, prostaglandin biosynthesis, steroidogenesis and phospholipid acyl chain remodelling. Here we investigate long chain acyl-CoA synthetase 3 (ACSL3) and long chain acyl-CoA synthetase 4 (ACSL4) expression in liver malignancies. The expression and subcellular localisations of the ACSL3 and ACSL4 isoforms in hepatocellular carcinoma (HCC), cholangiocarcinoma (CCA) and hepatic metastases were assessed by immunohistochemical analyses of multiple tumour tissue arrays and by subcellular fractionation of cultured HepG2 cells. The expression of both enzymes was increased in HCC compared with normal liver. Expression of ACSL3 was similar in HCC and hepatic metastases but lower in healthy tissue. Increased ACSL3 expression distinguished HCC from CCA with a sensitivity of 87.2% and a specificity of 75%. ACSL4 expression was significantly greater in HCC than in all other tumours and distinguished HCC from normal liver tissue with a sensitivity of 93.8% and specificity of 93.6%. Combined ACSL3 and ACSL4 staining scores distinguished HCC from hepatic metastases with 80.1% sensitivity and 77.1% specificity. These enzymes had partially overlapping intracellular distributions, ACSL4 localised to the plasma membrane and both isoforms associated with lipid droplets and the endoplasmic reticulum (ER). In conclusion, analysis of ACSL3 and ACSL4 expression can distinguish different classes of hepatic tumours.
Collapse
|
17
|
Meier T, Timm M, Montani M, Wilkens L. Gene networks and transcriptional regulators associated with liver cancer development and progression. BMC Med Genomics 2021; 14:41. [PMID: 33541355 PMCID: PMC7863452 DOI: 10.1186/s12920-021-00883-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 01/24/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Treatment options for hepatocellular carcinoma (HCC) are limited, and overall survival is poor. Despite the high frequency of this malignoma, its basic disease mechanisms are poorly understood. Therefore, the aim of this study was to use different methodological approaches and combine the results to improve our knowledge on the development and progression of HCC. METHODS Twenty-three HCC samples were characterized by histological, morphometric and cytogenetic analyses, as well as comparative genomic hybridization (aCGH) and genome-wide gene expression followed by a bioinformatic search for potential transcriptional regulators and master regulatory molecules of gene networks. RESULTS Histological evaluation revealed low, intermediate and high-grade HCCs, and gene expression analysis split them into two main sets: GE1-HCC and GE2-HCC, with a low and high proliferation gene expression signature, respectively. Array-based comparative genomic hybridization demonstrated a high level of chromosomal instability, with recurrent chromosomal gains of 1q, 6p, 7q, 8q, 11q, 17q, 19p/q and 20q in both HCC groups and losses of 1p, 4q, 6q, 13q and 18q characteristic for GE2-HCC. Gene expression and bioinformatics analyses revealed that different genes and gene regulatory networks underlie the distinct biological features observed in GE1-HCC and GE2-HCC. Besides previously reported dysregulated genes, the current study identified new candidate genes with a putative role in liver cancer, e.g. C1orf35, PAFAH1B3, ZNF219 and others. CONCLUSION Analysis of our findings, in accordance with the available published data, argues in favour of the notion that the activated E2F1 signalling pathway, which can be responsible for both inappropriate cell proliferation and initial chromosomal instability, plays a pivotal role in HCC development and progression. A dedifferentiation switch that manifests in exaggerated gene expression changes might be due to turning on transcriptional co-regulators with broad impact on gene expression, e.g. POU2F1 (OCT1) and NFY, as a response to accumulating cell stress during malignant development. Our findings point towards the necessity of different approaches for the treatment of HCC forms with low and high proliferation signatures and provide new candidates for developing appropriate HCC therapies.
Collapse
Affiliation(s)
- Tatiana Meier
- Institute of Pathology, Nordstadtkrankenhaus, Hanover, Germany.
| | - Max Timm
- Institute of Pathology, Nordstadtkrankenhaus, Hanover, Germany
- Clinic for Laryngology, Rhinology and Otology, Medical School Hanover, Hanover, Germany
| | - Matteo Montani
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Ludwig Wilkens
- Institute of Pathology, Nordstadtkrankenhaus, Hanover, Germany
- Institute of Human Genetics, Medical School Hanover, Hanover, Germany
| |
Collapse
|
18
|
Fernández LP, Merino M, Colmenarejo G, Moreno-Rubio J, Sánchez-Martínez R, Quijada-Freire A, Gómez de Cedrón M, Reglero G, Casado E, Sereno M, Ramírez de Molina A. Metabolic enzyme ACSL3 is a prognostic biomarker and correlates with anticancer effectiveness of statins in non-small cell lung cancer. Mol Oncol 2020; 14:3135-3152. [PMID: 33030783 PMCID: PMC7718959 DOI: 10.1002/1878-0261.12816] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 09/20/2020] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is one of the most common cancers, still characterized by high mortality rates. As lipid metabolism contributes to cancer metabolic reprogramming, several lipid metabolism genes are considered prognostic biomarkers of cancer. Statins are a class of lipid-lowering compounds used in treatment of cardiovascular disease that are currently studied for their antitumor effects. However, their exact mechanism of action and specific conditions in which they should be administered remains unclear. Here, we found that simvastatin treatment effectively promoted antiproliferative effects and modulated lipid metabolism-related pathways in non-small cell lung cancer (NSCLC) cells and that the antiproliferative effects of statins were potentiated by overexpression of acyl-CoA synthetase long-chain family member 3 (ACSL3). Moreover, ACSL3 overexpression was associated with worse clinical outcome in patients with high-grade NSCLC. Finally, we found that patients with high expression levels of ACSL3 displayed a clinical benefit of statins treatment. Therefore, our study highlights ACSL3 as a prognostic biomarker for NSCLC, useful to select patients who would obtain a clinical benefit from statin administration.
Collapse
Affiliation(s)
| | - María Merino
- Medical Oncology Department, Infanta Sofía University Hospital, San Sebastián de los Reyes, Madrid, Spain
| | - Gonzalo Colmenarejo
- Biostatistics and Bioinformatics Unit, IMDEA Food Institute, CEI UAM+CSIC, Madrid, Spain
| | - Juan Moreno-Rubio
- Molecular Oncology Group, IMDEA Food Institute, CEI UAM + CSIC, Madrid, Spain
| | | | | | | | - Guillermo Reglero
- Molecular Oncology Group, IMDEA Food Institute, CEI UAM + CSIC, Madrid, Spain
| | - Enrique Casado
- Medical Oncology Department, Infanta Sofía University Hospital, San Sebastián de los Reyes, Madrid, Spain
| | - María Sereno
- Medical Oncology Department, Infanta Sofía University Hospital, San Sebastián de los Reyes, Madrid, Spain
| | | |
Collapse
|
19
|
Fernández LP, Gómez de Cedrón M, Ramírez de Molina A. Alterations of Lipid Metabolism in Cancer: Implications in Prognosis and Treatment. Front Oncol 2020; 10:577420. [PMID: 33194695 PMCID: PMC7655926 DOI: 10.3389/fonc.2020.577420] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/14/2020] [Indexed: 01/06/2023] Open
Abstract
Cancer remains the second leading cause of mortality worldwide. In the course of this multistage and multifactorial disease, a set of alterations takes place, with genetic and environmental factors modulating tumorigenesis and disease progression. Metabolic alterations of tumors are well-recognized and are considered as one of the hallmarks of cancer. Cancer cells adapt their metabolic competences in order to efficiently supply their novel demands of energy to sustain cell proliferation and metastasis. At present, there is a growing interest in understanding the metabolic switch that occurs during tumorigenesis. Together with the Warburg effect and the increased glutaminolysis, lipid metabolism has emerged as essential for tumor development and progression. Indeed, several investigations have demonstrated the consequences of lipid metabolism alterations in cell migration, invasion, and angiogenesis, three basic steps occurring during metastasis. In addition, obesity and associated metabolic alterations have been shown to augment the risk of cancer and to worsen its prognosis. Consequently, an extensive collection of tumorigenic steps has been shown to be modulated by lipid metabolism, not only affecting the growth of primary tumors, but also mediating progression and metastasis. Besides, key enzymes involved in lipid-metabolic pathways have been associated with cancer survival and have been proposed as prognosis biomarkers of cancer. In this review, we will analyze the impact of obesity and related tumor microenviroment alterations as modifiable risk factors in cancer, focusing on the lipid alterations co-occurring during tumorigenesis. The value of precision technologies and its application to target lipid metabolism in cancer will also be discussed. The degree to which lipid alterations, together with current therapies and intake of specific dietary components, affect risk of cancer is now under investigation, and innovative therapeutic or preventive applications must be explored.
Collapse
Affiliation(s)
- Lara P Fernández
- Precision Nutrition and Cancer Program, Molecular Oncology Group, IMDEA Food Institute, Campus of International Excellence (CEI) University Autonomous of Madrid (UAM) + CSIC, Madrid, Spain
| | - Marta Gómez de Cedrón
- Precision Nutrition and Cancer Program, Molecular Oncology Group, IMDEA Food Institute, Campus of International Excellence (CEI) University Autonomous of Madrid (UAM) + CSIC, Madrid, Spain
| | - Ana Ramírez de Molina
- Precision Nutrition and Cancer Program, Molecular Oncology Group, IMDEA Food Institute, Campus of International Excellence (CEI) University Autonomous of Madrid (UAM) + CSIC, Madrid, Spain
| |
Collapse
|
20
|
Obinata D, Lawrence MG, Takayama K, Choo N, Risbridger GP, Takahashi S, Inoue S. Recent Discoveries in the Androgen Receptor Pathway in Castration-Resistant Prostate Cancer. Front Oncol 2020; 10:581515. [PMID: 33134178 PMCID: PMC7578370 DOI: 10.3389/fonc.2020.581515] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/27/2020] [Indexed: 12/15/2022] Open
Abstract
The androgen receptor (AR) is the main therapeutic target in advanced prostate cancer, because it regulates the growth and progression of prostate cancer cells. Patients may undergo multiple lines of AR-directed treatments, including androgen-deprivation therapy, AR signaling inhibitors (abiraterone acetate, enzalutamide, apalutamide, or darolutamide), or combinations of these therapies. Yet, tumors inevitably develop resistance to the successive lines of treatment. The diverse mechanisms of resistance include reactivation of the AR and dysregulation of AR cofactors and collaborative transcription factors (TFs). Further elucidating the nexus between the AR and collaborative TFs may reveal new strategies targeting the AR directly or indirectly, such as targeting BET proteins or OCT1. However, appropriate preclinical models will be required to test the efficacy of these approaches. Fortunately, an increasing variety of patient-derived models, such as xenografts and organoids, are being developed for discovery-based research and preclinical drug screening. Here we review the mechanisms of drug resistance in the AR signaling pathway, the intersection with collaborative TFs, and the use of patient-derived models for novel drug discovery.
Collapse
Affiliation(s)
- Daisuke Obinata
- Department of Urology, Nihon University School of Medicine, Tokyo, Japan
- Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
| | - Mitchell G. Lawrence
- Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Kenichi Takayama
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Nicholas Choo
- Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
| | - Gail P. Risbridger
- Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Satoru Takahashi
- Department of Urology, Nihon University School of Medicine, Tokyo, Japan
| | - Satoshi Inoue
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
- Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan
| |
Collapse
|
21
|
Kim Y, Lee D, Lawler S. Collective invasion of glioma cells through OCT1 signalling and interaction with reactive astrocytes after surgery. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190390. [PMID: 32713306 DOI: 10.1098/rstb.2019.0390] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most aggressive form of brain cancer with a short median survival time. GBM is characterized by the hallmarks of aggressive proliferation and cellular infiltration of normal brain tissue. miR-451 and its downstream molecules are known to play a pivotal role in regulation of the balance of proliferation and aggressive invasion in response to metabolic stress in the tumour microenvironment (TME). Surgery-induced transition in reactive astrocyte populations can play a significant role in tumour dynamics. In this work, we develop a multi-scale mathematical model of miR-451-LKB1-AMPK-OCT1-mTOR pathway signalling and individual cell dynamics of the tumour and reactive astrocytes after surgery. We show how the effects of fluctuating glucose on tumour cells need to be reprogrammed by taking into account the recent history of glucose variations and an AMPK/miR-451 reciprocal feedback loop. The model shows how variations in glucose availability significantly affect the activity of signalling molecules and, in turn, lead to critical cell migration. The model also predicts that microsurgery of a primary tumour induces phenotypical changes in reactive astrocytes and stem cell-like astrocytes promoting tumour cell proliferation and migration by Cxcl5. Finally, we investigated a new anti-tumour strategy by Cxcl5-targeting drugs. This article is part of the theme issue 'Multi-scale analysis and modelling of collective migration in biological systems'.
Collapse
Affiliation(s)
- Yangjin Kim
- Department of Mathematics, Konkuk University, Seoul 05029, Republic of Korea.,Mathematical Biosciences Institute, Ohio State University, Columbus, OH 43210, USA
| | - Donggu Lee
- Department of Mathematics, Konkuk University, Seoul 05029, Republic of Korea
| | - Sean Lawler
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
22
|
Yang Z, Chen J, Xie H, Liu T, Chen Y, Ma Z, Pei X, Yang W, Li L. Androgen receptor suppresses prostate cancer metastasis but promotes bladder cancer metastasis via differentially altering miRNA525-5p/SLPI-mediated vasculogenic mimicry formation. Cancer Lett 2019; 473:118-129. [PMID: 31843555 DOI: 10.1016/j.canlet.2019.12.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 12/20/2022]
Abstract
Early studies suggest that the androgen receptor (AR) may play differential roles in influencing prostate cancer (PCa) and bladder cancer (BCa) metastasis, but the underlying mechanisms remain unclear. Here, we found that the AR might function via differentially altering vasculogenic mimicry (VM) formation to either decrease PCa metastasis or increase BCa metastasis. Mechanism dissection showed that the AR could differentially alter the expression of the VM marker SLPI through miR-525-5p to regulate SLPI; moreover, it could either increase miR-525-5p transcription in PCa or decrease it in BCa via binding to different androgen-response-elements (AREs) located at different positions in the miR-525 precursor promoter. Further, results from liquid chromatography-mass spectrometry (LC-MS) showed that the co-factors of AR in PCa and BCa are NFIX and HDAC2, respectively. Together, these results provide the first detailed mechanism of how the AR can differentially alter PCa and BCa metastasis; thus, targeting the newly identified AR-miR-525-5p-SLPI axis may help suppress metastasis.
Collapse
Affiliation(s)
- Zhao Yang
- Sex Hormone Research Center, Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jiaqi Chen
- Sex Hormone Research Center, Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Hongjun Xie
- Sex Hormone Research Center, Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Tianjie Liu
- Sex Hormone Research Center, Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yule Chen
- Sex Hormone Research Center, Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Zhenkun Ma
- Sex Hormone Research Center, Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xinqi Pei
- Sex Hormone Research Center, Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Wenjie Yang
- Sex Hormone Research Center, Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Lei Li
- Sex Hormone Research Center, Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
23
|
Yamamoto S, Takayama KI, Obinata D, Fujiwara K, Ashikari D, Takahashi S, Inoue S. Identification of new octamer transcription factor 1-target genes upregulated in castration-resistant prostate cancer. Cancer Sci 2019; 110:3476-3485. [PMID: 31454442 PMCID: PMC6825001 DOI: 10.1111/cas.14183] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 08/18/2019] [Accepted: 08/25/2019] [Indexed: 12/12/2022] Open
Abstract
Octamer transcription factor 1 (OCT1) is an androgen receptor (AR)‐interacting partner and regulates the expression of target genes in prostate cancer cells. However, the function of OCT1 in castration‐resistant prostate cancer (CRPC) is not fully understood. In the present study, we used 22Rv1 cells as AR‐positive CRPC model cells to analyze the role of OCT1 in CRPC. We showed that OCT1 knockdown suppressed cell proliferation and migration of 22Rv1 cells. Using microarray analysis, we identified four AR and OCT1‐target genes, disks large‐associated protein 5 (DLGAP5), kinesin family member 15 (KIF15), non‐SMC condensin I complex subunit G (NCAPG), and NDC80 kinetochore complex component (NUF2) in 22Rv1 cells. We observed that knockdown of DLGAP5 and NUF2 suppresses growth and migration of 22Rv1 cells. Furthermore, immunohistochemical analysis showed that positive expression of DLGAP5 in prostate cancer specimens is related to poor cancer‐specific survival rates of patients. Notably, enhanced expression of DLGAP5 was observed in CRPC tissues of patients. Thus, our findings suggest that these four genes regulated by the AR/OCT1 complex could have an important role in CRPC progression.
Collapse
Affiliation(s)
- Shinichiro Yamamoto
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan.,Department of Urology, Nihon University School of Medicine, Tokyo, Japan
| | - Ken-Ichi Takayama
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Daisuke Obinata
- Department of Urology, Nihon University School of Medicine, Tokyo, Japan
| | - Kyoko Fujiwara
- Department of Medicine, Nihon University School of Medicine, Tokyo, Japan.,Department of Anatomy, Nihon University School of Dentistry, Tokyo, Japan
| | - Daisaku Ashikari
- Department of Urology, Nihon University School of Medicine, Tokyo, Japan
| | - Satoru Takahashi
- Department of Urology, Nihon University School of Medicine, Tokyo, Japan
| | - Satoshi Inoue
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan.,Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Tokyo, Japan
| |
Collapse
|
24
|
Takayama KI, Inoue S. Response to Letter to the Editor: "Integrative Genomic Analysis of OCT1 Reveals Coordinated Regulation of Androgen Receptor in Advanced Prostate Cancer". Endocrinology 2019; 160:1066. [PMID: 30942848 DOI: 10.1210/en.2019-00207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 03/27/2019] [Indexed: 11/19/2022]
Affiliation(s)
- Ken-Ichi Takayama
- Department of Functional Biogerontology, Tokyo Metropolitan Institute of Gerontology, Tokyo Japan
| | - Satoshi Inoue
- Department of Functional Biogerontology, Tokyo Metropolitan Institute of Gerontology, Tokyo Japan
- Division of Gene Regulation and Signal Transduction, Research Center of Genomic Medicine, Saitama Medical University, Saitama Japan
| |
Collapse
|
25
|
Takayama KI, Suzuki Y, Yamamoto S, Obinata D, Takahashi S, Inoue S. Integrative Genomic Analysis of OCT1 Reveals Coordinated Regulation of Androgen Receptor in Advanced Prostate Cancer. Endocrinology 2019; 160:463-472. [PMID: 30649323 DOI: 10.1210/en.2018-00923] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/07/2019] [Indexed: 01/04/2023]
Abstract
The ligand-dependent transcription factor androgen receptor (AR) plays a critical role in prostate cancer progression. We previously reported that Octamer transcription factor 1 (OCT1), an AR collaborative factor, facilitated the AR genomic bindings to regulate diverse programs of gene expression in AR-dependent prostate cancer cells. Repression of OCT1 binding can serve as a potential treatment strategy for advanced prostate cancer. However, the precise mechanism underlying the functions of OCT1 in advanced prostate cancer, especially lethal castration-resistant prostate cancer (CRPC), is still unclear. To uncover specific OCT1 functions in disease progression, we explored global OCT1-binding regions by performing chromatin immunoprecipitation sequencing in CRPC model 22Rv1 cells. We found that the OCT1 expression level and the obtained OCT1-binding regions increased in 22Rv1 cells compared with AR-dependent prostate cancer LNCaP cells. Interestingly, microarray analysis revealed that OCT1 regulates CRPC-specific target genes in addition to representative AR-regulated genes such as ACSL3. Pathway analysis showed the importance of OCT1 in regulating cell cycle‒related genes. By performing the chromatin immunoprecipitation assay, we validated anillin actin-binding protein (ANLN), which is highly expressed in CRPC and robustly regulated with OCT1 recruitment to the intron and promoter regions in 22Rv1 cells in comparison with LNCaP cells. Furthermore, knockdown of ANLN exhibited impaired cell growth and cell cycle progression, suggesting an important function of ANLN in CRPC cells. In conclusion, these findings raise the possibility that OCT1 coordinates AR signaling in a specific manner that is dependent on disease stage and promotes progression to CRPC.
Collapse
Affiliation(s)
- Ken-Ichi Takayama
- Department of Functional Biogerontology, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Yutaka Suzuki
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Shinichiro Yamamoto
- Department of Functional Biogerontology, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
- Department of Urology, Nihon University School of Medicine, Tokyo, Japan
| | - Daisuke Obinata
- Department of Functional Biogerontology, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
- Department of Urology, Nihon University School of Medicine, Tokyo, Japan
| | - Satoru Takahashi
- Department of Urology, Nihon University School of Medicine, Tokyo, Japan
| | - Satoshi Inoue
- Department of Functional Biogerontology, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
- Department of Urology, Nihon University School of Medicine, Tokyo, Japan
- Division of Gene Regulation and Signal Transduction, Research Center of Genomic Medicine, Saitama Medical University, Saitama, Japan
| |
Collapse
|
26
|
Neural Transcription Factors in Disease Progression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1210:437-462. [PMID: 31900920 DOI: 10.1007/978-3-030-32656-2_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Progression to the malignant state is fundamentally dependent on transcriptional regulation in cancer cells. Optimum abundance of cell cycle proteins, angiogenesis factors, immune evasion markers, etc. is needed for proliferation, metastasis or resistance to treatment. Therefore, dysregulation of transcription factors can compromise the normal prostate transcriptional network and contribute to malignant disease progression.The androgen receptor (AR) is considered to be a key transcription factor in prostate cancer (PCa) development and progression. Consequently, androgen pathway inhibitors (APIs) are currently the mainstay in PCa treatment, especially in castration-resistant prostate cancer (CRPC). However, emerging evidence suggests that with increased administration of potent APIs, prostate cancer can progress to a highly aggressive disease that morphologically resembles small cell carcinoma, which is referred to as neuroendocrine prostate cancer (NEPC), treatment-induced or treatment-emergent small cell prostate cancer. This chapter will review how neuronal transcription factors play a part in inducing a plastic stage in prostate cancer cells that eventually progresses to a more aggressive state such as NEPC.
Collapse
|
27
|
de Mey S, Jiang H, Corbet C, Wang H, Dufait I, Law K, Bastien E, Verovski V, Gevaert T, Feron O, De Ridder M. Antidiabetic Biguanides Radiosensitize Hypoxic Colorectal Cancer Cells Through a Decrease in Oxygen Consumption. Front Pharmacol 2018; 9:1073. [PMID: 30337872 PMCID: PMC6178882 DOI: 10.3389/fphar.2018.01073] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 09/05/2018] [Indexed: 12/17/2022] Open
Abstract
Background and Purpose: The anti-diabetic biguanide drugs metformin and phenformin exhibit antitumor activity in various models. However, their radiomodulatory effect under hypoxic conditions, particularly for phenformin, is largely unknown. This study therefore examines whether metformin and phenformin as mitochondrial complex I blockades could overcome hypoxic radioresistance through inhibition of oxygen consumption. Materials and Methods: A panel of colorectal cancer cells (HCT116, DLD-1, HT29, SW480, and CT26) was exposed to metformin or phenformin for 16 h at indicated concentrations. Afterward, cell viability was measured by MTT and colony formation assays. Apoptosis and reactive oxygen species (ROS) were detected by flow cytometry. Phosphorylation of AMP-activated protein kinase (AMPK) was examined by western blot. Mitochondria complexes activity and oxygen consumption rate (OCR) were measured by seahorse analyzer. The radiosensitivity of tumor cells was assessed by colony formation assay under aerobic and hypoxic conditions. The in vitro findings were further validated in colorectal CT26 tumor model. Results: Metformin and phenformin inhibited mitochondrial complex I activity and subsequently reduced OCR in a dose-dependent manner starting at 3 mM and 30 μM, respectively. As a result, the hypoxic radioresistance of tumor cells was counteracted by metformin and phenformin with an enhancement ratio about 2 at 9 mM and 100 μM, respectively. Regarding intrinsic radioresistance, both of them did not exhibit any effect although there was an increase of phosphorylation of AMPK and ROS production. In tumor-bearing mice, metformin or phenformin alone did not show any anti-tumor effect. While in combination with radiation, both of them substantially delayed tumor growth and enhanced radioresponse, respectively, by 1.3 and 1.5-fold. Conclusion: Our results demonstrate that metformin and phenformin overcome hypoxic radioresistance through inhibition of mitochondrial respiration, and provide a rationale to explore metformin and phenformin as hypoxic radiosensitizers.
Collapse
Affiliation(s)
- Sven de Mey
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Heng Jiang
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Cyril Corbet
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium
| | - Hui Wang
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Inès Dufait
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium.,Laboratory of Molecular and Cellular Therapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Kalun Law
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Estelle Bastien
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium
| | - Valeri Verovski
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Thierry Gevaert
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Olivier Feron
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium
| | - Mark De Ridder
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
28
|
Acyl-CoA synthetase long-chain 3 regulates AKT phosphorylation and the functional activity of human prostate cancer cells. JOURNAL OF BIO-X RESEARCH 2018. [DOI: 10.1097/jbr.0000000000000009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
29
|
Wu C, Wang W, Fang L, Su W. Programmable pyrrole-imidazole polyamides: A potent tool for DNA targeting. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2018.05.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
30
|
Lambert M, Jambon S, Depauw S, David-Cordonnier MH. Targeting Transcription Factors for Cancer Treatment. Molecules 2018; 23:molecules23061479. [PMID: 29921764 PMCID: PMC6100431 DOI: 10.3390/molecules23061479] [Citation(s) in RCA: 243] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/11/2018] [Accepted: 06/15/2018] [Indexed: 12/15/2022] Open
Abstract
Transcription factors are involved in a large number of human diseases such as cancers for which they account for about 20% of all oncogenes identified so far. For long time, with the exception of ligand-inducible nuclear receptors, transcription factors were considered as “undruggable” targets. Advances knowledge of these transcription factors, in terms of structure, function (expression, degradation, interaction with co-factors and other proteins) and the dynamics of their mode of binding to DNA has changed this postulate and paved the way for new therapies targeted against transcription factors. Here, we discuss various ways to target transcription factors in cancer models: by modulating their expression or degradation, by blocking protein/protein interactions, by targeting the transcription factor itself to prevent its DNA binding either through a binding pocket or at the DNA-interacting site, some of these inhibitors being currently used or evaluated for cancer treatment. Such different targeting of transcription factors by small molecules is facilitated by modern chemistry developing a wide variety of original molecules designed to specifically abort transcription factor and by an increased knowledge of their pathological implication through the use of new technologies in order to make it possible to improve therapeutic control of transcription factor oncogenic functions.
Collapse
Affiliation(s)
- Mélanie Lambert
- INSERM UMR-S1172-JPARC (Jean-Pierre Aubert Research Center), Lille University and Hospital Center (CHU-Lille), Institut pour la Recherche sur le Cancer de Lille (IRCL), Place de Verdun, F-59045 Lille, France.
| | - Samy Jambon
- INSERM UMR-S1172-JPARC (Jean-Pierre Aubert Research Center), Lille University and Hospital Center (CHU-Lille), Institut pour la Recherche sur le Cancer de Lille (IRCL), Place de Verdun, F-59045 Lille, France.
| | - Sabine Depauw
- INSERM UMR-S1172-JPARC (Jean-Pierre Aubert Research Center), Lille University and Hospital Center (CHU-Lille), Institut pour la Recherche sur le Cancer de Lille (IRCL), Place de Verdun, F-59045 Lille, France.
| | - Marie-Hélène David-Cordonnier
- INSERM UMR-S1172-JPARC (Jean-Pierre Aubert Research Center), Lille University and Hospital Center (CHU-Lille), Institut pour la Recherche sur le Cancer de Lille (IRCL), Place de Verdun, F-59045 Lille, France.
| |
Collapse
|
31
|
Tang Y, Zhou J, Hooi SC, Jiang YM, Lu GD. Fatty acid activation in carcinogenesis and cancer development: Essential roles of long-chain acyl-CoA synthetases. Oncol Lett 2018; 16:1390-1396. [PMID: 30008815 DOI: 10.3892/ol.2018.8843] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 05/22/2018] [Indexed: 12/12/2022] Open
Abstract
The significance of fatty acid metabolism in cancer initiation and development is increasingly accepted by scientists and the public due to the high prevalence of overweight and obese individuals. Fatty acids have different turnovers in the body: Either breakdown into acetyl-CoA to aid ATP generation through catabolic metabolism or incorporation into triacylglycerol and phospholipid through anabolic metabolism. However, these two distinct pathways require a common initial step known as fatty acid activation. Long-chain acyl-CoA synthetases (ACSLs), which are responsible for activation of the most abundant long-chain fatty acids, are commonly deregulated in cancer. This deregulation is also associated with poor survival in patients with cancer. Fatty acids physiologically regulate ACSL expression, but cancer cells could hijack certain involved regulatory mechanisms to deregulate ACSLs. Among the five family isoforms, ACSL1 and ACSL4 are able to promote ungoverned cell growth, facilitate tumor invasion and evade programmed cell death, while ACSL3 may have relatively complex functions in different types of cancer. Notably, ACSL4 is also essential for the induction of ferroptosis (another form of programmed cell death) by facilitating arachidonic acid oxidation, which makes the enzyme a desirable cancer target. The present review thus evaluates the functions of deregulated ACSLs in cancer, the possible molecular mechanisms involved and the chemotherapeutic potentials to target ACSLs. A better understanding of the pathological effects of ACSLs in cancer and the involved molecular mechanisms will aid in delineating the exact role of fatty acid metabolism in cancer and designing precise cancer prevention and treatment strategies.
Collapse
Affiliation(s)
- Yue Tang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jing Zhou
- Department of Physiology, School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Shing Chuan Hooi
- Department of Physiology, Yong Loo Lim School of Medicine, National University of Singapore, Singapore 117543, Republic of Singapore
| | - Yue-Ming Jiang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Guo-Dong Lu
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.,Key Laboratory of High-Incidence-Tumor Prevention and Treatment, Guangxi Medical University, Ministry of Education of China, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
32
|
Thakur S, Daley B, Gaskins K, Vasko VV, Boufraqech M, Patel D, Sourbier C, Reece J, Cheng SY, Kebebew E, Agarwal S, Klubo-Gwiezdzinska J. Metformin Targets Mitochondrial Glycerophosphate Dehydrogenase to Control Rate of Oxidative Phosphorylation and Growth of Thyroid Cancer In Vitro and In Vivo. Clin Cancer Res 2018; 24:4030-4043. [PMID: 29691295 DOI: 10.1158/1078-0432.ccr-17-3167] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 03/02/2018] [Accepted: 04/20/2018] [Indexed: 01/08/2023]
Abstract
Purpose: Mitochondrial glycerophosphate dehydrogenase (MGPDH) is the key enzyme connecting oxidative phosphorylation (OXPHOS) and glycolysis as well as a target of the antidiabetic drug metformin in the liver. There are no data on the expression and role of MGPDH as a metformin target in cancer. In this study, we evaluated MGPDH as a potential target of metformin in thyroid cancer and investigated its contribution in thyroid cancer metabolism.Experimental Design: We analyzed MGPDH expression in 253 thyroid cancer and normal tissues by immunostaining and examined its expression and localization in thyroid cancer-derived cell lines (FTC133, BCPAP) by confocal microscopy. The effects of metformin on MGPDH expression were determined by qRT-PCR and Western blot analysis. Seahorse analyzer was utilized to assess the effects of metformin on OXPHOS and glycolysis in thyroid cancer cells. We analyzed the effects of metformin on tumor growth and MGPDH expression in metastatic thyroid cancer mouse models.Results: We show for the first time that MGPDH is overexpressed in thyroid cancer compared with normal thyroid. We demonstrate that MGPDH regulates human thyroid cancer cell growth and OXPHOS rate in vitro Metformin treatment is associated with downregulation of MGPDH expression and inhibition of OXPHOS in thyroid cancer in vitro Cells characterized by high MGPDH expression are more sensitive to OXPHOS-inhibitory effects of metformin in vitro and growth-inhibitory effects of metformin in vitro and in vivoConclusions: Our study established MGPDH as a novel regulator of thyroid cancer growth and metabolism that can be effectively targeted by metformin. Clin Cancer Res; 24(16); 4030-43. ©2018 AACR.
Collapse
Affiliation(s)
- Shilpa Thakur
- Metabolic Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland
| | - Brianna Daley
- Metabolic Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland
| | - Kelli Gaskins
- Endocrine Oncology Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Vasyl V Vasko
- Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Myriem Boufraqech
- Endocrine Oncology Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Dhaval Patel
- Endocrine Oncology Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Carole Sourbier
- Urologic Oncology Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Jeff Reece
- Metabolic Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland
| | - Sheue-Yann Cheng
- Laboratory of Molecular Biology, National Cancer Institute, NIH, Bethesda, Maryland
| | - Electron Kebebew
- Endocrine Oncology Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Sunita Agarwal
- Metabolic Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland
| | - Joanna Klubo-Gwiezdzinska
- Metabolic Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland.
| |
Collapse
|
33
|
Migita T, Takayama KI, Urano T, Obinata D, Ikeda K, Soga T, Takahashi S, Inoue S. ACSL3 promotes intratumoral steroidogenesis in prostate cancer cells. Cancer Sci 2017; 108:2011-2021. [PMID: 28771887 PMCID: PMC5623750 DOI: 10.1111/cas.13339] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 07/06/2017] [Accepted: 07/30/2017] [Indexed: 01/12/2023] Open
Abstract
Long‐chain acyl‐coenzyme A (CoA) synthetase 3 (ACSL3) is an androgen‐responsive gene involved in the generation of fatty acyl‐CoA esters. ACSL3 is expressed in both androgen‐sensitive and castration‐resistant prostate cancer (CRPC). However, its role in prostate cancer remains elusive. We overexpressed ACSL3 in androgen‐dependent LNCaP cells and examined the downstream effectors of ACSL3. Furthermore, we examined the role of ACSL3 in the androgen metabolism of prostate cancer. ACSL3 overexpression led to upregulation of several genes such as aldo‐keto reductase 1C3 (AKR1C3) involved in steroidogenesis, which utilizes adrenal androgen dehydroepiandrosterone sulfate (DHEAS) as substrate, and downregulated androgen‐inactivating enzyme UDP‐glucuronosyltransferase 2 (UGT2B). Exposure to DHEAS significantly increased testosterone levels and cell proliferative response in ACSL3‐overexpressing cells when compared to that in control cells. A public database showed that ACSL3 level was higher in CRPC than in hormone‐sensitive prostate cancer. CRPC cells showed an increased expression of ACSL3 and an expression pattern of AKR1C3 and UGT2B similar to ACSL3‐overexpressing cells. DHEAS stimulation significantly promoted the proliferation of CRPC cells when compared to that of LNCaP cells. These findings suggest that ACSL3 contributes to the growth of CRPC through intratumoral steroidogenesis (i.e. promoting androgen synthesis from DHEAS and preventing the catabolism of active androgens).
Collapse
Affiliation(s)
- Toshiro Migita
- Departments of Anti-Aging Medicine and Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Ken-Ichi Takayama
- Departments of Anti-Aging Medicine and Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Functional Biogerontology, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Tomohiko Urano
- Departments of Anti-Aging Medicine and Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Functional Biogerontology, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Daisuke Obinata
- Departments of Anti-Aging Medicine and Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Urology, Nihon University School of Medicine, Tokyo, Japan
| | - Kazutaka Ikeda
- Institute for Advanced Biosciences, Keio University, Yamagata, Japan.,RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Yamagata, Japan
| | - Satoru Takahashi
- Department of Urology, Nihon University School of Medicine, Tokyo, Japan
| | - Satoshi Inoue
- Departments of Anti-Aging Medicine and Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Functional Biogerontology, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan.,Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan
| |
Collapse
|
34
|
Liu S, Kumari S, Hu Q, Senapati D, Venkadakrishnan VB, Wang D, DePriest AD, Schlanger SE, Ben-Salem S, Valenzuela MM, Willard B, Mudambi S, Swetzig WM, Das GM, Shourideh M, Koochekpour S, Falzarano SM, Magi-Galluzzi C, Yadav N, Chen X, Lao C, Wang J, Billaud JN, Heemers HV. A comprehensive analysis of coregulator recruitment, androgen receptor function and gene expression in prostate cancer. eLife 2017; 6:e28482. [PMID: 28826481 PMCID: PMC5608510 DOI: 10.7554/elife.28482] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 08/17/2017] [Indexed: 01/03/2023] Open
Abstract
Standard treatment for metastatic prostate cancer (CaP) prevents ligand-activation of androgen receptor (AR). Despite initial remission, CaP progresses while relying on AR. AR transcriptional output controls CaP behavior and is an alternative therapeutic target, but its molecular regulation is poorly understood. Here, we show that action of activated AR partitions into fractions that are controlled preferentially by different coregulators. In a 452-AR-target gene panel, each of 18 clinically relevant coregulators mediates androgen-responsiveness of 0-57% genes and acts as a coactivator or corepressor in a gene-specific manner. Selectivity in coregulator-dependent AR action is reflected in differential AR binding site composition and involvement with CaP biology and progression. Isolation of a novel transcriptional mechanism in which WDR77 unites the actions of AR and p53, the major genomic drivers of lethal CaP, to control cell cycle progression provides proof-of-principle for treatment via selective interference with AR action by exploiting AR dependence on coregulators.
Collapse
Affiliation(s)
- Song Liu
- Department of Biostatistics and BioinformaticsRoswell Park Cancer InstituteBuffaloUnited States
| | - Sangeeta Kumari
- Department of Cancer BiologyCleveland ClinicClevelandUnited States
| | - Qiang Hu
- Department of Biostatistics and BioinformaticsRoswell Park Cancer InstituteBuffaloUnited States
| | | | | | - Dan Wang
- Department of Biostatistics and BioinformaticsRoswell Park Cancer InstituteBuffaloUnited States
| | - Adam D DePriest
- Department of Cancer GeneticsRoswell Park Cancer InstituteBuffaloUnited States
| | | | - Salma Ben-Salem
- Department of Cancer BiologyCleveland ClinicClevelandUnited States
| | | | - Belinda Willard
- Department of Research Core ServicesCleveland ClinicClevelandUnited States
| | - Shaila Mudambi
- Department of Cell Stress BiologyRoswell Park Cancer InstituteBuffaloUnited States
| | - Wendy M Swetzig
- Department of Pharmacology and TherapeuticsRoswell Park Cancer InstituteBuffaloUnited States
| | - Gokul M Das
- Department of Pharmacology and TherapeuticsRoswell Park Cancer InstituteBuffaloUnited States
| | - Mojgan Shourideh
- Department of Cancer GeneticsRoswell Park Cancer InstituteBuffaloUnited States
| | | | | | | | - Neelu Yadav
- Department of Pharmacology and TherapeuticsRoswell Park Cancer InstituteBuffaloUnited States
| | - Xiwei Chen
- Department of Biostatistics and BioinformaticsRoswell Park Cancer InstituteBuffaloUnited States
| | - Changshi Lao
- Institute for Nanosurface Science and EngineeringShenzhen UniversityShenzhenChina
| | - Jianmin Wang
- Department of Biostatistics and BioinformaticsRoswell Park Cancer InstituteBuffaloUnited States
| | | | - Hannelore V Heemers
- Department of Cancer BiologyCleveland ClinicClevelandUnited States
- Department of UrologyCleveland ClinicClevelandUnited States
- Department of Hematology/Medical OncologyCleveland ClinicClevelandUnited States
| |
Collapse
|
35
|
Kumari S, Senapati D, Heemers HV. Rationale for the development of alternative forms of androgen deprivation therapy. Endocr Relat Cancer 2017; 24:R275-R295. [PMID: 28566530 PMCID: PMC5886376 DOI: 10.1530/erc-17-0121] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 05/30/2017] [Indexed: 12/31/2022]
Abstract
With few exceptions, the almost 30,000 prostate cancer deaths annually in the United States are due to failure of androgen deprivation therapy. Androgen deprivation therapy prevents ligand-activation of the androgen receptor. Despite initial remission after androgen deprivation therapy, prostate cancer almost invariably progresses while continuing to rely on androgen receptor action. Androgen receptor's transcriptional output, which ultimately controls prostate cancer behavior, is an alternative therapeutic target, but its molecular regulation is poorly understood. Recent insights in the molecular mechanisms by which the androgen receptor controls transcription of its target genes are uncovering gene specificity as well as context-dependency. Heterogeneity in the androgen receptor's transcriptional output is reflected both in its recruitment to diverse cognate DNA binding motifs and in its preferential interaction with associated pioneering factors, other secondary transcription factors and coregulators at those sites. This variability suggests that multiple, distinct modes of androgen receptor action that regulate diverse aspects of prostate cancer biology and contribute differentially to prostate cancer's clinical progression are active simultaneously in prostate cancer cells. Recent progress in the development of peptidomimetics and small molecules, and application of Chem-Seq approaches indicate the feasibility for selective disruption of critical protein-protein and protein-DNA interactions in transcriptional complexes. Here, we review the recent literature on the different molecular mechanisms by which the androgen receptor transcriptionally controls prostate cancer progression, and we explore the potential to translate these insights into novel, more selective forms of therapies that may bypass prostate cancer's resistance to conventional androgen deprivation therapy.
Collapse
Affiliation(s)
- Sangeeta Kumari
- Department of Cancer BiologyCleveland Clinic, Cleveland, Ohio, USA
| | | | - Hannelore V Heemers
- Department of Cancer BiologyCleveland Clinic, Cleveland, Ohio, USA
- Department of UrologyCleveland Clinic, Cleveland, Ohio, USA
- Department of Hematology/Medical OncologyCleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
36
|
Ashikari D, Takayama KI, Obinata D, Takahashi S, Inoue S. CLDN8, an androgen-regulated gene, promotes prostate cancer cell proliferation and migration. Cancer Sci 2017; 108:1386-1393. [PMID: 28474805 PMCID: PMC5497721 DOI: 10.1111/cas.13269] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 04/25/2017] [Accepted: 04/30/2017] [Indexed: 01/11/2023] Open
Abstract
The proliferation of prostate cancer cells is controlled by the androgen receptor (AR) signaling pathway. However, the function of AR target genes has not been fully elucidated. In previous studies, we have identified global AR binding sites and AR target genes in prostate cancer cells. Here, we focused on Claudin 8 (CLDN8), a protein constituting tight junctions in cell membranes. We found one AR binding site in the promoter region and two functional androgen‐responsive elements in the sequence. Reporter assay revealed that transcriptional activation of the CLDN8 promoter by androgen is dependent on these androgen‐responsive elements. Furthermore, CLDN8 mRNA is induced by androgen time‐dependently and the induction is blocked by AR inhibitor, suggesting that AR is involved in the transcriptional activation. In addition, our functional analyses by overexpression and knockdown of CLDN8 mRNA indicate that CLDN8 promotes prostate cancer cell proliferation and migration. Claudin 8 was overexpressed in prostate cancer clinical samples compared to benign tissues. Furthermore, we found that CLDN8 regulates intracellular signal transduction and stabilizes the cytoskeleton. Taken together, these results indicate that CLDN8 functions as an AR downstream signal to facilitate the progression of prostate cancer. Claudin 8 may be a novel molecular target for prostate cancer therapy.
Collapse
Affiliation(s)
- Daisaku Ashikari
- Department of Anti-Aging Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan.,Department of Urology, Nihon University School of Medicine, Tokyo, Japan
| | - Ken-Ichi Takayama
- Department of Anti-Aging Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan.,Department of Functional Biogerontology, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Daisuke Obinata
- Department of Urology, Nihon University School of Medicine, Tokyo, Japan
| | - Satoru Takahashi
- Department of Urology, Nihon University School of Medicine, Tokyo, Japan
| | - Satoshi Inoue
- Department of Anti-Aging Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan.,Department of Functional Biogerontology, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan.,Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan
| |
Collapse
|
37
|
Obinata D, Takayama K, Takahashi S, Inoue S. Crosstalk of the Androgen Receptor with Transcriptional Collaborators: Potential Therapeutic Targets for Castration-Resistant Prostate Cancer. Cancers (Basel) 2017; 9:E22. [PMID: 28264478 PMCID: PMC5366817 DOI: 10.3390/cancers9030022] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/21/2017] [Accepted: 02/21/2017] [Indexed: 02/06/2023] Open
Abstract
Prostate cancer is the second leading cause of death from cancer among males in Western countries. It is also the most commonly diagnosed male cancer in Japan. The progression of prostate cancer is mainly influenced by androgens and the androgen receptor (AR). Androgen deprivation therapy is an established therapy for advanced prostate cancer; however, prostate cancers frequently develop resistance to low testosterone levels and progress to the fatal stage called castration-resistant prostate cancer (CRPC). Surprisingly, AR and the AR signaling pathway are still activated in most CRPC cases. To overcome this problem, abiraterone acetate and enzalutamide were introduced for the treatment of CRPC. Despite the impact of these drugs on prolonged survival, CRPC acquires further resistance to keep the AR pathway activated. Functional molecular studies have shown that some of the AR collaborative transcription factors (TFs), including octamer transcription factor (OCT1), GATA binding protein 2 (GATA2) and forkhead box A1 (FOXA1), still stimulate AR activity in the castration-resistant state. Therefore, elucidating the crosstalk between the AR and collaborative TFs on the AR pathway is critical for developing new strategies for the treatment of CRPC. Recently, many compounds targeting this pathway have been developed for treating CRPC. In this review, we summarize the AR signaling pathway in terms of AR collaborators and focus on pyrrole-imidazole (PI) polyamide as a candidate compound for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Daisuke Obinata
- Department of Urology, Nihon University School of Medicine, Tokyo 173-8610, Japan.
- Department of Functional Biogerontology, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan.
| | - Kenichi Takayama
- Department of Functional Biogerontology, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan.
| | - Satoru Takahashi
- Department of Urology, Nihon University School of Medicine, Tokyo 173-8610, Japan.
| | - Satoshi Inoue
- Department of Functional Biogerontology, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan.
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama 350-1241, Japan.
| |
Collapse
|